LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
heterogeneous data sets measuring the same system UNDER STUDY

	Thrombosis	Contraceptives	Protein C	Breast Cancer	Protein Y	Protein Z
observational data	Yes	No	10.5	Yes	-	-
	No	Yes	5.3	No	-	-
					-	-
	No	Yes	0.01	No	-	-
2observational data	-	-	-	Yes	0.03	9.3
	-	-	-			
	-	-	-	No	3.4	22.2
3experimental data	No	No	0 (Control)	No	3.4	-
	Yes	No	0 (Control)	Yes	2.2	-
					-	-
	Yes	Yes	5.0 (Treat.)	Yes	7.1	-
	No	Yes	5.0 (Treat.)	No	8.9	-
experimental data	No	No (Ctrl)	-	-	-	-
	No	No (Ctrl)	-	-	-	-
			-	-	-	-
	Yes	Yes(Treat)	-	-	-	-

ISOLATED ANALYSIS

Publish results

"...The use of contraceptives is correlated with Thrombosis, negatively correlated with Breast Cancer and levels of Protein E ..."
"...Protein E is a risk factor for Breast Cancer..."
"...Drugs reducing protein C reduced the probability of Breast Cancer and lowered the levels of Protein E..."
"... In the randomized control trial, women taking contraceptives had 30% more chances of being diagnosed with thrombosis ..."

INTEGRATIVE CAUSAL ANALYSIS

Data can not be pooled together:

Missing variables cannot be treated as missing values.

They come from different experimental/sampling conditions (different distributions).

INTEGRATIVE CAUSAL ANALYSIS

Data can not be pooled together:

Missing variables cannot be treated as missing values.

They come from different experimental/sampling conditions (different distributions).

Data come from the same causal mechanism.

INTEGRATIVE CAUSAL ANALYSIS

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

SEMI MARKOV CAUSAL GRAPHS

Semi Markov Causal Graph G

- Directed edges represent direct causal relationships.
- Bi-directed edges represent confounding (latent confounders).
- Both types of edges allowed for a single pair of variables.
- No directed cycles (no causal feedback).

SEMI MARKOV CAUSAL GRAPHS

		Z	
X	Y	Yes	No
Yes	Yes	0,01	0,04
Yes	No	0,01	0,04
No	Yes	0,000045	0,044955
No	No	0,000855	0,854145

- Directed edges represent direct causal relationships.
- Bi-directed edges represent confounding (latent confounders).
- Both types of edges allowed for a single pair of variables.
- No directed cycles (no causal feedback).
- Joint probability distribution entails conditional (in) dependencies.
- $\operatorname{Ind}(X, Y \mid \boldsymbol{Z}): P(X \mid Y, \boldsymbol{Z})=P(X \mid \boldsymbol{Z})$
- $\operatorname{Dep}(X, Y \mid \boldsymbol{Z}): P(X \mid Y, \boldsymbol{Z}) \neq P(X \mid \mathbf{Z})$

EXAMPLE OF CONDITIONAL (IN) DEPENDENCE

Data measuring: Smoking, Yellow Teeth, Nicotine Levels.

SEMI MARKOV CAUSAL GRAPHS

- Joint probability distribution entails conditional (in) dependencies.
- $\operatorname{Ind}(X, Y \mid \boldsymbol{Z}): P(X \mid Y, \boldsymbol{Z})=P(X \mid \boldsymbol{Z})$
- $\operatorname{Dep}(X, Y \mid \boldsymbol{Z}): P(X \mid Y, \boldsymbol{Z}) \neq P(X \mid \mathbf{Z})$

CAUSAL ASSUMPTIONS

Causal Markov Assumption:

Every variable is independent of its non-effects given its direct causes.

CAUSAL ASSUMPTIONS

Causal Markov Assumption:

Every variable is independent of its non-effects given its direct causes.

CAUSAL ASSUMPTIONS

Causal Markov Assumption:

Every variable is independent of its non-effects given its direct causes.

Causal Faithfulness Assumption:

Independences stem only from the causal structure, not the parameterization of the distribution.

CAUSAL ASSUMPTIONS

Causal Markov Assumption:

Every variable is independent of its non-effects given its direct causes.

Causal Faithfulness Assumption:

Independences stem only from the causal structure, not the parameterization of the distribution.
$\operatorname{Dep}(Y, Z \mid \varnothing)$
$\operatorname{Dep}(X, Z \mid \emptyset)$
$\operatorname{Dep}(X, Z \mid Y)$
$\operatorname{Dep}(Y, X \mid \varnothing)$
$\operatorname{Dep}(Y, X \mid Z)$

CAUSAL ASSUMPTIONS

Causal Markov Assumption:

Every variable is independent of its non-effects given its direct causes.

Causal Faithfulness Assumption:

Independences stem only from the causal structure,
$\operatorname{Dep}(Y, Z \mid \varnothing)$
$\operatorname{Dep}(X, Z \mid \emptyset)$
$\operatorname{Dep}(X, Z \mid Y)$
$\operatorname{Dep}(Y, X \mid \varnothing)$
$\operatorname{Dep}(Y, X \mid Z)$
not the parameterization of the distribution.

All independencies in the joint probability distribution can be identified in \mathcal{G} using the graphical criterion of m-separation.

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

m-SEPARATION

A path X_{1}, \ldots, X_{n} between X_{1} and X_{n} is m-connecting given V if for every triple $\left\langle X_{i-1}, X_{i}, X_{i+1}\right\rangle$ on the path:

- If $\mathrm{X}_{\mathrm{i}-1} * \rightarrow X_{i} \leftarrow * X_{i+1}$ (colliding triplet),
X_{i} or one of its descendants $\in \boldsymbol{V}$
- Otherwise, $X_{i} \notin \boldsymbol{V}$
m-connecting path => information flow => dependence
No m-connecting path $=>$ no information flow $=>$ independence (m-separation)
Colliders $\mathrm{X}_{\mathrm{i}-1} * \rightarrow X_{i} \leftarrow * X_{i+1}$ are special and create an asymmetry that will allow us to orient causal direction.

m-SEPARATION

is m-connecting given \emptyset

$$
\Leftrightarrow \operatorname{Dep}(Y, Z \mid \varnothing)
$$

m-SEPARATION

is m-connecting given \emptyset

$$
\Leftrightarrow \operatorname{Dep}(Y, Z \mid \varnothing)
$$

$$
Y \longleftrightarrow X \longrightarrow Z
$$

is NOT m-connecting given X

$$
\Leftrightarrow \operatorname{Ind}(Y, Z \mid X)
$$

m-SEPARATION

is NOT m-connecting given \emptyset

$$
\Leftrightarrow \operatorname{Ind}(Y, Z \mid \varnothing)
$$

$$
Y \longleftrightarrow X \longleftarrow Z
$$

is m-connecting given X
$\Leftrightarrow \operatorname{Dep}(Y, Z \mid X)$

CAUSAL MODELLING

Data set D measuring a set of variables

Conditional
(in)dependencies (expected) in the joint probability distribution

Paths (mseparations/connections) in the causal graph

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

REVERSE ENGINEERING

Data set D measuring a set of variables

causal graph?

