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Abstract

We study for the first time, a leadership
game in which one agent, acting as leader,
faces another agent, acting as follower, whose
behaviour is not known a priori by the
leader, being one among a set of possible
behavioural profiles. The main motivation is
that in real-world applications the common
game-theoretical assumption of perfect ratio-
nality is rarely met, and any specific assump-
tion on bounded rationality models, if wrong,
could lead to a significant loss for the leader.
The question we pose is whether and how the
leader can learn the behavioural profile of a
follower in leadership games. This is a “natu-
ral” online identification problem: in fact, the
leader aims at identifying the follower’s be-
havioural profile to exploit at best the poten-
tial non-rationality of the opponent, while min-
imizing the regret due to the initial lack of in-
formation. We propose two algorithms based
on different approaches and we provide a re-
gret analysis. Furthermore, we experimentally
evaluate the pseudo-regret of the algorithms in
concrete leadership games, showing that our
algorithms outperform the online learning al-
gorithms available in the state of the art.

1 INTRODUCTION

The study of scenarios in which multiple strategic agents
interact is a challenging problem that is central in Ar-
tificial Intelligence from many years. The modelling of
these scenarios can be elegantly achieved by means of
non-cooperative game theory tools (Fudenberg and Ti-
role, 1991), while the task of solving a game is in many
cases an open problem, in which the most suitable tech-

niques to adopt strictly depend on information avail-
able to the agents. Two extreme situations can be dis-
tinguished: when all the information about the game
is common to the players (e.g., utility functions and
rationality—either perfect or bounded), the problem is
basically an optimization problem, solvable by means
of techniques from operations research (Shoham and
Leyton-Brown, 2008), conversely, when players have no
information about the opponents, the problem is a multi-
learning problem, and learning techniques are com-
monly employed (Tuyls and Weiss, 2012). Some at-
tempts were also done to pair these two approaches, al-
lowing agents to play at the equilibrium if the opponent is
rational and to play off the equilibrium learning to exploit
her at best otherwise (Conitzer and Sandholm, 2007).

Recently, there has been an increasing interest in lead-
ership games, where an agent—called leader—publicly
commits to a strategy and subsequently another agent—
called follower—observes the commitment and then
takes her decision. Such a paradigm has been success-
fully employed in a number of applications in the se-
curity domain (Basilico et al., 2017; Pita et al., 2008;
Tsai et al., 2009), where a defender (acting as leader)
must protect some targets in an environment from an at-
tacker (acting as follower), who aims at compromising
such targets without being detected. The success of lead-
ership games in real-world applications is due to a num-
ber of reasons: committing to a strategy is the best the
leader can do, the equilibrium finding problem is con-
ceptually simple since the follower can merely play her
best response to the commitment of the leader without
any strategic reasoning about the leader’s behaviour, and
the solution is unique except degeneracy. The crucial is-
sue is that in real-world applications the follower may
be not perfectly rational, not necessarily playing her best
response to the leader’s commitment. For instance, a ter-
rorist could decide either to attack a target that is not
patrolled, since she is sure to not be caught, or a tar-
get not so valuable itself, but that would cause a huge



panic reaction in the population (e.g., this is what hap-
pened in November 2015 in Paris attacks at the Bataclan
theatre). The same challenge may be faced by a com-
pany that aims at planning the production of a product
and has to decide when and how it is convenient to enter
the market when another company is already the leader
in such a market—this is the well-known Stackelberg
duopoly (Von Stackelberg, 1934). Whenever the assump-
tion of perfect rationality is not met, each agent may in
principle exploit her opponent’s strategy.

In the present paper, we focus on leadership games in
which the follower may be not rational. The literature
provides a number of models of bounded rationality (An
et al., 2013; Nguyen et al., 2013). Probably, the most
elegant one is the Quantal Response (QR) (McFadden,
1984), which fixes the probability distribution over the
non-optimal actions of an agent on the basis of their
optimality gap. The crucial issue is that all the works
on bounded rationality make an assumption about the
specific behaviour of the opponent and this assumption
could be never met in real-world applications. In that
case, such an assumption may lead to an arbitrarily loss
for the leader. Differently from the existing literature,
we study the original single-agent-learning problem in
which the behaviour of the follower is one among a set
of possible behavioural profiles—e.g., the rational one
(i.e., best response), a rationally bounded one based on
the QR, a stochastic strategy—and the leader does not
initially know it, but she can learn it by exploiting the op-
ponent’s behaviour at best. Our goal is to design online
learning techniques capable to identify the behaviour of
the follower while minimizing the regret due to the ini-
tial lack of information. We propose a set of algorithms
based on sequential learning techniques (Bubeck et al.,
2012) that are able to infer the behaviour of the follower
the leader is playing against exploiting the repeated in-
teractions between the two players.

