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Abstract

In this work we obtain all fixed points of be-
lief propagation and perform a local stability
analysis. We consider pairwise interactions of
binary random variables and investigate the in-
fluence of non-vanishing fields and finite-size
graphs on the performance of belief propaga-
tion; local stability is heavily influenced by
these properties. We show why non-vanishing
fields help to achieve convergence and increase
the accuracy of belief propagation. We fur-
ther explain the close connections between the
underlying graph structure, the existence of
multiple solutions, and the capability of belief
propagation (with damping) to converge. Fi-
nally we provide insights into why finite-size
graphs behave better than infinite-size graphs.

1 INTRODUCTION

Belief propagation (BP) is a method that exploits the
structure of probabilistic graphical models and performs
local operations to approximate the marginal distribu-
tion. BP has a long success story with applications in-
cluding computer vision, speech processing, and medical
diagnosis systems (Koller and Friedman, 2009; Pernkopf
et al., 2014; Jordan, 2004)

BP may not converge on graphs with loops – only for re-
stricted classes of graphs sufficient conditions are known
that guarantee convergence and uniqueness of the solu-
tion (Ihler et al., 2005; Heskes, 2004; Weiss, 2000). If
BP does not converge or has a bad approximation quality
we may be confronted with: (i) multiple solutions where
the performance depends on the initialization, or (ii) po-
tentially good approximate solutions that are unstable.

To overcome some of these issues a lot of effort was put
into finding provably convergent algorithms. Inspired

by the connection between BP and the Bethe free en-
ergy (Yedidia et al., 2005) it is natural to minimize the
Bethe free energy directly (Welling and Teh, 2001), or
find convex surrogates to minimize (Meshi et al., 2009).
Alternatively, if multiple fixed points exist, one can try to
obtain one stationary point of the Bethe free energy di-
rectly (Yuille and Rangarajan, 2003), or get at least some
approximation of the stationary points (Shin, 2012). For
graphs where fixed points close to the exact solution ex-
ist, but BP fails to converge, (Weller and Jebara, 2014)
provide a method to obtain an approximation of the best
possible fixed point.

All these methods do still raise particular questions, like:
under which conditions can we expect BP to perform
well?– or, given that multiple fixed points exist, which
of these fixed points are stable and how does stability re-
late to accuracy?

We consider BP as a discrete-time map, and – drawing
from the theory of dynamical systems – analyze the lo-
cal stability of all fixed points. This is inspired by the
thorough analysis for Ising models with vanishing lo-
cal fields (Mooij and Kappen, 2005); for non-vanishing
fields, however, local stability analysis was left open.
The main difficulty of local stability analysis of Ising
models with arbitrary parameters on finite-size graphs is
the need for all fixed points. To find multiple fixed points
one could resort to survey propagation (Braunstein et al.,
2005) or its efficient approximation scheme (Srinivasa
et al., 2016), but these methods fail to obtain unstable
fixed points. Unfortunately, unstable fixed points cannot
be obtained in general, which, in general, makes local
stability analysis much more intricate.

In this work, we resort to the numerical polynomial-
homotopy-continuation (NPHC) method (Knoll et al.,
2016), where the update equations of BP are reformu-
lated as a nonlinear system of equations. The NPHC
method solves this system of equations and obtains all
fixed points of BP – even for Ising graphs with arbitrary



parameters. Consequently, we extend the work of (Mooij
and Kappen, 2005) and find answers to the following
questions: (i) Why does the presence of non-vanishing
fields enhance the convergence properties? (ii) Which
influence do non-vanishing fields have on the approxi-
mation accuracy? (iii) Under which circumstances does
damping help to enforce convergence of BP? (iv) How
does the number of fixed points and their stability de-
pend on the number of variables for finite-size graphs?

The paper is structured as follows: Section 2 provides a
brief background on probabilistic graphical models, be-
lief propagation, and its connection to statistical physics.
In Section 3 we present tools from dynamical systems
to perform the stability analysis. We discuss empirical
observations and extend the stability analysis to graphs
with non-vanishing local fields in Section 4 and provide
a more formal analysis in Section 5. Finally, we conclude
the paper in Section 6.

2 BACKGROUND

Let us consider an undirected graph G = (X,E) defined
by a set of nodes X = {X1, . . . , XN} and a set of undi-
rected edges E. Two nodes Xi and Xj are joined by an
edge if eij ∈ E. Let the set of neighbors ofXi be defined
by ∂(Xi) = {Xj ∈ X : eij ∈ E} and denote the degree
of Xi by di = |∂(Xi)|. Consider the adjacency matrix
A with rows and columns indexed by the set of nodes;
A is a symmetric 0-1-matrix with aij = 1 if and only if
eij ∈ E. We further define the average degree of G as
〈d〉G = |E|

N . A graph is called bipartite if the set of nodes
can be decomposed into two disjoint subsets Y and Z so
that X = Y ∪ Z and where the neighbors ∂(Yi) ∈ Z for
all Yi ∈ Y and vice versa. It follows immediately that
bipartite graphs are 2-colorable.

