
Synthesis of strategies in influence diagrams

Manuel Luque and Manuel Arias and Francisco J. Dı́ez
Dept. Artificial Intelligence, UNED

Juan del Rosal, 16
28040 Madrid, Spain

{mluque,marias,fjdiez}@dia.uned.es

Abstract

Influence diagrams (IDs) are a powerful tool for
representing and solving decision problems un-
der uncertainty. The objective of evaluating an
ID is to compute the expected utility and an opti-
mal strategy, which consists of a policy for each
decision. Every policy is usually represented as a
table containing a column for each decision sce-
nario, i.e., for each configuration of the variables
on which it depends. The no-forgetting assump-
tion, which implies that the decision maker al-
ways remembers all past observations and de-
cisions, makes the policies grow exponentially
with the number of variables in the ID. For hu-
man experts it is very difficult to understand the
strategy contained in huge policy tables, not only
for their size, but also because the vast major-
ity of columns correspond to suboptimal or im-
possible scenarios and are hence irrelevant. This
makes it difficult to extract the rules of action, to
debug the model, and to convince the experts that
the recommendations of the ID are reasonable.
In this paper, we propose a method that presents
the strategy in the form of a compact tree. It
has been implemented in OpenMarkov, an open-
source software tool for probabilistic graphical
models. This facility was essential when eval-
uating an influence diagram for the mediastinal
staging of non-small cell lung cancer; the op-
timal strategy, whose biggest policy table con-
tained more than 15,000 columns, was synthe-
sized into a tree of only 5 leaves.

1 INTRODUCTION

Influence diagrams (IDs) are a graphical framework for
representing and solving uncertain decision problems
(Howard and Matheson, 1984; Bielza et al., 2010). The
evaluation of an ID consists in obtaining the expected util-

ity and an optimal strategy, formed by a policy for each
decision in the model. Every policy is usually represented
by a table containing a column for each decision scenario,
i.e., for each configuration of the variables whose values
are known when making the decision. For example, the ID
in Figure 1 contains two decision nodes, drawn as squares:
whether to do a test (T ) and whether to apply a therapy (D).
It has two chance nodes, drawn as circles that represent the
presence of the disease (X) and the result of the test (Y ).
The domains of these variables are {+t,¬t}, {+d,¬d},
{+x,¬x}, {+y,¬y, np} respectively, where +y denotes
a positive result of the test, ¬y a negative result, and np
means that the test has not been performed. It also con-
tains two utility nodes, drawn as hexagons, which represent
the cost and benefit of the therapy (U1) and the cost of the
test (U2). Figure 2b shows the optimal policy for the de-
cision D in the form of a table that contains a column for
each configuration of T and Y , the variables known when
making decision D, as shown in OpenMarkov, an open-
source tool for probabilistic graphical models.1 The two
lower rows correspond to the two values for D: +d (apply
the therapy) or ¬d (no therapy). They represent a proba-
bility distribution for D given each configuration of T and
Y . When there is one optimal option, its probability is 1;
in OpenMarkov that cell is colored in red. When there is
a tie between two or more optimal options, all of them are
assigned the same probability. The optimal policy for deci-
sion T is shown in Figure 2a. The optimal strategy consists
of these two policy tables.

This way of representing the strategy faces several prob-
lems. First, the no-forgetting assumption, which implies
that the decision maker always remembers all past obser-
vations and decisions, makes the policy tables grow expo-
nentially with the number of variables known when making
them. In our example, the policy for D in Figure 2b con-
tains 3 × 2 = 6 columns. Second, many of the columns
in the table may correspond to scenarios that are impos-
sible due to structural constraints of the problem. Thus,
when we decide not to do the test (T = ¬t), the test results

1See www.openmarkov.org.

www.openmarkov.org


Figure 1: An ID for the decide-test problem.

(a) Policy for T .

(b) Policy for D.

Figure 2: Optimal policy tables for the ID in Figure 1. Dif-
ferent numerical parameters in the ID may lead to different
optimal policies, but the structure of the tables would al-
ways be the same.

