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Abstract

The dueling bandits problem is an online
learning framework for learning from pairwise
preference feedback, and is particularly well-
suited for modeling settings that elicit subjec-
tive or implicit human feedback. In this paper,
we study the problem of multi-dueling bandits
with dependent arms, which extends the orig-
inal dueling bandits setting by simultaneously
dueling multiple arms as well as modeling de-
pendencies between arms. These extensions
capture key characteristics found in many real-
world applications, and allow for the opportu-
nity to develop significantly more efficient al-
gorithms than were possible in the original set-
ting. We propose the SELFSPARRING algo-
rithm, which reduces the multi-dueling bandits
problem to a conventional bandit setting that
can be solved using a stochastic bandit algo-
rithm such as Thompson Sampling, and can
naturally model dependencies using a Gaus-
sian process prior. We present a no-regret anal-
ysis for multi-dueling setting, and demonstrate
the effectiveness of our algorithm empirically
on a wide range of simulation settings.

1 INTRODUCTION

In many online learning settings, particularly those that
involve human feedback, reliable feedback is often lim-
ited to pairwise preferences (e.g., “is A better than B?”).
Examples include implicit or subjective feedback for in-
formation retrieval and various recommender systems
(Chapelle et al., 2012; Sui & Burdick, 2014). This setup
motivates the dueling bandits problem (Yue et al., 2012),
which formalizes the problem of online regret minimiza-
tion via preference feedback.

The original dueling bandits setting ignores many real
world considerations. For instance, in personalized clin-
ical recommendation settings (Sui & Burdick, 2014), it
is often more practical for subjects to provide preference
feedback on several actions (or treatments) simultane-
ously rather than just two. Furthermore, the action space
can be very large, possibly infinite, but often has a low-
dimensional dependency structure.

In this paper, we address both of these challenges in
a unified framework, which we call multi-dueling ban-
dits with dependent arms. We extend the original duel-
ing bandits problem by simultaneously dueling multiple
arms as well as modeling dependencies between arms
using a kernel. Explicitly formalizing these real-world
characteristics provides an opportunity to develop prin-
cipled algorithms that are much more efficient than al-
gorithms designed for the original setting. For instance,
most dueling bandits algorithms suffer regret that scales
linearly with the number of arms, which is not practical
when the number of arms is very large or infinite.

For this setting, we propose the SELFSPARRING algo-
rithm, inspired by the Sparring algorithm from Ailon
et al. (2014), which algorithmically reduces the multi-
dueling bandits problem into a conventional muilti-
armed bandit problem that can be solved using a
stochastic bandit algorithm such as Thompson Sampling
(Chapelle & Li, 2011; Russo & Van Roy, 2014). Our
approach can naturally incorporate dependencies using a
Gaussian process prior with an appropriate kernel.

While there have been some prior work on multi-dueling
(Brost et al., 2016) and learning from pairwise prefer-
ences over kernels (Gonzalez et al., 2016), to the best
of our knowledge, our approach is the first to address
to both in a unified framework. We are also the first
to provide a regret analysis of the multi-dueling setting.
We further demonstrate the effectiveness of our approach
over conventional dueling bandits approaches in a wide
range of simulation experiments.



2 BACKGROUND

2.1 Dueling Bandits

The original dueling bandits problem is a sequential op-
timization problem with relative feedback. Let B =
{b1, . . . , bK} be the set of K bandits (or arms). At each
iteration, the algorithm duels or compares a single pair
of arms bi, bj from the set of K arms (bi and bj can be
identical). The outcome of each duel between bi and bj
is an independent sample of a Bernoulli random variable.
We define the probability that arm bi beats bj as:

P (bi � bj) = φ(bi, bj) + 1/2,

where φ(bi, bj) ∈ [−1/2, 1/2] denotes the stochas-
tic preference between bi and bj , thus bi � bj ⇔
φ(bi, bj) > 0. We assume there is a total ordering, and
WLOG that bi � bj ⇔ i < j.

The setting proceeds in a sequence of iterations or
rounds. At each iteration t, the decision maker must
choose a pair of bandits b(1)

t and b(2)
t to compare, and

observes the outcome of that comparison. The quality of
the decision making is then quantified using a notion of
cumulative regret of T iterations:

RT =

T∑
t=1

[
φ(b1, b

(1)
t ) + φ(b1, b

(2)
t )
]
. (1)

When the algorithm has converged to the best arm b1,
then it can simply duel b1 against itself, thus incurring
no additional regret. In the recommender systems set-
ting, one can interpret (1) as a measure of how much the
user(s) would have preferred the best bandit over the the
ones presented by the algorithm.

