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Preface

The Conference on Uncertainty in Artificial Intelligence (UAI) is the premier international conference on research
related to representation, inference, learning and decision making in the presence of uncertainty within the field
of Artificial Intelligence. This volume contains all papers that were accepted for the 32nd UAI Conference, held
in Jersey City, New Jersey, USA, from June 25 to 29, 2016. Papers appearing in this volume were subjected to a
rigorous review process. 275 papers were submitted to the conference and each was peer-reviewed by 3 or more
reviewers with the supervision of one Senior Program Committee member. A total of 85 papers were accepted,
26 for oral presentation and 59 for poster presentation, for an acceptance rate of 31%. We are very grateful to
the program committee and senior program committee members for their diligent efforts. We are confident that
the proceedings, like past UAI conference proceedings, will become an important archival reference for the field.

We are pleased to announce that the Microsoft Best Paper Award is awarded to Leonard Schulman and
Piyush Srivastava for their paper, “Stability of Causal Inference”. The Adobe Best Student Paper Award is
awarded to Jan Leike (co-authored with Tor Lattimore, Laurent Orseau, and Marcus Hutter) for their paper,
“Thompson Sampling is Asymptotically Optimal in General Environments”.

In addition to the presentation of technical papers, we are very pleased to have four distinguished invited
speakers at UAI 2016: Steven Low (Caltech), Andrew McCallum (University of Massachusetts Amherst), Steffen
L. Lauritzen (University of Copenhagen) and, as Banquet Speaker, Farhan Feroz (Cambridge University). The
UAI 2016 tutorials program, chaired by Jan Lemeire, consists of four tutorials: “Discrete Sampling and Inte-
gration in High Dimensional Spaces” by Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi, “Parallel
and High-performance Computing for Speeding up Machine Learning Algorithms” by Anshul Gupta, “Inte-
grative Logic-Based Causal Discovery” by Sofia Triantafillou and Ioannis Tsamardinos, and “Reasoning Under
Uncertainty with Subjective Logic” by Audun Jøsang.

UAI 2016 also hosts three workshops, coordinated by workshops chair Melanie Zeilinger: “Causation: Foun-
dation to Application” (Frederick Eberhardt, Ricardo Silva, Joris Mooij, Marloes Maathuis, Elias Bareinboim),
“Bayesian Modeling Applications Workshop” (Rommel Carvalho, Kathryn Laskey), and “Machine Learning for
Health” (Ke Yuan, Olivier Elemento, Edoardo Airoldi, Florian Markowetz).

Alexander Ihler and Dominik Janzing (Program Co-Chairs)
Marina Meila and Tom Heskes (General Co-Chairs)
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Abstract

Stackelberg games are two-stage games in which
the first player (called the leader) commits to a
strategy, after which the other player (the fol-
lower) selects a best-response. These types of
games have seen numerous practical application
in security settings, where the leader (in this
case, a defender) must allocate resources to pro-
tect various targets. Real world applications in-
clude the scheduling of US federal air marshals
to international flights, and resource allocation at
LAX airport. However, the best known algorithm
for solving general Stackelberg games requires
solving Integer Programs, and fails to scale be-
yond a few (significantly smaller than 100) num-
ber of leader actions, or follower types. In this
paper, we present a new gradient-based approach
for solving large Stackelberg games in security
settings. Large-scale control problems are often
solved by restricting the controller to a rich pa-
rameterized class of policies; the optimal control
can then be computed using Monte Carlo gradi-
ent methods. We demonstrate that the same ap-
proach can be taken in a strategic setting. We
evaluate our approach empirically, demonstrat-
ing that it can have negligible regret against the
leader’s true equilibrium strategy, while scaling
to large games.

1 INTRODUCTION

Stackelberg games have received significant attention in
the context of security applications, where a defender (the
leader in the Stackelberg game) must deploy a limited num-
ber of security resources to protect a set of vulnerable tar-
gets to guard against an attacker (the follower in the Stack-
elberg game). Algorithms for these games have been de-
ployed in real-world settings, e.g., to generate checkpoints
and patrols at the Los Angeles International Airport [Pita

et al., 2009], as well as to schedule US Federal Air Mar-
shals (FAMS) to flights [Jain et al., 2010b, Tsai et al.,
2009].

The best known solver for general Bayesian Stackelberg
games is the DOBBS algorithm [Paruchuri et al., 2008],
which was the first to formulate a Stackelberg game
(given in normal form) as a Mixed Integer Linear Program
(MILP). Since then, a great deal of research has been de-
voted to algorithms that scale to games of the size encoun-
tered in real settings. This has led to the development of a
general class of Stackelberg Security Games (SSGs) [Ko-
rzhyk et al., 2011], which captures many of the key fea-
tures of these real settings, along with algorithms includ-
ing ORIGAMI, ERASER, ERASER-C [Kiekintveld et al.,
2009], and ASPEN [Jain et al., 2010a], which can handle
a large number of defender actions. With the exception
of ASPEN, these algorithms work by assuming additional
structure on the SSG, specifically on the pure strategy set
of the defender. Similarly, the HBGS algorithm [Jain et al.,
2011] scales to multiple attacker types by assuming hierar-
chical structure on the attacker types. Hence, these algo-
rithms are able to solve MILPs more compact than would
be generated from a game expressed in normal form.1

Among approximate methods, Monte-Carlo approaches
have been used to solve games with infinite types [Kiek-
intveld et al., 2011], but also makes assumptions on what
defender pure strategies are feasible. The HUNTER al-
gorithm [Yin and Tambe, 2012], in contrast, can solve
Stackelberg games with limited additional assumptions, but
searches a game tree whose depth scales with the number
of attacker types, and whose branching factor is the num-
ber of available targets. Approximate methods have also
been utilized in recent work [Yang et al., 2012, 2013] con-
sidering attackers with bounded rationality, including at-
tackers which behave according to the Quantal Response
(QR) model [McKelvey and Palfrey, 1995]. This model-
ing assumption is made with limited loss of generality, as
the degree of attacker rationally is specified by a parame-

1ORIGAMI makes the most restrictive assumptions on the
game, and does not need to solve an MILP at all.

2



ter of the model. As we will see shortly, the algorithms in
the present work can be seen as a refinement of the BRQR
algorithm of Yang et al. [2013].

We introduce a different approach for finding good de-
fender strategies in Stackelberg security games, which
avoids imposing structure on the defender’s pure strate-
gies, the attackers’ types, or the players’ utilities. Instead,
we propose restricting the search for defender strategies
within a rich, but parameterized, class of mixed strategies.
In a standard Stackelberg equilibrium the defender (who is
the leader), plays an (unrestricted) mixed strategy, knowing
that the attacker will select a best-response. In contrast, we
will consider games where the defender’s choice of mixed
strategy must come from some fixed class of distributions.

This type of assumption is analogous to successful meth-
ods in AI and reinforcement learning such as policy gra-
dient methods [Baxter and Bartlett, 2001], which avoid
making assumptions about the dynamics of the environ-
ment, but rather, constrain the search for a good policy to
within a parameterized family of policies. In this work, we
will demonstrate how a similar approach can be applied to
a strategic setting. We then apply Monte-Carlo gradient
methods, a procedure we call STACKGRAD, to find solu-
tions to the defender’s optimization problem. In contrast
to an ordinary optimal control problem, a unique feature of
our derivation is that this gradient computation must pass
through the attacker’s response function. In order to main-
tain differentiability, we consider a smoothed version of the
attacker’s response function. We therefore consider an at-
tacker in the QR model. While our primary motivation for
this assumption is analytic, we reap the additional capabil-
ity of modeling boundedly rational attackers.

Figure 1 provides a schematic of our approach. We be-
gin with a Stackelberg game, consisting of the defender’s
set of mixed strategies, ∆, the attacker’s response function
g, and the defender’s utility for playing D ∈ ∆, denoted
U(D, g(D)). We then formulate an approximate Stackel-
berg game by restricting D ∈ ∆(Θ) ⊂ ∆ and smoothing
g ⇒ g̃, where Θ denotes the parameterization of the de-
fender strategy space. Finally, we solve for the defender’s
best strategy in the restricted game via gradient ascent.

Yang et al. [2013] propose finding approximate Stackel-
berg equilibria against QR attackers by finding local min-
ima of the defender’s expected utility function (over the un-
restricted class of defender mixed strategies D). This algo-
rithm, called BRQR, relies on a black-box call to a pro-
cedure for finding such local minima. We can view our
approach as an instantiation of BRQR where the restriction
to defender strategies ∆(Θ) bears fruit in two ways. First,
we can explicitly find these local minima using gradient de-
scent. In contrast, previous work relies on using black-box
non-convex function optimization toolboxes. Secondly, we
can scale to games with large pure strategy spaces in a prin-

Figure 1: STACKGRAD optimizes the approximate game
given considering a parametric class of leader (defender)
strategies and by smoothing the follower’s (attacker’s) re-
sponse function.

cipled manner, by designing ∆(Θ) to have a compact pa-
rameterization.

While any parameterized class of defender mixed strategies
may be utilized, we propose two rich classes which yield
heuristics with no computational dependence on the num-
ber of attacker types, and only mild dependencies on the
size of the defender’s pure strategy set. We then demon-
strate empirically that STACKGRAD not only scales to
large games, but also finds mixed strategies that are close
to the defender’s true Stackelberg optimal strategy.

Our primary contributions are in the derivation of a new al-
gorithm for solving Stackelberg games approximately and
in its empirical evaluation. Specifically, we define STACK-
GRAD, by deriving an approximate stochastic gradient of
the defender’s utility with respect to its strategy parame-
ters through the (smoothed) best response function of the
attacker. We argue analytically that STACKGRAD has
no computational dependence on the number of attacker
types in a Bayesian Stackelberg game, being able to han-
dle any number (even infinite types). We then demonstrate
empirically that, despite searching within a restricted class
of mixed strategies, the solutions found by STACKGRAD
have almost the same payoff to the defender as the true (un-
restricted) Stackelberg optimum, computed directly using a
solver for the unrestricted game. We also demonstrate the
STACKGRAD has only a mild computational dependence
on the number of pure strategies, by considering a game
inspired by the Federal Air Marshal (FAMS) domain.

2 PRELIMINARIES

2.1 GENERAL SECURITY GAMES

We consider the Stackelberg security game introduced by
Kiekintveld et al. [2009] (see Korzhyk et al. [2011] for a
good overview).

An SSG is a two-player game between a defender and
attacker. The attacker selects a target from a set T =
{t1, . . . , tN}. The defender prevents attacks by guard-
ing targets with various resources R = {r1, . . . , rK}. In
the most general setting considered in previous work, re-
sources may simultaneously cover a set of targets. For ex-
ample, resources might be air marshals, and targets might
be airline flights [Tsai et al., 2009]. An air marshal might
protect a number of targets by flying a circuit which starts
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and ends at the marshal’s home city; each flight along the
circuit is considered covered. This is modeled by having
the defender assign resources to schedules, where a sched-
ule S ⊂ T is just a subset of the possible targets. Assigning
a resource rk to schedule S corresponds to covering each
t ∈ S with resource rk. The set of schedules to which a
resource rk may be assigned is denoted by Sk. Sk specifies
the constraints induced by the domain. For example, in the
air marshal SSG, Sk comprises sets of flights that can form
a circuit that starts and ends in the marshal’s home city.

A defender’s pure strategy is an assignment of resources to
schedules, which we denote by s ∈ S , S1 × · · · × SK .
Strategy component sk is the schedule to which resource
rk is assigned. Strategy s induces a coverage vector c ∈
{0, 1}N (sometimes denoted c(s) when we wish to empha-
size the dependence on s) indicating which targets are cov-
ered: cn = 1 if tn ∈ sk for some k. An attacker’s pure
strategy is simply a target tn ∈ T .

Our methods also allow for non-binary coverage. That
is, we can take c(s) to be an arbitrary function from S
to [0, 1]K representing the assignment of varying resource
quantities to achieve degrees of target coverage. However,
to simplify our expressions, and to stay consistent with pre-
vious work, we assume binary cn unless otherwise noted.

If the defender plays a mixed strategy—a distribution D
over pure strategies—we use c̄ ∈ [0, 1]d to denote the
probability that each target is covered. In other words,
c̄(D) = Es∼D [c(s)].

The players’ utilities are functions of which target is at-
tacked, and whether that target is covered (by any re-
source). Attacker and defender utilities are denoted Ua :
{0, 1} × T → R and Ud : {0, 1} × T → R respectively.
Ua(0, tn), for example, specifies the utility to the attacker
if tn is attacked and uncovered. The expected payoffs for
playing defender mixed strategy D and attacker pure strat-
egy tn are given by:

Ua(D, tn) = c̄(D)Ua(1, tn) + (1− c̄(D))Ua(0, tn)

Ud(D, tn) = c̄(D)Ud(1, tn) + (1− c̄(D))Ud(0, tn)

In a security game, it is assumed that for all n, Ma,n ,
Ua(0, tn) − Ua(1, tn) ≥ 0 and Md,n , Ud(1, tn) −
Ua(0, tn) ≥ 0. The attacker never prefers that its target
is covered. Similarly, the defender never prefers that the
attacker’s target is uncovered.

2.2 STACKELBERG EQUILIBRIA

The solution concept typically applied to security games is
that of a Stackelberg Equilibrium, as opposed to the more
conventional Nash Equilibrium. In a two-player Stackel-
berg game, one player—termed leader—first commits to
a strategy. The other player—termed follower—observes

this commitment, and plays a best response to the leader’s
chosen strategy. In security games, the defender is the
leader and the attacker follows. This leader-follower in-
teraction is argued to be better suited than simultaneous
moves for modeling security domains, since after the de-
fender deploys its resources, that deployment is subject to
scrutiny by a malicious agent, who can use this information
when deciding on its point of attack.

Due to the two-stage nature of the game, it is convenient to
think of the follower as selecting a response function which
maps each of the leader’s mixed strategies to a pure strat-
egy. With ∆ the set of defender mixed strategies, we denote
a response function by g : ∆→ T . Upon observing leader
mixed strategy D, the follower plays pure strategy g(D).

We say that (D, g) forms a Strong Stackelberg Equilibrium
(SSE) if, informally: (1) given response function g, the
leader maximizes its payoff by playing D, (2) g is not just
a response function, but always returns a follower best re-
sponse, and (3) if there are multiple follower best-response
functions, g selects the one most beneficial to the leader.

Condition (3) is what distinguishes a Strong Stackelberg
Equilibrium from an ordinary Stackelberg Equilibrium. It
can be argued that this is a reasonable solution concept if
one believes that the leader can always force the attacker to
break ties in its favor. For our purposes, it will be necessary
only to observe that the payoff to the leader in a SSE is the
most that a leader can hope to guarantee against a rational
follower. Below we state the definition of an SSE formally
in the context of a security game.

Definition 1 (Follower Best-Response). A follower re-
sponse function g : ∆ → T is a best-response function
if for any other response function g′ : ∆ → T and leader
strategy D ∈ ∆, Ua(D, g(D)) ≥ Ua(D, g′(D)).

Definition 2 (Strong Stackelberg Equilibrium). (D, g)
where D ∈ ∆ and g : ∆ → T is a Strong Stackelberg
Equilibrium iff:

1. For all D′ ∈ ∆, Ud(D, g(D)) ≥ Ud(D′, g(D′))

2. g is a best-response function.

3. For any D′ ∈ ∆ and best-response function g′,
Ud(D′, g(D′)) ≥ Ud(D′, g′(D′))

The definition of a SSE ensures that, although there may
be multiple such equilibria, they all give the same payoff to
the defender. Given an instance of a security game G, let
VG denote the payoff to the defender in equilibrium.

2.3 BAYESIAN STACKELBERG GAMES

An extension of the game described in the previous section
allows the defender to model uncertainty over the potential
attackers by a prior q over a set of attacker types Λ. Letting
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gλ denote the best response of attacker λ, the defender’s
utility in the Bayesian setting is given by:

Ud(D, {gλ}) =
∑

λ∈Λ

q(λ)Ud(D, gλ(D)). (1)

As with a single attacker, if gλ breaks ties in a consistent
manner we can uniquely define VG in the Bayesian setting.
Given an arbitrary defender strategy D, we define the com-
petitive ratio of the defender’s choice of strategy against
the SSE solution. We assume that Ud(D, {gλ}) ≥ 0, and
VG > 0.

Definition 3 (Competitive Ratio). Given an instance of a
Bayesian Stackelberg game G, and defender strategyD, de-
fine R(D) = Ud(D, {gλ})/VG .

The defender would like to maximize equation (1), or short
of doing so, find a strategyD which attains a large competi-
tive ratio. In this work, we propose using gradient methods
to search for such strategies. However, in order to do so Ud

will have to be differentiable with respect to its argument.
In the next section, we describe the approximations needed
to ensure this.

3 GAME APPROXIMATION

We now consider an approximation to general Bayesian
Stackelberg games. We (1) assume a probabilistic model
for the attacker, and (2) restrict the set of strategies avail-
able to the defender.

Recall that the softmax function ση : RN × {1, . . . , N} →
[0, 1] provides a probabilistic approximation to the max-
imum element of the set. Given a vector x ∈ RN , we let
ση(x, i) = exp(ηxi)∑N

i=1 exp(ηxi)
. The categorical distribution over

the set {1, . . . , N}, which selects element i with probabil-
ity ση(x, i) is called the softmax distribution. As the in-
verse temperature η → ∞, softmax concentrates mass on
the indices belonging to the maximum elements of x.

The first step to approximating the security game of Sec-
tion 2 is to have the attacker select its target according to
the softmax distribution over its utilities, often times called
a quantal response attacker [Yang et al., 2012]. Let Uλ de-
note the utility function corresponding to attacker type λ.
Let us also define

uλ(D) = [Uλ(D, t1), . . . ,Uλ(D, tN )],

the vector of expected payoffs to the attacker for each
choice of target, assuming the defender plays mixed strat-
egy D. In the security game approximation, we assume
that conditioned on the defender’s choice of D, and a fixed
choice of η (a parameter of the approximation), the attacker
selects target tn with probability ση(uλ(D), n).

Second, we restrict the defender to select distributions from
a parameterized class ∆Θ ⊂ ∆, where Θ denotes a set of

parameters, and for each θ ∈ Θ, there is a corresponding
distribution Dθ ∈ ∆Θ. We denote the probability mass
function (over S) of Dθ by p(· | θ).

Putting these approximations together gives us a stochas-
tic optimization problem from the perspective of the de-
fender (summarized in the model below). First nature
draws attacker type λ according to q. Given λ, η, and
θ ∈ Θ, an attacker’s (now random) response tn is deter-
mined by a draw from the categorical distribution defined
by ση(uλ(Dθ), ·), rather than an exact best-response func-
tion gλ. Upon independently drawing s ∼ Dθ, the defender
receives Ud(cn(s), tn).

Security Game Approximation
Defender selects θ ∈ Θ.
Nature draws λ ∼ q
n ∼ ση(uλ(Dθ), ·), s ∼ Dθ
Defender receives payoff Ud(cn(s), tn).

The goal of the defender in the security game approxima-
tion is to maximize its expected payoff, which is given by
the following function:

Ũd(θ) = E [Ud(cn(s), tn)] , (2)

The expectation here is taken according to the process just
described.

If we take ∆Θ identical to ∆ and η → ∞, then the logic
of the model is that of a leader-follower game, and the de-
fender strategy θ∗ that maximizes Ũd(θ) is precisely its
strategy in a Stackelberg equilibrium. However, maximiz-
ing Ũd may not be tractable for larger games. If, on the
other hand, ∆Θ is restrictive (∆Θ 6= ∆), the strategy Dθ∗
might suffer regret against an attacker best-response func-
tion g, but the parametric class may allow Ud to be effi-
ciently maximized. Balancing these two effects is impor-
tant. In the next section, we describe how given a fixed
parametric class Θ, Ũd can be maximized using gradient
methods.

4 MONTE-CARLO GRADIENT
ESTIMATE: STACKGRAD

If Θ ⊂ Rd for some d, then gradient algorithms are natural
candidates for maximizing Equation 2. However, to com-
pute∇Ũd(θ) even at a single point θ, it might be necessary
to sum over all of Λ, and the entire support of Dθ, which
even for a parametric class of distributions might include
all elements of S. A more tractable approach is to take a
Monte-Carlo estimate of ∇Ũd(θ), which need not depend
on the size of S, and has no dependence on |Λ|.
The first step to producing such an estimate is to derive
for any θ, an unbiased estimate γ̃θ of ∇Ũd(θ). Recall that
given the defender’s choice of parameter θ, the probability
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of schedule s ∈ S is given by p(s | θ). Let us denote the
probability that the defender selects pure strategy s, and an
attacker of type λ selects target tn by p(s, tn | θ, λ).

Thus, with probability q(λ)p(s, tn | θ, λ), the defender re-
ceives Ud(s, tn), and so the gradient is

∇Ũd(θ) =
∑

λ∈Λ

∑

s∈S,tn∈T
q(λ)Ud(cn(s), tn)∇p(s, tn | θ, λ)

=
∑

λ∈Λ

∑

s∈S,tn∈T

p(s, tn | θ, λ)

p(s, tn | θ, λ)
q(λ)Ud(cn(s), tn)∇p(s, tn | θ, λ)

= E
[
Ud(cn(s), tn)

∇p(s, tn | θ, λ)

p(s, tn | θ, λ)

]
. (3)

We can estimate ∇Ũd(θ) by drawing m random samples
according to the model. The gradient estimate for sample i
is given by

γ̃
(i)
θ = Ud(cn(s(i)), t(i)n )

∇p(s(i), t
(i)
n | θ, λ(i))

p(s(i), t
(i)
n | θ, λ(i))

,

and the overall gradient estimate by 1
m

∑m
i=1 γ̃

(i)
θ . This

presumes that given realizations λ, s and tn, the ratio
∇p(s,tn|θ,λ)
p(s,tn|θ,λ) can be efficiently computed. We examine

classes Θ where this holds in the following sections.

For gradient methods to converge in expectation any unbi-
ased estimate of ∇Ũd suffices (even taking m = 1), al-
though lower variance estimates perform better in practice.
Furthermore, ∇p(s,tn|θ,λ)

p(s,tn|θ,λ) depends on the realization λ(i),
and not the entire set Λ. Thus, the computation required to
estimate ∇Ũd is independent of |Λ|, and we expect such
methods to scale to any number of attacker types (even in-
finitely many).

For completeness, we state the algorithm STACKGRAD,
which is a projected stochastic gradient ascent, utiliz-
ing Monte-Carlo gradient estimates. Let PΘ(x) =
minθ∈Θ‖x−θ‖2 denote the Euclidean projection of x onto
Θ. We use the shorthand λ, s, t ∼ M(θ) to denote random
variables sampled according to the stochastic approxima-
tion given defender parameter θ.

Algorithm STACKGRAD
Inputs: Class Θ, Horizon T , Sampling Parameter m
Initialize θ0.
for τ = 1, . . . , T do

Sample λ(i), s(i), t
(i)
n ∼M(θτ ) for i = 1, . . . ,m.

Let γ̃τ = 1
m

∑m
i=1 Ud(cn(s(i)), t

(i)
n )
∇p(s(i),t(i)n |θτ−1,λ

(i))

p(s(i),t
(i)
n |θτ−1,λ(i))

θτ = PΘ(θτ−1 + 1√
τ
γ̃τ )

end for
return θT

Standard results (e.g. Boyd et al. [2003]) tell us that af-
ter T iterations, the expected value of Ũd(θT ) will be

within O( 1√
T

) of a local maximum of the function Ũd.
Therefore, if the quality of the defender strategy found by
STACKGRAD, R(DθT ), is poor, it must either be because:
(1) good mixed strategies for the true game exist only in
∆ \∆Θ (i.e. maxθ∈Θ VG − Ũd(θ) � 0), or (2) good de-
fender strategies exist in ∆Θ, but STACKGRAD converged
to a suboptimal local maximum.

In what follows, we will see that in empirical validations,
STACKGRAD exhibits good behavior on standard security
games. This leads us to two questions, which we leave
open for future theoretical research. (1) Are there classes of
Stackelberg games, and parameterized strategies Θ, where
the best strategy for the approximate game is guaranteed to
be a good strategy for the true game? (2) Are there classes
of Stackelberg games where STACKGRAD is guaranteed
to exhibit good convergence properties?

5 INDEPENDENT RESOURCE
ALLOCATION : CATEGORICAL
DISTRIBUTIONS

In this section we demonstrate how to compute the ratio
∇p(s,tn|θ,λ)
p(s,tn|θ,λ) for a natural defender strategy class. We will

then demonstrate how this parameterized class can be used
to search for defender strategies in games with a large, even
infinite number, of adversary types.

One simple, but rich class of defender strategies assumes
that each defender resource is independently assigned to a
schedule. For each resource k and schedule s ∈ Sk, we as-
sign resource k to swith some probability. This assignment
is conducted independently across resources.

For each set of schedules Sk = {sk,0, . . . , sk,dk}, we there-
fore introduce a parameter θk,l where for l ≥ 1, θk,l ≥ 0
specifies the probability with which resource k is assigned
to resource sk,l. We require that

∑dk
l=1 θk,l ≤ 1, and re-

source k is assigned to schedule sk,0 with the remaining
probability θk,0 = 1−∑dk

l=1 θk,l. Thus, this class of strate-
gies is parameterized by Θ ⊂ Rd where d =

∑K
k=1 dk.

Notice that ∆Θ is rich enough to describe any marginal dis-
tribution of an individual resource’s assignment to sched-
ules, including any pure strategy. However, ∆Θ cannot
capture mixed strategies which contain correlations be-
tween resource assignments.

In what follows, we derive ∇p(s,tn|θ,λ)
p(s,tn|θ,λ) . We will need a

helper lemma that characterizes the gradient of target cov-
erage probabilities with respect to θ, the full proof of which
is given in the supplemental material. In order to give the
result, we will need some definitions. Given a joint as-
signment of resources to schedules s, let c−k,n(s) indicate
whether target n is covered by some resource other than re-
source k. In other words, c−k,n(s) = 1[tn ∈ ∪k′ 6=ksk′ ].

6



Also let ck,l,n indicate whether the lth schedule of resource
k contains target tn; ck,l,n = 1[tn ∈ sk,l].
Lemma 1. For any target index n, resource index k, and
schedule index l ≥ 1,

∂

∂θk,l
c̄n(Dθ) = (ck,l,n − ck,0,n)Ps∼Dθ (c−k,n(s) = 0)

The ratio ∇p(s,tn|θ,λ)
p(s,tn|θ,λ) can be written in terms of the deriva-

tive in Lemma 1. Let s = [s1,l1 , . . . , sK,lK ], so that the
indices of the selected schedules are given by l1, . . . , lK .
Define z(s, k, l) ∈ {−1, 0, 1} by letting z(s, k, l) = 1[lk =
k]− 1[lk = 0]. In other words z(s, k, l) provides a sign of
1 if resource k is assigned to schedule l, a sign of −1 if it
is assigned to schedule 0 and a sign of 0 otherwise.
Theorem 1. For any target tn, schedule assignment s, as
well as resource index k and schedule index l ≥ 1, we have
that:
∂
θk,l

p(s, tn | θ)
p(s, tn | θ)

=
z(s, k, l)

θk,lk
− ηMa,n

∂

∂θk,l
c̄n(Dθ)

+ η
N∑

n′=1

ση(u(Dθ), n′)Ma,n′
∂

∂θk,l
c̄n′(Dθ)

Proof. Fix s = [s1,l1 , ..., sK,lK ]. We have that p(s | θ) =∏K
k′=1 θk′,lk′ . Now fix a resource index k and schedule

index l ≥ 1. We have that ∂
∂θk,l

p(s | θ) =
∏
k′ 6=k θk′,lk′

if lk = l; ∂
∂θk,l

p(s | θ) = −∏k′ 6=k θk′,lk′ if lk = 0; and
∂

∂θk,l
p(s | θ) = 0 otherwise. From the definition of z:

∂
∂θk,l

p(s | θ)
p(s | θ) =

z(s, k, l)

θk,lk
(4)

Next fix a target index n, and note that
∂

∂θk,l
exp(ηun(Dθ))) = exp(ηun(Dθ)) ∂

∂θk,l
ηun(Dθ) =

−η exp(ηun(Dθ))Ma,n
∂

∂θk,l
c̄n(Dθ)

This lets us differentiate ση(u(Dθ), n):

∂

∂θk,l
ση(u(Dθ), n) =

∂

∂θk,l

exp(ηun(Dθ)))∑N
n′=1 exp(ηun′(Dθ)))

=
1∑N

n′=1 exp(ηun′(Dθ))
∂

∂θk,l
exp(ηun′(Dθ))

+ exp(ηun(Dθ)) ∂

∂θk,l

1∑N
n′=1 exp(ηun′(Dθ))

= −ηση(u(Dθ), n)Ma,n
∂

∂θk,l
c̄n(Dθ)

− ση(u(Dθ), n)∑N
n′=1 exp(ηun′(Dθ))

∂

∂θk,l

N∑

n′=1

exp(ηun′(Dθ))

= −ηση(u(Dθ), n)Ma,n
∂

∂θk,l
c̄n(Dθ)

+ ηση(u(Dθ), n)

N∑

n′=1

ση(u(Dθ), n′)Ma,n′
∂

∂θk,l
c̄n′(Dθ)

(5)

Using equations (4) and (5), we have:

∂
∂θk,l

p(s, tn | θ)
p(s, tn | θ)

=
ση(u(Dθ), n) ∂

∂θk,l
p(s | θ)

p(s | θ)ση(u(Dθ), n)

+
p(s | θ) ∂

∂θk,l
ση(u(Dθ), n)

p(s | θ)ση(u(Dθ), n)

=
z(s, k, l)

θk,lk
− ηMa,n

∂

∂θk,l
c̄n(Dθ)

+ η

N∑

n′=1

ση(u(Dθ), n′)Ma,n′
∂

∂θk,l
c̄n′(Dθ)

6 EXPERIMENTS SCALING WITH
ATTACKER TYPES

The derivation from the previous section allows us to im-
plement the STACKGRAD algorithm for a particular class
of defender mixed strategies, specifically those that assign
resources to schedules independently. We call the result-
ing algorithm STACKGRAD-I (where I follows from the
independence assumption).

We now demonstrate that STACKGRAD-I scales very well
on games with a large numbers of attacker types. Specif-
ically, we will see that for a fixed choice of parameters T
and m, both the run-time and quality of the solution θT
found by STACKGRAD-I are constant in the number of
attacker types.

Experiments were conducted on the patrolling domain in-
troduced by Paruchuri et al. [2007], (see Paruchuri et al.
[2008]). The goal is to assign a single security re-
source (such as a UAV or robot) to a sequence of targets
[ti1 , . . . , tid ], called its patrol. Thus, for patrol length d,
the set of defender pure strategies S consists of all length d
permutations of the target set.

In the original game, the coverage induced by strategy
s = [tn1

, . . . , tnd ] is not binary, and depends on the lo-
cation of a target tn in s. That is, there are parameters
p1, . . . , pd where cn(s) = pj if n = nj and cn(s) = 0 if
n 6= {n1, . . . , nd}. Target tn is covered with probability pj
if it appears jth in the patrol, otherwise it is not covered at
all. x

We use this formulation, but note that for this (non-binary)
coverage function Lemma 1 must re-derived. Using the
categorical distribution, there is a single parameter θl for
each permutation in S, and it is not difficult to show that
∂
∂θl

c̄n(Dθ) = cn(sl) − cn(s0). The result of Theorem
1 is unchanged. Secondly, we note that for this particu-
lar game, the categorical distribution completely character-
izes the set of mixed defender strategies (∆ = ∆Θ). Thus,
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for large enough inverse temperature in the softmax func-
tion (η →∞), maximizing Ũd(θ) is equivalent to finding a
Stackelberg equilibrium defender strategy.

Experiments where run on randomly generated instances
of these games; Ud(0, tn), Md,n, Uλ(1, tn) and Mλ,n are
chosen at random in [0, 1]. In all instances STACKGRAD-
I is run with inverse temperature η = 20, and sampling
parameter m = 50. Every data point is the average of
20 experiments. Experiments were run on a 2.5 GHz In-
tel Xeon E5-2680v3 processor, and Integer programs were
solved using IBM CPLEX 12.4.

Figure 2: Patrol Game: STACKGRAD-I vs. DOBBS

Figure 3: Competitive Ratio

In the left plot of Figure 2, we compare the running time of
STACKGRAD-I and the DOBBS algorithm of Paruchuri
et al. [2008], which is the fastest algorithm for general
Stackelberg games, but must solve an integer program. Ex-
periments were conducted on instances with 5 targets and
patrol lengths of 2, for a total of 40 defender pure strate-
gies. While the game is small enough to be tractable with a
small number of defender pure strategies, as the number of
attacker types is increased, the DOBBS algorithm begins
to experience an exponential increase in its running time.
In contrast, STACKGAD-I exhibits near constant average
running time, with a range between 38 seconds and 59 sec-
onds (against 55 attackers and 45 attackers respectively).
Furthermore, as displayed on the right plot of Figure 2,
scaling the game has no effect on the quality of the solu-
tion found by STACKGRAD-I. The competitive ratio of the
solution θ∗ found by STACKGRAD-I against the true opti-
mum found by DOBBS ranges between 84.5% and 86.8%.

Of course both the running time and the quality of the solu-
tion found by STACKGRAD-I is a function of T , the num-
ber of iterations the gradient ascent is run. For the results in
Figure 2, STACKGRAD-I was terminated after T = 1000
iterations.

In Figure 3, we show the results of running STACKGRAD-
I for up to T = 5000 iterations, for 25, 40, 55 attacker
types. Here we see that the competitive ratio of the best
solution found by STACKGRAD-I against the Stackelberg
optimum quickly (displayed on the y axis) exceeds 90%.
After 100 seconds (corresponding to about T = 2500), the
average competitive ratio has reached above 94%.

STACKGRAD’s constant running time, and performance,
as the number of attackers is scaled up (but T is held con-
stant), can be attributed to the fact that neither the param-
eterization nor the computation of the gradient depend on
the size of Λ. Furthermore, the parameterization is com-
plete, in the sense that all mixed strategies for the game are
representable. The number of pure strategies, however, was
kept small; with five targets and patrol of length two, there
are a total of 20 defender pure strategies. In the next sec-
tion, we demonstrate how STACKGRAD can be deployed
to find solutions in games where the set of pure strategies
is very large.

7 LARGE STRATEGY SETS

7.1 STRUCTURED PURE STRATEGIES

While the categorical distribution model of Section 5
demonstrates the power of gradient methods when the
number of pure strategies are small, and the number of at-
tacker types is large, most security games are concerned
with settings in which there is a very large space of de-
fender pure strategies. Recall that under the categorical
model Θ ⊂ Rd, where d =

∑K
k=1(|Sk| − 1). Thus, if |Sk|

tends to be large, we would not expect STACKGRAD-I to
perform very well. This is often the case in real security
domains where the set of pure strategies exhibits a combi-
natorial explosion with the number of defender resources
or potential targets.

In this Section, we introduce a new class of defender mixed
strategies Θ which has a compact representation even as
|Sk| grows large. We consider a setting in which schedules
can be iteratively constructed. In the FAMS domain, for
example, an air marshal rk is assigned a schedule consist-
ing of a sequence of flights sk = [tn1

, . . . , tnL ] (which we
take to be ordered). The length of the schedule is bounded
(there is some upper boundL ≤ B), and must land the mar-
shal back to its origin airport. Although the set of feasible
schedules for a marshal rk can be exponentially large in B,
it has a natural combinatorial structure. In particular, given
a subsequence of flights sk,1:l = [tn1

, . . . , tnl ], l < L, the
set of feasible “next flights” can be efficiently computed.

8



Specifically, the subsequence of flights specified by sk,1:l

lands the marshal at some airport A at some time τ . The
viable choices for the l + 1 flight are those flights leaving
airport A after time τ , that can get the marshal back home
in B − l hops or fewer.2

More generally, we consider games where the schedules for
some resource rk is given by an ordered set of targets sk.
We will further assume that given some subseqence sk,1:l,
the set of feasible next targets F (sk,1:l) can be efficiently
computed. Formally, tn belongs to F (sk,1:l) if and only if
there is some schedule sk ∈ Sk, where sk = [sk,1:l, tn, . . . ]
(sk begins with the prefix sk,1:l).

7.2 PARAMETRIC MODEL

Following the recipe outlined in Section 4, we introduce a
new parametric model Θ for games that exhibit the sequen-
tial structure just described.

We will consider a simple logistic model. For each resource
k we introduce a vector wk of dimension N , where N is
the number of targets. We denote the nth element of wk by
wk,n. A resource rk is assigned to schedule sk according
to a sequential stochastic process. Given a subsequence
of targets of length l, sk,1:l, the next target in resource
rk’s schedule is selected with probability proportional to
exp(wk,n) when tn ∈ F (sk,1:l) and with probability 0 oth-
erwise. For tn ∈ F (sk,1:l):

P[sk(l + 1) = tn | sk,1:l] =
exp(wk,n)∑

tn′∈F (sk,1:l)
exp(wk,n′)

(6)

Thus, wk,n indicates the propensity for target tn to be cov-
ered whenever that target is available in the feasible set of
next targets. As was the case with the model of Section 5,
each resource will be independently assigned to a schedule.
Therefore θ = {w1, . . . ,wK}, and ∆(Θ) indicates the set
of distributions over resource assignments where resources
are independently assigned to schedules according to the
aforementioned stochastic process. Notice that the dimen-
sion of θ is KN , where K is the number of resources and
N is the number of targets. Therefore, the parameterization
remains compact even if the size of |S| explodes.

We state ∇p(s,tn|θ)p(s,tn|θ) for this new parametric class of strate-
gies in the following Theorem. Due to space restrictions,
the full proof is given in the supplemental material.

Theorem 2. Let tnk,l denote the lth target covered by
the kth resource chosen by the defender. For any target
tn∗ chosen by the attacker, schedule assignments s cho-
sen by defender, and any parameter wk,n. ∂

∂wk,n
p(s, tn∗ |

2This computation is via a modification of Djikstra’s algo-
rithm.

θ)/p(s, tn∗ | θ) is given by the following equation:

L∑

l=1

1[n = nk,l]− P[sk(l) = tn | sk,1:(l−1), θ]

− η
N∑

n′=1

ση(uλ(Dθ), n′)Ma,n′
∂

∂wk,n
c̄n′(Dθ)

+ ηMa,n∗
∂

∂wk,n
c̄n∗(Dθ)

Unlike the categorical model of Section 5, the partial
derivative of c̄n(Dθ) cannot be easily computed in closed
form. Changing the value of parameter wk,n, might effect
the coverage of targets tn′ 6= tn. In the federal air marshal
(FAMS) domain, wk,n corresponds to the likelihood that
marshal rk takes flight tn. Increasing wk,n, however, also
changes the coverage probabilities of other flights; flights
departing from the destination airport of tn also become
more likely, as the marshal needs to return home.

Therefore, instead of computing the derivative in closed
form, we use numerical differentiation. Given a set of pa-
rameters θ = {w1, . . . ,wK}, let θ+ δn,k denote the set of
parameters, where wk,n = wk,n + δ, and all other param-
eters are unchanged. We estimate ∂

∂wk,n
c̄n(θ) by sampling

schedules s(i) according to θ and schedules s(i)
n,k according

to θ+ δ
(k)
n for i = 1, . . . ,m. We then estimate ∂

∂wk,n
c̄n(θ)

using 1
m

∑m
i=1

cn(s(i))−cn(s
(i)
k,n)

δ .

8 EXPERIMENTS: SCALING WITH
LARGE STRATEGY SETS

The derivation of the gradient for the model in the previous
section gives us another instantiation of STACKGRAD,
which we call STACKGRAD-L (where L follows from the
logistic model). We now demonstrate the scalability of
STACKGRAD-L in domains with a large number of de-
fender pure strategies.

Recall that the STACKGRAD-L was derived to have no
dependency on |Sk|, the number of schedules available for
any resource k. We compare against the state-of-the-art
ASPEN algorithm [Jain et al., 2010a]. We note that the
ASPEN algorithm was designed to eliminate the combina-
torial explosion in joint schedules. If all |Sk| = X , then
there are XK possible joint schedules if the Stackelberg
game were to be expressed in normal form. Nevertheless,
ASPEN still has a computational dependency the size of an
individual set of schedules Sk. In particular, ASPEN uses
a column generation technique, where selecting each new
column requires solving a network flow problem with at
least

∑K
k |Sk| edges.
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We conduct experiments on games inspired by the FAMS
domain. We begin with a fixed weighted network G∗, rep-
resenting actual air travel between the 500 US airports with
the most traffic [Colizza et al., 2007]. Nodes represent air-
ports and the weights in G∗ represent how many tickets
were available between two airports in a given year. Given
a parameter N , we generate a game instance as follows.
We create a new network G, where G is generated by sam-
pling 30 airports from G∗ where at least 5 of these airports
are chosen to be “hub” airports. We then create N edges in
G corresponding to flights, where a flight between aiports
v1 and v2 is present in G with probability proportional the
weight on (v1, v2) in G∗. The edges in G are meant to be
representative of actual flights between 30 US airports on
a given day. Each edge represents a flight, and therefore a
target. In this game, we have only a single attacker type.
In all our experiments there are 3 marshals, who can take
a tour of length L ≤ 5 before returning to their home city.
The home city is selected uniformly from one of the hubs
for each of the marshals. We allow any such tour on G. 3

We conduct experiments for various values of
N ∈ {500, 1000, 1500, 2000, 2500, 5000, 10000}. Sk for
a single marshal k consists of all tours from a start vertex
of length at most 5 in a network consisting of up to 10000
directed edges. Even simply enumerating Sk for our larger
instances is impossible. However, running ASPEN requires
{Sk} to be given as input. Therefore, in order to allow AS-
PEN to complete in a reasonable amount of time, we gen-
erate subsets Ŝk ⊂ Sk by randomly sampling Y = 10, 000
tours for each marshal. As a result, the performance of
STACKGRAD-L is not reported as a competitive ratio to
the true Stackelberg optimum, since ASPEN is also solv-
ing a restricted game.

Nevertheless, we can compare the performance of
STACKGRAD-L to that of ASPEN as the size of the game
is increased. In Figure 4 we compare the runtime of AS-
PEN with STACKGRAD-L for various values of N . Once
Y is fixed, the size of the pure strategy set of ASPEN is
constant. ASPEN is unaware of any of the pure strategies
outside the set Ŝ1 × Ŝ2 × Ŝ3. Nevertheless ASPEN must
still solve a mixed integer linear program where the num-
ber of constraints scale with N . The average runtime of
STACKGRAD-L increases as N grows as well, as the pa-
rameterization of STACKGRAD-L is in RN , but remains
bounded by that of ASPEN for large N .

In Figure 4 we also display the average performance of
each algorithm. Performance is measured as the direct pay-

3This permissiveness is somewhat artificial; in reality, a flight
lands at its destination at a specified time, eliminating flights that
leave sooner than that from consideration at the destination air-
port. This realism can be accounted for in the definition of F in
the previous section. To keep the experiments simple, we allow
any tour on G, and comment that this does not affect the scalabil-
ity of STACKGRAD-L.

off to the defender in the unrestricted game, in contrast to
the results in Section 6, where we computed competitive ra-
tios directly. We see that for smaller number of targets AS-
PEN finds a higher quality solution than STACKGRAD-L
on average. However, as N is increased the solution found
by STACKGRAD-L overtakes. We suspect this is due to
the fact that fixing Y in ASPEN eliminates pure strategies
that might be necessary for the defender, while any pure
strategy can be represented by STACKGRAD-L. For large
N , Ŝk is a very small subset of all the possible tours of
length 5.

Figure 4: STACKGRAD-L vs ASPEN

9 CONCLUSIONS AND FUTURE WORK

We present a new algorithm, STACKGRAD, for solving
Stackelberg security games, which works by performing a
gradient ascent, rather than solving an integer program. We
demonstrate a version of STACKGRAD with no compu-
tational dependence on the number of attacker types, and
another version with a mild dependence on the number
of defender pure strategies. Since the procedure restricts
its search to within a parametric class of defender mixed
strategies, and might find strategies bounded away from
the true Stackelberg optimum, we also provide empirical
evidence that the solutions found by STACKGRAD are of
comparable quality to solutions in the unrestricted game.
These empirical successes invite open questions for future
research, chief among these being whether there are para-
metric classes of defender mixed strategies which are prov-
ably competitive with the true Stackelberg optimum.
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Abstract

Inferring the direction of causal dependence from
observational data is a fundamental problem in
many scientific fields. Significant progress has
been made in inferring causal direction from data
that are independent and identically distributed
(i.i.d.), but little is understood about this prob-
lem in the more general relational setting with
multiple types of interacting entities. This work
examines the task of inferring the causal direc-
tion of peer dependence in relational data. We
show that, in contrast to the i.i.d. setting, the di-
rection of peer dependence can be inferred us-
ing simple procedures, regardless of the form of
the underlying distribution, and we provide a the-
oretical characterization on the identifiability of
direction. We then examine the conditions un-
der which the presence of confounding can be
detected. Finally, we demonstrate the efficacy
of the proposed methods with synthetic exper-
iments, and we provide an application on real-
world data.1

1 INTRODUCTION

Inferring the direction of causal dependence between two
random variables from observational data is a fundamen-
tal problem in statistical reasoning. There have been many
advances in this area for data sets that are independent and
identically distributed (i.i.d.) [Janzing et al., 2012, Stegle
et al., 2010, Lopez-Paz et al., 2015]. For relational data,
recent work has studied the problem of inferring the ef-
fects of peers via experimentation [Muchnik et al., 2013,
Bakshy et al., 2012, Toulis and Kao, 2013]. However, the
problem of identifying causal direction from observational
relational data has yet to receive the same focus. In this

1A full version of this paper including supplementary material
can be found at http://kdl.cs.umass.edu/papers/
arbour-et-al-uai2016.pdf

work, we study the problem of inferring the causal direc-
tion of peer dependence from observational relational data.
We provide theoretical and experimental results to show
that the causal direction of peer dependence can be robustly
inferred from observational data by comparing the magni-
tude of two similarity measures (one for each candidate di-
rection).

