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Abstract

We propose a new message-passing belief propa-
gation method that approximates belief updating
on evidential networks with conditional belief
functions. By means of local conditioning, the
method is able to propagate beliefs on the origi-
nal multiply-connected network structure using
local computations, facilitating reasoning in a
distributed and dynamic context. Further, by use
of conditional belief functions in the form of par-
tially defined plausibility and basic plausibility
assignment functions, belief updating can be ef-
ficiently approximated using only partial infor-
mation of the belief functions involved. Exper-
iments show that the method produces results
with high degree of accuracy whilst achieving a
significant decrease in computational and space
complexity (compared to exact methods).

1 INTRODUCTION
Network-based approaches for reasoning with uncertainty
feature a graphical representation of the knowledge base
(commonly a directed acyclic graph) equipped with bi-
directional belief propagation, facilitating reasoning in a
coherent manner. Such networks dynamically reflect the
current state of knowledge through the process of belief
updating where the impact of an observation presented at a
node is propagated to other nodes throughout the network.

This work is concerned with belief updating in ev-
idential networks with conditional belief functions
such as ECNs [Xu and Smets1996] and DEVNs
[Yaghlane and Mellouli2008] towards their practical
application, motivated by a computer network defence
(CND) system. Such networks are formulated based on
the theory of belief functions (BF theory) [Shafer1976],
specifically in the framework of Transferable Belief
Models (TBM) [Smets and Kennes1994] which provides
a greater expressive power to handle more general forms
of knowledge, in particular incomplete knowledge, a vital

requirement in our application. In particular, it is crucial
to be able to distinguish between conflicting informa-
tion, missing information and statistical variability (see
[Dubois and Prade2009] for further discussion) in order
to act appropriately; for instance, deploying additional
sensors in the face of incomplete knowledge, or mitigating
against adversary manipulation or faulty sensors in the
case of conflicting information.

ECNs and DEVNs represent the relations between vari-
ables in the form of conditional belief functions which
generally consume less space, and provide a more intu-
itive formalism to encode knowledge (albeit less generic)
than joint belief functions on the product space as in
well-known valuation networks [Shenoy1993]. Belief
updating in networks with belief functions can be effi-
ciently performed using local computations with message-
passing mechanisms, provided that the network is singly-
connected at execution time. This can be achieved by
imposing a tree-structure (e.g., [Shenoy and Shafer1986,
Shafer, Shenoy, and Mellouli1987]), or simplifying the
structure of certain networks using partial dependency
(e.g., [Xu and Smets1996]), or generation of a secondary
structure for the network, such as a binary join tree
(e.g., Figure 1b), using graph-theoretic techniques (e.g.,
[Shenoy1997, Yaghlane and Mellouli2008]). These meth-
ods assume knowledge of the network and/or involve sig-
nificant pre-processing before belief updating can occur. In
the context of our CND system, the reasoning networks of
concern are a federation/integration of distributed subnet-
works of knowledge dynamically emerging and submerg-
ing through activation/deactivation of different sets of sen-
sors, actuators and tasks as demanded by the changing situ-
ation. As such not only is the topology and the full knowl-
edge of the reasoning network not available prior to execu-
tion, but they may change at run-time.

In this paper, we propose a message-passing belief prop-
agation method that does not assume/require the reason-
ing network to be singly-connected at and during execu-
tion. More specifically, the method operates directly on
the original multiply-connected network (by means of lo-



cal conditioning), and within this framework approximate
computations using only partial information of the belief
functions to be combined and propagated (by means of con-
ditional belief functions represented in the form of partially
defined plausibility and basic plausibility assignment func-
tions). The method is thereby adaptive to changes in the
network topology while associated with a significant re-
duction in space and computational complexity. We will
present BF theory and networks using conditional belief
functions in the next section. In Section 3, we briefly dis-
cuss local conditioning in Bayesian networks and how the
technique can be extended to our networks of interest. In
Section 4, we present our new approximate belief updating
method that combines local conditioning with conditional
belief functions. Discussions and experimental results are
provided in Section 5 before concluding in Section 6.

2 BF THEORY AND NETWORKS OF
CONDITIONAL BELIEF FUNCTIONS

Given a frame of discernment Θ, a finite nonempty
set of all possible hypotheses, BF theory assigns be-
lief mass to the elements of its powerset 2Θ, effec-
tively representing incompleteness by means of disjunc-
tive sets. Formally, an (unnormalised) mass function
over Θ is defined as a mapping m : 2Θ → [0, 1] such that∑

A⊆2Θ m(A) = 1. Those subsets A where m(A) > 0
are called focal elements; with m(A) = 0 whenever |A|
> 1 representing a Bayesian belief function, and m(Θ)
= 1 representing total ignorance. A mass function can
be equivalently represented in the form of a belief func-
tion (bel), a plausibility function (pl) and a commonality
function (q) with different semantics1, given respectively
as bel(A) =

∑
B⊆A,B 6=∅m(B), pl(A) = bel(Θ)−bel(Ā)

and q(A) =
∑
A⊆B⊆Ω m(B), where Ā = Θ − A. If

there are multiple distinct pieces of evidence defined on Θ
such as m1 and m2, their combined impact is computed
through the conjunctive rule of combination (CRC) ∩©:
∀A ⊆ Ω,m1∩©2(A) =

∑
B,C⊆Ω,B∩C=Am1(B)m2(C),

or equivalently q1∩©2(A) = q1(A)q2(A) (2.1).

In his work formulating BF theory from a geometric per-
spective, [Cuzzolin2012] proposed the notion of basic
plausibility assignment (or b.pl.a) as the Moebius inverse
µpl : 2Ω → < of a plausibility function pl such that:

µpl(A) =
∑
B⊆A(−1)|A\B|pl(B) (2.2)

pl(A) =
∑
B⊆A µpl(B). (2.3)

We now show that distinct pl functions can be combined by
means of µpl, which plays a major role in this work.

Lemma 2.1 : Let pl1, ..., pln be distinct pieces of evidence
on Θ, their combined impact on Θ is computed by means
of their corresponding µpl1 , ..., µpln as: ∀A ⊆ Θ,

µpl1 ∩©... ∩©n(A) = (−1)(|A|+1)(n−1)
∏n
k=1 µplk(A). (2.4)

1m, bel, pl and q can all be referred to as belief functions.

Proof By iteratively substituting terms in the RHS of Eq.
(2.2) with pl(A) =

∑
B⊆A(−1)|B|+1q(B) [Shafer1976] for

each subset A with increasing size |A|, we can derive q(A)
= (−1)|A|+1µ(A) (2.5). Substituting q in Eq. (2.1) with µ
according to Eq. (2.5) results in Eq. (2.4).