Original contributions The main original contributions
we provide in this paper are as follows. We define a
novel scenario in which a leader plays against a fol-
lower whose behaviour is unknown but it belongs to a
set of known profiles. We show that state-of-the-art ban-
dit and expert algorithms—suitable for our problem—
suffers from a linear and logarithmic regret, respectively,
in the length of the time horizon. Thus, we introduce two
novel approaches to deal with our problem, bridging to-
gether game-theoretical techniques and online learning
tools. In the first approach, the leader has a belief about
the follower and updates it during the game. We name
the algorithm Follow the Belief (FB) and we provide a
finite-time analysis showing that the regret of the algo-
rithm is constant in the length of the time horizon. In
the second approach, namely Follow the Regret (FR),

the learning policy is driven directly by the estimated
expected regret and is based on a backward induction
procedure. Finally, we provide a thorough experimental
evaluation in concrete leadership settings inspired to se-
curity domains, comparing our algorithms with the main
algorithms available in the state of the art of the online
learning field and showing that our approaches provide
a remarkable improvement in terms of expected pseudo-
regret minimization.

2 RELATED WORKS

Here, we mention the main works related to ours. We
mainly refer to the literature on security games since
most of the works on leadership games with bounded
rationality and/or learning deal with these games. Se-
curity games model the problem of finding the optimal
schedule of scarce resources when facing strategic ad-
versaries. Many of them deal with real-world problems,
e.g., in Pita et al. (2008) game theoretic techniques have
been applied to ensure the security of the Los Angeles
International Airport (LAX), in Tsai et al. (2009) the
authors exploit the Stackelberg paradigm to study how
to schedule undercover federal air marshals on domes-
tic U.S. flights, while in Pita et al. (2011) such paradigm
is employed to allocate the Transportation Security Ad-
ministration (TSA) scarce resources to provide protec-
tion within several U.S. airports. A higher degree of in-
teraction among the agents is captured in Basilico et al.
(2017), where an alarm system to detect potential attacks
is introduced. The main issue is that such works only deal
with a fully rational attacker while in real-life scenarios
attackers might be rationally bounded.

Bounded rationality has been introduced in security
games models in the so called Green Security Games
(GSGs), a generalization of Stackelberg games (Fang
et al., 2015). A remarkable example is Qian et al. (2014),
in which the problem of protecting natural resources
from illegal extraction is studied: since such extractions
are frequent, it is possible for the defender to learn the
distribution of the resources analyzing the attacker’s be-
havior. A recent application in which an ad hoc adaption
of the QR function, named Subjective Utility Quantal
Response (SUQR) (Nguyen et al., 2013), has been em-
ployed is the prevention from poachers, who hunt endan-
gered species (Ford et al., 2014; Yang et al., 2014). Here,
the QR is employed to model the non-rational behavior
of the poachers. In a similar setting, Qian et al. (2016)
analyze the problem in which the defender is aware only
of the attack activities at targets they protect, modeling
it with Restless Multi-Armed Bandit and using Whittle
index policy to compute patrol strategies.

In security games, Balcan et al. (2015); Blum et al.



(2015); Paruchuri et al. (2008) deal with a single ratio-
nal attacker whose preferences may be of multiple types
in Bayesian fashion. Specifically, the different attackers
are discriminated according to the evaluations they give
to the targets, thus leading to the problem of solving
Bayesian Stackelberg Games.

The main limitation of all the aforementioned works is
that the defender plays against an attacker whose behav-
ioral profile is a priori known, while in real-world sit-
uation it may be unknown. When dealing with sequen-
tial decision learning problems, a customary approach
consists in exploiting Multi-Armed Bandit (MAB) tech-
niques, as done by Klı́ma et al. (2014) and Xu et al.
(2016). Even though both works focus on minimizing
the expected regret, the different actions corresponding
to the arms are the possible targets that may be chosen,
while in our work we are discriminating among different
attacker types.

3 PROBLEM FORMULATION

Although our work can be employed in principle for any
leadership scenario, for the sake of clarity, we focus on
security domains, thus referring to the leader as defender
and to the follower as attacker.

