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HETEROGENEOUS DATA SETS MEASURING THE SAME SYSTEM 
UNDER STUDY 

Variables

Study

Thrombosis Contraceptives Protein C Breast Cancer Protein Y Protein Z

1

observational data

Yes No 10.5 Yes - -

No Yes 5.3 No - -

- -

No Yes 0.01 No - -

2

observational data

- - - Yes 0.03 9.3

- - -

- - - No 3.4 22.2

3

experimental data

No No 0 (Control) No 3.4 -

Yes No 0 (Control) Yes 2.2 -

- -

Yes Yes 5.0 (Treat.) Yes 7.1 -

No Yes 5.0 (Treat.) No 8.9 -

4

experimental data

No No (Ctrl) - - - -

No No (Ctrl) - - - -

- - - -

Yes Yes(Treat) - - - -



“… In the randomized control trial, women 
taking contraceptives had 30% more chances 
of being diagnosed with thrombosis … ”
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ISOLATED ANALYSIS
Analyze data Publish results

“…Drugs reducing protein C reduced the 
probability of Breast Cancer and lowered the 
levels of Protein E…”

“…Protein E is a risk factor for Breast Cancer…”

“…The use of contraceptives is correlated 
with Thrombosis, negatively correlated with 
Breast Cancer and levels of Protein E …”
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INTEGRATIVE CAUSAL ANALYSIS

Data can not be pooled 
together:

Missing variables cannot 
be treated as missing 
values.

They come from different  
experimental/sampling 
conditions (different 
distributions).
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INTEGRATIVE CAUSAL ANALYSIS

Data come from the 

same causal 
mechanism.

Breast Cancer

Protein C

ContraceptivesThrombosis

Protein Z

Protein E

Data can not be pooled 
together:

Missing variables cannot 
be treated as missing 
values.

They come from different  
experimental/sampling 
conditions (different 
distributions).
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INTEGRATIVE CAUSAL ANALYSIS

Identify the 
causal graphs 

that 
simultaneously 

fit all data.

Breast Cancer

Protein C

ContraceptivesThrombosis

Protein Z

Protein E
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SEMI MARKOV CAUSAL GRAPHS

𝑋 directly causes 𝑍
𝑋 and 𝑌 share a 
latent common cause

Semi Markov Causal Graph  G

• Directed edges represent direct causal relationships.

• Bi-directed edges  represent confounding (latent 
confounders).

• Both types of edges allowed for a single pair of variables.

• No directed cycles (no causal feedback).

X

Y Z
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SEMI MARKOV CAUSAL GRAPHS

𝑋 directly causes 𝑍
𝑋 and 𝑌 share a 
latent common cause

Joint Probability Distribution PSemi Markov Causal Graph  G

Z

X Y
Yes No

Yes Yes 0,01 0,04

Yes No 0,01 0,04

No Yes 0,000045 0,044955

No No 0,000855 0,854145

• Joint probability distribution entails 
conditional (in) dependencies.

• 𝐼𝑛𝑑 𝑋, 𝑌 𝒁 : 𝑃 𝑋 𝑌, 𝒁 = 𝑃(𝑋|𝒁)

•𝐷𝑒𝑝 𝑋, 𝑌 𝒁 : 𝑃 𝑋 𝑌, 𝒁 ≠ 𝑃(𝑋|𝒁)

X

Y Z

• Directed edges represent direct causal relationships.

• Bi-directed edges  represent confounding (latent 
confounders).

• Both types of edges allowed for a single pair of variables.

• No directed cycles (no causal feedback).



11

EXAMPLE OF CONDITIONAL (IN) DEPENDENCE

Data measuring: 
Smoking, 
Yellow Teeth,
Nicotine Levels.

P(Nicotine Levels | Yellow Teeth) ≠
P(Nicotine Levels)

P(Nicotine Levels | Smoking, Yellow Teeth) 
= P(Nicotine Levels|Smoking)
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SEMI MARKOV CAUSAL GRAPHS

𝑋 directly causes 𝑍
𝑋 and 𝑌 share a 
latent common cause

Causal 
assumptions

X

Y Z

• Joint probability distribution entails 
conditional (in) dependencies.

• 𝐼𝑛𝑑 𝑋, 𝑌 𝒁 : 𝑃 𝑋 𝑌, 𝒁 = 𝑃(𝑋|𝒁)

•𝐷𝑒𝑝 𝑋, 𝑌 𝒁 : 𝑃 𝑋 𝑌, 𝒁 ≠ 𝑃(𝑋|𝒁)

Joint Probability Distribution PSemi Markov Causal Graph  G

• Directed edges represent direct causal relationships.

• Bi-directed edges  represent confounding (latent 
confounders).

• Both types of edges allowed for a single pair of variables.

• No directed cycles (no causal feedback).

Z

X Y
Yes No

Yes Yes 0,01 0,04

Yes No 0,01 0,04

No Yes 0,000045 0,044955

No No 0,000855 0,854145
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CAUSAL ASSUMPTIONS

Causal Markov Assumption:
Every variable is independent of its non-effects 
given its direct causes.

X

Y Z
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CAUSAL ASSUMPTIONS

Causal Markov Assumption:
Every variable is independent of its non-effects 
given its direct causes.

𝐼𝑛𝑑(𝑌, 𝑍 |𝑋)

X

Y Z
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CAUSAL ASSUMPTIONS

𝐼𝑛𝑑(𝑌, 𝑍 |𝑋)

Causal Faithfulness Assumption:
Independences stem only from the causal structure, 
not the parameterization of the distribution.

X

Y Z

Causal Markov Assumption:
Every variable is independent of its non-effects 
given its direct causes.
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CAUSAL ASSUMPTIONS

𝐼𝑛𝑑(𝑌, 𝑍 |𝑋)

𝐷e𝑝(𝑌, 𝑍 | ∅)
𝐷𝑒𝑝 𝑋, 𝑍 ∅)
𝐷𝑒𝑝(𝑋, 𝑍 | 𝑌)
𝐷𝑒𝑝(𝑌, 𝑋 | ∅)
𝐷𝑒𝑝(𝑌, 𝑋 | 𝑍)

Causal Faithfulness Assumption:
Independences stem only from the causal structure, 
not the parameterization of the distribution.

X

Y Z

Causal Markov Assumption:
Every variable is independent of its non-effects 
given its direct causes.
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CAUSAL ASSUMPTIONS

𝐼𝑛𝑑(𝑌, 𝑍 |𝑋)

𝐷e𝑝(𝑌, 𝑍 | ∅)
𝐷𝑒𝑝 𝑋, 𝑍 ∅)
𝐷𝑒𝑝(𝑋, 𝑍 | 𝑌)
𝐷𝑒𝑝(𝑌, 𝑋 | ∅)
𝐷𝑒𝑝(𝑌, 𝑋 | 𝑍)

Causal Faithfulness Assumption:
Independences stem only from the causal structure, 
not the parameterization of the distribution.

All independencies in the joint probability 
distribution can be identified in G using the 
graphical criterion of m-separation. 