Y = +y and Y = ¬y are impossible; when we decide to
do it, the value Y = np (test not performed) is impossi-
ble. Therefore, three of the columns in Figure 2b are irrele-
vant, regardless of the numerical parameters of the problem
(sensitivity, specificity, costs, etc.) and should be removed
from the table. Third, depending on the values of the nu-
merical parameters, some columns may correspond to sub-
optimal scenarios. This is the case for the column {T = ¬t,
Y = np}when the optimal decision is to do the test and for
the columns {T = +t, Y = +y} and {T = +t, Y = ¬t}
when the optimal decision is to do it. Therefore, in this ex-
ample only one or two out of the 6 columns in Figure 2b
are relevant for the optimal strategy.

In general, the proportion of irrelevant columns grows ex-
ponentially with the number of variables. For example,
MEDIASTINET is an influence diagram for lung cancer (it
is explained in further detail in Sec. 3.3.2); the policy table
for the last decision in this ID contains 15,552 columns,
but only 5 of them make part for the optimal strategy; even
worse, the relevant columns cannot be detected by just an-
alyzing this table, because they depend on the probabilities
of its configurations and on the optimal policies for previ-
ous decisions. The problem is that standard algorithms for
the evaluation of IDs only return the policy tables, without
being able to extract the relevant columns nor to combine
the optimal choices for different decisions into a single rep-
resentation that can be easily understood by human experts.

For this reason, we have developed an algorithm that builds
a strategy tree by using dynamic programming; more pre-
cisely, it extends the variable elimination algorithm de-

scribed by Jensen and Nielsen (2007) and refined by Luque
and Dı́ez (2010). The version proposed in this paper builds
the strategy tree at the same time it operates with the prob-
ability and utility potentials to compute the maximum ex-
pected utility.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the definitions of influence diagrams and
their evaluation. Section 3 presents the algorithm for com-
puting the tree representation of the strategy. Section 4 con-
tains the conclusions and proposes some lines for future
research.

2 FOUNDATIONS

2.1 INFLUENCE DIAGRAMS

In this paper a capital letter (X) denotes a variable and a
lower-case letter (x) a generic value of the corresponding
variable. A bold capital letter (X) denotes a set of variables
and a bold lower-case letter (x) a configuration of them.
When there is an arc X → Y in a graph, we say that X is
a parent of Y and Y is a child of X . Pa(X) is the set of
parents of X and pa(X) is a configuration of Pa(X).

Influence diagrams (Howard and Matheson, 1984) are a
framework for representing and solving probabilistic de-
cision problems. Formally, an influence diagram (ID) con-
sists of an acyclic directed graph having three disjoint sets
of nodes: decisions (VD), chance nodes (VC) and util-
ity nodes (VU ). Decision nodes represent the actions
that are under the direct control of the decision maker;
they are represented graphically as squares or rectangles.
Chance nodes represent uncertain events; they are drawn
as ovals or rounded rectangles. Utility nodes quantify
the decision maker’s preferences and are depicted as dia-
monds or hexagons. In medical IDs, utility nodes represent
health outcomes (quality of life, morbidity, mortality...),
and sometimes economic costs. The parents of a node can
only be of type chance or decision, i.e., utility nodes have
no children.

An ID contains three types of arcs, depending on the type of
node they go into. Arcs into chance nodes represent prob-
abilistic dependencies. Arcs into decision nodes represent
availability of information or temporal precedence between
decisions; thus, an arc from a node X into a decision node
D means that the value taken by X is known when making
the decision. Arcs into utility nodes indicate the domain of
the associated utility functions.

We assume that a directed path connects all the decision
nodes, which induces a total ordering of the decisions,
{D1, D2, . . . , Dn}. This order partitions VC into a col-
lection of disjoint subsets, {C0,C1, . . . ,Cn}, and induces
a partial order ≺ in VC ∪VD:

C0 ≺ {D1} ≺ C1 ≺ . . . ≺ {Dn} ≺ Cn . (1)



The variables known to the decision maker when deciding
on Dj are called informational predecessors of Dj and de-
noted iPred(Dj). We assume the no-forgetting hypothesis,
which states that the decision maker remembers all previ-
ous decisions and observations. In particular, iPred(Dj)
is the set of variables that occurs before Dj under ≺:
iPred(Dj) = C0 ∪ {D1} ∪C1 ∪ . . . ∪ {Dj−1} ∪Cj−1.

