Discrete Sampling and
Integration In High
Dimensional Spaces

Supratik Chakraborty (IIT Bombay)
Kuldeep S. Meel (Rice)
Moshe Y. Vardi (Rice)

Copyright © Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi

Permission to make digital or hard copies of part or all of this work for personal or classroom use 1is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
new copies bear this notice and the full citation on the first page. Abstracting with credit is permitted.

Recommended Citation: Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Discrete Sampling
and Integration in High Dimensional Spaces, Tutorial at Conference on Uncertainty in Artificial
Intelligence, New York, 2016

Problem Definition

- Given
- X4, ... X, : variables with finite discrete domains D4, ... D,
- Constraint (logical formula) F over X, ... X,
- Weight function W: D, ... D, 0

Let Rr: set of assignments of X, ... X, that satisfy F

- Determine W(Rg) = Re W(y) Discrete Integration
If W(y) = 1 for all y, then W(Rg) = | R¢ | (Model Counting)

- Randomly sample from R such that Pr[y is sampled] W(y)
If W(y) = 1 for all y, then uniformly sample from Re piscrete Sampling

Suffices to consider all domains as {0, 1}: assume for this tutorial

Discrete Integration: An Application

- Probabilistic Inference

- An alarm rings if it's in a working state when an earthquake happens
or a burglary happens

- The alarm can malfunction and ring without earthquake or burglary
happening

- Given that the alarm rang, what is the likelihood that an earthquake
happened?

- Given conditional dependencies (and conditional probabilities)
calculate Pr[event | evidence]

- What is Pr [Earthquake | Alarm] ?

Discrete Integration: An Application

Probabilistic Inference: Bayes' rule to the rescue

Prlevent, (" evidence] Prlevent, (N evidence]
Pr[evidence] EPr[eventj M evidence]
7

Prlevent, | evidence] =
Prlevent, M evidence] = Prlevidence| event | x Pr[event,]

How do we represent conditional dependencies
efficiently, and calculate these probabilities?

Discrete Integration: An Application
Probabilistic Graphical Models

T
T 0.8 T Ol
F 0.2 F Lo

T T T 0.3

T T F 0.7

T F T 0.4

T F F 0.6

F T T 0.2

— F F F 0.8

- N F F T 0.1

Conditional Probability Tables (CPT) F P 0.9

Discrete Integration: An Application

3| P
T 0.8 T 0.1

I 0.9

I 0.2

B | _E_| A [PrA|EB)
0.3

T T T
T T F 0.7
T F T 0.4
T F F 0.6
Pr|E n A]
I T T 0.2
F F F 0.8 = Pr|E] * Pr[-B] * Pr[A|E, —B]
| +Pr[E] * Pr[B] * Pr[A|E, B]
i F T 0.1
i F F 0.9

Discrete Integration: An Application

- Probabilistic Inference: From probabilities to logic
V ={Va, Voa, Vg, V-5, Vg, V_g} Prop vars corresponding to events
T ={tage , tbape » tag~ ---} Prop vars corresponding to CPT entries

Formula encoding probabilistic graphical model (pgy):
(Vo Voa) (Vg Vog) (Vg Vop) Exactly one of v, and v., is true

(taee Va Vs Ve) (tage V-a Vs Vg)
If va, Vg, Ve are true, so must tyg e and vice versa

Discrete Integration: An Application

- Probabilistic Inference: From probabilities to logic and weights
V = {Va, V-a, VB, VB, VE, V-g}

T= {tA|B,E : t~A|B,E : tA|B,~E "

W(v.g) = 0.2, W(vg) = 0.8 Probabilities of indep events are weights of +ve literals
W(v.g) = 0.1, W(vg) = 0.9

W(tage) = 0.3, W(t.age) = 0.7, ... CPT entries are weights of +ve literals
W(v,) = W(v.,) = 1 Weights of vars corresponding to dependent events
W(vg) =W(vg) =W(tagg) ... =1 Weights of -ve literals are all 1

Weight of assignment (va=1,v.a=0,tage =1, ...) = W(va) "W(v_p)* W(tage)™ -

Product of weights of literals in assignment

Discrete Integration: An Application

- Probabilistic Inference: From probabilities to logic and weights
V = {VAa V~A1 VBa V~Ba VE, V~E}

