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Abstract

Variational inference approximates the poste-
rior distribution of a probabilistic model with
a parameterized density by maximizing a lower
bound for the model evidence. Modern solu-
tions fit a flexible approximation with stochastic
gradient descent, using Monte Carlo approxima-
tion for the gradients. This enables variational
inference for arbitrary differentiable probabilis-
tic models, and consequently makes variational
inference feasible for probabilistic programming
languages. In this work we develop more effi-
cient inference algorithms for the task by consid-
ering importance sampling estimates for the gra-
dients. We show how the gradient with respect to
the approximation parameters can often be eval-
uated efficiently without needing to re-compute
gradients of the model itself, and then proceed
to derive practical algorithms that use impor-
tance sampled estimates to speed up computa-
tion. We present importance sampled stochas-
tic gradient descent that outperforms standard
stochastic gradient descent by a clear margin for
a range of models, and provide a justifiable vari-
ant of stochastic average gradients for variational
inference.

1 INTRODUCTION

Variational inference considers parametric approximations
for posterior densities of probabilistic models. Following
Jordan et al. (1999) the classical variational approximation
algorithms are based on coordinate descent algorithms for
which individual steps of the algorithm are often carried out
analytically. This limits the use of variational approxima-
tion to models with conjugate priors (or simple extensions
of those) and restricts the family of potential approximating
distributions based on analytic tractability.

Recent advances in variational approximation have lead to
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a phase transition; instead of closed-form updates, the ap-
proximation is nowadays often fit using generic gradient
descent techniques instead — for a good overview see, e.g.,
Gal (2016). The key behind these advances is in using
Monte Carlo approximation to estimate the gradient of the
objective function that is an integral over the approximating
distribution. This can be done in two alternative ways. The
reparameterization estimate (Titsias and Lazaro-Gredilla,
2014; Kingma and Welling, 2014; Salimans and Knowles,
2013) allows expressing the gradient of the objective func-
tion using the gradients of the model itself, whereas the
score function estimate (Ranganath et al., 2014) is based
on gradients of the approximation. Given the new fam-
ily of algorithms we can apply variational approximation
for a considerably wider range of probabilistic models, en-
abling for example use of variational inference as the infer-
ence backend in probabilistic programming languages (Ku-
cukelbir et al., 2017; Salvatier J, 2016; Tran et al., 2016).

The main research efforts in variational inference are nowa-
days geared towards making the approach applicable to a
still wider family of models, by constructing even more
flexible approximations (Rezende and Mohamed, 2015;
Ranganath et al., 2016; Kingma et al., 2016) or by gener-
alizing the gradient estimators (Ruiz et al., 2016; Naesseth
et al., 2017). The question of how exactly the resulting
optimization problem is solved has largely remained unat-
tended to — practically all authors are satisfied with stan-
dard stochastic gradient descent (SGD) as the underlying
optimizer, although some effort has been put into improv-
ing convergence by reducing the variance of the gradient
estimate near the optimum (Roeder et al., 2017).

We turn our attention to the optimizer itself, looking into
ways of speeding up the computation of gradient-based
variational approximation. Practically all of the computa-
tional effort during learning goes into evaluating the gradi-
ent of the model (or the approximation if using the score-
function estimate). Our contribution is in reducing the
number of times we need to evaluate the gradient of the
model during the optimization process, based on an im-
portance sampling scheme specifically designed for opti-



mization problems where the gradients are computed using
Monte Carlo approximation.

The key observation is that the gradient of the objective
function with respect to the parameters of the approxima-
tion consists of two parts. One part is the gradient of the
model itself, evaluated at parameter values drawn from the
approximation, whereas the other part is the gradient of
the transformation used in the reparameterization estimate.
We show that the gradient required for optimization can be
computed for the newly updated approximation without re-
computing the first part, which is computationally heavier.
Instead, we can re-use existing computation by appropri-
ately modifying and re-weighting the available terms.

We show how to formulate this idea in a justified manner,
by constructing an importance sampling estimate for the
gradient. Importance sampling is typically used for cases
where one cannot sample from the distribution of interest
but instead has to resort to sampling from a related proposal
distribution. In our case we could sample from the distribu-
tion of interest — the current approximation — but choose not
to, since by using an earlier approximation as a proposal
we can avoid costly computation. The idea is conceptu-
ally similar to the way Gelman et al. (2017) reuses samples
from previous iterations in expectation propagation.