When distinct mΘ and mΩ are expressed on different
frames, e.g., Θ and Ω, [Smets1994] devised a formalism
where the relation between Θ and Ω is represented by
means of conditional belief functions (cbfs) plΩ[θi](ω) for
each ω ⊆ Ω given θi ∈ Θ. To allow for belief propa-
gation in the presence of incomplete knowledge (e.g., the
prior knowledge of Θ can be incomplete or even vacuous),
[Smets1994] proposed the Disjunctive Rule of Combina-
tion (DRC), and conversely the Generalised Bayes’ Theo-
rem (GBT), to compute plΩ[θ](ω) and plΘ[ω](θ), respec-
tively, for any θ ⊆ Θ, ω ⊆ Ω, from those plΩ[θi](ω):

plΩ[θ](ω) = plΘ[ω](θ) = 1−
∏
θi∈θ(1− pl

Ω[θi](ω)).(2.6)

As Eq. (2.6) is derived from the principle of minimal com-
mitment (MCP) [Smets1994], the cbfs between any two
nodes constructed in this way are said hereafter to be MCP-
compatible. By Eq. (2.6), the impacts of mΘ and mΩ can
be propagated to each other frame through:

plΩ(ω) =
∑
θ⊆Θm

Θ(θ)plΩ[θ](ω),∀ω ⊆ Ω, (2.7)

plΘ(θ) =
∑
ω⊆Ωm

Ω(ω)plΩ[ω](θ),∀θ ⊆ Θ. (2.8)

The DRC and GBT allows a knowledge base to be
constructed as a directed acyclic graph where nodes
represent variables, and the directed edge between a
node Ω and its parent Θ represents their relationship,
initially described by the conditional belief functions
plΩ[θi](ω),∀θi ∈ Θ,∀ω ⊆ Ω . When a node receives ob-
servation in the form of a belief function, the impact will
be propagated throughout the network to reflect the current
state of knowledge. When the network or its secondary
structure is singly-connected, belief propagation can be
performed using a message-passing mechanism similar to
that of Bayesian networks (see [Pearl1988]) with (i) be-
liefs propagated between nodes using DRC and GBT, and
(ii) beliefs received at the same node combined using CRC
(see [Xu and Smets1996, Yaghlane and Mellouli2008] for
further discussion). When all the knowledge involved is
complete, belief propagation using the DRC and GBT co-
incide with that of Bayesian reasoning (see [Smets1994]).

3 BELIEF UPDATING

Message-passing algorithms that compute beliefs directly
on the original network have been devised for Bayesian
networks (BNs), most notably the loopy belief propaga-
tion (LBP) and (local) conditioning algorithms (LC). LBP
[Pearl1988] iteratively propagates beliefs as if the net-
work is a poly-tree until convergence. Though providing
a simple and often efficient mechanism for belief prop-



agation, the results from LBP are theoretically known
(e.g., in [Pearl1988]), and empirically verified (e.g., in
[Weiss1997]) to not represent the posterior marginal of
nodes which is of primary concern in belief updating. Thus
LBP is not considered in this work. (Global) conditioning
[Pearl1988] is based on the fact that instantiation of certain
nodes (or a cutset) in the network will break the loop(s)
containing them, rendering the network singly-connected.
Local conditioning (LC) [Dı́ez1996, Fay and Jaffray2000]
improves on the original global method by ensuring that
only nodes within a loop are conditioned on the variable
that breaks the loop, and allows the impact from multiple
observations to be simultaneously propagated. Applica-
tion of LC in BNs was described in detail in [Dı́ez1996,
Fay and Jaffray2000]. In essence, LC is able to integrate
belief propagation with the process of breaking loops and
forming a tree associated with the network. When a loop
is discovered, the method breaks the loop by splitting the
conditioning variable into the original and its phantom in-
stances and assigning the variable to every node within the
loop (as illustrated in Figure 1c, the loop 3-4-5-6-7-3 is
broken by 5, with 4 connected to ‘phantom 5’, and 3, 4,
6, 7 conditioned on 5). Once the cutset is found, belief
propagation with LC in BNs is then similar to the original
message-passing algorithm, except that each message now
carries the unconditional probabilities on the product space
of a node within the loop(s) and its conditioning variables,
and no normalisation is performed. It is not hard to prove
that LC can be directly extended and applied to networks
with conditional belief functions by using the ballooning
extension technique [Smets and Kennes1994] to transform
the conditional belief functions between a node and its par-
ent into the corresponding belief functions on their prod-
uct space, and beliefs can be propagated in a classical
way. However, this would diminish the original purpose of
these types of network, and significantly increase the com-
putational complexity and memory consumption (i.e., the
space complexity required to represent a belief function on
the product space with n variables of m states would be
O(2m

n

), rather than O(2mn) as in the case of conditional
belief functions).

Our question therefore is whether it is possible to apply lo-
cal conditioning directly with conditional belief functions.
Such an approach would encounter two major obstacles.
On the one hand, unlike a BN where conditional probabil-
ities are just the normalised version of the unconditional
ones, conditional belief functions correspond to only a cer-
tain portion of the underlying unconditional (joint) belief
functions. On the other hand, while knowledge of the lo-
cal cutset in a BN is always complete (a necessary con-
dition for loop elimination), such knowledge in networks
with cbfs can be incomplete (i.e., the belief function asso-
ciated with the cutset can be non-Bayesian) and the MCP-
compatibility required for DRC/GBT to propagate beliefs
in this case is generally not met. The former demands com-

(a) (b) (c)

Figure 1: An example network (a), in the form of a binary
join tree (adapted from [Yaghlane and Mellouli2008]) (b),
or configured for local conditioning (c).

bination of belief functions defined on arbitrary domains
which are partially known, while the latter necessitates the
devising of an extended version of DRC/GBT without the
MCP compatibility assumption.

These obstacles will be addressed in Section 4. Specif-
ically, we introduce the notion of (i) partially defined pl
function, plr, that provides a compact and simultaneous en-
coding of multi-directional cbfs between a group of nodes
of interest (e.g., a node and its parents/local cutset); and
(ii) its corresponding partially defined b.pl.a function, µplr ,
that serves as the computational construct facilitating effi-
cient computations. We next devise efficient methods that
allow direct combination and propagation of beliefs repre-
sented in the form of plr by means of µplr . The method ∩©r

allows exact combination when such plr are associated with
disjoint sets of conditioning variables (see Theorem 4.5).
When those plr are associated with overlapping sets of con-
ditioning variables, ∩©r enables exact computation of a par-
ticular portion, Cplr , of their combined impact (see Theo-
rem 4.6 Step 1). Based on Cplr , the entire combined impact
can be reconstructed when necessary; either by means of
interval approximation as in Theorem 4.6 Step 2, or point
estimation using a parameterised version of DRC/GBT. In
order to discuss the proposed belief propagation method,
we assume that the cutset has been determined and the net-
work has been configured accordingly (e.g., see Figure 1c).