REVERSE ENGINEERING

Data set D measuring a set of variables

$A, B \mid E, C$	Ind
$A, B \mid \varnothing$	Dep
\ldots	\ldots
$E, C \mid A, B, C$	Dep

Find the (in)dependencies using statistical tests.

causal graph?

REVERSE ENGINEERING

Data set D measuring a set of variables

$A, B \mid E, C$	Ind
$A, B \mid \varnothing$	Dep
\ldots	\ldots
$E, C \mid A, B, C$	Dep

Find the (in)dependencies using statistical tests.

Find a graph that satisfies
the implied m connections/separations.

MARKOV EQUIVALENCE

- More than one graphs entail the same set of conditional independencies.
- The graphs have some common features (edges/orientations).
- For some types of causal graphs, Markov equivalence classes share the same skeleton.
- not semi-Markov causal graphs

CAUSAL DISCOVERY

A	B	C	D	E

Data

(In)dependencies

paths

Causal graph(s)

Sound and complete algorithms take as input a data set and output a summary of all the graphs that satisfy all identified conditional independencies.

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

INTEGRATIVE CAUSAL DISCOVERY

Data sets measuring overlapping variable sets under
intervention/selection.

Causal graph(s) that simultaneously fit all data.

INTEGRATIVE CAUSAL DISCOVERY

Data sets measuring overlapping variable sets under
intervention/selection.

Causal graph(s) that simultaneously fit all data.

- Every data set imposes some constraints.
- Observational data impose m-separation/m-connection constraints on the candidate graph.
- Experimental data?
- Data sampled under selection?

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data-sets.
vi. Modeling interventions/selection.
2. Logic-based causal discovery
i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

INTERVENTIONS (MANIPULATIONS)

Values of the manipulated variable are set solely by the intervention procedure
e.g. value of a knockout gene in a knockout mice is set to zero; randomized variable in a randomized control trial.

Wild Type Mouse

Constitutive Knockout Mouse

INTERVENTIONS

Manipulated SMCG G^{B}
(after graph surgery)

A

- If you know the causal model, you can model interventions.
- Values of B are set solely by the intervention procedure: If you know direct causal relations, remove all edges into the manipulated variable.
- This procedure is called graph surgery.
- The resulting graph is called the manipulated graph (symb. G^{B})

CAUSAL DISCOVERY WITH INTERVENTIONS

G^{B} :
A

\nexists m-connecting path from A to D given \emptyset in G^{B} \nexists m-connecting path from A to D given B in G^{B}
\nexists m-connecting path from A to D given B, C in G^{B} \exists m-connecting path from B to C given \emptyset in G^{B}

Dataset D_{i} measuring a subset of variables, some of which are manipulated

Conditional independencies in D_{i}

Path constraints on the causal graph after manipulation

SELECTION BIAS

- Samples are selected based on the value of one of your variables.
- e.g. you perform your study in a specific region/on the internet; casecontrol study for a rare disease.

SELECTION BIAS IN CAUSAL MODELS

- If you know the causal model, you can model selection bias.
- Samples are selected based on the value of D; The value of D directly affects the probability of being selected.
- S is a child of $D, S=1$ for all your samples.
- Selected graph, symb. G_{D}

CAUSAL DISCOVERY WITH SELECTION BIAS

$\nexists m$-connecting path from A to D given \emptyset in G_{D} \nexists m-connecting path from A to D given B in G_{D}
\nexists m-connecting path from A to D given B, C in G_{D}
\exists m-connecting path from B to C given \emptyset in G_{D}

Dataset D_{i} measuring a subset of variables, some of which are selected upon

Conditional
independencies in D_{i}

Path constraints on the underlying causal graph after selection

INTEGRATIVE CAUSAL DISCOVERY

Data

(In)dependencies

paths

Causal graph(s)

- Every data set imposes some constraints.
- Observational data impose path constraints on the candidate graph.
- Experimental data impose path constraints on the candidate graph after manipulation.
- Data sampled under selection impose path constraints on the candidate graph after selection.
- Easily handles overlapping variable sets
- Each study imposes constraints on the observed variables.

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Data

(In)dependencies

Convert to logic formula!

Variables of the formula correspond to graph features (edges, orientations).

Truth setting assignments encode graphs that satisfy all path constraints after manipulation/selection.

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: $\nexists \mathrm{m}$-connecting path between A and C given \varnothing in G.

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Edges of the graph as Boolean variables
- $\mathrm{E}_{A \rightarrow B}=$ true if $A \rightarrow B$ in G, false otherwise.
- $\mathrm{E}_{A \leftarrow B}=$ true if $A \rightarrow B$ in G, false otherwise.
- $\mathrm{E}_{A \leftrightarrow B}=$ true if $A \leftrightarrow B$ in G, false otherwise.
- $\mathrm{E}_{A \rightarrow B}$ and $\mathrm{E}_{A \leftarrow B}$ are mutually exclusive: $\neg \mathrm{E}_{A \rightarrow B} \vee \neg \mathrm{E}_{A \leftarrow B}$.

Assignments to
Boolean
variables
correspond to graphs.

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \varnothing in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \emptyset in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not m-connecting

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \emptyset in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting $\neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right)$

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \varnothing in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting
$\neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right)$
$\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right)$

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \varnothing in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting
$\neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right)$
$\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right)$
$\neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right)$

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \varnothing in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting
$\neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right)$
$\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right)$
$\neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right)$
$\neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right)$

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \emptyset in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting

$$
\begin{aligned}
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \\
& \neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right)
\end{aligned}
$$

CONVERSION TO LOGIC FORMULA: EXAMPLE

- Suppose you know nothing about the causal structure G of A, B, C.
- In an observational data set, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \emptyset in G.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
Logic formula:

$$
\begin{gathered}
\left(\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \wedge \\
\neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \wedge \\
\quad \neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right)
\end{gathered}
$$

A-B-C is not m-connecting

$$
\begin{aligned}
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \\
& \neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right)
\end{aligned}
$$

CONVERSION TO LOGIC FORMULA: EXAMPLE

$$
\begin{aligned}
& \text { Logic formula: TRUE } \\
& \qquad \begin{array}{l}
\left(\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \wedge \\
\neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \wedge \\
\neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right)
\end{array}
\end{aligned}
$$

CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set where B is manipulated, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \emptyset in G^{B}.

CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set where B is manipulated, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \emptyset in G^{B}.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$

CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set where B is manipulated, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- In path terms: \nexists m-connecting path between A and C given \emptyset in G^{B}.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting $\neg\left(E_{B \rightarrow A} \wedge E_{B \rightarrow C}\right)$

CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

- In a data set where B is manipulated, $\operatorname{Ind}(\mathrm{A}, \mathrm{C} \mid \varnothing)$
- Suppose you know nothing about the causal structure G of A, B, C.
- In path terms: \nexists m-connecting path between A and C given \emptyset in G^{B}.

B has no incoming

Logic formula:

$$
\begin{gathered}
\left(\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right)
\end{gathered}
$$

edges in G^{B}.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting
$\neg\left(E_{B \rightarrow A} \wedge E_{B \rightarrow C}\right)$

CONVERSION TO LOGIC FORMULA: EXAMPLE

$$
\begin{aligned}
& \text { Logic formula: TRUE } \\
& \qquad \begin{array}{l}
\left(\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}\right) \wedge \\
\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \wedge
\end{array}
\end{aligned}
$$

CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set selected based on $B, \quad \operatorname{Ind}(\mathrm{~A}, \mathrm{C} \mid S=1)$
- In path terms: \nexists m-connecting path between A and C given $S=1$ in G_{B}.

CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set selected based on $B, \operatorname{Ind}(\mathrm{~A}, \mathrm{C} \mid S=1)$
- In path terms: \nexists m-connecting path between A and C given $S=1$ in G_{B}.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$

CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set selected based on $B, \operatorname{Ind}(\mathrm{~A}, \mathrm{C} \mid S=1)$
- In path terms: \nexists m-connecting path between A and C given $S=1$ in G_{B}.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting

$$
\begin{aligned}
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \\
& \neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right)
\end{aligned}
$$

CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set selected based on $B, \operatorname{Ind}(\mathrm{~A}, \mathrm{C} \mid S=1)$
- In path terms: \nexists m-connecting path between A and C given $S=1$ in G_{B}.

A-C does not exist
$\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}$
A-B-C is not \mathbf{m}-connecting

$$
\begin{aligned}
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \\
& \neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftrightarrow B} \wedge E_{B \leftarrow C}\right)
\end{aligned}
$$

CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

- Suppose you know nothing about the causal structure G of A, B, C.
- In a data set selected based on $B, \operatorname{Ind}(\mathrm{~A}, \mathrm{C} \mid S=1)$
- In path terms: \nexists m-connecting path between A and C given $S=1$ in G_{B}.

Logic formula:

$$
\left(\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \rightarrow B} \wedge E_{B \leftarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \leftrightarrow B} \wedge E_{B \leftarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \rightarrow B} \wedge E_{B \leftrightarrow C}\right) \wedge
$$

$$
\neg\left(E_{A \leftrightarrow B} \wedge E_{B \leftrightarrow C}\right)
$$

B

A-C does not exist

$$
\neg E_{A \rightarrow C} \wedge \neg E_{A \leftarrow C} \wedge \neg E_{A \leftrightarrow C}
$$

A-B-C is not m -connecting

$$
\begin{aligned}
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftarrow B} \wedge E_{B \leftrightarrow C}\right) \\
& \neg\left(E_{A \rightarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \leftrightarrow B} \wedge E_{B \rightarrow C}\right) \\
& \neg\left(E_{A \rightarrow B} \wedge E_{B \leftarrow C}\right) \\
& \neg\left(E_{A \leftrightarrow B} \wedge E_{B \leftarrow C}\right) \\
& \neg\left(E_{A \rightarrow B} \wedge E_{B \leftrightarrow C}\right)
\end{aligned}
$$

CONVERSION TO LOGIC FORMULA: INPUT CONSTRAINTS

Path constraints corresponding to (conditional) dependencies and independencies from multiple datasets.

Information about the datasets

- Whether your samples were selected based on some variables.
- Variables that were manipulated in your data set.

Many more ways to encode constraints into logic

- Different variable choices (e.g. edge *-*, orientations).
- Different constraint choices depending on the problem at hand.
- Ancestral paths
- Inducing paths.
- Colliders/non-colliders.

CONVERSION TO LOGIC FORMULA: VERSATILITY

Logic-based causal discovery trivially and collectively handles cases for which no algorithm existed!

- Incorporating prior knowledge.
- Algorithms for learning Bayesian networks can only enforce the presence/absence of direct edges.
- Easily impose presence/absence of direct edges, directed paths or m-connections (associations).
- root/leaf nodes.
- Learning semi-Markov causal graphs.
- no learning algorithm until logic-based causal discovery.
- Combining heterogeneous data sets.
- Soft interventions.
- Sound and complete algorithms with incomplete knowledge (e.g. can not perform some tests of independence).

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Data

(In)dependencies

$\left[\mathrm{E}_{A \rightarrow \mathrm{D}} \vee\left[\mathrm{E}_{A \rightarrow \mathrm{~B}} \wedge \mathrm{E}_{B \rightarrow \mathrm{D}}\right] \vee\right.$
$\left[\mathrm{E}_{A \rightarrow \mathrm{C}} \wedge \mathrm{E}_{C \rightarrow \mathrm{D}}\right] \vee$
$\left[\mathrm{E}_{A \rightarrow \mathrm{C}} \vee\left[\mathrm{E}_{A \rightarrow \mathrm{~B}} \wedge \mathrm{E}_{B \rightarrow \mathrm{C}}\right] \vee\right.$
$\left[\mathrm{E}_{A \leftrightarrow \mathrm{C}} \wedge \mathrm{E}_{C \rightarrow \mathrm{D}}\right]$

Paths
Logic formula

Causal graph(s)

Exponential number of 1.Independencies
2.Paths
3. Solutions

PROBLEM COMPLEXITY: EXAMPLE

For a data set with 10 variables:
$2^{8}=256$ different conditioning sets
For each conditioning set, you need to consider all possible paths with up to 9 edges:
$\sum_{k=2}^{10} \frac{8}{10-k}=1435$ paths per pair of variables.
In total: $\binom{10}{2}=45$ variable pairs $\times 256$ cond sets $\times 1435$ paths $=16531200$ path constraints.

For a network of 10 variables:
135 possible edges.
$2^{135} \sim 10^{40}$ different graphs.

Brute force approach only works for ~ 10 variables regardless of encoding.

Several heuristics for scaling up (depending on the algorithm).

You can take into account all dependencies and independencies, even for a small number of variables.

LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Data

(In)dependencies

Reduce the number of independencies:

Run FCl and use only the tests performed by FCl .