To date, there have been several algorithms proposed for
the stochastic dueling bandits problem, including Inter-
leaved Filter (Yue et al., 2012), Beat the Mean (Yue &
Joachims, 2011), SAVAGE (Urvoy et al., 2013), RUCB
(Zoghi et al., 2014, 2015b), Sparring (Ailon et al., 2014;
Dudı́k et al., 2015), RMED (Komiyama et al., 2015), and
DTS (Wu & Liu, 2016). Our proposed approach, SELF-
SPARRING, is inspired by Sparring, which along with
RUCB-style algorithms are the best performing methods.
In contrast to Sparring, which has no theoretical guaran-
tees, we provide no-regret guarantees for SELFSPAR-
RING, and demonstrate significantly better performance
in the multi-dueling setting.

Previous work on extending the original dueling bandits
setting have been largely restricted to settings that duel a
single pair of arms at a time. These include continuous-
armed convex dueling bandits (Yue & Joachims, 2009),
contextual dueling bandits which also introduces the von

Neumann winner solution concept (Dudı́k et al., 2015),
sparse dueling bandits that focuses on the Borda winner
solution concept (Jamieson et al., 2015), Copeland du-
eling bandits that focuses on the Copeland winner solu-
tion concept (Zoghi et al., 2015a), and adversarial duel-
ing bandits (Gajane et al., 2015). In contrast, our work
studies the complementary directions of how to formal-
ize multiple duels simultaneously, as well as how to re-
duce the dimensionality of modeling the action space us-
ing a low-dimensional similarity kernel.

Recently, there have been increasing interest in studying
personalization settings that simultaneously elicit multi-
ple pairwise comparisons. Example settings include in-
formation retrieval (Hofmann et al., 2011; Schuth et al.,
2014, 2016) and clinical treatment (Sui & Burdick,
2014). There have also been some previous work on
multi-dueling bandits settings (Brost et al., 2016; Sui &
Burdick, 2014; Schuth et al., 2016), however the previ-
ous approaches are limited in their scope and lack rigor-
ous theoretical guarantees. In contrast, our approach can
handle a wide range of multi-dueling mechanisms, has
near-optimal regret guarantees, and can be easily com-
posed with kernels to model dependent arms.

2.2 Multi-armed Bandits

Our proposed algorithm, SELFSPARRING, utilizes a
multi-armed bandit (MAB) algorithm as a subroutine,
and so we provide here a brief formal description of
the conventional MAB problem for completeness. The
stochastic MAB problem (Robbins, 1952) refers to an it-
erative decision making problem where the algorithm re-
peatedly chooses among K actions (or bandits or arms).
In contrast to the dueling bandits setting, where the feed-
back is relative between two arms, here, we receive an
absolute reward that depends on the arm selected. We
assume WLOG that every reward is bounded between
[0, 1].1 The goal then is to minimize the cumulative re-
gret compared to the best arm:

RMAB
T =

T∑
t=1

[
µ1 − µ(bt)

]
, (2)

where bt denotes the arm chosen at time t, µ(b) denotes
the expected reward of arm b, and µ1 = argmaxb µ(b).
Popular algorithms for the stochastic setting include
UCB (upper confidence bound) algorithms (Auer et al.,
2002a), and Thompson Sampling (Chapelle & Li, 2011;
Russo & Van Roy, 2014).

In the adversarial setting, the rewards are chosen in an
adversarial fashion, rather than sampled independently

1So long as the rewards are bounded, one can shift and re-
scale them to fit within [0, 1].



Algorithm 1 Thompson Sampling for Bernoulli Bandits

1: For each arm i = 1, 2, · · · ,K, set Si = 0, Fi = 0.
2: for t = 1, 2, . . . do
3: For each arm i = 1, 2, · · · ,K, sample θi from

Beta(Si + 1, Fi + 1)
4: Play arm i(t) := argmaxi θi(t), observe reward

rt
5: Si ← Si + rt, Fi ← Fi + 1− rt
6: end for

from some underlying distribution. In this case, regret
(2) is rephrased as the difference in the sum of rewards.
The predominant algorithm for the adversarial setting is
EXP3 (Auer et al., 2002b).