4 BELIEF UPDATING WITH LC & CBFS
It is sufficient to define plr and µplr with respect to any
three variables X , Y and Z. The following notations are
adopted from [Yaghlane, Smets, and Mellouli2002b]:

• XY Z denotes the Cartesian product X×Y×Z;
• xi, yj , zk denote elements, and x, y, z subsets of X , Y , Z;
• (x, y, z) denotes {(xi, yj , zk) : xi ∈ x, yj ∈ y, zk ∈ z}
for some x, y and z;
• plΩ denotes the plausibility function on Ω, plΩ↓X the
marginal of plΩ on X , and plΩ[y, z]↓X the plausibility
function on X that results from conditioning plΩ on (y, z)
and then marginalised on X2;
• x↑XY is the cylindrical extension of x ⊆ X on XY :
x↑XY = (x, Y ), and ω↓X is the projection of ω ⊆ Ω on X:
ω↓X = {xi : xi ∈ X,x↑Ωi ∩ ω 6= ∅}.

2Note that conditioning and marginalisation are not commuta-
tive, e.g., plΩ[y, z]↓X 6= plΩ↓X [y, z].



4.1 PARTIALLY DEFINED plr AND µplr

Definition 1 Let rΩ be the set of subsets of Ω = XY Z
consisting of (x, y, z) for all x ⊆ X , y ⊆ Y , and z ⊆ Z. A
partially defined plΩr is a plausibility function on Ω whose
value is known for only those subsets of Ω in rΩ.
Such rΩ can be considered the set of hyper-rectangle sub-
sets of Ω. Each plΩr is associated with a set of plΩ on
Ω (denoted as PΩ

r ) such that plΩ(ω) = plΩr (ω), ∀ω ∈
rΩ; and plr defined on a single variable corresponds to its
marginal (e.g., plXr ≡ plX). By extending Lemma 1 and 2
in [Yaghlane, Smets, and Mellouli2002a] to a multivariate
context, Lemma 4.1 is obtained for all x⊆X , y⊆Y , z⊆Z:

Lemma 4.1 For any given plΩr defined on Ω, we have:

plΩr (x, y, z) = plΩr [z]↓XY (x, y) = plΩr [y, z]↓X(x),

plΩ↓XYr (x, y) = plΩr (x, y, Z), plΩ↓Xr (x) = plΩr (x, Y, Z).

As seen above, the collection of conditional belief func-
tions allowing evidence to be propagated between X , Y
and Z in a canonical manner corresponds to the partially
defined plΩr on Ω. Thus, plΩr can be considered a com-
pact encoding that simultaneously represents the condi-
tional relationship between any nodes of interest, not only
between child and parent nodes as presented in Section
2. In singly-connected networks, propagated beliefs are in
their marginal form (Eqs. (2.7) and (2.8)). In multiply-
connected networks under local conditioning, the beliefs
sent and received by a node are potentially conditioned on
some variables, represented here in the form of plr, ne-
cessitating methods to combine and propagate those plr.
Combination of (completely defined) pl functions is pos-
sible by means of other functions as shown in Section 2.
However, since Lemma 4.1 does not hold for any functions
other than pl (e.g., m[x](y)6=m(x, y) 6=m[y](x)), attempts
to derive a method to combine beliefs in their partial form
plr by means of such functions would result in a significant
computational and spatial overhead. In order to facilitate
efficient and simultaneous combination of plr functions, we
propose for any given plr its dual representation µplr .

Definition 2 For any given plΩr on Ω, the corresponding
partially defined b.pl.a function µplΩr is defined by:

µplΩr (x, y, z) =
∑
ω′↓X=x,ω′↓Y =y,ω′↓Z=z µplΩ(ω′) (4.1)

for all x ⊆ X, y ⊆ Y, z ⊆ Z, ω′ ⊆ Ω, where µplΩ is
associated with any plΩ in PΩ

r .
Subsets ω′ in Eq. (4.1) are said to be indistinguishable with
respect to x on X , y on Y and z on Z (i.e., their respec-
tive projections on X , Y and Z coincide with each other).
Intuitively, µplΩr (x, y, z) ‘clamps’ together µplΩ(ω′) of all
indistinguishable subsets ω′ associated with (x, y, z) on Ω,
considering only their total µ value rather than any specific
µ distribution among ω′.

Lemma 4.2 plΩr and µplΩr are one-to-one correspondent
and related with each other through: ∀(x, y, z) ∈ rΩ,
plΩr (x, y, z) =

∑
x′⊆x,y′⊆y,z′⊆z µplΩr (x′, y′, z′).

Proof Suppose there exists some ω′ ⊆ Ω such that
µplΩ(ω′) contributes to (i) more than one element in µplΩr ,
the elements must be the same (by Def. 2); (ii) none of the
elements in µplΩr , ω′ must be ∅ (by Def. 2). From this, µplΩr
can be inferred as a lossless coarsening of µplΩ , and thus
by Eq. (2.3), the above relation can be obtained.

Consequently, Lemma 4.1 can be equivalently written in
terms of µplΩr (see Lemma 4.3), and so the initially defined
relation between any node and its parent (see Lemma 4.4).
Lemma 4.3 For any given plΩr defined on Ω, we have:

µ↓X
plΩr

(x) =
∑
y⊆Y,z⊆Z µplΩr (x, y, z),

µ↓XY
plΩr

(x, y) =
∑
z⊆Z µplΩr (x, y, z),

µplΩr [z]↓XY (x, y) =
∑
z′⊆z µplΩr (x, y, z′),

µplΩr [y, z]↓X(x) =
∑
y′⊆y,z′⊆z µplΩr (x, y′, z′),

for all x ⊆ X , y ⊆ Y and z ⊆ Z.

Lemma 4.4 The initial relation between any Y and its par-
ent X in Eq. (2.6) can be equivalently written by means of
µplΘr on Θ=XY for all x⊆X , y⊆Y and αx,(−1)|x|+1 as

µplΘr (x, y) = αx
∏
xi∈x

plΘr (xi, y)−
∑
y′⊂y

µplΘr (x, y′). (4.2)

Proof Eq. (4.2) is obtained by first rewriting Eq. (2.6) as
plΘr (x, y) = 1−

∏
xi∈x(1−plΘr (xi, y)) (4.3) using Lemma

(4.1), then replacing all plr terms in Eq. (4.3) with their
corresponding µplr using Lemma 4.2.
With all quantitative aspects of a network represented in
the form of plr (by means of its corresponding µplr ), belief
propagation is now essentially concerned with combination
of such plr. For instance, plAG (Figure 2b) is the combined
impact of plAr , plAB

r , plBr and plBG
r (Figure 2a) on AG. We

will next show how plr can be efficiently and directly com-
bined by means of µplr . Since the algorithm is based on the
message-passing mechanism, belief combination methods
will be presented from the perspective of each node.

