
Composing inference algorithms as program transformations

Robert Zinkov
Indiana University

Bloomington, IN 47408 USA
zinkov@iu.edu

Chung-chieh Shan
Indiana University

Bloomington, IN 47408 USA
ccshan@indiana.edu

Abstract

Probabilistic inference procedures are usually
coded painstakingly from scratch, for each tar-
get model and each inference algorithm. We
reduce this effort by generating inference pro-
cedures from models automatically. We make
this code generation modular by decomposing
inference algorithms into reusable program-to-
program transformations. These transforma-
tions perform exact inference as well as gener-
ate probabilistic programs that compute expec-
tations, densities, and MCMC samples. The
resulting inference procedures are about as ac-
curate and fast as other probabilistic program-
ming systems on real-world problems.

1 INTRODUCTION

Writing inference algorithms for probabilistic models is
tedious and error-prone. Conceptually, these algorithms
are combinations of simpler operations, such as comput-
ing the density of a distribution at a given point. So it is
unfortunate that these algorithms are traditionally imple-
mented from scratch. In this paper, we show how to de-
scribe these building blocks in code, so that they need not
be rewritten for every new inference algorithm or model.

We contribute the first method for composing multiple
inference algorithms over the same model, even exact
and approximate ones over the same factor. Our ap-
proach is to express inference in terms of operations that
transform one probabilistic program into another. We use
probabilistic programs to represent distributions, though
our approach is compatible with other representations
such as factor graphs. The goal of our transformations
is to turn a program that denotes a model into another
program that, when interpreted to draw a weighted sam-
ple, is equivalent to the desired inference algorithm.

Because the output of an inference transformation is still
a probabilistic program, we can apply further inference
transformations to the program. In this way, we can sub-
ject a single model to multiple inference methods with-
out coding them from scratch. We thus reduce the infor-
mal problem of combining inference methods to the for-
mal and more automatable problem of composing pro-
gram transformations. In particular, approximate infer-
ence methods can be composed with taking advantage of
exact mathematical equivalences such as conjugacy.

2 MOTIVATION AND RELATED
WORK

Developing inference algorithms that work on a variety
of models has long been a goal of probabilistic inference,
including graphical models and probabilistic program-
ming. The composability of inference algorithms has un-
fortunately lagged behind the composability of models.

Many probabilistic programming systems allow a choice
of inference methods, both exact and approximate. For
example, the probabilistic language Church (Goodman
et al. 2008) has many interpreters, each of which imple-
ments a different inference method. Systems such as Fi-
garo, Factorie, Anglican and Wolfe (Pfeffer 2009; Mc-
Callum et al. 2008; Wood et al. 2014; Riedel et al. 2014)
also allow adding inference methods, as new code in the
host language where the systems are embedded. How-
ever, the end result of applying these inference methods
is behavior or code in a different language, no longer a
probabilistic program. Thus, it is difficult in these sys-
tems to apply one method to the result of another method.

More similar to our approach is Ścibior et al.’s (2015;
2016). Like us, they express and compose inference
methods as transformations that produce probabilistic
programs in the same language. Thus for example they
reuse Sequential Monte Carlo to implement Particle In-
dependent MH. But because their probabilistic language



reuses many primitives from the host language Haskell,
their transformations cannot inspect most of the input
code, notably deterministic computations and code un-
der a binding. In contrast, we can perform exact infer-
ence (Section 5), we can compute densities and condi-
tional distributions (Section 4.3) in the face of determin-
istic dependencies, and we can generate MH samplers
(Section 4.5) using a variety of proposal distributions.

So in general, transformations need to take programs as
input as well as produce them as output in order to sup-
port the variety of inference composition found in the lit-
erature. To illustrate the need and the variety, below we
recall some patterns of inference composition where we
want to reuse existing implementations in ways unsup-
ported by existing systems such as those named above.

Sometimes, we apply approximate inference to a model,
then post-process the results using exact inference. For
example, a popular way to perform inference for la-
tent Dirichlet allocation (LDA) is to use Gibbs sampling
(Griffiths and Steyvers 2004) to infer topic markers for
each word, then infer from these topic markers the exact
distribution on words given each topic.