The quantitative information that defines an ID is given
by: (1) a conditional probability P (X|pa(X)) assigned to
each chance node X for each configuration of its parents,
pa(X), and (2) a potential ψU (pa(U)) assigned to each
utility node U , which maps each configuration of its par-
ents onto a real number. (A potential is a real-valued func-
tion over a set of variables.) When there are several utility
nodes in the ID, we assume that there is an implicit sum
among them.

2.2 EVALUATION OF IDs

2.2.1 Policies and strategies

A policy for a decision D is a probability distribution de-
fined overD and conditioned on the set of its informational
predecessors, PD(d|iPred(D)). If PD is degenerate, i.e.,
consisting of only ones and zeros, we say that the policy is
deterministic; otherwise, we say it is stochastic.

A strategy ∆ for an ID is a set of policies, one for each
decision, {PD | D ∈ VD}. If every policy in the strat-
egy ∆ is deterministic, then ∆ is said to be deterministic;
otherwise ∆ is stochastic.

A strategy ∆ induces a joint probability distribution over
VC ∪VD defined as follows:

P∆(vC ,vD) = P (vC | vD)
∏

D∈VD

PD(d|iPred(D)) .

(2)
where P (vC | vD) is the product of the conditional proba-
bilities:

P (vC | vD) =
∏

X∈VC

P (x|pa(X)) .

We define the expected utility under the strategy ∆, denoted
by EU(∆), as:

EU(∆) =
∑
vC

∑
vD

P∆(vC ,vD)ψ(vC ,vD). (3)

where ψ(vC ,vD) is the sum of the utilities:

ψ(vC ,vD) =
∑
U∈VU

ψU (pa(X)) .

An optimal strategy is a strategy ∆opt that maximizes the
expected utility:

∆opt = arg max
∆∈∆

EU(∆), (4)

where ∆ is the set of all the strategies for the ID. Each
policy in an optimal strategy is said to be an optimal policy.
The maximum expected utility (MEU) is the expected utility
under an optimal strategy.

The evaluation of an ID consists in finding the MEU and an
optimal strategy. It can be proved (Cowell et al., 1999) that

MEU =
∑
c0

max
d1

. . .max
dn

∑
cn

P (vC | vD)ψ(vC ,vD) .

(5)

The optimal policy for decision Di is (in the case of a tie,
any of the values of Di that maximize that expression can
be arbitrarily chosen):

δDi
(iPred(Di)) = arg max

di∈Di

∑
ci

max
di+1

. . .
∑
cn−1

max
dn∑

cn

P (vC | vD)ψ(vC ,vD) . (6)

2.2.2 Variable elimination

One of the algorithms for evaluating IDs is variable elim-
ination with division of potentials (Jensen and Nielsen,
2007). It operates on the set of probability potentials Φ
and the set utility potentials Ψ of the ID by eliminating the
variables in the opposite order of ≺: first each of the vari-
ables in Cn, thenDn, then those in Cn−1, thenDn−1, etc.,
as indicated in line 5 of Algorithm 1. It returns the MEU
and an optimal strategy, in the form of a set of policies,
∆—see also (Luque and Dı́ez, 2010) for a more detailed
explanation and justification of this algorithm.

3 SYNTHESIZING THE STRATEGY

3.1 DEFINITION OF STRATEGY TREE

In this section we show that, instead of representing the
strategy as a set of policy tables, it is more efficient to use
a strategy tree, which by definition has the following prop-
erties:

1. it has three types of nodes: chance, decision and nil;

2. every non-terminal node X represents a decision or a
chance variable of the ID (but several chance nodes in
the tree may correspond to the same node in the ID);

3. every terminal node is nil and its parent is a decision;

4. each decision node has exactly one child;

5. the ancestors of a decision node D in the tree are in-
formational predecessors of D in the ID; and

6. each arc outgoing from a node X is labeled with a
non-empty subset of states of X , and each state labels
at most one arc.