X

Y Z

Causal Markov Assumption:
Every variable is independent of its non-effects 
given its direct causes.
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𝒎-SEPARATION

A path 𝑋1, … , 𝑋𝑛 between 𝑋1 and 𝑋𝑛 is 𝒎-connecting given 𝑽 if for every triple 𝑋𝑖−1, 𝑋𝑖 , 𝑋𝑖+1 on the path:

• If Χi−1 ∗→ 𝑋𝑖 ←∗ 𝑋𝑖+1 (colliding triplet),  
𝑋𝑖 or one of its descendants ∈ 𝑽

• Otherwise, 𝑋𝑖 ∉ 𝑽

𝒎-connecting path  => information flow => dependence

No 𝒎-connecting path => no information flow  => independence (𝑚-separation)

Colliders Χi−1 ∗→ 𝑋𝑖 ←∗ 𝑋𝑖+1 are special and create an asymmetry that will allow us to orient causal 
direction.
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𝒎-SEPARATION

⇔ 𝐷𝑒𝑝(𝑌, 𝑍|∅)

X

Y Z

XY Z

is 𝑚-connecting given ∅
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𝒎-SEPARATION

X

Y Z

⇔ 𝐷𝑒𝑝(𝑌, 𝑍|∅)

X

Y Z

XY Z

is 𝑚-connecting given ∅

⇔ 𝐼𝑛𝑑(𝑌, 𝑍|𝑋)

XY Z

is NOT 𝑚-connecting given 𝑋
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𝒎-SEPARATION

X

Y Z

⇔ 𝐼𝑛𝑑(𝑌, 𝑍|∅)

X

Y Z

XY Z

is NOT 𝑚-connecting given ∅

⇔ 𝐷𝑒𝑝(𝑌, 𝑍|𝑋)

XY Z

is 𝑚-connecting given 𝑋
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CAUSAL MODELLING

Conditional 
(in)dependencies 

(expected) in the joint 
probability distribution

Paths (m-
separations/connections) 

in the causal graph

G:

A

C

DB

E

Data set 𝐷
measuring a 

set of variables 

A B C D E
𝑨, 𝑩|𝑬, 𝑪 Ind

𝑨, 𝑩|∅ Dep

… …

𝑬, 𝑪|𝑨, 𝑩, 𝑪 Dep
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REVERSE ENGINEERING

causal graph?Data set 𝐷
measuring a 

set of variables 

A B C D E 𝐺:

A

C

DB

E

?

??
?

?

??? ?

??



26

REVERSE ENGINEERING

Find the (in)dependencies 
using statistical tests.

causal graph?Data set 𝐷
measuring a 

set of variables 

A B C D E 𝐺:

A

C

DB

E

?

??
?

?

??? ?

??A B C D E
𝑨, 𝑩|𝑬, 𝑪 Ind

𝑨, 𝑩|∅ Dep

… …

𝑬, 𝑪|𝑨, 𝑩, 𝑪 Dep
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REVERSE ENGINEERING

Find a graph that satisfies 
the implied m-

connections/separations.

Data set 𝐷
measuring a 

set of variables 

A B C D E 𝐺:

A

C

DB

E𝑨, 𝑩|𝑬, 𝑪 Ind

𝑨, 𝑩|∅ Dep

… …

𝑬, 𝑪|𝑨, 𝑩, 𝑪 Dep

Find the (in)dependencies 
using statistical tests.
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MARKOV EQUIVALENCE

A

B

D

C E

A

B

D

C E

A

B

D

C E

…

• More than one graphs entail the same set of conditional independencies.
• The graphs have some common features (edges/orientations).
• For some types of causal graphs, Markov equivalence classes share the same 

skeleton.
• not semi-Markov causal graphs



A

B

D

C E
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CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data
Causal graph(s)(In)dependencies paths

…

Sound and complete algorithms take as input a data set and output a 
summary of all the graphs that satisfy all identified conditional 
independencies.
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A

B

D

C E
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INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data sets measuring 
overlapping variable sets 

under 
intervention/selection.

Causal graph(s)
that 

simultaneously 
fit all data.

…
A B DC E

CA B D



A

B

D

C E
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INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data sets measuring 
overlapping variable sets 

under 
intervention/selection.

Causal graph(s)
that 

simultaneously 
fit all data.

…
A B DC E

CA B D

• Every data set imposes some constraints.
• Observational data impose m-separation/m-connection constraints on the candidate graph.
• Experimental data?
• Data sampled under selection?
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INTERVENTIONS (MANIPULATIONS)

Values of the manipulated variable are set solely 
by the intervention procedure
e.g. value of a knockout gene in a knockout mice is 
set to zero; randomized variable in a randomized 
control trial.

No Junk food

Heart disease

Junk food



Manipulated SMCM 𝑆𝐵
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INTERVENTIONS

Graph (SMCG) G

A

C

DB

E
• If you know the causal model, you can 

model interventions.

• Values of B are set solely by the 
intervention procedure: If you know 
direct causal relations,  remove all 
edges into the manipulated variable.

• This procedure is called graph surgery.
• The resulting graph is called the 

manipulated graph (symb. 𝐺𝐵)

Manipulated SMCG 𝐺𝐵

(after graph surgery)

A

C

DB

E



Dataset 𝐷𝑖 measuring a 
subset of variables, some of 

which are manipulated 

Conditional 
independencies in 𝐷𝑖

Path constraints on the 
causal graph after 

manipulation

𝐺𝐵:

A

C

DB

E

36

CAUSAL DISCOVERY WITH INTERVENTIONS

∄ m-connecting path from A to D given ∅ in  𝐺𝐵

∄ m-connecting path from A to D given 𝐵 in  𝐺𝐵

⋮
∄ m-connecting path from A to D given B, 𝐶 in  𝐺𝐵

⋮
∃ m-connecting path from B to C given ∅ in  𝐺𝐵

A DC EB 𝑨, 𝑩|𝑬, 𝑪 Ind

𝑨, 𝑩|∅ Dep

… …

𝑬, 𝑪|𝑨, 𝑩, 𝑪 Dep
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SELECTION BIAS

• Samples are selected based on the 
value of one of your variables.

• e.g. you perform your study in a 
specific region/on the internet; case-
control study for a rare disease.

population

Sample 
(internet 
users)

evolution creation



Manipulated SMCM 𝑆𝐵

38

SELECTION BIAS IN CAUSAL MODELS

Selected Graph (SMCG) 𝐺𝐷

• If you know the causal model, you can 
model selection bias.

• Samples are selected based on the 
value of D; The value of D directly 
affects the probability of being 
selected.

• S  is a child of D, S=1 for all your 
samples.

• Selected graph, symb. 𝐺𝐷

Manipulated SMCM 𝑆𝐵Graph (SMCG) G

A

C

DB

E

A

C

DB

E

S=1
Selection 
variable



A

C

DB

E

S=1

Dataset 𝐷𝑖 measuring a 
subset of variables, some of 

which are selected upon

Conditional 
independencies in 𝐷𝑖

Path constraints on the 
underlying causal graph 

after selection
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CAUSAL DISCOVERY WITH SELECTION BIAS

∄ m-connecting path from A to D given ∅ in  𝐺𝐷

∄ m-connecting path from A to D given 𝐵 in 𝐺𝐷

⋮
∄ m-connecting path from A to D given B, 𝐶 in 𝐺𝐷

⋮
∃ m-connecting path from B to C given ∅ in 𝐺𝐷

A C EB 𝑨, 𝑩|𝑬, 𝑪,S=1 Ind

𝑨, 𝑩|S=1 Dep

… …

𝑬, 𝑪|𝑨, 𝑩,D,S=1 Dep

D

𝐺𝐷:



A

B

D

C E
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INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies paths

…
A B DC E

CA B D

• Every data set imposes some constraints.
• Observational data impose path constraints on the candidate graph.
• Experimental data impose path constraints on the candidate graph after manipulation.
• Data sampled under selection impose path constraints on the candidate graph after selection.
• Easily handles overlapping variable sets

• Each study imposes constraints on the observed variables.
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A

B

D

C E
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies paths

…
A B DC E

CA B D

Logic encoding Φ of path 
constraints in the causal graph

[E𝐴→D ∨ E𝐴→B ∧ E𝐵→D ∨
E𝐴→C ∧ E𝐶→D ∨ ⋯ ]

⋮
[E𝐴→C ∨ E𝐴→B ∧ E𝐵→C ∨

E𝐴↔C ∧ E𝐶→D ∨ … ]

Convert to logic formula!

Variables of the formula correspond to graph 
features (edges, orientations).

Truth setting assignments encode graphs that 
satisfy all path constraints after 
manipulation/selection.



• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.

CONVERSION TO LOGIC FORMULA: EXAMPLE

43

B

CA



• Edges of the graph as Boolean variables
• E𝐴→𝐵 = 𝑡𝑟𝑢𝑒 if 𝐴 → 𝐵 in 𝐺, 𝑓𝑎𝑙𝑠𝑒 otherwise.

