
Embedding Senses via Dictionary Bootstrapping

Byungkon Kang
byungkon@ajou.ac.kr

Ajou University
Suwon, Korea

Kyung-Ah Sohn
kasohn@ajou.ac.kr

Ajou University
Suwon, Korea

Abstract

This paper addresses the problem of embedding
senses of a plain word according to its context.
Natural language is inherently ambiguous, due to
the presence of many multi-sensed words. Such
ambiguity might have undesirable influence over
many text-mining tools, including word embed-
ding. Traditional word embedding techniques
have focused on identifying which words tend
to co-occur with one another in order to derive
close embeddings for such words. However, the
effectiveness of this approach is largely suscep-
tible to the validity and neutrality of the train-
ing corpus. To address this problem, we propose
to use the dictionary as the authoritative corpus
for computing the word embeddings. The ba-
sic idea is to simultaneously embed the defini-
tion sentence while disambiguating words. Since
dictionaries list a set of disambiguated senses,
the proposed procedure yields sense embeddings
which exhibit semantic characteristics compara-
ble to plain word embeddings.

1 INTRODUCTION

Recent advances in neural network technology have influ-
enced the field of natural language processing (NLP) to
progress towards using distributed representations for solv-
ing its problems. One notable example is the concept of
word embedding, or word vectors, popularized by Mikolov
et al. [2013]. This framework allows one to represent the
semantics of each word in the vocabulary as a Euclidean
vector. The basic concept is to have words with similar se-
mantics be “embedded” as nearby points in the Euclidean
space. The initial success of Mikolov et al. [2013] has led
to the proposal of many variants (Hill et al. [2016], Ia-
cobacci et al. [2015], Pennington et al. [2014]).
The advantage of operating with embedding vectors is that
they allow for continuous operations, which are prevalent

in most machine learning algorithms, to be applied to dis-
crete objects. For example, one many take a dot product
between any two word vectors to measure the similarity.
However, word embeddings are likely to suffer from cor-
rupted samples. To be more concrete, most current algo-
rithms used to embed words are heavily dependent on the
corpora they use. The embedding algorithms work by tak-
ing co-occurrence statistics of words, and computes a set
of vectors that best reflects such co-occurrences. Naturally,
words that co-occur frequently will tend to have close-
by vector representations. In other words, socio-linguistic
norms are likely to influence the embeddings. While this
approach may bear intuitive justification, it can sometimes
have detrimental effects: Report by Bolukbasi et al. [2016]
indicates that such word embeddings inadvertently exhibit
sexist relationships.
Another shortcoming of word embedding is related to
the processing of out-of-vocabulary (OOV) words. OOV
words are words that have not been seen during the train-
ing phase of the embedding. Since OOV words lack suf-
ficient amount of context on which embedding computa-
tion is based, there is not enough information to derive the
embedding. Algorithms such as Skipthought (Kiros et al.
[2015]) attempt to work around this issue by performing
linear regression to extrapolate new vectors for the OOV
word. Techniques motivated by morphological analysis ex-
ist as well (Zhang et al. [2015]), where convolution is per-
formed on character level of the word to extract meaning-
ful representation inherent in the morphemes. However,
such methods are either approximate, or language depen-
dent, and hence fail to capture the precise semantics of the
embedding.
Finally, typical word embedding frameworks largely ignore
the issue of word sense ambiguity. Most of the frequently-
used words have multiple senses that are only discernible
by their uses in context. Therefore, blindly using the cor-
pora might yield embeddings that contain such unresolved
ambiguities. There exists a work by Vilnis and McCallum
[2015] that embeds each word as a multivariate Gaussian
distribution, whose covariance matrix represents the degree
of ambiguity. But it fails to mention how such ambiguities

might be resolved.
In this work, we propose to use a dictionary to improve
the above-mentioned problems of traditional word embed-
ding frameworks. Since a dictionary is considered to con-
tain precise, authoritative description of each word’s se-
mantics, using it will alleviate problems associated with
corrupt samples. We also introduce a method to simulta-
neously learn a sentence embedding while disambiguating
plain words.

Related Works This section serves as a brief survey of pre-
vious efforts that are best related to our proposal. We be-
gin with the dictionary embedding by Hill et al. [2016]. In
this work, the authors use dictionary definitions to enhance
previous embeddings. However the focus is mainly on im-
proving phrase representation. In fact, they use pre-existing
word embeddings to learn phrase representation. Also, they
do not distinguish various senses of the plain words, which
is the greatest difference from our work.
Sense embedding has been pursued by Iacobacci et al.
[2015] as well. In this SensEmbed framework, the embed-
ding of individual senses is computed in the same man-
ner as skip-gram or continuous bag-of-word embeddings
(Mikolov et al. [2013]) are computed. One important pre-
processing is to run an external word sense diambiguation
(WSD) algorithm to label the senses of interest in the plain-
word corpora. However, this requires that the WSD algo-
rithm be accurate enough to be of good use. In contrast,
our work combines the process of WSD with the embed-
ding computation.

