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OUTLINE

1. Integrative causal discovery
i.  Motivation.
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.

2. Logic-based causal discovery
i.  Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.




HETEROGENEOUS DATA SETS MEASURING THE SAME SYSTEM
UNDER STUDY

Variables | Thrombosis Contraceptives Protein C Breast Cancer Protein Y Protein Z
~,
g LA [
e S R Y ;
] oY gl o Sider!
Study K, 4 ('“5\9‘; N%g
Hogy 3 S
Yes 10.5 Yes
1 No Yes 5.3 No
observational data
No Yes 0.01 No
2 Yes 0.03 9.3
observational data No 3.4 22.2
No No 0 (Control) No 3.4
3 Yes No 0 (Control) Yes 2.2
experimental data Yes Yes 5.0 (Treat.) Yes 7.1
No Yes 5.0 (Treat.) No 8.9
No No (Ctrl)
e No No (Ctrl)
experimental data
Yes Yes(Treat)




ISOLATED ANALYSIS

Analyze data Publish results

2. ©

“...The use of contraceptives is correlated
with Thrombosis, negatively correlated with
Breast Cancer and levels of Protein E ...”

4

“...Protein E is a risk factor for Breast Cancer...”

“...Drugs reducing protein C reduced the
probability of Breast Cancer and lowered the
levels of Protein E...”

0

“...In the randomized control trial, women
taking contraceptives had 30% more chances
of being diagnosed with thrombosis ... ”
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INTEGRATIVE CAUSAL ANALYSIS

ﬁata can not be pooled \

together:

Missing variables cannot
be treated as missing
values.

They come from different
experimental/sampling
conditions (different

Qstributions). /




INTEGRATIVE CAUSAL ANALYSIS

ﬁata can not be pooled \

together:

Missing variables cannot
be treated as missing
values.

They come from different
experimental/sampling
conditions (different

Qstributions). /
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INTEGRATIVE CAUSAL ANALYSIS
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OUTLINE

1.

Integrative causal discovery
ii. Causal models.
iii. m-separation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.
Logic-based causal discovery
i.  Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.




SEMI MARKOV CAUSAL GRAPHS

Semi Markov Causal Graph G

X and Y share a
latent common cause

X directly causes Z ]

* Directed edges represent direct causal relationships.

* Bi-directed edges represent confounding (latent
confounders).

* Both types of edges allowed for a single pair of variables.
* No directed cycles (no causal feedback).




SEMI MARKOV CAUSAL GRAPHS

Semi Markov Causal Graph G

X and Y share a
latent common cause

X directly causes Z ]

* Directed edges represent direct causal relationships.

* Bi-directed edges represent confounding (latent
confounders).

* Both types of edges allowed for a single pair of variables.

* No directed cycles (no causal feedback).

Joint Probability Distribution P

X Y Yes No

Yes 0,01 0,04

No 0,01 0,04

0,000045 0,044955

2 2 = =
o o 2 e
<

No 0,000855 0,854145

* Joint probability distribution entails
conditional (in) dependencies.

- Ind(X,Y|Z): P(X|Y,Z) = P(X|Z)
Dep(X,Y|Z): P(X|Y,Z) # P(X|Z)
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Nicotine Levels

EXAMPLE OF CONDITIONAL (IN) DEPENDENCE
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SEMI MARKOV CAUSAL GRAPHS

Semi Markov Causal Graph G

X and Y share a
latent common cause

X directly causes Z ]

Causal

assumptions

* Directed edges represent direct causal relationships.

* Bi-directed edges represent confounding (latent
confounders).

* Both types of edges allowed for a single pair of variables.
* No directed cycles (no causal feedback).

Joint Probability Distribution P

X Y Yes No

Yes 0,01 0,04

No 0,01 0,04

0,000045 0,044955

2 2 = =
o o 2 e
<

No 0,000855 0,854145

* Joint probability distribution entails
conditional (in) dependencies.

- Ind(X,Y|Z): P(X|Y,Z) = P(X|Z)
Dep(X,Y|Z): P(X|Y,Z) # P(X|Z)
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CAUSAL ASSUMPTIONS

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.

Causal Faithfulness Assumption:
Independences stem only from the causal structure,
not the parameterization of the distribution.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Dep(Y,Z | ©)
Dep(X,Z | ©)
Dep(X,Z |Y)
Dep(Y,X | ©)
Dep(Y,X | Z)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.

Causal Faithfulness Assumption:
Independences stem only from the causal structure,
not the parameterization of the distribution.
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CAUSAL ASSUMPTIONS

Ind(Y,Z |X)

Dep(Y,Z | ©)
Dep(X,Z | ©)
Dep(X,Z |Y)
Dep(Y,X | ©)
Dep(Y,X | Z)

Causal Markov Assumption:
Every variable is independent of its non-effects
given its direct causes.

Causal Faithfulness Assumption:
Independences stem only from the causal structure,
not the parameterization of the distribution.

All independencies in the joint probability
distribution can be identified in G using the
graphical criterion of m-separation.
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OUTLINE

1.

Integrative causal discovery
iii. m-separation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.
Logic-based causal discovery
i.  Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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m-SEPARATION

A path X3, ..., X;, between X; and X,, is m-connecting given V if for every triple (X;_4, X;, X;+1) on the path:

e IfX;_q *= X; «* X;;4 (colliding triplet),
X; or one of its descendants € V

e Otherwise, X; ¢ V

m-connecting path => information flow => dependence

No m-connecting path => no information flow =>independence (m-separation)

Colliders X;_; *— X; «* X;, 1 are special and create an asymmetry that will allow us to orient causal
direction.

19



m-SEPARATION

Y € X —™> 7

is m-connecting given @

< Dep(Y,Z|0)
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m-SEPARATION

Y € X —™> 7

is m-connecting given @

< Dep(Y,Z|0)

Y «<> X —> 7

is NOT m-connecting given X

s Ind(Y,Z|X)
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m-SEPARATION

Y «> X «<— 7

is NOT m-connecting given @

& Ind(Y,Z|0)

Y «> X «<— 7

is m-connecting given X

< Dep(Y,Z|X)
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CAUSAL MODELLING

- -

Data set D Conditional
measuring a (in)dependencies
set of variables (expected) in the joint

probability distribution

Paths (m-
separations/connections)
in the causal graph
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OUTLINE

1.