For example, consider a study on the causes of personal
debt. Data consist of the net worth and the average monthly
discretionary spending of a large set of individuals, along
with the position of each individual within a social network.
One reasonable question is whether a person’s friends in-
fluence his or her spending habits. If a person’s spending
and wealth are correlated with the wealth and spending of
their friends, what can be inferred about the causal depen-
dence among these quantities? A person’s spending could
be caused by their friends’ wealth or vice versa (direct de-
pendence), or both quantities could be caused by an unob-
served variable (confounding).

This paper examines when and how it is possible to differ-
entiate among these scenarios. Specifically, we:

1. Identify a set of conditions under which the causal di-
rection of relational dependence can be consistently
inferred.

2. Investigate the effect of unobserved confounding on
this approach to causal inference, and provide a simple
test of relational confounding.

3. Provide an extension of our method to the case of non-
linear dependence via kernel embeddings.

4. Show that the proposed measures are robust to both
the magnitude of the noise and the functional form of
the true dependence, through a set of simulations un-
der a variety of graph structures and functional forms.

The rest of the paper is structured as follows. Section 2
describes the problem setting. Section 3 presents a test
of causal direction under deterministic linear dependence.
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Section 4 considers a relaxation of the assumptions by al-
lowing for latent confounding and discusses the conditions
under which latent confounding can be identified. Section 5
generalizes these results to the case where the similarity
is measured by embedding the data in a reproducing ker-
nel Hilbert space (RKHS). Section 6 presents experimental
evaluation of these results using synthetic data and a va-
riety of marginal and conditional distributions, as well as
networks generated from the Erdős-Rényi, Watts-Strogatz,
and Barabási-Albert models. Section 7 presents a demon-
stration of our method on Stack Overflow, a large online
community where users ask and answer computer science
related questions.

2 PROBLEM SETTING

Relational domains consist of multiple types of entities that
interact with each other through multiple types of relation-
ships. Consider, for example, the domain of academic pub-
lishing: authors write papers, papers cite other papers and
so on. In this work, for clarity of exposition and without
loss of generality, we focus on networks, a specific type of
relational domains with a single type of entity (e.g., people)
and a single type of relationship (e.g., friendship)2.

An instantiation of a network consists of a set of people
and a set of friendships among these people. This can be
represented with an undirected graph G = 〈V,E〉 with n
vertices. Nodes correspond to people and an edge denotes
friendship between the nodes it connects. Every node of the
graph vi ∈ V is associated with a pair of random variables,
Xi and Yi. These correspond to attributes of a person, for
example wealth and spending habits. For every node, we
can define a new random variable as a function of the ran-
dom variables of its neighboring nodes. Specifically, in this
section, we define a new random variableXi

′ as the sum of
Xj over vi’s neighbors:

Xi
′ =

∑

{vj |〈vi,vj〉∈E}
Xj

Similarly,
Yi
′ =

∑

{vj |〈vi,vj〉∈E}
Yj .

For the remainder of the paper, we refer to functions of ran-
dom variables of neighboring nodes, such as Xi

′ and Yi′,
as relational variables and to random variables of the node,
such as Xi and Yi, as propositional variables. To avoid am-
biguity, we refer to dependence between a relational vari-
able and a propositional variable as relational dependence.

A very common assumption in relational domains is that of
templating, i.e., random variables in different nodes follow

2The extension to the more general multi-entity/multi-
relationship case is straightforward. We provide the necessary
details for this extension in the supplement.

the same distribution [Koller, 1999]. In our case, this would
imply that the distribution of Xi is the same for all i (and
the same for Yi, Xi

′, and Yi′). This allows us to reason
about four random variables on a model level: X , Y , X ′,
and Y ′. The task under consideration is determining the
causal direction of relational dependence. Put in another
way, we wish to determine whether X ′ → Y or Y ′ → X
is the true generative process.

Since we are reasoning over random variables across all
nodes of the network, it is convenient to represent them
as vectors. Let x = 〈X1, . . . , Xn〉 be a vector with the
random variables Xi for every node and, similarly, x′ =
〈X1

′, . . . , Xn
′〉. Let A denote the adjacency matrix of the

graph defined as:

Aij =

{
1, if (vi, vj) ∈ E.
0, otherwise.

We note that A is a symmetric matrix since G is an undi-
rected graph. We can write the vector of the sum of
the friends (i.e., the vector x′) as x′ = Ax. Similarly,
y′ = Ay.

We use D to denote the degree matrix of the graph:

Dij =

{
di, if i = j.

0, otherwise.

2.1 UNDERLYING ASSUMPTIONS

Throughout the paper, we make the following assumptions:

A1. G is an undirected graph.

A2. Each node v ∈ V has degree of at least 1.

A3. The distribution ofXi and Yi is the same for all vi ∈ V
(templating).

A4. There are no feedback cycles, i.e. Y → X ⇒ X 6→ Y
for any two (relational or propositional) variables.

Further, we initially assume (and later relax that assump-
tion) that:

A5. There are no confounding variables, i.e., unobserved
variables that are common causes of the observed at-
tributes.

Section 4 is devoted to examining under which conditions
this assumption can be loosened, while maintaining the
ability to identify causal direction. Moreover, assumptions
A4 and A5 mirror those found in the literature on deter-
mining causal direction between two propositional vari-
ables [Stegle et al., 2010, Janzing et al., 2012, Lopez-Paz
et al., 2015].
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3 DIRECTION UNDER LINEAR
DEPENDENCE

In this section we show that, under the assumptions of lin-
earity and a small amount of noise, peer dependence is
asymmetric and the true causal direction can be consis-
tently inferred. This is an inherent property of relational
domains. The extension to non-linear dependencies is pro-
vided in Section 5.

To measure dependence between variables, we consider
the square of Pearson’s correlation, a common and widely
employed measure of linear correlation between variables.
Pearson’s correlation between two variables X and Y can
be computed from a sample x, y as follows:

ρ(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where x̄ and ȳ are the means of x and y respectively. We
consider the square of the correlation to restrict the range
of the metric to [0,1], rather than [-1,1].

Given a measure of dependence, a reasonable question is
whether the measure is symmetric for relational data. Sur-
prisingly, it is not. Given this, another reasonable question
is what can be inferred by examining the dependence val-
ues in both directions. Surprisingly, the causal direction of
dependence can be inferred from the resulting asymmetry.

We begin by handling a simplified case: Y is a determinis-
tic function of the X values of related nodes. Specifically,
we assume that Yi is the scaled mean of theXj variables of
the related instances:

Yi =
β

di

di∑

i=1

Xj

Or, in matrix notation: y = βD−1Ax.

Under certain assumptions about the structure of the graph
and the form of the dependence, the squared correlation in
the causal direction will be greater that the squared corre-
lation in the opposite direction.

Proposition 1. Assume that G is a d-regular graph3, the
true generative process is y = βD−1Ax for some con-
stant β, and assumptions A1-A5 hold. Then, ρ2(x′,y) >
ρ2(y′,x).

Proof. The left-hand-side of the inequality, given that by
definition x′ = Ax, can be written as:

ρ2(x′,y) = ρ2(Ax, βD−1Ax)

= ρ2(Ax,
β

d
Ax) = 1

3A graph is d-regular if every vertex has degree d.

It remains to show that 1 > ρ2(y′,x) which holds, unless
ρ2(y′,x) = 1. Equality holds only when y′ = βAD−1Ax
is a linear combination of x, or in words, when the values
of a node’s friends of friends are a linear combination of
that node’s value. For random values of X , that happens
for a degenerate network structure where every node has
one friend of a friend and is the exact same starting node.
This would happen, for example, in the case of a regular
graph with degree 1 (pairs of nodes).

In the case where Y is a noisy function of X , a similar
inequality holds.

Proposition 2. Assume that the true generative process is
y = βD−1Ax+ ε for some constant β, where ε is a vector
with the noise terms. Moreover, assume that assumptions
A1-A5 hold and X and Y are scaled to mean 0. Then the
following holds:

ρ2(x′,y) > ρ2(y′,x)⇔
Var(AD−1Ax) + Var(Aε)

Var(D−1Ax) + Var(ε)
>

Var(Ax)

Var(x)
.

A full derivation can be found in the supplement. The im-
plication of proposition 2 is that the causal direction can be
accurately inferred, as long as the relative influence of the
noise distribution is small in comparison to the relationship
between AD−1x and y. As we show during our experi-
mental evaluation in Section 6, the method is quite robust
to the effect of noise in practice.

4 REASONING ABOUT CONFOUNDING

Throughout Section 2 we assumed the absence of con-
founding influences (assumption A5). However, in many
real-world settings, this proves to be an unrealistic assump-
tion. Within the relational setting, there are two distinct
ways in which the relationship between variables can be
confounded:

1. x and y may share a common relational cause, Az,
i.e., Az→ x and Az→ y.

2. There is a variable z that is a non-relational cause of x
and a relational cause of y, i.e., z→ x and Az→ y.

In what follows, we show that the first scenario is identifi-
able from data, while the second one is not.

Proposition 3. If Cov(Ax, Ay) ≥ Cov(Ax,y) and
Cov(Ax, Ay) ≥ Cov(Ax,y), then there exists a rela-
tional variable which is a common cause of x and y.

The proof is deferred to the supplement. Proposition 3 im-
plies a very simple procedure for ruling out the presence
of mutual relational confounding between two variables.
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First, the relative dependence is measured between Ax,y
and Ay,x respectively. Then, these two values are com-
pared against the measured dependence between Ay, Ax.
If neither are larger than the between-relational variable de-
pendence no determination of direction is made, since ob-
served dependence is likely due to confounding.

We now turn to scenario two, which yields the following
negative result:

Corollary 1. Under confounding scenario 2, in the ab-
sence of noise, a false conclusion of dependence Ax → y
will be made.

Proof. Assume the generative structure is given by:

x ∼ z

y ∼ D−1Az

It can be immediately seen that the form of this depen-
dence is identical to the form of proposition 1, where we
substituted z for the x. It follows that, in the no-noise set-
ting, an incorrect determination of direct causation will be
made.

Note that this also applies in the case of a small amount of
noise, as implied by proposition 2. This result shows that
without the assumption of no-confounding a determination
of non-causation can be reliably implied, but the converse
is not necessarily true.

5 AN EXTENSION TO NON-LINEAR
DEPENDENCE

In the previous section, we showcased the applicability of
our method for detecting linear dependence in relational
data using correlation. An extension to more complex vari-
ables and non-linear dependence functions can be achieved
by applying the kernel trick.

Some background on kernel embeddings is useful. Let X
be a non-empty set, (X ,A) be a measurable space whereA
is a σ-algebra on X , and let P be the set of all probability
measures, P , on X . H is the RKHS of the functions f :
X → R with the reproducing kernel k : X × X → R. The
mean map is a function µ : P → H that defines a kernel
embedding of a distribution intoH:

µP = µ(P ) =

∫

X
k(x, ·)dP (x)

If a characteristic kernel is used, then this mapping is
unique, i.e., there is an injective function between a distri-
bution and its kernel mean value. In this work, the purpose
of kernel mean is twofold. For propositional variables, it
is used to represent the underlying distribution and, as we
shall see, can be used directly in a test for dependence. For

relational variables, the mean embedding serves as an ag-
gregation function for observations. The advantage of us-
ing the kernel mean embedding is that, under the assump-
tion that the underlying distribution belongs to the expo-
nential family, the underlying distributions are represented
completely.

To reason over the distance between distributions, we de-
fine a second kernel,K, over the kernel means. Christmann
and Steinwart [2010] showed that if the kernel inducing µ
(k) is characteristic and K is the Gaussian kernel, then K
is universal and thus, characteristic. This kernel is defined
as:

K(µx, µ
′
x) = e

‖µx−µ′x‖
2
F

2θ (1)

where
√
θ is the bandwidth of the kernel.

In addition to this measure of similarity between relational
instances, we define a dependence measure. The centered
kernel target alignment (KTA) is a normalized measure of
dependence introduced by Cortes et al. [2012] within the
context of multiple kernel learning. The measure is defined
as:

KTA(x,y) =
〈Kc

x,K
c
y〉F

‖Kc
x‖F‖Kc

y‖F
(2)

Where ‖ · ‖F is the Frobenius norm, 〈Kc
x,K

c
y〉F is the

Frobenius norm of the inner product between Kc
x and Kc

y

which is calculated by taking the trace of the inner product.
Kc

x is a centered kernel matrix, defined as:

Kc
x =

[
I− 1

m
11T

]
Kx

[
I− 1

m
11T

]

where I is the identity matrix and 1 is a column vector of
ones with length m. If a linear kernel is used, KTA reduces
to squared Pearson’s correlation, which has been our mea-
sure of focus thus far. Using this connection, the following
corollary provides for consistent estimation of causal direc-
tion under the deterministic case with arbitrary functional
dependence.

Corollary 2. Under assumptions A1, A2, A3, A4, A5, and
further assuming that the generative structure is given by
y = D−1Aφ(x)β, then KTA(Ax,y) ≥ KTA(Ay,x).

This follows as a straightforward extension of propo-
sition 1. Because we are given by assumption that
KTA(Ax,y) = 1 and KTA is bounded from above by
one, the inequality holds. Equality occurs only when the
values of each node’s friends of friends can be expressed as
a sum of (feature-space embedded) values. For random val-
ues of X, this is reduced to the degenerate case of a graph
of degree 1, as in proposition 1.

In practice, we note that the KTA based comparison re-
lies on a number of hyper-parameters. The difficulty in
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choosing these parameters can result in poorer empirical
performance. This problem has also been observed for
other kernel-based approaches for causal inference [Zhang
et al., 2011]. We leave the investigation of hyper-parameter
selection as future work.

6 EXPERIMENTS

Our theoretical results focus on regular graphs, linear de-
pendence, and absence of noise. In this section, we ex-
amine the effect that the network structure, the functional
form of the dependence, and the presence of noise have on
the efficacy of the linear and kernel based methods. 4

6.1 REGULAR NETWORKS

We first considered regular graphs with linear
dependence—a setting that matches our theoretical
analysis—and we examined the effect of noise. We con-
sidered networks with the total number of nodes ranging
from 100 to 500 and varied the degree between 2 and 22 by
increments of 5. For every graph structure, we generated
data as follows:

x ∼ N (0, 1)

ε ∼ N (0, 1)

y ∼ D−1Ax + βε

where β is the coefficient of the noise and was varied be-
tween 0 and 2.

Figure 1 shows the relationship between D−1Ax and y
for varying values of β. In the noiseless case (Figure 1a),
D−1Ax and y are perfectly linearly correlated, as expected
from the generating process. However, as the noise in-
creases, the correlation betweenD−1Ax and y decays very
quickly, approaching an adversarial case by the time the
noise coefficient is β = 1.0.

We then measured dependence in each direction (x andAy,
y andAx). The direction that produced the higher value for
dependence was recorded as the inferred causal direction.
To measure dependence, we used (i) the square of Pear-
son’s correlation, and (ii) KTA using RBF kernels with a
fixed bandwidth of 1.0 for all kernel calculations. Figure 2c
shows the accuracy of both methods for a graph with 500
nodes and degree 7, while varying β. As expected from the
our earlier theoretical results, both methods perform per-
fectly in the noise-less case, and continue to do so through
β = 0.5. The linear method is significantly more robust to
noise, remaining nearly perfect until β = 1.0.

We also examined the interplay between the graph structure
(degree and number of nodes) and and the performance of

4Code is available at https://github.com/darbour/
RelationalCausalDirection.git.

each method. Figure 2a shows the performance for the case
of a 500-node graph with noise coefficient of 1.0 with the
degree varied between 2 and 22. Both methods become
systematically worse as the degree (and thus the density of
the network) increases. This is expected behaviour since
an increase in the degree results in a lower effective sam-
ple size [Jensen and Neville, 2002], which will reduce the
expected efficacy of both methods. The converse of this
effect can be seen in Figure 2b, where the accuracy of the
linear based approach improves significantly as the size of
the network increases while the degree is kept constant (and
thus the density of the network decreases).

6.2 NON-REGULAR NETWORKS

We next compared the performance of both methods to a
departure from the assumption of network regularity. We
considered the three most common generative models of
graphs. The Erdős-Rényi model creates networks where
two nodes are connected with a given probability. Through-
out the experiments, we considered a fixed connection
probability equal to 0.2. The Watts-Strogatz model gener-
ates “small-world networks”. It begins with a lattice with a
given neighborhood size and randomly rewires edges ac-
cording to a fixed probability. For our experiments, we
used neighborhood size 5 and rewiring probability equal
to 0.2. The final generative model we considered was the
Barabási-Albert model. This model generates graphs that
display preferential attachment. For our experiments the
power of preferential attachment was set to 1.0. For each
network we considered sizes between 100 and 1000, by in-
crements of 100, with 20 graphs being drawn for each size.

We then considered the following data generation scenarios
for all graph types:

x ∼ N (0, 1)

ε ∼ N (0, 1)

y ∼ f(D−1Ax) + βε

where f(·) is a function of D−1Ax. We considered three
functional forms:

• f(·) is a simple linear function (linear)

• f(D−1Ax) = tan(D−1Ax) (nonlinear)

• f(D−1Ax) =
(
D−1Ax

)4
(quad)

For each setting, β was varied between 0 and 2 by incre-
ments of 0.25.

The performance of both the linear and KTA method for
fixed network size of 1000 nodes with the magnitude of
noise varied is shown in Figure 4. For the Barabási model
under linear dependence, both the linear and kernel meth-
ods appear to be very robust up until a noise coefficient of
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(a) cε = 0 (b) cε = 0.25 (c) cε = 0.5 (d) cε = 1 (e) cε = 2

Figure 1: Scatterplots for the sum of X values of related nodes (x-axis) vs. the sum of X values of related nodes with
additive Gaussian noise (y-axis). The noise coefficient (cε) varies from 0 to 2. The underlying network structure is a regular
network of degree 10 with 500 nodes.
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Figure 2: Orientation accuracy for regular graphs for varying degree (2a), size of network (2b), and noise coefficient (2c).

2.0. The KTA based method generally outperforms the lin-
ear dependence method for non-linear dependencies. This
is to be expected, as Pearson’s correlation is a measure of
linear dependence.

The performance in the case where β is held to 0.5 and
the size of the network is varied from 100 to 1000 can
be seen in Figure 3. Here we can see that in both the
Barabási-Albert and Watts-Strogatz graph models, Pear-
son’s correlation and KTA achieve better performance un-
der linear dependence as the size of the network increases.
However, for in the case of the Erdős-Rényi models both
methods perform poorly consistently as the size of the net-
work increases. This is due to the nature of the graph-
generation process. Both the Barabási-Albert and Watts-
Strogatz models become increasingly sparse as the size of
the network is increased. However, in the case of Erdős-
Rényi, the probability connection is constant. As a result,
the effective sample size remains low when the number of
nodes increases. This likely accounts for the poor perfor-
mance of the linear estimator. The opposite effect is seen in
the case of the Barabási-Albert model. In nearly all cases
the performance of the estimators is highest in the case of
the Barabási-Albert networks.

6.3 A COMPARISON TO RELATIONAL
BIVARIATE EDGE ORIENTATION

We also compared our results to the relational bivariate
edge orientation (RBO) [Maier et al., 2013], the only other
known method for testing causal direction in relational
data. Maier et al. [2013] introduced the relational bivariate
edge orientation (RBO) as an edge-orientation procedure
within the context of learning causal models of relational
domains. RBO is defined with respect to conditional in-
dependence properties of relational models. Specifically,
rephrasing the definition of Maier et al. [2013] for single-
entity/single-relationship networks, for a relational depen-
dence between Y ′ and X , RBO checks if Y ′ is in the sepa-
rating set of X and X ′. If not, then Y ′ is effectively a “re-
lational” collider and is oriented as such: Y ′ ← X . Other-
wise, the only alternative model is Y ′ → X , given that de-
pendencies that induce feedback cycles (such as X → X ′)
are excluded by assumption. The correctness of RBO is
defined with respect to a conditional dependence oracle. In
practice, Maier et al. [2013] follow the following procedure
to infer causal direction between two relational variables:

1. Learn a linear model x ∼ D−1Ax + D−1Ay to de-
termine if x |= D−1Ax | D−1Ay

2. If x 6⊥⊥ D−1Ax | D−1Ay, then return D−1Ax → y,
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Figure 3: Orientation accuracy for various network types and functional forms, as the size of the graph increases. The
noise coefficient is set to 0.5.

otherwise return D−1Ay→ x

We applied this procedure to the linear data-generating sce-
narios used in the previous two subsections, with one mod-
ification. Rather than testing a single perspective, we ex-
plicitly tested the conditional independence facts from the
perspective of both x and y. We found that between all
scenarios, RBO failed to induce dependence in 80-90% of
cases. This has important ramifications for the RCD algo-
rithm of Maier et al. [2013]. As currently implemented,
the RBO rule would have produced approximately %50 er-
ror rate, since it does not explicitly check both directions.
Using our more conservative method, RBO would fire less
frequently. In contrast, by incorporating the findings of the
more direct marginal comparison presented here, vast num-
bers of edges would be accurately oriented. We plan on ex-
amining further integration of our findings into joint causal
structure learning algorithms in future work.

7 REAL WORLD DEMONSTRATION

In contrast to the propositional setting, where there is a
number of labeled ground-truth data-sets for testing novel
methods of causal inference (e.g. [Lichman, 2013]), to our
knowledge, there are no known publicly available datasets
which contain ground-truth relational causal relationships.
In the absence of the ability to verify the relative efficacy
of our findings on real-world datasets, we provide a demon-
stration of our method on a real-world dataset. Specifically,
we considered Stack Overflow, an online community where

users pose and answer questions regarding software devel-
opment. A user can post a question, which can be answered
by anyone else within the community. Other users can then
up/down vote questions and the given answers. These votes
are tracked and the accrual of achieved points is displayed
as the “reputation” of a user on the site. Moreover, users
can comment on a question. Comments receive votes as
well, but do not affect the reputation of a user. The dataset
consists of all users, questions, answers, comments, and
votes from the inception of the site to 2014.

We tested three questions about user behavior on Stack
Overflow. For every question we consider 100 sub-samples
of 1000 data points. We computed KTA and Pearson’s cor-
relation in each direction. Significance of dependence was
determined by performing permutation tests with 1000 per-
mutations. For all tests we set the significance threshold to
be 0.01. When dependence was determined to be statisti-
cally significant, we also recorded how many times each
direction was chosen by comparing test statistics in both
directions.

The first question was: “Is there a relationship between the
quality of a question and the quality of its subsequent an-
swers?” To answer this, we used the scores of the ques-
tions and answers as proxies for their quality. All methods
determined significance in both directions across all trials.
However, the normalized statistics consistently determined
the direction of dependence to be Question Quality →
Answer Quality, while both of the un-normalized statistics
consistently determined the direction of dependence to be
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Figure 4: Orientation accuracy for various network types and functional forms, as the coefficient of the noise increases.
The network size was kept constant at 1000 nodes.

Question Quality ← Answer Quality. Clearly, the former
conclusion matches intuition and temporal ordering far bet-
ter than the latter.

The second question we considered was whether users with
high reputation receive higher quality answers. This was
quantified by using the reputation of a user and the score
of the answers as a proxy for quality. In this case, we
found that KTA and Pearson both detected significance
for both directions. For direction, we found that both
KTA and Pearson determined direction to be Reputation→
Answer Quality for over 90% of the cases. This indicates
that there may be bias in the Stack Overflow community
towards questions asked by high reputation users. We cau-
tion that this does not take into account the possible latent
confounder of question quality, i.e., higher reputation users
may simply ask higher quality questions.

Finally, we looked at the efficacy of comments as a qual-
ity improvement mechanism, i.e., whether allowing users
to comment on a question causes the poster to improve or
clarify her post. We constructed this test with the comments
posted for a question and whether revisions were subse-
quently made to the question. In this case we found that
all of the methods inferred that there was not a significant
relationship between the score of the comments and sub-
sequent revisions to posts. This negative result indicates
that the commenting system provided by Stack Overflow
is not an effective mechanism for improving the quality of
questions on the site.

8 RELATED WORK

Relevant work to our investigation of methods for deter-
mining peer dependence in relational data falls into four
basic categories. The most closely related work examines
versions of this specific task with alternative methods. For
example, Maier et al. [2013], Rattigan [2012], and Poole
and Crowley [2013] provide scenarios in which an asym-
metry may arise similar to that observed in our tests for
direction. However, in contrast to prior work, we study the
phenomenon of asymmetric dependence directly and pro-
vide a formal examination which provides guarantees to the
circumstances under which this asymmetry can be reliably
leveraged. Further, we provide extensive simulation exper-
iments that further show conditions under which direction
can be found by considering the difference in dependence
in both directions.

A second category of related work focuses on measuring
causal dependence in non-relational (i.i.d.) data. For ex-
ample, Peters et al. [2014] examine the problem of deter-
mining the direction of dependence with i.i.d. data by ei-
ther assuming non-Gaussian noise and linear dependence
or non-linear dependence and Gaussian noise. The prob-
lem of identifying causal direction in the case of determin-
istic, i.e., non-noisy data, was studied by Daniusis et al.
[2010]. The setting considered was propositional data, and
the proposed solution leverages properties of information
geometry in order to find asymmetries between the condi-
tional distributions of the two variables. In contrast, the
relational setting considered provides a much more direct
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mechanism for determining direction.

A third thread of related work aims to detect non-causal
dependence in relational data. This task has attracted atten-
tion in both statistical relational learning (SRL) community
and in multiple areas of the social sciences. In SRL, Jensen
and Neville [2002] use a χ2 test to detect auto-correlation
in relational data and show its effect for feature selection.
Angin and Neville [2008] introduce a shrinkage estimator
for auto-correlation in the presence of varying dependence
strength. However, both of these rely on empirical evalu-
ation as evidence of correctness. Dhurandhar and Dobra
[2012] and London et al. [2013] provide theoretical analy-
sis for the inductive error of classification and regression in
the relational setting.

In the social sciences, relational dependence has been ex-
amined under the monikers of peer influence, spillover,
and interference. In the experimental setting, Eckles et al.
[2014] characterize the threat to validity arising from the
bias induced by relational dependence and provide exper-
imental designs to reduce these effects. Manski [2013],
VanderWeele [2008], and Aronow and Samii [2013] ex-
amine methods for removing the bias associated with rela-
tional dependence, assuming discrete or linearly dependent
data. Toulis and Kao [2013] provide conditions for experi-
mental design with binary treatments to identify peer influ-
ence. Ogburn and VanderWeele [2014] characterize rela-
tional dependence in terms of graphical models, but do not
present an explicit testing procedure. Work studying ho-
mophily and contagion (e.g., Christakis and Fowler [2009],
La Fond and Neville [2010]) is related but distinct in the
task setup, as we do not assume the availability of temporal
information.

Finally, our work is strongly connected and can serve as
a complement to existing work on causal learning of re-
lational domains. Maier et al. [2013] and Marazopoulou
et al. [2015] present constraint-based algorithms to learn
the structure of relational models from data. However, for
their experiments they either rely on a d-separation oracle
(without actual data), or use linear regression with mean-
aggregation on synthetically generated data. As we showed
in our synthetic experiments, these choices can lead to a
large number of type II errors. This is especially trou-
blesome for constraint-based structure learning algorithms
where type II errors can lead to large deviations from the
true causal model [Cornia and Mooij, 2014]. Such algo-
rithms could leverage our test in order to improve results
reported on data. Additionally, the directionality results
presented in this paper have implications for future work in
constraint-based structure learning algorithms, since they
imply a smaller Markov-equivalence class than what is
commonly assumed.

9 CONCLUSIONS AND FUTURE WORK

Inferring relational dependence is a task of general inter-
est in a wide number of fields, from statistical relational
learning to the social sciences. In this work, we have stud-
ied the problem of inferring causal direction in relational
data. We have shown that, in contrast to the propositional
setting, causal direction can be accurately inferred in rela-
tional data under the simplest functional forms such as lin-
ear deterministic dependence, without additional assump-
tions on the distribution of the underlying data. We then
studied the problem of identifying confounding, showing
the conditions when the presence of a relational confound-
ing variable can be identified. Our experimental evaluation
shows that these measures are robust, providing accurate
inference under model and network mis-specification.

There are several promising avenues for future research.
For causal learning, the ability to detect the direction of de-
pendence in relational data implies that a different Markov
equivalence class [Spirtes et al., 2000] holds for the rela-
tional setting than what is commonly assumed. Integration
of the findings of this work into a causal learning algorithm
could substantially improve the efficacy of existing meth-
ods such as RCD [Maier et al., 2013]. Further analysis of
the interaction between the network structure and inference
may further strengthen the robustness of the methods dis-
cussed here. Finally, the asymmetries shown to be inherent
to relational data here may result in significant bias of con-
ditional independence testing procedures. Incorporating
this additional information is a first step in developing ro-
bust measures of conditional dependence in relational data
to help determine causation, a problem which has broad ap-
plication in both the statistical learning and social science
communities.
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Abstract

Finding efficient and provable methods to solve
non-convex optimization problems is an out-
standing challenge in machine learning and op-
timization theory. A popular approach used to
tackle non-convex problems is to use convex re-
laxation techniques to find a convex surrogate
for the problem. Unfortunately, convex relax-
ations typically must be found on a problem-
by-problem basis. Thus, providing a general-
purpose strategy to estimate a convex relaxation
would have a wide reaching impact. Here, we in-
troduce Convex Relaxation Regression (CoRR),
an approach for learning convex relaxations for a
class of smooth functions. The idea behind our
approach is to estimate the convex envelope of
a function f by evaluating f at a set of T ran-
dom points and then fitting a convex function to
these function evaluations. We prove that with
probability greater than 1− δ, the solution of our
algorithm converges to the global optimizer of f
with error O

(( log(1/δ)
T

)α)
for some α > 0. Our

approach enables the use of convex optimization
tools to solve non-convex optimization problems.

1 Introduction

Modern machine learning relies heavily on optimization
techniques to extract information from large and noisy
datasets (Friedman et al., 2001). Convex optimization
methods are widely used in machine learning applications,
due to fact that convex problems can be solved efficiently,
often with a first order method such as gradient descent
(Shalev-Shwartz and Ben-David, 2014; Sra et al., 2012;
Boyd and Vandenberghe, 2004). A wide class of prob-
lems can be cast as convex optimization problems; how-
ever, many important learning problems, including binary
classification with 0-1 loss, sparse and low-rank matrix re-

covery, and training multi-layer neural networks, are non-
convex.

In many cases, non-convex optimization problems can be
solved by first relaxing the problem: convex relaxation
techniques find a convex function that approximates the
original objective function (Tropp, 2006; Candès and Tao,
2010; Chandrasekaran et al., 2012). A convex relaxation
is considered tight when it provides a tight lower bound to
the original objective function. Examples of problems for
which tight convex relaxations are known include binary
classification (Cox, 1958), sparse and low-rank approxi-
mation (Tibshirani, 1996; Recht et al., 2010). The recent
success of both sparse and low rank matrix recovery has
demonstrated the power of convex relaxation for solving
high-dimensional machine learning problems.

When a tight convex relaxation is known, then the under-
lying non-convex problem can often be solved by optimiz-
ing its convex surrogate in lieu of the non-convex problem.
However, there are important classes of machine learning
problems for which no such relaxation is known. These in-
clude a wide range of machine learning problems such as
training deep neural nets, estimating latent variable models
(mixture density models), optimal control, reinforcement
learning, and hyper-parameter optimization. Thus, meth-
ods for finding convex relaxations of arbitrary non-convex
functions would have wide reaching impacts throughout
machine learning and the computational sciences.

Here we introduce a principled approach for black-box
(zero-order) global optimization that is based on learning a
convex relaxation to a non-convex function of interest (Sec.
3). To motivate our approach, consider the problem of esti-
mating the convex envelope of the function f , i.e., the tight-
est convex lower bound of the function (Grotzinger, 1985;
Falk, 1969; Kleibohm, 1967). In this case, we know that
the envelope’s minimum coincides with the minimum of
the original non-convex function (Kleibohm, 1967). Unfor-
tunately, finding the exact convex envelope of a non-convex
function can be at least as hard as solving the original op-
timization problem. This is due to the fact that the prob-
lem of finding the convex envelope of a function is equiv-
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alent to the problem of computing its Legendre-Fenchel
bi-conjugate (Rockafellar, 1997; Falk, 1969), which is in
general as hard as optimizing f . Despite this result, we
show that for a class of smooth (non-convex) functions, it
is possible to accurately and efficiently estimate the convex
envelope from a set of function evaluations.

The main idea behind our approach, Convex Relaxation Re-
gression (CoRR), is to estimate the convex envelope of f
and then optimize the resulting empirical convex envelope.
We do this by solving a constrained `1 regression problem
which estimates the convex envelope by a linear combina-
tion of a set of convex functions (basis vectors). As our
approach only requires samples from the function, it can
be used to solve optimization problems where gradient in-
formation is unknown. Whereas most methods for global
optimization rely on local search strategies which find a
new search direction to explore, CoRR takes a global per-
spective: it aims to form a global estimate of the function to
“fill in the gaps” between samples. Thus CoRR provides an
efficient strategy for global minimization through the use of
convex optimization tools.

One of the main theoretical contributions of this work is
the development of guarantees that CoRR can find accurate
convex relaxations for a broad class of non-convex func-
tions (Sec. 4). We prove in Thm. 1 that with probability
greater than 1−δ, we can approximate the global minimizer
with error of O

(( log(1/δ)
T

)α)
, where T is the number of

function evaluations and α > 0 depends upon the exponent
of the Hölder-continuity bound on f(x) − f∗. This result
assumes that the true convex envelope lies in the function
class used to form a convex approximation. In Thm. 2, we
extend this result for the case where the convex envelope is
in the proximity of this set of functions. Our results may
also translated to a bound with polynomial dependence on
the dimension (Sec. 4.2.4).

The main contributions of this work are as follows. We in-
troduce CoRR, a method for black-box optimization that
learns a convex relaxation of a function from a set of ran-
dom function evaluations (Sec. 3). Following this, we pro-
vide performance guarantees which show that as the num-
ber of function evaluations T grows, the error decreases
polynomially in T (Sec. 4). In Thm. 1 we provide a gen-
eral result for the case where the true convex envelope fc
lies in the function class H and extend this result to the
approximate setting where fc /∈ H in Thm. 2. Finally, we
study the performance of CoRR on several multi-modal test
functions and compare it with a number of widely used ap-
proaches for global optimization (Sec. 5). These results
suggest that CoRR can accurately find a tight convex lower
bound for a wide class of non-convex functions.

2 Problem Setup

We now introduce relevant notation, setup our problem,
and then provide background on global optimization of
non-convex functions.

2.1 Preliminaries

Let n be a positive integer. For every x ∈ Rn, its `2-norm
is denoted by ‖x‖, where ‖x‖2 := 〈x, x〉 and 〈x, y〉 de-
notes the inner product between two vectors x ∈ Rn and
y ∈ Rn. We denote the `2 metric by d2 and the set of `2-
normed bounded vectors in Rn by B(Rn), where for every
x ∈ B(Rn) we assume that there exists some finite scalar
C such that ‖x‖ < C. Let (X , d) be a metric space, where
X ∈ B(Rn) is a convex set of bounded vectors and d(., x)
is convex w.r.t. its first argument for every x ∈ B(Rn).1 We
denote the set of all bounded functions on X by B(X ,R),
such that for every f ∈ B(X ,R) and x ∈ X there exists
some finite scalar C > 0 such that |f(x)| ≤ C. Finally,
we denote the set of all convex bounded functions on X
by C(X ,R) ⊂ B(X ,R). Also for every Y ⊆ B(Rn), we
denote the convex hull of Y by conv(Y). Let B(x0, r) de-
note an open ball of radius r centered at x0. Let 1 denote a
vector of ones.

The convex envelope of function f : X → R is denoted
by fc : X → R. Let H̃ be the set of all convex functions
defined over X such that h(x) ≤ f(x) for all x ∈ X . The
function fc is the convex envelope of f if for every x ∈
X (a) fc(x) ≤ f(x), (b) for every h ∈ H̃ the inequality
h(x) ≤ fc(x) holds. Convex envelopes are also related
to the concepts of the convex hull and the epigraph of a
function. For every function f : X → R the epigraph
is defined as epif = {(ξ, x) : ξ ≥ f(x), x ∈ X}. One
can then show that the convex envelope of f is obtained by
fc(x) = inf{ξ : (ξ, x) ∈ conv(epif)}, ∀x ∈ X .
In the sequel, we will generate a set of function evaluations
from f by evaluating the function over i.i.d. samples from
ρ, where ρ denotes a probability distribution onX such that
ρ(x) > 0 for all x ∈ X . In addition, we approximate the
convex envelope using a function class H that contains a
set of convex functions h(·; θ) ∈ H parametrized by θ ∈
Θ ⊆ B(Rp). We also assume that every h ∈ H can be
expressed as a linear combination of a set of basis φ : X →
B(Rp), that is, h(x; θ) = 〈θ, φ(x)〉 for every h(·; θ) ∈ H
and x ∈ X .

2.2 Black-box Global Optimization Setting

We consider a black-box (zero-order) global optimization
setting, where we assume that we do not have access to

1This also implies that d(x, .) is convex w.r.t. its second ar-
gument argument for every x ∈ B(Rn) due to the fact that the
metric d by definition is symmetric.
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information about the gradient of the function that we want
to optimize. More formally, let F ⊆ B(X ,R) be a class
of bounded functions, where the image of every f ∈ F
is bounded by R and X is a convex set. We consider the
problem of finding the global minimum of the function f ,

f∗ := min
x∈X

f(x). (1)

We denote the set of minimizers of f by X ∗f ⊆ X .

In the black-box setting, the optimizer has only access to
the inputs and outputs of the function f . In this case, we
assume that our optimization algorithm is provided with
a set of input points X̂ = {x1, x2, . . . , xT } in X and a
sequence of outputs [f ]X̂ = {f(x1), f(x2), . . . , f(xT )}.
Based upon this information, the goal is to find an estimate
x̂ ∈ X , such that the error f(x̂) − f∗ becomes as small as
possible.

2.3 Methods for Black-box Optimization

Standard tools that are used in convex optimization, cannot
be readily applied to solve non-convex problems as they
only converge to local minimizers of the function. Thus, ef-
fective global optimization approaches must have a mech-
anism to avoid getting trapped in local minima. In low-
dimensional settings, performing an exhaustive grid search
or drawing random samples from the function can be suffi-
cient (Bergstra and Bengio, 2012). However, as the dimen-
sion grows, smarter methods for searching for the global
minimizer are required.

Non-adaptive search strategies. A wide range of global
optimization methods are build upon the idea of iteratively
creating a deterministic set (pattern) of points at each it-
eration, evaluating the function over all points in the set,
and selecting the point with the minimum value as the next
seed for the following iteration (Hooke and Jeeves, 1961;
Lewis and Torczon, 1999). Deterministic pattern search
strategies can be extended by introducing some random-
ness into the pattern generation step. For instance, simu-
lated annealing (Kirkpatrick et al., 1983) (SA) and genetic
algorithms (Bäck, 1996) both use randomized search direc-
tions to determine the next place that they will search. The
idea behind introducing some noise into the pattern, is that
the method can jump out of local minima that determinis-
tic pattern search methods can get stuck in. While many of
these search methods work well in low dimensions, as the
dimension of problem grows, these algorithms often be-
come extremely slow due to the curse of dimensionality.

Adaptive and model-based search. In higher dimen-
sions, adaptive and model-based search strategies can be
used to further steer the optimizer in good search direc-
tions (Mockus et al., 1978; Hutter, 2009). For instance,
recent results in Sequential Model-Based Global Optimiza-
tion (SMBO) have shown that Gaussian processes are use-
ful priors for global optimization (Mockus et al., 1978;

Bergstra et al., 2011). In these settings, each search direc-
tion is driven by a model (Gaussian process) and updated
based upon the local structure of the function. These tech-
niques, while useful in low-dimension problems, become
inefficient in high-dimensional settings.

Hierarchical search methods take a different approach in
exploiting the structure of the data to find the global mini-
mizer (Munos, 2014; Bubeck et al., 2011; Azar et al., 2014;
Munos, 2011). The idea behind hierarchical search meth-
ods is to identify regions of the space with small func-
tion evaluations to sample further (exploitation), as well as
generate new samples in unexplored regions (exploration).
One can show that it is possible to find the global optimum
with a finite number of function evaluations using hierar-
chical search; however, the number of samples needed to
achieve a small error increases exponentially with the di-
mension. For this reason, hierarchical search methods are
often not efficient for high-dimensional problems.

Graduated optimization. Graduated optimization meth-
ods (Blake and Zisserman, 1987; Yuille, 1989), are another
class of methods for non-convex optimization which have
received much attention in recent years (Chapelle and Wu,
2010; Dvijotham et al., 2014; Hazan et al., 2015; Mobahi
and III, 2015). These methods work by locally smooth-
ing the problem, descending along this smoothed objective,
and then gradually sharpening the resolution to hone in on
the true global minimizer. Recently Hazan et al. (2015)
introduced a graduated optimization approach that can be
applied in the black-box optimization setting. In this case,
they prove that for a class of functions referred to as σ-
nice functions, their approach is guaranteed to converge to
an ε-accurate estimate of the global minimizer at a rate of
O(n2/ε4). To the best of our knowledge, this result repre-
sents the state-of-the-art in terms of theoretical results for
global black-box optimization.

3 Algorithm

In this section, we introduce Convex Relaxation Regression
(CoRR), a black-box optimization approach for global min-
imization of a bounded function f .

3.1 Overview

The main idea behind our approach is to estimate the con-
vex envelope fc of a function and minimize this surrogate
in place of our original function. The following result guar-
antees that the minimizer of f coincides with the minimizer
of fc.

Proposition 1 (Kleibohm 1967). Let fc be the convex en-
velope of f : X → R. Then (a) minx∈X fc(x) = f∗ and
(b) X ∗f ⊆ X ∗fc .

This result suggests that one can find the minimizer of f by
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optimizing its convex envelope. Unfortunately, finding the
exact convex envelope of a function is difficult in general.
However, we will show that, for a certain class of functions,
it is possible to estimate the convex envelope accurately
from a set of function evaluations. Our aim is to estimate
the convex envelope by fitting a convex function to these
function evaluations.

The idea of fitting a convex approximation to samples from
f is quite simple and intuitive. However, the best uncon-
strained convex fit to f does not necessarily coincide with
fc. Determining whether there exists a set of convex con-
straints under which the best convex fit to f coincides with
fc is an open problem. The following lemma, which is key
to efficient optimization of f with CoRR, provides a solu-
tion. This lemma transforms our original non-convex opti-
mization problem to a least-absolute-error regression prob-
lem with a convex constraint, which can be solved using
convex optimization tools.
Lemma 1. Let every h ∈ H and f be λ-Lipschitz for some
λ > 0. Let L(θ) = E[|h(x; θ) − f(x)|] be the expected
loss, where the expectation is taken with respect to the dis-
tribution ρ. Assume that there exists Θc ⊆ Θ such that for
every θ ∈ Θc, h(x; θ) = fc(x) for all x ∈ X . Consider the
following optimization problem:

θµ = arg min
θ∈Θ

L(θ) s.t. E[h(x; θ)] = µ. (2)

Then there exists a scalar µ ∈ [−R,R] for which θc ∈ Θc.
In particular, θc ∈ Θc when µ = E(fc(x)).

The formal proof of this lemma is provided in the Supp.
Materials. We prove this lemma by showing that for ev-
ery θ ∈ Θ where E[h(x; θ)] = E[fc(x)], and for every
θc ∈ Θc, the loss L(θ) ≥ L(θc). Equality is attained only
when θ ∈ Θc. Thus, fc is the only minimizer of L(θ) that
satisfies the constraint E[h(x; θ)] = E[fc(x)].

Optimizing µ. Lem. 1 implies that, for a certain choice of
µ, Eqn. 2 provides us with the convex envelope fc. How-
ever, finding the exact value of µ for which this result holds
is difficult, as it requires knowledge of the envelope not
available to the learner. Here we use an alternative ap-
proach to find µ which guarantees that the optimizer of
h(·; θµ) lies in the set of true optimizers X ∗f . Let xµ denote
the minimizer of h(·; θµ). We find a µ which minimizes
f(xµ):

µ∗ = arg min
µ∈[−R,R]

f(xµ). (3)

Interestingly, one can show that xµ∗ lies in the set X ∗f . To
prove this, we use the fact that the minimizers of the convex
envelope fc and f coincide.This implies that f(xµc) = f∗,
where µc := E(fc(x)). It then follows that f∗ = f(xµc) ≥
minµ∈[−R,R] f(xµ) = f(xµ∗). This combined with the
fact that f∗ is the minimizer of f implies that f(xµ∗) = f∗

and thus xµ∗ ∈ X ∗.