Let us consider a 2-player normal-form repeated game
GN defined over a finite number of rounds N ∈ N,
where a defender D and an attacker A play against
each other in some environment with some valuable tar-
gets M = {1, . . . ,M}, characterized by values v =
(v1, . . . , vM )T , vm ∈ (0, 1]. The goal of the defender
D is to protect such targets while the attacker A aims at
compromising them. The space of actions of D and A is
given by the set of targets such that D chooses the tar-
get to protect, while A chooses the target to attack. The
course of the game is represented in Figure 1. Specif-
ically, at each round n ∈ {1, . . . , N}, the defender D
announces the strategy she commits to σD,n ∈ ∆M

(Line 1), where ∆M denotes the M -dimensional sim-
plex, while A observes such a commitment (Line 2).
Then, they concurrently play their action over the target
space (Line 3), i.e., the defender plays actions iD,n ∈M
according to σD,n while A, the follower, plays iA,n ∈
M according to some attacker model σA(σD,n) ∈ ∆M .
The game is zero-sum: ifD andA choose the same target
at round n, they both get a utility equal to 0, conversely, if
A attacks the i-th target whileD decides to protect the j-
th one,A gets vi andD gets−vi since she lost the target.
More concisely, the defender incurs in the loss (Line 4):

ln := viA,n
I{iA,n 6= iD,n}, (1)

not suffering from any loss if both players select the same

for each n ∈ {1, . . . , N}

1. D publicly commits to a strategy σD,n
2. A observes the strategy D committed to
3. D and A play iD,n and iA,n, respectively
4. D incurs in loss ln according to Equation (1)

Figure 1: Leader-follower interaction

target.1 Hereafter, we assume that the defender is able to
compute the best response strategy σ∗D(A) ∈ ∆M if she
is given the attacker model she is playing against. Simi-
larly, we denote with σ∗A(σD) ∈ ∆M the best response
A plays against strategy σD of D. According to such as-
sumption, we can compute the expected loss ofD against
a generic attacker A as:

L(A) :=
∑
m∈M

σA(σ∗D(A))m vm (1− σ∗D(A)m), (2)

where σ·(·)m is the probability associated with target m
by the strategy.

The problem we study in this work is defined as follows.

Definition 1. The Follower’s Behaviour Identifica-
tion in Security Games (FBI-SG) problem is a tuple
(GN ,A, Ak∗), where GN is a 2-player normal-form re-
peated game andA = {A1, . . . , AK} is a set of possible
attacker behavioural profiles, with Ak∗ ∈ A denoting
the actual profile of the attacker in GN , unknown to the
defender D.

In this work, we cast the FBI-SG as a sequential decision
learning problem, where, at each round n, the defender
aims at selecting her best response to the attacker in or-
der to identify the actual attacker profile Ak∗ ∈ A while
minimizing the loss suffered during the learning process.

Definition 2. A policy U is an algorithm able to provide
at each round n a strategy profile σD,n for the defender
D. Formally:

U(hn) := σD,n,

where hn is the history collected so far, i.e.,
all the strategies declared by the defender
{σD,1, . . . ,σD,n−1}, the actions played by the
two players {iD,1, iA,1, . . . , iD,n−1, iA,n−1} in the past
rounds and the corresponding losses {l1, . . . , ln−1}.

We evaluate the performance of a given policy U over a
finite-time horizon ofN rounds by means of the expected

1Hereafter, we denote with I{E} the indicator function of
a generic event E.



cumulative pseudo-regret, defined as:

RN (U) = E

[
N∑
n=1

ln

]
− L∗N,

where L∗ := L(Ak∗) is the expected loss incurred by
the defender if she plays the best response to the actual
attacker Ak∗ , ln is the loss incurred by using the policy
U at round n and the expectation E[·] is taken w.r.t. the
stochasticity of the attacker strategy, the defender policy
and the policy U. The goal of a generic policy U is to min-
imize the pseudo-regret RN (U) incurred while learning
the true attacker’s profile.

4 ANALYSED ATTACKER PROFILES

In this section, we describe the different attacker pro-
files we study in this work and formalize the definition
of the attacker strategy σAk∗ (·) for two sets of attackers,
grouped depending on their ability to change their be-
havior w.r.t. the strategy D commits to. Specifically, on
one side, we take into account stochastic attackers, which
disregard the strategy of D, on the other, we focus on
strategy-aware attackers, able to modify their strategies
depending on the defender announced strategy σD,n.

4.1 STOCHASTIC ATTACKER

The first class of attackers is the Stochastic (Sto) one,
where the attacking player does not take into account the
strategy σD,n announced by the defenderD and thus has
a fixed probability over time to attack the available tar-
gets. This class of attackers models opponents focused
on specific targets and whose preferences are not influ-
enced by the defender behaviour. At round n, a stochastic
attacker Sto plays according to the strategy:

σSto(σ) = p(Sto) ∀σ ∈ ∆M ,

where p(Sto) ∈ ∆M is a probability distribution over
the targets, which is known to D. In this case, the de-
fender best response σ∗D(σSto) is defined as:

σ∗D(Sto)m =

{
1 if m = arg max

i∈M
{vi p(Sto)i}

0 otherwise
.