Integrative causal discovery
 Motivation.
iv. Reverse engineering causal models (single data set).
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.
Logic-based causal discovery
i.  Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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REVERSE ENGINEERING

A B C D E ?? G: 3 @ 3
ot
— ? ? (@)
? 2 ?
Data sgt D causal graph?
measuring a

set of variables
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REVERSE ENGINEERING

?7?
rr . E
A B C D E G: ? ? ?
y [ | o
? 2 ?
Data set D Find the (in)dependencies causal graph?
measuring a using statistical tests.

set of variables
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REVERSE ENGINEERING

Data set D Find the (in)dependencies Find a graph that satisfies
measuring a using statistical tests. the implied m-

set of variables connections/separations.
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MARKOV EQUIVALENCE

* More than one graphs entail the same set of conditional independencies.
* The graphs have some common features (edges/orientations).
* For some types of causal graphs, Markov equivalence classes share the same

skeleton.
* not semi-Markov causal graphs

28



CAUSAL DISCOVERY

Lm0

Causal graph(s)

Data (In)dependencies paths

Sound and complete algorithms take as input a data set and output a
summary of all the graphs that satisfy all identified conditional
independencies.
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OUTLINE

1.

2.

Integrative causal discovery
& . . I lels {single-d \
v. Problem formulation: Reverse engineering causal models from multiple heterogeneous data sets.
vi. Modeling interventions/selection.
Logic-based causal discovery
i.  Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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INTEGRATIVE CAUSAL DISCOVERY

Gé@ G§G

Causal graph(s)
that
simultaneously

Data sets measuring
overlapping variable sets fit all data.
under

intervention/selection.
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INTEGRATIVE CAUSAL DISCOVERY

| ® ®
oée G§G

Causal graph(s)

_ that
Data sets measuring simultaneously

overlapping variable sets fit all data.
under
intervention/selection.

Every data set imposes some constraints.

Observational data impose m-separation/m-connection constraints on the candidate graph.
Experimental data?

Data sampled under selection?

32



OUTLINE

1.

Vi.

2.

Integrative causal discovery

Modeling interventions/selection.

Logic-based causal discovery
Converting path constraints to logic formulae.
Problem complexity.
Conflict resolution.
Existing algorithms.
Reasoning with logic based causal discovery.
Non-trivial inferences-validation.
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INTERVENTIONS (MANIPULATIONS)

Theer
TT%T
_]unkfood/ N\ NolJunkfood
1L LY

1

l Heart disease l

45 LY
T4 1

Values of the manipulated variable are set solely
by the intervention procedure

e.g. value of a knockout gene in a knockout mice is
set to zero; randomized variable in a randomized
control trial.

Wild Type Mouse Constitutive Knodkout Mouse

Gene of Interest

Functional

Geneof Interest

-

Mo expressian

LJ
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INTERVENTIONS

Graph (SMCG) G « If you know the causal model, you can
model interventions.

* Values of B are set solely by the
intervention procedure: If you know
direct causal relations, remove all
edges into the manipulated variable.

e This procedure is called graph surgery.
* The resulting graph is called the
manipulated graph (symb. G?)

Manipulated SMCG G%
(after graph surgery)

35



CAUSAL DISCOVERY WITH INTERVENTIONS

GB:
A c D E
C) -
I

A m-connecting path from A to D given @ in G
A m-connecting path from A to D given B in G5

A m-connecting path from A to D givenB,C in G5

3 m-connecting path from B to C given ® in G®

Dataset D; measuring a . Path constraints on the
. Conditional
subset of variables, some of . . causal graph after
: : independencies in D; - .
which are manipulated manipulation
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SELECTION BIAS

TTT T T population
TTTTTTTT
tetirst X
| Sl Sl L

Sample
(internet
users)

levolution i creation

e Samples are selected based on the

value of one of your variables.

* e.g.you perform your study in a

specific region/on the internet; case-
control study for a rare disease.

37



SELECTION BIAS IN CAUSAL MODELS

Graph (SMCG) G * If you know the causal model, you can
model selection bias.

 Samples are selected based on the
value of D; The value of D directly
affects the probability of being
selected.

S isachild of D, S=1 for all your
samples.
e Selected graph, symb. Gp

Selection
variable

38



CAUSAL DISCOVERY WITH SELECTION BIAS

A B C E
A m-connecting path from A to D given @ in Gp
A m-connecting path from A to D given B in Gp
A m-connecting path from A to D givenB, C in Gp
3 m-connecting path from B to C given @ in Gp
Dataset D; measuring a Path constraints on the

Conditional

independencies in D; underlying causal graph

after selection

subset of variables, some of
which are selected upon

39



INTEGRATIVE CAUSAL DISCOVERY

“‘j v, = .0

Data (In)dependencies paths Causal graph(s)

* Every data set imposes some constraints.
* Observational data impose path constraints on the candidate graph.
* Experimental data impose path constraints on the candidate graph after manipulation.
* Data sampled under selection impose path constraints on the candidate graph after selection.
* Easily handles overlapping variable sets
* Each study imposes constraints on the observed variables.

40



OUTLINE

1. Integrative causal discovery

2. Logic-based causal discovery
i.  Converting path constraints to logic formulae.
ii. Problem complexity.
iii. Conflict resolution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Data (In)dependencies paths Causal graph(s)

Logic encoding ® of path

constraints in the causal graph
[EA—>D \ [EA—>B A EB—)D] \%

[Eanc AEcopl Vo]

Convert to logic formula!

Variables of the formula correspond to graph
features (edges, orientations).

[Easc V [Easp AEp,clV
[Esec AEcopl V]

Truth setting assignments encode graphs that
satisfy all path constraints after
manipulation/selection.

42



CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.

* In an observational data set, Ind(A, C|0)

* In path terms: A m-connecting path between A and C given @ in G.

43



CONVERSION TO LOGIC FORMULA: EXAMPLE

* Edges of the graph as Boolean variables
* Eqjp =trueif A > Bin G, false otherwise.
* E4cp =trueif A - Bin G, false otherwise.
* E4op =trueif A & Bin G, false otherwise.

* E4_p and E4p are mutually exclusive: —=E,_g V =E 5.

E4 ¢ = False
Ej ¢ = False

Ejoc =True
@:

E, .5 = False
E, g = False
E, g = False

Ep_,c = False
Egp.c =True
Egoc = False

Assignments to
Boolean
variables
correspond to
graphs.

44



CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.

* In an observational data set, Ind(A, C|0)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist
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CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.
* In an observational data set, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist

A-B-C is not m-connecting

46



CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.
* In an observational data set, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist

A-B-C is not m-connecting
—(EqBN Epec)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.
* In an observational data set, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist

A-B-C is not m-connecting
—(EqBN Epec)
—(EqBN Ep-c)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.
* In an observational data set, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist

A-B-C is not m-connecting
—(EqBN Epec)
—(EqBN Ep-c)
—(EqN Epoc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.
* In an observational data set, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist

A-B-C is not m-connecting
—(EgcNEgec)
—(EgcsNEpc)
—(EgcpN Epesc)
—(EaspN Epsc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.

* In an observational data set, Ind(A, C|0)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist

A-B-C is not m-connecting
—(EgcNEgec)
—(EgcsNEpc)
—(EgcpN Epesc)
—(EaspN Epsc)
“(EgopN Epoc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

* Suppose you know nothing about the causal structure G of 4, B, C.

* In an observational data set, Ind(A, C|0)

* In path terms: A m-connecting path between A and C given @ in G.