Other times, we apply exact inference to parts of our
model, and use an approximate method for the rest. As
an example, Hughes et al. (2015) develop an inference al-
gorithm for hierarchical Dirichlet processes that samples
the truncation dictating the number of topics then per-
forms variational inference for the other model parame-
ters. This inference combination requires that sampling
a truncation still leave in place a representation on which
we can perform variational inference.

Another composition pattern emerges from recent work
on parallelizing an inference algorithm to run on multi-
ple machines (Neiswanger et al. 2014; Xu et al. 2014;
Gelman et al. 2014). The pattern is to transform a pos-
terior distribution for a parameter given the data into a
model that lets us infer noisy versions of the parameter
given subsets of the data. We then combine these noisy
parameter estimates to infer the underlying parameter.

Finally, given a linear sequential model, we often want
to predict future states of the system and the dynamics
that govern them. Given the dynamics, for systems like
Kalman filters, we may use exact inference to derive the
state transition functions in closed form. Learning the
dynamics, on the other hand, is usually treated as an ap-
proximate inference problem where we sample different
possible dynamics given some observed states. This joint
learning and exact inference again composes two infer-
ence algorithms. Section 6.1 shows our inference com-
position at work in a tiny instance of this case. We illus-
trate our approach using this example in Section 3.

3 EXAMPLE OF INFERENCE
COMPOSITION

We illustrate our program-transformation approach to in-
ference composition using a simple linear dynamical sys-
tem. Our model below defines a joint distribution:

noiseT ∼ Uniform(3, 8)

noiseE ∼ Uniform(1, 4)

x1 | noiseT ∼ Normal(0,noiseT )

m1 | x1,noiseE ∼ Normal(x1,noiseE)

x2 | x1,noiseT ∼ Normal(x1,noiseT )

m2 | x2,noiseE ∼ Normal(x2,noiseE)

We would like to draw samples from the posterior dis-
tribution over noiseT and noiseE given observations m1

and m2, using a Metropolis-Hastings (MH) sampler.

We start by representing the model in our language:

kalman =
noiseT <~ Uniform(3, 8);
noiseE <~ Uniform(1, 4);
x1 <~ Normal( 0, noiseT);
m1 <~ Normal(x1, noiseE);
x2 <~ Normal(x1, noiseT);
m2 <~ Normal(x2, noiseE);
Dirac(((m1, m2), (noiseT, noiseE)))

The use of Dirac at the bottom shows that this distribu-
tion ranges over pairs of pairs of reals.

We first apply the disintegration transformation to get an-
other program. As detailed in Section 4.3, disintegration
takes as input a joint distribution and produces a program
representing a family of posterior distributions. The new
program is a function from the observations to the pos-
terior distribution. For example, disintegrating kalman
produces the program kalman2 below. It takes as input
(m1, m2) and returns the distribution over (noiseT,
noiseE) given those values for m1 and m2.

kalman2 = Lam((m1,m2),
noiseT <~ Uniform(3, 8);
noiseE <~ Uniform(1, 4);
x1 <~ Normal( 0, noiseT);
x2 <~ Normal(x1, noiseT);
Weight( exp(-(m2-x2)^2/(2*noiseE^2))

/noiseE/sqrt(2*pi)

* exp(-(m1-x1)^2/(2*noiseE^2))
/noiseE/sqrt(2*pi)

, (noiseT, noiseE) ))

The use of Lam at the top and Weight at the bot-
tom shows that this is a function from pairs of reals
(m1, m2) to measures over pairs of reals (noiseT,
noiseE).



The next step is to apply the simplification transforma-
tion to kalman2 to get kalman3.

kalman3 = Lam((m1,m2),
noiseT <~ Uniform(3, 8);
noiseE <~ Uniform(1, 4);
Weight(P, (noiseT, noiseE)))

This program is equivalent to kalman2, except the sim-
plification transformation has symbolically integrated
out the Normal-distributed random variables x1 and x2
and replaced them by an observation likelihood in closed
form, which we elide above as P .