Consider a finite set of N binary random variables
X = {X1, . . . , XN} with Xi taking values in the fi-
nite set Si. We assume a one-to-one correspondence
between the variables and the nodes. The joint proba-
bility factorizes as a product of potentials, i.e., P (X =

x) = 1
Z

∏L
l=1 ΦCl(Cl), where the potentials ΦCl(Cl)

are specified over the maximal cliques Cl of G (Pearl,
1988, p.105). If we restrict all potentials to consist of
two variables at most: then, the joint distribution is fac-
torized according to the product

P (X = x)=
1

Z

∏
(Xi,Xj) : eij∈E

ΦXi,Xj (xi, xj)

N∏
i=1

ΦXi(xi), (1)

where Z ∈ R guarantees proper normalization. We refer
to ΦXi,Xj (xi, xj) and ΦXi(xi) as pairwise and local po-
tentials. The marginal probabilities are obtained by sum-

ming over all variables except Xi, i.e., P (Xi = xi) =∑
∼Xi

P (X).

2.1 BELIEF PROPAGATION (BP)

BP1 approximates the marginals by recursively updating
local messages between random variables. The message
µn+1
ij (xj) fromXi toXj is given by the recursive update

rule

µn+1
ij (xj) = αnij

∑
xi∈Si

ΦXi,Xj (xi, xj)ΦXi(xi)
∏

Xk∈∂(Xi\j)

µnki(xi),

(2)

where n denotes the iteration, and the shorthand notation
∂(Xi\j) = {∂(Xi)\Xj} is used. To compute the mes-
sage, BP collects all messages sent to Xi, except for Xj

and multiplies this product with the local potential and
the pairwise potential. The sum over all states of Xi is
sent to Xj . The messages are often normalized by αnij
so that

∑
xj∈Si µ

n+1
ij (xj) = 1. If BP is converged the

approximate marginals are obtained by

P̂ (Xi = xi) = ΦXi(xi)
∏

Xk∈∂(Xi)

µki(Xi = xi). (3)

BP is guaranteed to converge and the messages corre-
spond to the correct marginals on tree-structured graphs

2.2 ISING MODELS

We focus on one specific model: the Ising model, in
which every variable Xi has an associated spin taking
values from S = {+1,−1}. Let us define couplings
Jij ∈ R assigned to each edge eij ∈ E and a local
field θi ∈ R acting on each variable Xi ∈ X. Let the
Ising potentials be defined as ΦXi(xi) = exp(θixi) and
as ΦXi,Xj (xi, xj) = exp(Jijxixj). The Boltzmann dis-
tribution

P (X = x)=
1

Z
exp

(
β
∑

Jijxixj + β
∑

θixi

)
(4)

gives the probability of a certain configuration x. Instead
of changing the inverse temperature β > 0 we assume
that β = 1 for the remainder of this work and alter the
configuration by changing Jij and θi. Whenever Jij and
θi are constant over all edges and variables we drop the
subscripts, and – because of its physical interpretation –
refer to θ as external field.

Let us distinguish three different interactions on Ising
models. First, in the ferromagnetic case all interactions

1If BP is applied on graphs with loops it is sometimes
named loopy belief propagation; independent of the graph we
just stick to the term belief propagation.



Jij are positive; secondly, for antiferromagnetic inter-
actions all Jij are negative. Finally, spin-glass interac-
tions contain both: positive and negative Jij . An Ising
model is frustrated whenever local constraints exist that
cannot be satisfied simultaneously, i.e., a cycle exists,
along which the product of all Jij is negative (Mezard
and Montanari, 2009).

BP has a close connection to some concepts from statisti-
cal mechanics; in particular the correspondence between
fixed points of BP and stationary points of the Bethe free
energy motivated a large body of research. An excellent
treatment of these connection can be found in (Yedidia
et al., 2005; Mezard and Montanari, 2009).

Note that in statistical physics the behavior of graphs is
analyzed in the thermodynamical limit (i.e. for N →∞
many variables) and over ensembles of graphs. In this
work, however, we consider finite-size graphs with dis-
tinct potentials. Note that we use the term phase tran-
sition for the finite-size manifestation of the phase tran-
sition in the thermodynamical limit. These two notions
are similar but do not coincidence in general (cf. Theo-
rem 3).