A-C does not exist

Logic formula: A-B-C is not m-connecting
(mEasc A —Eqgcc A=Egoc) A —(EacpNEpcc)
—1(EgacpNEgcc) A —1(EacpN Ep_c)
—1(EacpNEgoc) A —1(EacN Eposc)
“1(EqcpN Epoc) A —1(EaspN Epoc)
—(EaspN Egoc) A —(EaopNEgoc)
—(EpepN Epoc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

Logic formula: TRUE

(mEse AmEgcc AEgec) A
(EgepNEgc) A
(EgepNEpc) A
“(EgepN Egec) A

_'(EA—>B/\ EB—>C) A

—(EpopNEgoc)

E4yc = False
Ej ¢ = False
Ejoc = False

E, g = False
Ejy g = False
Ejop = True

Eg_c = False
Eg_c = False
Egoc = False
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CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.

* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

54



CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.

* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

A-C does not exist
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CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

A-C does not exist

A-B-C is not m-connecting
—(Ep-a/ Epc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE (INTERVENTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set where B is manipulated, Ind(A, C|®)

* In path terms: A m-connecting path between A and C given @ in GB.

Logic formula:
(_|EA—>C /\ _IEA(—C /\ _|EA(—>C) /\
—1(EacpNEp_c)

B has no
incoming
edges in G5.

A-C does not exist

A-B-C is not m-connecting
—(Ep-a/ Epc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE

Logic formula: TRUE

(_lEA—>C A _lEA<—C A _lEA<—>C) AN

_'(EA<—B/\ EB—>c) A

G E,c = False
E ¢ = False
EA(—)C = False

E,op = True Epe.c = False

"4
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CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set selected based on B, Ind(A, C|S =1)

* In path terms: A m-connecting path between A and C given S = 1in Gg.
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CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set selected based on B, Ind(A,C|S =1)

* In path terms: A m-connecting path between A and C given S = 1 in Gg.

A-C does not exist
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CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set selected based on B, Ind(A, C|S =1)

* In path terms: A m-connecting path between A and C given S = 1 in Gg.

A-C does not exist

A-B-C is not m-connecting
—(EgcNEgec)
—(EgcsNEpc)
—(EgcpN Epesc)
—(EaspN Epsc)
“(EgopN Epoc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set selected based on B, Ind(A, C|S =1)

* In path terms: A m-connecting path between A and C given S = 1in Gg.

A-C does not exist

A-B-C is not m-connecting
—(EgcNEgec)
—(EgcsNEpc)
—(EgcpN Epesc)
—(EaspN Epsc)
“(EgopN Epoc)
“(EgopNEpcc)
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CONVERSION TO LOGIC FORMULA: EXAMPLE (SELECTION)

* Suppose you know nothing about the causal structure G of 4, B, C.
* In a data set selected based on B, Ind(A, C|S =1)

* In path terms: A m-connecting path between A and C given S = 1 in Gg.

Logic formula:

(mEgc N —Eqgcc AN —Ejoe) A
“1(EgcgNEgcc) A
“(EgcpNEpc) A
“1(EgcgNEgoc) A
“(EgspNEpc) A
“(EpepNEgoc) A
“(EgspNEgcc) A
“1(EpepNEgcc) A
“(EgspNEgoc) A

“(EppN Epesc)

A-C does not exist

A-B-C is not m-connecting

—(EacpNEpcc)
—1(EacpN Ep_c)
—1(EacN Eposc)
—1(EaspN Epoc)
—(EaopNEgoc)
—(EaspNEpcc)
—(EsaopNEgc)
—(EaspN Eposc)

“WEaoB/NEpoc)
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CONVERSION TO LOGIC FORMULA: INPUT CONSTRAINTS

Path constraints corresponding to (conditional) dependencies and independencies from multiple
datasets.

Information about the datasets

= Whether your samples were selected based on some variables.
* Variables that were manipulated in your data set.

Many more ways to encode constraints into logic

= Different variable choices (e.g. edge *-*, orientations).

* Different constraint choices depending on the problem at hand.
= Ancestral paths
* Inducing paths.

= Colliders/non-colliders.
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CONVERSION TO LOGIC FORMULA: VERSATILITY

Logic-based causal discovery trivially and collectively handles cases for which no
algorithm existed!

* Incorporating prior knowledge.

* Algorithms for learning Bayesian networks can only enforce the presence/absence of direct edges.

* Easily impose presence/absence of direct edges, directed paths or m-connections (associations).
* root/leaf nodes.

* Learning semi-Markov causal graphs.

* no learning algorithm until logic-based causal discovery.
* Combining heterogeneous data sets.
* Soft interventions.

* Sound and complete algorithms with incomplete knowledge (e.g. can not perform some tests of
independence).
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OUTLINE

1.

Integrative causal discovery

Logic-based causal discovery

ii. Problem complexity.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

EAAD v EAHB A EB‘)D
[Easc A Ec—»D] v
ete
EAAC v EAHB A EB‘)C

[Esec A Ecopl

A B C D E |

R —

Data (In)dependencies Paths Logic formula Causal graph(s)

N/ /

Exponential number of
1.Independencies

2.Paths
3. Solutions
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PROBLEM COMPLEXITY: EXAMPLE

For a data set with 10 variables:
28 = 256 different conditioning sets

For each conditioning set, you need to consider all possible paths with up to 9 edges:

8
5

=205 = 1435 paths per pair of variables.

10

In total: ( 2

) = 45 variable pairs X 256 cond sets X 1435 paths = 16531200 path constraints.

For a network of 10 variables:

135 possible edges. Brute force approach only works for ~10 variables regardless of encoding.

2135~ 1040 different graphs.

Several heuristics for scaling up (depending on the algorithm).

You can take into account all dependencies and independencies, even for
a small number of variables.
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

®
EAAD v EAHB A EB‘)D] v
EA—>C A EC—)D] \4 o e
L ey

EAHC/\EC—»D
Data (In)dependencies Paths Logic formula Causal graph(s)

Reduce the number of
independencies:

Run FCl and use only the
tests performed by FCI.

Limit max conditioning
set size.
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

® ®
EAAD v EAHB A EB‘)D] v
EA—>C A EC—)D] \4 o e
P
EAAC v EAHB A EB‘)C e o

[Esoc AEcopl v
Data (In)dependencies Paths Logic formula Causal graph(s)

Reduce the number of paths:

Use inducing paths that connect
paths on the graph to 3 of
independence (given any set).

Limit the maximum path length.

70



LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

i =

Data

(In)dependencies

»@»

Paths

EAAD v EAHB A EB‘)D] v
[Easc A Ec—»D] v

®
()
L
EAAC \ EAHB A EB‘)C Q o

[Eaoc AEcopl vV

Logic formula Causal graph(s)

Need a clever way to
encode constraints!

e.g. recursively
encode paths.