2.3 Thompson Sampling

The specific MAB algorithm used by our SELFSPAR-
RING approach is Thompson Sampling. Thompson Sam-
pling is a stochastic algorithm that maintains a distri-
bution over the arms, and chooses arms by sampling
(Chapelle & Li, 2011). This distribution is updated us-
ing reward feedback. The entropy of the distribution thus
corresponds to uncertainty regarding which is the best
arm, and flatter distributions lead to more exploration.

Consider the Bernoulli bandits setting where observed
rewards are either 1 (win) or 0 (loss). Let Si and Fi de-
note the historical number of wins and losses of arm i,
and let Dt denote the set of all parameters at round t:

Dt = {S1, · · · , SK ;F1, · · · , FK}t.

For brevity, we often represent Dt by D, since only the
current iteration matters at run-time. The sampling pro-
cess of Beta-Bernoulli Thompson Sampling given D is:

• For each arm i, sample θi ∼ Beta(Si + 1, Fi + 1).
• Choose the arm with maximal θi.

In other words, we model the average utility of each arm
using a Beta prior, and rewards for arm i as Bernoulli
distributed according to latent mean utility θi. As we ob-
serve more rewards, we can compute the posterior, which
is also Beta distributed by conjugation between Beta and
Bernoulli. The sampling process above can be shown to
be sampling for the following distribution:

P (i|D) = P (i = argmax
b

θb|D). (3)

Thus, any arm i is chosen with probability that it has
maximal reward under the Beta posterior. Algorithm 1
describes the Beta-Bernoulli Thompson Sampling algo-
rithm, which we use as a subroutine for our approach.

Thompson Sampling enjoys near-optimal regret guaran-
tees in the stochastic MAB setting, as given by the lemma
below (which is a direct consequence of main theorems
in Agrawal & Goyal (2012); Kaufmann et al. (2012)).

Lemma 1. For the K-armed stochastic MAB problem,
Thompson Sampling has expected regret: E[RMAB

T ] =
O
(
K
∆ lnT

)
, where ∆ is the difference between expected

rewards of the best two arms.

2.4 Gaussian Processes & Kernels

Normally, when one observes measurements about one
arm (in both dueling bandits and conventional multi-
armed bandits), one cannot use that measurement to in-
fer anything about other arms – i.e., the arms are inde-
pendent. This limitation necessarily implies that regret
scales linearly w.r.t. the number of arms K, since each
arm must be explored at least once to collect at least one
measurement about it. We will use Gaussian processes
and kernels to model dependencies between arms.

For simplicity, we present Gaussian processes in the con-
text of multi-armed bandits. We will describe how to ap-
ply them to multi-dueling bandits in Section 3 A Gaus-
sian process (GP) is a probability measure over functions
such that any linear restriction is multivariate Gaussian.
A GP is fully determined by its mean and a positive def-
inite covariance operator, also known as a kernel. A
GP (µ(b), k(b, b′)) is a probability distribution across a
class of “smooth” functions, which is parameterized by a
kernel function k(b, b′) that characterizes the smoothness
of f . One can think of f has corresponding to the reward
function in the standard MAB setting.

We assume WLOG that µ(b) = 0, and that our observa-
tions are perturbed by i.i.d. Gaussian noise, i.e., for sam-
ples at points AT = [b1 . . . bT ], we have yt = f(bt) +nt
where nt ∼ N (0, σ2) (we will relax this later). The
posterior over f is then also Gaussian with mean µT (b),
covariance kT (b, b′) and variance σ2

T (b) that satisfy:

µT (b) = kT (b)T (KT + σ2I)−1yT

kT (b, b′) = k(b, b′)− kT (x)T (KT + σ2I)−1kT (b′)

σ2
T (b) = kT (b, b),

where kT (b) = [k(b1, b) . . . k(bT , b)]
T and KT is the

positive definite kernel matrix [k(x, x′)]bx, b
′ ∈ AT ].

Posterior inference updates the mean reward estimates
for all the arms that share dependencies (as specified by
the kernel) with the arms selected for measurement. Thus
one can show that MAB algorithms using Gaussian pro-
cesses have regret that scale linearly w.r.t. the dimension-
ality of the kernel rather than the number of arms (which
can now be infinite) (Srinivas et al., 2010).