4.2 STRATEGY AWARE ATTACKER

The second class of attackers we examine in this paper
consists of strategy aware attackers, corresponding to fol-
lowers able to modify their strategy depending on the
strategy of the defender D. In particular, we study Stack-
elberg (Sta) attackers (Von Stackelberg, 1934), who are

able to exploit the information provided by strategy pro-
file declared by the defender D and optimally respond
to it, and SUQR attackers (Nguyen et al., 2013), having
bounded rationality and being capable to partially exploit
the information provided by the defender, disregarding
heavily patrolled targets.

Stackelberg Attacker Given a strategy profile decla-
ration σD,n, a Stackelberg attacker Sta responds with:

σSta(σ) = arg max
σ′∈∆M

∑
m∈M

σ′m vm (1− σm)

and the defender best-responds to this attacker is:

σ∗D(Sta) = arg min
σ′∈∆M

max
σ∈∆M

∑
m∈M

σ′m vm (1− σm),

as reported in (Conitzer and Sandholm, 2006), where it
is proved that, for 2-player zero-sum games, the optimal
mixed strategy for the leader to commit to is equivalent
to computing the minmax strategy, i.e., to minimize the
maximum expected utility that the opponent can obtain.

SUQR Attacker The SUQR attacker responds to the
commitment σD,n as:

σSUQR(σ)m =
exp{−ασm + βvm + γ}∑M
h=1 exp{−ασh + βvh + γ}

,

where α ∈ R+, β, γ ∈ R are parameters known to the
defender, characterizing the attacker and depending on
the underlying application. In this case, we do not have
a closed form for the best response, but we can compute
the minmax solution to the problem following the steps
taken in (Yang et al., 2011). We will refer to σ∗D(SUQR)
as the best response to an attacker with a SUQR profile.

5 IDENTIFYING THE ATTACKER

Initially, we describe how the state-of-the-art techniques
can be adapted to address the FBI-SG problem. Direct
approaches are provided by MAB (Bubeck et al., 2012)
and expert (Cesa-Bianchi and Lugosi, 2006) algorithms,
where arms/experts represent the different attacker be-
havioural profiles in A. These are general-purpose tech-
niques not exploiting the structure of the problem we are
tackling. Summarily, MAB algorithms do not use the ex-
pert feedback to learn the attacker behaviour, while ex-
pert algorithms do not differentiate among feedbacks re-
ceived after the defender committed to different strate-
gies. We show below the regret obtained when these al-
gorithms are used in a FBI-SG problem.

When using MAB algorithms, we are able to directly ap-
ply the derivation of an upper bound over the pseudo-
regret available in the literature to our problem. We can



state the following result for the case of UCB1 (Auer
et al., 2002).

Theorem 1 (UCB1 Pseudo-regret upper bound). Let us
consider an instance of the FBI-SG problem and apply
the UCB1 algorithm, where each possible behavioural
profile Ak ∈ A is an arm which receives reward −ln if
played. Then, we incur in the following pseudo-regret:

RN (U) ≤ 8
∑
k 6=k∗

lnN

(∆Lk)
+

(
1 +

π2

3

) ∑
k 6=k∗

∆Lk,

where ∆Lk =
∑M
m=1 σAk∗ (σ∗D(Ak))m vm (1 −

σ∗D(Ak)m)−L∗ is the expected regret of playing the best
response to attacker Ak when the real attacker is Ak∗ .

When using an expert algorithm, for instance Follow
the Perturbed Leader (FPL) (Cesa-Bianchi and Lugosi,
2006), we could exploit an (expert) feedback over all
arms since we can compute the expected loss also for the
attacker profiles that have not been played at turn n. Nev-
ertheless, if the attacker is strategy aware and we adopt
an expert feedback, D incurs in a linear regret. We for-
mally state this result in the following theorem.

Theorem 2 (Expert pseudo-regret upper bound). Let us
consider an instance of the FBI-SG problem and apply
the FPL algorithm, where each possible profile Ak is
an expert and receives, at round n, an expert reward
equal to minus the loss she would have incurred observ-
ing iAk∗ ,n by playing the best response to the attacker
Ak. Then, there always exists an attacker set A s.t. the
defender D incurs in an expected pseudo-regret of:

RN (U) ∝ ∆LkN.

The proof of Theorem 2 is reported in Appendix A for
reasons of space. The above results show that MAB tech-
niques provide, in the general case, better guarantees
than expert algorithms, assuring a worst-case pseudo-
regret of O(ln N) vs. O(N).

In the following, we propose two different techniques
that effectively exploit the information both on stochastic
and strategy aware attackers, providing better guarantees
over the worst-case pseudo-regret. The first algorithm,
Follow the Belief (FB), conducts the learning process
taking into account the belief of the learner about the dif-
ferent behavioural profiles. The second method, Follow
the Regret (FR), is based on a value iteration algorithm
over the belief space that minimizes the expected regret
over the next rounds.