1.1 CONTRIBUTIONS

Although there have been previous works such as those by
Hill et al. [2016] and Iacobacci et al. [2015] that resem-
ble ours, we propose the following contributions that differ
from theirs.

• Leveraging small-sized corpus to learn embeddings:
Many word embedding algorithms such as Pennington
et al. [2014] and Mikolov et al. [2013] require mas-
sive amount of text data in order to successfully gather
co-occurrence statistics. However, this approach be-
comes infeasible when we wish to deal with a minor
language that lacks electronic corpora. Our method
uses a dictionary, which is considered to be the mini-
mal text required to learn the basics of a language. A
dictionary is much smaller than the corpora required
by other embedding algorithms, hence it is more eco-
nomical to use one.

• Automatic sense-disambiguation: When embedding
a sentence, one often encounters multi-sensed words
with ambiguity, such as “bank” or “paper”. Such
words can be disambiguated via use of context, or sur-
rounding words in the sentence. Our model is able to

learn which sense of the given ambiguous word car-
ries most weight in assigning a proper semantic to the
sentence embedding.

• Out-of-vocabulary (OOV) word processing: One
of the difficulties involved with previous word-
embedding techniques is dealing with words that do
not appear in the known vocabulary. Skip-gram, for
example, require a large amount of text that contain
the OOV word in question in order to learn the em-
bedding. However, since our approach to embedding
a word uses a dictionary, all we need is the defini-
tion sentence of the OOV word. Intuitively, this is the
minimally-required information one uses to learn the
meaning of a new word.

2 PRELIMINARY

In our setting, we are given a vocabulary V =
{v1, · · · , vN} with N words, and each word vi is paired
with a definition string d(vi) = {d1

i , d
2
i , · · · , dki |d

j
i ∈ O}.

We assume that the words comprising the definition sen-
tences belongs to a different set O. All words vi ∈ V
are disambiguated, and are expressed using the Word-
Net (Miller [1995]) format to denote various senses of a
word. That is, each sense of a word w is expressed as:
w.POS.sense num. POS is one of ‘n’, ‘v’, ‘a’, ‘r’ for noun,
verb, adjective, and adverb, and ‘sense num’ is a natu-
ral number indicating the count of the word. For exam-
ple, the fifth noun sense of the word ‘bank’ is written as
bank.n.5. On the other hand, the words dji ∈ O that
make up the definition are ambiguous. In the following,
the terms “word” and “sense” refer to disambiguated words
(e.g., bank.n.5), and “plain word” to ambiguous words
(e.g., “bank”).
The triple (V,O, d()) forms a dictionary in a traditional
sense. This dictionary is closed, meaning that all plain
words that appear in the definition string must also have
their corresponding senses present in V .
The types of definition strings d(vi) need not necessarily
be confined to dictionary definition, as long as the contents
contain sufficient information to describe the target word
vi. It could be as large as Wikipedia articles, but we settle
for WordNet definitions for this work in order to quickly
demonstrate the feasibility. Our goal is to compute, or re-
fine a vector representation ei ∈ RD for each vi ∈ V using
only the dictionary - hence the name Dictionary bootstrap-
ping.
The most intuitive way to compute the embedding ei of
word vi is to assign the embedding of its definition d(vi).
The embedding of d(vi) is acquired from a recurrent neu-
ral network (RNN: Hochreiter and Schmidhuber [1997]).
However, we will see in Section 3.2 that such a sequential
RNN can be replaced by a simpler RNN.

Figure 1: Proposed architecture for Dictionary Bootstrapping

3 ALGORITHM

One shortcoming of this sequeuntial RNN approach is that
we only use the plain words of the definition sentence to
derive an embedding. This might not pose much problem
when we are dealing only with dictionaries, where the defi-
nitions of the words are given in a precise and unambiguous
manner. But it would be better to devise a method that is
capable of computing an embedding regardless of the am-
biguity of the input sentence.

3.1 RESOLVING AMBIGUITIES

In order to reflect the ambiguity of the plain words, we
let each plain word be modeled as a convex combina-
tion of its individual disambiguations, where the coeffi-
cients are determined by the context. For a plain word
di, let s(di) = {v1

i , · · · , vki } denote the set of all dis-
ambiguated words of di. For example, s(‘apple’) =
{apple.n.1,apple.n.2}. With abuse of notation, we
will also use s(di) as the set of vectors corresponding to the
disambiguated words. Then we represent a plain word di
as

di =
∑

vj∈s(di)

αjivj , where
∑
j

αji = 1, αji ≥ 0 (1)

The coefficients αji’s denote the importance of each re-
spective word vj in relation to a plain word di in the con-
text of vj .
Let αji be the probability of the disambiguation for di be-
ing word vj ∈ s(di) given the context d−i in the definition
sentence1: αji , Pr(vj |d−i). We apply Bayes’ rule to
further expand this probability:

αji =
Pr(vj) Pr(d−i|vj)∑

vk∈s(di) Pr(vk) Pr(d−i|vk)
(2)

1We have used the shorthand notation d−i to mean the set
{d1, · · · , di−1, di+1, · · · , dk}.