Convert to CNF for
most SAT solvers.
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LOGIC-BASED INTEGRATIVE CAUSAL DISCOVERY

Al

Data

(In)dependencies

»@»

Paths

® ®
EA‘)D v EAHB A EB‘)D] v
EA—>C A EC—>D] v o e
cfiie
[Eac Vv EAAB AEp.clV
[Esoc AEcopl v ©
Logic formula Causal graph(s)

No need to enumerate all
solutions!

Query the formula for

* Asingle causal graph.

* A causal graph with specific
features.

e Features that are invariant
in all possible causal graphs.
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SUMMARIZING PAIRWISE RELATIONS
Absent edges:

Absent in all
solutions

Contraceptives

Thrombosis

~

1
1
1
1
1
. Breast Cancer
1

s Protein Z

! il -y
| - T J
\ 2, o

\ 4 &

\ >

\
\
\
\
S
AN Protein E
A ~
A F S
~So - 4 i_;.‘u ?‘
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SUMMARIZING PAIRWISE RELATIONS

Thrombosis Contraceptives

solid edges:
present in all
solutions

A Protein E

S - .

Wl

Absent edges:
Absent in all
solutions
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SUMMARIZING PAIRWISE RELATIONS

Thrombosis

Contraceptives

solid edges:
present in all
solutions

dashed edges:
present in some
solutions

AN Protein E

Absent edges:
Absent in all
solutions
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SUMMARIZING PAIRWISE RELATIONS

Absent edges:
Absent in all
solutions

Thrombosis Contraceptives
lid ed solid endpoints:
solid edges: . .
tg I same orientation in
resent in a ‘ .
Pres® ! all solutions
solutions ! .
1 1
! "
I reas ancer I
: ’ i}‘il,} Progin YA
\ f{er "
dashed edges: \ e €
presentinsome [— %\
SOIUtionS \\\\ Protein E
R ;. .

76



SUMMARIZING PAIRWISE RELATIONS

Absent edges:
Absent in all
solutions

Thrombosis Contraceptives
lid ed solid endpoints:
solid edges: ) .
tg I L same orientation In
resentin a )
Pres® ! all solutions
solutions |
h !
1 1
1 reas ancer I
: ° ;’t‘ilﬂ Progin Z
\ t = &
. 1 &Pt
d?:?::t?:gsi;e " r Circle endpoints:
P uti orientation varies in
solutions ”"’E‘fi’; different solutions
‘~__.¢5:‘;;%-;w
L




OUTLINE

1.

Integrative causal discovery

Logic-based causal discovery

. - . I . logic £ lae.
i peob laxitv.

iii. Conflict resolution.

iv. Existing algorithms.

v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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STATISTICAL ERRORS RESULT IN CONFLICTING INPUTS

A B C D E
[EA—>D v EA—»B A EB—)D
[Easc A Ec—»D] v
A c D : G'G
[Egsc VIEaisp AEp,clV
[Eaoc AEcopl Vv

- Conflictin Unsatisfiable Causal graph(s)
constraints formula
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TESTING (CONDITIONAL) INDEPENDENCE

p-value: P(D|Ind)
(VERY loose interpretation)

1

p=0.54
Threshold Independence
Dependence

p=3.2%10"°

0
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TESTING (CONDITIONAL) INDEPENDENCE

p-value: P(D|Ind)
(VERY loose interpretation) . .
1 Different observational

data sets, same
relationship, different
p-values.

Dy: Ind(A,D|®)

p A,D|® . = 054
— ‘—nn —con(A,D|0)

Conflicts make SAT
instance unsatisfiable!

What happens with
statistical errors?

Threshold Independence [

Dependence

D,:Dep(A,D|®)
‘ m — con(4,D|0)

p(A:DW))Dz: 32*10_5
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TESTING (CONDITIONAL) INDEPENDENCE

p-value: P(D|Ind)

(VERY loose interpretation)

1

Papip)p, = 0-54

Threshold

p(A:DW))Dz: 32*10_5

Different observational

data sets, same
relationship, different
p-values.

Dy: Ind(A, D|®)
‘—ml —con(4,D|0)

Independence

Dependence

D,:Dep(A,D|®)
‘ m — con(4,D|0)

How can you decide
if Independence is
more probable than
dependence?

What is more
probable: a
dependence with p-
value 3.2*107° or
independence with
p-value 0.54?

You need to estimate
P(Ind|D)
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ESTIMATING P(Ind|D) USING BAYESIAN SCORING (1)

You want to estimate P(Ind(X,Y|Z)|D)

Score every possible DAG over X,Y,Z: P(D|G).

*  You can use BDE, BGE to compute P(D|G).
Some of these DAGs entail dependence (m-connection, some
independence (m-separation).

* Define a prior over graphs.

Take the weighted average:
P(Ind(X,Y|Z)|D) X ¥.6.6 encaits max,y1z) P(P1G) X P(G)

Exponential number of DAGs.

Use one graph per Markov equivalence class (still exponential).

Still not possible for more than 5-6 variables.

X Y
61:
Z  Ind(X,Y|2)

X

Y
G2: \Zflnd(x,v|2)

X Y
Gi \4 7 '/Dep(x,v|2)

X—Y

Gn \‘z/ Dep(X, Y|2)

[BCCD, Claassen and Heskes, UAI 2012]
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ESTIMATING P(Ind|D) USING BAYESIAN SCORING (2)

You want to estimate P(Ind(X,Y|Z)|D)

P(Y|Z)
Independence Ind(X,Y|Z2): P(X,Y|Z) = P(X|Z)P(Y|Z) X Zy .,
Dependence Dep(X,Y|Z): P(X,Y|Z) = P(X|Z)P(Y|X,Z) \ /Zn
, _ P(Y|Z) 1y Y
PUnd(X,Y12)|ID) = 51757, %P (YX,2) (1=7g)
VS.
Use BDE, BGE to estimate P(Y|Z), P(Y|X, Z). P(Y|X,Z)
my: Prior forindependence is an input parameter. X\ 1& g
Y

[M&B, Margaritis and Bromberg, Cl 2009]

84



ESTIMATING P(Ind|D) FROM P-VALUES

* p-values coming from independence follow a Beta(1, 1) distribution
* p-values coming from dependence follow a distribution in (0, 1) with declining
density
* Can be modeled with a Beta(¢,1),¢ € (0, 1) distribution.

[PROPER, Triantafillou et al, PGM 2014]
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ESTIMATING P(Ind|D) FROM P-VALUES

p-values coming from independence follow a Beta(1, 1) distribution
p-values coming from dependence follow a distribution in (0, 1) with declining
density

* Can be modeled with a Beta(¢,1),¢ € (0, 1) distribution.

Let T, be the proportion of independencies. \

fplm,, &) = mp + (1 —mp)épé L. | —=SeSaEsnnmEmmmn

[PROPER, Triantafillou et al, PGM 2014]
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ESTIMATING P(Ind|D) FROM P-VALUES

p-values coming from independence follow a Beta(1, 1) distribution
p-values coming from dependence follow a distribution in (0, 1) with declining
density

* Can be modeled with a Beta(¢,1),¢ € (0, 1) distribution.