• E𝐴←𝐵 = 𝑡𝑟𝑢𝑒 if 𝐴 → 𝐵 in 𝐺, 𝑓𝑎𝑙𝑠𝑒 otherwise.

• E𝐴↔𝐵 = 𝑡𝑟𝑢𝑒 if 𝐴 ↔ 𝐵 in 𝐺, 𝑓𝑎𝑙𝑠𝑒 otherwise.

• E𝐴→𝐵 and E𝐴←𝐵 are mutually exclusive: ¬E𝐴→𝐵 ∨ ¬E𝐴←𝐵.

CONVERSION TO LOGIC FORMULA: EXAMPLE

44

B

CA

𝐸𝐴→𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴←𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝑬𝑨↔𝑪 = 𝑻𝒓𝒖𝒆

𝐸𝐴→𝐵 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴←𝐵 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴↔𝐵 = 𝐹𝑎𝑙𝑠𝑒

𝐸𝐵→𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝑬𝑩←𝑪 = 𝑻𝒓𝒖𝒆
𝐸𝐵↔𝐶 = 𝐹𝑎𝑙𝑠𝑒

Assignments to 
Boolean 
variables 
correspond to 
graphs.



CONVERSION TO LOGIC FORMULA: EXAMPLE

45

B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE

46

B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

A-B-C is not m-connecting

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE

47

B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE

48

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

B

CA

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE
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A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

B

CA

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE
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A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

B

CA

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE
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A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

B

CA

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE
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A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

B

CA

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶)

Logic formula:
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶 ∧

¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶) ∧
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶) ∧
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶) ∧
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶) ∧
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In an observational data set, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺.



CONVERSION TO LOGIC FORMULA: EXAMPLE
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B

CA
Logic formula:

¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶 ∧

¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶) ∧

¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶) ∧

¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶) ∧

¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶) ∧

¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶)

𝐸𝐴→𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴←𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴↔𝐶 = 𝐹𝑎𝑙𝑠𝑒

𝐸𝐴→𝐵 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴←𝐵 = 𝐹𝑎𝑙𝑠𝑒
𝑬𝑨↔𝑩 = 𝑻𝒓𝒖𝒆

𝐸𝐵→𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐵←𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐵↔𝐶 = 𝐹𝑎𝑙𝑠𝑒

TRUE



• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set where 𝐵 is manipulated, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺𝐵 .

CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

54

B

CA



CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)
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B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set where 𝐵 is manipulated, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺𝐵 .



CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

56

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

B

CA

A-B-C is not m-connecting
¬(𝐸𝐵→𝐴∧ 𝐸𝐵→𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set where 𝐵 is manipulated, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺𝐵 .



CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)
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A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

B

CA

A-B-C is not m-connecting
¬(𝐸𝐵→𝐴∧ 𝐸𝐵→𝐶)

B has no 
incoming 
edges in 𝐺𝐵 .

Logic formula:
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶 ∧

¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set where 𝐵 is manipulated, Ind(A, C|∅)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given ∅ in 𝐺𝐵 .



CONVERSION TO LOGIC FORMULA: EXAMPLE
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B

CA
Logic formula:

¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶 ∧

¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶) ∧

𝐸𝐴→𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴←𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴↔𝐶 = 𝐹𝑎𝑙𝑠𝑒

𝐸𝐴→𝐵 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐴←𝐵 = 𝐹𝑎𝑙𝑠𝑒
𝑬𝑨↔𝑩 = 𝑻𝒓𝒖𝒆

𝐸𝐵→𝐶 = 𝑇𝑟𝑢𝑒
𝐸𝐵←𝐶 = 𝐹𝑎𝑙𝑠𝑒
𝐸𝐵↔𝐶 = 𝐹𝑎𝑙𝑠𝑒

TRUE

𝐺

B

CA

𝐺𝐵



• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set selected based on 𝐵, Ind(A, C|𝑆 = 1)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given 𝑆 = 1 in 𝐺B.

CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

59

B

CA

S=1



CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)
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B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set selected based on 𝐵, Ind(A, C|𝑆 = 1)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given 𝑆 = 1 in 𝐺B.

S=1



CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)
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B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set selected based on 𝐵, Ind(A, C|𝑆 = 1)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given 𝑆 = 1 in 𝐺B.

S=1



CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)
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B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵←𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set selected based on 𝐵, Ind(A, C|𝑆 = 1)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given 𝑆 = 1 in 𝐺B.

S=1



CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)
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B

CA

A-C does not exist
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶

A-B-C is not m-connecting
¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵←𝐶)
¬(𝐸𝐴→𝐵∧ 𝐸𝐵↔𝐶)
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵↔𝐶)

Logic formula:
¬𝐸𝐴→𝐶 ∧ ¬𝐸𝐴←𝐶 ∧ ¬𝐸𝐴↔𝐶 ∧

¬(𝐸𝐴←𝐵∧ 𝐸𝐵←𝐶) ∧
¬(𝐸𝐴←𝐵∧ 𝐸𝐵→𝐶) ∧
¬(𝐸𝐴←𝐵∧ 𝐸𝐵↔𝐶) ∧
¬(𝐸𝐴→𝐵∧ 𝐸𝐵→𝐶) ∧
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵→𝐶) ∧
¬(𝐸𝐴→𝐵∧ 𝐸𝐵←𝐶) ∧
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵←𝐶) ∧
¬(𝐸𝐴→𝐵∧ 𝐸𝐵↔𝐶) ∧
¬(𝐸𝐴↔𝐵∧ 𝐸𝐵↔𝐶)

• Suppose you know nothing about the causal structure 𝐺 of 𝐴, 𝐵, 𝐶.

• In a data set selected based on 𝐵, Ind(A, C|𝑆 = 1)

• In path  terms: ∄ m-connecting path between 𝐴 and 𝐶 given 𝑆 = 1 in 𝐺B.

S=1



Path constraints corresponding to (conditional) dependencies and independencies from multiple 
datasets.

Information about the datasets
 Whether your samples were selected based on some variables.

 Variables that were manipulated in your data set.

Many more ways to encode  constraints into logic
 Different variable choices (e.g. edge *-*, orientations).

 Different constraint choices depending on the problem at hand.

 Ancestral paths

 Inducing paths.

 Colliders/non-colliders.

CONVERSION TO LOGIC FORMULA: INPUT CONSTRAINTS

64



Logic-based causal discovery trivially and collectively handles cases for which no 
algorithm existed!

• Incorporating prior knowledge.
• Algorithms for learning Bayesian networks can only enforce the presence/absence of direct edges.

• Easily impose presence/absence of direct edges, directed paths or m-connections (associations).

• root/leaf nodes.

• Learning semi-Markov causal graphs.
• no learning algorithm until logic-based causal discovery.

•Combining heterogeneous data sets.

• Soft interventions.

• Sound and complete algorithms with incomplete knowledge (e.g. can not perform some tests of 
independence).

CONVERSION TO LOGIC FORMULA: VERSATILITY

65



1. Integrative causal discovery
i. Motivation.

ii. Causal models.

iii. m-separation.

iv. Reverse engineering causal models (single data set).

v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.

vi. Modeling interventions/selection.

2. Logic-based causal discovery
i. Converting path constraints to logic formulae.

ii. Problem complexity.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery. 

vi. Non-trivial inferences-validation.

OUTLINE

66



A

B

D

C E
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies Paths

…
A B DC E

CA B D

[E𝐴→D ∨ E𝐴→B ∧ E𝐵→D ∨
E𝐴→C ∧ E𝐶→D ∨

⋮
[E𝐴→C ∨ E𝐴→B ∧ E𝐵→C ∨

E𝐴↔C ∧ E𝐶→D

Logic formula

Exponential number of 
1.Independencies

2.Paths
3. Solutions



For a data set with 10 variables:

28 = 256 different conditioning sets

For each conditioning set, you need to consider all possible paths with up to 9 edges:

 𝑘=2
10 8

10−𝑘
= 1435 paths per pair of variables.