3.2 Optimization Protocol

We now describe how we use the ideas presented in Sec. 3.1
to implement CoRR (see Alg. 1 for pseudocode). Our ap-
proach for black-box optimization requires two main ingre-
dients: (1) samples from the function f and (2) a function
class H from which we can form a convex approximation
h. In practice, CoRR is initialized by first drawing two sets
of T samples X̂1 and X̂2 from the domain X ⊆ B(Rn)
and evaluating f over both of these sets. With these sets
of function evaluations (samples) and a function class H
in hand, our aim is to learn an approximation h(x; θ) to
the convex envelope of f . Thus for a fixed value of µ, we
solve the following constrained optimization problem (see
the OPT procedure in Alg. 1):

θ̂c = arg min
θ∈Θ

Ê1

[
|h(x; θ)− f(x)|

]
s.t. Ê2

[
h(x; θ)

]
= µ,

(4)
where the empirical expectation Êi[g(x)] :=
1/T

∑
x∈X̂i

g(x), for every g ∈ B(X ,R) and i ∈ {1, 2}.
We provide pseudocode for optimizing Eqn. 4 in the OPT
procedure of Alg. 1.

The optimization problem of Eqn. 4 is an empirical approx-
imation of the optimization problem in Eqn. 2. However,
unlike Eqn. 2, in which L(θ) is not easy to evaluate and op-
timize, the empirical loss can be optimized efficiently using
standard convex optimization techniques. In addition, one
can establish bounds on the error |L(θ̂c)− L(θc)| in terms
of the sample size T using standard results from the liter-
ature on stochastic convex optimization (see, e.g., Thm. 1
in Shalev-Shwartz et al., 2009). Optimizing the empirical
loss provides us with an accurate estimate of the convex
envelope as the number of function evaluations increases.

The search for the best µ (Step 2 in Alg. 1) can be done
by solving Eqn. 3. As µ is a scalar with known upper
and lower bounds, we can employ a number of hyper-
parameter search algorithms (Munos, 2011; Bergstra et al.,
2011) to solve this 1D optimization problem. These algo-
rithms guarantee fast convergence to the global minimizer
in low dimensions and thus can be used to efficiently search
for the solution to Eqn. 3. Let µ̂ denote the final estimate
of µ obtained in Step 2 of Alg. 1 and let h(·; θµ̂) denote our
final convex approximation to fc. The final solution x̂µ̂ is
then obtained by optimizing h(·; θµ̂) (Step 2 of OPT).

To provide further insight into how CoRR works, we point
the reader to Fig. 1. Here, we show examples of the convex
surrogate obtained by OPT for different values of µ. We ob-
serve that as we vary µ, the minimum error is attained for
µ ≈ 0.47. However, when we analytically compute the em-
pirical expectation of convex envelope (Ê2[fc(x)] = 0.33)
and use this value for µ, this produces a larger function
evaluation. This may seem surprising, as we know that if
we set µ = E(fc(x)), then the solution of Eqn. 2 should
provide us the exact convex envelope with the same opti-
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Algorithm 1 Convex Relaxation Regression (CoRR)
Input: A black-box function f which returns a sample

f(x) when evaluated at a point x. The number of sam-
ples N to draw from f . A class H ⊆ B(X ,R) of con-
vex functions in X (parametrized by θ), a scalar R for
which ‖f‖∞ ≤ R, a sampling distribution ρ supported
over X .

1: Random function evaluations. Draw 2N i.i.d. sam-
ples according to the distribution ρ and partition them
into two sets, X̂ = {X̂1, X̂2}. Generate samples [f ]X̂1

and [f ]X̂2
, where [f ]X̂i

= {f(x) : x ∈ X̂i}, i =
{1, 2}}. Denote [f ]X̂ = {[f ]X̂1

, [f ]X̂2
}

2: Optimize for µ. Solve the 1D optimization problem

µ̂ = arg min
µ∈[−R,R]

f(OPT(µ, [f ]X̂ )),

Output: x̂µ̂ =OPT(µ̂, [f ]X̂ ) .

Procedure OPT(µ, [f ]X̂ )
1: Estimate the convex envelope. Estimate f̂c =
h(·; θ̂µ) by solving Eqn. 4.

2: Optimize the empirical convex envelope. Find an
optimizer x̂µ for f̂c by solving

x̂µ = min
x∈X

f̂c(x),

return x̂µ

mizer as f . This discrepancy can be explained by the ap-
proximation error introduced through solving the empirical
version of Eqn. 2. This figure also highlights the stability
of our approach for different values of µ. Our results sug-
gest that our method is robust to the choice of µ, as a wide
range of values of µ produce minimizers close to the true
global minimum. Thus CoRR provides an accurate and ro-
bust approach for finding the global optimizer of f .

4 Theoretical Results

In this section, we provide our main theoretical results. We
show that as the number of function evaluations T grows,
the solution of CoRR converges to the global minimum of
f with a polynomial rate. We also discuss the scalability of
our result to high-dimensional settings.

4.1 Assumptions

We begin by introducing the assumptions required to state
our results. The first assumption provides the necessary
constraint on the candidate function class H and the set of
all points in X that are minimizers for the function f .

Assumption 1 (Convexity). Let X ∗f denote the set of min-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-5

10-3

10-4

10-2

10-1

100

101

underestimate overestimateoptimal CoRR

Figure 1: Estimating the convex envelope of f with CoRR.
Here we demonstrate how CoRR learns a convex envelope
by solving Eqn. 3. Along the top, we plot the test func-
tion fS2

(see Sec. 5) and examples of the convex surro-
gates obtained for different values of µ. From left to right,
we display the surrogate obtained for: an underestimate
of µ, the empirical estimate of the convex envelope where
µ ≈ Ê2[fc(x)], the result obtained by CoRR, and an over-
estimate of µ. Below, we display the value of the function
fS2

as we vary µ (solid blue).

imizers of f . We assume that the following three convexity
assumptions hold with regard to every h(·; θ) ∈ H andX ∗f :
(a) h(x; θ) is a convex function for all x ∈ X , (b) h is a
affine function of θ ∈ Θ for all x ∈ X , and (c) X ∗f is a
convex set.

Remark. Assumption 1c does not impose convexity on the
function f . Rather, it requires that the set X ∗f is convex.
This is needed to guarantee that both fc and f have the
same minimizers (see Prop. 1). Assumption 1c holds for
a large class of non-convex functions. For instance, every
continuous function with a unique minimizer satisfies this
assumption (see, e.g., our example functions in Sect. 5).

Assumption 2 establishes the necessary smoothness as-
sumption on the function f and the function classH.
Assumption 2 (Lipschitz continuity). We assume that f
and h are Lipschitz continuous. That is for every (x1, x2) ∈
X 2 we have that |f(x1) − f(x2)| ≤ d(x1, x2). Also for
every x ∈ X and (θ1, θ2) ∈ Θ2 we have that |h(x; θ1) −
h(x; θ2)| ≤ Ud2(θ1, θ2). We also assume that every h ∈ H
is λ-Lipschitz on X w.r.t. the metric d for some λ > 0.

We show that the optimization problem of Eqn. 1 provides
us with the convex envelope fc when the candidate classH
contains fc (see Lem. 1). The following assumption for-
malizes this condition.
Assumption 3 (Capacity of H). We assume that fc ∈ H,
that is, there exist some h ∈ H and Θ ⊆ Θc such that
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h(x; θ) = fc(x) for every x ∈ X and θ ∈ Θc.

We also require that the following Hölder-type error
bounds hold for the distances of our empirical estimates
x̂ and θ̂ from X ∗f and Θc, respectively.
Assumption 4 (Hölder-type error bounds). Let Θe :=
{θ|θ ∈ Θ,E(h(x; θ)) = fc(x)}. Also denote L∗ :=
minθ∈Θe L(θ). We assume that there exists some finite pos-
itive scalars γ1, γ2, β1 and β2 such that for every x ∈ X
and θ ∈ Θe: (a) f(x) − f∗ ≥ γ1d(x,X ∗f )1/β1 . (b)
L(θ)− L∗ ≥ γ2d2(θ,Θc)

1/β2 .

Assumption 4 implies that whenever the error terms f(x)−
f∗ and L(θ) − L∗ are small, the distances d(x,X ∗f ) and
d2(θ,Θc) are small as well. To see why Assumption 4 is
required for the analysis of CoRR, we note that the com-
bination of Assumption 4 with Assumption 2 leads to the
following local bi-Hölder inequalities for every x ∈ X and
θ ∈ Θe:

γ1d(x,X ∗f )1/β1 ≤ f(x)− f∗ ≤ d(x,X ∗f )

γ2d2(θ,Θc)
1/β2 ≤ L(θ)− L∗ ≤ Ud2(θ,Θc)

(5)

These inequalities determine the behavior of function f and
L around their minimums as they establish upper and lower
bounds on the errors f(x) − f∗ and L(θ) − L∗. Essen-
tially, Eqn. 5 implies that there is a direct relationship be-
tween d(x,X ∗f ) (d2(θ,Θc)) and f(x)−f∗ (L(θ)−L(Θc)).
Thus, bounds on d(x,X ∗f ) and d2(θ,Θc), respectively, im-
ply bounds on f(x)−f∗ and L(θ)−L(Θc) and vice versa.
These bi-directional bounds are needed due to the fact that
CoRR doest not directly optimize the function. Instead it
optimizes the surrogate loss L(θ) to find the convex enve-
lope and then it optimizes this empirical convex envelope to
estimate the global minima. This implies that the standard
result of optimization theory can only be applied to bound
the error L(θ̂) − L∗. The inequalities of Eqn. 5 are then
required to convert the bound on L(θ̂) − L∗ to a bound
on f(x̂µ̂) − f∗, which ensures that the solution of CoRR
converges to a global minimum as L(θ̂)− L∗ → 0.

It is noteworthy that global error bounds such as those in
Assumption 4 have been extensively analyzed in the litera-
ture of approximation theory and variational analysis (see,
e.g., Azé, 2003; Corvellec and Motreanu, 2008; Azé and
Corvellec, 2004; Fabian et al., 2010). Much of this body
of work can be applied to study convex functions such as
L(θ), where one can make use of the basic properties of
convex functions to prove lower bounds on L(θ) − L∗ in
terms of the distance between θ and Θc (see, e.g., Thm.
1.16 in Azé, 2003). While these results are useful to fur-
ther study the class of functions that satisfy Assumption 4,
providing a direct link between these results and the error
bounds of Assumption 4 is outside the scope of this paper.

Assumptions 3-4 can not be applied directly when fc /∈ H.
When fc /∈ H, we make use of the following generalized

version of these assumptions. We first consider a relaxed
version of Assumption 3, which assumes that fc can be
approximated by some h ∈ H.

Assumption 5 (υ-approachability of fc by H). Let υ be
a positive scalar. Define the distance between the func-
tion classH and fc as dist(fc,H) := infh∈H E[|h(x; θ)−
fc(x)|], where the expectation is taken w.r.t. the distribu-
tion ρ. We then assume that the following inequality holds:
dist(fc,H) ≤ υ.

The next assumption generalizes Assumption 4b to the case
where fc /∈ H:

Assumption 6. Let p̃ be a positive scalar. Assume that
there exists a class of convex functions H̃ ⊆ C(X ,R)

parametrized by θ ∈ Θ̃ ⊂ B(Rp̃) such that: (a) fc ∈ H̃,
(b) every h ∈ H̃ is linear in θ and (c)H ⊆ H̃. Let Θc ⊆ Θ̃
be the set of parameters for which h(x; θ) = fc(x) for
every x ∈ X and θ ∈ Θc. Also define Θ̃e := {θ|θ ∈
Θ̃,E(h(x; θ)) = fc(x)}. We assume that there exists some
finite positive scalars γ2 and β2 such that for every x ∈ X
and θ ∈ Θ̃e

L(θ)− L∗ ≥ γ2d2(θ, Θ̃c)
1/β2 .

Intuitively speaking, Assumption 6 implies that the func-
tion class H is a subset of a larger unknown function class
H̃ which satisfies the global error bound of Assumption 4b.
Note that we do not require access to the class H̃, but we
need that such a function class exists.

4.2 Performance Guarantees

We now present the two main theoretical results of our
work and provide sketches of their proofs (the complete
proofs of our results is provided in the Supp. Material).

4.2.1 Exact Setting

Our first result considers the case where the convex enve-
lope fc ∈ H. In this case, we can guarantee that as the
number of function evaluations grows, the solution of Alg.
1 converges to the optimal solution with a polynomial rate.

Theorem 1. Let δ be a positive scalar. Let Assumptions 1,
2 ,3, and 4 hold. Then Alg. 1 returns x̂ such that with prob-
ability 1− δ

f(x̂)− f∗ = O
[
ξs

(
log(1/δ)

T

)β1β2/2
]
,

where the smoothness coefficient ξs :=
( 1
γ1

)β2( 1
γ2

)β1β2U (1+β2)β1(RB)β2β1 .

Sketch of proof. To prove this result, we first prove bound
on the error L(θ̂) − minθ∈Θe

L(θ) for which we rely on
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standard results from stochastic convex optimization. This
combined with the result of Lem. 1 leads to a bound on
L(θ̂) − L∗. The bound on L(θ̂) − L∗ combined with As-
sumption 4 translates to a bound on d(x̂,X ∗f ). The result
then follows by applying the Lipschitz continuity assump-
tion (Assumption 2). �
Thm. 1 guarantees that as the number of function evalua-
tions T grows, the solution of CoRR converges to f∗ with
a polynomial rate. The order of polynomial depends on the
constants β1 and β2. The following corollary, which is an
immediate result of Thm. 1, quantifies the number of func-
tion evaluations T needed to achieve an ε-optimal solution.
Corollary 1. Let Assumptions 1, 2, 3, and 4 hold. Let ε
and δ be some positive scalars. Then Alg. 1 needs T =
( ξsε )2/(β1β2) log(1/δ) function evaluations to return x̂ such
that with probability 1− δ, f(x̂)− f∗ ≤ ε.

This result implies that one can achieve an ε-accurate ap-
proximation of the global optimizer with CoRR with a
polynomial number of function evaluations.

4.2.2 Approximate Setting

Thm. 1 relies on the assumption that the convex envelope
fc lies in the function class H. However, in general, there
is no guarantee that fc belongs to H. When the convex
envelope fc /∈ H, the result of Thm. 1 cannot be applied.
However, one may expect that Alg. 1 still may find a close
approximation of the global minimum as long as the dis-
tance between fc and H is small. To prove that CoRR
finds a near optimal solution in this case, we must show
that f(x̂) − f∗ remains small when the distance between
fc andH is small. We now generalize Thm. 1 to the setting
where the convex envelope fc does not lie inH but is close
to it.
Theorem 2. Let Assumptions 1, 2, 5, and 6 hold. Then
Alg. 1 returns x̂ such that for every ζ > 0 with probability
(w.p.) 1− δ

f(x̂)− f∗ = O


ξs

(√
log(1/δ)

T
+ ζ + υ

)β1β2

 .

Sketch of proof. To prove this result, we rely on standard
results from stochastic convex optimization to first prove a
bound on the error L(θ̂)−minθ∈Θe L(θ) when we set µ the
empirical mean of the convex envelope. We then make use
of Assumption 5 as well as Lem. 1 to transform this bound
to a bound on L(θ̂) − L∗. The bound on f(x̂) − f∗ then
follows by combining this result with Assumptions 2 and
6. �

4.2.3 Approximation Error υ vs. Complexity ofH

From function approximation theory, it is known that for
a sufficiently smooth function g, one can achieve an υ-

accurate approximation of g by a linear combination of
p = O(n/υ) bases (Mhaskar, 1996; Girosi and Anzellotti,
1992). These results imply that one can make the error
υ in Thm. 2 arbitrary small by increasing the complexity
of function class H (i.e., increasing the number of convex
bases p). Similar shape preserving results have been es-
tablished for the case when the function and bases are both
convex (see, e.g., Gal, 2010; Konovalový et al., 2010; Shve-
dov, 1981) under some mild assumptions on g. In particu-
lar, Konovalový et al. (2010) have proven that for a rather
general class ofH, the approximation error between a con-
vex function g and classH, can be bounded in terms of the
approximation error between g and H when no convexity
constraint is imposed on H. This implies that existing re-
sults in the approximation theory literature can be used to
bound the approximation error υ in terms of the complexity
of function classH.

4.2.4 Dependence on Dimension

The results of Thm. 1 and Thm. 2 have no explicit depen-
dence on the dimension n. However, the Lipschitz con-
stant U can, in the worst-case scenario, be of O(

√
p) (due

to the Cauchy-Schwarz inequality). On the other hand to
achieve an approximation error of υ the number of bases p
needs be of O(n/υ) (see Sect. 4.2.3). When we plug this
result in the bound of Thm. 2, this leads to a dependency
ofO(n(1+β2)β1/2) on the dimension n due to the Lipschitz
constant U . In the special case where β2 = β1 = 1, i.e.,
when the error bounds of Assumption 4 are linear, the de-
pendency on n becomes linear. The linear dependency on
n in this case matches the results of the black-box (zero-
order) convex optimization (see, e.g., Duchi et al., 2015).

5 Numerical Results

In this section, we evaluate the performance of CoRR on
several multi-dimensional test functions used for bench-
marking non-convex optimization methods (Jamil and
Yang, 2013).

Evaluation setup. Here we study CoRR’s effectiveness
in finding the global minimizer of the following test func-
tions (Fig. 2a). We assume that all functions are supported
over X = B(0, 2) ⊆ Rn, and otherwise rescale them to
lie within this set. (S1) Salomon function: fS(x) = 1 −
cos(2π‖x‖) + 0.5‖x‖. (S2) Squared Salomon: fS2(x) =
0.1fS(x)2. (SL) Salomon and Langerman combination:
fSL(x) = fS(x) + fL(x) ∀x ∈ B(0, 10) ∩ B(0, 0.2)
and fSL(x) = 0, otherwise (before rescaling the do-
main). (L) Langerman function: fL(x) = − exp(‖x −
α‖22/π) cos(π‖x− α‖22) + 1, ∀x ∈ B(0, 5) (before rescal-
ing the domain). (G) The Griewank function: fG(x) =

0.1
[
1 + 1

4000

∑N
i=1 x(i)2 −∏N

i=1
cos(x)√

i

]
, ∀x ∈ B(0, 200)

(before rescaling the domain). All of these functions have
their minimum at the origin, except for the Langerman
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function which has its minimum at x∗ = c1 for c = 0.5.

All of the aforementioned functions exhibit some amount
of global structure for which the convex envelope can be
approximated by a quadratic basis (Fig. 2a). We thus use
a quadratic basis to construct our function class H. The
basis functions h(x; θ) ∈ H are parameterized by a vec-
tor of coefficients θ = [θ1, θ2, θ3], and can be written as
h(x; θ) = 〈θ1, x

2〉 + 〈θ2, x〉 + θ3. Thus, the number of
parameters that we must estimate to find a convex approx-
imation h equals 2n + 1 (we drop the cross terms in our
construction of the quadratic class ). In practice, we im-
pose a non-negativity constraint on all entries of the vector
θ1 to ensure that our approximation is convex.

Summary of results. To understand the difficulty of find-
ing the minimizers for the test functions above, we compute
the error f(x̂)− f∗ as we increase the number of function
evaluations. Here, we show each of our five test functions
(Fig. 2a) and their average scaling behavior in one dimen-
sion (Fig. 2b), where the error is averaged over 100 trials.
We observe that CoRR quickly converges for all five test
functions, with varying convergence rates. We observe the
smallest initial error (for only 20 samples) for fSL and the
highest error for fS . In addition, fL achieves nearly perfect
reconstruction of the global minimum after only 200 sam-
ples. The good scaling properties of fL and fSL is likely
due the the fact that both of these functions have a wide
basin around their global minimizer. This result provides
nice insight into the scaling of CoRR in low dimensions.

Next, we study the approximation error as we vary the sam-
ple size and dimension for the Salomon function fS (Fig.
2c-d). Just as our theory suggests, there is a clear depen-
dence between the dimension and number of samples re-
quired to obtain small error. In Fig. 2c, we display the
scaling behavior of CoRR as a function of both dimension
and number of function evaluations T . In all of the tested
dimensions, we obtain an error smaller than 1e−5 when
we draw one million samples. In Fig. 2d, we compare the
performance of CoRR (for fixed number of evaluations T )
as we vary the dimension. In contrast, the quasi-Newton
(QN) method and hybrid simulated annealing (SA) method
(Hedar and Fukushima, 2004) recover the global minimizer
for low dimensions but fail in dimensions greater than ten.2

We posit that this is due to the fact the minimizer of the
Salomon function lies at the center of its domain and as
the dimension of the problem grows, drawing an initializa-
tion point (for QN) that is close to the global minimizer
becomes extremely difficult.

2These methods are selected from a long list of candidates in
MATLAB’s global optimization toolbox. We report results for the
methods that gave the best results for our test functions.

6 Discussion and Future Work

This paper introduced CoRR, an approach for learning a
convex relaxation for a wide class of non-convex func-
tions. The idea behind CoRR is to find an empirical es-
timate of the convex envelope of a function from a set of
function evaluations. We demonstrate that CoRR is an effi-
cient strategy for global optimization, both in theory and
in practice. In particular, we provide theoretical results
(Sec. 4) which show that CoRR is guaranteed to produce
a convergent estimate of the convex envelope that exhibits
polynomial dependence on the dimension. In numerical
experiments (Sec. 5), we showed that CoRR provides ac-
curate approximations to the global minimizer of multiple
test functions and appears to scale well with dimension.

Our current instantiation of CoRR finds a convex surrogate
for f based upon a set of samples that are drawn at random
at the onset of the algorithm. In our evaluations, we draw
i.i.d. samples from a uniform distribution over X . How-
ever, the choice of the sampling distribution ρ has a signif-
icant impact on our estimation procedure. As such, select-
ing samples in an intelligent manner would significantly re-
duce the number of samples required to obtain an accurate
estimate. A natural extension of CoRR is to the case where
we can iteratively refine our distribution ρ based upon the
output of the algorithm at previous steps.

An important factor in the success of our algorithm is the
basis that we use to form our approximation. As discussed
in Sec. 4.2.3, we know that a polynomial basis can be used
to form a convex approximation to any convex function
(Gal, 2010). However, finding a concise representation of
the convex envelope using high-degree polynomials is not
an easy task. Thus finding other well-suited bases for this
approximation, such as the exponential basis, may improve
the efficiency of CoRR by reducing the number of bases re-
quired. While outside the scope of this paper, exploring the
use of constrained dictionary learning methods (Yaghoobi
et al., 2009) for finding a good basis for our fitting proce-
dure, is an interesting line for future work.

In our experiments, we observe that CoRR typically pro-
vides a good approximation to the global minimizer. How-
ever, in most cases, we do not obtain machine precision
(like QN for low dimensions). Thus, we can combine
CoRR with a local search method like QN by using the
solution of CoRR as an initialization point for the local
search. When using this hybrid approach, we obtain per-
fect reconstruction of the global minimum for the Salomon
function for all of the dimensions we tested (Fig. 2d). This
suggests that, as long the function does not fluctuate too
rapidly around its global minimum (Asm. 2), CoRR can be
coupled with other local search methods to quickly con-
verge to the absolute global minimizer.

The key innovation behind CoRR is that one can efficiently
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Figure 2: Scaling behavior and performance of CoRR. Along the top row in (a), we plot all five test functions studied in
this paper. In (b), we display the mean approximation error between f(x̂) − f∗ as a function of the number of function
evaluations T for all test functions in 1D. In (c), we display the mean approximation error as a function of the dimension
and number of samples for the Salomon function. In (d), we compare CoRR’s approximation error with other approaches
for non-convex optimization, as we vary the dimension.

approximate the convex envelope of a non-convex func-
tion by solving a constrained regression problem which
balances the approximation error with a constraint on the
empirical expectation of the estimated convex surrogate.
While our method could be improved by using a smart and
adaptive sampling strategy, this paper provides a new way
of thinking about how to relax non-convex problems. As
such, our approach opens up the possibility of using the
myriad of existing tools and solvers for convex optimiza-
tion problems to efficiently solve non-convex problems.
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Abstract

We introduce the Mondrian kernel, a fast random
feature approximation to the Laplace kernel. It is
suitable for both batch and online learning, and
admits a fast kernel-width-selection procedure as
the random features can be re-used efficiently for
all kernel widths. The features are constructed
by sampling trees via a Mondrian process [Roy
and Teh, 2009], and we highlight the connection
to Mondrian forests [Lakshminarayanan et al.,
2014], where trees are also sampled via a Mon-
drian process, but fit independently. This link
provides a new insight into the relationship be-
tween kernel methods and random forests.

1 INTRODUCTION

Kernel methods such as support vector machines and Gaus-
sian processes are very popular in machine learning. While
early work relied on dual optimization, recent large-scale
kernel methods focus on the primal optimization problem
where the input data are mapped to a finite-dimensional
feature space and the weights are learned using fast linear
optimization techniques, e.g., stochastic gradient descent.
Rahimi and Recht [2007] proposed to approximate shift-
invariant kernels by mapping the inputs to so-called ran-
dom features, constructed so that the inner product of two
mapped data points approximates the kernel evaluated at
those two points (which is the inner product in the fea-
ture space corresponding to the kernel). Rahimi and Recht
[2007] proposed two random feature construction schemes:
random Fourier features, where data points are projected
onto random vectors drawn from the Fourier transform of
the kernel and then passed through suitable non-linearities;
and random binning, where the input space is partitioned
by a random regular grid into bins and data points are
mapped to indicator vectors identifying which bins they

∗Also affiliated with Max-Planck Institute for Intelligent Sys-
tems, Tübingen, Germany.

end up in. Both of these approaches require specifying
the kernel hyperparameters in advance, so that the appro-
priate distribution is used for sampling the random vectors
or random grids, respectively. However, a suitable kernel
width (length-scale) is often not known a priori and is found
by cross-validation, or, where available, marginal likeli-
hood optimization. In practice, this entails constructing a
new feature space and training a linear learner from scratch
for each kernel width, which is computationally expensive.
Using a suitable kernel width is often more important than
the choice of kernel type [Schölkopf and Smola, 2001], so
a fast kernel width selection method is desirable.

We describe a connection between the Laplace kernel and
the Mondrian process [Roy and Teh, 2009], and leverage it
to develop a random feature approximation to the Laplace
kernel that addresses the kernel width selection problem.
This approximation, which we call the Mondrian kernel,
involves random partitioning of data points using a Mon-
drian process, which can be efficiently reused for all kernel
widths. The method preserves the nonparametric nature of
kernel learning and is also suitable for online learning.

The Mondrian kernel reveals an interesting link between
kernel methods and decision forests [Breiman, 2001, Cri-
minisi et al., 2012], another popular class of nonparamet-
ric methods for black-box prediction tasks. The Mondrian
kernel resembles Mondrian forests, a decision-forest vari-
ant introduced by Lakshminarayanan et al. [2014], where
a Mondrian process is used as the randomization mecha-
nism. The efficiently trainable Mondrian forests excel in
the online setting, where their distribution is identical to the
corresponding batch Mondrian forest, and have been suc-
cessfully applied to both classification and regression [Lak-
shminarayanan et al., 2014, 2016]. Mondrian forests and
the Mondrian kernel both lead to randomized, non-linear
learning algorithms whose randomness stems from a Mon-
drian process. The former fits parameters corresponding
to different Mondrian trees independently, while the latter
fits them jointly. We compare these methods theoretically
and thus establish a novel connection between the Laplace
kernel and Mondrian forests via the Mondrian kernel.
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The contributions of this paper are:

• a review of the Mondrian process using the simple no-
tion of competing exponential clocks (Section 2);

• a novel connection between the Mondrian process and
the Laplace kernel (Section 3), yielding a fast approx-
imation to learning with the Laplace kernel;

• an efficient procedure for learning the kernel width
from data (Section 4); and

• a comparison between Mondrian kernel and Mondrian
forest that provides another connection between ker-
nel learning and random forests (Section 6).

2 MONDRIAN PROCESS

For completeness, we review the Mondrian process [Roy
and Teh, 2009, Roy, 2011, Chapter 5]. Although simple
and perhaps well known to experts, our exposition through
competing exponential clocks has not explicitly appeared
in this form in the literature. Readers familiar with the
Mondrian process may skip this section on first reading.

2.1 TERMINOLOGY

An axis-aligned box X = X1×· · ·×XD ⊆ RD is a Carte-
sian product of D bounded intervals Xd ⊆ R. Their total
length |X1| + · · · + |XD| is the linear dimension of X . A
guillotine partition of X is a hierarchical partitioning of X
using axis-aligned cuts. Such a partition can be naturally
represented using a strictly binary tree.

An exponential clock with rate r takes a random time
T ∼ Exp(r) to ring after being started, where Exp(r) is
the exponential distribution with rate (inverse mean) r. The
notion of competing exponential clocks refers to D inde-
pendent exponential clocks with rates r1, . . . , rD, started
at the same time. It can be shown that (1) the time until
some clock rings has Exp(

∑
rd) distribution, (2) it is the

d-th clock with probability proportional to rd, and (3) once
a clock rings, the remaining D − 1 clocks continue to run
independently with their original distributions.

2.2 GENERATIVE PROCESS

The Mondrian process on an axis-aligned boxX ⊆ RD is a
time-indexed stochastic process taking values in guillotine-
partitions of X . It starts at time 0 with the trivial partition
of X (no cuts) and as time progresses, new axis-aligned
cuts randomly appear, hierarchically splitting X into more
and more refined partitions. The process can be stopped at
a lifetime λ ∈ [0,∞), which amounts to ignoring any cuts
that would appear after time λ.

To describe the distribution of times and locations of new
cuts as time progresses, we associate an independent ex-
ponential clock with rate |Xd| to each dimension d of X .
Let T be the first time when a clock rings and let d be the
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Figure 1: (a) Sample of a Mondrian process on the axis-
aligned boxX = [0, 1]× [0, 1] ⊆ R2 with lifetime λ = 1.0.
Numbers on the cuts (shown in green) indicate the times
when they appeared. The first cut appeared at time T =
0.23, in dimension d = 1, at location a = 0.66 ∈ X1. (b)
Representing the Mondrian sample as a strictly binary tree,
with new nodes (shown as circles) appearing as time (y-
axis) progresses. The two numbers below each node show
the rates of the two exponential clocks competing to split
that node, with the winning clock’s rate shown in green.

dimension of that clock. If T > λ then this process termi-
nates. Otherwise, a point a is chosen uniformly at random
from Xd and X is split into X< = {x ∈ X | xd < a}
and X> = {x ∈ X | xd > a} by a hyperplane in dimen-
sion d that is perpendicular to Xd at point a. After mak-
ing this first cut, the remaining D − 1 clocks are discarded
and the generative process restarts recursively and indepen-
dently on X< and X>. However, those processes start at
time T rather than 0 and thus have less time left until the
lifetime λ is reached.

The specification of the generative process on X is now
complete. Due to the properties of competing exponential
clocks, the time until the first cut appears in X has expo-
nential distribution with rate equal to the linear dimension
ofX and the dimension d in which the cut is made is chosen
proportional to |Xd|. This confirms equivalence of our gen-
erative process to the one proposed by Roy and Teh [2009].
Finally, we note that a.s. the Mondrian process does not ex-
plode, i.e., for every lifetime λ ∈ [0,∞), the process gen-
erates finitely many cuts with probability 1 [Roy, 2011].

2.3 PROJECTIVITY

If a Mondrian process runs on X , what distribution of ran-
dom partitions does it induce on an axis-aligned subbox
A ⊆ X ? (See Figure 2a for an illustration inD = 2 dimen-
sions.) The Mondrian process was constructed so that the
answer is the Mondrian process itself [Roy, 2011]. Here
we explain this projectivity property using the notion of
competing exponential clocks. To argue that the resulting
process on A is indeed a Mondrian process, we show that
the process running on X generates cuts in A in the same
way as a Mondrian process running directly on A would.
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Recall that each dimension d of X is associated with an
exponential clock with rate |Xd| and if it rings first, the
cut location is chosen uniformly at random from Xd. This
procedure can be equivalently represented using two com-
peting clocks for each dimension (rather than just one):

• Clock CdA with rate |Ad|. If this clock rings first, the
cut location is chosen uniformly at random from Ad.
• Clock Cd¬A with rate |Xd| − |Ad|. If it rings first, the

cut location is sampled uniformly from Xd \ Ad.

(See Figure 2b.) Note that the clocks C1A, . . . , CDA represent
the same cut distribution as a Mondrian process running on
Awould. If a clock Cd¬A rings first, a cut is made outside of
A and all of A remains on one side of this cut. None of the
clocks CdA have rung in that case and would usually be dis-
carded and replaced with fresh clocks of identical rates, but
by property (3) of competing exponential clocks, we can
equivalently reuse these clocks (let them run) on the side of
the cut containing A. (Figure 2c shows a cut in dimension
d = 1 that misses A and the reused clocks CdA). Hence,
cuts outside A do not affect the distribution of the first cut
crossing A, and this distribution is the same as if a Mon-
drian process were running just on A. When a cut is made
within A (see Figure 2d), the process continues on both
sides recursively and our argument proceeds inductively,
confirming that the Mondrian process on X generates cuts
in A in the same way as a Mondrian process on A would.

2.4 MONDRIAN PROCESS ON RD

The Mondrian process on RD is defined implicitly as a
time-indexed stochastic process such that its restriction to
any axis-aligned boxX ⊆ RD is a Mondrian process as de-
fined in section 2.2. Fortunately, this infinite-dimensional
object can be compactly represented by instantiating the
Mondrian process only in regions where we have observed
data. As we observe new data points, the Mondrian sample
can be extended using the conditional Mondrian algorithm
[Roy and Teh, 2009], a simple and fast sampling procedure
for extending a Mondrian sample in an axis-aligned box A
to a larger axis-aligned box X ⊇ A. The conditional Mon-
drian is useful for online learning and prediction, as it can
be used to extend Mondrian samples to (yet) unobserved
parts of the input space [Lakshminarayanan et al., 2014].

3 MONDRIAN KERNEL

For concreteness, our running example will be regression:
the problem of learning a function f : RD → R from a set
of N training examples (x1, y1), . . . , (xN , yN ). However,
the Mondrian kernel applies equally well to classification,
or any other learning task.

Learning with kernels involves choosing a kernel function
k : RD × RD → R to act as a similarity measure between
input data points. Evaluating k(·, ·) on all pairs of N data
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Figure 2: (a) A Mondrian process running onX = X1×X2

generates cuts (dashed lines), some of which intersectA =
A1 × A2 (green lines) and thus induces a random parti-
tion of A. (b) Representing the first cut distribution using
2D = 4 competing exponential clocks: in each dimen-
sion d, clock CdA corresponds to the region where making
a cut splits A (shown in green) and clock Cd¬A to the (dis-
connected) region where making a cut misses A (shown in
red). (c) Cut outside A: reusing the clocks C1A, C2A on the
side of the cut containing A. (d) Cut inside A (shown in
black): the argument proceeds by induction on both sides.

points takes Ω(N2) operations, with some models also re-
quiring a Θ(N3) operation on an N × N kernel matrix.
This generally makes exact kernel methods unsuitable for
large-scale learning. Rahimi and Recht [2007] proposed a
fast approximation through a randomized construction of a
low-dimensional feature map φ : RD → RC such that

∀x,x′ ∈ RD k(x,x′) ≈ φ(x)Tφ(x′)

and then using a linear learning method in the feature space
RC implied by φ. For example, linear regression y ≈ Φw,
where Φ ∈ RN×C is the feature matrix with n-th row
φ(xn)T , is solvable exactly in time linear in N . In general,
the primal problem also lends itself naturally to stochastic
gradient descent approaches for learning w.

We use the Mondrian process to construct a randomized
feature map for the (isotropic) Laplace kernel:

k(x,x′) = exp(−λ‖x− x′‖1) = exp(−λ
D∑

d=1

|xd − x′d|).

Here λ ≥ 0 is the inverse kernel width (inverse length-
scale), which we call the lifetime parameter of the kernel.
We use a non-standard parametrization as this lifetime pa-
rameter will be linked to the Mondrian process lifetime.
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3.1 MONDRIAN KERNEL

Consider the following randomized construction of a fea-
ture map φ : RD → RC :

1. Sample a partition of RD via a Mondrian process on
RD with lifetime λ. Label the cells of the generated
partition by 1, 2, . . . in arbitrary order.

2. To encode a data point x ∈ RD, look up the label c
of the partion cell x falls into and set φ(x) to be the
(column) indicator vector that has a single non-zero
entry at position c, equal to 1.

The Mondrian process on RD generates infinitely many
partition cells and cannot be stored in memory, but pro-
jectivity comes to the rescue. As we only ever need to
evaluate φ on finitely many data points, it suffices to run
the Mondrian on the smallest axis-aligned box containing
all these points. Also, we only label partition cells contain-
ing at least one data point, in effect removing features that
would be 0 for all our data points. Then, the dimensionality
C of φ equals the number of non-empty partiton cells and
each data point has a single non-zero feature, equal to 1.

x1

x2

x3

x4 cell 1

cell 2

cell 3

x φ(x)T

x1 [0 1 0]
x2 [0 1 0]
x3 [0 0 1]
x4 [1 0 0]

Figure 3: Feature expansions of 4 data points in R2.

However, note that the set of points on which the feature
map φ is evaluated need not be known in advance and can
even grow in an online fashion. Indeed, the conditional
Mondrian algorithm discussed in section 2.4 allows us to
extend Mondrian samples to larger boxes as necessary, and
we can increase the dimensionality of φ whenever a data
point is added to a previously empty partition cell.

This feature map φ induces a kernel

k1(x,x′) := φ(x)Tφ(x′)

=

{
1 if x,x′ in same partition cell
0 otherwise

(1)

which we call a Mondrian kernel of order 1.

Instead of using a single Mondrian sample (partition), we
can use M independent samples and construct a feature
map φ by concatenating and normalizing the feature maps
φ(1), . . . , φ(M) obtained from each individual sample as
above:

φ(x) :=
1√
M

[
φ(1)(x)T · · · φ(M)(x)T

]T
. (2)

This feature expansion is sparse: every data point has
exactly M non-zero features. The corresponding kernel,

which we call a Mondrian kernel of order M , is

kM (x,x′) := φ(x)Tφ(x′)

=
1

M

M∑

m=1

φ(m)(x)Tφ(m)(x′).

This is the empirical frequency with which points x and x′

end up in the same partition cell of a Mondrian sample.

Algorithm 1 Mondrian kernel

1: for m = 1 to M do
2: construct feature map φ(m) . section 3.1
3: join and rescale φ(1), . . . , φ(M) into φ . equation (2)
4: map data X to feature representations Φ using φ
5: use linear learning method on Φ

3.2 MONDRIAN–LAPLACE LINK

By independence of the M Mondrian samples, a.s.

lim
M→∞

kM (x,x′) = E
[
φ(1)(x)Tφ(1)(x′)

]
= E [k1(x,x′)]

with convergence at the standard rateOp(M−1/2). We thus
define the Mondrian kernel of order∞ as

k∞(x,x′) := E[k1(x,x′)].

Proposition 1 (Mondrian-Laplace link). The Mondrian
kernel of order∞ coincides with the Laplace kernel.

Proof. As k1(x,x′) (defined in (1)) is a binary random
variable, k∞(x,x′) equals the probability that x and x′ fall
into the same partition cell of a Mondrian sample, which
is equivalent to the sample having no cut in the minimal
axis-aligned box spanned by x and x′.

|x1 − x′1|

|x2 − x′2|

x′

x
minimal axis-aligned box
spanned by x and x′

By projectivity, this probability is the same as the proba-
bility of not observing any cuts in a Mondrian process with
lifetime λ running on just this minimal box. Noting that the
linear dimension of this box is ‖x− x′‖1, we obtain

k∞(x,x′) = P(no cut between x,x′ until time λ)

= P (T > λ) where T ∼ Exp (‖x− x′‖1)

= e−λ‖x−x
′‖1 .

Note that the lifetime (inverse width) λ of the Laplace ker-
nel corresponds to the lifetime of the Mondrian process
used in the construction of the Mondrian kernel.
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This link allows us to approximate the Laplace kernel with
a Mondrian kernel kM , which, unlike the Laplace kernel,
admits a finite-dimensional feature expansion. The finite
order M trades off kernel approximation error and compu-
tational costs (indirectly through the complexity of φ).

The following result confirms that the convergence of the
Mondrian kernel approximation is exponentially fast in M
uniformly on any fixed bounded input domain X .

Proposition 2. For any bounded input domain X ⊆ RD
and δ > 0, as M →∞,

P
[

sup
x,x′∈X

|kM (x,x′)− k∞(x,x′)| > δ

]

= O
(
M2/3e−Mδ2/(12D+2)

)
.

Proof. Given in Supplement A.

4 FAST KERNEL WIDTH LEARNING

This section discusses the main advantage of our Mondrian
approximation to the Laplace kernel: the efficient learning
of kernel width from data. In particular, the approximation
allows for efficient evaluation of all kernel lifetimes (in-
verse widths) λ ∈ [0,Λ], where the terminal lifetime Λ > 0
need not be fixed a priori.

4.1 FEATURE SPACE REUSAL

We make the following recollections from earlier sections:

• the Mondrian process runs through time, starting at
time 0 and only refining the generated partition as time
progresses (cuts are never removed)

• the Mondrian process with lifetime λ is obtained by
ignoring any cuts that would occur after time λ

• the lifetime λ of the Mondrian process used in con-
structing an explicit feature map φ for a Mondrian ker-
nel corresponds to the lifetime (inverse width) of the
Laplace kernel that it approximates

Running the Mondrian process from time 0 to some termi-
nal lifetime Λ thus sweeps through feature spaces approxi-
mating all Laplace kernels with lifetimes λ ∈ [0,Λ]. More
concretely, we start with λ = 0 and φ the feature map cor-
responding toM trivial partitions, i.e., for any data point x,
the vector φ(x) has length M and all entries set to the nor-
malizer M−1/2. As we increase λ, at discrete time points
new cuts appear in the M Mondrian samples used in con-
structing φ. Suppose that at some time λ, the partition cell
corresponding to the c-th feature in φ is split into two by
a new cut that first appeared at this time λ. We update the
feature map φ by removing the c-th feature and appending
two new features, one for each partition cell created by the
split. See Figure 4 for an example with M = 1.

x1

x2

x3

x4 cell 1

cell 4 cell 5

cell 3

x φ(x)T

x1 [0 1 0 1 0]
x2 [0 1 0 0 1]
x3 [0 0 1 0 0]
x4 [1 0 0 0 0]

Figure 4: A new cut (shown in thick blue) appeared, split-
ting cell c = 2 (cf. Figure 3) into two new cells c = 4 and
c = 5. The table shows the update to φ, with the removed
feature in gray italics and the two new features in bold blue.

This procedure allows us to approximate all Laplace ker-
nels with lifetimes λ ∈ [0,Λ] without having to resample
new feature spaces for each lifetime. The total computa-
tional cost is the same (up to a multiplicative constant) as
of constructing a single feature space just for the terminal
lifetime Λ. This is because a strictly binary tree with C(m)

leaves (partition cells in the m-th Mondrian sample at time
Λ) contains at most C(m) − 1 internal nodes (features that
had to be removed at some time point λ < Λ).

4.2 LINEAR LEARNER RETRAINING

Evaluating suitability of a lifetime (inverse kernel width) λ
requires training and evaluating a linear model in the fea-
ture space implied by φ. This can also be done more effi-
ciently than retraining a new model from scratch every time
a new cut is added and φ updated. We discuss the example
of ridge regression with exact solutions, and a general case
of models trainable using gradient descent methods.

4.2.1 Ridge regression

The MAP weights of the primal ridge regression problem
are ŵ = A−1ΦTy, where A := (ΦTΦ + δ2IC) is the
regularized feature covariance matrix and δ2 is the regular-
ization hyperparameter. Instead of inverting A, it is numer-
ically more stable to work with its Cholesky factor chol(A)
[Seeger, 2003]. Phrasing the problem as Bayesian linear re-
gression with, say, observation noise variance σ2

y = δ2 and
prior weights variance σ2

w = 1, we can also obtain the log
marginal likelihood L(λ) of the form

L(λ) = −‖y −Φŵ‖22
2δ2

− ‖ŵ‖
2
2

2
− 1

2
ln det A + const,

where the dependence on λ is implicit through φ.

When a new cut appears in one of theM Mondrian samples
and φ is updated by deleting the c-th feature and appending
two new ones, the corresponding update to the regularized
feature covariance matrix A is to delete its c-th row and c-th
column, and append two new rows and columns. Then both
A−1 and chol(A) can be appropriately updated in O(C2)
time, faster than O(C3) recomputation from scratch. Up-
dating the Cholesky factor when the c-th row and column
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are removed is slightly involved but can be achieved by
first permuting the rows and columns so that the ones to
be removed are the last ones [Seeger, 2004], after which
the Cholesky factor is updated by deleting its last row and
column. If C is the number of features at the terminal life-
time Λ, this O(C2) update is performed O(C) times, for
a total computational cost O(C3). Note that performing
the inversion or Cholesky factorization at just the terminal
lifetime Λ would have the same time complexity.

After updating A−1 or chol(A), the optimal weights ŵ can
be updated in O(C2 + N) time and the determinant of A
required for the marginal likelihood L(λ) can be obtained
from chol(A) as the squared product of its diagonal ele-
ments in O(C) time. Exploiting sparsity of φ, evaluating
the model on Ntest data points takes O(NtestM) time.