T={tage, t-ape tag-e ---}

Formula encoding combination of events in probabilistic model
(Alarm and Earthquake) F= pgy Va Ve
Set of satisfying assignments of F:
Re={(vp=1,vg=1,vg=1, tape=1,allelse 0), (va=1,ve=1,vg=1,ts-ge=1, all else 0) }
Weight of satisfying assignments of F:
W(RE) = W(va) * W(vg) * W(vg) " W(tag e) + W(va) * W(ve) * W(v_g) * W(tarse)
=1* Pr[E] * Pr[B] * Pr[A | B,E] + 1* Pr[E] * Pr[~B] * Pr[A| ~B,E] = Pr[AN E]

Discrete Integration: An Application

From probabilistic inference to unweighted model counting

Pr[E|A] Weighted

B Model

Roth 1996 Count]_ng

Weighted Model Counting ==) Unweighted Model Counting

|IJCAI 2015

Reduction polynomial in #bits representing CPT entries

Discrete Sampling: An Application

Update the rule with the new acce :
, $this->_sql-supdate('acl_rules', arvayl ‘acoem
foreac h($thise>ru les as skeymgrule) {
if (gdetails['role_id'] == grulel'role_id'] & 4
if (gaccess mm) {
e

t(sthisesrules(shey | 3

uns
} else {
thisesrules[skey]['access'] ® &» :

Functional Verification

- Formal verification
- Challenges: formal requirements, scalability
- ~10-15% of verification effort

- Dynamic verification: dominant approach

Discrete Sampling: An Application

=Design is simulated with test vectors
- Test vectors represent different verification scenarios
= Results from simulation compared to intended results

=How do we generate test vectors?
Challenge: Exceedingly large test input space!
Can't try all input combinations
2128 combinations for a 64-bit binary operator!!!

Discrete Sampling: An Application

Sources for Constraints
a b Desi .
. . * Designers:
64 bit 1 164b1t 1. a+g 11 *5, b =12
2. a<g (b>>4)
— Past Experience:
c = f(a,b) 1. 40 <q, 34 + a <q, 5050
2. 120 <g4 b <g4 230
64 bit l « Users:
1. 232 "3, a+Db!1=1100
C 2 1020 <64 (b /64 2) +64 d <64 2200

» Test vectors: solutions of constraints

Discrete Sampling: An Application

Constraints

Q b « Designers:) i
64 bit 64 bit 1. a+g 11 75, b =12
2. a <64 (b >> 4)

« Past Experience:
c = f(a,b) 1. 40 <z, 34 + a <z, 5050
2. 120 <44 b <54 230

« Users:
64 bit l 1. 232 "3, a+Db!1=1100
2. 1020 <g4 (b /g4 2) +54 a <gq 2200
C

Modern SAT/SMT solvers are complex systems

Efficiency stems from the solver automatically “biasing” search
Fails to give unbiased or user-biased distribution of test vectors

Discrete Sampling: An Application

Constrained Random Verification

a b Set of Constraints
64 bit J 64 bit J
¢ = f(a,b) SAT FIrmuIa
64 bit l
Sample satisfying assignments
C uniformly at random

Scalable Uniform Generation of SAT Witnesses

Discrete Integration and Sampling

- Many, many more applications
- Physics, economics, network reliability estimation, ...

- Discrete integration and discrete sampling are closely related

- Insights into solving one efficiently and approximately can often be
carried over to solving the other

- More coming in subsequent slides ...

Agenda (Part |)

- Hardness of counting/integration and sampling
- Early work on counting and sampling
- Universal hashing

- Universal-hashing based algorithms: an overview

How Hard is it to Count/Sample”?