Since the advances in our case are related to the compu-
tation of the gradient itself, the idea can readily be com-
bined with several optimization algorithms. In this work,
we derive practical algorithms extending standard SGD and
stochastic average gradients (Schmidt et al., 2017). We
demonstrate them in learning a variational approximation
for several probabilistic models, showing how they im-
prove the convergence speed in a model-independent man-
ner.

In the following we first give a brief overview of the
state-of-the-art in gradient-based variational approxima-
tion, covering both the gradient estimates and stochastic
optimization algorithms in Section 2. We then proceed to
describe the importance sampling estimate for the gradient
in Section 3, followed by practical optimization algorithms
outlined in Section 4. Empirical experiments and illustra-
tions are provided in Section 5.

2 BACKGROUND

2.1 VARIATIONAL APPROXIMATION

Variational inference refers to approximating the posterior
distribution p(z|x) of a probabilistic model p(z, z) using
a distribution gy (z) parameterized by A. Usually this is
achieved by maximizing a lower bound £(\) for the evi-
dence (also called the marginal likelihood) p(x):
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Traditionally, the problem has been made tractable
by assuming a factorized mean-field approximation
ax(2) = [, ar, (zi) and models with conjugate priors, re-
sulting in closed-form coordinate ascent algorithms spe-
cific for individual models — for a full derivation and ex-
amples, see, e.g., Blei et al. (2016).

In recent years several novel types of algorithms applicable
for a wider range of models have been proposed (Titsias
and Lazaro-Gredilla, 2014; Kingma and Welling, 2014;
Salimans and Knowles, 2013; Ranganath et al., 2014),
based on direct gradient-based optimization of the lower
bound (1). The core idea behind these algorithms is in us-
ing Monte Carlo estimates for the loss and its gradient

VAL(A) = VB, () [logp(z, 2) —logqa(2)].  (2)

Given such estimates, the inference problem can be solved
by standard gradient descent algorithms. This enables
inference for non-conjugate likelihoods and for complex
models for which closed-form updates would be hard to de-
rive, making variational inference a feasible inference strat-
egy for probabilistic programming languages (Kucukelbir
et al., 2017; Tran et al., 2016; Salvatier J, 2016). In the
following, we briefly describe two alternative strategies of
estimating the gradient. In Section 3 we will then show how
the proposed importance sampling technique is applied for
both cases.

2.1.1 REPARAMETERIZATION ESTIMATE

The reparameterization estimate for (1) (and consequently
(2)) is based on representing the approximation g (z) using
a differentiable transformation z = f(e, A) of an underly-
ing standard distribution ¢(e) that does not have any free
parameters. The core idea of how this enables computing
the gradient was developed simultaneously by Kingma and
Welling (2014); Salimans and Knowles (2013) and Titsias
and Lazaro-Gredilla (2014) with many of the mathemati-
cal details visible already in the early work by Opper and
Archambeau (2009). Plugging the transformation f(-) into
(1) gives

p(CE, f(€7 )\))|detJf (€, )‘)|
o(e)

where the integral is over the standard distribution that does
not depend on z, and |det s, (¢, A)| is the absolute value of
the determinant of the Jacobian of f(e, A). Consequently,
it can be replaced by a stochastic approximation

M
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where €, is drawn from ¢(e). We can now easily compute
the gradients using the chain rule, by first differentiating
log p(x, f(e,A\)) w.r.t z and then z = f(e, \) w.r.t A, result-
ing in

£\ = / 6(e)log s,
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The combination of the standard distribution ¢(¢) and the
transformation f(e, A) defines the approximation family.
For example, ¢(e) = N(0,1) and f(e, N = {u,L}) =
1w + Le defines arbitrary Gaussian approximations (Op-
per and Archambeau, 2009; Titsias and Lazaro-Gredilla,
2014), where L is the Cholesky factor of the covariance.
To create richer approximations we can concatenate mul-
tiple transformations; Kucukelbir et al. (2017) combines
the transformation above with a rich family of univariate
transformations designed for different kinds of parameter
constraints. For example, by using f(e,\ = {u,L}) =
Softplus(u + Le) we can approximate parameters con-
strained for positive values. Alternatively, we can directly
reparameterize other common distributions such as Gamma
or Dirichlet — see Naesseth et al. (2017); Ruiz et al. (2016)
for details.