Finally, we note that computing the marginal likelihood
L(λ) for all λ ∈ [0,Λ] and combining it with a prior p(λ)
supported on [0,Λ] allows Bayesian inference over the ker-
nel width λ−1. We refer to Supplement B for more details.

4.2.2 Models trainable using gradient descent

Consider a linear model trained using a gradient descent
method. If (an approximation to) the optimal weight vector
w is available and then φ is updated by removing the c-th
feature and appending two new features, a natural way of
reinitializing the weights for subsequent gradient descent
iterations is to remove the c-th entry of w and append two
new entries, both set to the removed value (as points in the
split cell are partitioned into the two new cells, this pre-
serves all model predictions). Note that we have the free-
dom of choosing the number of gradient descent iterations
after each cut is added, and we can opt to only evaluate the
model (on a validation set, say) at several λ values on the
first pass through [0,Λ]. One iteration of stochastic gradi-
ent descent takes O(M) time thanks to sparsity of φ.

This efficient kernel width selection procedure can be espe-
cially useful with models where hyperparameters cannot be
tweaked by marginal likelihood optimization (e.g., SVM).

5 ONLINE LEARNING

In this section, we describe how the Mondrian kernel can
be used for online learning. When a new data point
xN+1 ∈ RD arrives, incorporating it intoM existing Mon-
drian samples (using the conditional Mondrian algorithm
discussed in section 2.4) can create 0 ≤ k ≤ M new non-
empty partition cells, increasing the dimensionality of the
feature map φ. We set the new features to 0 for all previous
data points x1, . . . ,xN .

In our running example of ridge regression, exact primal
updates can again be carried out efficiently. The inverse
A−1 or Cholesky factor chol(A) of the regularized feature

covariance matrix A can be updated in two steps:

1. extend A−1 or chol(A) to incorporate the k new fea-
tures (set to 0 for all existing data points) in O(C2)

2. incorporate the new data point xN+1, which is now a
simple rank-1 update on A, so A−1 or chol(A) can
again be updated efficiently in O(C2) time

We refer to Supplement C for more details.

With gradient descent trainable models, we maintain (an
approximation to) the optimal weights w directly. When a
new data point arrives, we expand the dimensionality of φ
as described above. The previously optimal weights can be
padded with 0’s in any newly added dimensions, and then
passed to the gradient descent method as initialization.

6 LINK TO MONDRIAN FOREST

We contrast Mondrian kernel with Mondrian forest [Laksh-
minarayanan et al., 2014, 2016], another non-linear learn-
ing method based on the Mondrian process. They both start
by sampling M independent Mondrians on RD to provide
M independent partitions of the data. However, these par-
titions are then used differently in the two models:

• In a Mondrian forest, parameters of predictive dis-
tributions in each tree are fitted independently of all
other trees. The prediction of the forest is the average
prediction among the M trees.
• With Mondrian kernel, the weights of all random fea-

tures are fitted jointly by a linear learning method.

LetC(m) count the leaves (non-empty partition cells) in the
m-th Mondrian sample and let C =

∑M
m=1 C

(m) be the to-
tal number of leaves. Let φ(m)

n := φ(m)(xn) ∈ RC(m)

be
the indicator of the partition cell in the m-th sample into
which the n-th data point falls (as in section 3.1). Also,
as in equation (2), let φn := φ(xn) ∈ RC be the normal-
ized concatenated feature encoding of the n-th data point.
Recall that each vector φn ∈ RC contains exactly M non-
zero entries, all of which equal the normalizer M−1/2.

For simplicity, we restrict our attention to ridge regression
in this section and compare the learning objective functions
of Mondrian kernel and Mondrian forest.

6.1 MONDRIAN KERNEL OBJECTIVE

The primal ridge regression problem in the feature space
implied by φ is

min
w∈RC

N∑

n=1

(yn −wTφn)2 + δ2‖w‖22.

Decomposing w = M−1/2[w(1)T · · ·w(M)T ]T , so that
each (rescaled) subvector w(m) corresponds to features
from them-th Mondrian, denoting by ŷ(m)

n := w(m)Tφ
(m)
n
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the “contribution” of the m-th Mondrian to the prediction
at the n-th data point, and writing loss(y, ŷ) := (y − ŷ)2,
the Mondrian kernel objective function can be restated as

min
w∈RC

N∑

n=1

loss

(
yn,

1

M

M∑

m=1

ŷ(m)
n

)
+ δ2‖w‖22. (3)

6.2 MONDRIAN FOREST OBJECTIVE

Assuming a factorizing Gaussian prior over the leaves in
each Mondrian tree (i.e., without the hierarchical smooth-
ing used by Lakshminarayanan et al. [2016]), the predictive
mean parameters w(m) in the leaves of the m-th Mondrian
tree are fitted by minimizing

min
w(m)∈RC(m)

N∑

n=1

(yn −w(m)Tφ(m)
n )2 + γ2‖w(m)‖22

where γ2 is the ratio of noise and prior variance in the pre-
dictive model. The parameters w(m) are disjoint for differ-
ent trees, so these M independent optimization problems
are equivalent to minimizing the average of the M indi-
vidual objectives. Writing ŷ

(m)
n := w(m)Tφ

(m)
n for the

m-th tree’s prediction at the n-th data point and concate-
nating the parameters w := M−1/2[w(1)T · · ·w(M)T ]T ,
the Mondrian forest objective can be stated as

min
w∈RC

N∑

n=1

1

M

M∑

m=1

loss(yn, ŷ(m)
n ) + γ2‖w‖22. (4)

6.3 DISCUSSION

Comparing (3) and (4), we see that subject to regularization
parameters (priors) chosen compatibly, the two objectives
only differ in the contribution of an individual data point n
to the total loss:

Mondrian kernel: loss

(
yn,

1

M

M∑

m=1

ŷ(m)
n

)

Mondrian forest:
1

M

M∑

m=1

loss(yn, ŷ(m)
n )

Specifically, the difference is in the order in which the aver-
aging 1

M

∑M
m=1 over Mondrian samples/trees and the non-

linear loss function are applied. In both models predictions
are given by ŷ = 1

M

∑M
m=1 ŷ

(m), so the Mondrian kernel
objective is consistent with the aim of minimizing empiri-
cal loss on the training data, while the forest objective min-
imizes average loss across trees, not the loss of the actual
prediction (when M > 1) [Ren et al., 2015].

Ren et al. [2015] address this inconsistency between learn-
ing and prediction by proposing to extend random forests
with a global refinement step that optimizes all tree param-
eters jointly, minimizing the empirical training loss. Our

approximation of the Laplace kernel via the Mondrian ker-
nel can be interpreted as implementing this joint parameter
fitting step on top of Mondrian forest, revealing a new con-
nection between random forests and kernel methods.

Mondrian
forest

Mondrian
kernel

Laplace
kernel

joint
fitting

M →∞

7 RELATED WORK

The idea of Rahimi and Recht [2007] to approximate shift-
invariant kernels by constructing random features has been
further developed by Le et al. [2013] and Yang et al. [2015],
providing a faster method of constructing the random fea-
tures when the input dimension D is high. The fast method
of Dai et al. [2014] can adapt the number of random fea-
tures, making it better-suited for streaming data. To the
best of our knowledge, these methods require random fea-
tures to be reconstructed from scratch for each new kernel
width value; however, our solution allows us to efficiently
learn this hyperparameter for the Laplace kernel.

Decision forests are popular for black-box classification
and regression thanks to their competitive accuracy and
computational efficiency. The most popular variants are
Breiman’s Random Forest [Breiman, 2001] and Extremely
Randomized Trees [Geurts et al., 2006]. Breiman [2000]
established a link between the Laplace kernel and random
forests with an infinite number of trees, but unlike our
work, made two additional strong assumptions, namely in-
finite data and a uniform distribution of features. From
a computational perspective, Shen et al. [2006] approxi-
mated evaluation of an isotropic kernel using kd-trees, re-
ducing computational complexity as well as memory re-
quirements. Davies and Ghahramani [2014] constructed
‘supervised’ kernels using random forests and demon-
strated that this can lead to linear-time inference. We refer
to [Scornet, 2015] for a recent discussion on the connection
between decision forests and kernel methods.

A key difference between decision forests and kernel meth-
ods is whether parameters are fit independently or jointly.
In decision forests, the leaf node parameters for each tree
are fit independently, whereas the weights of random fea-
tures are fit jointly. Scornet [2015] shows that random
forests can be interpreted as adaptive kernel estimates and
discusses the theoretical properties of fitting parameters
jointly. Ren et al. [2015] propose to extend random forests
with a global refinement step, optimizing all tree parame-
ters jointly to minimize empirical training loss.

The proposed Mondrian kernel establishes a link between
Mondrian trees and Laplace kernel for finite data, without
any assumptions on the distribution of the features. Unlike
prior work, we exploit this connection to construct an adap-
tive random feature approximation and efficiently learn the
kernel width.
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8 EXPERIMENTS

We conducted three sets of experiments, with these goals:

1. verify that Mondrian kernel approximates the Laplace
kernel, and compare to other random feature genera-
tion schemes (Section 8.1);

2. demonstrate usefulness of our efficient kernel width
selection procedure, showing that it can quickly learn
a suitable kernel width from data (Section 8.2); and

3. empirically compare the Mondrian kernel and Mon-
drian forests, supporting the insight into their relation-
ship from Section 6 (Section 8.3).

With the exception of two experiments on synthetic data,
we carried out our evaluation on the CPU dataset from
[Rahimi and Recht, 2007], containing N = 6554 train-
ing and Ntest = 819 test points with D = 21 attributes.
Note that the CPU dataset is an adversarial choice here, as
Rahimi and Recht [2007] report that random Fourier fea-
tures perform better than binning schemes on this task. In
all experiments, the ridge regularization constant was set to
δ2 = 10−4, the value used by Rahimi and Recht [2007],
and the primal optimization problems were solved using
stochastic gradient descent.

8.1 LAPLACE KERNEL APPROXIMATION

First we examined the absolute kernel approximation er-
ror |k∞(·, ·) − kM (·, ·)| directly. To this end, we sam-
pled N = 100 data points uniformly at random in the
unit square [0, 1]2 and computed the maximum absolute er-
ror over all N2 pairs of points. The Laplace kernel k∞
and Mondrian kernels kM had a common lifetime (inverse
width) λ = 10, so that several widths fit into the input do-
main [0, 1]2. We repeated the experiment 5 times for each
value of M , showing the results in Figure 5. We plot the
maximum error against the numberM of non-zero features
per data point, which is relevant for solvers such as Pe-
gasos SVM [Shalev-Shwartz et al., 2007], whose running
time scales with the number of non-zero features per data
point. Under this metric, the Mondrian kernel and Ran-
dom binning converged to the Laplace kernel faster than
random Fourier features, showing that in some cases they
can be a useful option. (The error of Random Fourier fea-
tures would decrease faster when measured against the to-
tal number of features, as Mondrian kernel and Random
binning generate sparse feature expansions.)

Second, we examined the approximation error indirectly
via test set error on the CPU dataset. We repeated the ex-
periment 5 times for each value of M and show the results
in Figure 6. Even though Fourier features are better suited
to this task, for a fast approximation with few (M < 15)
non-zero features per data point, random binning and Mon-
drian kernel are still able to outperform the Fourier features.
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Figure 5: Maximum absolute kernel approximation error
on all pairs of N = 100 data points in [0, 1]2.
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Figure 6: Test set error on the CPU dataset. The horizontal
line at 3.1% indicates the error achieved with an exact, but
expensive computation using the Laplace kernel.

8.2 FAST KERNEL WIDTH LEARNING

First, using a synthetic regression dataset generated from a
Laplace kernel with known ground truth lifetime λ0 = 10,
we verified that the lifetime could be recovered using our
kernel width selection procedure from Section 4. To this
end, we let the procedure run until a terminal lifetime Λ =
100 and plotted the error on a held-out validation set as a
function of the lifetime λ. The result in Figure 7 shows that
the ground truth kernel lifetime λ0 = 10 was recovered
within an order of magnitude by selecting the lifetime λ̂
minimizing validation set error. Moreover, this value of λ̂
led to excellent performance on an independent test set.
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Figure 7: Recovering the ground truth lifetime λ0 = 10 by
selecting the value λ̂ ≈ 19 minimizing validation set error.
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Figure 8: Validation set error as a function of computation
time. Even though Fourier features are better suited to the
CPU dataset [Rahimi and Recht, 2007] and eventually out-
perform the Mondrian kernel, the latter discovers suitable
kernel widths at least an order of magnitude faster.

Second, we evaluated our kernel width selection procedure
on the CPU dataset in order to demonstrate its practical use-
fulness. While the Mondrian kernel allows to efficiently
sweep through lifetimes λ, Fourier features and random
binning need to be reconstructed and retrained for each at-
tempted lifetime value. We started the Fourier features and
random binning at λ = 1, and in each step, we either dou-
bled the maximum lifetime or halved the minimum lifetime
considered so far, based on which direction seemed more
promising. Once a good performing lifetime was found,
we further optimized using a binary search procedure. All
schemes were set to generate M = 350 non-zero features
per datapoint. Figure 8 shows the performance of each
scheme on a held-out validation set as a function of com-
putation time. The result suggests that our kernel width
learning procedure can be used to discover suitable life-
times (inverse kernel widths) at least an order of magnitude
faster than random Fourier features or random binning.

8.3 MONDRIAN KERNEL VS FOREST

We compared the performance of Mondrian kernel and
“Mondrian forest” (quotes due to omission of hierarchical
smoothing) based on the sameM = 50 Mondrian samples,
using the CPU dataset and varying the lifetime λ. Recall
that higher values of λ lead to more refined Mondrian par-
titions, allowing more structure in the data to be modeled,
but also increasing the risk of overfitting. Figure 9 shows
that Mondrian kernel exploits the joint fitting of parameters
corresponding to different trees and achieves a lower test
error at lower lifetime values, thus producing a more com-
pact solution based on simpler partitions. Figure 10 shows
the parameter values learned by Mondrian kernel and Mon-
drian forest at the lifetime λ = 2 × 10−6. The distribu-
tion of weights learned by Mondrian kernel is more peaked
around 0, as the joint fiting allows achieving more extreme
predictions by adding together several smaller weights.
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Figure 9: Comparison of Mondrian kernel and Mondrian
forest models based on the same set of Mondrian samples.
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Figure 10: Weights learned by Mondrian forest and Mon-
drian kernel at the lifetime λ = 2× 10−6 in Figure 9.

9 CONCLUSION

We presented the Mondrian kernel, a fast approximation
to the Laplace kernel that admits efficient kernel width se-
lection. When a different kernel or a different approxima-
tion is used, our procedure can provide a fast and simple
way of initializing the kernel width for further optimiza-
tion. While a Gaussian kernel is often considered a default
choice, in many situations it imposes an inappropriately
strong smoothness assumption on the modelled function
and the Laplace kernel may in fact be a preferable option.

Our approach revealed a novel link between the Mondrian
process and the Laplace kernel. We leave the discovery of
similar links involving other kernels for future work.
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Abstract

We propose a new algorithmic framework for
sequential hypothesis testing with i.i.d. data,
which includes A/B testing, nonparametric
two-sample testing, and independence testing
as special cases. It is novel in several ways:
(a) it takes linear time and constant space to
compute on the fly, (b) it has the same power
guarantee (up to a small factor) as a non-
sequential version of the test with the same
computational constraints, and (c) it accesses
only as many samples as are required – its stop-
ping time adapts to the unknown difficulty of
the problem. All our test statistics are con-
structed to be zero-mean martingales under the
null hypothesis, and the rejection threshold is
governed by a uniform non-asymptotic law of
the iterated logarithm (LIL). For nonparamet-
ric two-sample mean testing, we also provide a
finite-sample power analysis, and the first non-
asymptotic stopping time analysis for this class
of problems. We verify our predictions for type
I and II errors and stopping times using simu-
lations.

1 INTRODUCTION

Nonparametric statistical decision theory poses the prob-
lem of making a decision between a null (H0) and alter-
nate (H1) hypothesis over a dataset with the aim of con-
trolling both false positives and false negatives (in statis-
tics terms, maximizing power while controlling type I er-
ror), all without making assumptions about the distribu-
tion of the data being analyzed. Such hypothesis testing
is based on a “stochastic proof by contradiction” – the
null hypothesis is thought of by default to be true, and
is rejected only if the observed data are statistically very
unlikely under the null.

There is increasing interest in solving such problems in
a “big data” regime, in which the sample size N can
be huge. We present a sequential testing framework for
these problems that is particularly suitable for two related
scenarios prevalent in many applications:

1) The dataset is extremely large and high-
dimensional, so even a single pass through it
is prohibitive.

2) The data is arriving as a stream, and decisions must
be made with minimal storage.

Sequential tests have long been considered strong in
such settings. Such a test accesses the data in an on-
line/streaming fashion, assessing after every new data-
point whether it then has enough evidence to reject the
null hypothesis. However, prior work tends to be univari-
ate or parametric or asymptotic, while we are the first to
provide non-asymptotic guarantees on multivariate non-
parametric problems.

To elaborate on our motivations, suppose we have a gi-
gantic amount of data from each of two unknown dis-
tributions, enough to detect even a minute difference in
their means µ1 − µ2 if it exists. Further suppose that,
unknown to us, deciding whether the means are equal is
actually statistically easy (|µ1 − µ2| is large), meaning
that one can conclude µ1 6= µ2 with high confidence by
just considering a tiny fraction of the dataset. Can we
take advantage of this, despite our ignorance of it?

A naive solution would be to discard most of the data
and run a batch (offline) test on a small subset. How-
ever, we do not know how hard the problem is, and hence
do not know how large a subset will suffice — sampling
too little data might lead to incorrectly not rejecting the
null, and sampling too much would unnecessarily waste
computational resources. If we somehow knew µ1 − µ2,
we would want to choose the fewest number of samples
(say n∗) to reject the null while controlling type I error
at some target level.
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1.1 OVERVIEW OF OUR APPROACH

Our sequential test solves the problem by automatically
stopping after seeing about n∗ samples, while still con-
trolling type I and II errors almost as well as the equiv-
alent linear-time batch test. Without knowing the true
problem difficulty, we are able to detect it with virtually
no computational or statistical penalty. We devise and
formally analyze a sequential algorithm for a variety of
problems, starting with a basic test of the bias of a coin,
and developing this to nonparametric two-sample mean
testing, with further extensions to general nonparametric
two-sample and independence testing.

Our proposed procedure only keeps track of a single
scalar test statistic, which we construct to be a zero-mean
random walk under the null hypothesis. It is used to test
the null hypothesis each time a new data point is pro-
cessed. A major statistical issue is dealing with the ap-
parent multiple hypothesis testing problem – if our algo-
rithm observes its first rejection of the null at time t, it
might raise suspicions of being a false rejection, because
t − 1 hypothesis tests were already conducted and the
t-th may have been rejected purely by chance. Applying
some kind of multiple testing correction, like the Bonfer-
roni or Benjamini-Hochberg procedure, is exceedingly
conservative and produces very suboptimal results over
a large number of tests. However, since the random walk
moves only a relatively small amount every iteration, the
tests are far from independent.

Formalizing this intuition requires adapting a classical
probability result, the law of the iterated logarithm (LIL),
with which we control for type I error (when H0 is true).
The LIL can be described as follows. Imagine tossing
a fair coin, assigning +1 to heads and −1 to tails, and
keeping track of the sum St of t coin flips. The LIL
asserts that asymptotically, St always remains bounded
between ±

√
2t ln ln t (and this “envelope” is tight).

When H1 is true, we prove that the sequential algo-
rithm does not need the whole dataset as a batch algo-
rithm would, but automatically stops after processing just
“enough” data points to detect H1, depending on the un-
known difficulty of the problem being solved. The near-
optimal nature of this adaptive type II error control (when
H1 is true) is again due to the remarkable LIL.

As alluded to earlier, all of our test statistics can be
thought of as random walks, which behave like St un-
der H0. The LIL then characterizes how such a random
walk behaves under H0 – our algorithm will keep ob-
serving new data since the random walk values will sim-
ply bounce around within the LIL envelope. Under H1,
the random walk is designed to have nonzero mean, and
hence will eventually stray outside the LIL envelope, at

which point the process stops and rejects the null hypoth-
esis.

For practically applying this argument to finite samples
and reasoning about type II error and stopping times, we
cannot use the classical asymptotic form of the LIL typ-
ically stated in textbooks such as Feller (1950), instead
adapting a finite-time extension of the LIL by Balsubra-
mani (2015). As we will see, the technical contribution
is necessary to investigate the stopping time, and control
type I and II errors non-asymptotically and uniformly
over all t.

In summary, our sequential testing framework has the
following properties:

(A) UnderH0, it controls type I error, using a finite-time
LIL computable in terms of empirical variance.

(B) Under H1, and with type II error controlled at
a target level, it automatically stops after see-
ing the same number of points as the correspond-
ing computationally-constrained oracle batch algo-
rithm.

(C) Each update takes O(d) time and constant memory.

In later sections, we develop formal versions of these
statements. The statistical observations, particularly the
stopping time, follow from the finite-time LIL through
simple concentration of measure arguments that extend
to very general sequential testing settings, but have seem-
ingly remained unobserved in the literature for decades
because of the finite-time LIL necessary to make them.

We begin by describing a sequential test for the bias of
a coin in Section 2. We then provide a sequential test
for nonparametric two-sample mean testing in Section 3.
We run extensive simulations in Section 4 to bear out
predictions of our theory, followed by a comparison to
the extensive existing literature on the subject. We also
include extensions to general nonparametric two-sample
and independence testing problems, in the appendices.
All proofs (and code for experiments) are deferred to the
full version (Balsubramani and Ramdas (2015)).

2 DETECTING THE BIAS OF A COIN

This section will illustrate how a simple sequential test
can perform statistically as well as the best batch test
in hindsight, while automatically stopping essentially as
soon as possible. We will show that such early stopping
can be viewed as quite a general consequence of concen-
tration of measure. Just for this section, let K represent
a constant that may take different values on each appear-
ance, but is always absolute.

Consider observing i.i.d. binary flips A1, A2, · · · ∈
{−1,+1} of a coin, which may be fair or biased towards
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1: Fix N and compute pN
2: if SN > pN then
3: Reject H0

4: else
5: Fail to reject H0

1: Fix N
2: for n = 1 to N do
3: Compute qn
4: if Sn > qn then
5: Reject H0 and return
6: Fail to reject H0

Figure 1: Batch (left) and sequential (right) tests.

+1, with P (Ai = +1) = ρ. We want to test for fairness,
detecting unfairness as soon as possible. Formulated as
a hypothesis test, we wish to test, for δ ∈ (0, 1

2 ]:

H0 : ρ =
1

2
vs. H1(δ) : ρ =

1

2
+ δ

For any sample size n, the natural test statistic for this
problem is Sn =

∑n
i=1Ai. Sn is a (scaled) simple

mean-zero random walk under H0. A standard hypothe-
sis testing approach to our problem is a basic batch test
involving SN , which tests for deviations from the null for
a fixed sample size N (Fig. 1, left). A basic Hoeffding
bound shows that

SN ≤
√
N

2
ln

1

α
=: pN

with probability ≥ 1 − α under the null, so type I error
is controlled at level α :

PH0(reject H0) = PH0(SN > pN ) ≤ e−2p2N/N = α.

2.1 A SEQUENTIAL TEST

The main test we propose will be a sequential test as in
Fig. 1. It sees examples as they arrive one at a time, up to
a large time N , the maximum sample size we can afford.
The sequential test is defined with a sequence of positive
thresholds {qn}n∈[N ]. We show how to set qn to justify
statements (A) and (B) in Section 1.1.

Type I Error. Just as the batch threshold pN is deter-
mined by controlling the type I error with a concentration
inequality, the sequential test also chooses q1, . . . , qN to
control the type I error at α:

PH0
(reject H0) = PH0

(∃n ≤ N : Sn > qn) ≤ α (1)

This inequality concerns the uniform concentration over
infinite tails of Sn, but what {qn}n∈[N ] satisfies it?
Asymptotically, the answer is governed by a founda-
tional result, the LIL:

Theorem 1 (Law of the iterated logarithm (Khinchin

(1924))). With probability 1, lim sup
n→∞

Sn√
n ln lnn

=
√

2.

The LIL says that qn should have a
√
n ln lnn asymp-

totic dependence on n, but does not specify its α depen-
dence.

Our sequential testing insights rely on a stronger non-
asymptotic LIL proved in (Balsubramani (2015), The-
orem 2): with probability at least 1 − α, we have

|Sn| ≤
√
Kn ln

(
lnn
α

)
=: qn simultaneously for all

n ≥ K ln( 4
α ) := n0. This choice of qn satisfies (1) for

n0 ≤ n ≤ N , and specifies the sequential test as in Fig.
1. (Choosing qn this way is unimprovable in all parame-
ters up to absolute constants (Balsubramani (2015))).

Type II Error. For practical purposes,
√

ln lnn ≤√
ln lnN can be treated as a small constant (even when

N = 1020,
√

ln lnN < 2). Hence, qN ≈ pN (more
discussion in the appendices), and the power is:

PH1(δ) (∃n ≤ N : Sn > qn) ≥ PH1(δ) (SN > qN ) (2)
≈ PH1(δ) (SN > pN ) (3)

So the sequential test is essentially as powerful as a batch
test with N samples (and similarly the nth round of the
sequential test is like an n-sample batch test).

Early Stopping. The standard motivation for using se-
quential tests is that they often require few samples to
reject statistically distant alternatives. To investigate this
with our working example, suppose N is large and the
coin is actually biased, with a fixed unknown δ > 0.
Then, if we somehow had full knowledge of δ when us-
ing the batch test and wanted to ensure a desired type II
error β < 1, we would use just enough samples n∗β(δ)
(written as n∗ in context):

n∗β(δ) = min
{
n : PH1(δ) (Sn ≤ pn) ≤ β

}
(4)

so that for all n ≥ n∗β(δ), since pn = o(n),

β ≥ PH1(δ) (Sn ≤ pn) = PH1(δ) (Sn − nδ ≤ pn − nδ)
≥ PH1(δ) (Sn − nδ ≤ −Knδ) (5)

Examining (5), note that Sn−nδ is a mean-zero random
walk. Therefore, standard lower bounds for the binomial
tail tell us that n∗β(δ) ≥ K ln(1/β)

δ2 suffices, and no test
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can statistically use much less than n∗β(δ) samples under
H1(δ) to control type II error at β.

How many samples does the sequential test use? The
quantity of interest is the test’s stopping time τ , which is
< N when it rejects H0 and N otherwise. In fact, the
expected stopping time is close to n∗ under any alternate
hypothesis:

Theorem 2. For any δ and any β > 0, there exist abso-
lute constants K1,K2 such that

EH1 [τ ] ≤
(

1 +
K1β

K2

ln 1
β

)
n∗β(δ)

Theorem 2 shows that the sequential test stops roughly
as soon as we could hope for, under any alternative δ,
despite our ignorance of δ! We will revisit these ideas
when presenting our two-sample sequential test later in
Section 3.1.

2.2 DISCUSSION

Before moving to the two-sample testing setting, we note
the generality of these ideas. Theorem 2 is proved for
biased coin flips, but it uses only basic concentration
of measure ideas: upper and lower bounds on the tails
of a statistic that is a cumulative sum incremented each
timestep. Many natural test statistics follow this scheme,
particularly those that can be efficiently updated on the
fly. Our main sequential two-sample test in the next sec-
tion does also.

Theorem 2 is notable for its uniformity over δ and β.
Note that qn (and therefore the sequential test) are inde-
pendent of both of these – we need only to set a target
type I error bound α. Under any alternative δ > 0, the
theorem holds for all β simultaneously. As β decreases,
n∗β(δ) of course increases, but the leading multiplicative

factor
(

1 + K1β
K2

ln 1
β

)
decreases. In fact, with an increas-

ingly stringent β → 0, we see that
EH1

[τ ]

n∗
→ 1; so the

sequential test in fact stops closer to n∗, and hence τ is
almost deterministically best possible. Indeed, the proof
of Theorem 2 also shows that PH1

(τ ≥ n) ≤ e−Knδ
2

,
so the probability of lasting n steps falls off exponen-
tially in n, and is therefore quite sharply concentrated
near the optimum n∗β(δ).

We formalize this precise line of reasoning completely
non-asymptotically in an even stronger high-dimensional
setting, in the analysis of our main two-sample test in the
next section.

3 TWO-SAMPLE MEAN TESTING

In this section, we present our main sequential
two-sample test. Assume that we have samples
X1, . . . , Xn, · · · ∼ P and Y1, . . . , Yn, · · · ∼ Q, with
P,Q being unknown arbitrary continuous distributions
on Rd with means µ1 = EX∼P [X], µ2 = EY∼Q[Y ],
and we need to test

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 (6)

Denote covariances ofP,Q by Σ1,Σ2 and Σ := 1
2 (Σ1+

Σ2). Define δ := µ1 − µ2 so that δ = 0 under
H0. Let Φ(·) denote the standard Gaussian CDF, and
[ln ln]+(x) := ln ln[max(x, ee)].

3.1 A LINEAR-TIME SEQUENTIAL TEST

Our sequential test follows the scheme in Fig. 1, so we
only need to specify a sequence of rejection thresholds
qn. To do this, we denote

hi = (X2i−1 − Y2i−1)>(X2i − Y2i).

and define our sequential test statistic as the following
stochastic process evolving with n:

Tn =
n∑

i=1

hi.

Under H0, E [hi] = 0, and Tn is a zero-mean random
walk.

Proposition 1. E [Tn] = E [h] = n‖δ‖2, and

var(Tn) = n var(h) = n(4 tr(Σ2) + 4δ>Σδ) =: nV0.

We assume – for now – that our data are bounded, i.e.

‖X‖, ‖Y ‖ ≤ 1/2,

so that by the Cauchy-Schwarz inequality, w.p. 1,

|Tn − Tn−1| = |(X2n−1 − Y2n−1)>(X2n − Y2n)| ≤ 1

Since Tn has bounded differences, it exhibits Gaussian-
like concentration under the null. We examine the cumu-
lative variance process of Tn under H0,

n∑

i=1

E
[
(Ti − Ti−1)2 | h1:(i−1)

]
=

n∑

i=1

var(hi) = nV0

Using this, we can control the behavior of Tn under H0.

Theorem 3 (Balsubramani (2015)). Take any ξ > 0.
Then with probability ≥ 1− ξ, for all n simultaneously,

|Tn| < C0(ξ) +

√
2C1nV0[ln ln]+(nV0) + C1nV0 ln

(
4

ξ

)
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where C0(ξ) = 3(e − 2)e2 + 2
(

1 +
√

1
3

)
ln
(

8
ξ

)
, and

C1 = 6(e− 2).

Unfortunately, we cannot use the theorem directly to get
computable deviation bounds for type I error control, be-
cause the covariance matrix Σ is unknown a priori. nV0

must instead be estimated on the fly as part of the sequen-
tial test, and its estimate must be concentrated tightly and
uniformly over time, so as not to present a statistical bot-
tleneck if the test runs for a long time. We prove such
a result, necessary for sequential testing, relating nV0 to
the empirical variance process V̂n =

∑
i h

2
i .

Lemma 4. With probability ≥ 1 − ξ, for all n simulta-
neously, there is an absolute constant C3 such that

nV0 ≤ C3(V̂n + C0(ξ))

Its proof uses a self-bounding argument and is in the Ap-
pendix. Now, we can combine these to prove a novel
uniform empirical Bernstein inequality to (practically)
establish concentration of Tn under H0.

Theorem 5 (Uniform Empirical Bernstein Inequality for
Random Walks). Take any ξ > 0. Then with probability
≥ 1− ξ, for all n simultaneously,

|Tn| < C0(ξ) +

√
2V̂ ∗n

(
[ln ln]+V̂ ∗n + ln

(
4

ξ

))

where V̂ ∗n := C3(V̂n + C0(ξ)), C0(ξ) = 3(e − 2)e2 +

2
(

1 +
√

1
3

)
ln
(

8
ξ

)
and C3 is an absolute constant.

Its proof follows immediately from a union bound on
Thm. 3 and Lem. 4. Thm. 5 depends on V̂n, which is
easily calculated by the algorithm on the fly in constant
time per iteration. Ignoring constants for clarity, Thm. 5
effectively implies that our sequential test from Figure 1
controls type I error at α by setting

qn ∝ ln

(
1

α

)
+

√√√√2V̂n ln

(
ln V̂n
α

)
(7)

Practically, we suggest using the above threshold with a
constant of 1.1 to guarantee type-I error approximately α
(this is all one often wants anyway, since any particular
choice of α = 0.05 is anyway arbitrary). This is what we
do in our experiments, with excellent success in simula-
tions. For exact or conservative control, consider using
a small constant multiple of the above threshold, such as
2.

The above sequential threshold is remarkable, because
within the practically useful and simple expression lies
a deep mathematical result – the uniform Bernstein LIL

effectively involves a union bound for the error proba-
bility over an infinite sequence of times. Any other naive
attempt to union bound the error probabilities for a possi-
bly infinite sequential testing procedure will be too loose
and hence too conservative. Furthermore, the classical
LIL is known to be asymptotically tight including con-
stants, and our non-asymptotic LIL is also tight up to
small constant factors.

This type-I error control with an implicit infinite union
bound surprisingly does not lead to a loss in power. In-
deed, our statistic possesses essentially the same power
as the corresponding linear-time batch two sample test,
and also stops early for easy problems. We make this
precise in the following two subsections.

3.2 A LINEAR-TIME BATCH TEST

Here we study a simple linear-time batch two-sample
mean test, following the template in Fig. 1. Consider

the linear-time statistic TN =

N∑

i=1

hi, where, as before,

hi = (x2i−1 − y2i−1)>(x2i − y2i). Note that the his are
also i.i.d., and TN relies on 2N data points from each
distribution.

Let VN0, VN1 be var(TN ) = N var(h) under H0, H1

respectively. Recalling Proposition 1:

VN0 := NV0 := 4N tr(Σ2),

VN1 := NV1 := N(4 tr(Σ2) + 4δ>Σδ).

Then since TN is a sum of i.i.d. variables, the central
limit theorem (CLT) implies that (where d−→ is conver-
gence in distribution)

TN√
VN0

d−→H0
N (0, 1) (8a)

TN −N‖δ‖2√
VN1

d−→H1 N (0, 1) (8b)

Based on this information, our test rejects the null hy-
pothesis whenever

TN >
√
VN0 zα, (9)

where zα is the 1 − α quantile of the standard normal
distribution. So Eq. (8a) ensures that

PH0

(
TN√
VN0

> zα

)
≤ α,

giving us type I error control under H0.

In practice, we may not know VN0, so we standardize
the statistic using the empirical variance – since we as-
sume N is large, these scalar variance estimates do not
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change the effective power analysis. For non-asymptotic
type I error control, we can use an empirical Bernstein
inequality (Maurer and Pontil, 2009, Thm. 11), based
on an unbiased estimator of VN . Specifically, the empir-
ical variance of his (V̂N ) can be used to reject the null
whenever

TN >

√
2V̂N ln(2/α) +

7N ln(2/α)

3(N − 1)
. (10)

Ignoring constants for clarity, the empirical Bernstein in-
equality effectively suggests that the batch test from Fig-
ure 1 will have type I error control of α on setting thresh-
old

pN ∝ ln

(
1

α

)
+

√
2V̂N ln

(
1

α

)
(11)

For immediate comparison, we copy below the expres-
sion for qn from Eq. (7):

qn ∝ ln

(
1

α

)
+

√√√√2V̂n

(
ln

ln V̂n
α

)
.

This similarity explains the optimal power and stopping
time properties, detailed in the next subsection.

One might argue that if N is large, then V̂N ≈ VN , and
in this case we can simply derive the (asymptotic) power
of the batch test given in Eq.(9) as

PH1

(
TN√
VN0

> zα

)
(12)

= PH1

(
TN −N‖δ‖2√

VN1

> zα

√
VN0

VN1
− N‖δ‖2√

VN1

)

= Φ

( √
N‖δ‖2√

8 tr(Σ2) + 8δ>Σδ
− zα

√
tr(Σ2)

tr(Σ2) + δ>Σδ

)

Note that the second term is a constant less than zα. As
a concrete example, when Σ = σ2I , and we denote the
signal-to-noise ratio as Ψ := ‖δ‖

σ , then the power of the

linear-time batch test is at least Φ
( √

NΨ2
√

8d+8Ψ2
− zα

)
.

3.3 POWER AND STOPPING TIME OF
SEQUENTIAL TEST

The striking similarity of Eq. (11) and Eq. (7), mentioned
in the previous subsection, is not coincidental. Indeed,
both of these arise out of non-asymptotic versions of
CLT-like control and LIL-like control, and we know that
in the asymptotic regime for Bernoulli coin-flips, CLT
thresholds and LIL threshold differ by just ∝

√
ln lnn

factors. Hence, it is not surprising to see the empirical
Bernstein LIL match empirical Bernstein thresholds up

to ∝
√

ln ln V̂n factors. Since the power of the sequen-
tial test is at least the probability of rejection at the very
last step, and since

√
ln lnn < 2 even for n = 1020, the

power of the linear-time sequential and batch tests is es-
sentially the same. However, a sequential test that rejects
at the last step is of little practical interest, bringing us to
the issue of early stopping.

Early Stopping. The argument is again identical to
that Section 2, proving that EH1

[τ ] is nearly optimal,
and arbitrarily close to optimal as β tends to zero. Once
more note that the “optimal” above refers to the per-
formance of the oracle linear-time batch algorithm that
was informed about the right number of points to sub-
sample and use for the one-time batch test. Formally,
let n∗β(δ) denote this minimum sample size for the two-
sample mean testing batch problem to achieve a power
β, the ∗ indicating that this is an oracle value, unknown
to the user of the batch test. From Eq. (12), it is clear
that for N ≥ 8Tr(Σ2)+8δTΣδ

‖δ‖4 (zβ + zα)2, the power
becomes at least β. In other words,

n∗β(δ) ≤ Tr(Σ2) + δTΣδ

‖δ‖4 8(zβ + zα)2 (13)

Theorem 6. Under H1, the sequential algorithm of
Fig. 1 using qn from Eq. (7) has expected stopping time
∝ n∗β(δ).

For clarity, we simplify (7) and (11) by dropping the ini-
tial ln

(
1
α

)
additive term since it is soon dominated by

the second term and does not qualitatively affect the con-
clusion.

3.4 DISCUSSION

This section’s arguments have given an illustration of the
flexibility and great generality of the ideas we used to test
the bias of the coin. In the two-sample setting, we sim-
ply design the statistic TN =

∑n
i=1 hi to be a mean-zero

random walk under the null. As in the coin’s case, the
LIL controls type I error, and the remaining arguments
are identical because of the common concentration prop-
erties of all random walks.

Our test statistic TN is chosen with several considera-
tions in mind. First, the batch test is linear-time in the
sample complexity, so we are comparing algorithms with
the same computational budget, on a fair footing. There
exist batch tests using U-statistics that have higher power
than ours (Reddi et al. (2015)) for a given N , but they
use more computational resources (O(N2) rather than
O(N)).

Also, the batch statistic is a sum of random increments,
a common way to write many hypothesis tests, and one
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that can be computed on the fly in the sequential setting.
Note that TN is a scalar, so our arguments do not change
with d, and we inherit the favorable high-dimensional
statistical performance of the statistic; Reddi et al. (2015)
has more relevant discussion. The statistic also has been
shown to have powerful generalizations in the recent
statistics literature, which we discuss in the appendices.

Though we assume data scaled to have norm 1
2 for con-

venience, this can be loosened. Any data with bounded
norm B > 1

2 can be rescaled by a factor 1
B just for

the analysis, and then our results can be used. This re-
sults in an empirical Bernstein bound like Thm. 5, but

of order O
(
C0(ξ) +

√
V̂n ln

(
ln(BV̂n)

ξ

))
. The depen-

dence on B is very weak, and is negligible even when
B = poly(d).

In fact, we only require control of the higher moments
(e.g. by Bernstein conditions, which generalize bound-
edness and sub-Gaussianity conditions) to prove the non-
asymptotic Bernstein LIL in Balsubramani (2015), ex-
actly as is the case for the usual Bernstein concentra-
tion inequalities for averages (Boucheron et al. (2013)).
Therefore, our basic arguments hold for unbounded in-
crements hi as well. In fact, the LIL itself, as well as
the non-asymptotic LIL bounds of Balsubramani (2015),
apply to martingales – much more general versions of
random walks capable of modeling dependence on the
past history. Our ideas could conceivably be extended to
this setting to devise more data-dependent tests, which
would be interesting future work.

4 EMPIRICAL EVALUATION

In this section, we evaluate our proposed sequential test
on synthetic data, to validate the predictions made by our
theory concerning its type I/II errors and the stopping
time.

We simulate data from two multivariate Gaussians (d =
10), motivated by our discussion at the end of Sec-
tion 3.2: each Gaussian has covariance matrix Σ =
σ2Id, one has mean µ1 = 0d and the other has µ2 =
(δ, 0, 0, . . . , 0) ∈ Rd for some δ ≥ 0. We keep σ = 1
here to keep the scale of the data roughly consistent with
the biased-coin example, though we find the scaling of
the data makes no practical difference, as we discussed.

4.1 RUNNING THE TEST AND TYPE I ERROR

Like typical hypothesis tests, ours is designed to con-
trol type I error. When implementing our algorithmic
ideas, it suffices to set qn as in (7), where the only un-
known parameters are proportionality constants C,C0:

qn ∝ C0 +

√
CV̂n

(
ln ln V̂n

α

)
. The theory suggests

that C,C0 are absolute constants, and prescribes upper
bounds for them, which can conceivably be loose be-
cause of the analytic techniques used (as Balsubramani
(2015) discusses). On the other hand, in the asymp-
totic limit the bounds become tight; the empirical V̂n
converges quickly to its mean Vn, and we know from
second-moment versions of the LIL that C =

√
2 and

C0 = 0 are correct. However, as we consider smaller
finite times, that bound must relax (at the extremely low
t = 1 or 2 when flipping a fair coin, for instance).

Nevertheless, we find that in practice, for even moderate
sample sizes like the ones we test here, the same reason-
able constants suffice in all our experiments: C =

√
2

and C0 = ln( 1
α ), with C0 following Thm. 5 and similar

fixed-sample Bennett bounds (Boucheron et al. (2013);
Balsubramani (2015); also see the appendices). The sit-
uation is exactly analogous to how the Gaussian approx-
imation is valid for even moderate sample sizes in batch
testing, making possible a huge variety of common tests
that are asymptotically and empirically correct with rea-
sonable constants to boot.

To be more specific, consider the null hypothesis for
the example of the coin bias testing given earlier; these
fair coin flips are the most anti-concentrated possible
bounded steps, and render our empirical Bernstein ma-
chinery ineffective, so they make a good test case. We
choose C and C0 as above, and plot the cumulative prob-
ability of type I violations PrH0

(τ ≤ n) up to time n for
different α (where τ is the stopping time of the test), with
the results in Fig. 2. To control type I error, the curves
need to be asymptotically upper-bounded by the desired
α levels (dotted lines). This does not appear true for our
recommended settings of C,C0, but the figure still indi-
cates that type I error is controlled even for very high n
with our settings. A slight further raise in C beyond

√
2

suffices to guarantee much stronger control.

Fig. 2 also seems to contain linear plots, which we can-
not fully explain. We conjecture it is related to the stan-
dard proof of the classical LIL, which divides time into
epochs of exponentially growing size (Feller (1950)).
For more on provable correctness with low C, see the
appendices.

4.2 TYPE II ERROR AND STOPPING TIME

Now we verify the results at the heart of the paper – uni-
formity over alternatives δ of the type II error and stop-
ping time properties.

Fig. 3 plots the power of the sequential test PH1(δ)(τ <
N) against the maximum runtime N using the Gaussian
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Figure 2: PrH0
(τ ≤ n) for different α, on biased coin.

Dotted lines of corresponding colors are the target levels
α.

Figure 3: Power vs. ln(N) for different δ, on Gaussians.
Dashed lines represent power of batch test with N sam-
ples.

data, at a range of different alternatives δ; the solid and
dashed lines represent the power of the batch test (11)
with N samples, and the sequential test with maximum
runtimeN . As we might expect, the batch test has some-
what higher power for a given sample size, but the se-
quential test consistently performs well compared to it.
The role of N here is basically to set a desired tolerance
for error; increasing N does not change the intermediate
updates of the algorithm, but does increase the power by
potentially running the test for longer. So each curve in
Fig. 3 illustrates the statistical tradeoff inherent in hy-
pothesis testing against a fixed simple alternative, but the
great advantage of our sequential test is in achieving all
of them simultaneously with the same algorithm.

To highlight this point, we examine the stopping time
compared to the batch test for the Gaussian data, in Fig.
4. We see that the distributions of ln(τ) are all quite
concentrated, and that their medians (marked) fit well to

a slope-4 line, showing the predicted 1
δ4 dependence on

δ. Some more experiments are in the appendices.

Figure 4: Distribution of log1.25(τ) for δ ∈ {0.5(1.25)c :
c ∈ {7, 6, . . . , 0}}, so that the abscissa values
{log1.25( 1

δ )} are a unit length apart. Dashed line has
slope 4.