The prior Pr(vj) allows the designer to incorporate pre-
existing knowledge about the language of interest. For ex-
ample, one might wish to reflect the fact that only the first
few senses of a certain plain word are active majority of the
time. This is achievable by assigning Pr(vj) ∝ exp(−j)
so later senses receive exponentially smaller probabilities.
In case such an assumption does not hold, a uniform prior
Pr(vj) = |s(di)|−1 will suffice.
To compute the probability Pr(d−i|vj), we make the as-
sumption that the probability of “observing” the plain
words in d−i’s in the context is conditionally independent
given the disambiguated word vj in question. That is,

Pr(d−i|vj) =
∏

dm∈d−i

Pr(dm|vj). (3)

Next, we specify the form of Pr(dm|vj) to complete Equa-
tion 3.

Pr(dm|vj) ∝ exp

 τ

|s(dm)|
∑

vk∈s(dm)

vTk Lvj

 .

That is, the probability is defined as the average of simi-
larities between vj and the senses of dm, parameterized by
L ∈ RD×D. To ensure we are computing a valid inner-
product, we restrict L to be positive-definite. τ is a hyper-
parameter that controls the “temperature” of the softmax
distribution.
This way of modeling sense-disambiguation is motivated
by how humans look up new words in the dictionary: When
we encounter an ambiguous plain word w in a sentence S,
we must select among w’s various senses. The method we
use to choose the sense is a simple comparison between the
definitions of w’s senses and the plain words in S. Our ap-
proach can be thought of as a simplification of this process
where we use the sense embedding instead of directly using
the definitions.

To train the parameters, we need a supervised signal. To
this end, it is tempting to add a a classification layer at the

end of our RNN to predict the disambiguated word of the
current definition sentence. However, training a classifier
to predict the word corresponding to the current definition
is ill-founded, due to insufficient data: For each class (i.e.,
word), there is only a single data point (i.e., definition em-
bedding) to train. Instead, we opt to obtain the supervised
signal via regression. For word vi ∈ V and its defini-
tion embedding ei, let ui be vi’s current embedding Then
our objective is to learn a (possibly non-linear) function
fθ : RD → RD that will take ei to produce ui. For our ex-
periments, we take fθ to be a two-layered neural network
parameterized by layer weights Θ0 = {W1,W2}. Thus,
our cost function becomes

J =
1

N

N∑
i=1

‖fΘ0
(ei)− ui‖22 + λ0‖Θ0‖1, (4)

where we add an L1-regularization term to prevent overfit-
ting.
Although we have dropped the idea of using a classification
layer, we suggest that the classification layer might become
useful in the presence of additional data. For example, if
we were to use Wordnet resources freely, then we could re-
formulate the class structure that better reflects the seman-
tic hierarchy of the words. Then we will have sufficient
training data for each class for our classification layer.
Of course, regular sentences we normally encounter will
not be definitions of any words in general. But we ex-
pect this algorithm to learn the correct semantics associated
with the sentence we process by training on word-definition
pairs.

3.2 MESSAGE-PASSING-BASED RNN

In theory, directly assigning the definition embedding ei to
vi appears to be a sound way to represent vi. This intuition
naturally yields an iterative fixed-point iteration procedure
vi ← ei until convergence.
However, this process converges to bad embeddings empir-
ically. This is because of the premature usage of vi’s by
the RNN training procedure. That is, the RNN takes a con-
vex combination of each of the senses per plain word of the
sentence, but the embeddings of such senses have not yet
converged. Furthermore, the random initialization of the
senses seems to exacerbate the matter.
Here, we propose to use a simple form of a definition em-
bedding that not only addresses this problem, but also re-
duces the number of parameters. Furthermore, it can po-
tentially leverage good pre-existing embeddings to quickly
stabilize the learning of disambiguated word embeddings.
We will explain towards the end of this section, how this
approach is a simplification of the typical RNN-based def-
inition encoding.
The main idea is to approach the embedding task as simul-
taneously finding the clustering of the words and their coor-
dinates. A typical approach to this problem is to use man-

ifold learning algorithms such as multi-dimensional scal-
ing (MDS: Kruskal [1964]) or locally-linear embedding
(LLE: Roweis and Saul [2000]). However, such methods
require pairwise distances, which we lack.
Instead, we construct an embedding model where the em-
bedding of a word is influenced by the words in its def-
inition sentence. In particular, we assume a linear influ-
ence model where the plain words in the definition are lin-
early combined to update the corresponding disambiguated
word embedding. Our model takes doubly-convex combi-
nation of the words, where the first level combines the plain
words according to some pre-computed weights, and the
second level combines each disambiguated word of each
plain word. The second level is achieved by the αji’s we
train via Equation 4. This process is illustrated in Fig-
ure 3.2 for the word paper.n.4.