Let T, be the proportion of independencies. K

fplmy, &) = my + (1 —my)éps 2. | e mm -

You can find estimate 1y, £ from the empirical distribution of your p-values
* Find 7ty using [Storey and Tibshirani, 2003] (assumes i.i.d. p-values)
* Find f by minimizing negative log likelihood

[PROPER, Triantafillou et al, PGM 2014]
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ESTIMATING P(Ind|D) FROM P-VALUES

p-values coming from independence follow a Beta(1, 1) distribution
p-values coming from dependence follow a distribution in (0, 1) with declining
density

* Can be modeled with a Beta(¢,1),& € (0,1) distribution.

Let T, be the proportion of independencies. K

fplmy, &) = my + (1 —my)éps 2. | e mm -

You can find estimate 1y, £ from the empirical distribution of your p-values
* Find 7ty using [Storey and Tibshirani, 2003] (assumes i.i.d. p-values)
* Find f by minimizing negative log likelihood

o
(1 —)épa-9
P(ind|p) = i
1+ — -
(1 —my)Ep—9 [PROPER, Triantafillou et al, PGM 2014]
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ESTIMATING P (Ind|D)

* Bayesian methods
* Use the data directly.
* No problem if you have data sets with different sample sizes etc.
* Computationally expensive.
* Choose a prior for m,.

*PROPER (based on p-values)
* Scalable, no computational overhead, benefits from larger p-value populations (more tests).
* Estimate mr from the data.
* p-values are not i.i.d.
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CONFLICT RESOLUTION STRATEGIES

P(constraint) | Ind/Dep path constraint
0.999 Dep 3 m-connecting path
from A to D given @ in S'»
0.998 Ind A m-connecting path
from A to D given @ in S™
0.510 Dep 3 m-connecting path

from A to B given @ in S™

e Assign weights according to
P(constraint), maximize the sum
of weights.

e Rank by probability, greedily
satisfy constraints.

Maximizing sum of weights is the
best strategy
Use greedy to scale up.
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OUTLINE

1. Integrative causal discovery

2. Logic-based causal discovery
L . I . logic £ lae.
i peob laxitv.
G contl lution.
iv. Existing algorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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EXISTING ALGORITHMS

Vary in:
" Type of constraints:

= different types of paths (m-connecting, inducing, ancestral).
* translation to logic formula.

" Types of heterogeneity:

= Soft/hard interventions, selection.
" Preprocessing:

* Heuristics to limit number of constraints / paths.
* Conflict Resolution

= Method for calculating probabilities.

* Conflict resolution strategy (greedy/ max SAT / weighted max SAT).

" CS solver
= Initially SAT solvers, more recently ASP.
* Scalability
* Depends on choices above. Be exact/ focus on scalability.

= Difficult to determine
= huge variance depending on the problem.

Implementations vary
heuristics are typically easy to

incorporate in any algorithm.
-maximum conditioning set size/ path
length.

-greedy /weighted max SAT.
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CSAT+

Type of Constraints

Type of

Heterogeneity

Preprocessing

Conflict resolution

CSP solver

Scalability

m-connecting paths, inducing paths.

Overlapping variables.

Runs FCl on multiple data sets.

Additional preprocessing rules for additional edge removals/orientations.
None (oracle only)

MINISAT

~37 variables (ALARM network)

[Triantafillou, Tsamardinos and Tollis, AISTATS 2010]
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LOCI

Type of Constraints

Type of

Heterogeneity

Preprocessing

Conflict resolution

CSP solver

Scalability

ancestral paths.

Converts [minimal] conditional independencies to ancestral relations:

IndX,Y|[Z) > Z > --->XVZ—>-->Y

None (substitutes FCl orientation steps).

FCl skeleton step.

None (single data set, runs similar to FCl orientation rules)

custom set of rules

unknown (probably similar to FCI).

[Claassen and Heskes, UAI 2011]
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SAT-BASED CAUSAL DISCOVERY

Type of Constraints

Type of

Heterogeneity

Preprocessing

Conflict resolution

CSP solver

Scalability

m-connecting paths

Overlapping variables, interventions

also allows cycles.

None.

Can use a subset of (in) dependencies depending on assumptions (e.g. FCl tests only)

None (oracle only)

MINISAT

8-12 variables

[Hyttinen, Hoyer, Eberhardt and Jarvisalo, UAI 2013]

95



CONSTRAINT-BASED CAUSAL DISCOVERY

Type of Constraints | m-connecting paths.
encoded in ASP based on marginalization and conditioning.

Type of Overlapping variables, interventions
Heterogeneity allows cycles
Preprocessing none

Conflict resolution | Default: based on M&B, maximize sum of weights (find global optimum),
also tried maximizing the number of independencies/ number of constraints

CSP solver ASP

Scalability 7 variables

[Hyttinen, Eberhardt and Jarvisalo, UAI 2014]
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COMBINE

Type of Constraints | inducing paths
Drastically reduces the number of constraints (3, A path) to 1 per variable pair & data set
(compared to 2™)

Type of Overlapping variables, interventions
Heterogeneity

Preprocessing FCl on each data set.
Conflict resolution | Default: based on PROPER, greedy search.
also implemented: BCCD , weighted maxSAT.

CSP solver MINISAT

Scalability 100 variables (additionally limits maximum path length)

[Triantafillou and Tsamardinos, JMLR 2015]
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ETIO

Type of Constraints | m-connecting paths.
encoded in ASP based on extension of the Bayes-Ball algorithm (used to determine m-
connections/m-separations in graphs) for SMCGs with selection.

Type of Overlapping variables, interventions, selection.
Heterogeneity
Preprocessing none

Conflict resolution | based on PROPER/M&B, greedy

CSP solver ASP

Scalability 10-15 variables

[Borboudakis and Tsamardinos, KDD 2016]
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ACI

Type of Constraints | m-connections, ancestry relations

Type of Overlapping variables, various types of interventions
Heterogeneity
Preprocessing none

Conflict resolution | based on M&B, weighted maxSAT

CSP solver ASP

Scalability 10-15 variables

[S. Magliacane, T. Claassen, J.M. Mooij, arXiv]
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MORE

e Using conversion to logic to incorporate prior knowledge in maximal
ancestral graphs.
* [Borboudakis, Triantafillou and Tsamardinos, ESANN 2011].
e Using conversion to logic for causal discovery from time-course data
* Causal Discovery from Subsampled Time Series Data by Constraint
Optimization, [Hyttinen, Plis, Jarvisalo, Eberhardt and Danks, arXiv, 2016]
* Using conversion to logic for identifying chain graphs.
* Learning Optimal Chain Graphs with Answer Set Programming[Sonntag,
Jarvisalo, Pena, Hyttinen, UAI 2015]
* Using conversion to logic to identify semi-Markov causal graphs.
« [Pen3, UAI 2016]
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OVERVIEW

Different data distributions, same causal mechanism: use causal modeling to connect.