3 MULTI-DUELING BANDITS

We now formalize the multi-dueling bandits problem.
We inherit all notation from original dueling bandits set-
ting (Section 2.1). The key difference is that the algo-
rithm now selects a (multi-)set St of arms at each iter-
ation t, and observes outcomes of duels between some
pairs of arms in St. For example, in information retrieval
this can be implemented via multi-leaving (Schuth et al.,
2014) the ranked lists of the subset, St, of rankers and
then inferring the relative quality of the lists (and the cor-
responding rankers) from user feedback.

In general, we assume the number of arms being dueled
at each iteration is some fixed constant m = |St|. When
m = 2, the problem reduces to the original dueling ban-
dits setting. Extending the regret formulation from the
original setting (1), we can write the regret as:

RT =

T∑
t=1

∑
b∈St

φ(b1, b). (4)

The goal then is to select subsets of arms St so that the
cumulative regret (4) is minimized. Intuitively, all arms
have to be selected a small number of times in order to
be explored, but the goal of the algorithm is to minimize
the number of times when suboptimal arms are selected.
When the algorithm has converged to the best arm b1,
then it can simply choose St to only contain b1, thus in-
curring no additional regret.

Our setting differs from Brost et al. (2016) in two ways.
First, we play a fixed, rather than variable, number of
arms at each iteration. Furthermore, we focus on total
regret, rather than the instantaneous average regret in a
single iteration; in many applications (e.g., Sui & Bur-
dick (2014)), playing each arm incurs its own regret .

Feedback Mechanisms. Simultaneously dueling mul-
tiple arms opens up multiple options for collecting feed-
back. For example, in some applications it may be viable
to collect all pairwise feedback for all chosen arms St. In
other applications, it is more realistic to only observe the
“winner” of St, in which we observe feedback that one
b ∈ St wins against all other arms in St, but nothing
about pairwise preferences between the other arms.

Approximate Linearity. One assumption that we lever-
age in developing our approach is approximate linearity,
which fully generalizes the linear utility-based dueling
bandits setting studied in Ailon et al. (2014). For any
triplet of bandits bi � bj � bk and some constant γ > 0:

φ(bi, bk)− φ(bj , bk) ≥ γφ(bi, bj). (5)

To understand Approximate Linearity, consider the spe-
cial case when the preference function follows the form

Figure 1: Illustration of Approximate Linearity. The
curve represents Φ(·) with support on [−1, 1]. Mono-
tonicity guarantees Approximate Linearity for some γ.

φ(bi, bj) = Φ(ui − uj), where ui is a bounded utility
measure of bi. Approximate linearity of φ(·, ·) is equiva-
lent to having Φ(·) be not far from some linear function
on its bounded support (see Figure 1), and is satisfied by
any continuous monotonic increasing function. When Φ
is linear, then our setting reduces to the utility-based du-
eling bandits setting of Ailon et al. (2014).2

4 ALGORITHMS & RESULTS

We start with a high-level description of our general
framework, called SELFSPARRING, which is inspired
by the Sparring algorithm from Ailon et al. (2014). The
high-level strategy is to reduce the multi-dueling bandits
problem to a multi-armed bandit (MAB) problem that
can be solved using a MAB algorithm, and ideally lift
existing MAB guarantees to the multi-dueling setting.

Algorithm 2 describes the SELFSPARRING approach.
SELFSPARRING uses a stochastic MAB algorithm such
as Thompson sampling as a subroutine to independently
sample the set of m arms, St to duel. The distribu-
tion of St is generally not degenerate (e.g., all the same
arm) unless the algorithm has converged. In contrast, the
Sparring algorithm uses m MAB algorithms to control
the choice of the each arm, which essentially reduces
the conventional dueling bandits problem to two multi-
armed bandit problems “sparring” against each other.

SELFSPARRING takes as input S the total set of arms,
m the number of arms to be dueled at each iteration, and
η the learning rate for posterior updates. S can be a fi-
nite set of K arms for independent setting, or a continu-
ous action space of arms for kernelized setting. A prior

2Compared to the assumptions of Yue et al. (2012), Approx-
imate Linearity is a stricter requirement than strong stochastic
transitivity, and is a complementary requirement to stochastic
triangle inequality. In particular, stochastic triangle inequality
requires that the curve in Figure 1 exhibits diminishing returns
in the top-right quadrant (i.e., is sub-linear), whereas Approxi-
mate Linearity requires that the curve be not too far from linear.