In total:    
10
2

= 45 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑝𝑎𝑖𝑟𝑠 × 256 𝑐𝑜𝑛𝑑 𝑠𝑒𝑡𝑠 × 1435 𝑝𝑎𝑡ℎ𝑠 = 16531200 𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.

For a network of 10 variables: 

135 possible edges.

2135~ 1040 different graphs.

PROBLEM COMPLEXITY: EXAMPLE

68

Brute force approach only works for ~10 variables regardless of encoding.

Several heuristics for scaling up (depending on the algorithm).

You can take into account all dependencies and independencies, even for 
a small number of variables.
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D
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies Paths

…
A B DC E

CA B D

[E𝐴→D ∨ E𝐴→B ∧ E𝐵→D ∨
E𝐴→C ∧ E𝐶→D ∨

⋮
[E𝐴→C ∨ E𝐴→B ∧ E𝐵→C ∨

E𝐴↔C ∧ E𝐶→D ∨

Logic formula

Reduce the number of 
independencies: 

Run FCI and use only the 
tests performed by FCI.

Limit max conditioning 
set size.
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B

D

C E
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies Paths

…
A B DC E

CA B D

[E𝐴→D ∨ E𝐴→B ∧ E𝐵→D ∨
E𝐴→C ∧ E𝐶→D ∨

⋮
[E𝐴→C ∨ E𝐴→B ∧ E𝐵→C ∨

E𝐴↔C ∧ E𝐶→D ∨

Logic formula

Reduce the number of paths:

Use inducing paths that connect 
paths on the graph to ∃ of 
independence (given any set).

Limit the maximum path length.
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B

D
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies Paths

…
A B DC E

CA B D

[E𝐴→D ∨ E𝐴→B ∧ E𝐵→D ∨
E𝐴→C ∧ E𝐶→D ∨

⋮
[E𝐴→C ∨ E𝐴→B ∧ E𝐵→C ∨

E𝐴↔C ∧ E𝐶→D ∨

Logic formula

Need a clever way to 
encode constraints!

e.g. recursively 
encode paths.

Convert to CNF for 
most SAT solvers.
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies Paths

…
A B DC E

CA B D

[E𝐴→D ∨ E𝐴→B ∧ E𝐵→D ∨
E𝐴→C ∧ E𝐶→D ∨

⋮
[E𝐴→C ∨ E𝐴→B ∧ E𝐵→C ∨

E𝐴↔C ∧ E𝐶→D ∨

Logic formula

No need to enumerate all 
solutions!

Query the formula for
• A single causal graph.
• A causal graph with specific 

features.
• Features that are invariant 

in all possible causal graphs.



Breast Cancer

Protein C

ContraceptivesThrombosis

Protein Z

Protein E
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SUMMARIZING PAIRWISE RELATIONS

Absent edges: 
Absent in all
solutions 



Breast Cancer

Protein C

ContraceptivesThrombosis

Protein Z

Protein E
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SUMMARIZING PAIRWISE RELATIONS

solid edges: 
present in all
solutions 

Absent edges: 
Absent in all
solutions 



Breast Cancer

Protein C

ContraceptivesThrombosis

Protein Z

Protein E
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SUMMARIZING PAIRWISE RELATIONS

dashed edges: 
present in some
solutions 

solid edges: 
present in all
solutions 

Absent edges: 
Absent in all
solutions 



Breast Cancer

Protein C

ContraceptivesThrombosis

Protein Z

Protein E
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SUMMARIZING PAIRWISE RELATIONS

dashed edges: 
present in some
solutions 

solid edges: 
present in all
solutions 

solid endpoints: 
same orientation in 
all solutions

Absent edges: 
Absent in all
solutions 



Breast Cancer

Protein C

ContraceptivesThrombosis

Protein Z

Protein E

77

SUMMARIZING PAIRWISE RELATIONS

dashed edges: 
present in some
solutions 

solid edges: 
present in all
solutions 

solid endpoints: 
same orientation in 
all solutions

Circle endpoints: 
orientation varies in 
different solutions

Absent edges: 
Absent in all
solutions 



1. Integrative causal discovery
i. Motivation.

ii. Causal models.

iii. m-separation.

iv. Reverse engineering causal models (single data set).

v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.

vi. Modeling interventions/selection.

2. Logic-based causal discovery
i. Converting path constraints to logic formulae.

ii. Problem complexity.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery. 

vi. Non-trivial inferences-validation.

OUTLINE
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A

B

D

C E
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STATISTICAL ERRORS RESULT IN CONFLICTING INPUTS

A

B

D

C E

A B C D E

Data Causal graph(s)(In)dependencies Paths

…
A B DC E

CA B D

[E𝐴→D ∨ E𝐴→B ∧ E𝐵→D ∨
E𝐴→C ∧ E𝐶→D ∨

⋮
[E𝐴→C ∨ E𝐴→B ∧ E𝐵→C ∨

E𝐴↔C ∧ E𝐶→D ∨

Logic formula
Statistical errors

Conflicting 
constraints

Unsatisfiable
formula
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TESTING (CONDITIONAL) INDEPENDENCE

𝑝= 3.2*10−5

0

1

𝑝= 0.54

Threshold Independence

Dependence

p-value: 𝑃(𝑫|𝐼𝑛𝑑) 
(VERY loose interpretation)
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TESTING (CONDITIONAL) INDEPENDENCE

0

1

Threshold Independence

Dependence

𝐷1: 𝐼𝑛𝑑 𝐴, 𝐷 ∅

¬𝑚 − 𝑐𝑜𝑛 𝐴, 𝐷 ∅

𝐷2: 𝐷𝑒𝑝 𝐴, 𝐷 ∅

𝑚 − 𝑐𝑜𝑛 𝐴, 𝐷 ∅

𝑝(𝐴,𝐷|∅)𝐷1
= 0.54

𝑝(𝐴,𝐷|∅)𝐷2
= 3.2*10−5

What happens with 
statistical errors?

Conflicts make SAT 
instance unsatisfiable!

Different observational 
data sets, same 
relationship, different 
p-values.

p-value: 𝑃(𝑫|𝐼𝑛𝑑) 
(VERY loose interpretation)
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TESTING (CONDITIONAL) INDEPENDENCE

0

1

Threshold Independence

Dependence

𝑝(𝐴,𝐷|∅)𝐷1
= 0.54

𝑝(𝐴,𝐷|∅)𝐷2
= 3.2*10−5

What is more 
probable: a 

dependence with p-
value 3.2*10−5 or 

independence with 
p-value 0.54? 

You need to estimate 
𝑃 𝐼𝑛𝑑 𝑫

How can you decide 
if Independence is 
more probable than 
dependence?

Different observational 
data sets, same 
relationship, different 
p-values.

𝐷1: 𝐼𝑛𝑑 𝐴, 𝐷 ∅

¬𝑚 − 𝑐𝑜𝑛 𝐴, 𝐷 ∅

𝐷2: 𝐷𝑒𝑝 𝐴, 𝐷 ∅

𝑚 − 𝑐𝑜𝑛 𝐴, 𝐷 ∅

p-value: 𝑃(𝑫|𝐼𝑛𝑑) 
(VERY loose interpretation)
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ESTIMATING 𝑃 𝐼𝑛𝑑 𝑫 USING BAYESIAN SCORING (1)

• You want to estimate 𝑃(𝐼𝑛𝑑(𝑋, 𝑌|𝑍)|𝑫)

• Score every possible DAG over 𝑋, 𝑌, 𝑍: 𝑃(𝑫|𝐺).
• You can use BDE, BGE to compute 𝑃 𝑫 𝐺 .

• Some of these DAGs entail dependence (m-connection, some 
independence (m-separation).
• Define a prior over graphs.