- Trivial if we could enumerate Rg: Almost always impractical
- Computational complexity of counting (discrete integration):
Exact unweighted counting: #P-complete [Valiant 1978]

Approximate unweighted counting:

Deterministic: Polynomial time det. Turing Machine with ," oracle [Stockmeyer 1983]
R :
|1 r < DetEstimate(F,e) =< |R,|x(1+¢), fore>0
+ &
Randomized: Polynomial time probabilistic Turing Machine with NP oracle

[Stockmeyer 1983; Jerrum,Valiant,Vazirani 1986]
< RandEstimate(F, £,0) <| R, |-(1+¢)| = 1-0, fore >0, 0<J =<1

| Ry |
1+ ¢
Probably Approximately Correct (PAC) algorithm

Pr

Weighted versions of counting: Exact: #P-complete [Roth 1996],

Approximate: same class as unweighted version [follows from Roth 1996]

How Hard is it to Count/Sample”?

- Computational complexity of sampling:

Uniform sampling: Polynomial time prob. Turing Machine with NP oracle

[Bellare,Goldreich,Petrank 2000]
, c=0if y&R
Pr[y = UnmiformGenerator(F)] = ¢, where , ,
c>0andindepof yif yER;

Almost uniform sampling: Polynomial time prob. Turing Machine with NP oracle
[Jerrum,Valiant,Vazirani 1986, also from Bellare,Goldreich,Petrank 2000]

—— =< Pr[y = AUGenerator(F, €)]< c- (1 +), where

C C=Olfy¢RF
l+¢

c¢>0andindepof yif yER,

Pr[Algorithm outputs some y] ', if F is satisfiable

Exact Counters

- DPLL based counters [CDP: Birnbaum,Lozinski 1999]
- DPLL branching search procedure, with partial truth assignments

- Once a branch is found satisfiable, if t out of n variables assigned, add
2"tto model count, backtrack to last decision point, flip decision and
continue

- Requires data structure to check if all clauses are satisfied by partial
assignment

Usually not implemented in modern DPLL SAT solvers
- Can output a lower bound at any time

Exact Counters

- DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]
- Constraint graph G:
Variables of F are vertices
An edge connects two vertices if corresponding variables appear in
some clause of F
- Disjoint components of G lazily identified during DPLL search
- F1, F2, ... Fn : subformulas of F corresponding to components
IRe| = IRp4] ™ [Rp2| ™ [Res| ™ ...
- Heuristic optimizations:
Solve most constrained sub-problems first
Solving sub-problems in interleaved manner

Exact Counters

- DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004,
sharpSAT: Thurley 20006]

If same sub-formula revisited multiple times during DPLL search, cache
result and re-use it

“Signature” of the satisfiable sub-formula/component must be stored
Different forms of caching used:

Simple sub-formula caching

Component caching

Linear-space caching

Component _cachinﬂ can also be combined with clause learning and
other easoning techniques at each node of DPLL search tree

WeightedCachet: DPLL + Caching for weighted assignments

Exact Counters

- Knowledge Compilation based

- Compile given formula to another form which allows counting models in time
polynomial in representation size

- Reduced Ordered Binary Decision Diagrams (ROBDD) [Bryant 1986]:
Construction can blow up exponentially

- Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d:
Darwiche 2004]

Generalizes ROBDDs; can be significantly more succinct
Negation normal form with following restrictions:
Decomposability: All AND operators have arguments with disjoint
support
Determinizability: All OR operators have arguments with disjoint
solution sets
- Sentential Decision Diagrams (SDD) [Darwiche 2011]

Exact Counters: How far do they go?

- Work reasonably well in small-medium sized problems, and
In large problem instances with special structure

- Use them whenever possible
- #P-completeness hits back eventually — scalability suffers!

Bounding Counters

[IMBound: Gomes et al 2006; SampleCount: Gomes et al
2007; BPCount: Kroc et al 2008]

- Provide lower and/or upper bounds of model count
- Usually more efficient than exact counters
- No approximation guarantees on bounds

Useful only for limited applications

Markov Chain Monte Carlo Techniques

- Rich body of theoretical work with applications to sampling and counting
[Jerrum,Sinclair 1996]

- Some popular (and intensively studied) algorithms:

. M_etropo!is—Hastin%s EMetropoIis et al 1953, Hastings 1970], Simulated Annealing
[Kirkpatrick et al 1982]

o ngh -level idea:
- Start from a “state” (aSS|gnmentofvarlabIes)