2.1.2 SCORE FUNCTION ESTIMATE

An alternative estimate for (2) can be derived based on ma-
nipulation of the log-derivatives; the use of the estimate
for simulation of models was originally presented by Klei-
jnen and Rubinstein (1995) and its use for variational ap-
proximation by Ranganath et al. (2014). The estimate for
VAL(A) is provided by
Eq, (»)[(logp(z, 2) —log gx(2))Valoggr(2)],

which again leads into a straightforward Monte Carlo ap-
proximation of V,£L(\) as

1 M
i > (log p(, 2m) — log qr(2m)) Valog gx(zm), @)
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where z,, ~ ¢x(z). The notable property of this technique
is that it does not require derivatives of the model (that is,
log p(x, z)) itself, but instead relies solely on derivatives
of the approximation. This is both a pro and a con; the
model does not need to be differentiable, but at the same
time the estimate is not using the valuable information the
model gradient provides. This is shown to result in consid-
erably higher variance compared to the reparameterization
estimate, often by orders of magnitude. Variance reduc-
tion techniques (Ranganath et al., 2014) help, but for dif-
ferentiable models the reparameterization technique is typ-
ically considerably more efficient (Naesseth et al., 2017,
Ruiz et al., 2016).

2.2 STOCHASTIC GRADIENT OPTIMIZATION

Given estimates for the gradient (2) computed with either
method, the optimization problem! is solved by standard
gradient descent techniques. In practice all of the automatic
variational inference papers have resorted to stochastic gra-
dient descent (SGD) on mini-batches, adaptively tuning the
step lengths with the state-of-the-art techniques.

In recent years several more advanced stochastic optimiza-
tion algorithms have been proposed, such as stochastic av-
erage gradients (SAG) (Schmidt et al., 2017), stochastic
variance reduced gradients (SVRG) (Johnson and Zhang,
2013), and SAGA that combines elements of both (Schatz
et al., 2014). However, to our knowledge these techniques
have not been successfully adapted for automatic varia-
tional inference. In Section 4.2 we will present a new
variant of SAG that works also when the gradients are
estimated as Monte Carlo approximations, and therefore
briefly describe below the basic idea behind stochastic av-
erage gradients.

SAG performs gradient updates based on an estimate for
the full batch gradient, obtained by summing up gradients
stored for individual data points (or for mini-batches to save
memory). Whenever a data point is seen again during the
optimization the stored gradient for that point is replaced
by the gradient evaluated at the current parameter values.
The full gradient estimate hence consists of individual gra-
dients estimated for different parameter values; the most
recently computed gradients are accurate but the ones com-
puted long time ago may correspond to vastly different pa-
rameter values. This introduces bias (Schatz et al., 2014),
but especially towards the convergence the variance of the
estimated full batch gradient is considerably smaller than
that of the latest mini-batch, speeding up convergence.

3 METHOD

All gradient-based optimization algorithms follow the
same basic pattern of computing a gradient for a mini-
batch of samples and updating the parameters. The compu-
tational effort required goes almost solely into evaluating
the gradient of the loss. To speed up the optimization, we
next present a technique that allows computationally lighter
evaluation of the gradient in scenarios where the gradient is
computed using a Monte Carlo approximation. The presen-
tation here is based on the reparameterization estimate (3)
that benefits more off this treatment — as will become evi-
dent later — but for completeness we discuss also the score
function estimate (4) in Section 3.2.

The Monte Carlo approximation for estimating the gra-

dient depends on the data = and a set of M parameters

"Here cast as minimization of negative evidence, to maintain
consistent terminology with gradient descent literature
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Figure 1: Importance sampling illustration for

reparametrization gradients: A Monte Carlo esti-
mate for the model evidence lower bound is obtained by
drawing M (here 5) samples z,, from the approximation
q(X\) depicted by the contours in top left panel. The
reparameterization estimate does this by actually drawing
the samples €, from a standard distribution depicted in
the bottom left panel, transforming them to the parameter
space with f(e,\). The importance sampling estimate
for the evidence lower bound of another approximation
q(\) (top right) is obtained by keeping z,, fixed and
computing the €/, = f~!(z,,\") that would have been
required as draws from the standard distribution (bottom
right) to produce them. The estimate then re-weights
the already computed log-likelihoods log p(x, z,,) with

Wy, = ig;’ig to approximate the evidence lower bound;

here sample E has higher probability under the new
approximation, shown as larger diamond, and sample D
has lower probability. The same basic procedure applies
also for estimating the gradients instead of the evidence.