5.1 FOLLOW THE BELIEF

The pseudo-code of FB is presented in Algorithm 1.
At the beginning, FB initializes a set of active attackers

Algorithm 1 FB
1: P = A
2: for all A′ ∈ P do
3: b1(A′) = 1

K

4: for all n ∈ {1, . . . , N} do
5: Select Akn = arg max

A′∈P
bn(A′)

6: Play σ∗D(Akn)
7: Observe attacker action iAk∗ ,n

8: for all A′ ∈ P do
9: if σA′(σ∗D(Akn))iAk∗ ,n

= 0 then
10: P ← P \A′
11: else
12: Compute bn+1(A′) with Equation (3)

P = A and a belief b1(Ak) = 1/K for all the attacker
profiles Ak ∈ P (Lines 1-3). At each round n, the al-
gorithm selects the attacker Akn for which the belief is
the largest one (where ties are broken arbitrarily), best
responds with the strategy σ∗D(Akn) and observes the
action actually played by the attacker iAk∗ ,n (Lines 4-7).
After that, the belief is updated as follows:

bn+1(A′) =
wn(A′)∑
A∈P wn(A)

, (3)

where wn(A) = bn(A′) σAk∗ (σ∗D(Akn))iAk∗ ,n

(Lines 8-12). In other words, the algorithm updates the
likelihood of the sequence of the actions for each profile
in A′ ∈ P according to the observed action iAk∗ ,n

at round n (Line 12). If the realization iAk∗ ,n is not
consistent for attacker A′ (zero likelihood), profile A′ is
removed from P (Line 10).

Let bkj,t := Eσ∗D(Aj)[Bk,t], be the expected value of the
belief we get for attacker Ak when we are best respond-
ing to Aj and the true type is Ak∗ 6= Ak and denote with
∆bk := minj|Aj∈A ln(bk∗j,t) − ln(bkj,t) the minimum
difference of such values. We can upper bound the regret
of FB algorithm as stated by the following theorem.

Theorem 3 (FB pseudo-regret upper bound). Given an
instance of the FBI-SG problem s.t. ∆bk > 0 for each
Ak ∈ A and applying FB, the defender incurs in a
pseudo-regret of:

RN (U) ≤
K∑
k=1

2(λ2
k + λ2

k∗)∆Lk
(∆bk)2

,

where λk := maxm∈Mmaxσ∈S ln(σAk
(σ)m) −

minm∈Mminσ∈S ln(σAk
(σ)m)I {σAk

(σ)m 6= 0} is
the range where the logarithm of the beliefs realizations
lies (excluding realizations equal to zero, which end the
exploration of a profile) and S := ∪kσ∗D(Ak) is the set
of the available best response to the attackers profile.



For space reasons, we report the proof of Theorem 3
in Appendix A. Comparing the derived results, we no-
tice that the FB algorithm presents an upper bound over
the pseudo-regret that is strictly better than that of MAB
algorithms, i.e., a constant regret O(1) in N vs. a loga-
rithmic one O(ln N).

5.2 FOLLOW THE REGRET

FB adopts the belief as discriminant factor to select the
strategy profile to play in the next round. Conversely,
in what follows, we describe the FR algorithm which is
driven by a value iteration procedure that directly min-
imizes the expected regret over the remaining rounds
{n+1, . . . , N}. In principle, one should perform the pro-
cedure until the last roundN , but, for computational pur-
poses, an approximate solution can be obtained by set-
ting a maximum level of recursion hmax and carry on the
optimization only on the rounds {n + 1, . . . ,min{n +
hmax, N}}.

Algorithm 2 FR(hmax)

1: for all Ak ∈ A do
2: Initialize b(1)

k = 1
K

3: for all n ∈ {1, . . . , N} do
4: R̂ = RE(1,b(n), hmax)
5: Select Akn s.t. kn = arg mint R̂t
6: Play σ∗D(Akn)
7: Observe attacker action iAk∗ ,n

8: for all Ak ∈ A do
9: Compute b(n+1)

k according to Equation (6)

Algorithm 3 RE(h,b, hmax)

1: for all Ak ∈ A do
2: for all (i, j) ∈M2 do
3: for all At ∈ A do
4: b̂t ← bt σAt

(σ∗D(Ak))j

5: b̂← b̂∑
m b̂m

6: Compute rij,k according to Equation (4)
7: if h < hmax then
8: R̃ = RE(h+ 1, b̂, hmax)
9: rij,k ← rij,k + mink R̃k