1 Function variableElimination(ID):
Result: {MEU, ∆}

2 Φ← probability potentials in the ID;
3 Ψ← utility potentials in the ID;
4 ∆← ∅ ; // strategy (set of policies)
5 V← ordered array of {VC ∪VD};
6 while V is not empty do
7 X ← first variable in V;
8 // take out the potentials that depend on X
9 ΦX ← {φ ∈ Φ | X ∈ dom(φ)};

10 Φ← Φ \ΦX;
11 ΨX ← {ψ ∈ Ψ | X ∈ dom(ψ)};
12 Ψ← Ψ \ΨX;
13 // compute the joint probability and the total
14 // utility for the potentials that depend on X
15 φjoint ←

∏
φ∈ΦX

φ;
16 ψtotal ←

∑
ψ∈ΨX

ψ;
17 if X ∈ VC then
18 φmarg ←

∑
x φjoint;

19 φcond ← φjoint/φmarg;
20 ψnew ←

∑
x φcond · ψtotal;

21 else // X is a decision
22 // then φjoint does not depend on X
23 φmarg ← projectx φjoint;
24 ψnew ← maxx ψtotal;
25 // find the optimal policy for this decision
26 δX ← arg maxx ψtotal;
27 ∆←∆ ∪ {δX};
28 // store the new potentials
29 Φ← Φ ∪ {φmarg}
30 Ψ← Ψ ∪ {ψnew}
31 ψfinal ←

∑
ψ∈ΨX

ψ

32 // ψfinal does not depend on any variable;
33 // it contains just one value
34 MEU← first value of ψfinal
35 return {MEU, ∆}

Algorithm 1: Variable elimination with division of po-
tentials.

Figure 3: A strategy tree for the ID in Figure 1 as shown
in OpenMarkov. Terminal nodes are not displayed because
they convey no information. The size and structure of the
optimal strategy depends on the numerical parameters of
the ID.

Figure 3 shows a strategy tree for the ID in Figure 1.

3.2 ALGORITHM FOR BUILDING THE
STRATEGY TREE

In the original variable elimination method (Algorithm 1)
each probability potential assigns a real number to each
configuration of its variables, φ(x) ∈ R, and the same
holds for utility potentials, ψ(x) ∈ R. However, the modi-
fied version that we present in this paper operates with ex-
tended utility potentials, such that ψ∗(x) = (u, s) ∈ R×S,
where S is the space of strategies (in the form of trees).
We denote by u(ψ∗(x)) and s(ψ∗(x)) the utility and the
strategy of ψ∗, respectively, for configuration x. We de-
scribe now the modifications that must be introduced in the
algorithm. We do not discuss the computation of utilities
because it is the same as in the original version.

3.2.1 Initialization

In line 3 of Algorithm 1 the utility potentials must be ex-
tended by assigning to each configuration x the strategy
tree that only contains one node, nil. The utility does not
change: u(ψ∗(x)) = ψ(x).

3.2.2 Elimination of a decision

The elimination of decision D is determined by the po-
tential ψ∗total(d,y)—cf. line 24 in Algorithm 1—where Y
is the set of variables that coexist with D in at least one
potential. In the same way as the utility is computed
by taking the highest utility and discarding the others,
the strategy s(ψ∗new(y)) is built by making D the root
of the tree and drawing one branch labeled with x =
arg maxx′ u(ψ∗total(x

′,y)). For example, when eliminating



D2X

D1

U1 U2

(a)

D2

×
+d

(b)

X

D1

×
¬d

D1

×
+d

¬x +x

(c)

X

D1

D2

×
+d

¬d

D1

D2

×
+d

+d

¬x +x

(d)

Figure 4: (a) An influence diagram with two decisions; the
order is X ≺ D1 ≺ D2. (b) Strategy in the potential ψ∗2
obtained when eliminatingD2. (c) Strategy in the potential
ψ∗1 obtained after eliminatingD1 andX . (d) Strategy in the
potential [ψ∗1 +ψ∗2 ](x) computed at line 31 in Algorithm 1;
it is built by replacing each nil node in (c) with the tree in
(b).

D2 for the ID in Figure 4b, Y = ∅ and s(ψ∗new(�)) is the
tree shown in Figure 4b—“�” is the only configuration of
the empty set.

In the case of a tie between two or more states of X , it is
possible to label the branch with all of them instead of ran-
domly selecting one; users should be informed that when
a branch outgoing from a decision is labeled with several
states it means that they are all optimal and it is indifferent
to choose any of them.