5 RELATED WORK

Parametric or asymptotic methods. Our statements
about the control of type I/II errors and stopping times
are very general, following up on early sequential anal-
ysis work. Most sequential tests operate in the Wald’s
framework expounded in Wald (1945). In a seminal line
of work, Robbins and colleagues delved into sequen-
tial hypothesis testing in an asymptotic sense Robbins
(1985). Apart from being asymptotic, their tests were
most often for simple hypotheses (point nulls and alter-
natives), were univariate, or parametric (assuming Gaus-
sianity or known density). That said, two of their most
relevant papers are Robbins (1970) and Darling and Rob-
bins (1967), which discuss statistical methods related to
the LIL. They give an asymptotic version of the argument
of Section 2, using it to design sequential Kolmogorov-
Smirnov tests with power one. Other classic works that
mention using the LIL for testing various simple or uni-
variate or parametric problems include Darling and Rob-
bins (1968a,b); Lai (1977); Lerche (1986). These all op-
erate in the asymptotic limit in which the classic LIL can
be used to set qN .

For testing a simple null against a simple alternative, the
sequential probability ratio test (SPRT) was proved to
be optimal by the seminal work of Wald and Wolfowitz
(1948), but this applies when both the null and alternative
have a known parametric form. The same authors also
suggested a univariate nonparametric two-sample test in
Wald and Wolfowitz (1940), but presumably found it un-
clear how to combine these two lines of work.
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Bernstein-based methods. Finite-time uniform LIL-
type concentration tools from Balsubramani (2015) are
crucial to our analysis, and we adapt them in new ways;
but novelty in this respect is not our primary focus here,
because less recent concentration bounds can also be
used to yield similar results. It is always possible to use
a weighted union bound (allocating failure probability ξ
over time as ξn ∝ ξ

n2 ) over fixed-n Bernstein bounds,

resulting in a deviation bound of O
(√

Vn ln n
ξ

)
. A

more advanced “peeling” argument, dividing time n into
exponentially growing epochs, improves the bound to
O
(√

Vn ln lnn
ξ

)
(e.g. in Jamieson et al. (2014)). This

suffices in many simple situations, but in general is still
arbitrarily inferior to our bound of O

(√
Vn ln ln Vn

ξ

)
,

precisely in the case Vn � n in which we expect
the second-moment Bernstein bounds to be most use-
ful over Hoeffding bounds. A yet more intricate peel-
ing argument, demarcating the epochs by exponential
intervals in Vn rather than n, can be used to achieve
our iterated-logarithm rate, in conjunction with the well-
known second-order uniform martingale bound due to
Freedman (1975). This serves as a sanity check on
the non-asymptotic LIL bounds of Balsubramani (2015),
where it is also shown that these bounds have the best
possible dependence on all parameters. However, it can
be verified that even a suboptimal uniform concentration
rate like O

(√
Vn ln Vn

ξ

)
would suffice for the optimal

stopping time properties of the sequential test to hold,
with only a slight weakening of the power.

Bernstein inequalities that only depend on empirical vari-
ance have been used for stopping algorithms in Hoeffd-
ing races (Loh and Nowozin (2013)) and other even more
general contexts (Mnih et al. (2008)). This line of work
uses the empirical bounds very similarly to us, albeit in
the nominally different context of direct estimation of
a mean. As such, they too require uniform concentra-
tion over time, but achieve it with a crude union bound
(failure probability ξn ∝ ξ

n2 ), resulting in a deviation

bound of O
(√

V̂n ln n
ξ

)
. Applying the more advanced

techniques above, it may be possible to get our optimal
concentration rate, but to our knowledge ours is the first
work to derive and use uniform LIL-type empirical Bern-
stein bounds.

Practical Usage. To our knowledge, implementing se-
quential testing in practice has previously invariably re-
lied upon CLT-type results patched together with heuris-
tic adjustments of the CLT threshold (e.g. the widely-
used scheme for clinical trials of Peto et al. (1977) has
an arbitrary conservative choice of qn = 0.001 through
the sequential process and qN = 0.05 = α at the last

datapoint). These perform as loose functional versions
of our uniform finite-sample LIL upper bound, though
without theoretical guarantees. In general, it is unsound
to use an asymptotically normal distribution under the
null at stopping time τ – the central limit theorem (CLT)
applies to any fixed time t, but it may not apply to a
random stopping time τ (see the random-sum CLT of
Anscombe (1952), and Gut (2012) and references). This
has caused myriad practical complications in implement-
ing such tests (see Lai et al. (2008), Section 4). One of
our contributions is to rigorously derive a directly usable
finite-sample sequential test, in a way we believe can be
extended to a large variety of testing problems.

We emphasize that there are several advantages to our
proposed framework and analysis which, taken together,
are unique in the literature. We tackle the multivari-
ate nonparametric (possibly even high-dimensional) set-
ting, with composite hypotheses. Moreover, we not only
prove that the power is asymptotically one, but also de-
rive finite-sample rates that illuminate dependence of
other parameters on β, by considering non-asymptotic
uniform concentration over finite times. The fact that it
is not provable via purely asymptotic arguments is why
our optimal stopping property has gone unobserved for a
wide range of tests, even as basic as the biased coin. In
our more refined analysis, it can be verified (Thm. 2) that
the stopping time diverges to∞ when the required type
II error→ 0, i.e. power→ 1.

6 CONCLUSION

We have presented a sequential scheme for multivariate
nonparametric hypothesis testing against composite al-
ternatives, which comes with a full finite-sample anal-
ysis in terms of on-the-fly estimable quantities. Its de-
sirable properties include type I error control by con-
sidering finite-time LIL concentration; near-optimal type
II error compared to linear-time batch tests, due to the
iterated-logarithm term in the LIL; and most importantly,
essentially optimal early stopping, uniformly over a large
class of alternatives. We presented some simple applica-
tions in learning and statistics, but our design and anal-
ysis techniques are general, and their extensions to other
settings are of continuing future interest.
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Abstract

We consider the problem of budget (or other resource)
allocation in sequential decision problems involving a
large number of concurrently running sub-processes,
whose only interaction is through their consumption
of budget. Our first contribution is the introduction of
budgeted MDPs (BMDPs), an MDP model in which
policies/values are a function of available budget, (c.f.
constrained MDPs which are solved given a fixed bud-
get). BMDPs allow one to explicitly trade off allo-
cated budget and expected value. We show that op-
timal value functions are concave, non-decreasing in
budget, and piecewise-linear in the finite horizon case,
and can be computed by dynamic programming (and
support ready approximation). Our second contribu-
tion is a method that exploits BMDP solutions to allo-
cate budget to a large number of independent BMDPs,
coupled only by their common budget pool. The prob-
lem can be cast as a multiple-choice knapsack problem,
which admits an efficient, optimal greedy algorithm.
Empirical results in an online advertising domain con-
firm the efficacy of our methods.

1 INTRODUCTION

Markov decision processes (MDPs) [25, 7] are used widely
throughout AI; but in many domains, actions consume lim-
ited resources and policies are subject to resource con-
straints, a problem often formulated using constrained
MDPs (CMDPs) [2]. MDPs and CMDPs are even more
complex when multiple independent MDPs, drawing from
the same resources, must be controlled jointly, since the
state and action spaces are formed by the cross-product of
the individual subprocesses [23]. Online advertising is a
domain with such properties: Archak et al. [4] propose a
constrained MDP model for the optimal allocation of ad-
vertiser budget over an extended horizon that captures the
sequential effect of multiple ads on a user’s behavior.

Archak et al. [4] assume a fixed, predetermined budget for
each user, and focus on optimally advertising to a user sub-
ject to this budget constraint. This formulation, however,
does not determine a suitable budget, nor does it allow for
making budget tradeoffs across different users, user types,

or campaigns (e.g., different MDPs or different states of
the same MDP). With this as motivation, we address these
challenges by: (a) introducing budgeted MDPs (BMDPs),
which are solved as a function of the (expected) budget
available; and (b) addressing budget tradeoffs across users
using a weakly coupled MDP formulation [23] and opti-
mally solving the allocation problem with a greedy algo-
rithm that exploits local user BMDP solutions.

Our first contribution lies in the formulation and solution
of BMDPs. The usual approach to resource constraints is
CMDPs [2, 13]. While valuable models, CMDPs require
a priori specification of fixed “budget” (e.g., a daily per-
customer cap on ad spend). By contrast, BMDPs compute
optimal policies and value functions (VFs) as a function of
the budget made available. Effectively, we solve a CMDP
for all possible budget levels, allowing one to explore the
tradeoff between (optimal) expected value and allocated
budget. Treating the budget b as a parameter, we show that,
for any fixed state s of the BMDP, the optimal VF V (s, b) is
concave, non-decreasing in b; and for any finite horizon the
VF is piecewise-linear and concave (PWLC), defined by a
finite set of useful resource levels. We derive a dynamic
programming (DP) algorithm to compute this PWLC rep-
resentation that supports approximation.

Our second contribution is a method for piecing together
BMDP solutions to determine a joint policy over a set of
BMDPs (e.g., for different users), subject to a global re-
source/budget constraint. Since the MDP is weakly cou-
pled [23]—specifically, the individual customer BMDPs
evolve independently, linked only through the consumption
of shared budget—our aim is to determine an allocation of
budget to each customer, which is turn dictates the optimal
policy for that customer. We show that the budget allo-
cation problem can be formulated as a (multi-item variant
of a) multiple-choice knapsack problem (MCKP) [29], for
which a straightforward greedy method can be used to con-
struct the optimal budget allocation. We also discuss cir-
cumstances in which the dynamic, online reallocation of
budget may be valuable, an approach rendered viable by
the real-time nature of our method.
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2 MDPS FOR BUDGET ALLOCATION

We describe an MDP model for engagement with users
from a large, heterogeneous population. We use online
advertising as our main motivation, though our techniques
apply to the control of any large, distributed set of fully ob-
servable MDPs where actions consume limited resources.
We abstract away a number of factors that arise in realistic
ad domains to focus on budget allocation itself (e.g., partial
observability and hidden state, control lag, incentives).

2.1 A WEAKLY COUPLED FORMULATION

We assume an advertiser has a fixed budget to spend on ad-
vertising actions for a target user population. Each action
has a cost and is targeted to a specific user (e.g., a search,
in-app or web page ad). Users respond stochastically in a
way that may depend on their features (e.g., demograph-
ics), past actions (e.g., ad exposures) and past responses
(e.g., click/purchase behavior).

Following Archak et al. [4], we model this as an MDP. We
have a finite set of users i ≤ M , who may be segmented
into types reflecting static, observable characteristics that
influence their responses. For ease of exposition, we as-
sume all users have the same type; but the extension to mul-
tiple types is straightforward. We have a finite set S of user
states j ≤ N . At any time, user i is some state s[i] ∈ S.
Let S = SM be the joint state space, with the joint state
denoted s = 〈s[1], . . . , s[M ]〉 ∈ S. A user’s state cap-
tures all relevant characteristics and history that influence
her behavior. S may be small, or quite large in some con-
texts (e.g., the most recent search keyword on which the
advertiser bid, or sufficient statistics summarizing histori-
cal interactions and user responses). A finite set A of ad-
vertising actions is available. At each stage, the advertiser
selects an action a[i] to apply to user i. Letting A = AM ,
a joint action is a = 〈a[1], . . . , a[M ]〉 ∈ A.

Stochastic user response is captured by a transition model
P : S×A→ ∆(S), where P (i, a, j) = paij is the probabil-
ity that a user in state imoves to j when subjected to action
a. Reward R(i, a) = rai reflects costs/payoffs when action
a is applied to a user in state i. We decompose reward as
rai = U(i) − C(i, a) = ui − cai : cost C reflects action
costs (e.g., cost of placing an ad, potential annoyance, etc.)
and utility function U reflects benefits/payoffs (e.g., sales
revenue, value of brand exposure, etc.).

The advertiser has a maximum (global) budget B that can
be spent over the planning horizon. This global budget
may be a hard limit in some settings; but we will require
only that policies meet this constraint in expectation. We
assume that the set of users is known, but our model eas-
ily handles new users who enter the system according to a
known distribution over initial states. Different users will
occupy many distinct states at any stage.
The optimal policy is defined w.r.t. the joint constrained

MDP, with state space S = SM , action set A = AM , and
a transition model, and cost, utility and reward functions
defined as follows:

P (s,a, t) =
∏

i≤M
P (s[i], a[i], t[i]); U(s) =

∑

i≤M
U(s[i]);

C(s,a) =
∑

i≤M
C(s[i], a[i]); R(s,a) = U(s)− C(s,a).

Joint transitions reflect the natural independence of user
transitions. Costs and utilities are additive across users.

Our aim is to find a policy that maximizes expected dis-
counted reward subject to the budget constraint: in expecta-
tion, the policy should spend no more than B. The optimal
solution to this joint CMDP can be found by linear pro-
gramming (LP) or DP. However, the exponential size of the
state and action spaces (e.g., O(NM ) states, or

(
M+N−1
N−1

)

states if we use the “user count” for each state) makes this
intractable. Fortunately, the MDP is weakly coupled [23]:
users transitions are independent, with the local MDPs only
coupled by their reliance on a single global budget. We take
advantage of this below, solving the local MDPs such that
their solutions can be effectively “pieced together” to form
an approximate solution to the joint problem.

2.2 RELATED WORK

Budget Optimization. Allocation of advertising budgets
is well-studied in marketing [19] with customer behavior
and responses often modeled as a discrete or continuous
Markov process [8, 24, 15]. Constrained budget optimiza-
tion is of course critical to maximizing ROI in keyword
auctions as well. [6, 16, 17, 12, 20].

Relatively little work has considered online budget opti-
mization based on sequential user behavior. Markov mod-
els of web browsing and user response to online ads have
been studied [10, 21]. Archak et al. [4] also assume Marko-
vian user behavior in sponsored search—this is the behav-
ioral model we adopt above. They propose a constrained
MDP model and simple greedy algorithm that determines
the optimal ad policy for a given user, assuming a fixed
budget for that user. The same authors [5] demonstrate that
user web search exhibits a “general to specific” behavior
that is approximately Markovian. Other sequential work in-
cludes: budget optimization with advertiser response learn-
ing [3]; and reinforcement learning for optimal online ad
strategies [27, 31] without budgets.

Constrained MDPs. We can extend the standard MDP
model using constrained MDPs (CMDPs) [2, 13]: ac-
tions consume one or more resources (e.g., budget, en-
ergy) and policies must use no more than some set level
of each resource in expectation. We outline a basic (one-
dimensional) CMDP model.
Assume an underlying (local, not joint) MDP with states,
actions, transitions, utilities and costs as above. Assuming
a discounted infinite-horizon problem with discount factor
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0 ≤ γ < 1, our aim is to find an optimal (stationary, de-
terministic) policy that maximizes the expected sum of dis-
counted rewards. The (unique) optimal value function (VF)
V ∗ : S → R satisfies the Bellman equation for all i ∈ S:

V ∗(i) = max
a∈A

rai + γ
∑

j∈S
paijV

∗(j),

while the optimal policy π∗(i) selects the argmax of this
expression. We will often use Q-functions, Q(i, a) =
rai + γ

∑
j∈S p

a
ijV
∗(j). The optimal VF and policy can

be computed using DP algorithms (e.g., value/policy itera-
tion) or LP methods [25, 7].
CMDPs extend this model by introducing constraints on
the resources used by a policy [2]. We explicate the model
using budgets (but it applies to any resource). A budget
constraint B limits the cost of allowable policies, where
the expected discounted cost of policy π at state i is:

Cπ(i) = c
π(i)
i + γ

∑

j∈S
p
π(i)
ij Cπ(j).

An initial state (or distribution) is required for the con-
straint to be well-posed in general. The optimal solution
(policy, VF) can be computed in poly-time using an LP [2].
There is always an optimal stationary policy for a CMDP,
but unlike unconstrained MDPs, it may be stochastic.

Satisfying the budget constraint in expectation is suitable
when a policy is executed many times, perhaps under dif-
ferent conditions, and budget is fungible over these in-
stances, as in our ad domain. In other settings, the budget
constraint may be strict—our model below easily accom-
modates strict budgets as well. We also allow costs in the
budget constraint to be undiscounted (see below).

Weakly Coupled MDPs. The decomposition of MDPs
into independent or semi-independent processes can often
be used to mitigate the curse of dimensionality. Challenges
lie in discovering a suitable decomposition structure and in
determining how best to use the sub-process solutions to
construct a (generally approximate) global solution. Many
approaches have this flavor, in both standard MDPs and de-
centralized (DEC) MDPs and POMDPs [28, 1, 30, 22, 14].
The approach most related to ours is the decomposition
method for weakly-coupled MDPs of [23]. There a joint
MDP is comprised of a set of independent subprocesses,
each itself a “local” MDP. Each local MDP reflects the task
or objective of a specific agent, but the local policies require
resources, both consumable and non-consumable. Their
method: solves the local MDPs independently to produce
local VFs parameterized by the resources available; uses
the local VFs to assign resources to each local MDP; and
reassigns unconsumed resources at each stage given the ob-
served joint state. Our approach to budget decomposition
is similar, but we use of the more standard expected bud-
get constraint, and guarantee optimal composition. Our
dynamic budget reallocation scheme is based on the real-
location mechanism of [23].

3 BUDGETED MDPS

We introduce budgeted MDPs, a variant of CMDPs in
which budgets, or other resources, are (implicitly) treated
as a part of the state, so that VFs/policies can vary with
both the state and available budget. This allows budget-
value tradeoffs to made quickly and easily.

3.1 THE BUDGETED MDP MODEL

A (finite, one-dimensional) budgeted Markov decision pro-
cess (BMDP) M = 〈S,A, P, U,C,Bmax, γ〉 has the same
components as a CMDP, but without a budget constraint.
We allow an optional constant Bmax that sets a plausible
upper bound on useful or available budgets at any stage.
We write U(i) = ui for the terminal utility at i if no action
is taken (e.g., end of the planning horizon). We assume
that, for each i, there is an a s.t. cai = 0 (so a proper policy
exists even with no budget).

We seek an optimal policy which maximizes expected re-
ward over some horizon, but which consumes no more than
some budget b ≤ Bmax in expectation. Unlike CMDPs,
however, the policy should be a function of b.

3.2 DETERMINISTIC POLICIES

We begin by analyzing deterministic policies for finite-
horizon problems, which develops useful intuitions. Define
the optimal deterministic t-stage-to-go VF as follows. For
all i ∈ S, b ≤ Bmax, let V 0

D(i, b) = ui, and define:

V tD(i, b) = max
a∈A
b∈Rn

+

rai + γ
∑

j≤n
paijV

t−1
D (j, bj) (1)

subj. to cai + γ
∑

j≤n
paijbj ≤ b (2)

The optimal policy πtD(i, b) is obtained by taking the
argmax. The VF reflects that doing a at i consumes cai of
the budget b, while optimal consumption at each reachable
next state must be such that the expected budget used is no
more than the remaining b− cai . We discount the expected
spend as is standard in CMDPs, but removing γ from Eq. 2
is also possible (we use undiscounted constraints below).

It is easy to see that V tD(i, b) is monotone non-decreasing in
b. While the optimal VF involves a continuous dimension
b, it has a concise finite representation. For a fixed stage-
to-go t and state i, define budget 0 ≤ b ≤ Bmax to be
(deterministically) useful iff V tD(i, b) > V tD(i, b− ε) for all
ε > 0, and useless otherwise. We observe that:
Proposition 1. For any finite t and state i, V tD(i, ·) has a
finite number of deterministically useful budget levels.

We describe an algorithm to compute useful budgets (from
which the proof of Prop. 1 follows).1 Let bi,t0 = 0 < bi,t1 <

. . . < bi,tM be the useful budget levels for (i, t). Prop. 1

1All proofs, and more detailed exposition, are available in a
longer version of the paper, available at each author’s web page.
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Fig. 1: An example VF VD(i, b). Useful budget levels are shown
(the points (b, v)) along with: (a) the induced piecewise constant
VF VD(i, b) (dashed line); and (b) the PWLC VF (solid line) for a
randomized policy. Randomizing among b0, b1 for any expected
spend b ∈ (b0, b1) dominates deterministic spend b0; and ran-
domizing among b1 and b3 with expected spend b2 dominates de-
terministic spend b2 (dashed-dotted lines).

implies that V tD(i, ·) is piecewise constant and monotone,
with V tD(i, b) = V tD(i, bi,tk ) for all b ∈ [bi,tk , b

i,t
k+1), for each

k < M . We write [〈bi,t0 , vi,t0 〉, . . . , 〈bi,tM , vi,tM 〉] to denote this
piecewise constant function (see Fig. 1).

Let the reachable set for state-action pair i, a be Sai = {j ∈
S|paij > 0} and the maximum out-degree of an MDP be
d = maxi∈S,a∈A |Sai |. We compute the useful budgets for
each state-stage pair—hence the optimal VF and policy—
using a simple DP algorithm. Assume a piecewise con-
stant representation of V t−1D (for V 0

D this is trivial); and for
ease of exposition, assume each i has M + 1 useful levels
bi,t−10 , . . . , bi,t−1M . We compute V tD(i, b) as follows:

• Let σ : Sai → [M ] be an assignment of each reachable
state j ∈ Sai to a useful budget level bj,t−1σ(j) , σ(j) ≤ M ,
with t − 1 stages-to-go. Let Σ be the set of such map-
pings. We view bj,t−1σ (j) as the budget to be consumed
if we reach j after doing a; implicitly, σ dictates the
t − 1-stage-to-go policy by selecting a budget level at
each next state.

• Let the potentially useful budget levels for (i, t, a) be:

B̃i,ta = {cai +
∑

j∈Sa
i

paijb
j,t−1
σ(j) | σ ∈ Σ} ∩ {b ≤ Bmax}.

Each bi,tk ∈ B̃i,ta is determined by some σ. The corre-
sponding expected value is vi,tk = rai + γ

∑
j p

a
ijv

j,t−1
σ(j) .

• Assume a reindexing of the entries in B̃i,ta so that the
budget levels are ascending (ties broken arbitrarily). The
useful budget levels for (i, t, a) are:

Bi,ta = {bi,tk ∈ B̃i,ta : 6 ∃k′ < k s.t. vi,tk′ ≥ v
i,t
k }.

That is, any potentially useful budget that is weakly
dominated by a smaller budget is discarded. The useful
budgets and corresponding values give us Qt(i, a, b).

• Let the potentially useful budget levels for (i, t) be B̃i,t =

∪a∈ABi,ta , and let Bi,t be the useful budget levels, ob-
tained by pruning B̃i,t as above. The useful budget lev-
els and corresponding values give the VF V t(i, b).

While finite, the number of useful budget levels can grow
exponentially in the horizon:
Proposition 2. For any finite t and state i, V tD(i, ·) has at
most O((|A|d)t) useful budget levels, where d is the maxi-
mum out-degree of the underlying MDP.

This motivates approximating this set, as we discuss below
in the context of stochastic policies.

3.3 STOCHASTIC POLICIES

Stochastic policies can offer greater value than determinis-
tic policies due to their inherent flexibility, and thus have a
rather different structure. Suppose at state-stage pair (i, t)
the available budget b lies strictly between two determinis-
tically useful levels, bi,tk < b < bi,tk+1. A stochastic policy
that spends bi,tk+1 (and takes the corresponding action) with

probability p =
b−bi,t

k

b
i,t
k+1
−bi,t

k

, and bi,tk with 1 − p, provides

greater expected value for (expected) spend b than the PW
constant value offered by the optimal deterministic policy
(see Fig. 1).

The optimal VF for such “single-stage randomized” poli-
cies is given by the convex hull of the useful budgets for
(i, t) (see Fig. 1). Given useful budget set Bi,t = {0 =
bi,t0 < bi,t1 < . . . < bi,tM}, we say bi,tk is dominated
if there are two budgets bi,tk− , b

i,t
k+ (k− < k < k+) s.t.

(1 − p)vi,t
k− + pvi,t

k+
> vi,tk . The convex hull is piecewise

linear and concave (PWLC) and monotone, comprising the
PWL function formed by the non-dominated points.

This PWLC structure is preserved by Bellman backups, and
can be computed effectively in two stages: first, a simple
greedy algorithm assigns budget incrementally to reach-
able next states, giving a PWLC representation of the Q-
functions for each a; second, we compute the backed up VF
by taking the convex hull of the union of these Q-functions.
Computing Q-functions. Assume V t−1(j, ·) is PWLC for
all j ∈ S, with points [〈bj,t−1

0 , vj,t−1
0 〉, . . . , 〈bj,t−1

M , vj,t−1
M 〉],

where each bj,t−1k is non-dominated (for ease of exposi-
tion, assume each j has M + 1 non-dominated levels). Let
B(Sia) = ∪j∈Si

a
Bj,t−1, and re-index B(Sia) in decreasing

order of bang-per-buck ratio (BpB):

BpB(bj,t−1
k ) =

vj,t−1
k − vj,t−1

k−1

bj,t−1
k − bj,t−1

k−1

=
∆vj,t−1

k

∆bj,t−1
k

.

(For k = 0, we leave BpB undefined, since bj,t−10 = 0 for
all j.) This BpB expresses the (per-unit budget) increase in
value when increasing budget at (j, t − 1) from bj,t−1k−1 to
bj,t−1k . Let j(m), k(m),∆b(m),∆v(m) denote, resp., the
state j, the useful budget index for j, the budget increment,
and the value increment associated with themth element of
(sorted) B(Sia). Let M∗i = |Sia|M .

We define Q-functions as follows:
Definition 1. Let V t−1 be a VF such that, for all j ∈ S,
V t−1(j, b) is bounded, monotone and PWLC in b with a
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finite number of budget points. Define:

• the 0th useful budget for a at i to be bi,ta,0 = cai , which
gives value vi,ta,0 = rai + γ

∑
j∈Sa

i
paijv

j,t−1
0 ;

• the mth useful budget, for 0 < m ≤ M∗i , to be
bi,ta,m =

∑
`≤m p

a
i,j(`)∆b(`) which gives value vi,ta,m =

rai + γ
∑
`≤m p

a
i,j(`)∆v(`).

For any 0 < m ≤ M∗i , and b s.t. bi,ta,m−1 < b < bi,ta,m, let

pi,t,ab =
b−bi,ta,m−1

bi,ta,m−bi,ta,m−1

. Define the Q-function for action a at

stage t as follows:

Q
t
(i, a, b)=





undefined if b < bi,ta,0

vi,ta,m if b = bi,ta,m

pi,t,ab vi,ta,m+(1−pi,t,ab )vi,ta,m−1 if bi,ta,m−1<b<b
i,t
a,m

vi,t
a,M∗

i
if b > bi,t

a,M∗
i

.

This Q-function is optimal:
Theorem 3. Qt(i, a, b) in Defn. 1 is the maximum expected
value achievable when taking action a at state iwith budget
b with future value given by V t−1.

Q-functions can thus be computed with a simple greedy
algorithm that allocates budget to “next states” in BpB-
order (i.e., using a simple sorted merge of the linear seg-
ments of all reachable-state VFs, with each segment scaled
by its transition probability; see Fig. 2 for an illustration).
The intuitions are straightforward: once taking a at i, cost
cai is incurred, and the remaining budget b′ = b − cai
must be “allocated” to states in Sai . The first units of b′

are most effectively used by state j(1)—i.e., the first in
B(Sia)—since it has the greatest initial BpB. Budget up
to ∆b(1) = b

j(1),t−1
k(1) to j(1) gives an expected (future)

value improvement of ∆v(1) = ∆v
j(1),t−1
k(1) with proba-

bility pai,j(1), and has an expected spend of pai,j(1)∆b(1).
This is the greatest expected (future) value attainable at
i for any b′ ≤ paijb

j(1),t−1
k(1) . Similarly, the next ∆b(2)

units of b′ should be allocated to j(2), giving a return
of BpB(b

j(2),t−1
k(2) ) per unit, with expected spend and re-

turn occurring with probability pai,j(2). This continues until
all useful budgets from states in Sai have been allocated
(reaching the max useful budget for (i, t)).

Computing Value Functions. Given the PWLC represen-
tation of the Q-functions, we can construct a similar PWLC
representation of V t(i, b) = maxaQ

t(i, a, b). We simply
take the union of the points that determine each Q-function,
and remove any dominated points (analogous to the move
from deterministic to stochastic policies). More precisely,
assuming a fixed state-stage (i, t), let Qa be the set of
budget-value points in a’s Q-function, and let Q∗ = ∪aQa
be the union of of these points—we annotate each point
with the action from which it was derived, so each has the
form (b, v, a). We say (b, v, a) is dominated in Q∗ if there
are two (different) points (b1, v1, a1), (b2, v2, a2) ∈ Q∗

such that b1 ≤ b ≤ b2 and (1 − α)v1 + αv2 > v, where
α = b−b1

b2−b1 . Removing all dominated points fromQ∗ leaves
the set of points that form the useful budget levels in the
PWLC representation of V t(i, ·). In other words, we form
the convex hull of Q∗. Clearly no dominated point (b, v, a)
is useful in a stochastic policy, since a greater value can be
attained, using the same expected budget, by α-mixing be-
tween actions a1 and a2 (and the corresponding budgets).

The construction above shows:
Theorem 4. For any finite t and state i, V t(i, b) is piece-
wise linear, concave and monotone in b.

The PWLC representation of V t(i, ·) can be constructed
using any convex hull method. A basic Graham scan [18]
is appropriate here, since Q-budget points are maintained
in sorted order, and has complexity O(|Q∗| log |Q∗|).

Again, the number of useful levels grows exponentially, but
is no greater than the number of deterministically useful
levels, i.e., V t(i, ·) has size at mostO((|A|d)t). For infinite
horizon problems, we may not have finitely many useful
budgets, but the VF remains concave:
Theorem 5. For any state i, the optimal infinite-horizon
VF V (i, b) is concave and monotone in b.

Standard bounds apply when using the finite-horizon V t

to approximate the infinite-horizon VF: if Bellman error of
V t is ε, ||V ∗ − V t|| ≤ ε

1−γ .

Approximation. The complexity of VF computation de-
pends on the number of useful budget points. The VF can
be approximated by removing non-dominated points that
are “close” to lying strictly inside the convex hull. For in-
stance, in Fig. 2(c), deletion of the second and third points
results in a simpler Q-function, with a single segment from
(pb0 + p′b′0, pv0 + p′v′0) to (pb2 + p′b′1, pv2 + p′v′1) replac-
ing three true segments. It closely approximates the true
Q-function since the slopes (BpBs) of all deleted segments
are nearly identical.

Several simple pruning criteria can be added to the inser-
tion step of the Graham scan (i.e., when transforming Q-
functions to VFs). When inserting (bnew , vnew ) with BpB
βnew , we can delete the previously inserted point, (bk, vk)
with BpB βk, if βnew ≥ βk − ε, for some tolerance ε. This
introduces a max-norm error of at most ε(bk − bk−1). Re-
cursively applying this rule gives additive accumulation: s
consecutive pruning steps gives error at most sε(bk−bk−s).
Since error also depends on the length of the segments be-
ing pruned, we can use both slope pruning and length prun-
ing, or pruning dictated by their product, i.e., terminated
when this product bound reaches some threshold τ . Stan-
dard MDP approximation bounds can be derived.

Policy Execution. Given the optimal VF V ∗, we can read-
ily determine the ideal level of (expected) spend b0 given
initial state i0 (see our discussion of sweet spots below).
While one could then solve the corresponding CMDP with
budget b0, the BMDP solution, in fact, embeds an optimal
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Fig. 2: (a) VF for state j; (b) VF for j′; (c) Q-function (future component) for a reaching j with prob. p and j′ with p′ = 1− p.

Begin s1 s5s2 s3 s4

s6s9 s8 s7

s10s13 s12 s11

End

Search: s1: unint; s2: general int; s3: search1, s4: search2, s5:search3
Advertiser: s6: interest1; s7: interest2; s8: interest3, s9: conversion
Compt'r: s10: interest1; s11: interest2; s12: interest3, s13: conversion

Fig. 3: A synthetic ad MDP. “Begin” reflects the beginning of a
customer search (transitions from it encode a prior over interest
states). From an advertiser’s perspective, the MDP for a specific
customer can begin at any state of the process.

(non-stationary) CMDP solution for any budget level. The
execution of the BMDP policy π∗ is somewhat subtle, but
straightforward. The optimization in Eqns. 1 and 2 gener-
ally assigns some future states a greater budget than what
remains, b0−cai0 , and some future states less—it is only ex-
pected spend that must not exceed the remaining budget. If
state j’s “assigned budget” bj differs from b0−cai0 , whether
greater or less, then we must execute action π∗(j, bj) to en-
sure we achieve expected value V ∗(i0, b0). This requires
that we record the optimal budget mapping σ at the final
Bellman backup (assuming an infinite horizon problem) for
each useful budget point at each state. When we reach any
next state j, we “pass forward” its assigned budget bσ(j),
at which point we take action π∗(j, bσ(j)).

As in CMDPs, there can be substantial variance in ac-
tual spend when implementing the BMDP policy π∗(i, b)
(variance can be computed exactly during DP). We discuss
strategies for mitigating the impact of variance below. A
simple DP algorithm can be used to compute VFs with
strict budgets [23], but allowing some variance in spend
can improve expected value significantly.

3.4 EMPIRICAL EVALUATION

We evaluate the effectiveness of our DP method on several
BMDPs, and measure the impact of approximation.

Synthetic Ad MDP. We begin with a small synthetic MDP
that reflects the influence of ads on product search behavior.
Its small size allows detailed examination of its optimal VF
structure. The MDP (see Fig. 3) has 15 states reflecting var-
ious levels of customer interest in an advertiser’s (or com-
petitors’) product, and five actions for different levels of ad
intensity. Transitions for “nominal” (stochastic) progress
through the search funnel are shown, with others omitted

for clarity. More intense ad actions are more costly, but in-
crease the odds of progressing in the funnel, and lower the
odds of abandoning purchase intent.
We solve the BMDP (γ = 0.975, horizon 50) with four dif-
ferent degrees of approximation: exact (no pruning); mild
pruning (slope/length pruning set to 0.01); aggressive prun-
ing (both set to 0.05); and hybrid (mild pruning for 45 iter-
ations, then exact computation for five). The following ta-
ble shows the average (and min–max) number of segments
in the PWLC VF over the 15 MDP states—the number of
segments determines the complexity of the VFs—and com-
putation time for each regime. For approximation schemes,
we show the maximum absolute and relative errors (and the
optimal value at which this error occurs).

No prun. Mild Aggr. Mild+No
Segments 3066 (0–5075) 18.3 (0–47) 10.4 (0–26) 480.8 (0–877)

Max Err — 4.84 (26.61) 4.84 (26.61) 0.21 (58.77)
Max RelErr — 40.9% (4.24) 48.7% (1.54) 2.3% (0.55)

CPU (s.) 1055.4 17.54 10.36 28.67

The optimal VF has a large number of segments per state
but can be approximated quite well with very few seg-
ments. With mild/aggressive pruning, the VF is very com-
pact, but has large maximum error (4.84, which is 18%
rel. error at the point at which it occurs); the relative er-
ror is also significant, though it occurs at points with low
value (hence gives small abs. error). The hybrid scheme
works very well—by exploiting the contraction properties
of the MDP, error associated with initial pruning is almost
entirely overcome. It reduces the number of VF segments
by an order of magnitude, and computation time by nearly
two orders of magnitude, but gives very small max abso-
lute (0.21, or 0.36%) and relative error (2.3%, or 0.0013).2

Determining suitable pruning thresholds and schedules in
general is an interesting open question.

Advertiser MDP. We next study two larger MDPs de-
rived from the contact data of a large advertiser. The data
consists of sequences of cross-channel touch points with
users—each touch is labeled with a contact event (e.g., dis-
play ad, email, paid search ad, direct navigation to web site)
or type of activity on the advertiser’s web site (including
transactions or “conversions”). There are 28 event types,
and 3.6M trajectories comprising 10M events.

From this data, we learn (using MLE) several variable-
order Markov chain (VOMC) models [9, 11] that predict

2CPU time using a simple Python prototype, on a 3.5GHz
CPU with 32Gb of RAM.
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transitions induced by the advertiser’s policy. Predictions
are based on a small sufficient history involving up to 10
preceding events. The histories comprising each VOMC
form the state space of a Markov chain. From these we
derive action-conditional transition models by substituting
history end points with one of a small number of “control-
lable” events and using the VOMC model for these altered
histories for transition predictions. We consider four ac-
tions (no-op, email, paid search, display ad), and two dif-
ferent models: the first is a VOMC model with a maxi-
mum state-order of 10 and an average state-order of five,
giving an MDP with 451,582 states. The second is a two-
component mixture of smaller VOMC models (maximum
order of 3); we use the first component, with 1469 states.

We solve the BMDPs for both models (horizon 50, dis-
count 0.975 as above). The table below shows pruning
level, number of segments, and computation time for the
1469-state MDP using the same strategies as above.3

No prun. Mild Aggr. Mild+No
Segments 251.5 (74–359) 234.2 (77–342) 25.6 (5–39) 76.8 (18–321)

Max Err — 5.13 (171.6) 28.9 (169.3) 3.9 (167.6)
Max RelErr — 3.0% (171.6) 12.3% (169.3) 2.4% (167.6)

CPU (s.) 19918.9 10672.5 1451.8 2390.0

The 452K-state BMDP was solved only with aggressive
pruning (slope 2.0, length 0.1), and averaged about 11.67
segments per state and 1168s. per DP iteration.

4 BUDGET ALLOCATED ACROSS MDPS

We now consider the problem facing an advertiser with
a fixed maximum budget and a specific set of target cus-
tomers, each of whom occupies the state of some underly-
ing MDP. To solve the joint MDP above, we use the weakly
coupled decomposition of [23], but merge the local solu-
tions (and analyze this merge) in a different manner.

Offline Decomposition Our approach to decomposition
is straightforward. We first solve each single-user sub-
MDP as a BMDP with a some natural per-user maximum
budgetBu. For ease of exposition, we assume just one user
type, hence only one user MDP to solve (i.e., each user has
the same dynamics). Users are distinguished only by their
MDP state. The BMDP solution gives an optimal single-
user policy π and VF V spanning all s ∈ S, b ≤ Bu, indi-
cating action choice and value as a function of the budget
available to be spent (in expectation) on that user alone.
We exploit this below. Indeed, this is why we do uses
CMDPs, which do not indicate the value of allocating vary-
ing budgets to a user.

The Budget Allocation Problem Given initial (or cur-
rent) joint state with M customers is s = 〈s[1], · · · s[M ]〉,

3The “no pruning” optimal benchmark uses slope/length prun-
ing of 0.001/0.0001 for 20 iterations and 0.01/0.001 for 30. Ag-
gressive is slope/length = 0.2/0.01; mild is 0.02/0.001.

and budget B, a natural way to exploit the BMDP so-
lution is to allocate some portion b[i] of B to each cus-
tomer i ≤M s.t. we maximize the sum of expected values
v[i] assuming optimal engagement with i with budget b[i].
Specifically, the budget allocation problem (BAP) is :

max
b[i]:i≤M

∑

i≤M
V (s[i], b[i]) subj. to

∑

i≤M
b[i] ≤ B, (3)

where V is the optimal VF for the underlying BMDP.

BAP determines an allocation b∗ = 〈b∗[1], . . . , b∗[M ]〉
that maximizes the expected value of committing a specific
(expected) budget b∗[i] to customer i. By simple linearity
of expectation, we have:
Observation 6. Let V be the optimal VF and π the opti-
mal policy for the user MDP. Let b be the optimal solu-
tion to the budget allocation problem. Then the joint (non-
stationary) policy π(s) =

∏
i π(s[i], b[i]) has expected

value
∑
i V (s[i], b[i]) and expected spend

∑
i≤M b[i] ≤ B.

We cannot guarantee this policy is truly optimal for the
joint MDP, since this decomposed policy does not admit
recourse in the execution of one user’s MDP that depends
on the realized outcome of some other user’s MDP. How-
ever, we expect it to work well in practice (see below). For
MDPs with large numbers of customers, or where the spend
variance of the local BMDP policy is low, this form of sub-
optimality will be small. However, as we discuss below,
repeated online reallocation of budget can sometimes over-
come even this potential suboptimality in practice.

BAP (Eq. 3) can be viewed as a (multi-item variant of a)
multiple-choice knapsack problem (MCKP) [29]. In the
classic MCKP, we are given M classes of items, with each
class i containing ni items. To explain, we first begin with
a restricted version of BAP, the useful-budget assignment
problem (UBAP). In UBAP, we require each user i be as-
signed a useful budget level from the discrete set Bs[i].
UBAP is exactly an MCKP: each user i is as an item class
for whom exactly one budget must be chosen from the set
of items Bs[i] in that class. The weight of item b ∈ Bs[i] is
b (i.e., the amount of the budget it consumes); and the profit
of assigning b to i is V (s[i], b). The capacity is the global
budget B, so total weight (budget assigned) cannot exceed
B. We can view this as a multi-item variant of MCKP with
multiple “copies” of the same class (namely, all users in a
state j have the same items, weights and profits).
It is useful to consider an integer programming (IP) model
of MCKP (where binary variable xik indicates that i is al-
located the kth useful budget βik = b

s[i]
k ):

max
xik

∑

i≤M

∑

k∈Bs[i]

V (s[i], βik)xik (4)

subject to
∑

i≤M

∑

k∈Bs[i]

βikxik ≤ B (5)

∑

k∈Bs[i]

xik = 1, ∀i ≤M (6)

xik ∈ {0, 1} (7)
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We can collapse users in the same class using a counting
(integer) variable as well.

Consider the LP relaxation of the IP Eq. 4—its optimal so-
lution gives a (generally) fractional assignment of useful
budget to any user i in state s[i] = j. Using a minor adap-
tation of the analysis of Sinha and Zoltners [29], we can
show that the optimal allocation to any i is either integral
(i.e., assigns a useful budget level to i), or is a mixture of
two consecutive useful levels, in which case the expected
budget b∗[i] and induced expected value v∗[i] in the LP cor-
responds to a point on the convex hull of the useful points.
In other words, it lies on the PWLC VF V (i, ·):
Proposition 7. The optimal solution of the LP relaxation
of UBAP IP Eq. 4 is such that, for each i: (a) xik = 1
for one value of k; or (b) there is some k such that only
xik, xi,k+1 > 0 (i.e., only two budget levels are allocated,
and they must be consecutive).

We immediately obtain:
Corollary 8. The optimal solution to the LP relaxation of
UBAP is an optimal solution to BAP.
The structure of the LP relaxation of MCKP is very valu-
able. Sinha and Zoltners [29] show that a simple greedy
algorithm can be used to solve the relaxation. We adopt
the same method, greedy budget allocation (GBA), to solve
BAP. For each state j, and each 1 ≤ k ≤ L, define the
bang-for-buck ratio as before:

BpBjk =
V (j, βjk)− V (j, βjk−1)

βjk − βjk−1
.

GBA assigns budget incrementally to each user in the order
given by the BpB ratio. Initially each user i in state s[i] = j
is assigned a budget of βj0 = 0, and the unallocated budget
is set to B (our budget constraint). At any stage of GBA,
let b denote the unallocated budget, let βj,ki be i’s current
allocation and i’s current ratio to be BpB [i] = BpB jki+1.
Let i be any best user, with maximum ratio BpB [i]. If suffi-
cient budget remains, we increase i’s allocation from βj,ki
to βj,ki+1, then update i’s ratio and the unallocated bud-
get. We continue until the unallocated budget is less than
βj,ki+1−βj,ki ; then we allocate the remaining budget frac-
tionally to the best i (βj,ki with probability p and βj,ki+1

with 1− p, for p =
(βj,ki+1−βj,ki

)−b
(βj,ki+1−βj,ki

)
).

We can show that GBA finds the optimal solution to our
BAP (see [29]). GBA can be modified to aggregate all users
that lie in the same state, and to account for the stochastic
arrival of customers of various types, or at various states.

Dynamic Budget Reallocation The variance in the
spend of an optimal policy π(i, b) means there is some
risk over overspending the global budget. This risk is, of
course, greater with small numbers of users than with large
numbers. One way to alleviate this risk dynamic budget
reallocation (DBRA). Rather than committing to the opti-
mal policy for each user given their initial allocation, we
reallocate any remaining budget at each stage. More pre-
cisely, given the current joint state s = 〈s[1], . . . , s[M ]〉

and remaining budget B, we: (a) use GBA to determine
allocation b[i], i ≤ M given (s, B); (b) execute action
π(s[i], b[i]) for each i, incurring the cost cai ; and (c) ob-
serve the next state s′ and remaining B′ and repeat. This
approach (virtually) guarantees that the global budget B
will not be overspent (if the BMDP policy randomizes, a
small chance of a small violation may exist). It also of-
fers a form of recourse; e.g., if the budget for some user is
no longer useful (e.g., transition to an unprofitable state), it
budget can be reallocated to a more profitable user.

Empirical Evaluation We test the effectiveness of GBA
on the BMDPs described in Sec. 3.4. We study expected
spend and value of the “implied” joint policies, as well as
spend variance.

We consider several ways of implementing the joint poli-
cies induced by the GBA solution of BAP. The first is the
BMDP policy, where once GBA allocates b[i] to each user
i, we implement the corresponding BMDP policy starting
at state s[i]. This ensures that expected spend does not ex-
ceed b[i], but doesn’t guarantee budget satisfaction for any
specific user. The second is the static user budget policy
(SUB): given the GBA allocation b[i], we implement the
first action a = π(s[i], b[i]) in the BMDP policy at s[i] for
each i; but when reaching next state, we take the action as
if we only had that user’s remaining budget b[i]− cas[i], ig-
noring the next state budget mapping from the BMDP pol-
icy. SUB thus recalibrates the actual spend to minimize the
odds of overspending b[i] on a per-user basis. We also use
the reallocation scheme DBRA, which reduces the over-
spending risk collectively (not per-user).