4.2 COMBINATION OF plr FUNCTIONS

At any node X0 in the network, belief combination using
LC can be generalised into two scenarios: the set of plr to
be combined are (1) mutually distinct (they do not share
any common conditioning variables) and (2) non-distinct
(they are otherwise). Across nodes, Case 1 is concerned
with belief combination associated with ‘tree’ portions of
loop(s) (e.g., combination of plAG

r and plFG
r at node G to

propagate belief from A to F ); while Case 2 with comput-
ing the entire impact of one or more loops on X0 (e.g.,
combination of plAG

r and plAG′
r at node G). As such let

X = {X0, ..., Xn} be any subset of nodes in the net-
work; U1 and U2 respectively be any set of subsets of X
(without loss of generality, assume X = U1 ∪ U2) and
V = U1 ∩U2. Let Θ1, Θ2 and Ω be the Cartesian prod-
uct of the elements in U1, U2, and X, respectively, we are
interested in the combined impact on Ω for any given plΘ1

r
and plΘ2

r where U1 and U2 can be arbitrarily overlapping.



4.2.1 Combination of Distinct plr Functions
Theorem 4.5 is concerned with belief combination at X0

in Case 1 where plΘ1
r and plΘ2

r to be combined are dis-
tinct (i.e., having non-overlapping conditioning variables,
or V = {X0}). The theorem proposes a new conjunc-
tive combination rule ∩©r such that the combined impact
plΩr =plΘ1

r ∩©r pl
Θ2
r on Ω is equivalent to the partially defined

plr associated with plΩ = plΘ1 ∩©plΘ2 (for any plΘ1 ∈PΘ1
r

and plΘ2 ∈PΘ2
r ) without having to perform the latter com-

putations, the knowledge of which is generally not avail-
able, and the computations significantly more expensive.

Theorem 4.5 Given plΘ1
r and plΘ2

r defined on Θ1 and Θ2,
respectively where V = {X0}, their combined impact
plΩr = plΘ1

r ∩©rpl
Θ2
r on Ω is uniquely determined by means

of their corresponding µplΩr , µ
pl

Θ1
r

and µ
pl

Θ2
r

:

µplΩr (ω) = (−1)|x0|+1µ
pl

Θ1
r

(ω↓Θ1)µ
pl

Θ2
r

(ω↓Θ2), (4.4)

for all ω ∈ rΩ and x0 = ω↓X0 .
Proof See the Appendix.

When there are more than two mutually distinct plr to be
combined at a node, Eq. (4.4) can be carried out in a
pairwise fashion. When they are across nodes, application
of ∩©r in Theorem 4.5 and marginalisation in Lemma 4.1
and 4.3 fulfill the three axioms by Shenoy [Shenoy1993]
that make local computations possible. For instance, let
plr1, plr2, plr3 and plr12 denote plAB

r , plBG
r , plFG

r and plABG
r

in Figure 2, respectively, the following axioms are satisfied
for all a ⊆ A, b ⊆ B, f ⊆ F , and g ⊆ G:
Commutativity and associativity of combination, e.g.,
((µplr1 ∩©rµplr2) ∩©rµplr3) (a, b, f, g)
= (−1)|g|+1

(
(−1)|b|+1µplr1(a, b)µplr2(b, g)

)
µplr3(f, g)

= (−1)|b|+1
(
(−1)|g|+1µplr2(b, g)µplr3(f, g)

)
µplr1(a, b)

= (µplr1 ∩©r (µplr2 ∩©rµplr3)) (a, b, f, g)

Consonance of marginalisation, e.g,
plABG↓AB↓Ar (a) =

∑
b⊆B(

∑
g⊆G µplr12(a,B,G))

=
∑
b⊆B,g⊆G µplr12(a,B,G) = plABG↓Ar (a)

Distributivity of marginalisation over combination, e.g.,
(plr1 ∩©rplr2)↓AB =

∑
g(−1)|b|+1µplr1(a, b)µplr2(b, g)

= (−1)|b|+1µplr1(a, b)
∑
gµplr2(b, g) = plr1 ∩©r(plr2)↓B .

When plΘ1
r and plΘ2

r are distinct, plΩr can be exactly
and uniquely determined due to the cylindrical extension
(ω↓Θ1)↑Ω (resp. (ω↓Θ2)↑Ω) applied to ω↓Θ1 (resp. ω↓Θ2 ) for
each ω ∈ rΩ, rendering the product in Eq. (4.4) insensitive
to any specific distribution of µ among those indistinguish-
able ω′ (see Def. (2)) associated with each ω ∈ rΩ.

4.2.2 Combination of Non-distinct plr Functions
When plΘ1

r and plΘ2
r are non-distinct (i.e., having common

conditioning variables: |V|>1 in Case 2), the equality in
Eq. (4.4) no longer holds, thus their combination result on
Ω is no longer unique. The basic mathematical reasoning
for Theorem 4.6 that determines a set of possible plΩr result-
ing from combination of plΘ1

r and plΘ2
r is as follows. Let

(a) (b)
Figure 2: (a) A sample network where the relations be-
tween nodes are represented with plr, and (b) with its loops
broken by the cutset {A,E}, and example messages re-
ceived by D and G during belief updating.

• Φi = Ω\Xi, Φij = Ω\{Xi,Xj} denote the product of ele-
ments in X\Xi and X\{Xi,Xj}, respectively;
• ω∈ rΩ be equivalently represented as ω= (xi, φi) where
xi=ω↓Xi, φi=ω↓Φi for anyXi∈X3, and as ω=(xi, xj , φij)
for any Xj(6=Xi) ∈ X, xj = ω↓Xj and φij = ω↓Φij ;
• N(ω) denote the number of Xi ∈ V associated with ω
s.t. xi = ω↓Xi is a non-singleton subset (i.e., |xi| > 1)4;
• αxi denote (−1)|xi|+1 for some xi⊆Xi; and
• ω be arranged in partial order by increasing size N(ω).
We are now interested in computing plΩr (ω) for all ω∈ rΩ.