- Randomly choose next state using “local” biasing functions (depends on target
distribution & algorithm parameters)

- Repeatfor an appropriately large number (N) of steps
- After N steps, samples follow target distribution with high confidence

- Convergence to desired distribution guaranteed only after N (large) steps
- In practice, steps truncated early heuristically
Nullifies/weakens theoretical guarantees [Kitchen,Kuehlman 2007]

Hashing-based Sampling/Counting

- Extremely successful in recent years [CP2013, CAV2013,
NIPS2013, DAC 2014, AAAI 2014, UAI 2014, NIPS 2014, ICML 2014,
UAI 2015, ICML 2015, AAAI 2016, ICML 2016, IJCAI 2016, ...]

- Focus of remainder of tutorial

- Hash functions:
- Mappings from a (typically large) domain to a (smaller) range
* In our context, h: {0,1}" {0,1}™ , where n>m

assignments -

More on Hash Functions

- Good deterministic hash function:

* Inputs distributed uniformly All cells are small in expectation
- But solutions of constraints can’t be considered random

- Universal hash functions [Carter,Wegman 1977; Sipser 1983]
- Define a family of hash functions H having some properties
Eachh His a function: {0,1}" — {0,1}™
- Choose randomly one hash function h from H
- For every distribution of inputs, all cells are small and similar in expectation
Guarantees probabilistic properties of cell sizes even without knowing
distribution of inputs

- Used by Sipser (1983) for combinatorial optimization, by Stockmeyer (1983)
for deterministic approximate counting

Universality of Hash Functions and Complexity

 H(n,m,r): Family of r-universal hash functions
- h:{0,1}" - {0,1}"

- Forevery X {0,1}"andeverya {0,1}"

Pr[h(X) = a | h chosen uniformly rand. from H] = 1/2™ Uniformity

* For distinct X;, ... X, {0,1}" and for every a4, ... @ {0,1}",

r

Prh(X;) = a1 A ... A h(X)=a, | hrand. FromH] =1/2™ Independence-like
- Higher r Stronger guarantees on size of cells
Lower probability of large variations in cell sizes

- r-wise l(Jni%ersaIity can be implemented using polynomials of degree r-1 in
GF(2mox n,m

Can be computationally challenging; say n =r=10000, m <n
- Lower r Lower complexity of reasoning about r-universal hashing

2-Universal Hashing: Simple to Compute

- Variables: X,, X,, X,,..... , X

- To construct h: {0,1}" - {0,1}™,
choose m random XORs

- Pick every variable with prob. 7z,
XOR them and add 1 with prob. %

¢ Eg X1® X3® XG@ @ Xn_1

-a € {0,1}" - Set every XOR
equation to 0 or 1 randomly

. The cell: FAXOR (CNF+XOR)

XD X0 XD ...
X0 X, X,
X0 X0 XD
X,® X0 X,

X0 X X ...

—XORs

2-Universal Hashing: Yet Powerful

- Let X be the number of solutions of F in an arbitrarily chosen cell
*What is uy, and how much can X deviate from uy?
1, yisincell

- For every y € R, we define I, = { 0 otherwise

e X = ZyERF

Hy = ';f;' From random choice of hash function

04 < lix......... From 2-universality of hash function
- This gives the concentration bound:

2
Hx o 1
Pr <X<ux(1+e)|=21—-——= > 1- —
[L+e] (1 + E)Z(UX)Z (1 + E)Z.UX

Having uX>k(1+E—12) gives us 1 — % lower bound

Hashing-based Sampling

- Bellare, Goldreich, Petrank (BGP 2000)

- Uniform generator for SAT withesses:

- Polynomial time randomized algorithm with access to an NP oracle

0if y&R,
Pr[y = BGP(F)]= . .
c (> 0)1f yeR_, where cisindependent of y

- Employs n-universal hash functions
- Works well for small values of n

- For high dimensions (large n), significant computational overheads

e For right choice of m, all the cells are small # of solutions < 2n?)
e C(Check if all the cells are small (NP- Query)
« If yes, pick a solution randomly from randomly pttked cell

In practice, the query is too long and complex for large n,

and can not be handled by modern SAT Solvers!