Algorithms can handle datasets of different variable sets, different experimental conditions, prior
causal knowledge.

Identify the set of causal graphs that simultaneously fit all datasets .

Convert problem to SAT or ASP.

Logic formula encodes a set of causal models that simultaneously fit all the data sets.
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QUESTIONS

-How can you reason with this set of models?

-Is it useful? Do you make additional inferences than analyzing each data set in isolation?
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OUTLINE

1. Integrative causal discovery

2. Logic-based causal discovery
L . I . logic £ lae.
i peob laxitv.
G contl lution.
e Exict leorithms.
v. Reasoning with logic based causal discovery.
vi. Non-trivial inferences-validation.
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ESTIMATING CAUSAL EFFECTS

You are interested in computing P(B|do(A = a))
In general, P(B|do(A = a)) # P(B|A)

If you know the causal graph, you can use the rules of do-
calculus to transform post-intervention probabilities to pre-
intervention probabilities.
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ESTIMATING CAUSAL EFFECTS

You are interested in computing P(B|do(A = a))
In general, P(B|do(A = a)) # P(B|A)

If you know the causal graph, you can use the rules of do-
calculus to transform post-intervention probabilities to pre-
intervention probabilities.

[Rule 1] Ind (Y, Z|X, W) x = P(y|do(x),z,w) = P(y|do(x),w). Insert/delete observations
[Rule 2] Ind (Y, Iz|1X,Z, W) x = P(yldo(x),do(z),w) = P(y|do(x),z,w). Exchange action/observation
[Rule 3] Ind (Y, I|X, W) ;x = P(yldo(x),do(z),w) = P(y|do(x),w). Insert/delete action

Check m-separations =
Apply rules until you have a formula with pre-intervention probabilities

[Shpitser and Pearl (2006): Return a formula if identifiable]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Constraints in logic formula ® Causal effect P(B|do(A))

3 m-connecting path from A to B given @
3 m-connecting path from A to B given C
3 m-connecting path from A to C given @
3 m-connecting path from A to C given B
3 m-connecting path from B to C given @
3 m-connecting path from B to C given A
A directed path from A to C
A directed path from Ato B
A directed path from Bto C

[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Find a graph

Constraints in logic formula ® consistent with @ Causal effect P(B|do(A))

3 m-connecting path from A to B given @ B

3 m-connecting path from A to B given C / \

3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A
3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

A directed path from Ato B

A directed path from Bto C

[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

. . Find a graph
Constraints in logic formula ® consistent with @ Causal effect P(B|do(A))

3 m-connecting path from A to B given @ B Shpltser and Pearl (2006)
3 m-connecting path from A to B given C / \

3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A

3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

A directed path from Ato B

A directed path from Bto C

F, = ZP(bIa, c)P(c)

[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

. . Find a graph
Constraints in logic formula ® consistent with @ Causal effect P(B|do(A))
Shpitser and Pearl (2006)

3 m-connecting path from A to B given @ B

3 m-connecting path from A to B given C / \
3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A
3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

A directed path from Ato B

A directed path from Bto C

(3 m-connecting path from 1, to Cgiven @V

3 m-connecting path from 1, to B given A, C)

F, = ZP(bIa, c)P(c)

Identify and negate the m-separations used to derive the formula

[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

. . Find a graph
Constraints in logic formula ® consistent with @ Causal effect P(B|do(A))

3 m-connecting path from A to B given @ B Shpltser and Pearl (2006)
3 m-connecting path from A to B given C / \

3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A
3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

B
A directed path from Ato B / \
C—> A

F, = ZP(bIa, c)P(c)

A directed path from Bto C
(3 m-connecting path from 1, to Cgiven @V
3 m-connecting path from 1, to B given A, C)

[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

. . Find a graph
Constraints in logic formula ® consistent with @ Causal effect P(B|do(A))

3 m-connecting path from A to B given @ B Shpltser and Pearl (2006)
3 m-connecting path from A to B given C / \

3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A
3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

B
A directed path from Ato B / \
C—> A

F, = ZP(bIa, c)P(c)

A directed path from Bto C
(3 m-connecting path from 1, to Cgiven @V
3 m-connecting path from 1, to B given A, C)

F, = P(b)

[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

Find a graph

consistent with @ Causal effect P(B|do(A))
Shpitser and Pearl (2006)

Constraints in logic formula ®

3 m-connecting path from A to B given @ B

3 m-connecting path from A to B given C / \

3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A
3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

B
A directed path from Ato B / \
C—> A

F, = ZP(bIa, c)P(c)

A directed path from Bto C

(3 m-connecting path from 1, to Cgiven @V
3 m-connecting path from 1, to B given A, C)
3 m-connecting path from 1, to B given Q)

F, = P(b)

Identify and negate the m-separations used to derive the formula

[Hyttinen, Eberhardt and Jarvislao, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

. . Find a graph
Constraints in logic formula ® consistent with @ Causal effect P(B|do(A))

3 m-connecting path from A to B given @ B Shpltser and Pearl (2006)
3 m-connecting path from A to B given C / \

3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A
3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

B
A directed path from Ato B / \
C—> A

F, = ZP(bIa, c)P(c)

A directed path from Bto C

(3 m-connecting path from 1, to Cgiven @V FZ = P(b)
3 m-connecting path from 1, to B given A, C)
3 m-connecting path from 1, to B given Q)
e ° \
N NA

C— A

UNSAT
[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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DO-CALCULUS WHEN THE GRAPH IS UNKNOWN

. . Find a graph
Constraints in logic formula ® consistent with @ Causal effect P(B|do(A))

3 m-connecting path from A to B given @ B Shpltser and Pearl (2006)
3 m-connecting path from A to B given C / \

3 m-connecting path from A to C given @

3 m-connecting path from A to C given B C—— A
3 m-connecting path from B to C given @

3 m-connecting path from B to C given A

A directed path from A to C

B
A directed path from Ato B / \
C—— A

F, = ZP(bIa, c)P(c)

A directed path from Bto C

(3 m-connecting path from 1, to C given @ V FZ = P(b)
3 m-connecting path from 1, to B given A, C)
3 m-connecting path from 1, to B given Q)
e ° \
N NA

C— A

UNSAT
[Hyttinen, Eberhardt and Jarvisalo, UAI 2015]
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QUESTIONS

-How can you reason with this set of models?
You can use do-calculus and estimate (a population of) causal effects.