Limit max conditioning set size.

Reduce the number of
independencies:
Run FCl and use only the
tests performed by FCI.
Limit max conditioning
set size.

Paths

Logic formula

Causal graph(s)

LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Data

(In)dependencies

Paths
Logic formula

Causal graph(s)

Reduce the number of paths:
Use inducing paths that connect paths on the graph to \exists of independence (given any set).

Limit the maximum path length.

LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Data

(In)dependencies

Paths

Logic formula
Need a clever way to encode constraints!
e.g. recursively encode paths.

Convert to CNF for most SAT solvers.

LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Data

(In)dependencies

Paths

Logic formula

Causal graph(s)

No need to enumerate all solutions!

Query the formula for

- A single causal graph.
- A causal graph with specific features.
- Features that are invariant in all possible causal graphs.

SUMMARIZING PAIRWISE RELATIONS

> Absent edges:

Absent in all solutions

SUMMARIZING PAIRWISE RELATIONS

> Absent edges:

Absent in all solutions

SUMMARIZING PAIRWISE RELATIONS

Absent edges:
Absent in all solutions

SUMMARIZING PAIRWISE RELATIONS

Absent edges:
Absent in all solutions

SUMMARIZING PAIRWISE RELATIONS

Absent edges:
Absent in all solutions

Circle endpoints:
orientation varies in different solutions

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

STATISTICAL ERRORS RESULT IN CONFLICTING INPUTS

Conflicting constraints
Unsatisfiable formula

TESTING (CONDITIONAL) INDEPENDENCE

TESTING (CONDITIONAL) INDEPENDENCE

p-value: $P(\boldsymbol{D} \mid$ Ind $)$
(VERY loose interpretation)

Different observational data sets, same relationship, different p -values.

TESTING (CONDITIONAL) INDEPENDENCE

p-value: $P(\boldsymbol{D} \mid$ Ind $)$
(VERY loose interpretation)

How can you decide if Independence is more probable than dependence?

ESTIMATING $P(\operatorname{Ind} \mid \boldsymbol{D})$ USING BAYESIAN SCORING (1)

- You want to estimate $P(\operatorname{Ind}(X, Y \mid Z) \mid \boldsymbol{D})$
- Score every possible DAG over $X, Y, Z: P(\boldsymbol{D} \mid G)$.
- You can use BDE, BGE to compute $P(\boldsymbol{D} \mid G)$.
- Some of these DAGs entail dependence (m-connection, some independence (m-separation).

$G_{1}:$| X | | Y |
| :--- | :--- | :--- |
| | Z | $\operatorname{Ind}(X, Y \mid Z)$ |

- Define a prior over graphs.
- Take the weighted average:
- $P(\operatorname{Ind}(X, Y \mid \boldsymbol{Z}) \mid \boldsymbol{D}) \propto \sum_{G: G \text { entails } \operatorname{Ind}(X, Y \mid Z)} P(\boldsymbol{D} \mid G) \times P(G)$

- Exponential number of DAGs.
- Use one graph per Markov equivalence class (still exponential).
- Still not possible for more than 5-6 variables.

[BCCD, Claassen and Heskes, UAI 2012]

ESTIMATING $P(\operatorname{Ind} \mid \boldsymbol{D})$ USING BAYESIAN SCORING (2)

- You want to estimate $P(\operatorname{Ind}(X, Y \mid \mathbf{Z}) \mid \boldsymbol{D})$
- Independence $\operatorname{Ind}(X, Y \mid \mathbf{Z}): P(X, Y \mid \mathbf{Z})=P(X \mid \mathbf{Z}) P(Y \mid \boldsymbol{Z})$
- Dependence $\operatorname{Dep}(X, Y \mid \boldsymbol{Z}): P(X, Y \mid \boldsymbol{Z})=P(X \mid \boldsymbol{Z}) P(Y \mid X, \boldsymbol{Z})$
- $P(\operatorname{Ind}(X, Y \mid \boldsymbol{Z}) \mid \boldsymbol{D})=\frac{P(Y \mid \boldsymbol{Z}) \pi_{0}}{P(Y \mid \boldsymbol{Z}) \pi_{0}+P(Y \mid X, Z)\left(1-\pi_{0}\right)}$.

VS.

- Use BDE, BGE to estimate $P(Y \mid \boldsymbol{Z}), P(Y \mid X, Z)$.
- π_{0} : Prior for independence is an input parameter.

[M\&B, Margaritis and Bromberg, Cl 2009]

ESTIMATING $P(\operatorname{Ind} \mid \boldsymbol{D})$ FROM P-VALUES

- p-values coming from independence follow a $\operatorname{Beta}(1,1)$ distribution
- p-values coming from dependence follow a distribution in (0,1) with declining density
- Can be modeled with a $\operatorname{Beta}(\xi, 1), \xi \in(0,1)$ distribution.

[PROPER, Triantafillou et al, PGM 2014]

ESTIMATING $P(\operatorname{Ind} \mid \boldsymbol{D})$ FROM P-VALUES

- p-values coming from independence follow a $\operatorname{Beta}(1,1)$ distribution
- p-values coming from dependence follow a distribution in $(0,1)$ with declining density
- Can be modeled with a $\operatorname{Beta}(\xi, 1), \xi \in(0,1)$ distribution.
- Let π_{0} be the proportion of independencies.
- $f\left(p \mid \pi_{o}, \xi\right)=\pi_{0}+\left(1-\pi_{0}\right) \xi p^{\xi-1}$.

ESTIMATING $P(\operatorname{Ind} \mid \boldsymbol{D})$ FROM P-VALUES

- p-values coming from independence follow a $\operatorname{Beta}(1,1)$ distribution
- p-values coming from dependence follow a distribution in $(0,1)$ with declining density
- Can be modeled with a $\operatorname{Beta}(\xi, 1), \xi \in(0,1)$ distribution.
- Let π_{0} be the proportion of independencies.
- $f\left(p \mid \pi_{o}, \xi\right)=\pi_{0}+\left(1-\pi_{0}\right) \xi p^{\xi-1}$.

- You can find estimate π_{0}, ξ from the empirical distribution of your p-values
- Find $\widehat{\pi_{0}}$ using [Storey and Tibshirani, 2003] (assumes i.i.d. p-values)
- Find $\hat{\xi}$ by minimizing negative log likelihood

ESTIMATING $P(\operatorname{Ind} \mid \boldsymbol{D})$ FROM P-VALUES

- p-values coming from independence follow a $\operatorname{Beta}(1,1)$ distribution
- p-values coming from dependence follow a distribution in (0,1) with declining density
- Can be modeled with a $\operatorname{Beta}(\xi, 1), \xi \in(0,1)$ distribution.
- Let π_{0} be the proportion of independencies.
- $f\left(p \mid \pi_{o}, \xi\right)=\pi_{0}+\left(1-\pi_{0}\right) \xi p^{\xi-1}$.