Approximate Integration and Sampling:
Close Cousins

- Seminal paper by Jerrum, Valiant, Vazirani 1986

Almost-Uniform I Polynomial | PAC

Generator reduction Counter

* Yet, no practical algorithms that scale to large problem
instances were derived from this work
* No scalable PAC counter or almost-uniform generator
existed until a few years back

* The inter-reductions are practically computation intensive
*Think of O(n) calls to the counter when n = 100000

Prior Work
BDD/

other
exact

Guarantees

SAT-
Based

Performance

Techniques using XOR hash functions

- Bounding counters MBound, SampleCount [Gomes et al.
2006, Gomes et al 2007] used random XORs

- Algorithms geared towards finding bounds without approximation
guarantees

- Power of 2-universal hashing not exploited

- In a series of papers [2013: ICML, UAI, NIPS; 2014: ICML,;
2015: ICML, UAI; 2016: AAAI, ICML, AISTATS, ...] Ermon et
al used XOR hash functions for discrete counting/sampling

- Random XORs, also XOR constraints with specific structures
- 2-universality exploited to provide improved guarantees
- Relaxed constraints (like short XORs) and their effects studied

An Interesting Combination:
XOR + MAP Optimization

- WISH: Ermon et al 2013

- Given a weight function W: {0,1}" 0
- Use random XORs to partition solutions into cells
- After partitioning into 2, 4, 8, 16, ... cells
Use Max Aposteriori Probability (MAP) optimizer to find solution
with max weight in a cell (say, a,, a,, ag, a4, --.)
- Estimated W(Rg) = W(ay)*1 + W(a,)*2 + W(ag)* 4 + ...

- Constant factor approximation of W(Rg) with high confidence

- MAP oracle needs repeated invokation O(n.log,n)
- MAP is NP-complete

- Being optimization (not decision) problem), MAP is harder to solve in
practice than SAT

XOR-based Counting Sampling

- Remainder of tutorial
- Deeper dive into XOR hash-based counting and sampling
- Discuss theoretical aspects and experimental observations

- Leverage power of modern SAT solvers for CNF + XOR clauses
(CryptoMiniSAT)

- Based on work published in [2013: CP, CAV; 2014: DAC, AAAI; 2015:
|IJCAI, TACAS; 2016: AAAI, IJCAI, ...]

- Tutorial to focus mostly on unweighted case, to elucidate key ideas

Agenda (Part Il)

1. Hashing-based Approaches to Unweighted Model COunting
2. Hashing-based Approaches to Sampling
3. Design of Efficient Hash Functions

4. Summary

Counting Dots

e Solution to constraints

Partitioning into equal “small” cells

Partitioning into equal “small” cells

Pick a random cell

Estimate = # of solutions (dots) in cell * # of cells

How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of solutions?

2-Universal Hashing
[Carter-Wegman 1977]

Partitioning

1. How large is the “small” cell?

2. How do we compute solutions inside a cell?

3. How many cells?

Question 1: Size of cell

- Toolarge Hard to enumerate

- Too small Ratio of variance to mean is very high

1
pivot = 5 (1 + 82)

Question 2: Solving a cell

- Variables: X,, X,, X,,..... , X

- To construct h: {0,1}" - {0,1}™,
choose m random XORs

- Pick every variable with prob. 7z,
XOR them and add 1 with prob. %

‘E.g.:X1 @X3@X6® @Xn_1

-a € {0,1}" - Set every XOR
equation to 0 or 1 randomly

.The cell: F A XOR (CNF+XOR)

X, OX: DX D
X, OX, DX, D
X, OX: DX D
X, ®X, ®X, D

—XORs

Question 3: How many cells?

|RF|
pivot

. We want to partition into 2™ cells such that 2™ =

- Check for every m = 0,1....n if the number of solutions < pivot (function of €)
- Stop at the first m where number of solutions < pivot

- Hash functions must be independent across different checks

- # of SAT calls is O(n)

(CP 2013)

ApproxMC(F,e, §)

Hsols < NO X

pivot

ApproxMC(F,e, §)

#sols < NO X

pivot

ApproxMC(F,e, §)