Please note that in the modified version of Algorithm 1
lines 26 and 27 should be removed because now it is not
necessary to build a policy table for any decision.

3.2.3 Elimination of a chance variable

The elimination of a chance variable X is performed by
multiplying a conditional probability φcond(x|y) and an ex-
tended utility potential ψ∗total(x,y) and then marginalizing
for X in order to obtain s(ψnew(y))—cf. line 20 in Algo-
rithm 1—where Y is the set of variables coexisting with
X in at least one potential. In the most simple case, the
strategy for each configuration y is built by making X the
root of the tree and adding a branch for each state x and
copying s(ψ∗total(x,y)) in that branch. For example, when
eliminating X for the ID in Figure 4b, the two decisions

have already been eliminated and Y = ∅; s(ψ∗new(�)) is
the tree shown in Figure 4c.

However, it is often possible to build a simplified tree by
applying these rules:

1. When no decision has been eliminated yet,
s(ψ∗total(x,y)) = nil for all x. In this case, it is
more efficient to make s(ψnew(y)) = nil, because it
does not make sense to include in the strategy tree a
variable that is not an informational predecessor of
any decision. This is the reason why the strategy in
Figure 3 does not contain any node for variable X
(Disease), whose value is never known.

2. When φcond(x|y) = 0, the value x must not generate
a branch. For example, the node Y in Figure 3 has no
outgoing branch for np because when the test is done
the probability of “test not performed” is 0. This way
the algorithm avoids adding branches corresponding
to impossible scenarios.

3. When φcond(x|y) = 1 for a certain value x, X must
not make part of the strategy—at least for configu-
ration y—and we should just make s(ψnew(y)) =
s(ψ∗total(x,y)). The reason is that a variable that can
only take one value in a certain scenario does not con-
tribute any information and would be unnecessary in
the strategy tree. For example, if the optimal decision
for T in the ID of Figure 1 were ¬t (not to do the test)
the probability of Y = np (test not performed) would
be 1 and it would not make sense to include Y and its
only branch, np, in the strategy.

4. When there are two states x1 and x2 such that
s(ψ∗total(x1,y)) = s(ψ∗total(x2,y)), both of them must
be put in the same branch (instead of having two
branches with the same strategy).

3.2.4 Sum of extended utility potentials

In lines 16 and 31 the modified version of Algorithm 1 has
to sum extended utility potentials. Let ψ∗1(x1) and ψ∗2(x2)
be two such potentials, x a configuration of X = X1 ∪
X2, s1 = s(ψ∗1(x↓X1))—where x↓X1 is the projection of
x onto X1, i.e., the configuration of X1 compatible with
x—and s2 = s(ψ∗2(x↓X2)). The strategy s([ψ1 + ψ2](x))
is the result of connecting s1 and s2 by adding arcs from
the leaves of the one to the root of the other, as shown in
Figure 4d.

3.2.5 Termination

In the traditional version of variable elimination, ψfinal is
obtained after eliminating all the variables (line 31). Hence,
we have MEU = ψfinal(�). Analogously, in the modi-
fied version we haveMEU = u(ψ∗final(�)) and the optimal
strategy is s(ψ∗final(�)).



Figure 5: An ID for a hypothetical medical problem.

The interpretation of the tree returned by the algorithm is
straightforward by reading each chance node as an “if”
statement. For example, the strategy shown in Figure 3
can be read as follows: “do the test; if the result is positive,
apply the therapy; if it is negative, do not apply it”.

3.3 MORE COMPLEX EXAMPLES

3.3.1 AN ID WITH TWO TESTS

Let us extend the above example by adding a second test,
such as the result of the first (when performed) is avail-
able before deciding whether to do the second, as shown in
Figure 1. There are two therapies, incompatible with each
other, which implies that there is only one decision about
therapy, with three possible values: therapy 1, therapy 2,
and no therapy.