- You can find estimate π_{0}, ξ from the empirical distribution of your p-values
- Find $\widehat{\pi_{0}}$ using [Storey and Tibshirani, 2003] (assumes i.i.d. p-values)
- Find $\hat{\xi}$ by minimizing negative log likelihood

$$
P(\operatorname{Ind} \mid p)=\frac{\frac{\widehat{\pi_{0}}}{\left(1-\widehat{\pi_{0}}\right) \hat{\xi} p^{(1-\hat{\xi})}}}{1+\frac{\widehat{\pi_{0}}}{\left(1-\widehat{\pi_{0}}\right) \hat{\xi} p^{(1-\hat{\xi})}}}
$$

ESTIMATING $P(\operatorname{Ind} \mid \boldsymbol{D})$

- Bayesian methods
- Use the data directly.
- No problem if you have data sets with different sample sizes etc.
- Computationally expensive.
- Choose a prior for π_{0}.
-PROPER (based on p-values)
- Scalable, no computational overhead, benefits from larger p-value populations (more tests).
- Estimate π_{0} from the data.
- p-values are not i.i.d.

CONFLICT RESOLUTION STRATEGIES

P(constraint)	Ind/Dep	path constraint
0.999	Dep	$\exists \mathrm{m}$-connecting path from A to D given \varnothing in $S^{I_{n}}$
0.998	Ind	$\nexists \mathrm{m}$-connecting path from A to D given \varnothing in $S^{I_{1}}$
\vdots	\vdots	\vdots
0.510	Dep	$\exists \mathrm{m}$-connecting path from A to B given \varnothing in $S^{I_{1}}$

- Assign weights according to P (constraint), maximize the sum of weights.
- Rank by probability, greedily satisfy constraints.

Maximizing sum of weights is the best strategy Use greedy to scale up.

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data-sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

EXISTING ALGORITHMS

Vary in:

- Type of constraints:
- different types of paths (m-connecting, inducing, ancestral).
- translation to logic formula.
- Types of heterogeneity:
- Soft/hard interventions, selection.
- Preprocessing:
- Heuristics to limit number of constraints / paths.
- Conflict Resolution
- Method for calculating probabilities.
- Conflict resolution strategy (greedy/ max SAT / weighted max SAT).
- CS solver
- Initially SAT solvers, more recently ASP.
- Scalability
- Depends on choices above. Be exact/ focus on scalability.
- Difficult to determine
- huge variance depending on the problem.

Implementations vary

 heuristics are typically easy to incorporate in any algorithm. -maximum conditioning set size/ path length.-greedy /weighted max SAT.

CSAT+

Type of Constraints	m-connecting paths, inducing paths.
Type of Heterogeneity	Overlapping variables. Preprocessing
Runs FCl on multiple data sets. Additional preprocessing rules for additional edge removals/orientations. Conflict resolution	None (oracle only) CSP solver
MINISAT	
Scalability variables (ALARM network)	

LOCI

Type of Constraints	ancestral paths. Converts [minimal] conditional independencies to ancestral relations: Ind $(X, Y \mid[\mathbf{Z}]) \Rightarrow \boldsymbol{Z} \rightarrow \cdots \rightarrow X \vee \boldsymbol{Z} \rightarrow \cdots \rightarrow Y$
Type of Heterogeneity	None (substitutes FCl orientation steps). Preprocessing
FCl skeleton step.	
Conflict resolution	None (single data set, runs similar to FCl orientation rules)
CSP solver	custom set of rules
Scalability	unknown (probably similar to FCI).

SAT-BASED CAUSAL DISCOVERY

Type of Constraints	m-connecting paths
Type of Heterogeneity	Overlapping variables, interventions also allows cycles. None. Can use a subset of (in) dependencies depending on assumptions (e.g. FCI tests only) Preprocessing
Conflict resolution (oracle only)	
CSP solver	8 MINISAT
Scalability	[Hyttinen, Hoyer, Eberhardt and Järvisalo, UAI 2013]

CONSTRAINT-BASED CAUSAL DISCOVERY

Type of Constraints	m-connecting paths. encoded in ASP based on marginalization and conditioning.
Type of Heterogeneity Overlapping variables, interventions allows cycles	
Preprocessing	none Conflict resolution also tried maximizing the number of independencies/ number of constraints ASP CSP solver 7 variables Scalability

COMBINE

Type of Constraints	inducing paths Drastically reduces the number of constraints (\exists, \nexists path) to 1 per variable pair \& data set $\left(\right.$ (compared to $\left.2^{n}\right)$ Overlapping variables, interventions
Type of Heterogeneity	FCl on each data set.
Preprocessing	Default: based on PROPER, greedy search. also implemented: BCCD, weighted maxSAT. MINISAT
Conflict resolution	
CSP solver	[Triantafillou variables (additionally limits maximum path length) Tsamardinos, JMLR 2015]
Scalability	

ETIO

Type of Constraints	m-connecting paths. encoded in ASP based on extension of the Bayes-Ball algorithm (used to determine m- connections/m-separations in graphs) for SMCGs with selection. Overlapping variables, interventions, selection.
Type of Heterogeneity Preprocessing	none Conflict resolution based on PROPER/M\&B, greedy CSP solver
ASP	
Scalability	$10-15$ variables

ACl

Type of Constraints	m-connections, ancestry relations
Type of Heterogeneity Preprocessing	Overlapping variables, various types of interventions
Conflict resolution	based on M\&B, weighted maxSAT
CSP solver	ASP
Scalability	$10-15$ variables

[S. Magliacane, T. Claassen, J.M. Mooij, arXiv]

MORE

- Using conversion to logic to incorporate prior knowledge in maximal ancestral graphs.
- [Borboudakis, Triantafillou and Tsamardinos, ESANN 2011].
- Using conversion to logic for causal discovery from time-course data
- Causal Discovery from Subsampled Time Series Data by Constraint Optimization, [Hyttinen, Plis, Järvisalo, Eberhardt and Danks, arXiv, 2016]
- Using conversion to logic for identifying chain graphs.
- Learning Optimal Chain Graphs with Answer Set Programming[Sonntag, Järvisalo, Penã, Hyttinen, UAI 2015]
- Using conversion to logic to identify semi-Markov causal graphs.
- [Penã, UAI 2016]

OVERVIEW

Different data distributions, same causal mechanism: use causal modeling to connect.
Algorithms can handle datasets of different variable sets, different experimental conditions, prior causal knowledge.

Identify the set of causal graphs that simultaneously fit all datasets .
Convert problem to SAT or ASP.
Logic formula encodes a set of causal models that simultaneously fit all the data sets.