• Take the weighted average:
• 𝑃 𝐼𝑛𝑑(𝑋, 𝑌|𝒁) 𝑫 ∝  𝐺:𝐺 𝑒𝑛𝑡𝑎𝑖𝑙𝑠 𝐼𝑛𝑑(𝑋,𝑌|𝒁) 𝑃 𝑫 𝐺 × 𝑃(𝐺)

• Exponential number of DAGs.
• Use one graph per Markov equivalence class (still exponential).
• Still not possible for more than 5-6 variables. 

X Y

Z

⋮

X Y

Z
𝐺1:

𝐺𝑛

Ind(X, Y|Z)

X Y

Z
𝐺2:

X Y

Z
𝐺𝑖:

⋮

Ind(X, Y|Z)

Dep(X, Y|Z)

Dep(X, Y|Z)

[BCCD, Claassen and Heskes, UAI 2012]
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ESTIMATING 𝑃 𝐼𝑛𝑑 𝑫 USING BAYESIAN SCORING (2)

• You want to estimate 𝑃(𝐼𝑛𝑑(𝑋, 𝑌|𝒁)|𝑫)

• Independence 𝐼𝑛𝑑 𝑋, 𝑌 𝒁 : 𝑃 𝑋, 𝑌 𝒁 = 𝑃 𝑋 𝒁 𝑃(𝑌|𝒁)
• Dependence 𝐷𝑒𝑝 𝑋, 𝑌 𝒁 : 𝑃 𝑋, 𝑌 𝒁 = 𝑃 𝑋 𝒁 𝑃(𝑌|𝑋, 𝒁)

• 𝑃 𝐼𝑛𝑑(𝑋, 𝑌|𝒁) 𝑫 =
𝑃(𝑌|𝒁) 𝜋0

𝑃(𝑌|𝒁)𝜋0+𝑃(𝑌|𝑋,𝒁)(1−𝜋0)
.

• Use BDE, BGE to estimate 𝑃(𝑌|𝒁), 𝑃(𝑌|𝑋, 𝒁).
• 𝜋0: Prior  for independence is an input parameter.

𝑋 𝑍𝑛

𝑌

𝑍1

𝑋 𝑍𝑛

𝑌

𝑍1

vs.

[M&B, Margaritis and Bromberg, CI 2009]

𝑃(𝑌|𝒁)

𝑃(𝑌|𝑋, 𝒁)



• p-values coming from independence follow a 𝐵𝑒𝑡𝑎(1, 1) distribution
• p-values coming from dependence follow a distribution in (0, 1) with declining 

density
• Can be modeled with a 𝐵𝑒𝑡𝑎 𝜉, 1 , 𝜉 ∈ (0, 1) distribution.
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ESTIMATING 𝑃 𝐼𝑛𝑑 𝑫 FROM P-VALUES

[PROPER, Triantafillou et al, PGM 2014]



• p-values coming from independence follow a 𝐵𝑒𝑡𝑎(1, 1) distribution
• p-values coming from dependence follow a distribution in (0, 1) with declining 

density
• Can be modeled with a 𝐵𝑒𝑡𝑎 𝜉, 1 , 𝜉 ∈ (0, 1) distribution.

• Let 𝜋0 be the proportion of independencies.

• 𝑓 𝑝 𝜋𝑜, 𝜉 = 𝜋0 + 1 − 𝜋0 𝜉𝑝𝜉−1.
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ESTIMATING 𝑃 𝐼𝑛𝑑 𝑫 FROM P-VALUES

[PROPER, Triantafillou et al, PGM 2014]



• p-values coming from independence follow a 𝐵𝑒𝑡𝑎(1, 1) distribution
• p-values coming from dependence follow a distribution in (0, 1) with declining 

density
• Can be modeled with a 𝐵𝑒𝑡𝑎 𝜉, 1 , 𝜉 ∈ (0, 1) distribution.

• Let 𝜋0 be the proportion of independencies.

• 𝑓 𝑝 𝜋𝑜, 𝜉 = 𝜋0 + 1 − 𝜋0 𝜉𝑝𝜉−1.

• You can find estimate 𝜋0, 𝜉 from the empirical distribution of your p-values
• Find  𝜋0 using [Storey and Tibshirani, 2003]  (assumes i.i.d. p-values)

• Find  𝜉 by minimizing negative log likelihood
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ESTIMATING 𝑃 𝐼𝑛𝑑 𝑫 FROM P-VALUES

[PROPER, Triantafillou et al, PGM 2014]



• p-values coming from independence follow a 𝐵𝑒𝑡𝑎(1, 1) distribution
• p-values coming from dependence follow a distribution in (0, 1) with declining 

density
• Can be modeled with a 𝐵𝑒𝑡𝑎 𝜉, 1 , 𝜉 ∈ (0, 1) distribution.

• Let 𝜋0 be the proportion of independencies.

• 𝑓 𝑝 𝜋𝑜, 𝜉 = 𝜋0 + 1 − 𝜋0 𝜉𝑝𝜉−1.

• You can find estimate 𝜋0, 𝜉 from the empirical distribution of your p-values
• Find  𝜋0 using [Storey and Tibshirani, 2003]  (assumes i.i.d. p-values)

• Find  𝜉 by minimizing negative log likelihood
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ESTIMATING 𝑃 𝐼𝑛𝑑 𝑫 FROM P-VALUES

𝑃(𝐼𝑛𝑑|𝑝) =

 𝜋0

1 −  𝜋0
 𝜉𝑝(1− 𝜉)

1 +
 𝜋0

1 −  𝜋0
 𝜉𝑝(1− 𝜉) [PROPER, Triantafillou et al, PGM 2014]



• Bayesian methods
• Use the data directly.

• No problem if you have data sets with different sample sizes etc.

• Computationally expensive.

• Choose a prior for 𝜋0.

•PROPER (based on p-values)
• Scalable, no computational overhead, benefits from larger p-value populations (more tests).

• Estimate 𝜋0 from the data.

• p-values are not i.i.d.

ESTIMATING 𝑃 𝐼𝑛𝑑 𝑫

89
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CONFLICT RESOLUTION STRATEGIES

P(constraint) Ind/Dep path constraint

0.999 Dep ∃ m-connecting path 
from A to D given ∅ in  𝑆𝐼𝑛

0.998 Ind ∄ m-connecting path 
from A to D given ∅ in  𝑆𝐼1

⋮ ⋮ ⋮

0.510 Dep ∃ m-connecting path 
from A to B given ∅ in  𝑆𝐼1

• Assign weights according to 
P(constraint), maximize the sum 
of weights.

• Rank by probability, greedily 
satisfy constraints.

Maximizing sum of weights is the 
best strategy
Use greedy to scale up.



1. Integrative causal discovery
i. Motivation.

ii. Causal models.

iii. m-separation.

iv. Reverse engineering causal models (single data set).

v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.

vi. Modeling interventions/selection.

2. Logic-based causal discovery
i. Converting path constraints to logic formulae.

ii. Problem complexity.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery. 

vi. Non-trivial inferences-validation.

OUTLINE
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Vary in:
 Type of constraints: 

 different types of paths (m-connecting, inducing, ancestral).
 translation to logic formula.

 Types of heterogeneity:
 Soft/hard interventions, selection.

 Preprocessing:
 Heuristics to limit number of constraints / paths.

 Conflict Resolution
 Method for calculating probabilities.
 Conflict resolution strategy (greedy/ max SAT / weighted max SAT). 

 CS solver
 Initially SAT solvers, more recently ASP.

 Scalability
 Depends on choices above. Be exact/ focus on scalability.
 Difficult to determine
 huge variance depending on the problem.

EXISTING ALGORITHMS

92

Implementations vary
heuristics are typically easy to 
incorporate in any algorithm.
-maximum conditioning set size/ path 
length.
-greedy /weighted max SAT.



CSAT+
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Type of Constraints m-connecting paths,  inducing paths.

Type of 
Heterogeneity

Overlapping variables.

Preprocessing Runs FCI on multiple data sets.
Additional preprocessing rules for additional edge removals/orientations.