We next apply to kalman3 another program transfor-
mation we call mh, which implements MH sampling.
The mh transformation takes as input two programs. The
first program represents a proposal distribution, or more
precisely a function from the current sample to a distri-
bution over proposed samples. Here we use a proposal
distribution that with equal probability resamples one of
noiseT and noiseE while keeping the other fixed:

proposal = Lam((noiseT, noiseE),
Superpose((1/2, n <~ Uniform(3, 8);

Dirac((n, noiseE))),
(1/2, n <~ Uniform(1, 4);

Dirac((noiseT, n)))))

The second input to the mh transformation represents
the target distribution. In this example, it is the part
of kalman3 above after the top line Lam((m1,m2),.
From these inputs, the mh transformation computes a
symbolic formula for the MH acceptance ratio and em-
beds it in a program representing a transition kernel. The
new program, kalman4 below, is a function from the
current sample to a distribution over pairs of proposed
samples and acceptance ratios:

kalman4 = Lam((noiseT, noiseE),
proposed <~ Superpose(

(1/2, n <~ Uniform(3, 8);
Dirac((n, noiseE))),

(1/2, n <~ Uniform(1, 4);
Dirac((noiseT, n)))),

Dirac((proposed, A)))

The elided part A is a symbolic formula that com-
putes the acceptance ratio using the current sample
(noiseT, noiseE) and the sample proposed by
the Superpose. This acceptance ratio can then be used
to decide whether to accept or reject the proposed.

We then perform further optimizations on kalman4, in-
cluding algebraic simplifications and rewriting the pro-
gram to use fewer <~s. We describe in more detail the
kinds of optimizations we perform in Section 5. The re-
sulting program, kalman5, has the following structure:

kalman5 = Lam((noiseT, noiseE),
Superpose(
(1/2, n <~ Uniform(3, 8);

Dirac(((n, noiseE), AT))),
(1/2, n <~ Uniform(1, 4);

Dirac(((noiseT, n), AE)))))

The elided parts AT and AE are algebraically simplified
formulas for the acceptance ratio in each of the two cases.

Finally we feed this last program kalman5 to a sam-
pler (Algorithm 1). Given an observation and a current
sample, this sampler produces a proposed sample and the
MH acceptance ratio of that sample.

sample(App(App(kalman5,(0,1)),(5,2)),
[])

>>> (((5,1.6811397),0.7924639),1.0)

In the command above, (0,1) is the observation,
and (5,2) is the current sample. In the output
above, (5,1.6811397) is the proposed sample, and
0.7924639 is its acceptance ratio.

4 INFERENCE METHODS AS
PROGRAM TRANSFORMATIONS

To compose inference methods, we pose them as trans-
formations of one probabilistic program into another. We
then achieve the desired inference method for the former
program by applying a simpler inference method, such as
exact inference or weighted sampling, to the latter pro-
gram. For example, in Section 3 we feed a program to
disintegration (Section 4.3), then mh (Section 4.5), then
simplification (Section 5), and finally sampling. Only in
the final sampling step is any random choice made!

We first define our probabilistic language, then describe
various program transformations that work in concert.

4.1 LANGUAGE DESCRIPTION

Below is our core grammar of probabilistic programs:

e ::= x | 1 | e - e | e < e | exp(e) | If(e,e,e) | . . .
| Sum(e,e,x,e) | Int(e,e,x,e)
| Lam(x,e) | App(e,e) | (e,e) | e[0] | e[1]
| Uniform(e,e) | Normal(e,e)
| Gamma(e,e) | Weight(e,e)
| Categorical((e,e), ...)
| Superpose((e,e), ...) | x<~ e; e

The first line of this grammar says that our language
includes ordinary programming support for variables,
math, and If. The second line adds primitives to rep-
resent Summation and Integration, used in Section 4.2.
The third line adds functions and tuples.



The remainder of the grammar is what makes our lan-
guage probabilistic: we add primitives that represent and
compose measures. To start with, Uniform(1,2) rep-
resents the uniform distribution over real numbers be-
tween 1 and 2, and Normal(3,4) represents the nor-
mal distribution with mean 3 and standard deviation 4.