Solving BMDPs and using GBA to allocate budget al-
lows one to assess budget tradeoffs across different users
in different states. Without a BMDP model or our budget-
dependent VF, these tradeoffs must be made heuristically.
In this case, we can use uniform budget allocation (UBA),
which apportions budget equally across all users, and then
solves the induced CMDPs (one per occupied state).
Synthetic Ad MDP. In the synthetic MDP, our initial setup
has 1000 customers starting in s0. The following table
shows the expected value obtained by 3 different policies
for 4 different global budgets:

Total Bud. BMDP Val. DBRA Val. SUB Val.
1000 8210 8579 (830.5) 4106 (707)
2000 10,905 11,019 (964) 4429 (825)
5000 15,692 15,658 (1239) 5270 (830.5)

10,000 18,110 17,942 (—) 6329 (1159)

BMDP value is the true expected value of the optimal
BMDP policy. SUB and DBRA values are averaged over
100 trials, which execute the relevant policies for all 1000
users (sample std. dev. also shown). The optimal BMDP
policy has a considerable advantage over a static policy
that forbids the per-user budget to be exceeded, yielding
2-3 times the return.4 BMDP values also show a clear pat-

4Values are discounted, net of budget spent.
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Fig. 4: Sweet spot curves: a plot of expected value vs. global
budget for Synthetic and 452K-state MDPs (1000 users). The flat
tails show that the maximal useful budget has been reached.

tern of diminishing return with increasing budget. Indeed,
our MCKP-based GBA method allows one to rapidly as-
sess the value of optimally using different global budgets
to find the “sweet spot” in spend. Fig. 4 illustrates this
sweet spot curve) for the joint MDP over 16 budget points.5

The sweet spot curve is effectively the Pareto frontier ex-
pressing the tradeoff between two competing objectives,
spend and expected return (for an in-depth survey of gen-
eral multi-objective MDPs, please see [26]).

The optimal BMDP policy has considerable spend vari-
ance. In one run of 1000 customers (initial allocation
10 each), the sample average 10.012 is close to expected
spend; but the sample std. dev. is 15.24. The empirical
odds that a user exceeds the budget of 10 is 32.7%, and
the odds of exceeding it by at least 50% is 28.7%. This
alone explains the poor performance of the SUB allocation
policy. Even with a large user base, overspending is possi-
ble: simulating the BMDP policy (1000 users) for 30 trials
users, the global budget is exceeded in 13 of 30 trials, in 5
instances by over 3% (the largest overspend is by 11.7%).
DBRA alleviates this risk—in all 100 trials the budget con-
straint is satisfied—while its average return matches or ex-
ceeds that of BMDP. With the very constrained budget
(1000), DBRA also appears to offer the advantage of re-
allocating budget to more promising customers over time.
We also compare GBA to UBA on the same MDP, but
with 1000 customers uniformly spread among the 12 non-
terminal states (GBA and UBA are identical if all users start
in the same state). The table below shows (exact) expected
value of GBA and UBA for several global budgets.

Total Bud. GBA Val. UBA Val.
1000 39818.6 36997.2
2000 44559.5 40311.8
5000 53177.7 47142.4

10,000 58356.8 53773.8

The optimal BMDP solution allows GBA to make bud-
get tradeoffs among customers in different states, giving
greater value than a uniform scheme.

5The greedy algorithm averages 1.47ms. to compute the opti-
mal allocation at each budget point.

Advertiser MDPs. We apply the same four methods to
the advertiser-based MDPs. We first use GBA to derive
“sweet spot” curves for the large MDP (results are simi-
lar for the 1469-state MDP). We assume 1000 customers,
with 20 customers each entering the process in the 50 states
with the largest “value spans” (i.e., difference in expected
value given the minimal and maximal useful budget). Fig. 4
shows the budget-value tradeoff.
These MDPs model behavior that is quite random (i.e., not
influenced very strongly by the actions). As a consequence,
once the GBA algorithm is run, there is not a great differ-
ence between the BMDP and SUB policies. The table be-
low shows results for the 452K-state BMDP for two fairly
constrained budget levels (DBRA, SUB are averaged over
50 trials, BMDP and UBA values are exact).

Budg. BMDP Val. DBRA Val. SUB Val. UBA Val.
15 113358 99236 (3060) 112879 (1451) 106373
25 157228 142047 (3060) 157442 (2589) 149175

Neither BMDP nor SUB exhibit much variance in spend
and both have similar expected values. SUB rarely over-
spends (e.g., maximum overspend for SUB with B = 25
is 0.16%). Variance tends to be greater when budgets are
tighter. Among the 50 BMDP trials, 14 instances exceed
the global budget, though only four instances exceed it by
more than 4.0% (and one does so by 8.6%). DBRA elim-
inates the risk of overspending, but in this problem has a
negative impact on expected value. GBA offers greater ex-
pected value than UBA (which is the only viable option if
the BMDP has not been solved). GBA exceeds UBA by up
to 6.5% over a range of constrained budgets.

5 CONCLUDING REMARKS

We have addressed the problem of budget (or other re-
source) allocation in MDPs so that budget-value tradeoffs
can be addressed effectively. Our budgeted MDP model of-
fers an alternative view of CMDPs that allows value to be
derived as a function of available budget. We characterized
the structure of optimal VFs and developed a DP algorithm
that exploits the PWLC form of these VFs. Our second
contribution was a method for exploiting BMDP solutions
to allocate budget across independently operating BMDPs.
We cast the problem as multi-item MCKP for which a sim-
ple greedy algorithm rapidly allocates budget optimally in
a “committed” fashion. We also investigated dynamic real-
location of budget over time.

The extension of our methods to account for dynamic user
populations is straightforward, but warrants empirical in-
vestigation. Future work includes the further study of and
experimentation with our algorithms on richer models of
user behavior. We are also interested in extending our mod-
els to partially observable settings (e.g., where user type
estimation based on behavioral observations is needed).
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Abstract

Large-scale kernel ridge regression (KRR) is lim-
ited by the need to store a large kernel matrix Kt.
To avoid storing the entire matrix Kt, Nyström
methods subsample a subset of columns of the
kernel matrix, and efficiently find an approximate
KRR solution on the reconstructed K̃t. The cho-
sen subsampling distribution in turn affects the
statistical and computational tradeoffs. For KRR
problems, [16, 1] show that a sampling distri-
bution proportional to the ridge leverage scores
(RLSs) provides strong reconstruction guaran-
tees for K̃t. While exact RLSs are as difficult to
compute as a KRR solution, we may be able to
approximate them well enough. In this paper, we
study KRR problems in a sequential setting and
introduce the INK-ESTIMATE algorithm, that in-
crementally computes the RLSs estimates. INK-
ESTIMATE maintains a small sketch of Kt, that at
each step is used to compute an intermediate es-
timate of the RLSs. First, our sketch update does
not require access to previously seen columns,
and therefore a single pass over the kernel ma-
trix is sufficient. Second, the algorithm requires
a fixed, small space budget to run dependent only
on the effective dimension of the kernel matrix.
Finally, our sketch provides strong approxima-
tion guarantees on the distance ‖Kt− K̃t‖2, and
on the statistical risk of the approximate KRR
solution at any time, because all our guarantees
hold at any intermediate step.

1 INTRODUCTION

Kernel ridge regression [17, 18] (KRR) is a common non-
parametric regression method with well studied theoreti-
cal advantages. Its main drawback is that, for n samples,
storing and manipulating the kernel regression matrix Kn

requires O(n2) space, and can become quickly intractable

when n grows. This includes batch large scale KRR, and
online KRR, where the size of the dataset t grows over time
as new samples are added to the problem. For this purpose,
many different methods [23, 4, 10, 14, 11, 24] attempt to re-
duce the memory required to store the kernel matrix, while
still producing an accurate solution.

For the batch case, the Nyström family of algorithms ran-
domly selects a subset of m columns from the kernel ma-
trix Kn that are used to construct a low rank approximation
K̃t that requires only O(nm) space to store. The low-rank
matrix is then used to find an approximate solution to the
KRR problem. The quality of the approximate solution is
strongly affected by the sampling distribution and the num-
ber of columns selected [16]. For example, uniform sam-
pling is an approach with little computational overhead, but
does not work well for datasets with high coherence [7],
where the columns are weakly correlated. In particular,
Bach [2] shows that the number of columns m necessary
for a good approximation when sampling uniformly scales
linearly with the maximum degree of freedoms of the ker-
nel matrix. In linear regression, the notion of coherence is
strongly related to the definition of leverage points or lever-
age scores of the dataset [6], where points with high (statis-
tical) leverage score are more influential in the regression
problem. For KRR, Alaoui and Mahoney [1] introduce a
similar concept of ridge leverage scores (RLSs) of a square
matrix, and shows that Nyström approximations sampled
according to RLS have strong reconstruction guarantees of
the form ‖Kn − K̃n‖2, that translate into good guarantees
for the approximate KRR solution [1, 16]. Compared to
the uniform distribution, a distribution based on RLSs bet-
ter captures non-uniformities in the data, and can achieve
good approximations using only a number of columns m,
proportional to the average degrees of freedom of the ma-
trix, called the effective dimension of the problem. The dis-
advantage of RLSs compared to uniform sampling is the
high computational cost of exact RLSs, which is compa-
rable to solving KRR itself. Alaoui and Mahoney [1] re-
duces this problem by showing that a distribution based on
approximate RLSs can also provide the same strong guar-
antees, if the RLSs are approximated up to a constant er-
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ror factor. They provide a fast method to compute these
RLSs, but, unlike our approach, requires multiple passes
over data. Another disadvantage of their approach, that we
address, is the inverse dependence on the minimal eigen-
value of the kernel matrix in the error bound of Alaoui and
Mahoney [1], which can be significant.

While Nyström methods are a typical choice in a batch set-
ting, online kernel sparsification (OKS) [4, 5] examines
each sample in the dataset sequentially. OKS maintains
a small dictionary of relevant samples. Whenever a new
sample arrive, if the dictionary is not able to accurately rep-
resent the new sample as a combination of the samples al-
ready stored, the dictionary is updated. This dictionary can
be used to approximate KRR incrementally. OKS decides
whether to include a sample using the correlation between
samples in the dictionary and the new sample. This can
measured using approximate linear dependency (ALD) [5],
coherence [15], or the surprise criterion [12].

Generalization properties of online kernel sparsification
were studied by Engel et al. [5], but depend on the em-
pirical error and are not compared with an exact KRR so-
lution on the whole dataset. Online kernel regression with
the ALD rule was analyzed by Sun et al. [19], under the as-
sumption that, asymptotically in n, the eigenvalues of the
kernel matrix decay exponentially fast. Sun et al. [19] show
that in this case the size of the dictionary grows sublinearly
in t, or in other words that, asymptotically in n, the dic-
tionary size converge to a fraction of n that will be small
whenever the eigenvalues decay fast enough. This space
guarantee is weaker than the fixed space requirements of
Nyström methods, one of the reasons is that these methods
(unlike ours) cannot remove a sample from the dictionary
after inclusion. Furthermore, Van Vaerenbergh et al. [22]
studies variants of online kernel regression with a forget-
ting factor for time-varying series, but these methods are
not well studied in the normal KRR setting. Unlike in the
batch setting, in the sequential setting we often require the
guarantees not only at the end but also in the intermediate
steps and this is our objective. Inspired by the advances
in the analyses of the Nyström methods, in this paper, we
focus on finding a space efficient algorithm capable of solv-
ing KRR problems in the sequential setting but that would
be also equipped with generalization guarantees.

Main contributions We propose the INK-ESTIMATE al-
gorithm that processes a datasetD of size n in a single pass.
It requires only a small, fixed space budget, q proportional
to the effective dimension of the problem and on the accu-
racy required. The algorithm maintains a Nyström approx-
imation K̃t, of the kernel matrix at time t, Kt, based on
RLSs estimates. At each step, it uses only the approxima-
tion and the newly received sample to incrementally update
the RLSs estimate, and to compute K̃t+1. Unlike in the
batch Nyström setting, our challenge is to track RLSs and

an effective dimension that changes over time. Sampling
distributions based on RLSs can become obsolete and bi-
ased, but we show how to update them over time without
necessity of accessing previously seen samples outside of
the ones contained in K̃t. Our space budget q scales with
the average degree of freedom of the matrix, and not the
larger maximum degree of freedom (as by Bach [2]), and
does not imposes assumptions on the ridge regularization
parameter, or on the smallest eigenvalue of the problem as
the result of Alaoui and Mahoney [1]. However, we provide
the same strong guarantees as batch RLSs based Nyström
methods on ‖Kn − K̃n‖2 and on the risk of the approxi-
mate KRR solution. In addition to batch Nyström methods,
all of these guarantees hold at any intermediate step t, and
therefore the algorithm can output accurate intermediate
solutions, or it can be interrupted at any time and return a
solution with guarantees. Finally, it operates in a sequential
setting, requiring only a single pass over the data.

If we compare INK-ESTIMATE to other online kernel re-
gression methods (such as OKS), our algorithm provides
generalization guarantees with respect to the exact KRR
solution. Furthermore, it provides a new criteria for in-
clusion of a sample in the dictionary, in particular the ridge
leverage scores. This criterion gives us a procedure that not
only randomly includes samples in the dictionary, but that
also randomly discards them to satisfy space constraints not
only asymptotically, but at every step.

2 BACKGROUND

In this section we introduce the notation used through the
paper and we introduce the kernel ridge regression prob-
lem [17] and Nyström approximation of the kernel matrix
with ridge leverage scores.

Notation. We use curly capital letters A for collections.
We use upper-case bold letters A for matrices, lower-case
bold letters a for vectors, and lower-case letters a for
scalars. We denote by [A]ij and [a]i the (i, j) element of
a matrix and ith element of a vector respectively. We de-
note by In ∈ Rn×n the identity matrix of dimension n and
by Diag(a) ∈ Rn×n the diagonal matrix with the vector
a ∈ Rn on the diagonal. We use ei,n ∈ Rn to denote the
indicator vector for element i of dimension n. When the di-
mensionality of I and ei is clear from the context, we omit
the n. We use A � B to indicate that A−B is a PSD ma-
trix. Finally, the set of integers between 1 and n is denoted
by [n] := {1, . . . , n}.

2.1 Exact Kernel Ridge Regression

Kernel regression. We consider a regression dataset D =
{(xt, yt)}nt=1, with input xt ∈ X ⊆ Rd and output yt ∈
R. We denote by K : X × X → R a positive definite
kernel function and by ϕ : X → RD the corresponding
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feature map,1 so that the kernel is obtained as K(x,x′) =
ϕ(x)Tϕ(x′). Given the dataset D, we define the kernel
matrix Kt ∈ Rt×t constructed on the first t samples as
the application of the kernel function on all pairs of input
values, i.e., [Kt]ij = K(xi,xj) for any i, j ∈ [t] and we
denote by yt ∈ Rt the vector with components yi, i ∈ [t].
We also define the feature vectors φt = ϕ(xt) ∈ RD and
after introducing the feature matrix

Φt =
[
φ1 φ2 . . . φt

]
∈ RD×t,

we can rewrite the kernel matrix as Kt = ΦT
t Φt. When-

ever a new point xt+1 arrives, the kernel matrix Kt+1 ∈
Rt+1×t+1 is obtained by bordering Kt as

Kt+1 =

[
Kt kt+1

k
T

t+1 kt+1

]
(1)

where kt+1 ∈ Rt is such that [kt+1]i = K(xt+1,xi)
for any i ∈ [t] and kt+1 = K(xt+1,xt+1). According
to the definition of the feature matrix Φt, we also have
kt+1 = ΦT

t φt+1.

At any time t, the objective of sequential kernel regression
is to find the vector ŵt ∈ Rt that minimizes the regularized
quadratic loss

ŵt = arg min
w

‖yt −Ktw‖2 + µ‖w‖2, (2)

where µ ∈ R is a regularization parameter. This objective
admits the closed form solution

ŵt = (Kt + µI)−1yt. (3)

In the following, we use Kµ
t as a short-hand for (Kt+µI).

In batch regression, ŵn is computed only once when all
the samples of D are available, solving the linear system
in Eq. 3 with Kn. In the fixed-design kernel regression,
the accuracy of resulting solution ŵn is measured by the
prediction error on the input set from D. More precisely,
the prediction of the estimator ŵn in each point is obtained
as [Knŵn]i, while the outputs yi in the dataset are assumed
to be a noisy observation of an unknown target function
f∗ : X → R, evaluated in xi i.e., for any i ∈ [n],

yi = f∗(xi) + ηi,

where ηi is a zero-mean i.i.d. noise with bounded vari-
ance σ2. Let f∗ ∈ Rn be the vector with components
f∗(xi), then the risk of ŵn is measured as

R(ŵn) = Eη
[
||f∗ −Knŵn||22

]
. (4)

If the regularization parameter µ is properly tuned, it is
possible to show that ŵn has near-optimal risk guaran-
tees (in a minmax sense). Nonetheless, the computation of
ŵn requires O(n3) time and O(n2) space, which becomes
rapidly unfeasible for large datasets.

1where D can be very large or infinite (e.g. gaussian kernel)

2.2 Nyström Approximation with Ridge Leverage
Scores

A common approach to reduce the complexity of kernel
regression is to (randomly) select a subset of m samples
out of D, and compute the kernel between two points only
when one of them is in the selected subset. This is equiv-
alent to selecting a subset of columns of the Kn matrix.
More formally, given the n samples inD, a probability dis-
tribution pn = [p1,n, . . . , pn,n] is defined over all columns
of Kn and m ≤ n columns are randomly sampled with
replacement according to pn. We define by In the se-
quence of m indices i ∈ [n] selected by the sampling pro-
cedure. From In, we construct the corresponding selection
matrix Sn ∈ Rn×m, where each column [Sn]:,t ∈ Rn is
all-zero except from the entry corresponding to the t-th el-
ement in In (i.e., [S]ij is non-zero if at trial j the element
i is selected). Whenever the non-zero entries of Sn are set
to 1, sampling m columns from matrix Kn is equivalent
to computing KnSn ∈ Rn×m. More generally, the non-
zero entries of Sn could be set to some arbitrary weight
[S]ij = bij . The resulting regularized Nyström approxima-
tion of the original kernel Kn is defined as

K̃n = KnSn(ST
nKnSn + γIm)−1ST

nKn, (5)

where γ is a regularization term (possibly different from
µ). At this point, K̃n can be used to solve Eq. 3. Let W =
(ST
nKnSn + γIm)−1 ∈ Rm×m and C = KnSnW1/2 ∈

Rn×m, applying the Woodbury inversion formula [8] we
have

w̃n =(K̃n + µIn)−1yn = (CImCT + µIn)−1yn

=

(
1

µ
In −

1

µ2
InC

(
Im +

1

µ
CTC

)−1
CTIn

)
yn

=
1

µ

(
yn −C

(
CTC + µIm

)−1
CTyn

)
. (6)

Computing W1/2 and C takes O(m3) and O(nm2) time
using a singular value decomposition, and so does solv-
ing the linear system. All the operations require to store
at most an n × m matrix. Therefore the final complexity
is reduced from O(n3) to O(nm2 + m3) time, and from
O(n2) to O(nm) space. Rudi et al. [16] recently showed
that in random design, the risk of the resulting solution w̃n

strongly depends on the choice of m and the column sam-
pling distribution pn. Early methods sampled columns uni-
formly, and Bach [2] shows that the using this distribution
can provide a good approximation when the maximum di-
agonal entry of Kn(Kn + µI)−1 is small. Following on
this approach, Alaoui and Mahoney [1] propose a distribu-
tion proportional to these diagonal entries and calls them
γ-Ridge Leverage Scores. We now restate their definition
of RLS, corresponding sampling distribution, and the ef-
fective dimension.
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Definition 1. Given a kernel matrix Kn ∈ Rn×n, the γ-
ridge leverage score (RLS) of column i ∈ [n] is

τi,n(γ) = kT
i,n(Kn + γIm)−1ei,n, (7)

where ki,n = Knei,n. Furthermore, the effective dimen-
sion deff(γ)n of the kernel is defined as

deff(γ)n =

n∑

i=1

τi,n(γ) = Tr
(
Kn(Kn + γIn)−1

)
. (8)

The corresponding sampling distribution pn is defined as

[pn]i = pi,n =
τi,n(γ)∑n
j=1 τi,n(γ)

=
τi,n

deff(γ)n
. (9)

The RLSs are directly related to the structure of the ker-
nel matrix and the regularized regression. If we perform
an eigendecomposition of the kernel matrix as Kn =
UnΛnUT

n, then the RLS of a column i ∈ [n] is

τi,n(γ) =
n∑

j=1

λj
λj + γ

[U]2i,j , (10)

which shows how the RLS is a weighted version of the stan-
dard leverage scores (i.e.,

∑
j [U ]2i,j), where the weights

depend on both the spectrum of Kn and the regulariza-
tion γ, which plays the role of a soft threshold on the rank
of Kn. Similar to the standard leverage scores [3], the
RLSs measure the relevance of each point xi for the over-
all kernel regression problem. Another interesting prop-
erty of the RLSs is that their sum is the effective dimension
deff(γ)n, which measures the intrinsic capacity of the ker-
nel Kn when its spectrum is soft-thresholded by a regular-
ization γ.2 We refer to the overall Nyström method using
RLS and sampling according to to pn in Eq. 9 as BATCH-
EXACT, which is illustrated in Alg. 1. We single out the
DIRECT-SAMPLE subroutine (which simply draws m inde-
pendent samples from the multinomial distribution pn) to
ease the introduction of our incremental algorithm in the
next section.

With the following claim, Alaoui and Mahoney [1] prove
that the regularized Nyström approximation K̃n obtained
from Eq. 5 guarantees an accurate reconstruction of the
original kernel matrix Kn, and the risk of the associated
solution w̃n is close to the risk of the exact solution ŵn.

Proposition 1 (Alaoui and Mahoney [1], App. A, Lem. 1).
Let γ ≥ 1, let Kn be the full kernel matrix (t = n), and
let τi,n, deff(γ)n, pi,n be defined according to Definition 1.
For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if we run Alg. 1 using
DIRECT-SAMPLE (Subroutine 1) with sampling budget m,

m ≥
(

2deff(γ)

ε2

)
log
(n
δ

)
,

2Notice that indeed we have deff(γ)n ≤ Rank(Kn).

Algorithm 1 BATCH-EXACT algorithm
Input: D, regularization parameter γ, sampling budget m

and probabilities pn (Eq. 9)
Output: Nyström approximation K̃n, matrix Sn

1: Compute In using DIRECT-SAMPLE(pn,m)
2: Compute Sn using In and weights 1/

√
mpi,n

3: Compute K̃n using Sn and Equation 5

Subroutine 1 DIRECT-SAMPLE(pn,m)→ In
Input: probabilities pn, sampling budget m
Output: subsampled column indices In

1: for j = {1, . . . ,m} do
2: Sample i ∼M(p1,n, . . . , pn,n)
3: Add i to In
4: end for

to compute matrix Sn, then with probability 1−δ the corre-
sponding Nyström approximation K̃n in Eq. 5 satisfies the
condition

0 � Kn − K̃n �
γ

1− εKn(Kn + γIn)−1 � γ

1− εIn.

(11)

Furthermore, replacing Kn by K̃n in Eq. 3 gives an ap-
proximation solution w̃n such that

R(w̃n) ≤
(

1 +
γ

µ

1

1− ε

)2

R(ŵn).

Discussion This result directly relates the number of
columns selected m with the accuracy of the approxima-
tion of the kernel matrix. In particular, the inequalities in
Eq. 11 show that the distance ‖Kn − K̃n‖2 is smaller than
γ/(1− ε). This level of accuracy is then sufficient to guar-
antee that, when γ is properly tuned, the prediction error
of w̃n is only a factor (1 + 2ε)2 away from the error of
the exact solution ŵ. As it was shown in [1], using K̃n in
place of Kn introduces a bias in the solution w̃n of order γ.
For appropriate choices of γ this bias is dominated by the
ridge regularization bias controlled by µ. As a result, w̃n

can indeed achieve almost the same risk as ŵn and, at
the same time, ignore all directions that are whitened by
the regularization and only approximate those that are more
relevant for ridge regression, thus reducing both time and
space complexity. The RLSs quantify how important each
column is to approximate these relevant directions but com-
puting exact RLSs τi,n(γ) using Eq. 7 is as hard as solving
the regression problem itself. Fortunately, in many cases
it is computationally feasible to find an approximation of
the RLSs. Alaoui and Mahoney [1] explore this possibil-
ity, showing that the accuracy and space guarantees are ro-
bust to perturbations in the distribution pn, and provide a
two-pass method to compute such approximations. Unfor-
tunately, the accuracy of their RLSs approximation is pro-
portional to the smallest eigenvalue λmin(Kn), which in
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Algorithm 2 The INK-ORACLE algorithm
Input: DatasetD, regularization γ, sampling budget q and

(α, β)-ORACLE

Output: K̃n, Sn

1: Initialize I0 as empty, p̃1,0 = 1, b1,0 = 1, budget q
2: for t = 0, . . . , n− 1 do
3: Receive new column kt+1 and scalar kt+1

4: Receive α-leverage scores τ̃i,t+1 for any i ∈ It ∪
{t+ 1} from (α, β)-ORACLE

5: Receive β-approximate d̃eff(γ)t+1 from (α, β)-
ORACLE

6: Set p̃i,t+1 = min{τ̃i,t+1/d̃eff(γ)t+1, p̃i,t}
7: It+1,bt+1 = SHRINK-EXPAND(It, p̃t+1,bt, q)

8: Compute St+1 using It+1 and weights
√
bi,t+1

9: Compute K̃t+1 using St+1 and Equation 5
10: end for
11: Return K̃n and Sn

some cases can be very small. In the rest of the paper, we
propose an incremental approach that requires only a single
pass over the data and, at the same time, does not depend
on λmin(Kn) to be large as in [1], or on maxi τi,n to be
small as in [2].

3 INCREMENTAL ORACLE KERNEL
APPROXIMATION WITH
SEQUENTIAL SAMPLING

Our main goal is to extend the known ridge leverage score
sampling to the sequential setting. This comes with several
challenges that needs to be addressed simultaneously:

1. The RLSs change when a new sample arrives. We not
only need to estimate them, but to update this estimate
over iterations.

2. The effective dimension d̃eff(γ)t, necessary to normal-
ize the leverage scores for the sampling distribution
pn, depends on the interactions of all columns, includ-
ing the ones that we decided not to keep.

3. Due to changes in RLSs, our sampling distribution p̃t
changes over time. We need to update to dictionary
to reflect these changes, or it will quickly become bi-
ased, but once we completely drop a column, we can-
not sample it again.

In this section, we address the third challenge of incremen-
tal updates of the columns with an algorithm for the ap-
proximation of the kernel matrix Kn, assuming that the
first and second issue are addressed by an oracle giving

Subroutine 2 SHRINK-EXPAND(It, p̃t+1,bt, q)

Input: It, app. pr. {(p̃i,t+1, bi,t) : i ∈ It}, p̃t+1,t+1, q
Output: It+1

1: for all j ∈ {1, . . . , t} do .SHRINK

2: bi,t+1 = bi,t

3: while bi,t+1p̃i,t+1 ≤ 1/q and bi,t 6= 0 do
4: Sample a random Bernoulli B

(
bi,t+1

bi,t+1+1

)

5: On success set bi,t+1 = bi,t+1 + 1

6: On failure set bi,t+1 = 0

7: end while
8: end for
9: bt+1,t+1 = 1 .EXPAND

10: while bt+1,t+1p̃t+1,t+1 ≤ 1/q and bt+1,t+1 6= 0 do
11: Sample a random Bernoulli B

(
bt+1,t+1

bt+1,t+1+1

)

12: On success set bt+1,t+1 = bt+1,t+1 + 1

13: On failure set bt+1,t+1 = 0

14: end while
15: Add to It+1 all columns with bi,t+1 6= 0

both good approximations of leverage scores and the effec-
tive dimension.

Definition 2. At any step t, an (α, β)-oracle returns an α-
approximate ridge leverage scores τ̃i,t which satisfy

1

α
τi,t(γ) ≤ τ̃i,t ≤ τi,t(γ),

for any i ∈ [t] and and a β-approximate effective dimen-
sion d̃eff(γ)t which satisfy

deff(γ)t ≤ d̃eff(γ)t ≤ βdeff(γ)t.

We address the first and second challenge in Sect. 4 with
an efficient implementation and (α, β)-oracle. In the fol-
lowing we give the incremental INK-ORACLE algorithm
equipped with an (α, β)-oracle that after n steps it returns
a kernel approximation with the same properties as if an
(α, β)-oracle was used directly at time n.

3.1 The INK-ORACLE Algorithm

Apart from an (α, β)-ORACLE and the dataset D, INK-
ORACLE (Alg. 2) receives as input the regularization pa-
rameter γ used in constructing the final Nyström approx-
imation and a sampling budget q. It initializes the index
dictionary I0 of stored columns as empty, and the estimated
probabilities as p̃i,0 = 1. Finally it initializes a set of inte-
ger weights bi,0 = 1. These weights will represent a dis-
cretized approximation of 1/p̃i,t (the inverse of the prob-
abilities). At each time step t, it receives a new column
kt+1 and kt+1. This can be implemented either by hav-
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ing a separate algorithm, constructing each column sequen-
tially and stream it to INK-ORACLE, or by having INK-
ORACLE store just the samples (for an additional O(td)
space complexity) and independently compute the column
once. The algorithm invokes the (α, β)-oracle to com-
pute approximate probabilities p̃i,t+1 = τ̃i,t+1/d̃eff(γ)t+1,
and then takes the minimum min{p̃i,t+1, p̃i,t} for the sam-
pling probability. As our analysis will reveal, this step is
necessary to ensure that the SHRINK-EXPAND operation
remains well defined, since the true probabilities pi,t de-
crease over time. It is important to notice that differently
from the batch sampling setting, the approximate proba-
bilities do not necessarily sum to one, but it is guaranteed
that

∑t
i=1 p̃i,t ≤ 1. The SHRINK-EXPAND procedure is

composed of two steps. In the SHRINK step, we update the
weights of the columns already in our dictionary. To decide
whether a weight should be increased or not, the product of
the weight at the preceding step bi,t−1 and the new estimate
p̃i,t is compared to a threshold. If the product is above the
threshold, it means the probability did not change much,
and no action is necessary. If the product falls below the
threshold, it means the decrease of p̃i,t is significant, and
the old weight is not representative anymore and should be
increased. To increase the weight (e.g. from k to k+1), we
draw a Bernoulli random variable B( k

k+1 ), and if it suc-
ceeds we increase the weight to k + 1, while if it fails we
set the weight to 0. The more p̃i,t decrease over time, the
higher the chanches that bi,t+1 is set to zero, and the index
i (and the associated column ki,t+1) is completely dropped
from the dictionary. Therefore, the SHRINK step randomly
reduces the size of the dictionary to reflect the evolution of
the probabilities. Conversely, the EXPAND step introduces
the new column in the dictionary, and quickly updates its
weight bt,t to reflect p̃t,t. Depending on the relevance (en-
coded by the RLS) of the new column, this means that it
is possible that the new column is discarded at the same
iteration as it is introduced. For a whole pass over the
dataset, INK-ORACLE queries the oracle for each RLS at
least once, but it never asks again for the RLS of a columns
dropped from It. As we will see in the next section, this
greatly simplifies the construction of the oracle. Finally,
after updating the dictionary, we use the updated weights√
bi,t to update the approximation K̃t, that can be used at

any time and not only in the end.

3.2 Analysis of INK-ORACLE

The main result of this section is the lower bound on the
number of columns required to be kept in order to guaran-
tee a γ/(1− ε) approximation of Kt.
Theorem 1. Let γ > 1. Given access to an (α, β)-oracle,
for 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, if we run Alg. 2 with
parameter q

q ≥
(

28αβdeff(γ)t
ε2

)
log

(
4t

δ

)
,

to compute a sequence of random matrices St with a ran-
dom number of columnsQt, then with probability 1−δ, for
all t the corresponding Nyström approximation K̃t (Eq. 5)
satisfies condition in Eq. 11,

0 � Kt − K̃t �
γ

1− εKt(Kt + γI)−1 � γ

1− εI.

and the number of columns selected Qt is such that

Qt ≤ 8q.

Discussion Unlike in the batch setting, where the sam-
pling procedure always returned m samples, the number of
columns Qt selected by INK-ORACLE is a random vari-
able, but with high probability it will be not much larger
than q. Comparing INK-ORACLE to online kernel sparsi-
fication methods [19], we see that the number of columns,
and therefore the space requirement, is guaranteed to be
small not only asymptotically but at each step, and that no
assumption on the spectrum of the matrix is required. In-
stead, the space complexity naturally scales with the effec-
tive dimension of the problem, and old samples that be-
come superfluous are automatically discarded. Comparing
Thm. 1 to Prop.1, INK-ORACLE achieves the same perfor-
mance as its batch counterpart, as long as the space budget
q is large enough. This budget depends on several quanti-
ties that are difficult to estimate, such as the effective di-
mension of the full kernel matrix. In practice, this quan-
tity can be interpreted as the maximum amount of space
that the user can afford for the algorithm to run. If the
actual complexity of the problem exceeds this budget, the
user can choose to run it again with another parameter γ
or a worse accuracy ε. It is important to notice that, as we
show in the proof, the distribution induced by the sampling
procedure of INK-ORACLE is not the same as the distri-
bution obtained by the multinomial sampling of BATCH-
EXACT. Nonetheless, in our analysis we show that the bias
introduced by the different distribution is small, and this
allows INK-ORACLE to match the approximation guaran-
tees given by Alaoui and Mahoney [1].

We give a detailed proof of Thm. 1 in App. B. In the rest of
this section we sketch the proof and give the intuition for
the most relevant parts.

The SHRINK step uses the thresholding condition to guar-
antee that the weight bi,t are good approximations of the
p̃i,t. To make the condition effective, we require that the
approximate probabilities p̃j,t are decreasing. Because the
approximate probabilities follow the true probabilities pi,t,
we first show that this decrease happens for the exact case.

Lemma 1. For any kernel matrix Kt at time t, and its bor-
dering Kt+1 at time t + 1 we have that the probabilities
pi,t are monotonically decreasing over time t,

τi,t+1

deff(γ)t+1
= pi,t+1 ≤ pi,t =

τi,t+1

deff(γ)t
·
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Since ridge leverage scores represent the importance of a
column, when a new column arrives, there are two cases
that can happen. If the column is orthogonal to the existing
matrix, none of the previous leverage scores changes. If
the new column can explain part of the previous columns,
the previous columns should be picked less often, and we
expect τi,t to decrease. Contrary to RLS, the effective di-
mension increases when the new sample is orthogonal to
the existing matrix, while it stays the same when the new
sample is a linear combination of the existing ones. In ad-
dition, the presence of γ regularizes both cases. When the
vector is nearly orthogonal, the presence of γI in the in-
verse will still penalize it, while the γ term at the denom-
inator of ∆ will reduce the influence of linearly correlated
samples. Because τi,t decreases over time and deff(γ)i,t
increases, the probabilities pi,t will overall decrease over
time. This result itself is not sufficient to guarantee a well
defined SHRINK step. Due to the (α, β)-approximation, it
is possible that pi,t+1 ≤ pi,t but p̃i,t+1 � p̃i,t. To exclude
this possibility, we adapt the following idea from Kelner
and Levin [9].

Proposition 2 (Kelner and Levin [9]). Given the approxi-
mate probabilities p̃t returned by an (α, β)-oracle at time
t, and the approximate probabilities p̃t+1 returned by an
(α, β)-oracle at time {t + 1}, then the approximate prob-
abilities min3{p̃t, p̃t+1} are also (α, β)-approximate for
{t + 1}. Therefore, without loss of generality, we can as-
sume that p̃i,t+1 ≤ p̃i,t.

Combining Lemma 1 and Proposition 2, we can guarantee
that at each step the p̃i,t-s decrease. Unlike in the batch set-
ting [1], we have to take additional care to consider corre-
lations between iterations, the fact that the inclusion prob-
abilities of Algorithm 2 are different from the multinomial
ones of DIRECT-SAMPLE, and that the number of columns
kept at each iteration is a random quantity Qt. We adapt
the approach of Pachocki [13] to the KRR setting to anal-
yse this process. The key aspect is that the reweighting and
rejection rule on line 3 of Algorithm 2 will only happen
when the probabilities are truly changing. Finally, using a
concentration inequality, we show that the number Qt of
columns selected is with high probability only a constant
factor away from the budget q given to the algorithm.

4 LEVERAGE SCORES AND
EFFECTIVE DIMENSION
ESTIMATION

In the previous section we showed that our incremental
sampling strategy based on (estimated) RLSs has strong
space and approximation guarantees for K̃n. While the
analysis reported in the previous section relied on the exis-
tence of an (α, β)-oracle returning accurate leverage scores

3element-wise mininum

and effective dimension estimates, in this section we show
that such an oracle exists and can be implemented effi-
ciently. This is obtained by two separate estimators for
the RLSs and effective dimension that are updated incre-
mentally and combined together to determine the sampling
probabilities.

4.1 Leverage Scores

We start by constructing an estimator that at each time t,
takes as input an approximate kernel matrix K̃t, and re-
turns α-approximate RLS τ̃i,t+1. The incremental nature
of the estimator lies in the fact that it exploits access to the
columns already in St and the new (exact) column kt+1.
We give the following approximation guarantees.

Lemma 2. We assume that K̃t satisfies Eq. (11), and define
Kt+1 as the matrix bordered with the new row and column

Kt+1 =

[
K̃t kt+1

k
T

t+1 kt+1

]
.

Then

0 � Kt+1 −Kt+1 �
γ

1− εI.

Moreover let α = 2−ε
1−ε and

τ̃i,t+1 =
1

αγ

(
ki,i − ki,t+1

(
Kt+1 + αγI

)−1
ki,t+1

)
.

(12)

Then, for all i such that ki,t+1 ∈ It ∪ {t+ 1},

1

α
τi,t+1(γ) ≤ τ̃i,t+1 ≤ τi,t+1(γ).

Remark There are two important details that are used in
proof of Lem. 2 (App. C). First, notice that using K̃t to ap-
proximate RLSs directly, would not be accurate enough.
RLSs are defined as τi,t(γ) = eT

i Kt(Kt + γI)−1ei and
while the product (Kt + γI)−1ei can be accurately recon-
structed using (K̃t+γI)−1ei, the multiplication Ktei can-
not be approximated well using K̃t. Since the nullspace of
K̃t can be larger than the one of Kt, it is possible that ei
partially falls into it, thus compromising the accuracy of
the approximation of the RLS. In our approach, we deal
with this problem by using the actual columns ki,t of Kt

to compute the RLS. This way, we preserve as much as
exact information of the matrix as possible, while the ex-
pensive inversion operation is performed on the smaller
approximation K̃t. Since we require access to the stored
columns ki,t, our approach can approximate the RLSs only
for columns present in the dictionary but this is enough,
since we are only interested in accurate probabilities for
columns in the dictionary and for the new column kt+1

(which is available at time t + 1). As a comparison, the
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two-pass approach of Alaoui and Mahoney [1] uses the
first pass just to compute an approximation K̃n, and then
approximates all leverage scores with K̃n(K̃n + γI)−1.
This has an impact on their approximation factor α, that
is proportional to (λmin(Kn) − γε). Therefore to have
α ≈ (λmin(Kn) − γε) > 0, it is necessary that γε is of
the order of λmin(Kn), which in some cases can be very
small, and strongly increase the space requirements of the
algorithm. Using the actual columns of the matrix in Eq. 12
allows us to compute an α-approximation independent of
the smallest eigenvalue.

4.2 Effective Dimension

Using Eq. 12, we can estimate all the RLSs that we need
to update St. Nonetheless, to prove that the number of
columns selected is not too large, the proof of Thm. 1 in the
appendix requires that the sum of the probabilities p̃i,t is
smaller than 1. Therefore we not only need to compute the
RLSs, but also a normalization constant. Indeed, a naïve
definition of the probability p̃i,t could be pi,t =

τ̃i,t∑t
j=1 τ̃i,t

·
A major challenge in our setting is that we cannot com-
pute the sum of the approximate RLSs, because we do not
have access to all the columns. Fortunately, we know that∑t
j=1 τ̃i,t ≤

∑t
j=1 τi,t(γ) = deff(γ)t. Therefore, one of

our technical contribution is an estimator d̃eff(γ)t that does
not use the approximate RLSs for the the columns that we
no longer have. We now define this estimator and state its
approximation accuracy.

Lemma 3. Assume K̃t satisfies Eq. 11. Let α =
(

2−ε
1−ε

)

and β =
(

2−ε
1−ε

)2
(1 + ρ) with ρ = λmax(Kn)

γ . Define

d̃eff(γ)t+1 = d̃eff(γ)t + α∆̃t (13)

with

∆̃t =
1

kt+1 + γ − k
T

t+1

(
K̃t + αγI

)−1
kt+1

×
(
kt+1 − k

T

t+1

(
K̃t + αγI

)−1
kt+1

− (1− ε)2
4

γk
T

t+1(K̃t + γI)−2kt+1

)
. (14)

Then

deff(γ)t+1 ≤ d̃eff(γ)t+1 ≤ βdeff(γ)t+1.

Discussion Since we cannot compute accurate RLSs for
columns that are not present in the dictionary, we prefer to
not estimate how each RLSs changes over time, but instead
we directly estimate the increment of their sum. We do
it by updating our estimate d̃eff(γ)t+1 using our previous
estimate d̃eff(γ)t, and ∆̃t. ∆̃t captures directly the interac-
tion of the new sample with the aggregate of the previous

Algorithm 3 The INK-ESTIMATE algorithm
Input: Dataset D, regularization γ, sampling budget q
Output: K̃n, Sn

1: Initialize I0 as empty, p̃1,0 = 1, b1,0 = 1, budget q
2: for t = 0, . . . , n− 1 do
3: Receive new column kt+1 and scalar kt+1

4: Compute α-leverage scores {τ̃i,t+1 : i ∈ It ∪ {t +

1}}, using Kt+1, ki, ki,i, and Eq. (12)
5: Compute β-approximate d̃eff(γ)t+1 using K̃t, kt+1,

kt+1, and Eq. (13)
6: Set p̃i,t+1 = min{τ̃i,t+1/d̃eff(γ)t+1, p̃i,t}
7: It+1,bt+1 = SHRINK-EXPAND(It, p̃t+1,bt, q)

8: Compute St+1 using It+1 and weights
√
bi,t+1

9: Compute K̃t+1 using St+1 and Equation 5
10: end for
11: Return K̃n and Sn

samples, and allows us to estimate the increase in effective
dimension using only the current matrix approximation K̃t,
the new column kt+1 and the scalar kt+1. Differently from
the other terms we studied, the numerator of ∆̃t contains an
additional γk

T

t+1(K̃t + γI)−2kt+1 second order term. The
guarantees provided by Eq. 11 are not straightforward to
extend because in general if (Kt+γI)−1 � (K̃t+αγI)−1,
it is not guaranteed that (Kt + γI)−2 � (K̃t + αγI)−2.
Nonetheless, we show that K̃t is still sufficient to estimate
∆̃t, but, unlike α, the approximation error β is now depen-
dent on the spectrum.

4.3 Analysis of INK-ESTIMATE

With the separate estimates for leverage scores (Sect. 4.1)
and effective dimension (Sect. 4.2), we have the neces-
sary ingredients for the (α, β)-oracle and we are ready to
present the final algorithm INK-ESTIMATE (Alg. 3).

Using the approximation guarantees of Lem. 2 and Lem. 3,
we are ready to state the final result, instantiating the
generic α and β terms of Thm. 2 with the values obtained
in this section.

Theorem 2. Let ρ = λmax(Kt)/γ, α =
(

2−ε
1−ε

)
, β =

(
2−ε
1−ε

)2
(1 + ρ), and γ > 1. For any 0 ≤ ε ≤ 1, and

0 ≤ δ ≤ 1, if we run Alg. 3 with parameter q, where

q ≥
(

28αβdeff(γ)t
ε2

)
log

(
4t

δ

)
,

to compute a sequence of random matrices St with a ran-
dom number of columnsQt, then with probability 1−δ, for
all t the corresponding Nyström approximation K̃t (Eq. 5)
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satisfies condition 11

0 � Kt − K̃t �
γ

1− εKt(Kt + γI)−1 � γ

1− εI.

With the same prob., INK-ESTIMATE requires at most

O(n2q2 + nq3)

≤ O
(
α2β2n2deff(γ)2n + α3β3ndeff(γ)3n

)

= O
(
α4(1 + ρ)2n2deff(γ)2n + α6(1 + ρ)3ndeff(γ)3n

)

time and the space is bounded as

O(nq) ≤ O (αβndeff(γ)n) = O
(
α2(1 + ρ)ndeff(γ)n

)
.