Conflict resolution None (oracle only)

CSP solver MINISAT

Scalability ~37 variables (ALARM network)

[Triantafillou, Tsamardinos and Tollis, AISTATS 2010]



LOCI
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[Claassen and Heskes, UAI 2011]

Type of Constraints ancestral paths.
Converts [minimal] conditional independencies to ancestral relations:
𝐼𝑛𝑑 𝑋, 𝑌 𝒁 ⇒ 𝒁 → ⋯ → 𝑋 ∨ 𝒁 → ⋯ → 𝑌

Type of 
Heterogeneity

None (substitutes FCI orientation steps).

Preprocessing FCI skeleton step.

Conflict resolution None (single data set, runs similar to FCI orientation rules)

CSP solver custom set of rules

Scalability unknown (probably similar to FCI).



SAT-BASED CAUSAL DISCOVERY
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Type of Constraints m-connecting paths

Type of 
Heterogeneity

Overlapping variables, interventions 
also allows cycles.

Preprocessing None.
Can use a subset of (in) dependencies depending on assumptions (e.g. FCI tests only)

Conflict resolution None (oracle only)

CSP solver MINISAT

Scalability 8-12 variables 

[Hyttinen, Hoyer, Eberhardt and Järvisalo, UAI 2013]
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CONSTRAINT-BASED CAUSAL DISCOVERY 

Type of Constraints m-connecting paths.
encoded in ASP based on marginalization and conditioning.

Type of 
Heterogeneity

Overlapping variables, interventions 
allows cycles

Preprocessing none

Conflict resolution Default: based on M&B, maximize sum of weights (find global optimum),
also tried maximizing the number of independencies/ number of constraints

CSP solver ASP

Scalability 7 variables

[Hyttinen, Eberhardt and Järvisalo, UAI 2014]



COMBINE
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Type of Constraints inducing paths
Drastically reduces the number of constraints (∃, ∄ path) to 1 per variable pair & data set
(compared to 2𝑛)

Type of 
Heterogeneity

Overlapping variables, interventions 

Preprocessing FCI on each data set.

Conflict resolution Default: based on PROPER, greedy search. 
also implemented: BCCD , weighted maxSAT.

CSP solver MINISAT

Scalability 100 variables (additionally limits maximum path length)

[Triantafillou and  Tsamardinos, JMLR 2015]



ETIO
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[Borboudakis and Tsamardinos, KDD 2016]

Type of Constraints m-connecting paths.
encoded in ASP based on extension of the Bayes-Ball algorithm (used to determine m-
connections/m-separations in graphs) for SMCGs with selection.

Type of 
Heterogeneity

Overlapping variables, interventions, selection.

Preprocessing none

Conflict resolution based on PROPER/M&B, greedy

CSP solver ASP

Scalability 10-15 variables



ACI
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[S. Magliacane, T. Claassen, J.M. Mooij, arXiv]

Type of Constraints m-connections, ancestry relations

Type of 
Heterogeneity

Overlapping variables, various types of interventions

Preprocessing none

Conflict resolution based on M&B, weighted maxSAT

CSP solver ASP

Scalability 10-15 variables



100

MORE 

• Using conversion to logic to incorporate prior knowledge in maximal 
ancestral graphs.
• [Borboudakis, Triantafillou and Tsamardinos, ESANN 2011].

• Using conversion to logic for causal discovery from time-course data
• Causal Discovery from Subsampled Time Series Data by Constraint 

Optimization, [Hyttinen, Plis, Järvisalo, Eberhardt and Danks, arXiv, 2016]

• Using conversion to logic for identifying chain graphs.
• Learning Optimal Chain Graphs with Answer Set Programming[Sonntag, 

Järvisalo, Penã, Hyttinen, UAI 2015]

• Using conversion to logic to identify semi-Markov causal graphs.
• [Penã, UAI 2016]



Different data distributions, same causal mechanism: use causal modeling to connect.

Algorithms can handle datasets of different variable sets, different experimental conditions, prior 
causal knowledge.

Identify the set of causal graphs that simultaneously fit all datasets .

Convert problem to SAT or ASP.

Logic formula encodes a set of causal models that simultaneously fit all the data sets.

OVERVIEW

101



-How can you reason with this set of models?

-Is it useful? Do you make additional inferences than analyzing each data set in isolation?

QUESTIONS

102



1. Integrative causal discovery
i. Motivation.

ii. Causal models.

iii. m-separation.

iv. Reverse engineering causal models (single data set).

v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.

vi. Modeling interventions/selection.

2. Logic-based causal discovery
i. Converting path constraints to logic formulae.

ii. Problem complexity.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery. 

vi. Non-trivial inferences-validation.

OUTLINE

103
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ESTIMATING CAUSAL EFFECTS

B

CA
𝐶 = 𝑓 𝐴

𝐵 = 𝑓 𝐶

You are interested in computing 𝑃(𝐵|𝑑𝑜(𝐴 = 𝑎))
In general, 𝑃 𝐵 𝑑𝑜 𝐴 = 𝑎 ≠ 𝑃 𝐵 𝐴

If you know the causal graph, you can use the rules of do-
calculus to transform post-intervention probabilities to pre-
intervention probabilities.
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ESTIMATING CAUSAL EFFECTS

B

CA
𝐶 = 𝑓 𝐴

𝐵 = 𝑓 𝐶

You are interested in computing 𝑃(𝐵|𝑑𝑜(𝐴 = 𝑎))
In general, 𝑃 𝐵 𝑑𝑜 𝐴 = 𝑎 ≠ 𝑃 𝐵 𝐴

If you know the causal graph, you can use the rules of do-
calculus to transform post-intervention probabilities to pre-
intervention probabilities.

[Rule 1] 𝐼𝑛𝑑 𝑌, 𝑍 𝑋, 𝑊 𝐺𝑋 ⇒ 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑧, 𝑤 = 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑤).

[Rule 2] 𝐼𝑛𝑑 𝑌, 𝐼𝑍 𝑋, 𝑍, 𝑊 𝐺𝑋 ⇒ 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑑𝑜(𝑧), 𝑤 = 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑧, 𝑤 .

[Rule 3] 𝐼𝑛𝑑 𝑌, 𝐼𝑍 𝑋, 𝑊 𝐺𝑋 ⇒ 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑑𝑜(𝑧), 𝑤 = 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑤 .

Insert/delete observations

Exchange action/observation

Insert/delete action

Check m-separations ⇒
Apply rules until you have a formula with pre-intervention probabilities 

[Shpitser and Pearl (2006): Return a formula if identifiable]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

Constraints in logic formula Φ
Causal effect 𝑃 𝐵 𝑑𝑜 𝐴

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C



B

C A
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴



B

C A
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴
Shpitser and Pearl (2006) 

𝐹1 =  

𝑐

𝑃 𝑏 𝑎, 𝑐 𝑃(𝑐)



B

C A
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C
(∃ m-connecting path from 𝐼𝐴 to C given ∅ ∨
∃ m-connecting path from 𝐼𝐴 to B given 𝐴, 𝐶)

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴

Identify and negate the m-separations used to derive the formula

Shpitser and Pearl (2006) 

𝐹1 =  

𝑐

𝑃 𝑏 𝑎, 𝑐 𝑃(𝑐)
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C
(∃ m-connecting path from 𝐼𝐴 to C given ∅ ∨
∃ m-connecting path from 𝐼𝐴 to B given 𝐴, 𝐶)

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴
Shpitser and Pearl (2006) 

𝐹1 =  

𝑐

𝑃 𝑏 𝑎, 𝑐 𝑃(𝑐)

B

C A
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C
(∃ m-connecting path from 𝐼𝐴 to C given ∅ ∨
∃ m-connecting path from 𝐼𝐴 to B given 𝐴, 𝐶)

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴
Shpitser and Pearl (2006) 

𝐹1 =  

𝑐

𝑃 𝑏 𝑎, 𝑐 𝑃(𝑐)

B

C A
𝐹2 = 𝑃(𝑏)
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and  Jarvislao, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C
(∃ m-connecting path from 𝐼𝐴 to C given ∅ ∨
∃ m-connecting path from 𝐼𝐴 to B given 𝐴, 𝐶)
∃ m-connecting path from 𝐼𝐴 to B given ∅)

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴
Shpitser and Pearl (2006) 

𝐹1 =  

𝑐

𝑃 𝑏 𝑎, 𝑐 𝑃(𝑐)

B

C A

Identify and negate the m-separations used to derive the formula

𝐹2 = 𝑃(𝑏)
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C
(∃ m-connecting path from 𝐼𝐴 to C given ∅ ∨
∃ m-connecting path from 𝐼𝐴 to B given 𝐴, 𝐶)
∃ m-connecting path from 𝐼𝐴 to B given ∅)

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴
Shpitser and Pearl (2006) 

𝐹1 =  

𝑐

𝑃 𝑏 𝑎, 𝑐 𝑃(𝑐)

B

C A
𝐹2 = 𝑃(𝑏)

B

C A
𝑁𝐴

.