Algorithm 2 SELFSPARRING

input arms 1, . . . ,K in space S, m the number of arms
drawn at each iteration, η the learning rate

1: Set prior D0 over S
2: for t = 1, 2, . . . do
3: for j = 1, . . . ,m do
4: select arm ij(t) using Dt−1

5: end for
6: Playm arms {ij(t)}j and observem×m pairwise

feedback matrix R = {rij ∈ {0, 1, ∅}}m×m
7: update Dt−1 using R to obtain Dt

8: end for

distribution D0 is used to initialize the sampling process
over S. In the t-th iteration, SELFSPARRING selects m
arms by sampling over the distribution Dt−1 as shown
in line 2 of Algorithm 2. The preference feedback can
be any type of comparisons ranging from full compari-
son over the m arms (a full matrix for R, aka ‘all pairs”)
to single comparison of one pair (just two valid entries
in R). The posterior distribution over arms Dt then gets
updated by R and the prior Dt−1.

We specialize SELFSPARRING in two ways. The first,
INDSELFSPARRING (Algorithm 3), is the independent-
armed version of SELFSPARRING. The second, KER-
NELSELFSPARRING (Algorithm 4), uses Gaussian pro-
cesses to make predictions about preference function f
based on noisy evaluations over comparisons. We em-
phasize here that SELFSPARRING is very modular ap-
proach, and is thus easy to implement and extend.

4.1 Independent Arms Case

INDSELFSPARRING (Algorithm 3) instantiates SELF-
SPARRING using Beta-Bernoulli Thompson sampling.
The posterior Beta distributionsDt over the arms are up-
dated by the preference feedback within the iteration and
the prior Beta distributions Dt−1.

We present a no-regret guarantee of INDSELFSPAR-
RING in Theorem 2 below. We now provide a high-level
outline of the main components leading to the result. De-
tail proofs are deferred to the supplementary material.

Our first step is to prove that INDSELFSPARRING is
asymptotically consistent, i.e., it is guaranteed (with high
probability) to converge to the best bandit. In order to
guarantee consistency, we first show that all arms are
sampled infinitely often in the limit.

Lemma 2. Running INDSELFSPARRING with infinite
time horizon will sample each arm infinitely often.

In other words, Thompson sampling style algorithms do

Algorithm 3 INDSELFSPARRING

input m the number of arms drawn at each iteration, η
the learning rate

1: For each arm i = 1, 2, · · · ,K, set Si = 0, Fi = 0.
2: for t = 1, 2, . . . do
3: for j = 1, . . . ,m do
4: For each arm i = 1, 2, · · · ,K, sample θi from

Beta(Si + 1, Fi + 1)
5: Select ij(t) := argmaxi θi(t)
6: end for
7: Play m arms {ij(t)}j , observe pairwise feedback

matrix R = {rjk ∈ {0, 1, ∅}}m×m
8: for j, k = 1, . . . ,m do
9: if rjk 6= ∅ then

10: Sj ← Sj + η · rjk, Fj ← Fj + η(1− rjk)
11: end if
12: end for
13: end for

not eliminate any arms. Lemma 2 also guarantees con-
centration of any statistical estimates for each arm as
t→∞. We next show that the sampling of INDSELFS-
PARRING will concentrate around the optimal arm.
Theorem 1. Under Approximate Linearity, INDSELF-
SPARRING converges to the optimal arm b1 as running
time t→∞: limt→∞ P(bt = b1) = 1.

Theorem 1 implies that INDSELFSPARRING is asymp-
totically no-regret. As t → ∞, the Beta distribution for
each arm i is converging to P (bi � b1), which implies
converging to only choosing the optimal arm.

Most existing dueling bandits algorithm chooses one arm
as a “reference” arm and the other arm as a competing
arm for exploration/exploitation (in the m = 2 setting).
If the distribution over reference arms never changes,
then the competing arm is playing against a fixed “en-
vironment”, i.e., it is a standard MAB problem. For gen-
eral m, we can analogously consider choosing only one
arm against a fixed distribution over all the other arms.
Using Thompson sampling, the following lemma holds.
Lemma 3. Under Approximate Linearity, selecting only
one arm via Thompson sampling against a fixed distri-
bution over the remaining arms leads to optimal regret
w.r.t. choosing that arm.