10: Compute R̂k according to Equation (5)
11: Return R̂

The pseudo-code of the FR algorithm is presented in Al-
gorithm 2, which recursively exploits the subroutine Al-
gorithm 3. At first, the FR algorithm requires to initial-
ize a belief vector b(1)

k = 1
K for each attacker Ak ∈ A

(Line 2, Alg. 2). At each round n, the algorithm com-
putes the estimated expected regret vector R̂ suffered

by D if she plays the best response σ∗D(Ak) to Ak for
each attacker profile Ak ∈ A (Line 4, Alg. 2), by re-
cursively calling the Regret Estimator (RE) algorithm.
Here, for every possible attacker Ak ∈ A and for every
pair of possible actions of the defender and the attacker
(i, j) ∈M2, we create a new belief vector b̂ by updating
b according to the information the attacker played action
j (Line 4, Alg. 3). After that, we compute rij,k, i.e., the
estimated expected loss in the case the defender D plays
action iD,n = i and the attacker Ak plays iAk,n = j
averaged over the beliefs bn(A), as follows:

rij,k = vjI{i 6= j} −
∑

t∈{1,...,K}
b̂t L(At). (4)

If the maximum recursion level hmax has been reached,
the above value corresponds to the total estimated ex-
pected regret, otherwise we recursively compute the re-
gret by calling RE over the following rounds and sum it
to the instantaneous one rij,k (Line 9, Alg. 3). Finally we
compute the estimated total regret of choosing a specific
attackerAk for the next turn (Line 10, Alg. 3) as follows:

R̂k :=

M∑
i=1

M∑
j=1

rij,k σ
∗
D(Ak)i

·
∑
Ak′∈A

bk′ σAk′ (σ
∗
D(Ak))j ,

(5)

where the regret rij,k is weighted with the probabilities
that action i is selected by D and action j is selected by
A. The defender D plays, for the current round n, the
best response to the attacker Akn , providing the mini-
mum estimated expected regret R̂kn (Line 6, Alg. 2) and
observing action iAk∗ ,n undertaken by the attacker Ak∗ .
Finally, the algorithm updates the beliefs (Line 9, Alg. 2)
as follows:

b
(n+1)
k =

wnk∑
k′∈{1,...,K} wnk′

, (6)

where wnk = b
(n)
k σAk

(σ∗D(Akn))iAk∗ ,n
.

5.3 COMPUTATIONAL COMPLEXITY

In this section, we analyse the proposed algorithms
from a computational perspective. FB has complexity
O(KN), since it performs a belief update for each of
the K attacker profiles, repeating this operation over N
rounds. Thus, it results being linear both in the num-
ber of profiles and the rounds the game is played. Con-
versely, FR requires much more computational time.
Indeed, for each attacker profile K, we consider M
actions for both players and update the expected re-
gret over the K profiles current beliefs. This leads to



Table 1: Number and type of attacker profilesA used for
the experiments and total number of attacker K.

Sta Sto SUQR U K
C1 1 1 - - 2
C2 1 - 1 - 2
C3 1 1 1 - 3
C4 1 5 - - 6
C5 1 - 5 - 6
C6 1 5 5 - 11
C7 1 5 5 1 12

a cost of O(M2K2) for a single round and an over-
all computational cost of O(M2K2N) over the prob-
lem horizon N . If we want to employ the strategy
from the current round n to the end of the horizon
to compute the estimated expected regret R̂n(Ak) by
means of a forward procedure, the computational cost
required by FR is O(M2(N−n)K2(N−n)) for a round.
Thus, the final computational cost required by FR is∑N
n=1O(M2(N−n)K2(N−n)) = O

(
(MK)2N−1
(MK)2−1

)
≈

O(M2NK2N ).

6 EXPERIMENTAL EVALUATION

We compare the proposed algorithms FB and FR (with
hmax = 1) with the state-of-the-art online learning ap-
proaches from the MAB (Bubeck et al., 2012) and ex-
pert (Kalai and Vempala, 2005) fields. In particular, We
evaluate UCB1 algorithm (Auer et al., 2002), from the
MAB literature, and the FPL algorithm (Cesa-Bianchi
and Lugosi, 2006), from the expert literature.

In the experiments we also analyse the case in which
one of the attacker behavioural profiles, namely U , is
stochastic and her strategy is unknown to the defender
D (to avoid possible misunderstandings, let us notice that
the stochastic behaviour we describe in Section 4 is based
on the assumption that the defender knows the strategy).
In this case, we are still able to allow the leader to com-
mit to a strategy that somehow minimizes the expected
loss. Indeed, we can assign:

σ∗D,n(U) = FPL(hn),

where FPL(·) ∈ ∆M is the pure strategy prescribed by
the FPL algorithm. In this case the algorithm suffers from
an additional regret due to the fact that, even if it is able
to correctly detect the profile, it does not know the best
response σ∗D(U), but it needs to learn it over time.