2.3 BP FOR BINARY VARIABLES

For binary variables we parametrize the normalized mes-
sages as a single message (cf. Mooij and Kappen (2005))
defined by

νnij = atanh(µnij(Xj = 1)− µnij(Xj = −1)). (5)

This transformation reduces the number of variables and
eases some calculations but does not change the prop-
erties of BP. The update rule in (2) can be rewritten for
Ising models to:

tanh(νn+1
ij ) = tanh(Jij) tanh(hij), (6)

where we define the effective field hij that acts on Xi

while neglecting the incoming message from Xj

hij = θi +
∑

Xk∈∂(Xi\j)

νki. (7)

BP corresponds to the cavity method (Mezard et al.,
1987) that computes the effect of removing one node and
the according edges. This connection becomes obvious
by looking at (7) (cf. (Opper and Winther, 2001)).

We can further parametrize the marginals P (Xi = xi)
in (3) by the expected value: mi = P (Xi = 1) −
P (Xi = −1). The mean magnetization of the system
〈m〉 = 1

N

∑N
i=1mi is often considered to describe the

response of the system to an external field (Mezard and
Montanari, 2009). Note that the difference between the

mean magnetization of an approximate solution ˆ〈m〉 and
the exact solution 〈m〉 is the same as the error averaged
over all marginals, i.e., |〈m〉− ˆ〈m〉| = 2

N |
∑N
i=1 P (xi)−

P̂ (xi)|.

2.4 FIXED POINTS OF BP

At least one fixed point always exists for BP (Yedidia
et al., 2000); if the graph has loops, however, multiple
fixed points may exist. It further depends on the poten-
tials whether BP converges or not. We obtain all fixed
points with the NPHC method and analyze convergence
properties.

Let ν be the set of all messages; then BP acts as a
map on the messages in discrete time such that νn+1 =
BP (νn). If successive messages remain unchanged un-
der this map, then BP did converge to some fixed point

ν∗ = BP (ν∗) . (8)

If, however, the messages oscillate, one can either try to
achieve convergence by changing the update rule (Elidan
et al., 2006; Sutton and McCallum, 2007; Knoll et al.,
2015), or by replacing the messages with a weighted av-
erage of the last messages (Murphy et al., 1999). We
denote the update map of BP with damping as

BPD (νn) = (1− ε)BP (νn) + ενn, (9)

where ε ∈ [0, 1). Note that fixed points of BPD (ν∗) –
if BP with damping did converge – must be fixed points
of BP without damping as well, because (8) holds in the
equilibrium and BPD (ν∗) = (1 − ε)BP (ν∗) + εν∗ =
BP (ν∗). Although the fixed points remain unchanged
under any form of damping, the local stability of these
fixed points may change (cf. Section 4).

3 STABILITY OF FIXED POINTS

We start by considering BP as a discrete-time map and
proceed according to the usual procedure in dynamical
systems. For an in-depth treatment of dynamical systems
we refer the reader to (Teschl, 2003; Scheinerman, 2000).

A fixed point ν∗ is locally stable if a neighborhood
U(ν∗) exists such that messages inside this neighbor-
hood converge to ν∗ under the considered map (Teschl,
2003, pp.170). Local stability of BP cannot be analyzed
by looking at the Bethe free energy as: stable fixed points
must be local minima, but local minima must not be sta-
ble (Heskes et al., 2003).

In general stability can be investigated by the method of
Ljapunov (Scheinerman, 2000, pp.93), though it is suf-
ficient for all graphs considered in this work to restrict



our analysis to linearization; we therefore obtain all fixed
points by solving BP (ν∗) = ν∗ and subsequently ana-
lyze the Jacobian matrix.

3.1 FINDING FIXED POINTS

As a first step, irrespective of the stability, we have to
obtain all fixed points of the map. The trivial solu-
tion ν∗ij = 0 for all eij ∈ E is known in the spe-
cial case of vanishing external field (Mooij and Kappen,
2005). The extension to non-vanishing local fields is
not straightforward, because in general the unstable fixed
point is not known. There are indeed several methods
that aim to capture and combine multiple fixed points of
BP (e.g., (Srinivasa et al., 2016)), but none of which does
also account for unstable fixed points.

In order to find all fixed point solutions we reformulate
the update rule of BP (2) as a system of polynomial equa-
tions. To solve this nonlinear system of equations we re-
sort to the NPHC method that overcomes all problems
of both iterative (e.g., Newton’s method) and symbolic
methods (e.g., Gröbner basis). The NPHC method solves
a similar, but trivial system of equations and further re-
fines these solutions until all (complex) solutions to the
system of interest are obtained. A detailed treatment is
beyond the scope of this paper but we refer the inter-
ested reader to (Sommese and Wampler, 2005; Chen and
Li, 2015) and the references therein. Recently the NPHC
method was applied to analyze energy landscapes in gen-
eral (Mehta et al., 2015; Ballard et al., 2017) and to find
all solutions of BP (Knoll et al., 2016).