Figure 2: Illustration of passing influences.

Thus, the update formula takes the following recursive
form for each word vi:

vi ←
∑

d∈d(vi)

hd
∑

vj∈s(d)

αjivj . (5)

The plain word weights hd are normalized for each disam-
biguated word vi, and can be pre-computed as constants.
In our work, we initialize them as the inverse document
frequency (IDF) of the corresponding plain words, but any
weighting scheme is allowed. Intuitively, words that are de-
fined using similar words (i.e., words with similar meaning)
will have higher chance of receiving and passing influences
among themselves, and hence result in closer embedding.

In the context of graphical model, our procedure is rem-
iniscent of the belief propagation algorithm on the graph
formed by all the words in the dictionary. The plain
and disambiguated words consist the vertex set, where a
plain word receives directed edges from its disambiguated
words, and a disambiguated word receives directed edges
from the plain words in its definition. The edges are
weighted with either hd or αji accordingly as in Figure 3.2.
Under this interpretation, the updates to vi are similar to the
log-messages from the variable nodes, that are summed up.

Unfortunately, the graph we work with is not a tree. There-
fore the convergence of the update is not guaranteed. We
work around this issue by the following measure.
We introduce another parameter βt ∈ (0, 1) that changes
over each iteration epoch t, to balance between stabiliza-
tion and update:

vi ← (1− βt)vi + βt

 ∑
d∈d(vi)

hd
∑

vj∈s(d)

αjivj

 . (6)

High value of βt will aggressively reflect the update com-
ing from the message-passing encoder, while lower βt will
be more conservative and retain previous value of vi. When
training, we start with a high value of βt and gradually de-
crease βt over t. By decreasing βt, we can now ensure
convergence of our update procedure.
This update rule can be loosely thought of as an unnormal-
ized version of random walk, where each word receives in-
fluences from the plain words that constitute its definition.
We call it unnormalized because the outgoing influences
do not add up to 1. Under this intuition, the random walker
sends unnormalized influence to its neighbors. Then, words
sharing similar words will receive roughly similar influ-
ences, thus leading an approximate clustering of the seman-
tics.

Simplified RNN Finally, we point out that the message-
passing-based update can be thought of as a simplified
RNN computation in its own right. This RNN has an iden-
tity activation function, and operates by simply accumulat-
ing the inputs ignoring the order. Such a view has also been
adopted by (Hill et al. [2016]) under the name of Bag-of-
words (BOW) neural language model. Although it may ap-
pear to be a crude way to encode sentences, this method be-
comes effective when encoding short phrases. Since most
definition “sentences” we deal in this work are actually
phrase-level expressions, the use of BOW is justified.

3.3 OVERALL TRAINING

Our approach to word embedding involves two phases: a
regressor training phase and a message-passing-based up-
date phase. These two phases are intertwined in that the
variables updated in one phase is used as constants in the
other. Therefore, we take an alternating training scheme
where we fix one set of the variables while training for the
others.
When training the regressor (and other related parameters),
we freeze the disambiguated word vectors vi’s and update
the parameters Θ = {L,Θ0}. We would ideally have to
train the RNN until convergence, but we only runK rounds
of stochastic gradient descent on L1 in practice.
On the other hand, we spend more time on the message-
passing-based updates, since we found that such fixed-
point iteration converge relatively quickly. The iteration is
stopped when the maximum difference between the previ-

Algorithm 1 Overall algorithm
Input: K, β0 ∈ (0, 1), learning rate γ, ε
For training epoch t = 0, 1, · · ·
repeat

// Repeat the regressor training for K iterations
for i = 1, · · · ,K do

Θ← Θ− γ ∂J∂Θ (See Eqn 4 for J)
Update αji’s using Θ (Eqn 2)

end for
// Run iteration for message-passing RNN
repeat

∆← −∞
for Each word vi ∈ V do
vnew ← vi + βt(

∑
hd

∑
αjivj − vi) (Eqn 6)

∆← max{|vnew − vi|,∆}
vi ← vnew

end for
until ∆ < ε
βt+1 ← βtβ0

until Converged

ous value and the update is smaller than some small thresh-
old ε. Notice that the updates are in-place, meaning that the
new values are updated immediately rather than postponed
for a batch update. This allows the recently-updated values
to be used as soon as possible for quicker convergence. Our
full training procedure is outlined in Algorithm 1.