-Is it useful? Do you make additional inferences than analyzing each data set in isolation?
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OUTLINE

vi. Non-trivial inferences-validation.
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EXAMPLE INPUT- OUTPUT

Cl pattern C; Formula ® Summary of solutions
([ ]
YIX W Am. connecting path from X to W givenY A X \\
Im. connecting path fromX to W given @ A ? \
Am. connecting path fromX toY given @ A \ i
\
Datpset D, Im. connecting path fromY to W given @ A ® \
Am. connecting path fromX toY given W A ° Y 1
. . 1
Am. connecting path fromY toW given X A .7 b
/ 1
Am. connecting path from X to W given Z A I’ 1
Am. connecting path from X to W given @ A I /I
X Wiz 3Im. connecting path fromX to Z given @ A 1 *’
Am. connecting path from Zto W given @ A : Z
DatasetlD Im. connecting path from X to Z given W A \ ?
2 Im. connecting path from Z to W given X “ |
\ ®
AY
‘o W
Common
variables
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EXAMPLE INPUT- OUTPUT

Cl pattern C; Formula @ Summary of solutions
([ ]
YIX W Am. connecting path from X to W givenY A X \\
Im. connecting path fromX to W given @ A ? \
Am. connecting path fromX toY given @ A \ i
\
Dataset D, Im. connecting path fromY to W given @ A ® \
Am. connecting path fromX toY given W A Py Y 1
. . 1
Am. connecting path fromY toW given X A A b
/ 1
Am. connecting path from X to W given Z A I’ 1
Am. connecting path from X to W given @ A I !
X Wiz 3Im. connecting path fromX to Z given @ A 1 o’
Am. connecting path from Zto W given @ A : Z
DatasetlD Im. connecting path from X to Z given W A \ ’
2 Im. connecting path from Z to W given X “ |
\ ®
AY
‘o W
Common
variables

Predict that Y and Z are
associated even though
they are not measured

in the same data set.
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TEST IF IT WORKS IN REAL DATA.

Datpset D,

XW

Cl pattern C;

XWwW

Dataset|

D,

Common
variables

Find data sets

Look for

D4, D, measuring —> patterns
overlapping Cy, Cs.
variables

Formula &

Am. connecting path from X to W givenY A
Am. connecting path from X to W given @ A
Am. connecting path fromX toY given @ A
3Im. connecting path fromY to W given @ A
Am. connecting path fromX toY given W A
Am. connecting path fromY toW given X A

Am. connecting path from X to W given Z A
Am. connecting path from X to W given @ A
Im. connecting path from X to Z given @ A
Am. connecting path from Zto W given @ A
Im. connecting path from X to Z given W A
Im. connecting path from Z to W given X

Summary of solutions

o<
[ ]
’/

—_—————

N
~
S~

Se--eNe—o<0o--
)

Predict thaty, Z

 > are associated.

Find a third data set measuring both
Y, Z and test if they are associated.
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TEST IF IT WORKS ON REAL DATA (SIMULATE SCENARIO)

2.Splitto D,, D,and D, 3.Find X, ¥, Win D, and X, Z W, in
1.0riginal Dataset containing different samples D, that satisfy (1, ;.

D,

>< Dy XW Z \\
). X P ool v xw e

D Dyest Y X W

N/

Test Y, Z for association

Restrict inferences only to cases where the probability of errors is small, i.e. p-values are extreme.

Pyvz < 0.05 accept Dep(X,Y|Z)
Pyyz > 0.3 accept Ind(X, Y|Z)
Else, undecided (forgo making any inferences)

[Tsamardinos, Triantafillou and Lagani, JIMLR 2012]
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DATASETS

Name # instances # variables Group Size Variables type Scientific domain
Covtype 581012 55 55 Nominal/Ordinal Agricultural
Read 681 26 26 Nominal/Continuous/Ordinal Business

Infant-mortality 5337 83 83 Nominal Clinical study
Compactiv 8192 22 22 Continuous Computer science
Gisette 7000 5000 50 Continuous Digit recognition
Hiva 4229 1617 50 Nominal Drug discovering
Breast-Cancer 286 17816 50 Continuous Gene expression
Lymphoma 237 7399 50 Continuous Gene expression
Wine 4898 12 12 Continuous Industrial
Insurance-C 9000 84 84 Nominal/Ordinal Insurance
Insurance-N 9000 86 86 Nominal/Ordinal Insurance
p53 16772 5408 50 Continuous Protein activity
Ovarian 216 2190 50 Continuous Proteomics
Cc&C 1994 128 128 Continuous Social science
ACPJ 15779 28228 50 Continuous Text mining
Bibtex 7395 1995 50 Nominal Text mining
Delicious 16105 1483 50 Nominal Text mining
Dexter 600 11035 50 Nominal Text mining
Nova 1929 12709 50 Nominal Text mining
Ohsumed 5000 14373 50 Nominal Text mining

[Tsamardinos, Triantafillou and Lagani, JIMLR 2012]




DATASETS

Name # instances # variables Group Size Variables type Scientific domain
Covtype 581012 55 55 Nominal/Ordinal Agricultural
Read 681 26 26 Nominal/Continuous/Ordinal Business

Infant-mortality 5337 83 83 Nominal Clinical study
Compactiv 8192 22 22 Continuous Computer science
Gisette 7000 5000 50 Continuous Digit recognition
Hiva 4229 1617 50 Nominal Drug discovering
Breast-Cancer 286 17816 50 Continuous Gene expression
Lymphoma 237 7399 50 Continuous Gene expression
Wine 4898 12 12 Continuous Industrial
Insurance-C 9000 84 84 Nominal/Ordinal Insurance
Insurance-N 9000 86 86 Nominal/Ordinal Insurance
p53 16772 5408 50 Continuous Protein activity
Ovarian 216 2190 50 Continuous Proteomics
C&C 1994 128 128 Continuous Social science
ACPJ 15779 28228 50 Continuous Text mining
Bibtex 7395 1995 50 Nominal Text mining
Delicious 16105 1483 50 Nominal Text mining
Dexter 600 11035 50 Nominal Text mining
Nova 1929 12709 50 Nominal Text mining
Ohsumed 5000 14373 50 Nominal Text mining

# predictions
222
0
22
135
423
554
1833
7712
4
1839
226
46647
539165
99241
0
1
856

[Tsamardinos, Triantafillou and Lagani, JIMLR 2012]
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HOW DID WE DO?

1

S 08 u
T
% 0.6
&,
g 04
—
5
é 0.2

0

Covtype Read Infant Compactiv  Gisette Hiva Breast Lymphoma  Wine Insurance Insurance
Mortality Cancer C N

1
E 08
T
Z 06
=
g 04
2 0
=
S 0.2
= 0.

0 = -~ ™ =

P53 Ovarian C&C ACPJ Bibtex Delicious Dexter Nova Ohsumed Acc Acc

Ii ==NCA rulelJ=Random Guess

*  About 700000 predictions in 20 datasets.
*  Accuracy: The percentage of p-values < 0.05.
*  May include false positives and exclude false negatives.
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HOW DID WE DO?