3.2 LINEARIZATION

After obtaining all fixed points the obvious question re-
mains, whether these fixed points are stable or unstable.
Therefore, we approximate BP (·) by a linear function
in every fixed point and analyze the behavior of the lin-
earized system. This is done by taking the partial deriva-
tives of all messages, i.e., by analyzing the Jacobian ma-
trix F ′(ν∗) with the elements defined as

F ′(ν∗)mn =
∂ν∗ij
∂ν∗kl

, (10)

where – given some ordering – ν∗ij and ν∗kl are the mth

and the nth message, respectively.

For Ising models parametrized as in Section 2.3 the Jaco-
bian is given as follows: without loss of generality2 we
consider only messages where eij ∈ E and ekl ∈ E such

2If all possible edges are considered, all rows and columns
that correspond to a message νvw, where evw /∈ E include only
zero-values and do not change the eigenvalues.

that

F ′(ν∗)mn ={
tanh(Jij)(1−tanh2(hij))
1−tanh2(Jij) tanh2(hij)

if i= l and k∈∂(Xi\j)

0 else.
(11)

Let the spectrum of the Jacobian matrix be the set of all
eigenvalues Γ

(
F ′(ν∗)

)
= {λ1, · · · , λn} with spectral

radius ρ
(
F ′(ν∗)

)
= max{|λ1|, · · · , |λn|}.

A fixed point ν∗ is locally stable if all eigenvalues have
absolute value strictly smaller than one

ρ
(
F ′(ν∗)

)
< 1, (12)

i.e., all eigenvalues lie inside the unit circle; BP con-
verges to locally stable fixed points if initialized suffi-
ciently close enough. A fixed point is unstable with re-
spect to BP if at least one eigenvalue exists outside the
unit circle such that ρ

(
F ′(ν∗)

)
> 1. For ρ

(
F ′(ν∗)

)
=

1 stability of the nonlinear system cannot be inferred by
just looking at the linear system (Teschl, 2003, Hartman
Grobman Theorem).

If we use damping as in (9) the eigenvalue spectrum of
BPD (·) becomes

Γ
(
F ′D(ν∗)

)
= Γ

(
F ′(ν∗)

)
· (1− ε) + ε. (13)

It follows, that all eigenvalues are reduced by a factor
(1 − ε) and experience a shift by ε along the real axis,
i.e., <

(
Γ
(
F ′D(ν∗)

))
= ε + <

(
(1− ε)Γ

(
F ′(ν∗)

))
. A

fixed point ν∗ is locally stable under BPD (·) if

<
(
Γ
(
F ′(ν∗)

))
< 1. (14)

4 EMPIRICAL STABILITY ANALYSIS
OF BP ON ISING MODELS

In this section we present specific instances of the Ising
model, compute all fixed points, and analyze the local
stability. Then, we compare the results to known re-
sults of both: infinite graphs, and finite-size graphs with
vanishing local fields. We restrict our analysis to fer-
romagnetic and antiferromagnetic interactions (cf. Sec-
tion 2.2), because this allows to change the behavior of
BP with just a single parameter.

We briefly present the results of (Mooij and Kappen,
2005) for vanishing fields in Section 4.2. Then we extend
the analysis to graphs with non-vanishing fields, discuss
some empirical observations, and interpret the implica-
tions. We further obtain the exact solution by the junc-
tion tree algorithm (Lauritzen and Spiegelhalter, 1988)
shown as red line in Figure 2. Fixed points of BP are de-
picted in blue (stable under BP (·)), black (stable under
BPD (·)), and green (unstable). A more formal analysis
is presented in Section 5.



4.1 GRAPHS
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Figure 1: Considered Ising graphs: (a) grid-graph with
9 RVs; (b) complete graph; (c) grid-graph with periodic
boundary conditions.

We consider different realizations of the Ising model on
complete graphs, grid-graphs, and grid-graphs with peri-
odic boundary conditions (Figure 1).

For the complete graph each pair of nodes is connected
by an edge; it follows by definition that it is a regular
graph, i.e., all variables have equal degree di = N−1 for
all Xi. Note that we can associate an infinite, connected
cycle-free, graph – a Bethe lattice – to the complete
graph, which has the same fixed point solutions (Taga
and Mase, 2004). The grid-graph has all edges aligned
along the two-dimensional square lattice. Finite-size re-
alizations contain variables with varying degree. Further
we consider grid-graphs with periodic boundary condi-
tions, where nodes on the boundary are joined by edges
so that all variables have equal degree.

4.2 VANISHING LOCAL FIELD

It is assumed that the case of vanishing local fields is the
worst case scenario; we will confirm this assumption em-
pirically and analytically. For θ = 0 a trivial solution ex-
ists – namely a distribution that is uniform over all states,
i.e., for all Xi ∈ X the magnetization is mi = 0.