Weight(1,8) represents the probability distribution
that assigns its entire probability mass 1 to the single out-
come 8. We write Dirac(8) as syntactic sugar for it.
In contrast, Weight(0.7,8) represents the measure,
or unnormalized distribution, that assigns the probabil-
ity 0.7 to the single outcome 8. This primitive lets our
language represent (unnormalized) measures in general,
not just (normalized) probability distributions. This ex-
pressivity lets us separately reuse a transformation that
produces an unnormalized measure (Section 4.3) and a
transformation that subsequently normalizes a measure
(Section 4.4). Also, Weight lets us represent a distribu-
tion by combining a base measure and a density function.

Categorical represents the categorical distribution
with a sequence of zero or more pairs. The first element
of each pair is the probability of selecting the outcome
that is the second element of the pair. If the first elements
of the pairs do not sum to 1, they are normalized.

Superpose is like Categorical, except it does not
normalize, so it can represent measures in general. We
can define Superpose in terms of Categorical and
Weight, but it is actually more convenient to define
Weight and Categorical in terms of Superpose.

The final primitive <~ (pronounced “bind”) composes
two distributions e1 and e2. The second distribution e2
may depend on the outcome x of e1. The outcome of the
composed distribution x<~e1;e2 is the outcome of e2.
This primitive lets our language represent sequential and
hierarchical models. A simple example is this model:

x ∼ Uniform(0, 2) y|x ∼ Uniform(x, 3)

We write the marginal distribution over y as

x <~ Uniform(0, 2); Uniform(x, 3)

and the joint distribution over (x, y) as

x <~ Uniform(0, 2);
y <~ Uniform(x, 3); Dirac((x,y))

To make the semantics of our language more concrete,
Algorithm 1 shows a sampler that takes a probabilistic
program as input and returns a draw from the distribu-
tion it represents. It is our only operation that calls a
random number generator. We apply it last in a sequence
of transformations to perform approximate inference.

Like a typical interpreter, Algorithm 1 takes as input not
only a program but also an environment, which is a table

Algorithm 1: Weighted sampler: sample(m, env = [])

Input: program representing a measure: m
Input: environment: env
Output: pair of values (outcome, weight)
Examine m
if m has the form Weight(w1,e1) then

Evaluate e1 in the environment env, obtaining v1
Return (v1, w1)

else if m has the form Normal(e1,e2) then
Evaluate e1 in the environment env, obtaining v1
Evaluate e2 in the environment env, obtaining v2
Sample from the normal distribution with mean v1
and standard deviation v2, obtaining v3
Return (v3, 1)

else if m has the form x<~m1;m2 then
Call Algorithm 1 on m1 with the environment env,
obtaining (v1, w1)
Let env′ be the environment env extended with x
having the value v1
Call Algorithm 1 on m2 with the environment env′,
obtaining (v2, w2)
Return (v2, w1 · w2)

else
The other cases are similar to above

end

mapping variable names to values. Also, because our
language includes unnormalized measures, this sampler
returns not only a draw but also an importance weight.

4.2 EXPECTATION TRANSFORMATION

The rest of this section describes various inference trans-
formations that we apply to our probabilistic programs.
Because we implement some transformations in terms of
others, we describe the transformations not in the order
we apply them but in the order we implement them.

Our expectation transformation turns any program that
represents a distribution into another program that rep-
resents its expected value. This transformation is ex-
act and simple even though the expected values of many
distributions have no closed form, because our language
represents integrals symbolically with Int. For exam-
ple, the expectation transformation turns the program
x<~Uniform(0,2); Uniform(x,3) into

Int(0,2,x, Int(x,3,y, y)/(3-x))/(2-0)

The latter program represents the integral 1
2−0

∫ 2

0
1

3−x
∫ 3

x
y dy dx. To compute this integral in closed form

is to perform exact inference on the given distribution.
The expectation transformation itself does not do so; nor
does it approximate the integral by sampling.



Algorithm 2: Expectation transformation: expect(m, f )

Input: program representing a measure: m
Input: program representing a function: f
Output: program representing a number
Examine m
if m has the form Weight(w1,e1) then

Return w1 · App(f,e1)
else if m has the form Normal(e1,e2) then

Return Int(−∞, ∞, x, e3 · App(f,x))
where the program e3 computes the density of the
Normal(e1, e2) distribution at x

else if m has the form x<~m1;m2 then
Call Algorithm 2 with m2 and f obtaining e3
Call Algorithm 2 with m1 and Lam(x,e3)

else
The other cases are similar to above

end

Specified more generally, the expectation transformation
turns any program that represents a measure, along with a
function from the sample space to numbers, into another
program that represents the integral of the given function
with respect to the given measure. We show this transfor-
mation as Algorithm 2. It handles primitive distributions
such as Normal by looking up their density from a table.