Key Lemmas

Rr| . « IR
Let m* = log2EL (j.e.,2m" = JREL)
pivot pivot

Lemma 1: The algorithm terminates with m € [m* — 1, m*] with
high probability

Lemma 2: The estimate from a randomly picked cell for m €
I[m* — 1, m*] is correct with high probability

ApproxMC(F,e, §)

Theorem 1:

>1-0

Pr [Rr | < ApproxMC(F,,6) < |Rp|(1+¢)
(1+¢)

Theorem 2:

lopk
ApproxMC(F,s, §) makes O (- Og5) calls to NP oracle

c2

Runtime Performance
of ApproxMC

Can Solve a Large Class of Problems

(seconds)

1me

T

70000 -

60000 -

50000 A

40000 A

30000 A

20000 -

10000 A

ApproxMC
==(Cachet

0 AmEREE Imam T e T e T e e et
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Benchmarks

0

10 20

Large class of problems that lie beyond the exact
algorithms but can be computed by ApproxMC

Mean Error: Only 4% (allowed: 75%)

3.6E+16

1.1E+15 -
3.5E+13 -
1.1E+12 A
3.4E+10 -

—(Cachet*1.75

k=
1.1E+09 -
)

Q 3.4E+07 -
O —(Cachet/1.75
1.0E+06 -
3.3E+04 - _APPFOXMC
1.0E+03 -
3.9E+01 -
1.0E+00 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Benchmarks

Mean error: 4% — much smaller than the
theoretical guarantee of 75%

Challenge

- Can we reduce the number of SAT calls from O(n)?

Experimental Observations

- ApproxMC “seems to work” even 1f we do not have
independence across different hash functions
- Can we really give up independence?

Beyond ApproxMC

- We want to partition into 2™ cells
- Check for every m = 0,1....n if the number of solutions < pivot

- Stop at the first m where number of solutions < pivot

- Hash functions must be independent across different checks
(Stockmeyer 1983, Jerrum, Valiant and Vazirani 1986.....)

- Suppose: Hash functions can be dependent across different checks

- # of solutions is monotonically non-increasing with m
- Can find the right value of m by search in any order.
- Binary search

ApproxMC2: From Linear to Logarithmic SAT
calls

- The Proof: Hash functions can be dependent across different
checks

- Key |dea: Probability of making a bad choice early on is very
small.

- Inversely (exponentially!) proportional to distance from m*)

(IJCAI 2016)

ApproxMC2(F,¢, 6)

Theorem 1:

Pr < ApproxMC2(F,&,8) <|Rp|(1+¢&)|=1-9§

Theorem 2:

(logn) log%
£2

ApproxMC2(F,e, §) makes O() calls to NP oracle

Theorem 1 requires a completely new proof.

Runtime Performance Comparison

Timeout

0¢sd

. ySbegoenanbue

UI0S

_ [esSIeARI]

@)
Z
<
9SIDAI[| W
<
[|
O
€965
7
~
o}
(o}
<
[|

ceTosed

cQgZosed

$0gosed

erenoiny

25000 T
20000 T
10000 T
5000 T
0 -

Time (S) 15000 T

Discrete Uniform Sampling

Hashing-based Approaches

BDD CMV13, CMV14,
CFMSV14, CFMSV15,
IMMV15

SAT-
Based

Guarantees

Performance

Key ldeas

Choose m
Choose h € H(n,m,*)

* For right choice of m, large number of cells are “small”
* “almost all” the cells are “roughly” equal
* (Check if a randomly picked cell 1s “small”
« If yes, pick a solution randomly from randomly picked cell

Key Challenges

- F: Formula X: Set of variables Ry: Solution space

* Rr o2 Set of solutions for F A (h(X) = a) where
he Hn,m,x);a € {0,1}"

1. How large is “small” cell ?
2. How much universality do we need?

3. What is the value of m?

Size of cell

1
pivot = 5(1 +€—2);

Independence

Theorem (CMV 14):

3-universal hashing is sufficient to provide almost uniformity.
(3-universality of XOR-based hash functions due to Gomes et al.)

CAV 2013, DAC 2014

How many cells?