For purely ferromagnetic interactions Jij > 0, BP con-
verges to the trivial (paramagnetic) fixed point, which
is unique and stable. As coupling-strength increases,
the largest eigenvalue λmax increases as well (see Theo-
rem 3) and as λmax crosses the unit circle the paramag-
netic fixed point remains unchanged but becomes unsta-
ble. At the same time two additional fixed points, how-
ever, do appear – these symmetry-broken fixed points are
both stable (Figure 2a and 2b).

For purely antiferromagnetic interactions Jij < 0 all en-
tries of the Jacobian swap in sign F ′−(ν∗) = −F ′+(ν∗),
where − and + indicate the antiferromagnetic and
the ferromagnetic case, respectively. It follows that
Γ
(
F ′−(ν∗)

)
= −Γ

(
F ′+(ν∗)

)
. Consequently the lo-
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Figure 2: Mean magnetization for couplings J ∈ [−2, 2]
(exact in red, and approximate in blue (ρ

(
F ′(ν∗)

)
< 1),

black (ρ
(
F ′D(ν∗)

)
< 1), and green (ρ

(
F ′D(ν∗)

)
> 1));

left column shows results for the complete graph with
N = 4; right column shows results for the grid-graph
with N = 9. (a) and (b): θ = 0; (c) and (d): θ = 0.1;
(e) and (f): θ = 0.5. Increasing θ enhances convergence
properties and accuracy of BP.

cal stability of the fixed point is invariant under a sign-
change of J and instability occurs precisely for the same
coupling strength as before (Figure 2a and 2b). There
is one important difference though – the dominant eigen-
value is negative now, such that damping helps to achieve
convergence.

4.3 NON-VANISHING LOCAL FIELD

For reasons of simplicity we restrict our analysis to
graphs where θi = θ 6= 0 for all variables Xi. Because
the Ising model is symmetric with respect to the local
fields it is sufficient to consider only non-negative local
fields. Moreover, the same qualitative results hold if we
allow for θi ≥ 0 in general.
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Figure 3: Eigenvalue spectra of the unstable fixed point of the complete graph with N = 4. If all eigenvalues are
inside the unit-circle BP converges without damping. If no eigenvalues lie on the right-hand side of the vertical line
BP converges with damping. (a) J = 1.5 and θ = 0: notice that <(λmax) > 1, i.e., damping does not help; (b)
J = 1.5 and θ = 0.5: notice how the external field reduces the magnitude of the eigenvalues (cf. Theorem 2); (c)
J = −1.5 and θ = 0.5: the fixed point is unstable but can be stabilized with an damping because <(λi) < 1.
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Figure 4: Eigenvalue spectra of the grid-graph withN = 9; all eigenvalues are symmetric because the graph is bipartite
(cf. Theorem 4). (a) J = 1.5, and θ = 0: the shown fixed point is unstable and damping does not help; (b) J = 1.5
and θ = 0.5: only a unique stable fixed point exists (cf. Figure 2f); note the qualitative difference in the spectrum; (c)
J = −1.5 and θ = 0.5: because of the symmetric spectrum, damping does not help in the antiferromagnetic case.

4.3.1 FERROMAGNETIC INTERACTIONS

For small values of J > 0 a unique fixed point exists
to which BP converges and for which all eigenvalues
lie inside the unit circle. If we gradually increase the
coupling-strength to the point where instability occurs
for vanishing external field, we observe that the spec-
tral radius ρ

(
F ′(ν∗)

)
< 1 and the fixed point is stable

(cf. Theorem 2 for more details). If we further increase
θ, the spectral radius decreases and a unique stable fixed
point exists for even larger values of J (compare Fig-
ure 2c and 2d with Figure 2e and 2f).

Now, if we increase J – although the fixed point remains
stable – two additional solutions emerge beyond some
critical point JC+ (Figure 2c and 2d). As opposed to van-
ishing local fields, the unique fixed point is continuously
deformed and remains stable though. The second stable
fixed point corresponds to some self-preserving state of
magnetization3 and is accompanied by another unstable
fixed point (Figure 3b).

3Self-preserving states are stable fixed points where ˜〈m〉
points in the opposite direction as the external field.

The graph structure is supposed to influence the spec-
tral radius as well. This becomes obvious if we enlarge
the size of a graph while keeping its local structure un-
changed, e.g., by increasing the grid-graph from N1 = 9
to N2 = 16. A comparison of Figure 4 with Figure 5b
reveals an increased spectral radius, i.e., ρ

(
F ′N1

(ν∗)
)
<

ρ
(
F ′N2

(ν∗)
)

(cf. Theorem 3). It is interesting that the
largest eigenvalue – and its symmetric counterpart for bi-
partite graphs – are the only eigenvalues that experience
a relevant increase in their real part. The real part of all
other eigenvalues λ̃i ∈ Γ

(
F ′(ν∗)

)
\{λρ : |<(λρ)| =

ρ
(
F ′(ν∗)

)
} is bounded by |<(λ̃i)| < 1.