.

.

UNSAT
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

[Hyttinen, Eberhardt and Järvisalo, UAI 2015]

∃ m-connecting path from A to B given ∅
∃ m-connecting path from A to B given 𝐶
∃ m-connecting path from A to C given ∅
∃ m-connecting path from A to C given 𝐵
∃ m-connecting path from B to C given ∅
∃ m-connecting path from B to C given 𝐴
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝐴 to C
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 A to B
∄ 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 B to C
(∃ m-connecting path from 𝐼𝐴 to C given ∅ ∨
∃ m-connecting path from 𝐼𝐴 to B given 𝐴, 𝐶)
∃ m-connecting path from 𝐼𝐴 to B given ∅)

Constraints in logic formula Φ
Find a graph 

consistent with Φ Causal effect 𝑃 𝐵 𝑑𝑜 𝐴
Shpitser and Pearl (2006) 

𝐹1 =  

𝑐

𝑃 𝑏 𝑎, 𝑐 𝑃(𝑐)

B

C A
𝐹2 = 𝑃(𝑏)

B

C A
𝑁𝐴

.

.

.

UNSAT



-How can you reason with this set of models?
You can use do-calculus and estimate (a population of) causal effects.

-Is it useful? Do you make additional inferences than analyzing each data set in isolation?

QUESTIONS

115



1. Integrative Causal Discovery
i. Motivation.

ii. Causal models.

iii. m-separation.

iv. Reverse engineering causal models (single data set).

v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.

vi. Modeling interventions/selection.

2. Logic-based causal discovery
i. Converting path constraints to logic formulae.

ii. Problem complexity.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery. 

vi. Non-trivial inferences-validation.

OUTLINE

116
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EXAMPLE INPUT- OUTPUT

Y X W
𝑋, 𝑊|𝑌 Ind

𝑋, 𝑊|∅ Dep

𝑋, 𝑌|∅ Dep

𝑌, 𝑊|∅ Dep

𝑌, 𝑋|𝑊 Dep

𝑌, 𝑊|𝑋 Dep

X W Z

Common 
variables

𝑋, 𝑊|𝑍 Ind

𝑋, 𝑊|∅ Dep

𝑋, 𝑍|∅ Dep

𝑍, 𝑊|∅ Dep

𝑍, 𝑊|𝑋 Dep

𝑍, 𝑋|𝑊 Dep

X

Y

Z

W

∄𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑌 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑌 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑌 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑌 𝑔𝑖𝑣𝑒𝑛 𝑊 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑌 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑋 ∧

∄𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑍 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑍 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑍𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑍 𝑔𝑖𝑣𝑒𝑛 𝑊 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑍 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑋

Formula ΦCI pattern 𝐶1

CI pattern 𝐶2

Dataset 𝐷2

Dataset 𝐷1

Summary of solutions
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EXAMPLE INPUT- OUTPUT

Y X W
𝑋, 𝑊|𝑌 Ind

𝑋, 𝑊|∅ Dep

𝑋, 𝑌|∅ Dep

𝑌, 𝑊|∅ Dep

𝑌, 𝑋|𝑊 Dep

𝑌, 𝑊|𝑋 Dep

X W Z

Common 
variables

𝑋, 𝑊|𝑍 Ind

𝑋, 𝑊|∅ Dep

𝑋, 𝑍|∅ Dep

𝑍, 𝑊|∅ Dep

𝑍, 𝑊|𝑋 Dep

𝑍, 𝑋|𝑊 Dep

X

Y

Z

W

∄𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑌 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑌 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑌 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑌 𝑔𝑖𝑣𝑒𝑛 𝑊 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑌 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑋 ∧

∄𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑍 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑍 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑍𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑍 𝑔𝑖𝑣𝑒𝑛 𝑊 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑍 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑋

Formula ΦCI pattern 𝐶1

CI pattern 𝐶2

Dataset 𝐷2

Dataset 𝐷1

Summary of solutions

Predict that Y and Z are 
associated even though 
they are not measured 
in the same data set.
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TEST IF IT WORKS IN REAL DATA.

Y X W
𝑋, 𝑊|𝑌 Ind

𝑋, 𝑊|∅ Dep

𝑋, 𝑌|∅ Dep

𝑌, 𝑊|∅ Dep

𝑌, 𝑋|𝑊 Dep

𝑌, 𝑊|𝑋 Dep

X W Z

Common 
variables

𝑋, 𝑊|𝑍 Ind

𝑋, 𝑊|∅ Dep

𝑋, 𝑍|∅ Dep

𝑍, 𝑊|∅ Dep

𝑍, 𝑊|𝑋 Dep

𝑍, 𝑋|𝑊 Dep

X

Y

Z

W

∄𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑌 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑌 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑌 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑌 𝑔𝑖𝑣𝑒𝑛 𝑊 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑌 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑋 ∧

∄𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑍 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑍 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑍𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 ∅ ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑍 𝑔𝑖𝑣𝑒𝑛 𝑊 ∧
∃𝑚. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑍 𝑡𝑜 𝑊 𝑔𝑖𝑣𝑒𝑛 𝑋

Formula ΦCI pattern 𝐶1

CI pattern 𝐶2

Dataset 𝐷2

Dataset 𝐷1

Summary of solutions

Find data sets 
𝐷1, 𝐷2 measuring 
overlapping 
variables

Look for 
patterns 
𝐶1, 𝐶2.

Predict that Y, Z 
are associated.

Find a third data set measuring both 
Y, Z and test if they are associated.
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TEST IF IT WORKS ON REAL DATA (SIMULATE SCENARIO)

1.Original Dataset

3.Find X, Y, W in D1 and X, Z, W, in 
D2 that satisfy 𝐶1, 𝐶2.

Test Y, Z for association

2.Split to D1 , D2 and Dtest

containing different samples

Predict Y, Z 
are 
associated 

Restrict inferences only to cases where the probability of errors is small, i.e. p-values are extreme.