(I) We first consider all those ω with N(ω) ≤ 1, i.e., there
exists Xi∈V s.t. ω = (xi, φi) and N(φi) = 0. Since
plΩr (xi, φi) = plΩr [φi]

↓Xi(xi) for all xi⊆Xi (Lemma 4.1)
and N(φi) = N(φ↓Θ1

i ) = N(φ↓Θ2

i ) = 0 in this case, only
singleton subsets of the conditioning variables associated
with both plΘ1

r and plΘ2
r hold, thereby eliminating the asso-

ciated loop(s) and rendering the belief functions induced
by plΘ1

r and plΘ2
r on Xi, plΘ1

r [φ↓Θ1

i ]↓Xi and plΘ2
r [φ↓Θ2

i ]↓Xi ,
distinct. Thus by Theorem 4.5 we have for all xi ⊆ Xi:

µplΩr (xi, φi) = αxi
µplΘ1

r
(xi, φ

↓Θ1

i )µplΘ2
r

(xi, φ
↓Θ2

i ),
plΩr (xi, φi) =

∑
xi′⊆xi,φi′⊆φi,φi′∈rΦi

µplΩr (xi′ , φi′). (4.5)

All plΩr (ω) computed by Eq. (4.5) are referred to collec-
tively as the Core of plΩr (CplΩr ) from which the bounds
associated with plΩr (ω) where N(ω)≥2 are derived below.

(II) We next consider all ω whereN(ω)=2, i.e., there exist
Xi and Xj in V s.t. ω = (xi, xj , φij), |xi| > 1, |xj | > 1.
With respect to Xi alone, we have by Lemma 4.2:
plΩr (ω)=plΩr (xi, φi)
plΩr (ω) =

∑
xik

plΩr (xik , φi)+
∑
xi∗,φi′

µplΩr (xi∗, φi′), (4.6)

for all xik∈xi, xi∗(6=xik)⊆xi, φi′(∈ rΦi
) ⊆ φi.

Regarding the first sum of Eq. (4.6), since (xik , φi) =
(xik , xj ,φij) and N(xik ,φij) = 0, plΩr (xik ,φi) ∀xik ∈ xi
can be exactly computed using Eq. (4.5). Regarding the
second sum, µxi∗,φi′,

∑
xi∗,φi′

µplΩr (xi∗, φi′), µxi∗,φi′

can be considered the total overlapping (belief) mass and
thus constrained by those plΩr (xik , φi) ∀xik ∈xi. Due to

3For instance, ω = (x0, ..., xn) can be represented as ω =
(x1, φ1) where φ1 = (x0, x2, ..., xn) with respect to X1.

4For instance, given ω = (x0, ..., xn) and V = {X0, X1},
N(ω) = 0 when |x0| = |x1| = 1, N(ω) = 1 when |x0| > 1 or
|x1| > 1, and N(ω) = 2 when |x0| > 1 and |x1| > 1.



αxi∗

∑
φi′
µplΩr (xi∗, φi′) ≤ minxik∗∈xi∗ pl

Ω
r (xxik∗,φi)

5

substitution of which into µxi∗,φi′ of Eq. (4.6) yields:
plΩr (ω) = plΩr (xi, φi) = maxxik

plΩr (xik , φi) (4.7)

plΩr (ω) = plΩr (xi, φi) = min(1,
∑
xik
plΩr (xik , φi)) (4.8)

corresponding to Fréchet bounds in probability theory.
Since xj is also non-singleton, µxi∗,φi′ is expected to be
further constrained, e.g., through plΩr (xjl , φj), ∀xjl ∈ xj .

Let plΘr denote plΩr [φij ]
↓Θ, Θ=XiXj , we can decompose

plΩr (ω) with respect to Xj in reference to Xi as
plΩr (ω) = plΩr (xi, xj , φij) = plΩr [φij ]

↓Θ(xi, xj)

=
∑
xjl

plΩr (xi, xjl , φij) +
∑

xi′ ,xj∗,φij′

µplΩr (xi′ , xj∗, φij′)

=
∑
xjl

plΩr [φij ]
↓Θ(xi,xjl) +

∑
xi′ ,xj∗

µplΩr [φij ]
↓Θ(xi′ ,xj∗)

=
∑
xjl

plΘr (xi, xjl) +
∑

xi′ ,xj∗

µplΘr (xi′ , xj∗), (4.9)

for all xi′⊆xi, xjl∈xj , xj∗(6=xjl)⊆xj , φij′(∈ rΦij
)⊆φij ;

and subsequently plΘr (xi, xjl) with respect to Xi as
plΘr (xi,xjl)=

∑
xik
plΘr (xik ,xjl)+

∑
xi∗
µplΘr (xi∗,xjl) (4.10)

for all xik∈xi and xi∗(6=xik) ⊆ xi.
From Eqs. (4.6) and (4.10), we have
µxi∗,φi′≤min

xjl

∑
xi∗

µplΘr (xi∗, xjl)
6

≤minxjl
(plΘr (xi, xjl)−

∑
xik

plΘr (xik , xjl)),
thus the bound in Eq. (4.8) can be further tightened:
plΩr (ω)= min(1,

∑
xik

plΩr (xik , φi) +

minxjl
∈xj

(plΘr (xi,xjl)−
∑
xik
plΘr (xik ,xjl))) (4.11).

(III) Finally, we consider all ω where N(ω)>2. Each ω
in this case is associated with multiple such Xi in Eq.
(4.6), each in turn associated with multiple such Xj in
Eq. (4.9), this necessitates extending Eqs (4.7) and (4.11)
to all Xi ∈X, and all Xj(6=Xi) ∈X, respectively. Since
N(xik , φi) = N(xi, φi) − 1, Eqs (4.7) and (4.11) can be
efficiently applied in a dynamic programming manner to
all ω with increasing size N(ω) as shown in Theorem 4.6.
Theorem 4.6 Given any two non-distinct plΘ1

r and plΘ2
r

defined on Θ1 and Θ2, respectively (i.e., |V| > 1), their
combined impact on Ω, plΩr , can be approximated as:

Step 1: Computation of CplΩr :
µplΩr (xi, φi)=αxiµplΘ1

r
(xi, φ

↓Θ1

i )µplΘ2
r

(xi, φ
↓Θ2

i )

plΩr (xi, φi) =
∑
xi′⊆xi,φi′ (∈rΦi

)⊆φi
µplΩr (xi′ , φi′) (4.12)

for all ω = (xi, φi) ∈ rΩ where |xi| ≥ 1 and N(φi) = 0.

Step 2: Reconstruction of plΩr :

plΩr (ω) = max
Xi

(maxxik
∈xi

plΩr (xik , φi)) (4.13)

plΩr (ω) = min
Xi

(1,
∑

xik
∈xi

plΩr (xik , φi)+min
Xj

µxi∗,φi′ ) (4.14)

µxi∗,φi′, min
xjl
∈xj

(plΩr (xi, xjl , φij)−
∑
xik

plΩr (xik , xjl , φij))

5As (−1)|A|+1µ(A) ≥ (−1)|B|+1µ(B⊇A) for any subset A
and B, and µpl(A) ≡ pl(A) when |A| = 1.

6µxi∗,φi′=
∑

xi∗,xj′
µplΩr [φij ]

↓Θ(xi∗,xj′)=
∑

xi∗xj′ ,
µplΘr (xi∗, xj′).

for all ω s.t. N(ω) > 1, all Xi, Xj∈X s.t. |xi|>1, |xj |>1.