Lemma 3 and Theorem 1 motivate the idea of analyzing
the regret of each individual arm against near-fixed (i.e.,
converging) environments.
Theorem 2. Under Approximate Linearity, INDSELFS-
PARRING converges to the optimal arm with asymptoti-
cally optimal no-regret rate of O(K ln(T )/∆).

Theorem 2 shows an no-regret guarantee for INDSELF-



(a) 5 iterations (b) 20 iterations (c) 100 iterations

Figure 2: Evolution of a GP preference function in KERNELSELFSPARRING; dashed lines correspond to the mean
and shaded areas to ±2 standard deviations. The underlying utility function was sampled randomly from a GP with
a squared exponential kernel with lengthscale parameter 0.2, and the resulting preference function is shown in blue.
The GP finds the best arm with high confidence.

Algorithm 4 KERNELSELFSPARRING

input Input space S, GP prior (µ0, σ0), m the number
of arms drawn at each iteration

1: for t = 1, 2, . . . do
2: for j = 1, . . . ,m do
3: Sample fj from (µt−1, σt−1)
4: Select ij(t) := argmaxx fj(x)
5: end for
6: Play m arms {ij(t)}j , observe pairwise feedback

matrix R = {rjk ∈ {0, 1, ∅}}m×m
7: for j, k = 1, . . . ,m do
8: if rjk 6= ∅ then
9: apply Bayesian update using (ij(t), rjk) to

obtain (µt, σt)
10: end if
11: end for
12: end for

SPARRING that asymptotically matches the optimal rate
ofO(K ln(T )/∆) up to constant factors. In other words,
once t > C for some problem-dependent constant C,
the regret of INDSELFSPARRING matches information-
theoretic bounds up to constant factors (see Yue et al.
(2012) for lower bound analysis).3 The proof technique
follows two major steps: (1) prove the convergence of
INDSELFSPARRING as shown in Theorem 1; and (2)
bound the expected total regret for sufficiently large T .

4.2 Dependent Arms Case

We use Gaussian processes (see Section 2.4) to model
dependencies among arms. Applying Gaussian pro-

3A finite-time guarantee requires more a refined analysis of
C, and is an interesting direction for future work.

cesses is not straightforward, since the underlying utility
function is not directly observable or does not exist. We
instead use Gaussian processes to model the preference
function f(b) corresponding to the preference of choos-
ing b over the perfect “environment” of competing arms.
Like in the independent arms case (Section 4.1), the per-
fect environment corresponds to having all the remain-
ing arms be deterministically selected as the best arm b1:
f(b) = P (b � b1). We model f(b) as a sample from
a Gaussian process GP (µ(b), k(b, b′)). Note that this
setup is analogous to the independent arms case, which
uses a Beta prior to estimate the probability of each arm
defeating the environment (and converges to competing
against the best environment).

Algorithm 4 describes KERNELSELFSPARRING, which
instantiates SELFSPARRING using a Gaussian process
Thompson sampling algorithm. The input space S can
be continuous. At each iteration t, m arms are sampled
using the Gaussian process priorDt−1. The posteriorDt

is then updated by the responses R and the prior.

Figure 2 illustrates the optimization process in a one-
dimensional example. The underlying preference func-
tion against the best environment is shown in blue.
Dashed lines are the mean function of GP. Shaded ar-
eas are ±2 standard deviations regions (high confidence
regions). Figures 2(a)(b)(c) represent running KERNEL-
SELFSPARRING algorithm at 5, 20, and 100 iterations.
The GP model can be observed to be converging to the
preference function against the best environment.

We conjecture that it is possible to prove no-regret guar-
antees that scale w.r.t. the dimensionality of the kernel.
However, there does not yet exist suitable regret analyses
for Gaussian Process Thompson Sampling in the kernel-
ized MAB setting to leverage.



Name Distribution of Utilities of arms
1good 1 arm with utility 0.8, 15 arms with utility 0.2
arith 1 arm with utility 0.8, 15 arms forming an arithmetic sequence between 0.7 and 0.2

Table 1: 16-arm synthetic datasets used for experiments.

5 EXPERIMENTS

5.1 Simulation Settings & Datasets

Synthetic Functions. We evaluated on a range of 16-
arm synthetic settings derived from the utility-based du-
eling bandits setting of Ailon et al. (2014). For the multi-
dueling setting, we used the following preference func-
tions:

linear: φ(x, y)− 1/2 = (1 + x− y)/2
logit: φ(x, y)− 1/2 = (1 + exp (y − x))−1

and the utility functions shown in Table 1 (generalized
from those in Ailon et al. (2014)). Note that although
these preference functions do not satisfy approximate
linearity over their entire domains, they do for the util-
ity samples (over the a finite subset of arms).