For the space complexity, from Theorem 1 we know we
will not select more than O(q) columns in high probabil-
ity. For the time complexity, at each iteration we need
to solve linear systems involving (Kt+1 + αγI)−1 and
(K̃t + αγI)−1. Approximating the inverse using transfor-
mations similar to Eq. (6) takes O(tq2 + q3) time, again
using a singular value decomposition approach. To com-
pute all leverage scores, we need to first compute an ap-
proximate inverse in O(tq2 + q3) time, and then solve Qt
systems, each using a multiplication costing O(tQt). With
high probability, Qt ≤ 8q, therefore computing all lever-
age scores costsO(tq2 + q3) for the first singular value de-
composition, and O(tq) for each of the O(q) applications.
To update the effective dimension estimate, we only have
to compute another approximate inverse, and that costs
O(tq2 + q3) as well. Finally, we have to sum the costs over
n steps, and from

∑n
t=1 tq

2 ≤ q2n2, we obtain the final
complexity. Even with a significantly different approach,
INK-ESTIMATE achieves the same approximation guaran-
tees as BATCH-EXACT. Consequently, it provides the same
risk guarantees as the known batch version [1], stated in the
following corollary.
Corollary 1. For every t ∈ {1, . . . , n}, let Kt be the ker-
nel matrix at time t. Run Algorithm 3 with regularization
parameter γ and space budget q. Then, at any time t, the
solution w̃t computed using the regularized Nyström ap-
proximation K̃t satisfies

R(w̃t) ≤
(

1 +
γ

µ

1

1− ε

)2

R(ŵt)

=

(
1 +

λmax(Kt)

ρµ

1

1− ε

)2

R(ŵt).

Discussion Thm. 2 combines the generic result of Thm. 1
with the actual implementation of an oracle that we de-
veloped in this section. All the guarantees that hold for
INK-ORACLE are inherited by INK-ESTIMATE, but now
we can quantify the impact of the errors α and β on the
algorithm. As we saw, the α error does not depends on
the time, the spectrum of the kernel matrix or other quan-
tities that increase over time. On the other hand, estimat-
ing the effective dimension without having access to all the

leverage scores is a much harder task, and the β factor de-
pends on the spectrum through the ρ coefficient. The in-
fluence that this coefficient exerts on the space and time
complexity can vary significantly as the relative magnitude
of λmax(Kn), γ and µ changes. If the largest eigenvalue
grows too large without a corresponding increase in γ, the
space and time requirements of INK-ESTIMATE can grow,
but the risk bound, depending on γ/µ remains small. On
the other hand, increasing γ without increasing µ reduces
the computational complexity, but makes the guarantees on
the risk of the solution w̃t much weaker. As an example,
[1, Thm. 3] chooses, µ ≥ λmax(Kn) and γ u µ. If we do
the same, we recover their bound.

5 CONCLUSION

We presented a space-efficient algorithm for sequential
Nyström approximation that requires only a single pass
over the dataset to construct a low-rank matrix K̃n that ac-
curately approximates the kernel matrix Kn, and compute
an approximate KRR solution w̃n whose risk is close to
the exact solution ŵn. All of these guarantees do not hold
only for the final matrix, but are valid for all intermediate
matrices K̃t constructed by the sequential algorithm.

To address the challenges coming from the sequential
setup, we introduced two separate estimators for RLSs
and effective dimension that provide multiplicative error
approximations of these two quantities across iterations.
While the approximation of the RLSs is only a constant
factor away from the exact RLSs, the error of the approx-
imate effective dimension scales with the spectrum of the
matrix through the coefficient ρ. A more careful analysis,
or a different estimator might improve this dependence, and
they can be easily plugged to the general analysis.

Our generalization results apply to the fixed design setting.
An important extension of our work would be to consider
a random design, such as in the work of Rudi et al. [16].
This extension would need even more careful tuning of the
regularization parameter γ, needing to satisfy requirements
of both generalization and the approximation of the (α, β)-
oracle. Finally, the runtime analysis of the algorithm does
not fully exploit the sequential nature of the updates. An
implementation based on decompositions more amenable
to updates (e.g., Cholesky decomposition), or on low-rank
solvers that can exploit hot-start might further improve the
time complexity.
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Abstract

We show that the climate phenomena of El Niño
and La Niña arise naturally as states of macro-
variables when our recent causal feature learn-
ing framework (Chalupka et al., 2015, 2016) is
applied to micro-level measures of zonal wind
(ZW) and sea surface temperatures (SST) taken
over the equatorial band of the Pacific Ocean.
The method identifies these unusual climate
states on the basis of the relation between ZW
and SST patterns without any input about past
occurrences of El Niño or La Niña. The sim-
pler alternatives of (i) clustering the SST fields
while disregarding their relationship with ZW
patterns, or (ii) clustering the joint ZW-SST pat-
terns, do not discover El Niño. We discuss the
degree to which our method supports a causal
interpretation and use a low-dimensional toy ex-
ample to explain its success over other cluster-
ing approaches. Finally, we propose a new ro-
bust and scalable alternative to our original algo-
rithm (Chalupka et al., 2016), which circumvents
the need for high-dimensional density learning.

1 INTRODUCTION
The accurate characterization of macro-level climate phe-
nomena is crucial to an understanding of climate dynam-
ics, long term climate evolution and forecasting. Modern
climate science models, despite their complexity, rely on
an accurate and valid aggregation of micro-level measure-
ments into macro-phenomena. While many aspects of the
climate may indeed be subject fundamentally to chaotic dy-
namics, many large scale phenomena are deemed amenable
to precise modeling. The El Niño–Southern Oscillation
(ENSO) is arguably the most studied climate phenomenon
at the inter-annual time scale, but much about its dynam-
ics relating zonal winds (ZW) and sea surface temperatures
(SST) remains poorly understood.

Figure 1: El Niño vs. neutral conditions from Di Liberto
(2014). Top: An illustration of the state of the atmosphere
and surface during typical El Niño conditions. Here, the
colors indicate SST deviations from the neutral state with
red being a positive and blue being a negative deviation.
Bottom: Similar to the top panel but now showing neutral
conditions of the Walker circulation (neither El Niño nor
La Niña).

We apply our recent causal feature learning (CFL) frame-
work (Chalupka et al., 2016) to learn causal macro-
variables from the equatorial Pacific climate data. Our goal
is threefold:

• apply CFL to real-world data, developing new practi-
cal algorithms as needed,

• test whether CFL can, without supervision, learn the
ground truth that El Niño is an important macro-
variable state in the ZW-SST system’s dynamics,

• explore the theoretical and practical difference be-
tween CFL and clustering methods.

From the climate-science point of view, our research shows
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Figure 2: Niño 3.4 SST anomalies for the time period
1950–2005. The figure was adapted from McPhaden et al.
(2006). Red shadings indicate El Niño years and blue shad-
ings indicate La Niña years. The two dashed lines indicate
the threshold for strong El Niño or La Niña events.

that CFL can be successfully used for an unbiased auto-
mated extraction of climate macro-variables, which would
otherwise require tedious hand-crafting by domain experts.
Moreover, the framework can directly suggest (compu-
tationally) expensive climate experiments (for example,
through climate simulations) that could differentiate be-
tween true causes and mere correlations efficiently. Closer
inspection of the output of CFL can also yield insights
about new climate macro-phenomena (or important vari-
ants of existing ones) that inspire new physical mod-
els of the climate. Python code that reproduces our re-
sults and figures is available online at http://vision.
caltech.edu/˜kchalupk/code.html.

1.1 EL NIÑO–SOUTHERN OSCILLATION

El Niño is a weather pattern that is principally charac-
terized by the state of eastern Pacific near-surface winds
(ZW, zonal wind), sea surface temperature (SST) patterns,
and the associated state of the atmospheric Walker circula-
tion (see for example, Holton et al., 1989; Trenberth, 1997).
The Walker circulation (see Fig. 1) is characterized by
warm air rising over Indonesia and Papua New Guinea and
cooler subsiding air over the eastern Pacific cold tongue re-
gion just west of equatorial South America (Lau and Yang,
2003). Near the surface, easterly winds (winds blowing
from the east) drive water from east to west resulting in
oceanic upwelling near the coast of equatorial South Amer-
ica (and downwelling east of Indonesia), that brings with it
cold and nutrient rich waters from the deep oceans. During
the ENSO warm phase, commonly referred to as El Niño
(because it often occurs around and after Christmas), the
Walker circulation weakens, ultimately resulting in weaker
upwelling in the Eastern Pacific and thus in positive SST
anomalies. Fig. 1 illustrates these phenomena.

ENSO-related weather in the tropics includes droughts,
flooding, and may have direct impact on fisheries through
reduced nutrient upwelling (e.g., Glantz, 2001). Atmo-

spheric waves (ripples in wind, SST and rainfall pat-
terns) generated by the change in circulation and SST
anomalies in the tropics, make their way across the planet
with dramatic impact (e.g, Ropelewski and Halpert, 1987;
Changnon, 1999). Cashin et al. (2015) show that the eco-
nomic impact of El Niño varies across regions. Economic
activity may decline briefly in Australia, Chile, Indonesia,
India, Japan, New Zealand, and South Africa after an El
Niño event. Enhanced growth may be registered in other
countries, such as the United States.

The ENSO cold phase, usually referred to as La Niña, is
the opposing phase of El Niño with enhanced upwelling
and colder SSTs in the eastern Pacific. Currently, predict-
ing the strength of El Niño and La Niña events remains a
difficult challenge for climate scientists as the period may
vary between 3 and 7 years (see Fig. 2); as a consequence
accurate forecasts are only possible less than a year in ad-
vance (e.g., Landsea and Knaff, 2000).

The National Oceanic and Atmospheric Administration
(NOAA) defines El Niño as a positive three-month run-
ning mean SST anomaly of more than 0.5◦C from nor-
mal (for the 1971–2000 base period) in the Niño 3.4 re-
gion (120◦W–170◦W, 5◦N–5◦S, see also Fig. 4). Simi-
larly, La Niña conditions are defined as negative anoma-
lies of more than −0.5◦ C. Conditions in between −0.5◦C
and 0.5◦C are called neutral. This is illustrated using red
and blue shadings in Fig. 2. Strong El Niño/La Niña events
are defined as SST-anomalies greater than 1.5◦C. However,
the definitions for El Niño and La Niña have evolved over
time. For example, other regions than the Niño 3.4 region
or other averaging conventions have been used in the spec-
ification of the SST anomalies.

1.2 CAUSAL FEATURES AND
MACRO-VARIABLES

Climate experts view zonal winds as drivers of SST pat-
terns. We take the view that if El Niño and La Niña are
indeed genuine macro-level climate phenomena in their
own right (and not just arbitrary quantities defined by con-
vention) then they must consist of macro-level features of
the relation between the high-dimensional micro-level ZT
and SST patterns that can be detected by an unsupervised
method. That is, it must be possible to identify El Niño and
La Niña from a mass of air pressure and sea temperature
readings, using a method that has no independent informa-
tion about when such periods occurred.

In Chalupka et al. (2016) we developed a theoretically pre-
cise account of causal relations of macro-variables that su-
pervene on micro-variables, and proposed an unsupervised
method for their discovery, which we called Causal Fea-
ture Learning (CFL). We adopt the framework (summa-
rized below) with a few interpretational adjustments for
our climate setting. The method (originally inspired by
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the neuroscience setting, only tested on synthetic data)
was designed to establish claims such as “The presence of
faces (in an image) causes specific neural processes in the
brain.”, where a neural process identifies a class of spike
trains across a large number of neurons recorded by elec-
trodes. An ability to characterize such neural processes
would provide the basis to explain, for example, what con-
stitutes face recognition in the brain. There we considered
as input visual stimuli (in the form of still images) and as
output electrode recordings of the neural response of 1000
neurons (in the form of spike trains).

Formally, let an input (micro-)variable X take values in
a high-dimensional domain X (in Chalupka et al. (2016),
the pixel space of an image, in our case here ZW maps)
and the output (micro-)variable Y take values in the high-
dimensional domain Y (the space of neural spike trains
then, the SST patterns here). The basic idea underlying
our set-up is that the causal macro-variable relation is de-
fined in terms of the coarsest aggregation of the micro-
level spaces that preserves the probabilistic relations un-
der intervention (hence, causal) between the micro-level
spaces. Conceptually, macro-level causal variables group
together micro-level states that make no causal difference.
In Chalupka et al. (2016) we started by defining a micro-
level manipulation (similar to Pearl’s do()-operator (Pearl,
2000)):

Definition 1 (Micro-level Manipulation). A micro-level
manipulation is the operation man(X = x) that changes
the value of the micro-variable X to x ∈ X , while not (di-
rectly) affecting any other variables. We write man(x) if
the manipulated variable X is clear from context.

The micro-level manipulation is then used to define what
we refer to as the fundamental causal partition:

Definition 2 (Fundamental Causal Partition, Causal Class).
Given the pair (X ,Y), the fundamental causal partition of
X , denoted by Πc(X ) is the partition induced by the equiv-

alence relation X∼ such that

x1
X∼ x2 ⇔ ∀y P (y | man(x1)) = P (y | man(x2)).

Similarly, the fundamental causal partition ofY , denoted by
Πc(Y), is the partition induced by the equivalence relation
Y∼ such that

y1
Y∼ y2 ⇔ ∀x P (y1 | man(x)) = P (y2 | man(x)).

A cell of a causal partition is a causal class of X or Y .

The fundamental causal partitions then naturally give rise
to the macro-level cause variable C and effect variable E
that stand in a bijective relation to the cells of Πc(X ) and
Πc(Y), respectively. Thus, the macro-variable cause C ig-
nores all the micro-level changes in X that do not have
an effect on the probabilities over Y , and the macro-level

Figure 3: The Causal Coarsening Theorem, adapted from
Chalupka et al. (2016). In this plot, the observational input
macro-variable (top, gray) has four states, and has a well-
defined joint with the observational output macro-variable
(with six states). In each case, the causal macro-variable
states are a coarsening of the observational states. For ex-
ample, the input causal macro-variable merges the two top
observational states. E.g. P (Y | x1) 6= P (Y | x2), but
P (Y | man(x1)) = P (Y | man(x2)).

effect E ignores all the micro-level detail in Y , which oc-
cur with the same probability given a manipulation to any
X = x.

With these definitions there is no reason a priori to think
that macro-variables are common phenomena. In fact quite
the opposite: The conditions that the probability distri-
butions over X and Y must satisfy to give rise to non-
trivial macro-variablesC andE can easily be described as a
measure-zero event when taken in their strict form. Conse-
quently, our view is that to the extent that macro-variables
are discussed in a scientific domain, there must be a pre-
supposition that such strong conditions are satisfied at least
approximately.

In the present context, our climate data consisting of ZW
and SST measurements (we give a detailed description of
the data in Section 1.3 below) is entirely observational.
That is, the data is naturally sampled from P (SST, ZW)
and not created by a (hypothetical) experimentalist from
P (SST | man(ZW = z)) for different values of z. Never-
theless, we can identify the observational macro-variables
that characterize the probabilistic relation between ZW and
SST by replacing the probabilities in Definition 1.2 with
observational probabilities P (y | x):

Definition 3 (Fundamental Observational Partition, Obser-
vational Class). Given the pair (X ,Y), the fundamental
observational partition of X , denoted by Πo(X ) is the par-

tition induced by the equivalence relation X∼ such that

x1
X∼ x2 ⇔ ∀y P (y | x1) = P (y | x2).

Similarly, the fundamental observational partition of Y , de-
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Figure 4: A micro-variable climate dataset. Top: A week’s
average ZW field. Bottom: A week’s average SST field
over the same region. In addition, the Niño 3.4 region is
marked. Our dataset comprises 36 years’ worth of overlap-
ping weekly averages over the presented region.

noted by Πo(Y), is the partition induced by the equivalence

relation Y∼ such that

y1
Y∼ y2 ⇔ ∀x P (y1 | x) = P (y2 | x).

A cell of an observational partition is an observational
class of X or Y .

In Chalupka et al. (2016) we showed that the fundamen-
tal causal partition is almost always a coarsening of the
corresponding fundamental observational partition, as il-
lustrated in Fig. 3. We thus have some reason to expect that
any macro-variables we do identify from our observational
climate data will capture all the distinctions that are causal,
but may in addition make some distinctions that do not sup-
port a causal inference. We return to this point in Section 6,
where we discuss in more detail what causal insights can
be drawn from this work. Our results should be seen as a
step towards a characterization of macro-level causal vari-
ables for climate science, but we fully acknowledge that a
complete causal characterization of the equatorial Pacific
climate dynamics is beyond the scope of this paper.

1.3 DATASET

The data used for this study is based on the daily-
averaged version of the NCEP-DOE Reanalysis 2 prod-
uct for the time period 1979–2014 inclusive (Kanamitsu
et al., 2002), a data product provided by the US National
Centers for Environmental Protection (NCEP) and the De-
partment of Energy (DOE). Reanalysis data sets are gen-
erated by fitting a complex climate model to all avail-
able data for a given period of time, thus generating es-
timates for times and locations that were not originally
observed. In addition, we used the Geophysical Obser-

vational Analysis Tool (http://www.goat-geo.org) to inter-
polate the SST and zonal wind fields onto a 2.5◦ × 2.5◦

spatial grid for easier analysis. We chose to focus on the
(140◦, 280◦)E×(-10◦, +10◦)N equatorial band of the Pa-
cific Ocean. From the raw dataset, we extracted the zonal
(west-to-east) wind component and SST data in this region
(specifically, we extracted the fields at the 1000 hPa level
near the surface). Finally, we smoothed the data by com-
puting a running weekly average in each domain. The re-
sulting dataset contains 13140 zonal wind and 13140 cor-
responding SST maps, each a 9×55 matrix. Fig. 4 shows
sample data points.

2 PACIFIC MACRO-VARIABLES
To apply CFL in practice, we adapted our unsupervised
causal feature learning algorithm (Chalupka et al., 2016)
to more realistic scenarios. The new solution (Sec. 3) is
more robust and applicable to high-dimensional real-world
data. We start with a description of the results.

Throughout the article, we will refer to zonal wind macro-
variables as W, and to temperature macro-variables as
T. We first chose to search for four-state macro-variables
(though we experiment with varying this number in
Sec. 4.1) and considered a zero-time delay1 between W
and T. In the CFL framework, each macro-variable state
corresponds to a cell of a partition of the respective micro-
variable input space. Fig. 5 visualizes the W and T we
learned by plotting the difference between each macro-
variable cell’s mean and the ZW (SST) mean across the
whole dataset. The visualized states are easy to describe:
For example, when W=WEqt there is a larger-than-average
westerly wind component in the west-equatorial region, a
feature often associated with the causes of El Niño (see
Fig. 1). Indeed, Table 1 shows that the El Niño cell of T
only arises in connection with W=WEqt. In addition, WEqt
is often positively correlated with the T=Warm. Through-
out the rest of the article, we will mostly focus on the T
macro-variable. Our first goal is to quantitatively justify
calling T=1 “El Niño” and calling T=2 “La Niña”. Quali-
tatively, the warm and cold water tongues that reach west-
ward across the Pacific and that are often used to describe
the two phenomena, are evident in the image.

Following the standard definition of El Niño (see Sec-
tion 1.1), we use the SST anomaly in the Niño 3.4 region to
detect its presence (Trenberth, 1997). The anomaly is com-
puted with respect to the climatological mean, that is the

1A zero time delay implies that CFL will attempt to relate the
weekly moving ZW average to the weekly moving SST average.
The question of different time delays turns out to be a very subtle
issue in the study of El Niño as El Niño is not a periodic event,
nor does it have a fixed duration (see Fig. 2). A careful discussion
of other delays is not feasible in a short article and the zero-time
delay was deemed a reasonable starting point by domain experts
we consulted.
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Figure 5: Macro-variables discovered by Alg. 1. For
each state, the average difference from the dataset mean
is shown. Left: Four states of W, the zonal wind macro-
variable. We named the states “Easterly Equatorial”
(EEqt),“Westerly Equatorial” (WEqt), “Easterly North of
Equator” (EN) and “Easterly South of Equator” (ES).
Right: Four states of T, the SST macro-variable. We named
the states “Cold [American Coastal Waters]”, “El Niño”,
“La Niña” and “Warm [American Coastal Waters]”. The
main text provides additional justification for calling T=1
and T=2 “El Niño” and ”La Niña”, respectively.

mean temperature during the same week of the year over
all the weeks in our dataset. We will call a weekly average
anomaly exceeding +.5◦C a mild episode, and an anomaly
exceeding +1.5◦C a strong episode. The definition of La
Niña is analogous, with negative thresholds. Fig. 6 shows
that in the T=1 and T=2 cells, over 75% of all the points
exceed the threshold for a mild (positive and negative, re-
spectively) anomaly, and over 50% of the points exceed the
strong threshold. The situation is different in the Warm
and Cold cells, where almost no points exceed the strong
threshold while the number of points falling in these non-
anomalous cells is about 30% of the total. Since this macro-
variable contains a state capturing a high proportion of El
Niño-like patterns, we will say that this state has a “high
precision” of detecting El Niño, while similarly, state T=2
has a high La Niña precision. Formally, we define the pre-
cision of a macro-variable state as follows:

Definition 4 (precision). Let T = {T1, · · · , TK} be a par-
tition of the set of all the SST maps used in our experiments.
Let n34 : SST → R be the function that computes the
Niño 3.4 anomaly for a given map. Then, let

cθ(Tk) =





1
|Tk| |{t ∈ Tk s.t. n34(t) > θ}| if θ > 0

1
|Tk| |{t ∈ Tk s.t. n34(t) < θ}| if θ < 0

be the function that computes for, a given cell Tk of the
partition, the fraction of its members whose anomaly is
greater than (if θ > 0) or lesser than (if θ < 0) a given
threshold θ. Finally, call the four numbers maxk c.5(Tk),

Figure 6: T=1 and T=2 are El Niño and La Niña. Top:
Each plot shows the cumulative histogram of the Niño 3.4
anomalies, computed over all the weekly SST averages that
belong to the given state of T. The dashed lines show the
+/-0.5 and +/-1.5 “mild” and “strong” anomaly thresholds.
Bottom: The minimal manipulations needed to transition
from a given T-state into another (the exact procedure to
obtain the plots is described in the text).

maxk c1.5(Tk), maxk c(−.5)(Tk), maxk c(−1.5)(Tk) the
mild/strong-El Niño and mild/strong-La Niña precision of
the macro-variable T .

Together, the precisions indicate how well the partition T
separates the mild and strong El Niño and La Niña anoma-
lies from other structures in the data. In Fig. 6, for ex-
ample, c.5(T ) ≈ .75 and c1.5(T ) ≈ .25 (both because of
T=1), c(−.5)(T ) ≈ .85 and c(−1.5)(T ) ≈ .5 (both because
of T=2). Thus, T has high mild-El Niño precision, and high
mild-La Niña precision.

As further evidence that Alg. 1 recovered El Niño and
La Niña, we show minimal state-to-state manipulations in
Fig. 6. Take the La Niña→El Niño plot as an example. To
compute it, we took all the SST maps for which T=La Niña,
and for each found the closest (in the Euclidean space) map
for which T=El Niño. We then averaged these differences.
One of the insights the figure offers is that low SSTs in
the Niño 3.4 region really are the distinguishing feature
of T=La Niña. Similarly, an important difference between
the T=Warm and T=El Niño is the characteristic tongue of
warm water extending into the Niño 3.4 region. Adding this
tongue is necessary to switch from T=Cold to T=El Niño,
but not to switch from T=Cold or T=La Niña to T=Warm.

The CFL framework allows us to interpret W and T as stan-
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Figure 7: Alg. 1 vs. clustering. In this toy example, the data
is sampled from the distribution P (X) = U({1/5; 2/5)}∪
{3/5; 4/5}), P (Y | X) = P (Y ) = U({1/5; 2/5)} ∪
{3/5; 4/5}). The clusters in the X , Y , and joint X ,Y
space are evident. However, since X and Y are inde-
pendent, we expect Alg. 1 to find only one macrolevel
class of X . Indeed, (properly regularized) regression gives
f(x) = const ∀x, so W (x) = 0 ∀x. Incidentally, since the
density of Y is similar in the neighborhood of each sample
y (see data Y-projection on the right), T (y) = 0 ∀y .

dard probabilistic random variables with distribution we
can estimate. Table 1 offers a probabilistic description of
the system we learned. “When the equatorial zonal wind is
unusually westerly, there is a 75% chance that the eastern
Pacific is warm, and a 25% chance that El Niño arises.” and
“When the North-equatorial zonal wind is predominantly
westerly, but the South-equatorial easterly, then the East-
ern Pacific is most likely to be cold.”—are example insights
about the equatorial Pacific wind-SST system offered by
CFL. We emphasize that both the macro-variables and the
probabilities are learned from the data in an entirely un-
supervised manner, without any a priori input about what
constitutes ENSO events (except the fact that we restrict
the SST and ZW fields to the equatorial Pacific region).

3 CFL: A ROBUST ALGORITHM
The practical bottleneck of the original CFL algo-
rithm (Chalupka et al., 2016) is the need for joint den-
sity estimation of p(X, Y ). Density estimation is noto-
riously hard, especially in high dimensions. We modified
the original algorithm to avoid explicit density estimation.
An additional advantage of our approach (Alg. 1) is that
it is very robust with respect to input space dimensional-
ity: Input data is only used explicitly in regression, which
can be implemented using any algorithm that easily handles
high-dimensional inputs (we used neural nets).

Let X ,Y denote the micro-variable input and output space,
respectively. Our algorithm is based on the insight that CFL
only needs to detect the two equivalences

p(Y | x1) = p(Y | x2) for any x1, x2 ∈ X and (1)
p(y1 | x) = p(y2 | x) for any y1, y2 ∈ Y, x ∈ X , (2)

instead of actually computing the conditionals p(Y | X).

Algorithm 1: Unsupervised Causal Feature Learning
input : D = {(x1, y1), · · · , (xN , yN )}

Cluster – a clustering algorithm
output: W (x), T (y) – the causal class of each x, y.

1 Regress f ← argminf Σi(f(xi)− yi)2;

2 Let W (xi)← Cluster(f(x1), · · · , f(xN ))[xi];
3 Let Range(W ) = {0, · · · , N};
4 Let Yw ← {y |W (x) = w and (x, y) ∈ D};
5 Let g(y)← [kNN(y,Y0), · · · ,kNN(y,YN )];
6 Let T (yi)← Cluster(g(y1), · · · , g(yN ))[yi];

If Eq. (1) holds, we also have E[Y | x1] = E[Y | x2].
Computing conditional expectations is much easier than
learning the full conditional: f(X) = E[Y | X] minimizes
E[(Y − f(X))2], so learning the conditional expectation
amounts to regressing Y on X under the mean-squared er-
ror measure. Unfortunately, equal conditional expectations
do not imply equal conditional distributions. However, ar-
guably the practical risk of encountering differing condi-
tionals with identical means is lower than the risk of failing
at high-dimensional density learning. For this reason, we
use E[Y | x1] = E[Y | x2] as a heuristic indicator of the
equivalence of the conditionals in Eq. (1) (see Line 2 in
Alg. 1). For a more robust heuristic one could use more
than just equal expectations to decide distribution equality.
A promising direction would be to use a Mixture Density
Network (Bishop, 1994) to approximate P (Y | x) with a
mixture of Gaussians for each x, and then cluster the mix-
tures.

Clustering the conditional expectations gives us the macro-
variable class W (x) of each input x. By construc-
tion (Chalupka et al., 2015), we have p(Y | x) = P (Y |
W (x)) and by assumption the range of W is small. Instead
of checking whether Eq. (2) holds for a given pair y1, y2
over all the x ∈ X , it is thus enough to check whether
p(y1 | W = w) = p(y2 | W = w) for each value
w ∈ Range(W ). For each given w we have a subset
Yw ⊂ Y which consists of all the y’s whose corresponding
x’s have causal class w. Consequently, Eq. (2) does not de-
pend on the exact densities conditional on the micro-state,
but only the densities conditional on the macro-level state.
Thus, instead of trying to evaluate any given p(y | w),
Line 5 computes the distance of y to the k-th nearest neigh-
bor in Yw. This idea is based on a principle that under-

Cold El Niño La Niña Warm

EEqt 2/3 0 1/3 0
WEqt 0 1/4 0 3/4
EN ∼1/10 0 1/4 ∼2/3
ES 3/4 0 0 1/4

Table 1: Each row shows P (T |W = w) for a given w.
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Figure 8: Changes in macro-variable precision as we vary
the number of states in CFL, clustering, and CFL on reshuf-
fled data (“Rand CFL”). With two states, it is impossible to
differentiate El Niño and La Niña from other weather fea-
tures, be it dynamic (CFL) or spatio-structural (clustering).
Increasing the number of states reveals differences between
the algorithms.

lies a whole class of nonparametric density estimation al-
gorithms (Fukunaga and Hostetler, 1973; Mack and Rosen-
blatt, 1979): Where the density is high, samples from the
distribution are closer to each other than where the den-
sity is low. This is illustrated in Fig 7. On the right, we
plotted the projection of the data onto the y-space. In this
projection, the distance of y1 to its third-nearest neighbor
is roughly the same as the distance of y2 to its third-nearest
neighbor. Indeed, this is the case for all the y’s, because
they are generated from a distribution that assigns equal
density to all of them.

In Chalupka et al. (2016) we represented each y by an esti-
mate of [p(y | x1), · · · , p(y | xN )], where N is the number
of datapoints. The new approach represents each y sam-
ple by its ’k-nn representation’, one scalar value for each
w ∈ Range(W ) (Line 5). Clustering these representations
gives us the causal state T (y) for each y.

Algorithm 1 relies on a successful regression f that mini-
mizes the mean squared error E[(f(x) − y)2]. In our ex-
periments, we used the Theano (Bastien et al., 2012) and
Lasagne packages to implement and train a three-hidden-
layers, fully-connected neural network (Bishop, 1995) in
Python. The data was sufficiently simple (compared to e.g.
image datasets used to evaluate state-of-the-art neural nets
in vision) that no regularization technique beyond simple
weight decay and early stopping was necessary to minimize
the validation error.

Figure 9: t-SNE (Van der Maaten and Hinton, 2008) em-
bedding of the k-nn representation of SST data. The blue
dots show, for varying K, the state of T with largest c(−.5)
precision (see Def. 4). The red dots show the state with
largest c.5. Thus, the blue dots are “the” La Niña cluster
for each K, and the red dots “the” El Niño cluster.

4 ROBUSTNESS OF THE RESULTS

In this section, we describe two additional studies we per-
formed to ensure our algorithm behaves as expected, and
that the results are robust with respect to changing the ex-
perimental parameters.

4.1 VARYING THE NUMBER OF STATES

Our choice of discovering four-state macro-variables was
rather arbitrary. To check how varying the number of states
changes the macro-variable precision (Def. 4), we repeated
our experimental procedure, varying the number of states K
from 2 to 16 (both in the ZW and SST space). Fig. 8 shows
the precisions for each case. As expected, a low number
of states (K=2, 3) doesn’t allow the algorithm to precisely
detect El Niño and La Niña. With K > 4 however, a slowly
growing trend persists at high precision values. El Niño
and La Niña remain important features as K changes.

There are several possible behaviors of the algorithm given
the slowly growing precision of the macro-variables with
growing K: (1) The El Niño and La Niña states remain
roughly constant, (2) CFL sub-divides the El Niño and La
Niña states, (3) CFL finds better El Niño and La Niña re-
gions, (3) A mix of the above. Fig. 9 suggests that (2) is
true. As K grows, the clusters that most precisely detect the
mild El Niño and mild La Niña phenomena form a chain of
strict subsets.
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T1 T2 T3 T4

W1 .075 .40 .25 .27
W2 .083 .39 .25 .27
W3 .084 .39 .26 .27
W4 .080 .40 .24 .27

Table 2: Conditional probabilities P (T | W ) when Alg. 1
is applied to randomly (in time) reshuffled ZW and SST
data.

4.2 RESHUFFLED DATA

As a sanity check, we ran Alg. 1 on randomly reshuf-
fled (across the time dimension) ZW and SST data. We
asked the algorithm to find K=4, . . . , 16-state ZW and
SST macro-variables. Table 2 shows P (T | W ), where
W and T are the input and output macro-variables discov-
ered in the randomized dataset with K = 4. Note that
P (T | W = W1), P (T | W = W2), P (T | W = W3)
and P (T | W = W4) are all equal. This is exactly as ex-
pected, since by reshuffling the data we removed any prob-
abilistic dependence between the inputs and the outputs.

Applying Definition 2 to this data indicates that the al-
gorithm implicitly only discovered one true input state,
even though we explicitly asked it to look for a four-
state macro-variable. The cardinality of the output macro-
variable is three or four states, depending on whether .25
is close enough to .27 to apply Def. 2 to merge the last
two columns. We performed the same reshuffled analysis
for each K and computed as before the precision for the
weak and strong El Niño and the weak and strong La Niña.
Fig. 8, large dotted lines, shows that in each case none of
the clusters contains a significant proportion of either El
Niño or La Niña patterns. This experiment offers two in-
sights:

• Alg. 1 passes the sanity check. When the inputs and
outputs are independent, the input macro-variable is
trivial, it has a single state.
• When SST patterns are clustered according to their

probability of occurrence (e.g. as the W variable does
in Table 2), El Niño and La Niña are not identified as
macro-level climate states. We will return to this point
in the Discussion.

5 WHY NOT NAIVE CLUSTERING?
It is instructive to compare our results with unsupervised
clustering. Fig. 8 shows the precision coefficients for k-
means clustering with k=4, . . . , 16 (small dotted line),
alongside our CFL results. Whereas CFL detects both
El Niño and La Niña with high precision using only four
states, k-means struggles to achieve a similar result even
for larger K.

Barring particularities of the data (which we consider in
the Discussion), there is in general no reason for CFL to

give the same results as clustering. Consider the example in
Fig. 7. Arguably, a reasonable clustering algorithm should
find four linearly separable clusters in the joint X ,Y space,
and two clusters in the X and Y space each. However,
the variables are probabilistically independent. In contrast,
CFL would only find a one-state input variable, since all
values of X imply the same distribution over Y . Addition-
ally, since P (Y | X) = P (Y ) is constant across all the
samples, CFL would also only find a one-state output vari-
able. The figure illustrates that Alg. 1 does precisely that
(as should the original algorithm in Chalupka et al. (2016)).

6 DISCUSSION
The CFL framework we developed in Chalupka et al.
(2015, 2016) aspires to solve an important problem in
causal reasoning: how to automatically form macro-level
variables from micro-level observations. In this work we
have shown, for the first time, that these algorithms can
be successfully applied to real-life data. We have recov-
ered well-known, complex climate phenomena (El Niño,
La Niña) as macro-variable states directly from climate
data, in an entirely unsupervised manner. In order to do
so, we developed a new, practical version of the original
CFL algorithm.

We emphasize that our experiments use observational cli-
mate data, and we have to be cautious about causal conclu-
sions. It is not even clear a priori whether theZW → SST
causal direction is a reasonable choice: it is known that
wind patterns cause changes in SST and it in turn affects
the wind by changing the atmospheric pressure. Feedback
loops are commonplace in climate dynamics.

The Causal Coarsening Theorems in Chalupka et al. (2015,
2016) provide the basis for an efficient learning of causal
relationships based on observational macro-variables – but
some experiments are required. In addition, the theorems
were only shown to hold for variables that are not subject
to feedback. However, we are hopeful that an extension
accounting for feedback can be proven. While real cli-
mate experiments are generally not feasible, such a theo-
rem would provide the basis to perform large-scale climate
experiments with detailed climate models, for example, to
check whether interventionally shifting from the W = 0
zonal wind state to W = 1 in the climate model increases
the likelihood of El Niño (i.e. of SST ending up in state
T=1). Connecting the CFL framework with such experi-
ments is an exciting future direction as it would also enable
the possibility of using the macro-variables we have found
to inform policy that aims to influence climate phenomena.

Our experiments that compare CFL with clustering showed
that, as the number of clusters grows, k-means approaches
never exceed CFL’s precision in detecting El Niño and La
Niña. One explanation for this finding is that while clus-
tering looks for spatial features in the data, CFL looks
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for relational probabilistic features. Fig. 8 suggests that
when the number of clusters is small there are strong spa-
tial features in the data that supersede El Niño and La
Niña in their distinctiveness. In contrast, CFL already de-
tects El Niño with high precision with only four clusters.
This indicates that either (1) There is something unique
about P (El Niño | W) and P (La Niña | W), or (2) There
is something unique about P (El Niño) and P (La Niña).
Since we disproved the second hypothesis in Sec. 4.2, our
results overall indicate that the El Niño and La Niña phe-
nomena do not only constitute interesting spatial features
of the SST map, but are also crucially characterized by the
dynamic aspect of the interplay between zonal winds and
sea surface temperatures.

Even when working with purely observational data, CFL
offers an important causal insight not revealed by cluster-
ing methods. It guards against learning variables with am-
biguous manipulation effects (Spirtes and Scheines, 2004).
An illustrative example of an ambiguous macro-variable
is total cholesterol. Low density lipids (LDL, commonly
called “bad cholesterol”) and high density lipids (HDL,
“good cholesterol”) can be aggregated together to count to-
tal cholesterol (TC), but TC has an ambiguous effect on
heart disease because effects of LDL and HDL differ. The
Causal Coarsening Theorem guarantees that each state of
the observational macro-variable is causally unambiguous:
no mixing of HDL and LDL can occur. In case of our
El Niño setup, this means that two ZW states within the
same cell are guaranteed to have the same effect on the
SST macro-variable.

Finally, we note that there still is significant debate among
climate scientists about what exactly constitutes El Niño
and what its causes are. For example, recent research has
shown that there may be multiple different types of El Niño
states (Kao and Yu, 2009; Johnson, 2013) that all fall under
NOAA’s definition. Our results suggest that the current def-
inition described in Section 1.1 coincides well with states
of the probabilistic macro-variable discovered by CFL. In
addition, Sec. 4.1 indicates that finer-grained structure does
exist within the El Niño and La Niña clusters when they are
analyzed from the relational-probabilistic standpoint. We
leave this line of research as an important future direction.
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Abstract

Open agent systems are multiagent systems in
which one or more agents may leave the system
at any time possibly resuming after some interval
and in which new agents may also join. Plan-
ning in such systems becomes challenging in the
absence of inter-agent communication because
agents must predict if others have left the system
or new agents are now present to decide on pos-
sibly choosing a different line of action. In this
paper, we prioritize open systems where agents
of differing types may leave and possibly reenter
but new agents do not join. With the help of a
realistic domain – wildfire suppression – we mo-
tivate the need for individual planning in open
environments and present a first approach for ro-
bust decision-theoretic planning in such multia-
gent systems. Evaluations in domain simulations
clearly demonstrate the improved performance
compared to previous methods that disregard the
openness.

1 INTRODUCTION

The past year has been witness to one of the worst seasons
of wildland fires, here onwards referred to as wildfires, on
record in the United States. There were more than fifty
thousand wildfires that burned more than nine million acres
of wildland. Both ground and various types of aerial fire-
fighting units are often deployed in suppressing these fires.
Consider the decision-making task of a small ground unit
of firefighters. As these fires are large, a unit needs to co-
ordinate with others to focus their resources on the same
area and make a difference. However, units may run out
of suppressants (such as water and chemicals) or suffer
from exhaustion causing them to temporarily leave. Con-
sequently, wildfire fighting units form an open and typed
multiagent system and a unit’s decision making about its
course of action becomes challenging if a leaving unit is

unable to radio its intent to temporarily disengage.

Open agent systems such as the one described above are
characterized by one or more interacting agents leaving
the system at any time and possibly resuming after some
interval, or new agents joining the system [1]. We refer
to this characteristic as agent openness. A second form of
openness is exhibited by a system when the types of agents
alter at any time perhaps just briefly; we refer to this as
type openness. The wildfire suppressing example presented
above exhibits agent openness but not type openness.

In this paper, we prioritize systems exhibiting agent open-
ness and further limit our attention to systems where agents
may disengage at any time and possibly reenter the system
but new agents do not enter the system. We are interested
in how an individual agent, for example the ground fire-
fighting unit, should plan its actions in such open and typed
multiagent systems. A perspectivistic approach makes this
investigation broadly applicable to cooperative, noncoop-
erative and mixed settings all of which may exhibit agent
openness.

Previous methods for individual decision-theoretic planning
such as algorithms for the well-known interactive partially
observable Markov decision process (I-POMDP) [2, 3] are
well suited for typed systems but do not model agent open-
ness so far. Similarly, algorithms for joint cooperative plan-
ning in frameworks such as the decentralized POMDP [4]
are not easily amended for open agent systems. As such,
there is a marked gap in the literature on principled planning
for open systems. We present a first approach for modeling
and planning in the context of agent openness when the
physical state may not be perfectly observed. In keeping
with our objective of individual planning and the presence
of agents of various types, we generalize the I-POMDP-Lite
framework [5] to allow for agent openness. This framework
is more efficient than the general I-POMDP because it as-
cribes a nested MDP to model others rather than a belief
hierarchy. We utilize a graph to model the interaction struc-
ture between various agents and extend the joint state to
model the event that neighboring agents could have disen-
gaged. In the absence of communication, we show how the
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agent’s unexpected observations allow it to correct its model
of the other agent post hoc after the agent has left or has
reentered. Alternately, a proactive approach that seeks to
predict when agent may disengage or reenter should exhibit
improved benefit. However, the subject agent may not know
how factors relevant to others’ decisions to leave or reenter
evolve.

The generalized I-POMDP-Lite is utilized to model the
problem domain of wildfire suppression exhibiting open
and typed agent systems. We continue with Hoang and
Low’s [5] use of interactive point-based value iteration to
scalably plan and extend it appropriately to the generalized
I-POMDP-Lite. Evaluations in simulations of the domain
clearly demonstrate not only the improved performance of
the individual agent but also the performance of the entire
open system at a macro level in comparison to planning that
disregards agent openness.

2 RELATED WORK

Agent openness is a challenging property of realistic multia-
gent systems that has been identified at various points in the
literature. Shehory [1] noted that the openness of an agent
system refers to the ability of introducing additional agents
into the system in excess to the agents that comprise it ini-
tially. Calmet et al. [6] also studied openness in societies
of agents where an open society is one that is open to new
agents either with no definite goal or with goals not exceed-
ingly relevant to the society. Both definitions focused on the
system and software architecture to support openness.

Recently, additional properties for agent openness have been
reported. Jamroga et al. [7] defined the degree of openness
of multi-agency as the complexity of the minimal transfor-
mation that the system must undergo in order to add a new
agent to the system or remove an existing one from the sys-
tem. Jumadinova et al. [8] and Chen et al. [9] extended the
notion of openness to include both agent openness and task
openness to model the dynamic nature of the agents and
tasks in the environment. They considered fluctuations in
the availability of agents needed to perform tasks, as well as
dynamic changes in the type of tasks that appear over time.
In both papers, the degree of openness is defined as the rate
at which agents/tasks join and leave the environment.

Relevant to modeling individual agents in open environ-
ments, Huynh et al. [10] studied the problem of developing
trust and reputation models in open agent systems to enable
agents (owned by a variety of stakeholders) to assess the
quality of their peers’ likely performance. Similarly, Pinyol
and Sabater-Mir [11] studied, for open environments where
agents’ intentions are unknown, how to control the inter-
actions among the agents in order to protect good agents
from fraudulent entities, or to help agents find trustworthy
or reputable agents.

In this paper, we adopt the notion of dynamic agent openness
defined by Shehory, extended in Jumadinova et al. and Chen
et al. Similar to Huynh et al. and Pinyol and Sabater-Mir,
we are also interested in developing a solution to enable an
agent to model its transient neighbors in open environments.
However, our problem and approach differ in that we are
interested in modeling how neighbors will behave over time
(i.e., predicting what actions they might take, as well as their
future presence in the environment which directly impacts
when and how they might work together with or against an
agent), instead of determining how reliable a neighbor might
be. Similar to Jumadinova et al. and Chen et al., we also
seek to design agents capable of strategic, self-interested
reasoning, but we do so from the decision-theoretic perspec-
tive grounded in the tradition of Markov decision problems
with an added focus on modeling peer behavior in order to
plan and perform actions as a best response to the expected
behavior of peers.

Finally, we note that ad hoc cooperation – coming together
of multiple agents on the fly to meet a goal [12] – is just
one characteristic of an open agent system. As this paper’s
focus is instead on agents dynamically departing the system
and reentering, we do not discuss the emerging literature on
online planning for ad hoc teamwork.

3 BACKGROUND

I-POMDP-Lite mitigates the complexity of I-POMDPs by
predicting other agent’s actions using a nested MDP; this
assumes that the other perfectly observes the physical state.
A nested MDP [5] is a scalable framework for individual
planning in multiagent systems where the physical state and
others’ models are perfectly observable to each agent. It is
defined as a tuple for agent i:

Mi,l , 〈S,A, Ti, Ri, {πj,d, πk,d, . . . , πz,d}l−1
d=0, OCi〉

where:

• S is the set of physical states of the interacting agent
system. The space may be factored as, S = X1 ×X2 ×
. . .×Xk, where X1, . . . , Xk are k > 0 factors;

• A = Ai ×Aj × . . .×Az is the set of joint actions of all
interacting agents in the system;

• Transition of a state due to the joint actions to another
state may be stochastic and the transition function is
defined as, Ti : S × A × S → [0, 1]. The transition
probabilities may be conditionally factored based on the
factorization of the state space;

• Ri is the reward function of agent i that depends on the
state and joint actions, Ri : S ×A→ R;

• {πj,d, πk,d, . . . , πz,d}l−1
d=0 is the set of other agents j, k,

. . ., z reasoning models at all levels from 0 to l− 1. Each
of these models is a policy which is a mapping from states
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to distributions over actions and is obtained by solving
a nested MDP for the agent at that level. However, a
level-0 reasoning model is a uniform distribution over an
agent’s actions;

• OCi is i’s optimality criterion. In this paper, we utilize a
finite horizon H with discount factor γ ∈ (0, 1).

Analogous to MDPs, we may associate a horizon 0 < h ≤
H value function withMi,l that extends the standard Bell-
man equation. Let A−i = Aj ×Ak × . . .×Az .