Since plΩ↓Xi
r (xi) = plΩr (xi,Φi), Theorem 4.6 allows si-

multaneous approximation of the posterior marginal of any
nodeXi in the form of a set of possible belief functions de-
fined by the bounds imposed on plΩ↓Xi

r (xi), ∀xi ⊆ Xi. It
is highly desirable however in many cases to approximate a
single combination result (which would be more informa-
tive, and more efficient with respect to belief propagation).
As such, we will now take one step further and devise a
method that estimates a specific point value plΩr (ω) within
the interval approximation [plΩr (ω), plΩr (ω)] in Theorem 4.6
in such a way that plΩr (ω) reflects the current state of knowl-
edge with a high degree of accuracy.

4.2.3 Approximation with parameterised DRC/GBT

Recall from Lemma 4.1 that plΩr (xi, φi) = plΩr [φi]
↓Xi(xi),

∀xi⊆Xi. By Eq. (4.12), a ‘complete’ marginal of plΩr on
some Xi (i.e., plΩ[φi]

↓Xi≡plΩr [φi]
↓Xi ) can be exactly com-

puted when φi holds, rendering CplΩr a collective set of such
marginals on all Xi ∈X . As a result, Theorem 4.6 Step 2
can be reformulated as the problem of reconstructing plΩr
from those marginals. To this end, with respect to Xi and
Xj in Eq. (4.9), let us rewrite the equation in the form of
conditional belief functions on Xi in reference to Xj :
For all xik∈xi, xi∗(6=xik)⊆xi: plXi

r [xj ],plΩr [xj , φij ]
↓Xi,

plΩr (ω) = plXi
r [xj ](xi)

=
∑
xik

plXi
r [xj ](xik)+

∑
xi∗

µ
pl

Xi
r

[xj ](xi∗), (4.15)

where plXi
r [xj ](xik), ∀xik∈xi have been computed in the

previous iteration. Applying DRC/GBT as in Eq. (2.6)
which directly computes plXi

r [xj ](xi) from plXi
r [xj ](xik)

is not eligible since (i) those plXi
r [xj ](xik) are not the only

knowledge about plΩr (ω), and (ii) they are not initially de-
fined but correspond to plΩr on Ω and thus generally not
MCP-compatible. This requires us to extend the Gener-
alised Likelihood Principle (GLP) [Smets1994] to a multi-
variate context without the MCP-compatibility assumption.

Extended GLP For any plΩr (ω) in Eq. (4.15), we have:
(1) plΩr (ω) =plΩr [xj , φij ]

↓Xi(xi)=plΩr [xi, φij ]
↓Xj (xj)

(1)plΩr (ω)=plXi
r [xj ](xi)=plXj

r [xi](xj) for all Xi,Xj∈X
(2) plXi

r [xj ](xi) is related to plXi
r [xj ](xik), ∀xik ∈ xi for

any xi and xj through a parameterised function F s[xj ]xi

where s[xj ]xi
is informed by knowledge of plXk

r [xi](xkt),

plΩr [xi, φik]↓Xk(xkt), ∀xkt ∈ xk, for all Xk(6= Xi) ∈ X7.

The extended GLP allows plΩr (ω) to be computed in the
form of plXi

r [xj ](xi) for any Xi and Xj through an esti-
mation of the parameter s[xj ]xi

. In this regard, estimation
of s[xj ]xi

for each xj⊆Xj is motivated by the dual aspect
of plΘ=XiXj

r , the conditional form of which is given in
Eq. (4.15). With respect to Ω, plΘr is a marginalisation of

7Note that all those plXi
r [xj ](xik ) and plXk

r [xi](xkt) were al-
ready computed in the previous iteration.



plΩr on Θ (through conditioning on φij : plΘr = plΩr [φij ]
↓Θ).

With respect to Θ, it can be considered a specialisation
[Klawonn and Smets1992] of plΘ0

r initially defined on Θ
which is MCP-compatible8, thus satisfying DRC/GBT:

plXi0
r [xj′ ](xi) = 1−

∏
xik
∈xi

(1− plXi0
r [xj′ ](xik)) (4.16)

for all xj′⊆xj . Such plXi0
r [xj′ ](xi) corresponds to a point

within the interval [plXi0
r [xj′ ](xi), plXi0

r [xj′ ](xi)] in The-
orem 4.6 Step 2. As plΘ0

r is specialised into plΘr , the
equality in Eq. (4.16) may no longer hold, moving the
corresponding plXi

r [xj′ ](xi) for each xj′⊆xj toward either
of its respective bounds. To this end, let r[xj ]xi

∈ [−1, 1]9

be associated with plXi
r [xj ](xi) to linearly measure the

relative mass overlapping between plXi
r [xj ](xik), ∀xik∈xi

such that r[xj ]xi = 0, 1,−1 when plXi
r [xj ](xi) coincides

with its MCP-compatible value (determined by Eq. (4.16)),
and its lower bound and upper bound (determined by Eqs.
(4.13) and (4.14)), respectively. Then for each xj ⊆ Xj ,
a parameterised version of DRC/GBT can be defined
as the Frank t-conorm [Klement, Mesiar, and Pap2013],
F s[xj ]xi , for any other arbitrary value of r[xj ]xi :

plXi
r [xj ](xi) = F s

xik
(plXi

r [xj ](xik))

=1− logs

1 +

∏
xik

(
s1−plXi

r [xj ](xik
) − 1

)
(s− 1)n−1

 (4.17)

where s,s[xj ]xi
is a positive parameter defined in terms of

r[xj ]xi
as s[xj ]xi

= π(1−r[xj ]xi
)/4 [Ferson et al.2004].

This alternative formulation, in place of Eq. (4.15), presents
an interesting property when MCP-compatibility holds:

r0
[xj ]xi

= r0
[xjl ]xi

= 0 for all xjl ∈ xj , (4.18)
where r0

[xjl ]xi
are associated with plX0

r [xjl ](xi), ∀xjl ∈ xj .
As plΘ0

r is specialised into plΘr , and accordingly r0
[xjl ]xi

to
r[xjl ]xi

, ∀xjl ∈xj , we are interested in computing r[xj ]xi

from those r[xjl ]xi
whose knowledge is available from the

previous iteration. We conjecture among all the arbitrary
plΘ+

r that satisfies the constraints imposed by such r[xjl ]xi
,

the one that exhibits the least divergence from the initial
relation in Eq. (4.18) would likely correspond to plΘr , e.g.,
r[xj ]xi

= arg min
r+

[xj ]xi

∑
xjl
plXi

r [xjl ](xi)(r
+

[xj ]xi
− r[xjl ]xi

)2,

allowing r[xj ]xi
to be approximated as a weighted average:

r[xj ]xi=
∑
xjl

w[xjl ]xir[xjl ]xi , w[xjl ]xi=
plXi

r [xjl
](xi)∑

xjl
plXi

r [xjl
](xi)

. (4.19)

Utilising parameterised t-norms and t-conorms for com-
8By construction, this is the case whenXi andXj are directly

connected; otherwise, they are assumed to have an implicit edge
with vacuous cbfs which are naturally MCP-compatible.