MSLR Dataset. Following the evaluation setup of Brost
et al. (2016), we also used the Microsoft Learning to
Rank (MSLR) WEB30k dataset, which consists of over
3 million query-document pairs labeled with relevance
scores (Liu et al., 2007). Each pair is scored along 136
features, which can be treated as rankers (arms). For
any subset of arms, we can estimate a preference matrix
using the expected probability over the entire dataset of
one arm beating another using top-10 interleaving and a
perfect-click model. We simulate user feedback by using
team-draft multileaving (Schuth et al., 2014).

5.2 Vanilla Dueling Bandits Experiments

We first compare against the vanilla dueling bandits set-
ting of dueling a single pair of arms at a time. These ex-
periments are included as a sanity check to confirm that
SELFSPARRING (with m = 2) is a competitive algo-
rithm in the original dueling bandits setting, and are not
the main focus of our empirical analysis.

We empirically evaluate against a range of conventional
dueling bandit algorithms, including:

• Interleaved Filter (IF) (Yue et al., 2012)
• Beat the Mean (BTM) (Yue & Joachims, 2011)
• RUCB (Zoghi et al., 2014)
• MergeRUCB (Zoghi et al., 2015b)
• Sparring + UCB1 (Ailon et al., 2014)
• Sparring + EXP3 (Dudı́k et al., 2015)
• RMED1 (Komiyama et al., 2015)
• Double Thompson Sampling (Wu & Liu, 2016)

Figure 3: Vanilla dueling bandits setting. Average regret
for top nine algorithms on logit/arith. Shaded regions
correspond to one standard deviation.

For Double Thompson Sampling and INDSELFSPAR-
RING, we set the learning rates to be 2.5 and 3.5 as opti-
mized over a separate dataset of uniformly sampled util-
ity functions. We use α = 0.51 for RUCB/MergeRUCB,
γ = 1 for BTM, and f(K) = 0.3K1.01 for RMED1.

Results. For each scenario, we run each algorithm 100
times for 20000 iterations. For brevity, we show in Fig-
ure 3 the average regret of one synthetic simulation along
with shaded one standard-deviation areas. We observe
that SELFSPARRING is competitive with the best per-
forming methods in the original dueling bandits setting.
More complete experiments that replicate Ailon et al.
(2014) are provided in the supplementary material, and
demonstrate the consistency of this result.

Double Thompson Sampling (DTS) is the best perform-
ing approach in Figure 3, which is a fairly consistent
result in the extended results in the supplementary ma-
terial. However, given their high variances they are es-
sentially comparable w.r.t. all other algorithms. Further-
more, INDSELFSPARRING has the advantage of being
easily extensible to the more realistic multi-dueling and
kernelized settings, which is not true of DTS.

5.3 Multi-Dueling Bandits Experiments

We next evaluate the multi-dueling setting with indepen-
dent arms. We compare against the main existing ap-
proaches that are applicable to the multi-dueling setting,
including the MDB algorithm (Brost et al., 2016), and
the multi-dueling extension of Sparring, which we re-
fer to as MultiSparring (Ailon et al., 2014). Following



Figure 4: Multi-dueling regret for linear/1good setting

Figure 5: Multi-dueling regret for linear/arith setting

Brost et al. (2016), we use α = 0.5 and β = 1.5 for the
MDB algorithm. For INDSELFSPARRING, we set learn-
ing rate to be the default 1. Note that the vast majority
dueling bandits algorithms are not easily applicable to
the multi-dueling setting. For instance, RUCB-style al-
gorithms treat the two arms asymmetrically, which is not
easily generalized to multi-dueling.

Results on Synthetic Experiments. We test m = 4
on the linear 1good and arith datasets in Figure 4 and
Figure 5, respectively. We observe that INDSELFSPAR-
RING significantly outperforms competing approaches.

Results on MSLR Dataset. Following the simulation
setting of Brost et al. (2016) on the MSLR dataset (see
Section 5.1), we compared against the MDB algorithm
over the same collection of 50 randomly sampled 16-
arm subsets. We ensured that each 16-arm subset had a
Condorcet winner; in general it is likely for any random
subset of arms in the MSLR dataset to have a Condorcet
winner (Zoghi et al., 2015a). Figure 6 shows the results,
where we again see that INDSELFSPARRING enjoys sig-
nificantly better performance.