Each decision about a test has two possible values (to do
it or not) and the result of each test has three possible val-
ues (positive, negative, and not performed). Therefore, the
policy table for Therapy has 2×3×2×3 = 36 columns, re-
gardless of the numerical parameters of the model (sensitiv-
ities, specificities, costs, etc.). However, the optimal strat-
egy does not depend on the parameters. For example, just
by multiplying the three costs by a common factor—i.e.,
keeping the proportion among them—we may obtain 6 dif-
ferent strategies; four of them are shown in Figure 6. When
the costs are very high, the optimal strategy is not to do any
test nor to apply any therapy (Fig. 6a); in this case, the
strategy tree contains just one node. In other cases the op-
timal strategy tree has up to 23 nodes, with 4 leaves. These
trees show the optimal strategy much more clearly than the
set of three policy tables, having 1, 6, and 36 columns re-
spectively; we should note that even though this is a very
small ID, the proportion of irrelevant columns in the last ta-
ble ranges from 88% to 97%, depending on the numerical
parameters.

3.3.2 MEDIASTINET

MEDIASTINET (Luque et al., 2016a) is an ID for the me-
diastinal staging of non-small cell lung cancer, which con-
sists in determining whether there is metastasis in the me-
diastinum (this is represented by node N2 N3 in Fig. 7), be-
cause it is the key factor for selecting a therapy for this type
of cancer. Initially a CT scan is performed to all patients;
the result is represented by the node CT scan. Then the
doctor can perform different diagnostic tests—TBNA, PET,
EBUS, EUS, and mediastinoscopy (MED)— and then de-
cides which Treatment to apply. Therefore, the ID contains
8 chance variables and 5 decisions; the number of columns
in their respective policy tables is 2, 12, 72, 1,296, and
15,552. The number of relevant columns is 2 (100%), 3
(25%), 3 (4.2%), 5 (0.39%), and 5 (0.032%, i.e., 1 in every
3,110).

Given that the algorithm presented in this paper has been
incorporated into the most recent version of OpenMarkov,
we invite the reader to try it as follows: download the
ID MEDIASTINET,2 open it with OpenMarkov, compile it
(with the thunder button), accepting the default values to
convert it into a unicriterion problem, right-click on the last
decision and have a look at the optimal policy table. Then
click the S button and check that the strategy tree only con-
tains 5 leaves, as shown in Figure 8.

4 CONCLUSIONS AND FUTURE WORK

A problem of representing the optimal strategy as a set of
policy tables is that their size grows exponentially with the
number of informational predecessors for each decision.
The first attempt to alleviate it was to transform each policy
table into a list-based representation (Fernández del Pozo
et al., 2005), but this approach is unsatisfactory because
those lists can still be very large and because the issue is
not how to compact the whole table, but how to present
the few relevant columns intuitively, which cannot not be
found out by examining each single policy.

The approach presented in this paper is completely differ-
ent: it represents each strategy as a tree (instead of a set of
tables) and uses an extended version of the variable elimi-
nation algorithm (Jensen and Nielsen, 2007) that builds the
tree at the same time as it computes the maximum expected
utility. Other inference algorithms, such as arc reversal
(Olmsted, 1983), can be adapted in the same way.

Our algorithm has been incorporated to OpenMarkov, an
open-source tool for probabilistic graphical models. In this
paper we have applied it to two toy examples and to ME-
DIASTINET, an influence diagram for a real medical prob-
lem (Luque et al., 2016a), whose policy table for the last
decision contained more than 15,000 columns; in contrast,

2www.probmodelxml.org/networks/id/
ID-mediastinet-ce.pgmx.

www.probmodelxml.org/networks/id/ID-mediastinet-ce.pgmx
www.probmodelxml.org/networks/id/ID-mediastinet-ce.pgmx


(a) (b)

(c) (d)

Figure 6: Optimal strategy trees for different assignments of costs for the ID in Figure 5.



Figure 7: Influence diagram of MEDIASTINET.

the strategy tree for this ID contains only 5 leaves, which
proves that only 0.03% of the columns in that table are rel-
evant.

A limitation of the construction of the strategy tree is that
in the worst case the number of leaves grows exponentially
with the number of chance variables that are informational
predecessors of the last decision—previous decisions do
not increase the number of leaves because each decision
node in the tree has just one outgoing branch—but, as we
have seen in the examples, the tree is usually much smaller.