Zm drawn from the current approximation. As highlighted
in (3), the actual computation factorizes into V,p(z, z,,)
that depends only on = and z,, and into V) f(e, A) and
Vldet;, (€, A)| that depend only on €, and A. The for-
mer part is typically considerably more computationally
expensive. The observation that the slower part does not
directly depend on the parameters hints that it should be
possible to avoid re-computing the term even if the approx-
imation changes, and this indeed is the case as explained
next.

Assume we have already estimated the gradient at some
parameters A, implying that we have also evaluated
V.p(x, zy,) for some set of z,,. The question now is how

to estimate the gradient at parameters \’ = X\ + ¢ that are
(typically only slightly) different. It turns out this can be
done using the well-known concept of importance sam-
pling originally designed for approximating expectations
when we cannot directly draw samples from the density of
interest. In our case, however, we could draw samples di-
rectly from the new approximation, but choose not to since
the gradient can be estimated also using the old approx-
imation as a proposal distribution. That is, we are using
importance sampling for an unusual reason but can still use
all the standard tools.

Typically, we use importance sampling to find the ex-
pectation of a function f(z) over the target distri-
bution p(z) if we are able to draw samples only
from a proposal distribution ¢(z). The expecta-
tion of f(z) over p(z) can then be approximated by

Blf - [ PE) pyg(e) bz = = 30 PEm) gy )

The quantities w,, = p(zm)/q(zm) are the importance
weights that correct the bias introduced by sampling from
the wrong distribution ¢(z) (Bishop, 2006). The weights
wy, are non-negative and tend to zero when p(z) is com-
pletely mismatched to ¢(z), and w,,, > 1 when the sample
Zm is more likely under the p(z). The estimate above is un-
biased, but has high — potentially infinite — variance when
q(z) and p(z) are dissimilar. Next we show how impor-
tance sampling can be used for evaluating the reparameter-
ization gradient (3).

To save computation we want to re-use the model gradients
V. logp(z, z,,) already available for certain values of z,
and hence need to consider estimates that keep these val-
ues fixed. This means we need to find the €/, under the
new approximation ¢/ (z) that correspond to these values,
by computing €/, = f~(2,,,\’). Given these values we
can evaluate the necessary quantities to compute both the
importance weights and the other terms (V f(e,,, \') and
Vldets, (€, A)]) required for evaluating the gradient it-
self.

The resulting importance sampling estimate for (3) is

M
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where the i in V4 L(\) refers to the importance-sampled
estimate of the gradient. The computationally expensive
part of the gradient V., logp(z, z,,) is already available
and need not be computed. The rest of the terms are ef-
ficient to evaluate, and hence the whole gradient estimate
is obtained in a fraction of a time compared to computing



Algorithm 1: Importance sampled gradients

input : Samples z,, and ¢,,, gradient V.p(z, 2, ),
transformation f (), current approximation \’

output: Importance sampled gradients V4 £(\)

em — f 7 (zm, N)

b(em)
Wi = (b(fm)

Calculate V4 £()) using (6)

it from scratch. The importance weights are provided by

 ble)
" P(em)

and hence only require evaluating densities of the stan-
dard distribution underlying the approximation. The above
description is summarized in Algorithm 1 and illustrated
graphically in Figure 1.

)

It is also worth noting that if f(-) is constructed as a
series of transformations, for example as element-wise
transformations of reparameterized normal distribution as
done by (Kucukelbir et al., 2017), then parts of the term
Vldety, (€, A')| can (and naturally should) also be re-
used. This is, however, of secondary importance compared
to the computational saving of re-using V, log p(z, 2y, ).

A practical challenge with importance sampling is that for
high-dimensional densities the weights w,, easily tend to
zero. Variational approximation is, however, often con-
ducted for approximations that factorize over the param-
eters of the approximation as g(\) = [], ¢(As,), where
{S;s} is a partitioning of the parameter vector. The impor-
tance sampling estimate can — and should — be done for
each factor separately, since the gradient V. log p(z, 2,,)
can be computed for each approximation factor indepen-
dently even if log p(z, z,,,) itself does not factorize. We
show in Section 5.1 that the technique helps at least until
factors consisting of roughly ten parameters.