QUESTIONS

-How can you reason with this set of models?
-Is it useful? Do you make additional inferences than analyzing each data set in isolation?

OUTLINE

1. Integrative causal discovery
i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

ESTIMATING CAUSAL EFFECTS

You are interested in computing $P(B \mid d o(A=a))$
In general, $P(B \mid d o(A=a)) \neq P(B \mid A)$
If you know the causal graph, you can use the rules of docalculus to transform post-intervention probabilities to preintervention probabilities.

ESTIMATING CAUSAL EFFECTS

You are interested in computing $P(B \mid d o(A=a))$
In general, $P(B \mid d o(A=a)) \neq P(B \mid A)$
If you know the causal graph, you can use the rules of docalculus to transform post-intervention probabilities to preintervention probabilities.

[Rule 1] $\operatorname{Ind}(Y, Z \mid X, W)_{G^{X}} \Rightarrow P(y \mid d o(x), z, w)=P(y \mid d o(x), w)$.
Insert/delete observations
Exchange action/observation
[Rule 2] $\operatorname{Ind}\left(Y, I_{Z} \mid X, Z, W\right)_{G^{X}} \Rightarrow P(y \mid d o(x), d o(z), w)=P(y \mid d o(x), z, w)$.
[Rule 3] $\operatorname{Ind}\left(Y, I_{Z} \mid X, W\right)_{G^{X}} \Rightarrow P(y \mid d o(x), d o(z), w)=P(y \mid d o(x), w)$.

Insert/delete action

Check m-separations \Rightarrow
Apply rules until you have a formula with pre-intervention probabilities
[Shpitser and Pearl (2006): Return a formula if identifiable]

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C \exists m-connecting path from A to Cgiven \emptyset \exists m-connecting path from A to C given B $\exists \mathrm{m}$-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C
[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C ヨ m-connecting path from A to Cgiven \varnothing \exists m-connecting path from A to C given B \exists m-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C

Find a graph consistent with Φ

Causal effect $P(B \mid \operatorname{do}(A))$
[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C \exists m-connecting path from A to C given \emptyset \exists m-connecting path from A to C given B \exists m-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C
\nexists directed path from A to B \nexists directed path from B to C

Find a graph consistent with Φ

Causal effect $P(B \mid$ do $(A))$ $F_{1}=\sum_{c} P(b \mid a, c) P(c)$
[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C ヨ m-connecting path from A to C given \emptyset \exists m-connecting path from A to C given B \exists m-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C
($\exists \mathrm{m}$-connecting path from I_{A} to Cgiven $\varnothing \mathrm{V}$ $\exists \mathrm{m}$-connecting path from I_{A} to B given A, C)

Find a graph

Shpitser and Pearl (2006)
Causal effect $P(B \mid \operatorname{do}(A))$

$$
F_{1}=\sum_{c} P(b \mid a, c) P(c)
$$

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C ヨ m-connecting path from A to C given \emptyset \exists m-connecting path from A to C given B \exists m-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C (\exists m-connecting path from I_{A} to C given $\emptyset \mathrm{V}$ $\exists \mathrm{m}$-connecting path from I_{A} to B given A, C)

Find a graph consistent with Φ

Shpitser and Pearl (2006)
Causal effect $P(B \mid \operatorname{do}(A))$

$$
F_{1}=\sum_{c} P(b \mid a, c) P(c)
$$

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C ヨ m-connecting path from A to C given \emptyset \exists m-connecting path from A to C given B \exists m-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C
(\exists m-connecting path from I_{A} to Cgiven $\emptyset \mathrm{V}$
\exists m-connecting path from I_{A} to B given A, C)

Find a graph consistent with Φ

Shpitser and Pearl (2006)
Causal effect $P(B \mid \operatorname{do}(A))$

$$
F_{1}=\sum_{c} P(b \mid a, c) P(c)
$$

$$
F_{2}=P(b)
$$

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C $\exists \mathrm{m}$-connecting path from A to C given \emptyset \exists m-connecting path from A to C given B $\exists \mathrm{m}$-connecting path from B to C given \emptyset $\exists \mathrm{m}$-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C (\exists m-connecting path from I_{A} to Cgiven $\emptyset \mathrm{V}$ \exists m-connecting path from I_{A} to B given A, C) \exists m-connecting path from I_{A} to B given \emptyset)

Find a graph
consistent with Φ

Shpitser and Pearl (2006)
Causal effect $P(B \mid \operatorname{do}(A))$

$$
F_{1}=\sum_{c} P(b \mid a, c) P(c)
$$

$$
F_{2}=P(b)
$$

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C ヨ m-connecting path from A to C given \emptyset \exists m-connecting path from A to C given B \exists m-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C (\exists m-connecting path from I_{A} to Cgiven $\emptyset \mathrm{V}$ \exists m-connecting path from I_{A} to B given A, C) \exists m-connecting path from I_{A} to B given \emptyset)

Find a graph consistent with Φ

Shpitser and Pearl (2006)
Causal effect $P(B \mid \operatorname{do}(A))$

$$
F_{1}=\sum_{c} P(b \mid a, c) P(c)
$$

$$
F_{2}=P(b)
$$

NA

DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula Φ
\exists m-connecting path from A to B given \emptyset \exists m-connecting path from A to B given C $\exists \mathrm{m}$-connecting path from A to C given \emptyset \exists m-connecting path from A to C given B $\exists \mathrm{m}$-connecting path from B to C given \emptyset \exists m-connecting path from B to C given A \nexists directed path from A to C \nexists directed path from A to B \nexists directed path from B to C ($\exists \mathrm{m}$-connecting path from I_{A} to Cgiven $\varnothing \mathrm{V}$ \exists m-connecting path from I_{A} to B given A, C) \exists m-connecting path from I_{A} to B given \emptyset)

Find a graph consistent with Φ

Shpitser and Pearl (2006)

Causal effect $P(B \mid \operatorname{do}(A))$

$$
F_{1}=\sum_{c} P(b \mid a, c) P(c)
$$

$$
F_{2}=P(b)
$$

NA

UNSAT

QUESTIONS

-How can you reason with this set of models?
You can use do-calculus and estimate (a population of) causal effects.
-Is it useful? Do you make additional inferences than analyzing each data set in isolation?