3.4 EXTENSION WITH BASE VECTORS

In the current presentation, we model the updates to vector
vi to be a function of purely its neighbors. In this section,
we provide a generalized extension to our scheme, where
each vi can also take a pre-trained vector bi into account
when updating. This becomes possible by a simple modifi-
cation to Equation 5:

vi ← bi +
∑

d∈d(vi)

hd
∑

vj∈s(d)

αjivj . (7)

The vectors bi are called base vectors, since they provide
base representations. The bi’s are supposed to be given
as pre-trained vectors but we briefly discuss how to lift
this assumption. We begin by treating each definition as
a short document and perform topic modeling on them to
compute topic distributions of each word. For example, la-
tent Dirichlet allocation (LDA: (Blei et al. [2003])) with k
topics yields a k-dimensional probability vector for each
word. Using these topic vectors, we are able to compute
the distance between any given two words using various
distance metrics such as the Bhattacharyya distance, or the
Jensen-Shannon distance. Such distances are gathered into
an N ×N matrix that are input to MDS. Performing MDS
on this matrix results in the vector representations of each
word that reflects the given distances. While these vectors

may not be the best representations, we expect them to be
good-enough initial values for our approach. This approach
works better when the definitions we have are of moderate
length. If not, one should consider using topic models that
are specialized to short texts (e.g., Yan et al. [2013]).
In Section 3.5, we give a scenario where this initialization
scheme becomes more useful. For the experiments, we do
not use the base vectors when computing the embeddings.

3.5 APPLICATIONS

Next we discuss about potential applications of our ap-
proach. There exist several well-known solutions for some
of the fields we address, but we stress that our structure is
particularly well-suited for such problems.

WORD SENSE DISAMBIGUATION

Word sense disambiguation (WSD) is a task where one has
to identify the correct sense of a plain word. An instance of
this problem is usually given in a sentence where the plain
word can be interpreted in a variety of ways for each of its
senses. For example, the word paper in the sentence “He
submitted a paper to the professor” would refer to the sense
paper.n.5, whose meaning is “a scholarly article”.
As such, disambiguating plain words involves comparing
each of the senses to the surrounding words in the context.
This is exactly how our model operates to assign weights
on the senses. To perform WSD, we simply input the given
sentence that contains the plain word w to disambiguate
into our RNN model, and read off the computed αwj’s.

OUT-OF-VOCABULARY EMBEDDING

One important shortcoming of all word embedding is the
processing of out-of-vocabulary (OOV) words. Most word
embedding algorithms heavily relies on co-occurrence pat-
terns in order to compute embeddings. However, rarely oc-
curring words or newly created words will likely have few
or no context data to use to compute the embeddings.
Our model, on the other hand, is able to compute the em-
beddings of any new word as long as its definition is pro-
vided as well. There is one other restriction that states the
definition should consist of known words only, but this nat-
ural to expect. In fact, a closed set of related definitions is
the minimally required information to learn the meaning of
a new word.
The process of embedding an unknown word is simple:
Run the definition through the RNN to compute the αji’s
and use them to perform a single step update (Equation 5)
on the unknown word.

ENCYCLOPEDIA EMBEDDING

So far, we have worked with a type of dictionary with lim-
ited information. We have implicitly assumed that each

definition is a sentence. However, there are much richer
resources nowadays that we can use in place of a simple
dictionary.
One prominent example is Wikipedia, which contains
multi-sentence and multi-modal definitions of concepts.
Furthermore, the entries are hyperlinked, so our random
walk framework naturally yields a local iterative algorithm.
That is, in hyperlinked environments, Equation 7 can be
thought as the Bellman equation (Bellman [2003]). The bi
would represent the contents of page i, while the hd’s and
the αji’s merge to become the random walk probability of
jumping from i to its outgoing neighbor j.

One factor to consider is the embedding of the entry doc-
ument, which is significantly different from embedding a
single sentence. One should employ multi-modal embed-
ding techniques to form a summary vector of the document.
Note that representing a document generally requires an
object more complex than a single vector. However, we
conjecture that sufficiently high-dimensional vector should
work well for documents that are highly focused on a single
concept.

4 EXPERIMENTS

To show the effect of sense embeddings, we perform both
qualitative and quantitative experiments. The qualitative
results will mainly show the relationship among the embed-
ded words, and the quantitative results will aim on solving
the word-sense disambiguation (WSD) task.
For the setting of our experiments, the only training cor-
pus we use is the list of words and their definitions ex-
tracted from WordNet (Miller [1995]). We first select a
small group of “seed words” from the English Wikipedia
corpora, by choosing the 10,000 most commonly occuring
plain words. Based on this set of seed words, we prune out
words that are not in the WordNet, and traverse the Word-
Net definition tree over the current pool of plain words used
in the definitions. Words (senses) that form the plain words
newly-encountered along the traversal are also added into
the vocabulary list. As the final refinement, we removed
words that occur less than three times in other definitions.
This last step filters out words like minor proper nouns
and scholar jargons. The final dictionary collected this
way consists of |V | = 82, 831 words whose definitions are
formed by |O| = 38, 730 plain words.
One disadvantage of using WordNet is that the definitions
are limited to words having one of four parts-of-speeches
(POSs): noun, verb, adjective, and adverb. This means all
stop-words including prepositions, conjunctions, and arti-
cles are left out of the main vocabulary. While it is crucial
to hold on to the stop-words to correctly learn the semantics
of a sentence, we ignore them in this work. The reason for
doing so is twofold: 1) we would like to assess how well
our algorithm can learn the embeddings in the face of lim-
ited vocabulary, and 2) full integration of stop-words into

the vocabulary might require sophisticated pre- and post-
processing. We use no other linguistic/textual resources in
this work.