1

E 08 =
T
Z 06
<
>
g 04
g
S 02

0

Covtype Read Infant Compactiv  Gisette Hiva Breast Lymphoma  Wine Insurance Insurance
Mortality Cancer

1
S 08
T
06
<
g 04
g
S 02

0 =1 = |

P53 Ovarian C&C ACPJ Bibtex Delicious Dexter Nova Ohsuuled Acc Acc
|i—INCA ruleEl=Random Guessl
*  About 700000 predictions in 20 datasets. 98% accu racy vs.
*  Accuracy: The percentage of p-values < 0.05.

0 .
*  May include false positives and exclude false negatives. 16% of random guessing
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PREDICT CORRELATION STRENGTH py,

How strong is
the correlation
of Yand Z?

~
S~

»

W

O-0-0-0 -0
-0~
OS 02020
PO~ O-O-O=O O
020020
-0 O-O-0-O
ORO=0sO) ONOZ0)O,

26 possible SMCGs.
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PREDICT CORRELATION STRENGTH py,

How strong is
the correlation
of Yand Z?

xo—a ; —o 7 0-0)\\
N 9

~ - -

Assume multivariate normality and interpret
SMCG as path diagram.
Use the (measured) sample correlations

Tvx, yw» Txw (D1)

2% Tzw) Txw (D2)
Use rules of path analysis to predict 7y.

OO0 -0
-0~
OS 02020
O=D-0-O O-O-C=O
=0 =00
OO0 ONONOSOSONONONOSORO.
OO~ QOO

26 possible SMCGs.
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PREDICT CORRELATION STRENGTH py,

How strong is
the correlation
of Yand Z?

xo—aqo—ozr—cw
N ’

-
S~ ="

-

Assume multivariate normality and interpret
SMCG as path diagram.
Use the (measured) sample correlations

Tvx, yw» Txw (D1)

2% Tzw) Txw (D2)
Use rules of path analysis to predict 7y.

OROZ0Z0) @@@@:
|
O-O-AOIQIP O
ORORCONONCZORO

OO0 OO
|

0200 ONOZ0=00) :

O-0-0-0 O-O-0-0,0 FD ©®

-

13 models imply
1 _1 (TXZ TYW)
~ LR + —_

Tyz =3
2\rxy Tzw

ONOZ0)O,

T3 ~
YZ 2

13 models imply
—~2 _1 (er Tzw)
rxz Tyw
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PREDICT CORRELATION STRENGTH py,

How strong is
the correlation
of Yand Z?

¥o—a$o—oz&—cw
N ’

-
-

~ - -

Assume multivariate normality and interpret
SMCG as path diagram.
Use the (measured) sample correlations

Tvx, yw» Txw (D1)

2% Tzw) Txw (D2)
Use rules of path analysis to predict 7y.

O ONO=O) @@@@:
@@i
-0,
C0-0-0 O-O-QLI QO ®
=0 =00 i
O-0-0-0 O-O-0-0,0 FD ©®

—()—~) Only one of @@

—~ 1 —~ 2] .
|rYZ , |Yyz | is <1
. I .
13 models imply | 13 models imply
1 _1(rxz , Tyw —~2 _1(rxy | Tzw
Tyz z‘(—‘l‘—) I vz =\ -+
2\rxy Tzw I 2\rxz Tyw
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PREDICT CORRELATION STRENGTH py,

How strong is
the correlation
of Yand Z?

xo—aqo—ozr—cw
N ’

7
S~ ="

* Assume multivariate normality and interpret
SMCG as path diagram.
* Use the (measured) sample correlations

Tvx, yw» Txw (D1)

zx Tzw> Txw (D2)
* Use rules of path analysis to predict 7.

OROZ0Z0) @@@@:
|
O-O-AOIQIP O
ORORCONONCZORO
BS-G- @@@:@:
|
OC=-® ®:
O-0-0-0 BO-0-0-0,0 F0©®
—()—~) Only one of @@

|77z | |2 [is <1
|
You can uniquely identify the skeleton of the graph 13 modells imply | 13 modlels imply
_~ T r — T r
AND predict the correlation coefficient of Y, Z! Fry' = = (ﬂ + ﬂ) | Fry =~ = (ﬂ + ﬂ)
2\rxy Tzw I 2\rxz Tyw
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HOW DID WE DO?

high

density

low

Predicted vs Sample Correlation

sample correlation
=

—0.6

—-0.8}

—] K I 1 1 L I
-1 -08 -06 —04 —02 0 02 04 06 08 1

predicted correlation

Clear trend in predicted vs sample correlations.

Also a systematic bias because the predictions have been selected based on the
independence tests.

Correlation of predicted vs sample correlations is 0.89.

Predictions based on large correlations have reduced bias.
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HOW DID WE DO?

high

density

low

Predicted vs sample correlations over all data sets, grouped by mean

EReeo S S AT e absolute value of the denominators used in their computations
mean absolute denominator in [0.1.0.2] mean absolute denominator in [0.2, 0.3]
1
0.8
0.6
0.4 e
o 0.2 i
2 of.;
= ok
v
= —0.4
3 5
© %06
[ p o
'E- 0.8 -
3 LI —0506-01-02 0 0.2 0.1 06 08 ~ 1 =0506-0.1-02 0 0.2 0.1 0.6 0.8
. predicted correlation predicted correlation
mean absolute denominator in [0.7, 0.8] mean absolute denominator in [0.8, 0.9]
1 1
(8. . 0.8
- 0.6 0.6
-y I I I L ! I é 0.4 0.4 .
-1 -08 -06 —-04 —02 0 02 04 06 038 1 z 02 02 -
predicted correlation g o ¢
= 02 —0.2
j 1 —0.41
e 06} 0.6
0.8 0.8
Clear trend in predicted vs sample correlations | - . i
Also a systematic bias because the predictions have been selected based on the predicted correlation predicted correlation

independence tests
Correlation of predicted vs sample correlations is 0.89
Predictions based on large correlations have reduced bias.
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QUESTIONS

-How can you reason with this set of models?
You can use do-calculus and estimate (a population of) causal effects.

-Is it useful? Do you make additional inferences than analyzing each data set in isolation?
You can make non-trivial inferences, quantitative with additional assumptions.
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OUTLINE
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KEY-POINTS

Integrative logic-based causal discovery.
Different data distributions, same causal mechanism: use causal modeling to connect.

Can handle datasets of different variable sets, different experimental conditions, prior causal
knowledge.

Identify the set of causal graphs that simultaneously fit all datasets and reason with this set.
Convert problem to SAT or ASP; exploit 40 years of SAT-solving technology.

Query-based approach to avoid explosion of possible solutions!

Vision of automatically analyzing a large portion of available datasets in a domain.
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WHAT IS NEXT?

Improving scalability.

Improving quality of learning and robustness.

Further removing restrictive assumptions (e.g., Faithfulness).
Making quantitative predictions.

Extensions for temporal data.

Additional constraints (e.g. Verma constraints).

Feature selection from multiple data sets.

Apply it to real problems.
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