OUTLINE

1. Integrative Causal Discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data-set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
\forall i. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
\forall. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

EXAMPLE INPUT- OUTPUT

Formula Φ

$\nexists m$.connecting path from X to W given $Y \wedge$ $\exists m$. connecting path from X to W given $\varnothing \wedge$ $\exists m$. connecting path from X to Y given $\emptyset \wedge$ \exists m. connecting path from Y to W given $\varnothing \wedge$ \exists m. connecting path from X to Y given $W \wedge$ \exists m. connecting path from Y to W given $X \wedge$
$\nexists m$. connecting path from X to W given $Z \wedge$ \exists. connecting path from X to W given $\emptyset \wedge$ \exists m. connecting path from X to Z given $\emptyset \wedge$ \exists m. connecting path from Z to W given $\emptyset \wedge$ \exists.connecting path from X to Z given $W \wedge$ \exists m. connecting path from Z to W given X

Summary of solutions

EXAMPLE INPUT- OUTPUT

Cl pattern C_{1}

$X, W \mid Y$	Ind
$X, W \mid \varnothing$	Dep
$X, Y \mid \varnothing$	Dep
$Y, W \mid \varnothing$	Dep
$Y, X \mid W$	Dep
$Y, W \mid X$	Dep

Formula Φ
$\nexists m$.connecting path from X to W given $Y \wedge$ \exists. connecting path from X to W given $\emptyset \wedge$ $\exists m$. connecting path from X to Y given $\emptyset \wedge$ \exists m. connecting path from Y to W given $\emptyset \wedge$ \exists m. connecting path from X to Y given $W \wedge$ \exists m. connecting path from Y to W given $X \wedge$
$\nexists m$. connecting path from X to W given $Z \wedge$ \exists m. connecting path from X to W given $\emptyset \wedge$ \exists m. connecting path from X to Z given $\emptyset \wedge$ \exists m. connecting path from Z to W given $\emptyset \wedge$ \exists m. connecting path from X to Z given $W \wedge$ gm.connecting path from Z to W given X

Summary of solutions

Predict that Y and Z are associated even though they are not measured in the same data set.

TEST IF IT WORKS IN REAL DATA.

Find data sets D_{1}, D_{2} measuring overlapping variables

Formula Φ
$\nexists m$. connecting path from X to W given $Y \wedge$ \exists m. connecting path from X to W given $\emptyset \wedge$ \exists m. connecting path from X to Y given $\emptyset \wedge$ \exists m. connecting path from Y to W given $\emptyset \wedge$ \exists m. connecting path from X to Y given $W \wedge$ \exists m. connecting path from Y to W given $X \wedge$
$\nexists m$. connecting path from X to W given $Z \wedge$ \exists. connecting path from X to W given $\emptyset \wedge$ \exists m. connecting path from X to Z given $\emptyset \wedge$ \exists m. connecting path from Zto W given $\emptyset \wedge$ \exists m. connecting path from X to Z given $W \wedge$ \exists m. connecting path from Z to W given X

Summary of solutions

Predict that Y, Z are associated.
Look for patterns
C_{1}, C_{2}.

TEST IF IT WORKS ON REAL DATA (SIMULATE SCENARIO)

1.Original Dataset

2.Split to D_{1}, D_{2} and $D_{\text {test }}$ containing different samples

3.Find X, Y, W in D_{1} and X, Z, W, in D_{2} that satisfy C_{1}, C_{2}.

Test Y, Z for association

Restrict inferences only to cases where the probability of errors is small, i.e. p-values are extreme.

```
\(\mathrm{p}_{\mathrm{xy} . \mathrm{Z}}<0.05\) accept \(\operatorname{Dep}(\mathrm{X}, \mathrm{Y} \mid \mathbf{Z})\)
\(\mathrm{p}_{\mathrm{xy}, \mathrm{Z}}>0.3\) accept \(\operatorname{Ind}(\mathrm{X}, \mathrm{Y} \mid \mathrm{Z})\)
Else, undecided (forgo making any inferences)
```

DATASETS

| Name | \# instances | \# variables | Group Size | Variables type | Scientific domain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Covtype | 581012 | 55 | 55 | Nominal/Ordinal | Agricultural |
| Read | 681 | 26 | 26 | Nominal/Continuous/Ordinal | Business |
| Infant-mortality | 5337 | 83 | 83 | Nominal | Clinical study |
| Compactiv | 8192 | 22 | 22 | Continuous | Computer science |
| Gisette | 7000 | 5000 | 50 | Continuous | Digit recognition |
| Hiva | 4229 | 1617 | 50 | Nominal | Drug discovering |
| Breast-Cancer | 286 | 17816 | 50 | Continuous | Gene expression |
| Lymphoma | 237 | 7399 | 50 | Continuous | Gene expression |
| Wine | 4898 | 12 | 12 | Continuous | Industrial |
| Insurance-C | 9000 | 84 | 84 | Nominal/Ordinal | Insurance |
| Insurance-N | 9000 | 86 | 86 | Nominal/Ordinal | Insurance |
| p53 | 16772 | 5408 | 50 | Continuous | Protein activity |
| Ovarian | 216 | 2190 | 50 | Continuous | Proteomics |
| C\&C | 1994 | 128 | 128 | Continuous | Social science |
| ACPJ | 15779 | 28228 | 50 | Continuous | Text mining |
| Bibtex | 7395 | 1995 | 50 | Nominal | Text mining |
| Delicious | 16105 | 1483 | 50 | Nominal | Text mining |
| Dexter | 600 | 11035 | 50 | Nominal | Text mining |
| Nova | 1929 | 12709 | 50 | Nominal | Text mining |
| Ohsumed | 5000 | 14373 | 50 | Nominal | Text mining |

DATASETS

Name	\# instances	\# variables	Group Size	Variables type	Scientific domain	\# predictions
Covtype	581012	55	55	Nominal/Ordinal	Agricultural	222
Read	681	26	26	Nominal/Continuous/Ordinal	Business	0
Infant-mortality	5337	83	83	Nominal	Clinical study	22
Compactiv	8192	22	22	Continuous	Computer science	135
Gisette	7000	5000	50	Continuous	Digit recognition	423
Hiva	4229	1617	50	Nominal	Drug discovering	554
Breast-Cancer	286	17816	50	Continuous	Gene expression	1833
Lymphoma	237	7399	50	Continuous	Gene expression	7712
Wine	4898	12	12	Continuous	Industrial	4
Insurance-C	9000	84	84	Nominal/Ordinal	Insurance	1839
Insurance-N	9000	86	86	Nominal/Ordinal	Insurance	226
p53	16772	5408	50	Continuous	Protein activity	46647
Ovarian	216	2190	50	Continuous	Proteomics	539165
C\&C	1994	128	128	Continuous	Social science	99241
ACPJ	15779	28228	50	Continuous	Text mining	0
Bibtex	7395	1995	50	Nominal	Text mining	1
Delicious	16105	1483	50	Nominal	Text mining	856
Dexter	600	11035	50	Nominal	Text mining	0
Nova	1929	12709	50	Nominal	Text mining	0
Ohsumed	5000	14373	50	Nominal	Text mining	0

HOW DID WE DO?