As for the parameters of the model, we use the following
setting.

• The trainable inner-product matrix L is factored into
L = UU , where U is a diagonal matrix with non-
zero elements. The optimization of Equation 4 is per-
formed with respect to U instead of L.

• The decay schedule for βt is computed as βt =
0.8t+1. Values of β0 = 0.7 yielded similar results.
Pr(dm|vj) being roughly uniform, due to exponenti-
ating small values.

• The parameters Θ0 and the word vectors {vj} are ran-
domly initialized from the interval (−0.1, 0.1). Word
vectors are D = 300 dimensional.

• The per-plain-word coefficients {hd} for all d ∈ O are
computed as the IDF values over the dictionary. plain
word d, and normalizing them over the plain words
occurring in each word v ∈ V .

• The priors are initialized as uniform distributions:
Pr(vi) = |s(di)|−1

• We perform K = 5 steps of stochastic gradient de-
scent on Equation 4 with learning rate γ = 0.05, fol-
lowed by iterative update of the word vectors. The
iteration is stopped when the update size becomes
smaller than ε = 10−3. The size of the mini-batches
is set to 64.

4.1 QUALITATIVE RESULTS

The first experiment we perform is examining the near-
est neighbors of some often-confused words when in their
plain form. Table 1 shows the seven words we examine for
their nearest neighbors.

Table 1: Definitions of words used in Table 2.

Word Definition
hood.n.1 A violent young criminal.
hood.n.2 A protective covering part of a plant.
paper.n.1 A material made of cellulose pulp.
paper.n.5 A scholarly article.
bank.n.1 Sloping land.
bank.n.5 A stock held in reserve for future use.
apple.n.1 Fruit with red or yellow or green skin.

The measure used to retrieve the nearest neighbor is the
cosine similarity: sim(x,y) = x · y/‖x‖‖y‖. Notice that

the definitions are terse, and often seem to have insufficient
information to learn the precise meaning. The list of
nearest neighbors for seven selected words is given in
Table 2.
Most of the retrieved words generally fall within the same

category as the target word. There are two exceptions,
however, that are underlined in the table.
The first one is chiwere.n.1, whose definition is
“Language spoken by the Sioux people”. We conjec-
ture that this phenomenon is because of the flow of
influence starting with paper.n.1 → card.n.1 →
michigan.n.32 → sioux.n.1 → chiwere.n.1.
The reason of why the intermediate words did not appear
in the nearest neighbors seems to be their definition
lengths: longer definition tends to dampen the influence
of the composing words in our BOW model. On the other
hand, chiwere.n.1 is relatively short and contains the
plain word ‘Sioux’ which has an extremely high IDF. This,
combined with the high IDF values of the intermediate
words, boosted up the relatedness to paper.n.1.
The second exception is hereafter.r.2, whose
definition is “in a future life or state”. The influence
from bank.n.5 seems to have been passed via the term
‘future’. Although its meaning is not entirely different
from that of bank.n.5, it does seem a bit odd to be
included in the neighbor list.
On a passing note, the nearest neighbors of
apple.n.1 are all valid, despite their deceiving
forms. cortland.n.1, delicious.n.1, and
baldwin.n.3 are all types of apples.

The next set of experiments involves visualizing the em-
beddings in 2-dimension using t-SNE (van der Maaten and
Hinton [2008]). First, we examine how analogical trans-
formation of some words are reflected in their embeddings.
The analogies we examine are liquid-solid and female-male
relationships. For the former experiment, we take six words
drink.n.3, drink.v.1, magma.n.1, food.n.1,
eat.v.1, and rock.n.1 and project their embeddings
onto the 2-D plane. The first three words are related to liq-
uid objects, and the last three are their solid counterparts.
For example, magma.n.1 is a liquid form of rock.n.1.

We can see from Figure 4.1 that the liquid versions are all
generally located upward relative to the solid ones.
The second analogy is that of female-male relationship.
The words used in this set are the gender-swapped version
of the same concepts. Similarly to the previous embedding,
we observe a somewhat consistent relative positioning in
Figure 4.1.
Finally, we demonstrate that using an unprejudiced dictio-
nary eliminates gender-biased embeddings such as those
pointed out by Bolukbasi et al. [2016]. For this plot-
ting, we compare the relative positions of four occupations
fireman.n.1, policeman.n.1, housewife.n.1,

2A type of card game which has been mistaken as
michigan.n.1 when encoding sioux.n.1

Table 2: Nearest neighbors of select senses, with obvious “false neighbors” underlined.