5.4 Kernelized (Multi-)Dueling Experiments

We finally evaluate the kernelized setting for both the 2-
dueling and the multi-dueling case. We evaluate KER-
NELSELFSPARRING against BOPPER (Gonzalez et al.,
2016) and Sparring (Ailon et al., 2014) with GP-UCB

Figure 6: Multi-dueling regret for MSLR-30K experi-
ments

(Srinivas et al., 2010). BOPPER is a Bayesian optimiza-
tion method can be applied to kernelized 2-dueling set-
ting (but not multi-dueling). Sparring with GP-UCB,
which refer to as GP-Sparring, is essentially a variant
of our KERNELSELFSPARRING approach but maintains
a m GP-UCB bandit algorithms (one controlling each
choice of arm to be dueled), rather than just a single one.

KERNELSELFSPARRING and GP-Sparring use GPs that
model the preference function, i.e. are one-sided,
whereas BOPPER uses a GP to model the entire pref-
erence matrix. Following Srinivas et al. (2010), we use
a squared exponential kernel with lengthscale parameter
0.2 for both GP-Sparring and KERNELSELFSPARRING,
and use a squared exponential kernel with parameter 1
for BOPPER. We initialize all GPs with a zero-mean
prior, and use sampling noise variance σ2 = 0.025. For
GP-Sparring, we use the scaled-down version of βt as
suggested by Srinivas et al. (2010).

We use the Forrester and Six-Hump Camel functions as
utility functions on [0, 1] and [0, 1]2, respectively, as in
Gonzalez et al. (2016). Similarly, we use the same uni-
form discretizations of 30 and 64 points for the Forrester
and Six-Hump Camel settings respectively, and use the
logit link function to generate preferences.

Since the BOPPER algorithm is computationally expen-

Figure 7: 2-dueling regret for kernelized setting with
synthetic preferences



Figure 8: 2-dueling regret for kernelized setting with
Forrester objective function

Figure 9: 2-dueling regret for kernelized setting with Six-
Hump Camel objective function

sive, we only include it in the Forrester setting, and run
each algorithm 20 times for 100 iterations. In the Six-
Hump Camel setting, we run KERNELSELFSPARRING
and GP-Sparring for 500 iterations 100 times each. Re-
sults are presented in Figures 8 and 9, where we ob-
serve much better performance from KERNELSELFS-
PARRING against both BOPPER and GP-Sparring.

In the kernelized multi-dueling setting, we compare
against GP-Sparring. We run each algorithm for 100 it-
erations 50 times on the Forrester and Six-Hump Camel
functions, and plot their regrets in Figures 10 and 11 re-
spectively. We use m = 4 for both algorithms, and the
same discretization as in the standard dueling case. We
again observe significant performance gains of our KER-
NELSELFSPARRING approach.

6 CONCLUSIONS

We studied multi-dueling bandits with dependent arms.
This setting extends the original dueling bandits setting
by dueling multiple arms per iteration rather than just
two, and modeling low-dimensional dependencies be-
tween arms rather than treat each arm independently.
Both extensions are motivated by practical real-world
considerations such as in personalized clinical treatment

Figure 10: Multi-dueling regret for kernelized setting
with Forrester objective function

Figure 11: Multi-dueling regret for kernelized setting
with Six-Hump Camel objective function

(Sui & Burdick, 2014). We proposed SELFSPARRING,
which is simple and easy to extend, e.g., by integrating
with kernels to model dependencies across arms. Our ex-
perimental results demonstrated significant reduction in
regret compared to state-of-the-art dueling bandit algo-
rithms. Generally, relative benefits compared to dueling
bandits increased with the number of arms being com-
pared. For SELFSPARRING, the incurred regret did not
increase substantially as the number of arms increased.

Our approach can be extended in several important di-
rections. Most notably, the theoretical analysis could be
improved. For instance, it would be more desirable to
provide explicit finite-time regret guarantees rather than
asymptotic ones. Furthermore, an analysis of the kernel-
ized multi-dueling setting is also lacking. From a more
practical perspective, we assumed that the choice of arms
does not impact the feedback mechanism (e.g., all pairs),
which is not true in practice (e.g., humans can have a
hard time distinguishing very different arms).
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