3.1 REPARAMETERIZATION GRADIENT
EXAMPLE

To further clarify the derivation above, we next illustrate
the procedure for the common scenario of Gaussian repa-
rameterization combining ¢(e) = N (0, I) with 2 = u+Le,
denoting A = {u, L}. Given a set of z,, drawn from g()\)
we want to estimate the gradient evaluated at \’ using (6).

First we compute €, = f~!(z,,,\) = L™ (2, — u) and
evaluate ¢(e},,) under the standard normal distribution. The
weight w,, can then readily be evaluated using (7), com-
puting ¢(e,,,) as well if it has not already been evaluated
because of being used for another importance sampling es-
timate.

To compute the gradient (6) we need to re-compute

Vaf(e,, ') and Vy|dets, (e, \')|. For p these terms
are simply identity and zero, whereas for L we get z,,, and
Vi log|L'|= Ap. The exact form of Ay depends on the
assumptions made for L; see Titsias and Lazaro-Gredilla
(2014) for details. The final importance sampled estimate
for the gradient is then

M
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An important observation here is that the importance
sampling procedure does not merely re-weight the terms
V. logp(z,zy), but in addition the transformation that
converts them into the A space changes because of the new
values of €/,. These values depend on the approximation
parameters in a non-linear fashion and hence the gradient
itself is a non-linear transformation of the gradient evalu-
ated at A (for a graphical illustration, see Figure 2). This
is crucially important for development of the practical op-
timization algorithms in Section 4; if the transformation
was linear then the importance sampling estimate would
not necessarily provide improvement over careful adapta-
tion of element-wise learning rates.

3.2 SCORE FUNCTION ESTIMATE

Above we discussed the importance sampling estimate
from the perspective of the reparameterization estimate.
For completeness we also show how it can be applied for
the score function estimate, and discuss why it is less useful
there.

The Monte Carlo approximation for the score function (4)
is obtained directly by drawing samples from the approx-
imation g()\). To approximate the gradient for ¢(\) we
merely use the standard importance sampling equation (5)
to obtain the approximation

M
1
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where w,, = ‘ZI((ZZ ‘C\/)). This is still an unbiased estimate,

but the computational saving is typically smaller than in
the reparameterization case. We do not need to evaluate
log p(x, z,,) since the samples z,, are kept constant, but all
other terms need to be computed again and evaluating the
gradient of the approximation is not cheap. This estimate
is only useful when the evaluation of the log probability
utterly dominates the total computation.



Algorithm 2: Importance sampled SGD

input : data X, model p(z, z), the variational
approximation g (z), threshold ¢
output: variational parameters \*

while £(\) has not converged do

if random_uniform < t then
Retrieve last stored z,,, €, and
V. logp(z, 2m)

Update V£ using Algorithm (1)
else

Draw mini-batch z from X

€m ™~ (Z)(G)

Zm < f(€m, A)

Update VL using Equation (3)
Store z,,, €, and V, log p(z, 2, )

end
Update A <~ A + pVrL(N)

end

4 ALGORITHMS

In the following we describe example optimization algo-
rithms based on the importance sampling idea. The details
are provided for a straightforward variant of SGD and for
a generalization of stochastic average gradients, but other
related algorithms could be instantiated as well.

4.1 IMPORTANCE SAMPLED SGD

Stochastic gradient descent estimates the gradient based on
a mini-batch and then takes a step along the gradient direc-
tion, typically using adaptive learning rates such as those
by Kingma and Ba (2015); Duchi et al. (2010).

The importance sampled SGD (I-SGD; Algorithm 2) fol-
lows otherwise the same pattern, but for each mini-batch
we conduct several gradient steps instead of just one. For
the first one we evaluate the gradient directly using (2).
After updating the approximation we apply Algorithm 1
to obtain an importance-sampled estimate for the gradient
evaluated at the new parameter values, and proceed to take
another gradient step using that estimate. For each step we
use a proper estimate for the mini-batch gradient that can,
after the first evaluation, be computed in a fraction of a
time. After taking a few steps we then proceed to analyze
a new mini-batch, again needing to compute the gradient
from scratch since now x has changed.