9Let pl0, pl and pl denote the MCP-compatible value, lower
and upper bounds associated with the pl to be computed, respec-
tively, the relative mass overlapping r can be defined as follows:

r =

 (pl − pl0)/(pl0 − pl), pl ≥ pl ≥ pl0
(pl − pl0/(pl − pl0), pl0 > pl ≥ pl
undefined, otherwise.

bining belief functions induced by possibly overlapping
bodies of evidence has been studied thoroughly in
[Denœux2008] where the relative dependence between the
belief functions is (i) defined by a single parameter s (i.e.,
s = s[xj ]xi

= s[xj′ ]xi
,∀xj′ ⊂ xj in this case) which can be

learned from data, and (ii) concerned with positive depen-
dence (i.e., s ∈ [0, 1]). In contrast, our method deals with
situations where the parameters s[xjl ]xi

are (i) generally of
different values computed during execution time, and (ii)
concerned with the entire range of positive and negative
dependence (i.e., s[xj′ ]xi

∈ [0,+∞),∀xj′ ⊆ xj).

By replacing Eqs. (4.13) and (4.14) with (4.17) and (4.19),
the interval approximation for each plΩr (ω) in Theorem
4.6 Step 2 can be reduced to a point estimation10 (below),
where the pairXi andXj in Eq. (4.20) correspond to those
in X such that plΩr [φij ]

↓Θ exhibits the least divergence from
its initial MCP-compatible value plΘ0

r on Θ = XiXj .

Step 2: Reconstruction of plΩr :

pl
Xi
r [xj ](xi) , plΩr [xj , φij ]

↓Xi(xi)

plΩr (ω) = pl
Xi
r [xj ](xi) = F

s[xj ]xi

xik∈xi
(plXi

r [xj ](xik)), (4.20)

where s[xj ]xi
=π(1−r[xj ]xi)/4, r[xj ]xi = min

Xp

min
Xq

|r[xq ]xp |

∀Xp, Xq∈X s.t. xp=ω↓Xp , xq=ω↓Xq and |xp|>1, |xq|>1.

Since both the interval approximation in Theorem 4.6 Step
2, and point estimation in Eq. (4.20), of any plΩr (ω), ω ∈ rΩ
is reconstructed based on Cplr , it is sufficient that beliefs
be propagated in the form of Cplr

11, hence Fact 4.7.

Fact 4.7 Given a node X0 associated with (n − 1) condi-
tioning variables, all with m states, the messages propa-
gated to X0 in the form of Cplr have space complexity of
O(2mm− Z) where Z =

∑n
k=2

(
n
k

)
mn−k(2m−m)k.

5 DISCUSSION AND RESULTS
By means of local conditioning (LC), the proposed
method enables belief propagation directly on the origi-
nal multiply-connected network. The advantages of main-
taining and propagating beliefs in the original structure
of the network are multi-fold, e.g., eliminating the as-
sumption/requirement that the reasoning network is singly-
connected at and during runtime, mitigating disruptions
during execution associated with generation of a secondary
structure due to changes in the network topology, facilitat-
ing local computations in a distributed manner and allow-
ing run-time pruning of the network, and enhancing trans-
parency of reasoning and supporting explanation.

By combining local conditioning and conditional belief
functions, the proposed method allows combination and
propagation of beliefs with a significant reduction in space

10Note that this estimation is not guaranteed to produce a valid
belief function, thus a normalisation step may be required.

11For instance, in Figure 2b, the beliefs propagated to G would
be CplAG

r
and C

plAG′
r

rather than plAG
r and plAG′

r .
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Figure 3: (1) A sample hierarchical network with 10 clusters of loops, and the correlated posterior marginals (normalised
beliefs) for Test Case (1a), (1b), (1c) and (1d). (2) A sample densely connected network and the correlated posterior
marginals for (2a) a worst case scenario i.e., no observations, and (2b) where three random nodes in the network receive
(soft) observations. (3) Average approximation error for Test Case 1a, 1c and 1d as a function of observations received.

and time. As shown in Fact 4.7, the worst case space
complexity associated with the messages propagated in the
form of Cplr is only a fraction of the associated conditional
space (O(2mn)), and a very small fraction of the product
space (O(2m

n

)) if exact belief updating is to be performed.

One of the rationales for representing beliefs in the form
of partially defined pl and b.pl.a functions is to reduce the
space complexity of the messages propagated, and thus the
computational complexity involved. Reducing the size of
belief functions for the purpose of efficient combination
has received substantial attention in the literature, result-
ing in a rich class of belief transformation methods (see
[Bauer1997], [Wilson2000], [Cuzzolin2012]). To this end,
one could potentially argue that instead of representing the
beliefs in the form of pl and b.pl.a functions as proposed,
they could be defined on the product space with a smaller
number of focal sets by means of belief transformation.
However the unsuitability of such alternative approaches
can be readily identified at a high level. Specifically, they
would suffer from: (i) a significant computational over-
head involved with belief transformation during propaga-
tion, (ii) information loss due to beliefs being forced to be
more ‘committed’ during propagation, and (iii) inconsis-
tent results due to violation of the axioms that make lo-
cal computations possible since most belief transforms do
not commute with combination. In contrast, our proposed
technique does not experience the above problems, specifi-
cally (i) no computational overhead since it enables simul-
taneous combination operating directly on the cbfs initially
defined between nodes without requiring any belief trans-
formation, (ii) mitigated information loss: instead of trans-
forming the correct belief function to be propagated into an
approximate one with a smaller number of focal elements,
it propagates the Core, Cplr , of the ‘correct’12 beliefs on

12Provided that the beliefs propagated to nodes outside the re-
spective loops are correct.

the product space, facilitating reconstruction of the orig-
inal belief functions on demand, and (iii) consistency of
results is also significantly improved as belief combination
and propagation between nodes with the same condition-
ing variables satisfies the axioms facilitating local compu-
tations. In another vein, stochastic sampling [Wilson2000,
Laâmari, Hariz, and Yaghlane2014] could also be applied
to combine beliefs received at a node. However, the meth-
ods aim to reduce the computational complexity associated
with belief combination, but not to reduce the space com-
plexity involved with each message sent and received.