4.3 DENSITY AND DISINTEGRATION

Turning a distribution into its density function is natu-
rally expressed as a program transformation (Bhat et al.
2012, 2013). More precisely, the density transforma-
tion takes as input a probabilistic program representing
a distribution, and returns another program representing
a function that maps each point in the sample space to the
density at that point. Note that this transformation does
not compute any density numerically. It only returns a
program that computes densities when interpreted by our
weighted sampler (Algorithm 1). For example, the den-
sity transformation turns the probabilistic program

x <~ Uniform(0, 2);
y <~ Uniform(x, 3); Dirac((x, y))

into the density function Lam((x,y), If(0<x<2,
If(x<y<3, 1/(3-x), 0)/(2-0), 0)).

We implement density in terms of another program
transformation, disintegration (Shan and Ramsey 2017;
Narayanan and Shan 2017). Disintegration is similar
to conditioning in that it takes a probabilistic program
representing a joint distribution Pr(X,Y ) as input, but
instead of returning a conditional distribution Pr(Y |
X = x), disintegration returns an unnormalized slice
Pr(Y,X = x) of the original distribution. More pre-
cisely, disintegration returns a program representing a

Algorithm 3: Density transformation: density(m, t)
Input: program representing a measure: m
Input: program representing value drawn from m: t
Output: program representing a nonnegative number

1. Disintegrate x<~m; Dirac((x,Unit)),
obtaining e1

2. Call Algorithm 2 on App(e1,t) and Lam(y,1)

Algorithm 4: Observation transformation: observe(m, t)
Input: program representing a measure: m
Input: program representing value drawn from m: t
Output: program representing a measure
Examine m
if m has the form Uniform(e1,e2) or
Normal(e1,e2) or Gamma(e1,e2) then

Let d be a program that computes the density of the
distribution m
Return Weight(App(d,t), t)

else if m has the form x<~m1;m2 then
Call Algorithm 4 recursively with m2 and t
obtaining m3

Return x<~m1;m3

else
Raise an error about not being able to handle m

end

function from values of x to measures Pr(Y,X = x).
Such a (measurable) function is also known as a kernel.

Taking advantage of the fact that disintegration does not
normalize the measures it returns, we implement the den-
sity transformation in terms of disintegration and expec-
tation. This implementation is shown in Algorithm 3.
It invokes disintegration (letting Y be the space that con-
sists of a single point Unit) then expectation (letting the
integrand f be the function that maps Unit to 1).

Disintegration is useful independently of the density
transformation. For example, Section 3 uses it to turn
the prior kalman into the posterior kalman2.

We sketch how disintegration works in terms of a sim-
pler program transformation, which we call observation
(Algorithm 4). This transformation takes as input a mea-
sure m and a value t that could have been drawn from m,
and returns a measure which only returns t, weighted by
how likely that value was to be drawn from m. For ex-
ample, the observation transformation turns the program

x <~ Uniform(0, 2); Uniform(x, 3)

and the variable y into the program

x <~ Uniform(0, 2);
Weight(If(x<y<3, 1/(3-x), 0), y)



Algorithm 5: Normalization transformation: normalize(m)

Input: program representing a measure: m
Output: program representing a probability distribution

1. Call Algorithm 2 on m and Lam(x,1)
obtaining the program e1

2. Return x<~m; Weight(1/e1, x)

As indicated at the bottom in Algorithm 4, the obser-
vation transformation only handles a subset of our lan-
guage. In particular, it does not handle Dirac, so it does
not handle the typical program kalman in Section 3. In
general, if the input program performs arithmetic or any
other deterministic computation to produce the observa-
tion t, then we need to invert this deterministic computa-
tion and insert any Jacobian factors required. This inver-
sion is what the disintegration provides over observation.

To relate observation and disintegration more precisely,
suppose the program m represents a measure over X , the
program e represents a value in Y , and observation turns
m and x into m1. Then disintegrating the program ...;
x<~m; Dirac((x,e)) yields a program equivalent
to Lam(x, ...; dummy<~m1; Dirac(e)).