After passing through the whole data we have evaluated
log p(x, z) and its gradient once for every data point, just
as in standard SGD. However, we have taken considerably
more gradient steps, possibly by a factor of ten. Alterna-
tively, we can think of it as performing more updates given
a constant number of model gradient evaluations.

-1.0 -0.5 0.0 0.5 1.0

u

Figure 2: Illustration of I-SGD. I-SGD learns to approx-
imate the posterior of a univariate normal distribution (pa-
rameterized by mean and precision) by computing the gra-
dient of the evidence lower bound only a few times from
scratch, indicated by red diamonds. Between these oper-
ations it performs multiple gradient steps (small red dots)
using importance sampling estimates for the gradient that
can be computed in a fraction of a time, while still follow-
ing a non-linear trajectory between the red diamonds. For
comparison, standard SGD, needs to estimate the full gra-
dient for every step (blue dots).

A practical detail concerns the choice of how many steps
to take for each mini-batch. This choice is governed by
two aspects. On one hand we should not use the impor-
tance sampled estimate if the approximation has changed
too much since computing the V, log p(z, 2,,) terms, rec-
ognized typically as w,,, tending to zero. On the other hand,
we should not take too many steps even if the approxima-
tion does not change dramatically, since the gradient is still
based on just a single mini-batch.

The empirical experiments in this paper are run with a
simple heuristic that randomly determines whether to take
another step with the current mini-batch or to proceed to
the next one. This introduces a single tuning parameter ¢
that controls the expected number of steps per mini-batch.
The algorithm is robust for this choice; we obtain practical
speedups with values ranging from ¢t = 0.5 to t = 0.9. Fi-
nally, importance-sampling could in principle result in very
large gradients if w,, > 1 for some m; we never encoun-
tered this in practice, but a safe choice is to proceed to the
next batch if that happens.

For a practical illustration of the algorithm, see Figure 2
that approximates the posterior over the mean and preci-
sion of a normal model. Here ¢ = 0.9 and hence we take
on average 9 importance-sampled gradient steps for each
mini-batch. The I-SGD algorithm reaches the optimum in
roughly as many steps as conventional SGD but achieves it
almost ten times faster.



Algorithm 3: Importance sampled SAG

input : data X, model p(z, z), the variational
approximation g (z), batches B
output: variational parameters \*

while £(\) has not converged do

foreach mini-batch x;, in X do

€ ~ (€)

Z < flem, A)

Calculate V4 £ using Equation (3)

Store 28 , €& and V2 log p(xp, 2m)

foreach mini-batch x. in X\{x} do
Retrieve z¢,, €5, and V¢ log p(z¢, zpm,)
Update V§ L using Algorithm (1)

end

VAL« Y8 vie

Update A +— A + pVrL(N)

end
end

4.2 IMPORTANCE SAMPLED SAG

Stochastic average gradients (Schmidt et al., 2017) stores
the batch gradient and iteratively updates it for the samples
in a given mini-batch. In the following we derive a vari-
ant of SAG (Algorithm 3) that uses importance sampling
to both re-weight and update the gradients for the histori-
cal mini-batches using (6), helping to detect and avoid us-
ing stale gradients whose parameter values have changed
so much since computing them.

When visiting a new mini-batch we compute the gradient
using (3). For all previously visited mini-batches we com-
pute the importance weights and modify the gradient ac-
cording to (6). The whole gradient is formed by summing
up the terms for all mini-batches. It is important to note that
the importance sampling changes the weight of the gradi-
ent, decreasing it towards zero for the mini-batches eval-
uated under clearly different parameter settings, and trans-
forms the gradient to better match one that would have been
calculated under the current approximation.

This algorithm provides a justified version of SAG for au-
tomatic variational inference. The computational cost is
higher than for standard SAG since we need to evaluate
the importance weights and compute the terms related to
the gradient of the transformation for all past mini-batches.
There is, however, no additional memory overhead and the
amount of evaluations for the gradient of the model itself is
the same. This overhead for importance sampling the gra-
dients for other batches is not negligible, but usually still
small enough that the resulting algorithm outperforms a
naive implementation of SAG because of vastly more ac-
curate gradient estimates, as shown in Section 5.3. In case
updating the past gradients becomes too costly, a simple

remedy is to use only the latest K mini-batches for some
reasonable choice of K.