6.1 EXPERIMENTAL SETTING

The experimental setting is as follows. We use a time
horizon of N = 1000 rounds, with a different amount of

targets M ∈ {5, 10} and different profile configurations
Ci, listed in Table 1, in which we report also the number
of different stochastic, SUQR, and unknown stochastic
behavioural profiles for each configuration. The config-
urations are ordered from the ones with smallest num-
ber of behavioural profiles (K = 2) to the largest one
(K = 12). In principle, these problems should be of in-
creasing difficulty, since the algorithms have to identify
the actual behaviour among a larger number of options.

The strategies of the stochastic behavioural profiles Sto
are drawn from a Dirichlet distribution with θ = 1M
(uniform distribution over ∆M ) and the target values v
are uniformly sampled in [0, 1]M . The parameters for the
SUQR behavioural profiles are drawn from a uniform
probability distribution over the intervals α ∈ [5, 15],
β ∈ [0, 1] and γ ∈ [0, 1], whose choice is motivated
by the experimental results obtained by Nguyen et al.
(2013). For each combination of behavioural profiles and
targets size, 10 random configurations (i.e., target values
v and attacker profile setsA) are generated and the actual
behavioural profile Ak∗ is drawn from a uniform proba-
bility distribution over the given profiles set A. For each
configuration we run 100 independent experiments and
we compute the average regret. We evaluate the perfor-
mance in terms of expected pseudo-regret R(U)n with
n ∈ {1, . . . , N} and computational time spent by the
algorithms to execute a single run (N = 1000 rounds).
Each component of the noise vector z in FPL is drawn
from a uniform probability distribution over the inter-
val [0, v̂K

√
N ], where v̂ = maxm∈M vm, as described

in Cesa-Bianchi and Lugosi (2006), Chapter 4.

6.2 EXPERIMENTAL RESULTS

We report in Table 2 the empiric pseudo-regret obtained
in the experimental results. It can be observed that the al-
gorithms we propose dramatically outperform the base-
lines provided by the state of the art. Furthermore, there
is no strong statistical evidence that one algorithm be-
tween FB or FR outperforms the other. We recall that FR
is more computationally demanding than FB, thus one
might prefer FB for problems with many attacker be-
havioural profiles, since it has comparable performance
w.r.t. FR and is computationally more efficient. Notably,
the FPL algorithm generally improves its performance
when tested over larger target space M = 10. We think
this could be induced by the fact that the specific config-
urations in which the FPL gets linear regret (i.e., the ones
considered in Theorem 2) are less likely to occur when
we have a larger amount of targets. Remarkably, our al-
gorithms provide good performance also when a stochas-
tic behavioural profile U whose strategy is unknown to
the defender is present among the possible ones.



Table 2: Expected pseudo-regret RN (U) over N = 1000 rounds and corresponding 95% confidence intervals for
different configurations (best results are in boldface).

C1 C2 C3 C4 C5 C6 C7

M
=

5 UCB1 14.12± 1.88 8.62± 3.73 23.92± 5.23 45.75± 11.68 1.76± 0.41 75.82± 19.94 62.31± 12.22
FPL 18.71± 35.02 11.16± 5.98 38.5± 27.18 49.8± 62.33 0.77± 0.12 68.88± 64.13 72.5± 53.34
FB 0.19± 0.13 0.2± 0.18 0.5± 0.24 0.48± 0.2 0.09± 0.03 0.67± 0.2 7.92± 4.87
FR 0.1± 0.06 0.27± 0.36 0.42± 0.3 0.62± 0.24 0.07± 0.04 1.07± 1.1 4.84± 3.32

M
=

1
0 UCB1 16.77± 1.2 5.24± 2.79 21.2± 3.76 60.58± 8.89 4.24± 5.02 61.52± 22.48 58.93± 17.42

FPL 1.08± 0.2 5.97± 3.5 12.06± 4.31 2.63± 0.99 3.24± 3.96 17.69± 16.03 22.49± 12.26
FB 0.13± 0.03 0.1± 0.02 0.33± 0.16 0.57± 0.17 0.05± 0.01 0.58± 0.14 16.06± 6.89
FR 0.06± 0.05 0.12± 0.21 0.21± 0.12 0.43± 0.19 0.02± 0.02 0.6± 0.43 14.65± 8.1

In Figures 2 to 7 we show how the pseudo-regret Rn(U)
evolves during the time horizon in the most challeng-
ing configurations, namely C5, C6 and C7. The results
in other configurations, omitted due to reasons of space,
confirm the results obtained in C5, C6, C7 and are re-
ported in Appendix B. The plots are in a semilogarith-
mic scale for a better comprehension. In all the presented
configurations, except in C7 with M = 10, there is sta-
tistical significance that the FB and FR algorithms out-
perform the baselines on average since the confidence
intervals do not overlap after the first ≈ 50 rounds. In
configuration C7 with M = 10, our algorithms outper-
form the baselines only on average.