D2

D1

Dtest

D2 Y

ZX W

X W

D1

Dtest Y ZX W

pXY.Z < 0.05 accept 𝐷𝑒𝑝 X, Y 𝐙
pXY.Z > 0.3 accept 𝐼𝑛𝑑 X, Y 𝐙
Else, undecided (forgo making any inferences)

[Tsamardinos, Triantafillou and Lagani, JMLR 2012]
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DATASETS
Name # instances # variables Group Size Variables  type Scientific domain

Covtype 581012 55 55 Nominal/Ordinal Agricultural

Read 681 26 26 Nominal/Continuous/Ordinal Business

Infant-mortality 5337 83 83 Nominal Clinical study

Compactiv 8192 22 22 Continuous Computer science

Gisette 7000 5000 50 Continuous Digit recognition

Hiva 4229 1617 50 Nominal Drug discovering

Breast-Cancer 286 17816 50 Continuous Gene expression

Lymphoma 237 7399 50 Continuous Gene expression

Wine 4898 12 12 Continuous Industrial

Insurance-C 9000 84 84 Nominal/Ordinal Insurance

Insurance-N 9000 86 86 Nominal/Ordinal Insurance

p53 16772 5408 50 Continuous Protein activity

Ovarian 216 2190 50 Continuous Proteomics

C&C 1994 128 128 Continuous Social science

ACPJ 15779 28228 50 Continuous Text mining

Bibtex 7395 1995 50 Nominal Text mining

Delicious 16105 1483 50 Nominal Text mining

Dexter 600 11035 50 Nominal Text mining

Nova 1929 12709 50 Nominal Text mining

Ohsumed 5000 14373 50 Nominal Text mining

[Tsamardinos, Triantafillou and Lagani, JMLR 2012]
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Name # instances # variables Group Size Variables  type Scientific domain
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Insurance-N 9000 86 86 Nominal/Ordinal Insurance

p53 16772 5408 50 Continuous Protein activity

Ovarian 216 2190 50 Continuous Proteomics

C&C 1994 128 128 Continuous Social science

ACPJ 15779 28228 50 Continuous Text mining

Bibtex 7395 1995 50 Nominal Text mining

Delicious 16105 1483 50 Nominal Text mining

Dexter 600 11035 50 Nominal Text mining

Nova 1929 12709 50 Nominal Text mining

Ohsumed 5000 14373 50 Nominal Text mining

[Tsamardinos, Triantafillou and Lagani, JMLR 2012]

# predictions 
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0

22

135

423

554

1833

7712

4

1839

226

46647

539165

99241

0

1

856

0

0

0
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HOW DID WE DO?

• About 700000 predictions in 20 datasets.
• Accuracy: The percentage of p-values < 0.05.

• May include false positives  and  exclude false negatives.
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HOW DID WE DO?

• About 700000 predictions in 20 datasets.
• Accuracy: The percentage of p-values < 0.05.

• May include false positives  and  exclude false negatives.

98% accuracy vs. 
16% of random guessing
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PREDICT CORRELATION STRENGTH 𝝆𝒀𝒁

X Y Z W

26 possible SMCGs.

How strong is 
the correlation 
of Y and Z?
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PREDICT CORRELATION STRENGTH 𝝆𝒀𝒁

X Y Z W

26 possible SMCGs.

How strong is 
the correlation 
of Y and Z?

• Assume multivariate normality and interpret 
SMCG as path diagram.

• Use the (measured) sample correlations 
• 𝑟𝑌𝑋, 𝑟𝑌𝑊, 𝑟𝑋𝑊 (𝐷1)
• 𝑟𝑍𝑋, 𝑟𝑍𝑊, 𝑟𝑋𝑊 (𝐷2)

• Use rules of path analysis to predict  𝑟𝑌𝑍.
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PREDICT CORRELATION STRENGTH 𝝆𝒀𝒁

X Y Z W

How strong is 
the correlation 
of Y and Z?

• Assume multivariate normality and interpret 
SMCG as path diagram.

• Use the (measured) sample correlations 
• 𝑟𝑌𝑋, 𝑟𝑌𝑊, 𝑟𝑋𝑊 (𝐷1)
• 𝑟𝑍𝑋, 𝑟𝑍𝑊, 𝑟𝑋𝑊 (𝐷2)

• Use rules of path analysis to predict  𝑟𝑌𝑍.

13 models imply

 𝑟𝑌𝑍
1 ≈

1

2

𝑟𝑋𝑍

𝑟𝑋𝑌
+

𝑟𝑌𝑊

𝑟𝑍𝑊

13 models imply 

 𝑟𝑌𝑍
2 ≈

1

2

𝑟𝑋𝑌

𝑟𝑋𝑍
+

𝑟𝑍𝑊

𝑟𝑌𝑊
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PREDICT CORRELATION STRENGTH 𝝆𝒀𝒁

X Y Z W

How strong is 
the correlation 
of Y and Z?

• Assume multivariate normality and interpret 
SMCG as path diagram.

• Use the (measured) sample correlations 
• 𝑟𝑌𝑋, 𝑟𝑌𝑊, 𝑟𝑋𝑊 (𝐷1)
• 𝑟𝑍𝑋, 𝑟𝑍𝑊, 𝑟𝑋𝑊 (𝐷2)

• Use rules of path analysis to predict  𝑟𝑌𝑍.

13 models imply

 𝑟𝑌𝑍
1 ≈

1

2

𝑟𝑋𝑍

𝑟𝑋𝑌
+

𝑟𝑌𝑊

𝑟𝑍𝑊

13 models imply 

 𝑟𝑌𝑍
2 ≈

1

2

𝑟𝑋𝑌

𝑟𝑋𝑍
+

𝑟𝑍𝑊

𝑟𝑌𝑊

Only one of

 𝒓𝒀𝒁
𝟏

,  𝒓𝒀𝒁
𝟐

is  < 1 
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PREDICT CORRELATION STRENGTH 𝝆𝒀𝒁

X Y Z W

How strong is 
the correlation 
of Y and Z?

• Assume multivariate normality and interpret 
SMCG as path diagram.

• Use the (measured) sample correlations 
• 𝑟𝑌𝑋, 𝑟𝑌𝑊, 𝑟𝑋𝑊 (𝐷1)
• 𝑟𝑍𝑋, 𝑟𝑍𝑊, 𝑟𝑋𝑊 (𝐷2)

• Use rules of path analysis to predict  𝑟𝑌𝑍.

13 models imply

 𝑟𝑌𝑍
1 ≈

1

2

𝑟𝑋𝑍

𝑟𝑋𝑌
+

𝑟𝑌𝑊

𝑟𝑍𝑊

13 models imply 

 𝑟𝑌𝑍
2 ≈

1

2

𝑟𝑋𝑌

𝑟𝑋𝑍
+

𝑟𝑍𝑊

𝑟𝑌𝑊

Only one of

 𝒓𝒀𝒁
𝟏

,  𝒓𝒀𝒁
𝟐

is  < 1 

You can uniquely  identify the skeleton of the graph 
AND predict the correlation coefficient of Y, Z!
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HOW DID WE DO?

high

low

d
en

si
ty

• Clear trend in predicted vs sample correlations.
• Also a systematic bias because the predictions have been selected based on the 

independence tests.
• Correlation of predicted vs sample correlations is 0.89.
• Predictions based on large correlations have reduced bias.
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HOW DID WE DO?

high

low

d
en

si
ty

Predicted vs sample correlations over all data sets, grouped by mean 
absolute value of the denominators used in their computations

• Clear trend in predicted vs sample correlations
• Also a systematic bias because the predictions have been selected based on the 

independence tests
• Correlation of predicted vs sample correlations is 0.89
• Predictions based on large correlations have reduced bias.



-How can you reason with this set of models?
You can use do-calculus and estimate (a population of) causal effects.

-Is it useful? Do you make additional inferences than analyzing each data set in isolation?
You can make non-trivial inferences, quantitative with additional assumptions.

QUESTIONS
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1. Integrative causal discovery
i. Motivation.

ii. Causal models.

iii. m-separation.

iv. Reverse engineering causal models (single data set).

v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.

vi. Modeling interventions/selection.

2. Logic-based causal discovery
i. Converting path constraints to logic formulae.

ii. Problem complexity.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery. 

vi. Non-trivial inferences-validation.

OUTLINE
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Integrative logic-based causal discovery.

Different data distributions, same causal mechanism: use causal modeling to connect.

Can handle datasets of different variable sets, different experimental conditions, prior causal 
knowledge.

Identify the set of causal graphs that simultaneously fit all datasets and reason with this set.

Convert problem to SAT or ASP; exploit 40 years of SAT-solving technology.

Query-based approach to avoid explosion of possible solutions!

Vision of automatically analyzing a large portion of available datasets in a domain.

KEY-POINTS
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Improving scalability.

Improving quality of learning and robustness.

Further removing restrictive assumptions (e.g., Faithfulness).

Making quantitative predictions.

Extensions for temporal data.

Additional constraints (e.g. Verma constraints).

Feature selection from multiple data sets.

Apply it to real problems.

WHAT IS NEXT?
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