- Qur desire: m = log i (Number of cells: 2™M)
plvot

- But determining |Ry| is expensive (#P complete)

- How about approximation?
* ApproxMC (F, &, §) returns C:
Pr{ 20 < C < (1+&)[Rel] 21— 6

C
pivot

*q = log

- Concentrate on m = g-1, q, g+1

UniGen(F,¢)

One time execution

1. C = ApproxMC(F,¢)

2. Compute pivot

3. q =log|C| — logpivot

4. foriin{g-1, q, g+1}: o
5 Choose h randomly* from H(n,i,3)

6 Choose a randomly* from {0,1}™

7. If (1 < ‘Rp,h,a‘ < pivot):

8. Pick y € R, , randomly

Run for
every sample

required
—

Are we back to JVV (Jerrum, Valiant and
Vazirani)?

NOT Really

-JVV makes linear (in n) calls to Approximate
counter compared to just 1 in UniGen

-# of calls to ApproxMC is only 1 regardless of the
number of samples required unlike JVV

Theoretical Guarantees

Almost-Uniformity
For every solution y € R

1 . (1+¢)
Vy € Rp, RS < Pr[yis output | < R

UniGen succeeds with probability > 0.52

In practice, success probabiliy > 0.99

UniGen makes O(;) calls to NP oracle (SAT solver)

Runtime Performance
of UniGen

gnitude Faster

B UniGen
EXORSample'

G PIq & 2s0o
G ¥IqQ g asDo
[Qid [asDo
[qQid g aspo
J8utaonbs

¥ [Su14onbs

[7Iq & 2502
#1978 500 %
OF [2SDI
CJaSDI

Benchma

69SDI
192SDI

CEHTaSDI
2059819
9SDI

¢ ISP

& vIq & osvd
) Fas0o

100000

1-2 Orders of Ma

Results: Uniformity

500

450

Frequency
\\
S
S
{f

LN
S
5

R
/"

#Solutions

 Benchmark: casel10.cnf; #var: 287; #clauses: 1263
 Total Runs: 4x10%; Total Solutions : 16384

Results: Uniformity

500

450 e U

“ y UniGen

Frequency
\\
S
S
{f

LN
S
5

R
/"

#Solutions

 Benchmark: casel10.cnf; #var: 287; #clauses: 1263
 Total Runs: 4x10%; Total Solutions : 16384

Contribution of Hashing-based Approaches

- ApproxMC: The first scalable approximate model counter
- UniGen: The first scalable uniform generator

- Outperforms state-of-the-art generators/counters

Towards Efficient Hash
Functions

Parity-Based Hashing

- Variables: X,, X,, X,,..... , X

- To construct h: {0,1}" - {0,1}™,
choose m random XORs

- Pick every variable with prob. 7z,
XOR them and add 1 with prob. %

"Eg X i ®OXa®DXe®.... DX X, 0 X0 X @ ... X;,.5=0]
g 1] ° n-1 X1®X2®X4®....Xn_1 :1

-a € {0,1}" - Set every XOR X1 @0X30 X0 ... X0 =0 J
equation to 0 or 1 randomly 0X30X,D.... X,y =

-The cell: F A XOR (CNF+XOR) X, 00X, ®X;®D....X =0

n-1

Parity-Based Hashing

- Avg Length : n/2

- Smaller parity constraints=>» better performance

How to shorten XOR clauses?

Inspired from Error Correcting Codes

~ . . _ _ |RF|
- X = # of solutions in a cell; uy = S

- 2-universal hashing ensures o7 < py

- Key result: Using sparse constraints of size O(log n), we have:

2

Z—’; is monotonically decreasing with X
X

- Challenge: Unable to guarantee o¢ < uy; therefore weaker concentration
iInequalities

- The resulting algorithms require 8(nlogn) NP calls in comparison
to O(log n) calls based on 2-universal hashing algorithms

(Ermon et al 2014, 16; Achlioptas et al. 2015, Asteris et al 2016)

Independent Support

- Set | of variables such that assignments to these uniquely
determine assignments to rest of variables (for satisfying
assignments)