As mentioned in Section 3, unlike LBP which is known for
not producing the correct numerical value for the posterior
marginals of nodes, our proposed method is aimed at ap-
proximating the correct posterior marginals for the purpose
of belief updating. Thus it is important to verify the degree
of accuracy of the results produced by the approach. To
this end, experiments have been performed to verify the
practical accuracy of our approximate algorithm. Due to
space limitations, we will primarily present representative
cases. In Test Cases 1, we conducted experiments on
networks which are instantiations of Figure 3.1. We
first started with networks with minimal information and
complexity (Test Case 1a), e.g., each branch of the network
contains only the simplest form of loop (i.e., dashed-line
nodes are excluded), each node is associated with a binary
domain, prior beliefs are vacuous, and none of the nodes
receive any observations during belief updating. We
then introduced more information and complexity to the
networks, specifically, a (soft) observation was introduced
at every loop in Test Case (1b), the complexity of loops
in each branch was increased (i.e., dashed-line nodes
included) in Test Case (1c), and the domain size of each
node was increased (to tertiary domain) in Test Case (1d).
Figures 3.1a, 1b, 1c and 1d present the posterior marginals
approximated for every node in Test Case 1a, 1b, 1c
and 1d, respectively, correlated with the correct results



(a)
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Figure 4: Correlated posterior marginals in the form of be-
lief (b) and plausibility (c) functions obtained for a real-
world (CND) application (a).

generated using the exact method based on LC and joint
belief function briefly proposed in Section 3. To illustrate
each approximate result with respect to its lower and
upper bounds, we also approximated the lower and upper
posterior marginals for each node, according to Theo-
rem 4.6, depicted as a vertical bar associated with each
marginal. As the figures illustrate, the algorithm produced
approximate results with a high degree of accuracy. Even
in the worst case scenarios where all the prior beliefs
and observations are totally vacuous (Test Case 1a), the
approximate marginals are close to exact; and with some
increase in the ‘informativeness’ and complexity of the
network, the bounds obtained for Test Case 1b, 1c and 1d
were tightened and the approximate marginals are almost
exact. Simulating the networks with different sets of
randomly generated parameters produces similar results.
Figure 3.3 shows the average error (vertical axis) of the
approximate marginals — compared to exact, using L2

norm [Cuzzolin2012] — obtained from 100 randomly
generated instances each of Test Case 1a, 1c and 1d, each
with 0 to 10 observations (horizontal axis). The results
show that on average, the approximation error across all
the tests is low even in the absence of any observations,
and diminishes with additional observations.

To reveal the behaviour of the algorithm when dealing with
more extreme loops and arbitrary networks, we extended
our experiments with the densely-connected network in
Figure 3.2 and a real-world network drawn from our CND
application (Figure 4a). For both cases, the algorithm pro-
duced accurate results. Indeed, in cases where the network
contains complex loops such as these, Cplr tends to become
a substantial belief dominant region of plr. Not only does
this help increase the accuracy of the results, but also the
approximation process quickly converges, significantly re-
ducing the space and computational complexity involved.

6 CONCLUSIONS
This paper proposed an approximate message-passing be-
lief propagation method for multiply-connected networks.
By means of local conditioning, the algorithm does not re-
quire the network to be singly-connected prior to execu-
tion. By having knowledge of the network encoded and
belief combination formulated by means of the proposed
partially defined pl and b.pl.a functions, local conditioning
can be combined with (subsets of) conditional belief func-
tions, approximating belief updating in an efficient man-
ner. The empirical results demonstrated that the method
is able to produce results with a high degree of accuracy
while achieving a significant reduction in space and com-
putational complexity (in comparison to its exact counter-
part), promoting the practicality of networks with (condi-
tional) belief functions. Indeed, the algorithm is currently
being incorporated into Influx, the inference engine of our
CND system, in order to address the aforementioned chal-
lenges that motivated this research effort.
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A APPENDIX
Proof (Theorem 4.5) Let Φ1 = Θ1\X0, Φ2 = Θ1\X0

13,
and αx0

, (−1)|x0|+1. Since the variables associated with
Φ1 and Φ2 in this case are disjoint, the pieces of evidence
induced on X0 when φ1 ∈ rΦ1

and φ2 ∈ rΦ2
hold are

distinct. Thus the plausibility that φ1 and φ2 jointly induce
on X0 can be obtained by Lemma 2.1, that is:
µplΩr [φ1, φ2]↓X0(x0) = αx0

µ
pl

Θ1
r

[φ1]↓X0(x0)

testtttttttttttttttttttttttttttttµ
pl

Θ2
r

[φ2]↓X0(x0),∀x0 ⊆X , (A.1)
which can be equivalently written by Lemma 4.3 as:∑
φ1′ ,φ2′

µplΩr (x0, φ1′ , φ2′) = αx0

∑
φ1′

µ
pl

Θ1
r

(x0, φ1′)∑
φ2′

µ
pl

Θ2
r

(x0, φ2′),∀φi′ ⊆ φi, φi′ ∈ rΦi
, i = 1, 2. (A.2)

Let us investigate the impact that φ1 and φ2 (with increas-
ing cardinalities) jointly induce on X0. By Eq. (A.2), we
have for all ω∗=(x0, φ1∗ , φ2∗) s.t. |φ1∗ |=1 and |φ2∗ |=1:
µplΩr (x0, φ1∗ , φ2∗)=αx0

µ
pl

Θ1
r

(x0, φ1∗)µplΘ2
r

(x0, φ2∗). (A.3)

For all ω′=(x0, φ1′ , φ2∗) s.t. |φ1′ |=2 and |φ2∗ |=1:
µplΩr (x0, φ1′ , φ2∗) =

∑
φ1′′⊆φ1′

µplΩr (x0, φ1′′ , φ2∗)

= αx0

∑
φ1′′⊆φ1′

µ
pl

Θ1
r

(x0, φ1′′)µplΘ2
r

(x0, φ2∗). (A.4)

Substitute terms in the LHS of Eq. (A.4) with terms in the
RHS of Eq. (A.3) and simplify the result:
µplΩr (x0, φ1′ , φ2∗) = αx0µplΘ1

r
(x0, φ1′)µplΘ2

r
(x0, φ2∗). (A.5)

For each x0⊆X0, iteratively applying the above steps to all
φ1 ∈ rΦ1

, φ2 ∈ rΦ2
with increasing cardinalities, we have:

µplΩr (x0, φ1, φ2) = αx0
µ
pl

Θ1
r

(x0, φ1)µ
pl

Θ2
r

(x0, φ2).

Thus for all ω ∈ rΩ and x0 = ω↓X0 :
µplΩr (ω) = (−1)|x0|+1µ

pl
Θ1
r

(ω↓Θ1)µ
pl

Θ2
r

(ω↓Θ2).

13Φ1, Φ2 denotes the product of the variables associated with
Θ1, Θ2, respectively, excluding X0.
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