4.4 NORMALIZATION AND CONDITIONING

The presence of Weight in our language enables the
observation and disintegration transformations to return
measures that are typically unnormalized. To recover
a probability distribution, we must reweight the mea-
sure. We define this normalization operation as a pro-
gram transformation as well, shown as Algorithm 5.

Conditioning can now be defined by composition: it is
just disintegration, followed by normalizing the measure.

4.5 MCMC SAMPLING TRANSFORMATIONS

A major contribution of this paper is to implement
Markov chain Monte Carlo (MCMC) methods, such as
MH sampling and Gibbs sampling, in a way that ap-
plies to a variety of target distributions and composes
with other inference techniques. We express an MCMC
method as a transformation from a program representing
the target distribution to a program representing the tran-
sition kernel. Whereas the transformation itself makes
no random choices, the latter program can be interpreted
by our weighted sampler (Algorithm 1) to generate a ran-
dom chain, or subject to simplification (Section 5).

Following this approach, our MCMC implementations
closely resemble their textbook presentation. As shown
in Algorithm 6, where the textbook presentation of the
acceptance ratio refers to the target and proposal densi-

Algorithm 6: Metropolis-Hastings sampling transfor-
mation: mh(proposal, target)
Input: program representing the proposal

kernel: proposal
Input: program representing the target

distribution: target
Output: program representing MCMC transition kernel

with acceptance ratio
1. Let old and new be fresh variable names
2. Call Algorithm 3 on target and old, obtaining pold
3. Call Algorithm 3 on target and new, obtaining pnew
4. Call Algorithm 3 on App(proposal,new) and

old, obtaining qold;new
5. Call Algorithm 3 on App(proposal,old) and

new, obtaining qnew;old
6. Let e1 be (pnew · qold;new)/(pold · qnew;old)
7. Return Lam(old,new<~App(proposal,old);

Dirac((new, e1)))

Algorithm 7: Gibbs sampling transformation:
gibbs(target)
Input: program representing the n-dimensional target

distribution: target
Output: program representing MCMC transition kernel
Let x be the set of the n variables in the target
Initialize choices to the empty sequence []
For each xi ∈ x:

1. Let x−i be the rest of the variables
2. Let e1 be x<~target; Dirac((x−i,xi))
3. Disintegrate e1, obtaining e2
4. Let e3 be App(e2, x−i)
5. Call Algorithm 5 on e3, obtaining e4
6. Let y be x except replacing xi by new
7. Let e5 be new<~e4; Dirac(y)
8. Add the pair (1/n, e5) to choices

Return Lam(x, Superpose(choices))

ties, our implementation invokes the density transforma-
tion (Algorithm 3) on two probabilistic programs, rep-
resenting the target and proposal distributions. Using
the fact that the density transformation symbolically han-
dles free variables such as old and new, we perform the
transformation just once (not once per sampler iteration)
to generate a program that takes the current state as input.

Gibbs sampling is a special case of MH, where the pro-
posal kernel combines the results of conditioning the tar-
get distribution along each dimension. The acceptance
ratio is then always 1, so it need not be computed. To
produce such a proposal kernel automatically, we imple-
ment Gibbs sampling as a separate transformation, Al-
gorithm 7. The input is a program representing an n-di-



mensional distribution Pr(x1, . . . , xn). For each random
variable xi, we condition (Section 4.4) on the other vari-
ables x−i to get a program that resamples xi. We then
combine these n programs to form the proposal kernel.

5 SIMPLIFICATION

Because we express each inference technique as a trans-
formation that produces a probabilistic program, rather
than as an interpreter that makes immediate random
choices, we can optimize and simplify the produced pro-
grams. To this end, we apply the optimizations discussed
by Carette and Shan (2016). This simplification trans-
formation does not change the measure represented by
a program but tries to place the program in a form that,
when interpreted by our weighted sampler (Algorithm 1),
draws samples faster and with more uniform weights.

Based on computer algebra, the simplification trans-
formation recognizes conjugacy relationships, integrates
out latent variables, and performs algebraic simplifica-
tions. Like other transformations, simplification operates
on a program before any variables receive their values, so
in particular its efficacy is independent of data sizes. The
rest of this section briefly describes these optimizations.