- If 0, and o, agreeon | theno, = o,

-Cc «— (aVDb);Independent Support I: {a, b}
- {a,c} is NOT an Independent Support

- Key Idea: Hash only on the independent variables
+ Average size of XOR: - to%

CP 2015

Formal Definition

Input Formula: F, Solution space: Rp

Voi,09 € Rp, If 01 and o5 agree on I, then 07 = o9

F(zr,..,zn) APy, ooy AN\ @i=w) = N\(z; =
J

t|lx; €1

where F'(y1,...,Yn) = F(x1 = y1,-- ., Tn = Yn)

Key ldea
F(zi1,....20) ANF (Y1, Yn) A /\ (x; = ;) :>/\(x =

’i|£U7;€I

QF,[:F(SIZl,...)/\Fyl,...,yn /\ /\ (/\(xjyj))

i|lx, €1 J

Theorem: (Qr r is unsatisfiable if and only if I is independent support

Key ldea

Q:F(Qfl,...,xn)/\F(yl,---,yn /\x]_yj
J

I = {x;} is Independent Support iff H! A Q is unsatisfiable
where H! = {H; |x; € I}

Minimal Unsatisfiable Subset

-Given¥Y = H, AH,---H,, \Q

- Find subset {H;;, H;», - H;;, } of {H;, H,, -+ H,,,;} such that H;; A
Hi2 Hik A Qis UNSAT
Unsatisfiable subset

- Find minimal subset {H;;,H;», - H;; } of {H, H,, - H,} such that H;; A
HiZ Hik A Qis UNSAT
Minimal Unsatisfiable subset

Minimal Independent Support

H, :{371 :yl}v ce ey Hn:{mn:yn}
Q= F(x1,...,20) AF(y1, -, yn) A (2 Nz = 15))

J

I = {x;}is minimal Independent Support iff H' is minimal
unsatisfiable subset where H! = {H; |x; € I}

Key ldea

Minimal Minimal
Independent) Unsatisfiable
Support (MIS) Subset (MUS)

Impact on Sampling and Counting
Techniques

Samplin
Tools °

Counting
Tools

What about complexity

- Computation of MUS: FPN?

- Why solve a FPN? for almost-uniform

generation/approximate counter (PTIME PTM with NP
Oracle)

Settling the debate through practice!

Performance Impact on Integration

B ApproxMC B IApproxMC

18000 -
1800 -

18000 ~
1800 -
180 -

@) |

e N

ol = < g,

: =,

%ua — %

& —h
\N\

5 G ———— ,@&W

- B

—c &

._hlu. O

©

Q.

£

O

@

C

©

&

O

T

O

al

Future Directions

Extension to More Expressive domains

- Efficient hashing schemes

- Extending bit-wise XOR to richer constraint domains provides guarantees
but fails to harness progress in solving engines for richer domains

- Solvers to handle F + Hash efficiently
* CryptoMiniSAT has fueled progress for SAT domain
- Similar solvers for other domains?

- Initial forays with bit-vector constraints and Boolector
[AAAI 20106]

- Uses new linear modular hash function that generalizes XOR-based
hash functions

- Significant speedups compared to bit-blasted versions

Summary

- Sampling and Integration are fundamental problems in
Artificial Intelligence.

- Applications from probabilistic inference, automatic problem
generation to system verification.

- Drawback of related approaches: theoretical guarantees or
scalability (Choose one)

- Hashing-based approaches promise theoretical guarantees
and scalability

Take Away:. Hashing-based Approaches

- Theoretical

- Discrete Integration
- Reduction of NP calls from O(n log n) to O(log n)
- Efficient hash functions based on Independent support
- Sampling
- Reduction of Approximate Counting calls from O(n) to O(1)
- Usage of 2-universal hash functions

- Practical

- From problems with tens of variables (before 2013) to hundreds of
thousands of variables

Acknowledgements

2

Daniel Fremont Dror Fried Alexander Ivrii Sharad Malik
(UCB) (Rice) (IBM) (Princeton)

Rakesh Mistry Sanjit Seshia Mate Soos
(IITB) (UCB) (CMS)

Thanks!

Questions?

Software and papers are available at http://tinyurl.com/uai16tutorial