In terms of accuracy BP performs better for non-
vanishing fields; compared to vanishing fields a stable
fixed point exists that lies closer to the exact solution.
Loosely speaking increased local fields effectively re-
duce the influence of the couplings. This does not only
lead to better convergence properties of BP (cf. Corol-
lary 3.1), but reduces the approximation-error as well.
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Figure 5: Eigenvalue spectra for J = 1.5 and θ = 0.5
of the (a) grid-graph with N = 9 and periodic boundary
conditions; (b) grid-graph with N = 16.

4.3.2 ANTIFERROMAGNETIC INTERACTIONS

For small values of J < 0 a unique fixed point exists
for which all eigenvalues lie inside the unit circle. If
we further decrease J , a change of behavior can be ob-
served beyond some critical value JC−. Interestingly,
|JC−| ≤ |JC+| with equality if and only if θ = 0. In
Figure 3b and 3c we can also see that ρ

(
F ′−(ν∗)

)
>

ρ
(
F ′+(ν∗)

)
, i.e., the invariance of local stability under

sign-change of J does not hold in general.

Let J < JC−, then it depends on the graph struc-
ture whether a unique fixed point exists and if damp-
ing is useful. It turns out that these two properties are
closely connected: First, consider the complete graph
with N = 4 or the grid-graph with periodic bound-
ary conditions; these graphs have unique fixed points
but frustrations exist because of cycles with odd-length.
Consequently Γ

(
F ′(ν∗)

)
is non-symmetric (cf. The-

orem 4). Besides the sign-change, the spectral radius
increases as well so that ρ

(
F ′−(ν∗)

)
> ρ

(
F ′+(ν∗)

)
;

the dominant eigenvalue, however, has negative sign and
<
(
Γ
(
F ′(ν∗)

))
< 1 so that an appropriate damping

term exists that enforces BP to converge.

Second, consider both grid-graphs with N1 = 9 and
N2 = 16; these graphs are bipartite and have a symmet-
ric spectrum Γ

(
F ′(ν∗)

)
(see Figure 4 and 5b, and Theo-

rem 4). Because of the symmetric spectrum BP behaves
similar as in the ferromagnetic case: i.e., no damping
term exists that would stabilize the unstable fixed point;
however, two additional stable fixed points exist.

Multiple fixed points for graphs with purely antiferro-
magnetic interactions only exist if the underlying graph
is bipartite. Such graphs can be decomposed into two
disjoint subsets X = Y ∪ Z such that the magnetiza-
tion follows a ”checkerboard-distribution” where for all
Xi ∈ Y the magnetization is mi > 0 and for all Xj ∈ Z
the magnetization is mj < 0, or exactly the other way
round. This explains the existence of two stable fixed

points. Note that the according mean magnetization ˆ〈m〉
behaves as follows: (i) if N is even both stable fixed
points are symmetric and have the same mean magne-
tization; (ii) if N is odd both stable fixed points have dif-
ferent mean magnetization, because the subsets differ in
size, i.e., |Y| 6= |Z|. The difference in ˆ〈m〉 reduces as the
number of variables increases. In the limit of N = ∞,
the mean magnetization of all solutions collapses onto
the same value.

To conclude our observations: either a unique fixed point
exists, which may be unstable but can be stabilized by
damping (black); or a fixed point exists which is unsta-
ble under any form of damping (green) but is accom-
panied by two stable fixed points (blue) (cf. Figure 2).
Therefore, non-vanishing fields increase the accuracy of
BP (Figure 2) and lead to better convergence properties
(Theorem 2) in all experiments.

5 THEORETICAL ANALYSIS

Here we present some more formal arguments and ex-
plain the observations made in Section 4. We start with
the Perron-Frobenius Theorem and specify some impli-
cations for the particular form of F ′(ν∗). Then we pro-
vide properties of the eigenvalue spectrum Γ

(
F ′(ν∗)

)
and explain the influence of finite-size graphs in non-
vanishing local fields. We consider only connected
graphs4 where all Xi have minimum degree min di ≥ 2.
Note that any Xi with di = 1 can be absorbed in larger
potentials.

Lemma 1. The Jacobian matrix F ′(ν∗) of a connected
graph G is irreducible if min di ≥ 2.

Proof. The adjacency matrix of a connected undirected
graph is irreducible. Let us construct the Jacobian
F ′(ν∗) as in (10); note that we can partition F ′(ν∗)
into N × N block matrices [F ′(ν∗)]ik of size di × dk
each. These blocks contain non-zero values if and only
if eij , ekl ∈ E for Xj , Xk ∈ X; i.e., if aik = 1. It
follows that F ′(ν∗) is irreducible as well.