- About 700000 predictions in 20 datasets.
- Accuracy: The percentage of p-values <0.05.
- May include false positives and exclude false negatives.

HOW DID WE DO?

- About 700000 predictions in 20 datasets.
- Accuracy: The percentage of p-values <0.05.
- May include false positives and exclude false negatives.

98\% accuracy vs. 16% of random guessing

PREDICT CORRELATION STRENGTH $\rho_{Y Z}$

How strong is the correlation of Y and Z ?	
- Y	
	Q
	26 possible SMCGs.

PREDICT CORRELATION STRENGTH $\rho_{Y Z}$

- Assume multivariate normality and interpret SMCG as path diagram.
- Use the (measured) sample correlations
- $r_{Y X}, r_{Y W}, r_{X W}\left(D_{1}\right)$
- $r_{Z X}, r_{Z W}, r_{X W}\left(D_{2}\right)$
- Use rules of path analysis to predict $\widehat{{ }_{Y Z}}$.

26 possible SMCGs.

PREDICT CORRELATION STRENGTH $\rho_{Y Z}$

- Assume multivariate normality and interpret SMCG as path diagram.
- Use the (measured) sample correlations
- $r_{Y X}, r_{Y W}, r_{X W}\left(D_{1}\right)$
- $r_{Z X}, r_{Z W}, r_{X W}\left(D_{2}\right)$
- Use rules of path analysis to predict $\widehat{{ }_{Y Z}}$.

PREDICT CORRELATION STRENGTH $\rho_{Y Z}$

- Assume multivariate normality and interpret SMCG as path diagram.
- Use the (measured) sample correlations
- $r_{Y X}, r_{Y W}, r_{X W}\left(D_{1}\right)$
- $r_{Z X}, r_{Z W}, r_{X W}\left(D_{2}\right)$
- Use rules of path analysis to predict $\widehat{{ }_{Y Z}}$.

PREDICT CORRELATION STRENGTH $\rho_{Y Z}$

- Assume multivariate normality and interpret SMCG as path diagram.
- Use the (measured) sample correlations
- $r_{Y X}, r_{Y W}, r_{X W}\left(D_{1}\right)$
- $r_{Z X}, r_{Z W}, r_{X W}\left(D_{2}\right)$
- Use rules of path analysis to predict $\widehat{{ }_{Y Z}}$.

You can uniquely identify the skeleton of the graph AND predict the correlation coefficient of Y, Z !

HOW DID WE DO?

- Clear trend in predicted vs sample correlations.
- Also a systematic bias because the predictions have been selected based on the independence tests.
- Correlation of predicted vs sample correlations is 0.89 .
- Predictions based on large correlations have reduced bias.

HOW DID WE DO?

- Clear trend in predicted vs sample correlations
- Also a systematic bias because the predictions have been selected based on the independence tests

Predicted vs sample correlations over all data sets, grouped by mean absolute value of the denominators used in their computations

- Correlation of predicted vs sample correlations is 0.89
- Predictions based on large correlations have reduced bias.

QUESTIONS

-How can you reason with this set of models?
You can use do-calculus and estimate (a population of) causal effects.
-Is it useful? Do you make additional inferences than analyzing each data set in isolation?
You can make non-trivial inferences, quantitative with additional assumptions.

OUTLINE

1. Integrative causal discovery

i. Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data set).
\forall. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
\forall. Modeling interventions/selection.

2. Logic-based causal discovery

i. Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
\forall. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.

KEY-POINTS

Integrative logic-based causal discovery.

Different data distributions, same causal mechanism: use causal modeling to connect.
Can handle datasets of different variable sets, different experimental conditions, prior causal knowledge.

Identify the set of causal graphs that simultaneously fit all datasets and reason with this set.
Convert problem to SAT or ASP; exploit 40 years of SAT-solving technology.
Query-based approach to avoid explosion of possible solutions!

Vision of automatically analyzing a large portion of available datasets in a domain.

WHAT IS NEXT?

Improving scalability.
Improving quality of learning and robustness.
Further removing restrictive assumptions (e.g., Faithfulness).
Making quantitative predictions.
Extensions for temporal data.
Additional constraints (e.g. Verma constraints).
Feature selection from multiple data sets.

Apply it to real problems.

REFERENCES

1. D. Margaritis and F. Bromberg, Efficient Markov Network Discovery Using Particle Filters, Computational Intelligence (2009).
2. S. Triantafillou, I Tsamardinos and IG Tollis, Learning Causal Structure from Overlapping Variable Sets, AISTATS 2010.
3. G. Borboudakis, S. Triantafillou, V. Lagani, I. Tsamardinos, A Constraint-based Approach to Incorporating Prior Knowledge in Causal Models, ESANN 2011.
4. T. Claassen and T. Heskes, A Logical Characterization of Constraint-based Causal Discovery. UAI 2011.
5. T. Claassen and T. Heskes, A Bayesian Approach to Constraint-based Causal Inference, UAI 2012.
6. I. Tsamardinos, S. Triantafillou, V. Lagani, Towards Integrative Causal Analysis of Heterogeneous Data Sets and Studies, Journal of Machine Learning Research (2012).
7. A. Hyttinen, P. O. Hoyer, F. Eberhardt, and M. Järvisalo, Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure , UAI 2013.

REFERENCES(2)

8. A. Hyttinen, F. Eberhardt, and M. Järvisalo, Constraint-based Causal Discovery: Conflict Resolution with Answer Set Programming, UAI 2014.
9. S. Triantafillou, I. Tsamardinos, A. Roumpelaki, Learning Neighborhoods of High Confidence in Constraint-Based Causal Discovery, PGM 2014.
10. S. Triantafillou and I. Tsamardinos, Constraint-based Causal Discovery from Multiple Interventions over Overlapping Variable Sets, Journal of Machine Learning Research (2015).
11. D. Sonntag, M. Järvisalo, Jose M. Pena, A. Hyttinen, Learning Optimal Chain Graphs with Answer Set Programming, UAI 2015.
12. A. Hyttinen, S. Plis, M. Järvisalo, F. Eberhardt, and D. Danks, Causal Discovery from Subsampled Time Series Data by Constraint Optimization, submitted.
13. G. Borboudakis and I. Tsamardinos. Towards Robust and Versatile Causal Discovery for Business Applications. KDD 2016.
14. S. Magliacane, T. Claassen, J.M. Mooij, Ancestral Causal Inference, arXiv:1606.07035

ACKNOWLEDGEMENTS

Mens x machina group, University of Crete.
Jan Lemeire, Frederick Eberhardt, Antti Hyttinen, Joris Mooij
ERC CAUSALPATH
(4) mens) machina