Word 5 Nearest Neighbors
hood.n.1 bully.n.2, thugee.n.1, thuggery.n.1, muscleman.n.1, criminalism.n.1
hood.n.2 sheath.n.1, roof.n.1, skin.n.1, mask.n.4, roof.n.2
paper.n.1 cellulose.n.1, cellulosic.n.1, cellulose xanthate.n.1, pulp.n.3, chiwere.n.1
paper.n.5 scholarly.a.1, unscholarly.a.1, tome.n.1, orientalism.n.1, memoir.n.2
bank.n.1 sloping.a.1, acclivitous.a.1, slop.v.3, hipped.a.1, highland.n.1
bank.n.5 store.n.2, forehanded.a.2, hereafter.r.2, stock.v.5, future.a.2
apple.n.1 cortland.n.1, winesap.n.1, delicious.n.1, corer.n.1, baldwin.n.3

Figure 3: Liquid-solid relationship.

and seamstress.n.1, compared to two anchor words
man.n.1 and woman.n.1. The first two occupations
have been historically regarded as masculine jobs, while
the last two were thought as feminine jobs (as shown
etymologically). However, Figure 4.1 shows that our
dictionary-based embeddings ignore such stereotypes; the
positions of the occupations do not exihibit any patterns
relative to the embeddings of man.n.1 and woman.n.1.
This is not surprising, since the definitions for the four oc-
cupations used contain almost no gender-specific words,
with the exception of housewife.n.1, whose definition
is “A wife who manages a household while her husband
earns the family income”.

4.2 WORD SENSE DISAMBIGUATION RESULTS

Finally, we report result on the word sense disambiguation
(WSD) task (Jurgens and Klapaftis [2013]). The evaluation
set for this task had been provided by the SemEval2013
workshop, and we compare the performance of our ap-
proach to those of four other participants of the then-held
competition. In addition to the participants, we also ran
five baseline algorithms that rely on traditional WSD al-
gorithms. These include: 1) the Lesk algorithm (Lesk

Figure 4: Gender relationship.

[1986]), the adaptive Lesk (Banerjee and Pedersen [2002]),
cosine Lesk (which uses cosines to compute overlaps), path
similarity-based disambiguation (Leacock and Chodorow
[1998]), and information-theoretic approach (Lin [1998]).
Of these, we only report the result for the adaptive Lesk
since it outperformed the other four3.
The WSD task we address asks us to identify the correct
sense of a particular word in context. The input is a sen-
tence with a designated plain word in the sentence to dis-
ambiguate. The output should either be a single identi-
fied sense or multiple senses each labeled with applica-
bility weights. SemEval provides five different evaluation
metrics, but we only show three; two from the F1 mea-
sure family and one from the clustering measure family.
The first is the well-known Jaccard index and the second is
the weighted NDCG metric that computes a weighted F1
score. The third is the fuzzy NMI metric which views the
weighted sense identification as a fuzzy clustering. We di-
rect the readers to the cited paper for more information.
When identifying the sense, our algorithm simply com-
putes the αji coefficients via Equation 2 and the trained

3The baseline algorithms are collectively implemented by the
PyWSD package (https://github.com/alvations/pywsd)

Figure 5: Gender-neutral embedding.

sense embeddings. Then we remove the senses receiving
αji weights below a threshold of 0.02. For the Jaccard
measure, we select the sense with the highest weight, since
the Jaccard index does not account for the weights. Other
than a straightforward thresholding, we perform no extra
operations to fine-tune the final outcome. The result of our
system is given in Table 3.
Despite the high Fuzzy NMI score, the Jaccard index and

Table 3: Results of the SemEval2013 WSD task. Duplicate
entries indicate multiple submissions.

Algorithm Jaccard WNDCG FuzzyNMI
AI-KU1 0.197 0.387 0.065
AI-KU2 0.197 0.215 0.035
AI-KU3 0.244 0.332 0.039

Unimelb1 0.218 0.365 0.056
Unimelb2 0.213 0.371 0.060

UoS1 0.192 0.315 0.047
UoS2 0.232 0.374 0.045

La Sapienza1 0.149 0.311 -
La Sapienza2 0.149 0.383 -

ALesk (baseline) 0.254 0.293 0.041
DiBoots (ours) 0.209 0.370 0.074

the WNDCG score do not stand out. But keep in mind
that we only use a relatively small-sized corpus for an un-
supervised training, and perform no post-processing on the
WSD output. The competing algorithms, on the other hand,
make heavy use of large corpora such as ukWaC (Ferraresi
et al. [2008]) and Wikipedia, to train systems specifically
targeted for the WSD task. Table 4 contrasts the amount of
resources used by the competitors against ours. WN-sim
is a WordNet-based similarity measure that reflects the en-
tire ontological tree of WordNet. While there is room for
improvement, we claim that our algorithm provides a good

Table 4: Comparison of resource requirements. WN-
sim and WN-dict refer to the WordNet similarity func-
tions and dictionary, respectively. The corpora ukWaC and
Wikipedia each consist of 2 billion and 800 million English
words.