S EXPERIMENTS

In this section we first demonstrate how the behavior of
importance sampling depends on the dimensionality of the
approximation. We then empirically compared both I-SGD
and I-SAG for real variational inference tasks on a range of
alternative models and settings.

5.1 DIMENSIONALITY OF THE
APPROXIMATION

Figure 3 studies importance weights of approximations fac-
torized at different granularities on a 100-dimensional di-
agonal multivariate Gaussian. An important observation is
that even if importance sampling itself fails for factors of
high dimensionality, the I-SGD algorithm degrades grace-
fully. For low-dimensional factors, up to at least 5-10 di-
mensions, we can safely take 5-10 steps with each mini-
batch while still having accurate gradient estimates. When
the dimensionality of individual factors reaches around 25
the weights tend to zero already after a single gradient step,
but the algorithm does not break down. It merely needs
to proceed immediately to the next step, reverting back to
standard SGD.

5.2 IMPORTANCE SAMPLED SGD

We show in Figure 4 how I-SGD consistently bests SGD
for a variety of different models, especially for the repa-
rameterization estimate. For these experiments we use fully
factorized mean-field approximation,

We first apply the reparameterization estimate for three
probabilistic models: (a) a diagonal multivariate Gaussian
with a standard normal prior on the mean and Gamma pri-
ors on the precisions, trained on N = 50000 data points
of D = 500 dimensions; (b) a Bayesian linear regres-
sion model with standard normal priors on the weights and
a Gamma prior on the precision with N = 50000 and
D = 500; and (c) a Gaussian mixture model with the usual
conjugate priors, N = 10000, D = 2 and K = 25 clusters.
We used fully factorized variational approximations for all
models, with Softplus transforms for the positively con-
strained precision parameters and the stick breaking trans-
form for the mixture weights of the last model. For all three
choices the I-SGD algorithm with ¢ = 0.9 converges to the
same optimal solution as SGD, but does so in roughly an or-
der of magnitude faster. For fair comparison the size of the
mini-batch, the initial learning rate were chosen for each
method to work well for SGD, forcing I-SGD to use the
same choices. For both algorithms, we used M = 1 sample
to estimate the gradients and Adam (Kingma and Ba, 2015)
to adaptively control the learning rate during optimization.
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Figure 4: Performance of I-SGD on different models and gradient estimates: We evaluate the performance of I-SGD for
reparameterization gradients in the top row and for score function gradients on the bottom row. For the reparameterization
gradients our algorithm converges an order of magnitude faster than SGD for all three models. The computational savings
in score function gradient is directly proportional to the complexity of the model’s log-probability and the simplicity of the
variational approximation; in (d) evaluating the model dominates the total cost whereas in (f) the advantage of I-SGD is
lost because less computation is saved. For description of the models refer to Section 5.2.

We then compare I-SGD and SGD using the score func-
tion estimates on a Poisson likelihood with a single Gamma
prior on the rate (d), and Bayesian linear regression mod-
els with large (e) and small (f) mini-batch. The variational
approximations used were the same as the priors. For the
sub-plots (d) and (e) evaluating the log-probability takes
long compared to evaluating the gradient of the approxima-
tion because of a large mini-batch size, and hence I-SGD is
faster. With a smaller mini-batch size (f) the advantage is
lost because evaluating the gradient of the approximation
starts to dominate. We used M = 100 samples and did not
consider variance reduction techniques for simplicity.

5.3 IMPORTANCE SAMPLED SAG

Figure 5 compares the I-SAG algorithm (Algorithm 3)
against naive implementation of SAG (Schmidt et al.,
2017). Both algorithms are initialized by passing once
through the data with I-SGD, to provide the initial estimate
for the full batch gradient.

While SAG eventually converges to the right solution, the
progress is slow and erratic due to stale mini-batch gra-
dients being accumulated into the full gradient. I[-SAG
fixes the issue by not only down-weighting gradients cor-
responding to mini-batches visited several updates ago, but

also by transforming the gradients to match the current
approximation. The additional computation required for
adapting the gradients for other mini-batches results in a
computational overhead of, here, roughly 30% per itera-
tion, but the improved accuracy of the batch gradient esti-
mate is more than enough to overcome this.