Finally, we analyze the computational effort required by
our algorithms to solve instances over N = 1000 rounds
and M ∈ {5, 10, 20, 40} targets.2 The average compu-
tational times are reported in Table 3 (the full version
of Table 3 with confidence intervals is reported in Ap-
pendix B). There are three observations we can make.
First, we could not report the values for M ∈ {20, 40}
for FR since the required computational cost is too high
(≥ 3600 seconds). Second, both FB and FR present the
same trend w.r.t. the configurations: in fact, when the be-
havioral profile of the opponent can only be either Sta
or Sto, both algorithms are twice more efficient than in

2The computational times for the UCB1 and FPL algorithm
are omitted since they are in line with the one of FB.

Table 3: Computational time in seconds needed by FB
and FR to solve an instance over N = 1000 rounds.

C1 C2 C3 C4 C5 C6 C7

M = 5
FB 6 11 12 4 24 15 15
FR 77 121 170 146 652 1029 1114

M = 10
FB 10 22 23 7 63 47 48
FR 356 679 887 960 4402 7527 7292

M = 20
FB 33 222 138 34 485 227 229
FR − − − − − − −

M = 40
FB 105 2061 1412 129 2348 1634 1643
FR − − − − − − −

cases in which SUQR adversaries are introduced. This
is due to the fact that both Sta and SUQR models ex-
ploit the strategy the defender commits to, making more
difficult to distinguish among them. The most difficult
configuration is C7, where the presence of a stochastic
unknown adversary make things even worse since the
distribution must also be estimated. Finally, as expected,
we notice that FB is always faster than FR: in fact, while
they are both polynomial in the actions available to the
players, i.e., the number of targets, the former is linear
while the latter quadratic (since we set hmax = 1).

7 CONCLUSIONS AND FUTURE
RESEARCH

In this work, we study for the first time, a novel lead-
ership game in which the leader plays against a fol-
lower whose behaviour is unknown, but it belongs to a
set of known profiles. We provide two novel approaches
to tackle this problem, namely FB and FR, bridging to-
gether game-theoretical techniques and online learning
tools. In the FB algorithm the leader is driven by the be-
liefs on the possible follower profiles, while the FR one
is based on a learning policy directly driven by the es-
timated expected regret, computed according to a value
iteration procedure. For the first approach, we provide
also a finite-time analysis, showing that the regret of the
algorithm is constant in the number of rounds, while ban-
dit and expert algorithms available in the state of the art
suffer from a logarithmic and linear regret, respectively.
Finally, we experimentally evaluate the performance of
our algorithms in leadership settings inspired by concrete
security domains, showing that our approaches provide a
remarkable improvement in terms of empirical pseudo-
regret minimization w.r.t. the main algorithms available
in the state of the art of the online learning field.

In the future, we will study an upper bound over the re-
gret of the FR algorithm. Furthermore, we will include
new types of attacker profiles and we will extend the
framework towards a multi-agent-learning setting, allow-
ing the attacker to exploit a finite/infinite memory.
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Figure 2: Expected pseudo-regret for the configuration C5

with M = 5 targets.
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Figure 3: Expected pseudo-regret for the configuration C6

with M = 5 targets.
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Figure 4: Expected pseudo-regret for the configuration C7

with M = 5 targets.
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Figure 5: Expected pseudo-regret for the configuration C5

with M = 10 targets.
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Figure 6: Expected pseudo-regret for the configuration C6

with M = 10 targets.
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Figure 7: Expected pseudo-regret for the configuration C7

with M = 10 targets.
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M., Ordóñez, F., Kraus, S., and Paruchuri, P. (2008).
Deployed ARMOR protection: The application of a
game-theoretic model for security at the Los Angeles
International Airport. In AAMAS, pages 125–132.

Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., and
Steigerwald, E. (2011). Guards: game theoretic se-
curity allocation on a national scale. In AAMAS, pages
37–44.

Qian, Y., Haskell, W. B., Jiang, A. X., and Tambe, M.
(2014). Online planning for optimal protector strate-
gies in resource conservation games. In AAMAS, pages
733–740.

Qian, Y., Zhang, C., Krishnamachari, B., and Tambe,
M. (2016). Restless poachers: Handling exploration-
exploitation tradeoffs in security domains. In AAMAS,
pages 123–131.

Shoham, Y. and Leyton-Brown, K. (2008). Multia-
gent systems: Algorithmic, game-theoretic, and logi-
cal foundations. Cambridge University Press.

Tsai, J., Rathi, S., Kiekintveld, C., Ordóñez, F., and
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