System Corpora External Algorithms
AI-KU ukWaC Fastsub, S-CODE, K-means
Unimelb Wikipedia Hierarichical Dir. Proc.
UoS ukWaC Depend. parser, MaxMax
La Sapienza ukWaC PageRank, WN-sim.
DiBoots WN-dict -

starting-ground for NLP applications.

5 DISCUSSION

Our algorithm does provide promising aspects in the field
of word embedding. While we do not achieve state-of-the
art results in the problems we address, the performance is
more than reasonable given the 6.9 MB dictionary size.
Furthermore, we do not process the text in any way, other
than simple case-lowering.
One interesting direction of improvement lies with lan-
guage pre-processing: We have ignored the POS tag, tense,
numbers, and compound nouns in this work. But such are
the important factors for properly encoding the semantics.
For example, the term “rocky mountain” should be treated
as a single compound noun instead of two as we do. Also,
as mentioned above, the restriction of WordNet definitions
to four major POS categories has excluded the processing
of many important conjunctions and prepositions such as
“and” and “for”. In order to better-reflect the meaning of
the definition sentence, we must devise a method to bring
in these words.
Another interesting direction is with combining existing
embeddings, motivated by Table 2. The nearest neighbors
of the word apple.n.1 are all valid apples, but are
unfamiliar to the general public. Other embeddings such
as GloVe will retrieve more user-friendly words, since they
are trained to recognize naturally co-occurring word pairs
such as apple-banana or apple-fruit. While the nearest
neighbors DiBoots retrieves might be “more correct” than
words such as banana.n.1, they might be inadequate
for non-professionals. After all, acquiring precise seman-
tics from the dictionary is often not what people expect.
In that respect, using our algorithm to fine-tune existing
co-occurrence-based embeddings seems like a desirable
combination.
Acknowledgement B.Kang and K.-A. Sohn are sup-
ported by the National Research Foundation of
Korea (NRF) grant funded by the Ministry of Ed-
ucation [NRF-2016R1A6A3A11932796 and NRF-
2016R1D1A1B03933875, respectively.]

References
S. Banerjee and T. Pedersen. An adapted Lesk algorithm

for word sense disambiguation using WordNet. In Pro-
ceedings of CICLing, 2002.

R. Bellman. Dynamic Programming. Dover Publications,
Incorporated, 2003. ISBN 0486428095.

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3, 2003.

T. Bolukbasi, K. Chang, J. Zou, V. Saligrama, and A. Kalai.
Man is to computer programmer as woman is to home-
maker? Debiasing word embeddings. In Proceedings of
NIPS, 2016.

A. Ferraresi, E. Zanchetta, M. Baroni, and S. Bernardini.
Introducing and evaluating ukWaC, a very large web-
derived corpus of english. In Proceedings of the 4-th
Web as Corpus (WAC) Workshop, 2008.

F. Hill, K. Cho, A. Korhonen, and Y. Bengio. Learning to
understand phrases by embedding the dictionary. Trans-
actions of the Association for Computational Linguis-
tics, 4, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term mem-
ory. Neural Computation, 9, 1997.

I. Iacobacci, M. T. Pilehvar, and R. Navigli. SensEmbed:
Learning sense embeddings for word and relational sim-
ilarity. In Proceedings of IJCNLP, 2015.

D. Jurgens and I. Klapaftis. SemEval-2013 Task 13: Word
sense induction for graded- and non-graded senses. In
Proceedings of International Workshop on Semantic
Evaluation, 2013.

R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Tor-
ralba, R. Urtasun, and S. Fidler. Skip-thought vectors.
In Proceedings of NIPS, 2015.

J. Kruskal. Nonmetric multidimensional scaling: a numer-
ical method. Psychometrika, 29, 1964.

C. Leacock and M. Chodorow. Combining local con-
text and wordnet similarity for word sense identification.
Computational Linguistics, 24, 1998.

M. Lesk. Automatic sense disambiguation using machine
readable dictionaries: how to tell a pine cone from an ice
cream cone. In Proceedings of SIGDOC, 1986.

D. Lin. An information-theoretic definition of similarity.
In Proceedings of ICML, 1998.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
Distributed representations of words and phrases and
their compositionality. In Proceedings of NIPS, 2013.

G. Miller. WordNet: A lexical database for english. Com-
munications of the ACM, 38, 1995.

J. Pennington, R. Socher, and C. Manning. GloVe: Global
vectors for word representation. In Proceedings of
EMNLP, 2014.

S. Roweis and L. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290, 2000.

L. van der Maaten and G. Hinton. Visualizing high-
dimensional data using t-SNE. Journal of Machine
Learning Research, 9, 2008.

L. Vilnis and A. McCallum. Word representation via gaus-
sian embedding. In Proceedings of ICLR, 2015.

X. Yan, J. Guo, Y. Lan, and X. Cheng. A biterm topic
model for short texts. In Proceedings of WWW, 2013.

X. Zhang, J. Zhao, and Y. LeCun. Character-level convo-
lutional networks for text classification. In Proceedings
of NIPS, 2015.