Stochastic running average (SRA) provides another base-
line that down-weights older mini-batches exponentially.
Similar to I-SAG, it avoids using mini-batches with badly
outdated gradient estimates, by using a simple weighting
scheme without transforming the gradients. It outperforms
SAG, but converges more slowly than I-SAG. Hence, I-
SAG is stable implementation of SAG for variational in-
ference, outperforming the alternative of running averages
often considered as a remedy for the issues of SAG.

6 DISCUSSION

Automatic variational inference using automatically differ-
entiated gradients has in recent years become a feasible
technique for inference for a wide class of probabilistic
models, extending the scope of variational approximations
beyond simple conjugate models towards practical proba-
bilistic inference engines. While standard computational
platforms and advances in convex optimization are read-
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Figure 3: Importance sampling and dimensionality:
[lustration of the behavior of the importance sampling
weights during optimization for approximations of varying
dimensionality. The approximation ¢(6|\) is over a 100-
dimensional space and is factorized as [ [, ¢(fs,|\;) so that
the color of the line indicates the size of each term; for
example, the purple line corresponds to factorized approx-
imation with 20 terms of 5 variables. For fully factorized
approximation (blue line) and still for factors of 5-10 di-
mensions the weights decay slowly and it pays off to take
a few gradient steps before re-calculating the gradient. For
factors of 25 (yellow line) or more dimensions the weights
drop to zero practically immediately. The I-SGD algorithm
still works, but does not give any speed advantage.

ily applicable for gradient-based variational inference, the
need to use Monte Carlo approximation to estimate the gra-
dients necessarily induces a computational overhead — with
very few samples the gradients are noisy whereas the cost
grows linearly as a function of the samples.

Our work addressed this central element, discussing ways
to speed up the gradient-based inference of variational ap-
proximations. By highlighting how the gradient compu-
tation separates into two steps we derived an importance-
sampling estimate for the gradient that often only needs to
evaluate the computationally cheaper part to provide the
estimate. Skipping the computationally costly evaluation
of the gradient of the model itself as often as possible
lead to a practical speedup that is independent of other im-
provements provided by more advanced optimization algo-
rithms (Johnson and Zhang, 2013; Schatz et al., 2014). Our
method relies on the inverse transformation being unique
and efficient to compute. This might not be the case for
complex structured approximations or approximations pa-
rameterized by neural networks; we leave more efficient
extensions for such cases as future work.

We demonstrated the core idea in creating a more efficient
stochastic gradient descent algorithm for both reparame-
terization (Titsias and Lazaro-Gredilla, 2014; Kucukelbir
et al., 2017) and score function (Ranganath et al., 2014)
estimates used for variational inference. In addition, we
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Time[s]

Figure 5: Importance Sampled Stochastic Average Gra-
dient: Standard SAG algorithm (yellow line) performs
poorly when using Monte Carlo approximation for the gra-
dients. This can be in part overcome by considering a
running average (SRA) of the mini-batch gradients instead
(blue line, with oo = 0.9 as the decay factor), letting the al-
gorithm ignore stale gradients. The I-SAG algorithm (red
line) outperforms both because it down-weights mini-batch
gradients evaluated earlier in a more justified manner and
because it also transforms the historical gradients to match
the current approximation instead of using them directly.

formulated a theoretically justified variant of stochastic av-
erage gradients (Schmidt et al., 2017) applicable for varia-
tional inference. The idea, however, extends well beyond
these special cases. For example, the rejection sampling
variational inference (Naesseth et al., 2017) can be read-
ily combined with our importance sampling strategy and is
expected to result in a similar speedup.

Our main focus was in practically applicable algorithms,
with much of the theoretical analysis left for future work.
Two particular directions are immediately apparent: (a)
The decision of when to use importance sampling estimates
and (b) the behavior for approximations that do not factor-
ize into reasonably small factors. In this work we showed
how simple randomized procedure for determining whether
to re-compute the gradient for a new mini-batch results in
practical and robust algorithm, but more theoretically jus-
tified decisions such as inspecting for example the vari-
ance of the importance sampling estimate could be consid-
ered. The proposed algorithms are efficient for approximat-
ing factors of dimensionality up to roughly ten; for factors
of higher dimensionality the algorithms revert back to the
standard variants since all gradients need to be computed
from scratch for every iteration.
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