An open line for future research is how to reduce the size
of the strategy tree, because there are some problems for
which the resulting tree, even though much smaller than
the policy tables, is still large—for instance, in the ID
Arthronet.3 In some cases reordering the chance variables
between consecutive decisions might lead to significant re-
ductions. Another approach would be to apply coalescence
(Olmsted, 1983), i.e., to collapse the subtrees that appear
several times in the tree. For example, in Figure 8 there
are two identical subtrees having Decision PET as the root;
collapsing them would transform the tree into an acyclic di-
rected graph with only 3 leaves.

Another research topic is to adapt this method to other rep-
resentation frameworks for uncertain decision problems,
such as decision analysis networks (DANs), an alterna-
tive to IDs for asymmetric decision problems (Dı́ez et al.,
2012), and Markov IDs (Dı́ez et al., 2017), an extension of
IDs especially designed for cost-effective analysis in health
economics.

We are interested in evaluating the proposed algorithm on a
large set of models. But, given that there are very few real-
world non-small IDs, we will have to find a method for ran-
domly generating IDs whose structure is similar to those we
would expect to find in real-world problems. One possibil-
ity for addressing this issue would be to use parametrized

3www.probmodelxml.org/networks/id/
ID-arthronet-ce.pgmx.

templates, as in (Luque et al., 2016b).

Acknowledgments

This work has been supported by the Spanish Government
under grants TIN2009-09158, PI13/02446, and TIN2016-
77206-R, and co-financed by the European Regional De-
velopment Fund. We wish to thank the members of our re-
search group for many fruitful discussions. We also thank
all developers of OpenMarkov for providing a basis for our
implementation.

www.probmodelxml.org/networks/id/ID-arthronet-ce.pgmx
www.probmodelxml.org/networks/id/ID-arthronet-ce.pgmx


Figure 8: Optimal strategy tree for MEDIASTINET.

References

Bielza, C., Gómez, M., and Shenoy, P. P. (2010). Modeling
challenges with influence diagrams: Constructing prob-
ability and utility models. Decision Support Systems,
49:354 – 364.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegel-
halter, D. J. (1999). Probabilistic Networks and Expert
Systems. Springer-Verlag, New York.

Dı́ez, F. J., Luque, M., and König, C. (2012). Deci-
sion analysis networks. In Cano, A., Gómez, M., and
Nielsen, T. D., editors, Proceedings of the Sixth Eu-
ropean Workshop on Probabilistic Graphical Models
(PGM’12), pages 83–90, Granada, Spain.

Dı́ez, F. J., Yebra, M., Bermejo, I., Palacios-Alonso,
M. A., Arias, M., Luque, M., and Pérez-Martı́n, J.
(2017). Markov influence diagrams: A graphical tool
for cost-effectiveness analysis. Medical Decision Mak-
ing, 37:183–195.

Fernández del Pozo, J. A., Bielza, C., and Gómez, M.
(2005). A list-based compact representation for large
decision tables management. European Journal of Op-
erational Research, 160:638–662.

Howard, R. A. and Matheson, J. E. (1984). Influence di-
agrams. In Howard, R. A. and Matheson, J. E., ed-
itors, Readings on the Principles and Applications of
Decision Analysis, pages 719–762. Strategic Decisions
Group, Menlo Park, CA.

Jensen, F. V. and Nielsen, T. D. (2007). Bayesian Networks
and Decision Graphs. Springer-Verlag, New York, sec-
ond edition.

Luque, M. and Dı́ez, F. J. (2010). Variable elimination
for influence diagrams with super-value nodes. Interna-
tional Journal of Approximate Reasoning, 51:615 – 631.

Luque, M., Dı́ez, F. J., and Disdier, C. (2016a). Optimal se-
quence of tests for the mediastinal staging of non-small
cell lung cancer. BMC Medical Informatics and Decision
Making, 16:1–14.

Luque, M., Nielsen, T. D., and Jensen, F. V. (2016b). Any-
time decision-making based on unconstrained influence
diagrams. International Journal of Intelligent Systems,
31:379–398.

Olmsted, S. M. (1983). On Representing and Solving Deci-
sion Problems. PhD thesis, Dept. Engineering-Economic
Systems, Stanford University, CA.