Conjugacy relationships Simplification recognizes
when a density represented by Weightmatches the den-
sity of a primitive distribution. A simple example arises
from the joint distribution Pr(Y,X) represented below:

x <~ Normal(a, s);
y <~ Normal(x, t); Dirac((y, x))

Disintegrating this program (Section 4.3) produces

x <~ Normal(a, s);
Weight( exp(-(y-x)^2/(2*t^2))

/t/sqrt(2*pi) , x )

This latter program scales the measure Normal(a,s)
with the density exp(...)/t/sqrt(2*pi) to rep-
resent the conditional distribution Pr(X | Y ) up to a
constant factor. Normalizing and simplifying it yields

Normal( (y*s^2+a*t^2)/(s^2+t^2),
s*t/sqrt(s^2+t^2) )

using the conjugacy relationship between Normals (as-
suming s and t are positive). This simplified program
runs faster; it draws samples without weighting them.

This optimization is symbolic, in the sense that it works
even when the initial program contains free variables
such as a, s, and t, whose values are unknown.

This optimization is robust because it recognizes not
words like Normal but the densities they denote. Thus
it works even if we express Normal(0,1) by spelling

out its density, whether we expand the polynomial
-(y-x)^2. All conjugacies among Normal, Gamma,
and Beta thus fall out from recognizing their densities.

Integrating out a variable When a distribution is de-
scribed using a latent random variable, it usually helps to
eliminate the variable. Such latent variables include x1
and x2 in Section 3, as well as x in

x <~ Normal(0, 1); Normal(x, 1)

The simplification transformation eliminates these vari-
ables. In particular, it integrates out continuous latent
variables symbolically. The density-recognition machin-
ery just described then produces simpler, faster, and
equivalent programs, such as Normal(0,sqrt(2)).

This integration is symbolic, again in the sense that it
works even when the initial program contains free vari-
ables whose values are unknown. For example, the
program x <~ Normal(a, s); Normal(x, t)
simplifies to Normal(a, sqrt(s^2+t^2)).

Algebraic simplifications When we produce a pro-
gram that calculates acceptance ratios, the numerator and
denominator share many factors, which are usually can-
celed out by hand. The simplification transformation au-
tomates this optimization using computer algebra, so an
expression like (a*b)/(a*c) becomes b/c.

6 EXPERIMENTAL RESULTS

To demonstrate that our approach is modular and practi-
cal, we apply multiple inference methods (MH, Gibbs) to
a variety of models. We conduct three experiments using
the Hakaru system (Narayanan et al. 2016).

Modular means we can re-use the components in Sec-
tion 4 and Section 5 to produce all three samplers. In
each experiment, a pipeline composed of reusable infer-
ence transformations turns a concise generative model
into an executable MCMC sampler in seconds.

Practical means our approach can solve real-world prob-
lems by expressing popular models and inference meth-
ods discussed in the literature. The largest of our three
experiments is the third, a document classification task
using the 20 Newsgroups corpus.

We measure the accuracy and speed of our automatically
generated samplers, showing they are in line with so-
lutions from commonly used probabilistic programming
languages. Our samplers are more accurate across the
board because simplification eliminates all latent contin-
uous variables, regardless of the dimensionality of the
problem (that is, input and output array sizes).



Table 1: MH sampler run times for linear dynamics

Inference method Run time (msecs)
Mean SD

WebPPL 1078 16
Hakaru without simplifications 1321 93
Hakaru with simplifications 269 10
Handwritten 207 4

Table 2: MH sampler ESS rates for linear dynamics

Inference method ESS per sample
noiseT noiseE

WebPPL 0.03 0.01
Hakaru 0.09 0.34

All measurements were produced on a quad-core Intel
i5-2540M processor running 64-bit Ubuntu 16.04. Our
samplers use Glasgow Haskell Compiler 8.0.1 -O2.

6.1 MH SAMPLING FOR DYNAMICS

In our first experiment, we use MH to sample the random
parameters of the linear dynamical system in Section 3.
We compare our generated samplers with one produced
by WebPPL, a state-of-the-art probabilistic programming
system, and with one written by hand. The WebPPL sam-
pler was compiled to JavaScript using Node 0.10.28.