Theorem 1 (Perron Frobenius Theorem). A real non-
negative square matrix B has its spectral radius
bounded as follows:

min
i

∑
j

bij ≤ ρ (B) ≤ max
i

∑
j

bij . (15)

If B is irreducible the largest eigenvalue is a positive
real number λmax = ρ (B).

4A graph G is connected if there is a path for all Xi, Xj ∈
X, i.e., Xj can be reached from Xi along a series of edges.



Corollary 1.1 (Implications for regular graphs). A regu-
lar graph has di = d for all Xi ∈ X. If the couplings
and the fields are constant

∑
n
F ′(ν∗)mn = c is constant

for all rows. By the Perron Frobenius Theorem and by
Lemma 1 it follows that λmax = c.

Consider an infinite-size grid-graph and some constant
coupling-strength J > 0. Under these assumptions it
is fairly straightforward to provide theoretical insights
that explain why the existence of non-vanishing fields en-
hances the convergence properties. We generalize the re-
sults subsequently, as the same argument can be applied
to finite-size graphs with different Jij .

Theorem 2. Let G∞ be an infinite-size graph with di =
d and purely ferromagnetic interactions J > 0. Then,
the existence of a non-vanishing external field θ 6= 0 sta-
bilizes BP.

Proof. First assume a vanishing external field, i.e., θ =
θ0 = 0, in which case the trivial fixed point is ν∗ij = 0
and (11) reduces to

F ′θ0(ν∗)mn=

{
tanh(J) if i = l and k∈∂(Xi\j)

0 else.
(16)

Because all variables Xi ∈ X(G∞) have equal de-
gree

∑
n
F ′(ν∗)mn = c for all m. It follows from (11)

and the Perron-Frobenius Theorem that ρ
(
F ′θ0(ν∗)

)
=

tanh(J) · (di − 1). Without loss of generality we ex-
ploit symmetry properties and assume an external field
θδ > 0. By (2) and (6) it becomes obvious that any
fixed point message ν∗ij 6= 0 and hij 6= 0. Note that,
qualitatively it does not matter whether hij is positive or
negative as we only consider tanh2(hij).

Because 0 ≤ tanh(J) < 1 it follows that tanh(J) >
tanh2(J) and consequently, as

F ′θδ(ν
∗)mn ={

tanh(J)(1−tanh2(hij))
1−tanh2(J) tanh2(hij)

if i = l and k∈∂(Xi\j)

0 else,
(17)

all non-zero entries of F ′θ0(ν∗)mn are element-wise
larger than F ′θδ(ν

∗)mn. Let us define a field-dependent
scaling term κθ ∈ (0, 1), then F ′θδ(ν

∗) = κθF
′
θ0(ν∗).

Loosely speaking the existence of some non-vanishing
field reduces all entries of the Jacobian matrix and con-
sequently reduces the spectral radius.

Now choose a critical value JC at the onset of instabil-
ity5 so that ρ

(
F ′θ0(ν∗)

)
= lim

ε→0
(1 + ε). If the external

5If λmax = 1 we cannot infer from the linearized to the

field dampens the spectral radius, so that ρ
(
F ′(ν∗)

)
< 1

the unstable fixed point vanishes, and only a unique sta-
ble fixed point remains. Interestingly, this observation
holds in all experiments, i.e., in the ferromagnetic case
an unstable fixed point exists if and only if multiple fixed
points are present.

Suppose we either have purely ferromagnetic or purely
antiferromagnetic interactions, then all entries of the Ja-
cobian matrix have the same sign as the couplings and
are bounded.

Lemma 2. All entries of the Jacobian are bounded by
F ′(ν∗)mn ∈ [0, 1) if Jij > 0 and by F ′(ν∗)mn ∈
(−1, 0] if Jij < 0.

Proof. If all couplings have the same sign, the qualitative
result of (17) holds as well. For purely antiferromagnetic
interactions we just have to swap signs.

Theorem 3. The finite-size manifestation of phase tran-
sitions occur beyond the theoretical phase transitions.
Let us define a parameter-set (JC , θC) for which λmax
crosses the unit-circle. Then, for a graph GN with N
nodes, the values of the critical parameters (JC , θC) de-
crease as N increases.

Consider two finite-size graphs with identical structure6

with different size N1 < N2, then ρ
(
F ′N1

(ν∗)
)
≤

ρ
(
F ′N2

(ν∗)
)
≤ ρ∞

(
F ′(ν∗)

)
.

Proof. Assume J > 0 and w.l.g. θ = 0 (for the influence
of non-vanishing external field see Theorem 2). Then on
G∞ – or for any other grid-graph with periodic bound-
ary conditions – the degree di = d is constant for all
Xi ∈ X. It follows from Corollary 1.1 that the largest
eigenvalue is given by λmax = (di−1) · tanh(J)7. Sup-
pose we increase the couplings to Jnew > J and denote
the change of its parameters as κ = tanh(Jnew)

tanh(J) . It is
obvious that λnewmax = κ · λmax.

Suppose we have some finite-size graph where di is not
constant but depends on Xi. If the couplings increase
as before each row of F ′(ν∗) experiences a different
amount of scaling. In all generality this is described byc1 [0]

. . .
[0] cK

 · F ′(ν∗) (18)

nonlinear map (Teschl, 2003). We introduce an ε-small term to
avoid this subtlety.

6E.g., a grid-graph with N = 9 or N = 16 variables.
7For vanishing fields Jij determines the Jacobian matrix.



where ck depends on di and K =
N∑
i=1

di. Let us refor-

mulate (18) in all detail to

W =

max(di)∑
m=2

CmF ′(ν∗), (19)

where Cm is a diagonal matrix with values Cm;kk = κm
if the kth line of F ′(ν∗) corresponds to a variable with
dk ≥ m and 0 otherwise. Since the largest eigenvalue
is a positive real number it follows that the largest eigen-
value is the sum of the individual eigenvalues, so that

ρ (W ) =

max(di)∑
m=2

ρ
(
CmF ′(ν∗)

)
. (20)

We still have to show that

ρ
(
F ′N1

(ν∗)
) (a)

≤ ρ
(
F ′N2

(ν∗)
) (b)

≤ ρ
(
F ′∞(ν∗)

)
, (21)

where (b) follows from the existence of an associated
eigenvector x such that ρ (W )x ≤ (di − 1) · tanh(J)
with equality if and only if all Cm have only non-zero
values on the main diagonal, i.e., all variables have equal
degree. As GN2

has a larger proportion of nodes with
max di than GN1

, the average degree is also higher:
〈d〉GN1

< 〈d〉GN2
. Then (a) follows from (20).

By combination of Theorem 2 and Theorem 3 we get:

Corollary 3.1. The existence of a non-vanishing exter-
nal field stabilzes BP on finite-size graphs.

Next we extend the above observations to varying cou-
plings and fields. We assume that, all couplings Jij have
the same sign, and all fields θi have the same sign, not
necessarily the same as the couplings. Then the scaling
coefficients ck in (18) depend not only on di, but on Jij
and θi as well. Still, F ′(ν∗) can only contain either pos-
itive entries or negative entries; it follows that:

Corollary 3.2. For infinite-size grid-graphs with either
purely ferromagnetic interactions Jij > 0 or purely anti-
ferromagnetic interactions Jij < 0, the existence of some
non-vanishing fields θi 6= 0 stabilizes BP.

Theorem 4. The eigenvalue-spectrum of the Jacobian
F ′(ν∗) is symmetric if and only if the underlying graph
is bipartite.

Proof. The adjacency matrix of any bipartite graph can
be rearranged and written in block form

A =

[
[0] M

MT [0]

]
, (22)

so that the eigenvalue-spectrum is symmetric (Brouwer
and Haemers, 2011). By the same arguments as in
Lemma 1 it follows that F ′(ν∗) has the same structure
and a symmetric spectrum as well.

Corollary 4.1. Assume we only have purely antiferro-
magnetic interactions. Then a graph is bipartite if and
only if no frustrations occur.

Proof. A cycle is frustrated if and only if the prod-
uct of all Jij along the corresponding edges is nega-
tive (Mezard and Montanari, 2009, p.45). Frustrations
can therefore only occur in graphs with cycles of odd
length, which implies that the graph cannot be bipar-
tite (Korte and Vygen, 2005, Prop. 2.27).

6 CONCLUSION

In this paper we applied the NPHC method to belief
propagation (BP) and obtained all fixed points – stable
and unstable ones. Subsequently we performed a lo-
cal stability analysis for various Ising models with non-
vanishing external field.

On the basis of our empirical observations and our theo-
retical analysis we answered several questions: (i) graphs
with vanishing fields are indeed a worst-case scenario.
Non-vanishing fields reduce the magnitude of all eigen-
values and help to achieve convergence. (ii) Addition-
ally, we showed that existence of non-vanishing fields
increases the accuracy of the best stable fixed point. (iii)
Damping is assumed to work best in the antiferromag-
netic case; we argue that damping can only be used to
stabilize a fixed point if it is unique. (iv) We showed
the influence of the graph structure regarding stability
and uniqueness of BP: if the graph increases in size,
the eigenvalues tend to increase, and as a result the per-
formance of BP degrades; furthermore, because of the
symmetric spectrum, damping does not help on bipartite
graphs. Nonetheless, for all bipartite graphs considered a
stable fixed point does always exist and BP consequently
converges.

Only two types of unstable fixed points could be ob-
served: either the fixed point is unique (which has to
be a minimum of the corresponding Bethe free energy)
and stable under optimal damping. Or, a fixed point ex-
ists that is unstable under any form of damping; then, at
least two additional fixed points are present that are both
stable.
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