Table 1 shows that our system generates a fast sampler,
measured by using each sampler to draw 20,000 sam-
ples 10 times. Thanks to the simplifications that turn
kalman4 into kalman5, the Hakaru sampler is 4 times
as fast as the WebPPL sampler for the conditional distri-
bution kalman2. (These times exclude the few seconds
each system takes to compile the model into a sampler.)

Table 2 shows that our samplers generate good samples,
quantified by the Effective Sample Size (ESS). Our ESS
is higher per sample compared to WebPPL, because la-
tent variables have been integrated out in kalman3.

6.2 GIBBS SAMPLING FOR CLASSIFICATION

In our second and third experiments, we generate Gibbs
samplers and compare them to JAGS (v4.20), a proba-
bilistic programming system widely considered practical
for Gibbs sampling. We measure accuracy by how well
the samplers recover true classifications, and speed by
the time it takes to produce samples. This time consists
of initialization time and time spent actually sampling.
Initialization time is the time a system takes from receiv-
ing the model to generating the first sample: for JAGS to

load the model into memory, and for Hakaru to simplify
the model and compile the result into machine code.

Our second experiment is to classify synthetic data using
a Gaussian mixture model that has 3 components.

Figure 1 shows that Hakaru requires fewer sweeps than
JAGS to achieve the same accuracy. Each curve plots
the accuracy of one chain over the course of 15 sweeps
on 250 data points. After just one sweep, all 20 Hakaru
chains are > 50% accurate, unlike the 20 JAGS chains,
which take a few sweeps to catch up. The cause is that
Hakaru’s simplification transformation recovers a col-
lapsed Gibbs sampler that computes the sample mean
and variance of each mixture component in closed form.

Figure 2 shows Hakaru is about one order of magnitude
slower than JAGS, measured by how long 6 sweeps take,
varying data size from 500 to 2500 points. The top two
curves represent two samplers generated by Hakaru with
different lower-level optimizations: the second-from-top
curve adds a histogram optimization to compute sum-
mary statistics such as the per-mixture-component sum∑N

i=1

{
ti if zi = z∗

0 otherwise in a single pass over the data for all
components z∗. The bottom two curves show the run
time of JAGS, with and without initialization. JAGS’s
speed advantage can be explained by Hakaru’s current
inability to reuse computation between updates during a
sweep. Still, Hakaru is practical for this real-world task.

In our third experiment, Hakaru generates a classifier for
the 20 Newsgroups corpus that is more accurate than
JAGS and comparable in speed. We use the same Multi-
nomial Naive Bayes model and 20 Newsgroups corpus as
McCallum and Nigam (1998). We hold out 10% of the
labels and use Gibbs sampling to infer them. We evaluate
the samplers on data sizes ranging from 200 to all 19997
documents, evenly distributed among newsgroups.

Because the sampler generated by Hakaru is collapsed,
it is more accurate than JAGS in two ways. First, Fig-
ure 3 shows Hakaru achieves better accuracy than JAGS
after one sweep, and continues to for at least 1000
sweeps. Each curve there plots the accuracy (moving
average with window size 20) of one chain on 400 doc-
uments. Second, Figure 4 shows Hakaru more accurate
than JAGS across data sizes. We use 2 sweeps there since
JAGS does not perform above chance with only 1 sweep.

Figure 5 shows Hakaru is as fast as JAGS, measured by
how long 2 sweeps take, varying data size. JAGS’s ini-
tialization time grows with the data size, while Hakaru’s
is constant. Whereas JAGS unrolls loops into a pointer-
based stochastic graph whose size grows with the data,
Hakaru generates tight loops over unboxed arrays irre-
spective of the data size. Even disregarding initialization
time, JAGS is at best 4 times faster than Hakaru.
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Figure 1: Gibbs sampler accuracy for Gaussian mixture
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7 CONCLUSIONS

We express inference methods by composing program
transformations such as disintegration and expectation.
The resulting modular inference procedures perform
comparably to other probabilistic programming systems
and are usable for practical problems. This technique
makes it easier and faster to create and test inference pro-
cedures and to explore novel inference methods.
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