V hi,l(s) = max
ai∈Ai

∑

a−i∈A−i

∏

−i∈{j,k,...,z}
π̂−i,l−1(s, a−i)

×Qhi,l(s, ai,a−i) (1)

Here, Qhi,l(s, ai,a−i) is defined recursively:

Qhi,l(s, ai,a−i) =Ri(s, ai,a−i) + γ
∑

s′∈S
Ti(s, ai,a−i, s

′)

× V h−1
i,l (s′) (2)

Furthermore, π̂−i,l−1 in Eq. 1 is defined as a mixed strategy
that has a distribution over reasoning models at all levels
up to l − 1. If l − 1 = 0 in Eq. 1 then π̂−i,l−1 is a uniform
distribution over the other agent’s actions.

π̂j,l(s, aj) ,





l∑
d=0

Pr(d) πj,d(s, aj) l ≥ 1

1
|Aj | l = 0

(3)

Policy πj,d(s, aj) is obtained by solving the nested MDP of
agent j at level d, which involves optimizing the correspond-
ing value function similar to Eq. 1. Let Optj be the set of
j’s actions that optimizes it. Then, πj,d(s, aj) = 1

|Optj | if
aj ∈ |Optj | otherwise πj,d(s, aj) is 0. Distribution Pr(d)
on the nesting depth up to l is typically uniform but may
also be learned from data as well.

With all agents modeling each other, solution of a nested
MDP proceeds bottom up. Level-0 models of all agents de-
fault to uniform distributions. These are utilized in solving
level-1 nested MDPs,Mi,1,Mj,1, . . . ,Mz,1. Both level-0
and -1 solutions are utilized in solving nested MDPs at level
2; and so on up to level l. Consequently, in an N -agent
system we solve N − 1 models of others at any level and a
total of (N − 1)l models. This is linear in both the number
of nesting levels l and the number of agents, and scales well
with both. If all N agents plan using nested MDPs then a
total of O(N2l) such models are solved.

For individual planning in situations where the physical
state is not perfectly observable to the subject agent i al-
though the reasoning models of other agents are known and
are supposed to possess the capability to observe the state
perfectly, Hoang and Low [5] present the I-POMDP-Lite
framework.

I-POMDPLi,l , 〈S,A,Ωi, Ti, Oi, Ri, {Mj,l−1,Mk,l−1, . . . ,

Mz,l−1}, OCi〉

Parameters S, A, Ti and Ri are as defined previously in
the nested MDP framework. Ωi is the set of agent i’s
observations and Oi is the observation function, which
models the level of noise in the observations: Oi : S ×
Ai × Ωi → [0, 1]. Notice that the observation distribu-
tion is conditionally independent of other agents’ actions.
{Mj,l−1,Mk,l−1, . . . ,Mz,l−1} are the nested MDPs of
various interacting agents, and OCi is the optimality crite-
rion that may include a discount factor and an initial belief,
b0i , over the state space.

Analogous to POMDPs, an agent maintains a belief over the
states and the planning method associates a value function
with the belief:

V hi,l(bi) = max
ai∈Ai

(ρi(bi, ai)

+γ
∑

s′∈S,oi∈Ωi

T ai,oii (s′, oi|bi, ai)× V h−1
i,l (b′i)


 (4)

where,

ρi(bi, ai) =
∑

s∈S

∑

a−i∈A−i

∏

−i∈{j,k,...,z}
π−i,l−1(s, a−i)

×Ri(s, ai,a−i) bi(s)

Policies π−i,l−1(s, a−i), −i ∈ {j, k, . . . , z} are solu-
tions of the other agents’ nested MDPs; and b′i denotes
the updated belief, Pr(s′|oi, ai,a−i, bi) ∝ Oi(s

′, ai, oi)
× ∑
s∈S

Ti(s, ai,a−i, s′) bi(s).

Solution of I-POMDPLi,l requires solving the nested MDPs
that are a part of its definition to obtain the policies. As we
mentioned previously, this proceeds bottom up. At the top
most level only, a POMDP is solved by decomposing the
value function given in Eq. 4 into an inner product between
a set of alpha vectors and the belief. While the total number
of models that are solved remain linear in the nesting level
and the number of agents, the computational complexity is
higher because of the presence of a POMDP.

4 INDIVIDUAL PLANNING WITH
AGENT OPENNESS

Planning that can assist fighting wildfires must deal with
the event that units run out of suppressants – some types of
units run out more quickly than others – due to which units
temporarily leave the theater and thus the agent system. We
seek to reason about the agent openness found in such envi-
ronments as part of the individual planning in a principled
way.

Systems of many agents in the real world often exhibit
interaction structure. Specifically, not all agents interact
with one another; rather, interactions often happen among
small subgroups of agents.
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(a) (b)

Figure 1: (a) An example wildfire scenario with 5 firefight-
ing units of three types situated in a 4 × 5 grid of forestland.
(b) Firefighting units must often coordinate on suppressing
fires. This coordination overlays an interaction graph.

A well-known data structure that explicates the interaction
structure is an interaction graph, which is an undirected
graph whose nodes represent agents and the absence of an
edge between two agents indicates that the reward of each
of the two agents is not dependent on any action of the
other agent. Interaction structure may be exploited during
planning for computational scalability [13, 14, 15]. We
motivate the interaction structure using an example:

Example 1. Figure 1(a) illustrates an example wildfire sup-
pressing scenario that consists of ground and two types of
aerial firefighting units. Units must coordinate on adjacent
or diagonally located fires to gradually suppress them and
prevent them from spreading. This coordination overlays an
interaction graph that is shown in Fig. 1(b). Notice that the
graph is not a clique and thus exhibits structure.

Each vertex in the graph denotes an agent i in the set N of
agents and an edge between a pair of agents whose individ-
ual payoffs depend on each other’s actions. Let ν(i) be the
set of nodes that are directly linked by an edge to node i.
We refer to ν(i) as the set of i’s neighboring agents.

4.1 Post Hoc Reasoning

Let Ẋ be the set of distinguished state factor(s) in S whose
value determines whether other agent j ∈ ν(i) temporarily
leaves the network. For example, this variable could reflect
j’s suppressant level. If i determines that j has left the
network, i replaces j’s predicted actions – using j’s policy
obtained by solving its nested MDPMj,l−1 – with a no
op action from then onward during which the agent does
not act. 1 Consequently, Aj is replaced with Aj ∪ {no
op}. This is beneficial because we need not change the
definitions of agent i’s transition, observation and reward
functions when an agent leaves the network if no op is
already in Aj . Otherwise, these are modified to model the
implications of j’s no operation to allow for agent openness.

1A caveat of this approach is that the agent’s absence is obser-
vationally equivalent with the agent intentionally not acting.

However, the problem of predicting when an agent has left
the network remains challenging because the state is par-
tially observable – the amount of j’s suppressant cannot be
directly observed as we preclude communication between
the separated units. Similarly, the problem of predicting if
and when an agent has resumed its activities is also chal-
lenging.

Define joint probability T ai,oii (s′, oi|ai, bi) as,

T ai,oii (s′, oi|ai, bi) =
∑

s∈S
bi(s)

∑

a−i∈A−i
Ti(s, ai,a−i, s

′)

Oi(s
′, ai,a−i, oi)

∏

−i∈{j,k,...,z}
π−i,l−1(s, a−i)

We make the following key observation that facilitates
progress in this challenging task:

Observation 1. Post hoc T ai,oii (s′, oi|ai, bi) immediately
after a neighboring agent has left the system will be small
but will generally increase with time until the agent reenters.

While agent j may abruptly leave the system at time step t,
the planning agent continues to predict j’s actions as if it
were part of the system until the observation at time t+ 1
reveals that the state did not transition as expected. In other
words, joint T ai,oii (s′, oi|ai, bi) will be small because next
state s′ that is obtained by predicting j’s action incorrectly
will have low likelihood given observation oi.

Nevertheless, observation oi when used in the belief update
to obtain b′i will cause the probability mass in bi to shift to
states that make oi more likely. These are likely to be states
at which πj,l−1(s′, no op) is high; i.e., j is not performing
any significant action because j has left the system. With
more such observations that support the fact that j has left
the system, more probability mass in the updated beliefs
settles on states at which j is predicted to not perform any
significant action. Therefore, joint T ai,oii (s′, oi|ai, bi) will
start rising until another such event occurs. We illustrate
this observation:

Example 2. Let firefighting unit j exit a team that consists
of units i and j who are coordinating on suppressing a high
intensity wildfire. Unit i expects the intensity of the fire to
continue reducing in the next time step but instead observes
that the intensity remained the same as before. This low
probability observation makes i subsequently believe that
perhaps j is not fighting the fire anymore (because it may
have left the system); a belief that gets strengthened further
as the fire continues to burn at the same intensity despite
i fighting it. When its predictions of j performing no ops
are sufficiently certain, i may choose to coordinate on a
different wildfire with another unit.

Observation 1 continues to hold when ν(i) has two or more
agents but i may not be able to pinpoint which agent has
exited.
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Moving forward, let agent j reenter the system and resume
its actions. Again, agent i may experience a phenomenon
similar to that described in Observation 1 where post hoc
Ti(s′, oi|ai, bi) drops because the observations do not sup-
port the next predicted state. This is because i is attributing
no op to j despite j having reentered. However, persistent
observations will shift the probability mass in i’s belief to
states at which j is predicted to be performing actions other
than no op thereby modeling the fact that j is active again.

To illustrate, if unit i continued fighting the same wildfire
as before, it may suddenly witness the intensity reducing
significantly. This is indicative of the fact that unit j is active
again and i’s revised beliefs will emphasize those states at
which j could also be suppressing the fire. On reentering,
an agent can be expected to remain committed to fighting
the fire if the intensity is steadily reducing, until the fire is
suppressed or the agent’s suppressant becomes low.

The observation below summarizes this subsection:

Observation 2. Decision-theoretic planning that integrates
modeling behaviors of other agents and a Bayesian belief
update can reason about agent openness post hoc and plan
accordingly with minimal extension.

However, the limitation is that the adaptation of planning
to the dynamic openness is delayed due to the post hoc
reasoning.

4.2 Predicting Agent Openness

A better way to act in open agent systems would be to
predict when a neighboring agent leaves or reenters the
system. Presuming that the agent’s departure is a policy-
guided behavior and the agent’s policy is known, we must
predict changes in the distinguished state factors Ẋ that may
cause the other agent to leave the system. However, the main
challenge is that the subject agent is usually uninformed
about how these factors evolve over time.

For example, the rate at which the other firefighting unit
consumes its suppressant is typically not known and may
not be observed due to the separation between the two units.
Nevertheless, observations related to the unit leaving the
system over time provide information from which the rate
could be gradually learned and utilized in the prediction.

Let Ṫi(ẋ, ai,a−i, ẋ′) be the transition distribution for Ẋ
given i’s action ai, neighbors’ joint actions a−i, and previ-
ous value of the factor ẋ ∈ Ẋ. For notational convenience,
we assume that Ṫi may be factored out from function Ti.
Subsequently, predicting when neighboring agents j ∈ ν(i)
are likely to leave the system is dependent on knowing
Ṫi(ẋ, ai, a−i, ẋ′) for all pairs of state factors and joint ac-
tions.

Our approach is Bayesian; it involves explicitly modeling
the uncertainty over the distribution, updating it over time

based on expected next states and utilizing it in the offline
planning.

We may model the uncertainty over the distribution
Ṫi(ẋ, ai,a−i, ·) as a Dirichlet process (DP), and the un-
certainty over all such distributions as a system of Dirichlet
processes. Formally, Ṫi(ẋ, ai,a−i, ·) ∼ DP (n,C), where
n is a positive integer and C is a distribution over Ẋ. Let
factor(s) Ẋ assume values {ẋ1, ẋ2, . . . , ẋ|Ẋ|}, then

(
Ṫi(ẋ, ai,a−i, ẋ1), Ṫi(ẋ, ai,a−i, ẋ2), . . . , Ṫi(ẋ, ai,a−i,

ẋ|Ẋ|)
)
∼ Dir(n · c

ẋaẋ1

n
, n · c

ẋaẋ2

n
, . . . , n · c

ẋaẋ|Ẋ|

n
)

(5)

where cẋaẋ1 is the number of samples where transition
(ẋ, ai,a−i, ẋ1) occurs, and analogously for others; n ,∑|Ẋ|

q=1 c
ẋaẋq is the total number of samples. A Dirichlet pro-

cess has the appealing property that the mean of its marginal,
E[Ṫi(ẋ, ai,a−i, ẋ1)] = cẋaẋ1

n and the concentration param-
eter n inversely impacts the variance.

Let us obtain a sequence of n′ next states {ẋ′1, . . . , ẋ′n′}
given the current state ẋ and actions ai,a−i in independent
draws. Then the posterior distributions become,

(
Ṫi(ẋ, ai,a−i, ẋ1), Ṫi(ẋ, ai,a−i, ẋ2), . . . ,

Ṫi(ẋ, ai,a−i, ẋ|Ẋ|)
)
|ẋ′1, . . . , ẋ′n′ ∼ Dir (n+

n′ ·
cẋaẋ1 +

∑n′

q=1 δẋ1
(ẋq)

n+ n′
, n+ n′ ·

cẋaẋ2 +
∑n′

q=1 δẋ2
(ẋq)

n+ n′
,

. . . , n+ n′ ·
cẋaẋ|Ẋ| +

∑n′

q=1 δẋ|Ẋ|(ẋq)

n+ n′


 (6)

where δẋ′1(ẋq) is a point mass located at ẋ1. As the posterior
continues to be Dirichlet distributed, the posterior is also a
Dirichlet process with concentration parameter that simply
adds the count of new samples to the previous count and a
base probability that is the proportion of the total number
of samples in which say state ẋ1 occurs. As such, the
Dirichlet process provides a conjugate family of priors over
distributions.

By modeling the dynamic uncertainty over the transition
function of distinguished state factors as a Dirichlet process,
we may limit our attention to the counts of the different state
samples. Let φ be the vector of counts of all transitions; its
size is |Ẋ|2|A|. Next, we show how to include the Dirichlet
process in I-POMDP-Lite.

We augment the state space of I-POMDPLi,l to include this
vector: S = S × Φ where Φ is the space of all such vectors
and is of size N|Ẋ|2|A|. Given the augmented state space,
we redefine the transition, observation and reward functions
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of I-POMDPLi,l as follows:

Ti(〈s, φ〉, ai,a−i, 〈s′, φ′〉) =




Ti(s/ẋ, ai,a−i, s′/ẋ) if φ′ = φ+ δẋaẋ′

×E[Ṫi(ẋ, ai,a−i, ẋ′)]
0 otherwise

Here, δẋaẋ′ is a vector of size |Ẋ|2|A| with all 0s except
for a 1 at the location indexed by (ẋ,a, ẋ′) where ẋ is
the distinguished factor of state s and ẋ′ is a factor of s′.
The expected transition probability is obtained from the
posterior Dirichlet process. The observation function is
now defined as,

Oi(〈s, φ〉, ai,a−i, 〈s′, φ′〉, oi) =
{
Oi(s

′, ai,a−i, oi) if φ′ = φ+ δẋaẋ′
0 otherwise

(7)

The reward function is straightforward:
Ri(〈s, φ〉, ai,a−i) = Ri(s, ai, a−i). The optimality
criteria remains the same as before.

Consequently, the augmented
I-POMDPLi,l is defined by the tuple
〈S, A, Ti,Ωi,Oi,Ri, {Mj,l−1,Mk,l−1, . . . ,Mz,l−1},
OCi〉, where the new parameters are defined as above. It
shares commonality with the Bayes-adaptive I-POMDP
framework [16] though we are uncertain over partial
transition distributions only and our framework differs
by limiting attention to nested MDPs as models of
others. Acting optimally in response to observations in
this augmented framework entails the standard balance
between exploring to learn the transition distributions of
the distinguished state factor(s) with greater confidence and
exploiting the learned distributions for reward. However,
compared to traditional online methods for reinforcement
learning, this balance is achieved offline as an integral part
of the planning.

The exact solution of the augmented I-POMDPLi,l is chal-
lenged by the infinite state space because the count vector φ
grows unboundedly. If the count vector somehow reflects
the true transition probabilities, then Ti effectively collapses
into the true transition function and we may obtain the exact
solution of the planning problem. However, by the law of
large numbers we can only approach the true distributions
asymptotically using counts. Nevertheless, the following ob-
servation provides guidance on how we can move forward:
Observation 3. With increasing numbers of samples,
means of the posterior Dirichlet processes DP (n,C) come
arbitrarily close to the true transition probabilities. Conse-
quently, values of the policies using the estimated transition
functions may also come arbitrarily close to the value of the
exact policy.

Indeed, Ross et al. [17] exploit the above observation in
the context of POMDPs and identify an ε-dependent finite

space of counts of both transitions and observations whose
consideration leads to policies with values that are within ε
of the exact (obtained using the infinite space). We extend
these results to our context where the uncertainty is over
the partial transition function only but involving multiple
agents; this allows solving the augmented I-POMDPLi,l with
finite state spaces as bounded approximation of the exact.

Let αt(s, φ;πi,l) be i’s expected value of following pol-
icy πi,l from augmented state (s, φ) at some time step

t. Let N ẋa
φ =

|Ẋ|∑
q=1

φẋaẋq where φẋaẋq is the count for

the transition (ẋ,a, ẋq) contained in the vector φ; and

N ε = max
(
|Ẋ|(1+ε′)

ε′ , 1
ε′′ − 1

)
where ε′ = ε(1−γ)2

8γRmax and

ε′′ = ε(1−γ)2 ln(γ−ε)
32γRmax . Here,Rmax is the largest value inR.

Proposition 1 shows that for transition counts that exceed
N ε, there exist counts less than or equal toN ε such that the
negative impact of the reduced count on the expected value
of following policy πi,l from the same state is bounded.
More formally,
Proposition 1 (Bounded difference in value). Given ε
> 0 and for any (s, φ) such that N ẋa

φ > N ε for all
ẋ,a, there exist φ′ such that N ẋa

φ′ ≤ N ε for all ẋ,a, and
|αh(s, φ;πi,l)− αh(s, φ′;πi,l)| ≤ ε.

The proof of this proposition extends the proof of a similar
proposition by Ross et al. [17] to the multiagent context of
I-POMDPLi,l in a straightforward way. Let Sε be the set of
augmented states of I-POMDPLi,l such that the count vectors
are all limited to the following set, Φε = {φ ∈ Φ : N ẋa

φ ≤
N ε ∀ẋ,a}; in other words, Sε = S × Φε. Then, define a
new transition function over the augmented and bounded
state space, T εi : Sε ×A× Sε → [0, 1] such that

T εi (〈s, φ〉, ai,a−i, 〈s′, φ′〉) =




Ti(s/ẋ, ai,a−i, s′/ẋ) if φ′ = ζ(φ+ δẋaẋ′)

×E[Ṫi(ẋ, ai,a−i, ẋ′)]
0 otherwise

Here, ζ is a function that projects those counts which
cause N ẋa

φ to exceed N ε back to values so that the lat-
ter is not exceeded. If φ + δẋa· does not exceed N ε, then
ζ is an identity function. Observation function with the
bounded state space also applies the projection ζ to Eq. 7
similarly to its use above. Finally, the reward function
Rεi(〈s, φ〉, ai,a−i) = Ri(s, ai,a−i).

Subsequently, the definition of I-POMDPLi,l
modifies to be the tuple 〈Sε, A, T εi ,Ωi, Oεi ,Ri,
{Mj,l−1,Mk,l−1, . . . ,Mz,l−1}, OCi〉. Let
αh,ε(s, φ;πi,l) be the expected value of following
policy πi,l from state (s, φ) according to the modified
framework with the bounded state space. Then, we may
bound the negative impact on expected value due to using
the new framework as follows:
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Proposition 2 (Bounded difference in convergent value).
Given ε > 0 and the augmented I-POMDPL,εi,l with the
bounded state space Sε, the following holds:

|αh(s, φ;πi,l)− αh,ε(s, φ′;πi,l)| ≤
ε

1− γ
for any (s, φ) ∈ S and some (s, φ′) ∈ Sε where φ′ = ζ(φ).

The proof of this proposition essentially generalizes Prop. 1
to the infinite horizon and is given in the Appendix. Con-
sequently, Prop. 2 allows us to solve the augmented I-
POMDPL,εi,l while incurring a bounded loss.

In the context of open agent systems, the augmented frame-
work provides a way to learn the transition probabilities
of state factors that influence the other agents’ decisions
about whether they ought to leave the network, as a part of
planning.

5 EXPERIMENTS

While the predictive method has the obvious advantage of
potentially anticipating agent departures, it must first learn
the transition probabilities accurately. Consequently, an em-
pirical evaluation of the presented approaches on multiple
configurations is needed.

5.1 Setup

We empirically evaluate our methods labeled I-PBVI
PostHoc and I-PBVI Predictive using a realistic simula-
tion of the complex wildfire domain (adapted from [18],
similar to [19]). In the simulation, an agent obtains a re-
ward of 1 each step and for each location that is not on fire,
and a penalty of 100 for doing anything but a NOOP while
recharging suppressant or trying to fight a nonexistent fire.
Agents have three suppressant levels: empty and recharging,
half full, and full with stochastic transitions between levels.

We measure the performance of agents employing both
methods in two ways: (1) the average of discounted and
cumulative rewards obtained by each agent; and (2) the
average intensity of each fire over time (where intensity
ranges from 0 for no fire to 4 for a burned-out location).
The former evaluates the agent’s planning method for max-
imizing rewards, whereas the latter evaluates the system-
level performance of the team of agents in achieving their
overall objective – suppressing the wildfire in the forest.
Furthermore, we also include the performance of baselines
that represent what would happen to the forest (1) if no
agents were present (called NOOP as this situation is equiv-
alent to all agents always taking NOOP actions), (2) if each
agent randomly chooses between actions that put out fires
or NOOP (labeled Random), representing a scenario where
agents do not plan how or when to interact with their peers,

and (3) if each agent carries out actions selected according
to a heuristic-variant of Random (called Heuristic) – fight
existing fires (chosen by random selection) only if the agent
has available suppressant, else take a NOOP.

Config 1 Config 2 

Config 5 

Config 4 

Config 3 

Config 6 

A0 A1 

A0 

A1 

A2 

A0 A2 A1 A1 

A1 

A0 

A2 

A3 

A4 

A0 A0 A0 A1 A1 

Figure 2: Illustration of experimental configurations.

To elicit different interactions between agents, we consider
six configurations in our experiments, illustrated in Fig. 2:
configurations C1, C2, and C3 where two agents are respon-
sible for protecting the forest with three fires in each 2 × 3
grid, configuration C4 where three agents fight three fires in
a 2× 3 grid, configuration C5 where three agents fight three
fires in a more spread out 3 × 3 grid, and configuration 6
where five agents fight 3 fires in a much larger 5 ×4 grid. In
each of the six configurations, an agent can only put out a
fire that is immediately adjacent – to its south, north, east,
or west, or diagonal from the agent. In each configuration,
I-PBVI PostHoc agents assume a uniform transition distri-
bution for how peers’ suppressant levels change, whereas
I-PBVI Predictive agents perform random actions in sim-
ulation to learn the transition dynamics to better model
openness and its impacts on joint behavior. After learn-
ing a transition model (i.e., after 100 steps and 30 trials),
each agent in the predictive method will use this model for
planning.

First configuration C1 contains two agents, each with an
individual fire to fight (F0, F2, respectively) while also shar-
ing a fire (F1). Each agent in C1 can lower the intensity of
a fire by one. Configuration C2 represents an environment
similar to C1, except all three fires are adjacent, and thus
can spread to neighboring locations, increasing the pressure
on agents to control the wildfires in the environment. Con-
figuration C3, on the other hand, is the same as C2 except
that agents are of differing types: A0 lowers the intensity
of a fire by one, while A1 is more powerful and can accom-
plish twice as much reduction when it fights a fire. Together,
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Table 1: Average team discounted rewards with 95% confidence intervals.
Configuration I-PBVI Predictive I-PBVI PostHoc Heuristic Random NOOP

C1 16.635 ± 1.613 15.001± 0.479 5.709± 1.952 −380.114± 56.552 0.000± 0.000
C2 14.706 ± 0.573 14.681± 0.422 7.517± 2.369 −442.186± 58.427 0.000± 0.000
C3 27.459 ± 1.107 26.202± 1.267 11.455± 2.811 −488.988± 66.531 0.000± 0.000
C4 49.607 ± 3.211 44.340± 3.235 26.419± 3.606 −552.740± 74.620 0.000± 0.000
C5 49.341 ± 0.859 48.676± 1.773 25.365± 2.052 −844.951± 50.143 0.000± 0.000
C6 103.735 ± 2.859 87.532± 1.432 56.006± 14.481 −1272.801± 37.768 0.000± 0.000

Table 2: Average fire intensities with 95% confidence intervals.
Configuration I-PBVI Predictive I-PBVI PostHoc Heuristic Random NOOP

C1 2.597 ± 0.038 2.686± 0.038 3.063± 0.032 3.379± 0.027 3.948 ± 0.005
C2 2.683 ± 0.038 2.695± 0.038 3.053± 0.033 3.630± 0.021 3.953 ± 0.004
C3 1.537 ± 0.039 1.670± 0.039 2.806± 0.035 3.250± 0.030 3.953 ± 0.004
C4 0.834 ± 0.031 1.024± 0.034 2.068± 0.039 2.841± 0.035 3.954 ± 0.004
C5 1.361 ± 0.038 1.374± 0.038 1.929± 0.040 2.222± 0.040 3.953 ± 0.004
C6 1.025 ± 0.018 1.222± 0.019 1.684± 0.015 1.999± 0.017 3.958 ± 0.002

these configurations enable us to evaluate (1) how agents
are able to balance between fighting a shared fire and their
own individual fires in C1; (2) how agents behave under a
more pressing situation in C2; and (3) how different types
of agents interact in C3.

In configuration C4, we extend C2 to add a third agent,
which simultaneously makes others’ actions more difficult
to predict since each agent has an extra neighbor that it
can work together with, while at the same time provides
more firefighting ability to control wildfires in the forest.
Note that agent A1 in C4 can fight all 3 fires. Configuration
C5 adds to the complexity – it not only represents a larger,
more spread out forest but it also involves more intricate
relationships among three agents, each of different types.
Namely, the three agents A0, A1, and A2 can each reduce
the intensity of a fire by 1, 2, and 3 with each firefighting
action, respectively. Thus, A2 (who shares fires with both
A0 and A1) is quite powerful and is able to put out fires
entirely by itself. As a result, its neighbors face interesting
decisions of predicting what A2 will do in order to choose
their optimal best response (either fighting a different fire, or
conserving suppressant to fight future fires). Configuration
C6 further adds to the complexity of C5 – it represents a
much larger forest involving five agents. Agents A0-4 in C6
can reduce the fire intensity by 1, 1, 2, 3, and 3 respectively.
Comparing all six of these configurations, we note that the
complexity of agent reasoning increases as the configuration
number increases, because more fire locations are shared
between agents, more agents interact with one another, and
more types of agents are introduced in the environment. For
each configuration, we conducted 30 runs of 100 steps, and
we average the results of our performance measures.

5.2 Results and Analysis

Tables 1 and 2 present the average discounted, cumulative
rewards earned (summed across the team of agents) and the

average intensity across all fires per time step, respectively.
From these results, we first observe that agents using the
I-PBVI Predictive and PostHoc solutions earned greater
cumulative rewards, as well as achieved lower average fire
intensities than the baseline approaches. This indicates that
our approaches to planning about the presence of peer agents
in open environments is indeed beneficial toward both agent
performance as measured by cumulative rewards, as well as
desired system behavior due to reduction in wildfires.

Comparing between our two approaches, we make several
additional important observations. First, I-PBVI Predictive
performed better than I-PBVI PostHoc in all configurations
in terms of average fire intensity (with statistical significance
at the p = 0.05 level in configurations C1, C3, C4, C5 and
C6). Thus, learning how to predict when peer agents will be
available and when they might be absent from the environ-
ment is indeed beneficial to helping agents achieve system-
level goals (i.e., minimizing fires in our domain). In terms of
discounted rewards, I-PBVI Predictive also outperformed I-
PBVI PostHoc in larger configurations but with only a slight
(non-statistically significant) advantage in smaller ones.

To better understand the differences in agent behavior pro-
duced by I-PBVI Predictive and PostHoc, we further inves-
tigated the different types of interactions between agents.
These interactions are based on the types of actions chosen
by agents, including putting out individual fires, collaborat-
ing with another agent in fighting a fire, fighting alone a fire
that is shared by multiple agents, performing a NOOP due
to recharging the agent’s suppressant, performing a NOOP
because there was no fire to fight, and performing a NOOP
to conserve suppressant instead of fighting an available fire.

We discovered that I-PBVI Predictive consistently carried
out a higher percentage of NOOP actions in order to con-
serve suppressant than did I-PBVI PostHoc–1.23 to 1.56
times more in configurations C1, C2, and C3, 2.18 times
more in configuration C4, 20.36 times more in configuration
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C5 and 28.21 times more in C6. Thus, I-PBVI Predictive
caused an agent to conserve its valuable, limited suppres-
sant so that it would be able to contribute when its potential
partner agent becomes available to jointly fight the shared
fire (as indicated by the combination of more NOOPs when
fires were present and lower overall average fire intensity).
Further, this provides evidence that learning to predict the
presence of neighbors in open environments (using I-PBVI
Predictive) does lead to agents that better consider the im-
pacts of interactions between their joint actions, which in
turn results in better global behavior toward system goals.

We also discovered that I-PBVI Predictive caused agents
to be 2.85 and 1.13 times more likely to fight their own
individual fires in C1 and C3, respectively, when there were
fewest agents available to fight fires and more individual be-
havior was necessary. In the similar C2 environment where
fires spread faster than C1 and agents had less overall fire-
fighting ability than in C3 (where one agent could reduce
fires faster), and thus it was more difficult to fight individ-
ual fires than in C1 and C3, both I-PBVI Predictive and
PostHoc focused solely on fighting the joint fire that they
could feasibly extinguish together. These results further
indicate that learning to predict the presence of peers also
helps agents better balance individual-centered behavior vs.
collaborative behavior in open environments, depending on
the needs of the environment.

6 CONCLUSION

As a first paper on modeling open agent systems from a
decision-theoretic perspective, the focus of this effort was
to study the impact of agents leaving and reentering from
the perspective of an individual agent and to point out areas
where existing frameworks can be generalized to tackle this
problem in a principled manner. As an immediate next step,
we are looking into Monte-Carlo based approaches for better
scalability during planning. Furthermore, we are currently
exploring how anonymity – the problem structure that it
doesn’t matter who fights the fire, but how many agents
fight it – can be featured into frameworks like I-POMDP-
Lite. Anonymity coupled with better planners may help
scale to real-world problems involving 1000+ agents.
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Appendix

Proposition 1 (Bounded difference in convergent value).
Given ε > 0 and the augmented I-POMDPLi,l with the

bounded state space Sε, the following holds:

|αh,ε(s, φ′;πi,l)− αh(s, φ;πi,l)| ≤
ε

1− γ

for any (s, φ) ∈ S and some (s, φ′) ∈ Sε where φ′ = ζ(φ).

Proof. The proof of this proposition essentially gener-
alizes Prop. 1 to the infinite horizon. Let Eh =

max
αh,ε,αh,s,φ

|αh,ε(s, φ′;πi,l)−αh(s, φ;πi,l)|. Omitting writ-

ing the max norm for brevity, we have,

E = |αh,ε(s, φ′;πi,l)− αh(s, φ′;πi,l) + αh(s, φ′;πi,l)

− αh(s, φ;πi,l)|
≤ |αh,ε(s, φ′;πi,l)− αh(s, φ′;πi,l)|+ |αh(s, φ′;πi,l)
− αh(s, φ;πi,l)|(from the law of triangle inequality)

≤ |αh,ε(s, φ′;πi,l)− αh(s, φ′;πi,l)|+ ε (from Prop. 1)

= |Rεi(s, φ′, ai,a−i) + γ
∑

s′∈S,oi∈Ωi

T εi (〈s, φ′〉, ai,a−i,

〈s′, φ′′〉)×Oεi (〈s′, φ′′〉, ai,a−i, oi) αh−1,ε
oi (s′, φ′′;πi,l)

−Ri(s, φ′, ai,a−i) + γ
∑

s′∈S,oi∈Ωi

Ti(〈s, φ′〉, ai,a−i, 〈s′, φ′′〉)

Oi(〈s′, φ′′〉, ai,a−i, oi)× αh−1
oi (s′, φ′′;πi,l1)|+ ε

= |Ri(s, φ′ai,a−i) + γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ〉)

E[Ṫi(ẋ, ai,a−i, ẋ
′)] Oi(s

′, ai,a−i, oi) α
h−1,ε
oi (s′, φ′′;πi,l)

−Ri(s, φ′, ai,a−i) + γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ)

E[Ṫi(ẋ, ai,a−i, ẋ
′)]×Oi(s′, ai,a−i, oi)

αh−1
oi (s′, φ′′;πi,l1)|+ ε

≤ γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ〉) E[Ṫi(ẋ, ai,a−i, ẋ

′)]

Oi(s
′, ai,a−i, oi)|αh−1,ε

oi (s′, φ′′;πi,l)− αh−1
oi (s′, φ′′;πi,l)|+ ε

≤ γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ〉) E[Ṫi(ẋ, ai,a−i, ẋ

′)]

Oi(s
′, ai,a−i, oi) max

s′,oi,φ′′
|αh+1,ε
oi (s′, φ′′;πi,l)

− αh+1
oi (s′, φ′′;πi,l)|+ ε

= γ max
s′,oi,φ′′

|αh−1,ε(s′, φ′′;πi,l)− αh−1(s′, φ′′;πi,l)|+ ε

= γ Eh−1 + ε

Notice that |α1,ε(s′, φ′′;πi,l) − α1(s′, φ′′;πi,l)|
= |Rεi(s′, φ′′, ai,a−i) −Ri(s′, φ′′, ai,a−i)| =
|Ri(s′, ai,a−i) −Ri(s′, ai,a−i)| = 0. The above re-
cursion is a geometric series with a base case of 0.
Therefore, Eh ≤ ε

1−γ .
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Abstract

An important source of high clustering coeffi-
cient in real-world networks is transitivity. How-
ever, existing algorithms which model transitiv-
ity suffer from at least one of the following prob-
lems: i) they produce graphs of a specific class
like bipartite graphs, ii) they do not give an an-
alytical argument for the high clustering coeffi-
cient of the model, and iii) their clustering coef-
ficient is still significantly lower than real-world
networks. In this paper, we propose a new model
for complex networks which is based on adding
transitivity to scale-free models. We theoretically
analyze the model and provide analytical argu-
ments for its different properties. In particular,
we calculate a lower bound on the clustering co-
efficient of the model which is independent of
the network size, as seen in real-world networks.
More than theoretical analysis, the main proper-
ties of the model are evaluated empirically and
it is shown that the model can precisely simulate
real-world networks from different domains with
and different specifications.

1 Introduction

Most of real-world networks such as World Wide Web,
social networks, Internet and biological networks exhibit
structural properties which are not in either entirely reg-
ular or purely random graphs. For example, graphs pro-
duced by the model of Paul Erdős and Alfréd Rényi (the
ER model) [10], do not have the two important properties
observed in many real-world networks. The first property
is related to the degree distribution. In a network, the de-
gree distribution is defined as the probability distribution
of the degrees of vertices over the whole network. In many
real-world networks a power-law distribution is observed.

∗ The authors contributed equally.

More formally, the probability that the degree of a vertex is
k is proportional to k−γ . Networks with this property are
called scale-free networks. However, the degree distribu-
tion of the graphs produced by the ER model converges to
a Poisson distribution.

The second property is related to the clustering coefficient.
Clustering coefficient is used to measure how well vertices
in a network tend to be clustered together. In most of real-
world networks, vertices tend to create tight groups charac-
terized by dense ties [28]. However, in the ER model, every
two vertices are connected with a constant and independent
probability and therefore, the model generates graphs with
a low clustering coefficient.

The β model (the Watts-Strogatz model), proposed by
Watts and Strogatz [28], produces graphs with the small-
world property and high clustering coefficient. In small-
world networks, the distance between each pair of vertices
is proportional to the logarithm of the number of vertices
in the network. However, the β model produces an unreal-
istic degree distribution. The Barabási-Albert (BA) model,
proposed by Albert-László Barabási and Réka Albert pro-
duces scale-free graphs [3]. The model is based on two
important concepts: growth and preferential attachment.
Growth means that the number of vertices in the network
increases over time. Preferential attachment means that
vertices with higher degree are more likely to receive new
edges. The degree distribution of a graph resulting from
the BA model is a power-law in the form of Pr[k] ∼ k−3.
However, the clustering coefficient of the graphs produced
by the BA model is significantly lower than the clustering
coefficient of real-world networks. Takemoto and Oosawa
[25] propose a model for evolving networks by merging
complete graphs (cliques) as building blocks. The model
shows power-law degree distribution, power-law clustering
spectra and high average clustering coefficients indepen-
dent of the size of network. However, in most cases, real-
world networks are evolved in a different way: they usually
grow during the time by obtaining new vertices, rather than
by merging complete graphs.

An important source of high clustering coefficient in net-
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works is transitivity. Transitivity means if u is connected
to v and v is connected to w, the probability of having a
connection between u and w is higher than any other pair
of vertices in the network. Most of edges in real-world net-
works are local and they are drawn between vertices which
have a common neighbor [18]. The model of [22] incor-
porates transitivity and generates graphs with high clus-
tering coefficient. However, it produces bipartite networks
which are limited to situations like company directors and
movie actors. Clustering coefficient in the graphs produced
by the model of [19] is still significantly lower than clus-
tering coefficient of real-world networks. Leskovec et.al.
[18] propose several mechanisms for modeling transitivity
in complex networks. However, they do not provide any
theoretical argument for the clustering coefficient of the
mechanisms. The importance of such a theoretical anal-
ysis is that it guarantees that the model will reflect impor-
tant properties of real-world networks, since a high cluster-
ing coefficient, independent of the network size, is seen in
many real-world networks. On the other hand, for most of
network models, it is not easy to theoretically analyze the
clustering coefficient. For example, up to now, clustering
coefficient of BA networks has only been determined by
numerical simulations1, and it is known to be very difficult
to theoretically analyze it. Therefore, it is interesting to
develop a model for transitivity in complex networks such
that its clustering coefficient can be verified by theoretical
arguments.

In this paper, we present the η model for modeling transi-
tivity in complex networks. At every time interval t, the
network obtains a new vertex and the new vertex is con-
nected to some existing vertices. This step is similar to the
BA model. Then, each vertex is selected with a probabil-
ity proportional to its degree . If it is selected, then a pair
of its neighbors are chosen randomly and an edge is drawn
between them. The model has two adjustment parameter η
and m. We theoretically analyze the model and prove that
it produces networks with power-law degree distribution,
high clustering coefficient and the small-world property.
Compared to the clustering coefficient of random graphs
or graphs produced by existing scale-free models, the clus-
tering coefficient of the η model is significantly higher. In
particular, by theoretical arguments, we prove that it is in-
dependent of the network size and depends solely on pa-
rameters like η and m. We also empirically evaluate the
model and show that it can precisely simulate networks
from different domains (biology, technology, social and in-
formation networks) with different characteristics.

The rest of this paper is organized as follows. In Second 2
we present the model and theoretically analyze its impor-
tant properties. In Section 3 we empirically evaluate the
model and show that it produces graphs very close to real-

1Numerical simulations show that clustering coefficient of a
BA network with n vertices is n−0.75.

Table 1: Symbols and their definitions.
Symbol Definition
γ The power-law exponent of the degree distri-

bution in a scale-free network
η A parameter of the proposed model (η > 0)
G A network produced by the η model
VG The set of vertices of G
VG(t) The set of vertices of G at time t
G0 The initial graph
dv The degree of a vertex v
dv(t) The degree of a vertex v at time t
tv The time of adding v to the network
Nv The set of neighbors of v
Nv(t) The set of neighbors of v at time t
n The number of vertices of the network
e The number of edges of the network
e(t) The number of edges of the network at time t
m The number of edges drawn between a new

vertex and the existing vertices of the network
〈CC〉 The clustering coefficient
α 2η+m

2(η+m)

K 2η
2η+m

world networks. An overview of related work is given in
Section 4, and finally the paper is concluded in Section 5.

2 The η model

In this section, we first present the η model and then we
theoretically analyze its important properties like power-
law degree distribution, high clustering coefficient and the
small-world property. Before that, in Table 1 we summa-
rize symbols and notations that we will use in the paper.

Algorithm 1 describes the high level pseudo code of the η
model proposed for modeling transitivity in complex net-
works. First a small graph G0 is produced. We refer
to it as the initial graph. Then, at every time interval
t ∈ {1, . . . ,T}, the following steps are performed:
I. growth. A new vertex v is added to the network G. We
denote by tv the time of adding v to G.
II. preferential attachment. The vertex v is connected to
m existing vertices. Existing vertices are chosen based on
their degree. While every model which produces scale-free
networks can be used, for the sake of simplicity, we here
use the basic BA model. Therefore, for m times, a vertex
w with probability

dw(t)

2e(t)
(1)

is chosen and connected to v. We denote by dw(t) the de-
gree of w at time interval t and by e(t) the number of edges
of the graph at time interval t.
III. transitivity. At this step each vertex w of the graph is
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selected with probability

ηdw(t)

2e(t)
(2)

where η is a non-negative real number. Then, if w is se-
lected, among the neighbors of w, two vertices are chosen
uniformly at random and are connected to each other.

Algorithm 1 High level pseudo code of the η model.
GRAPHGENERATOR

Require: A non-negative real number η, a non-negative
integer T, a non-negative integer m.

Ensure: A graph G generated by the η model.
1: initialize G by a small graph
2: for t = 1 to T do
3: {growth:}
4: add a new vertex v to G
5: {preferential attachment:}
6: connect v to m existing vertices {every existing ver-

tex is selected proportional to its degree}
7: {transitivity:}
8: for every vertex w ∈ VG do
9: select w with probability ηdw(t)

2e(t)

10: if w is selected then
11: select two neighbors x and y of w uniformly at

random
12: draw an edge between x and y
13: end if
14: end for
15: end for
16: return G

The authors of [18] investigated different cases of produc-
ing triangles in complex networks. In their scenario, a
source vertex u decides to connect to some vertex w whose
distance with u is two. u first selects a neighbor v and then
v selects a neighbor w 6= u. u and v might use different
policies to select v and w, e.g. uniform selection or select-
ing based on degree. Here we first select v proportional to
its degree and then, u and w are selected uniformly at ran-
dom. The main contribution of this work compared to [18]
is that we precisely formulate the procedure, which gives us
a possibility to analytically study the model. Particularly,
we provide a lower bound on the clustering coefficient in-
dependent of the network size.

2.1 Expected number of edges

In this section, we calculate the expected number of edges
of the network at every time interval t.

The number of edges at time interval t, i.e. e(t), satisfies

the following dynamical equation:

∂e(t)

∂t
= m︸︷︷︸

preferential attachment

+
∑

w∈VG(t)

ηdw(t)

2e(t)

︸ ︷︷ ︸
transitivity

= m+ η

where VG(t) denotes vertices of G at time interval t. After
solving this equation, we obtain

e(t) = (m+ η)t+ e(G0) (3)

where e(G0) denotes the number of edges in the initial
graph. For large enough t, we sometimes discard e(G0)
and consider e(t) as (m+ η)t.

2.2 Power-law degree distribution

In this section, we show that in a graph produced by the η
model, vertices (except those added at the very early time
intervals) have a power-law degree distribution.

At every time interval t ∈ {1, . . . ,T}, every vertex v in the
network satisfies the following dynamical equation:

∂dv(t)

∂t

(a)≈
∑

u∈Nv(t)

(
ηdu(t)

2e(t)
× 2

du(t)

)

︸ ︷︷ ︸
transitivity

+
mdv(t)

2e(t)︸ ︷︷ ︸
preferential attachment

=
∑

u∈Nv(t)

(
η

e(t)

)
+
mdv(t)

2e(t)

=
ηdv(t)

e(t)
+
mdv(t)

2e(t)
(4)

where Nv(t) refers to neighbors of vertex v at time interval
t.

The approximation (a) is employed to make the computa-
tion of the dynamical equation ∂dv(t)

∂t feasible, since, oth-
erwise it would require taking the expectation of a func-
tion with a random variable at the denominator (i.e. the
number of edges), which is computationally intractable.
In principle, one could use the polynomial normal forms
of such functions to eliminate the denominator. How-
ever, this transformation yields an exponential order in the
number of conjunctions. Therefore, in mean-field theory,
it is proposed to approximate the expectation via replac-
ing the random denominator by its expectation, i.e. by
E[f/g] ≈ f/E[g], where f is nonrandom [12, 13]. This
approximation is exact in the thermodynamic limit, i.e. for
large enough t, for example when t > 20. One can ob-
tain higher order improvements of the approximation e.g.
by a Taylor expansion around the expectation. The quality
of such an approximation has been investigated in the con-
text of mean-field theory by Markov Chain Monte Carlo
(MCMC) simulations. Based on extensive experimental
evidences, for example in [13, 23], the first-order approxi-
mation competes with more refined techniques such as the
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TAP method [9]. Moreover, for large enough t, as men-
tioned earlier, the approximation becomes almost exact and
the higher order approximation terms diminish. 2

By replacing e(t) with the value obtained in Equation 3, for
large enough t, Equation 4 amounts to

∂dv(t)

∂t
=

2η +m

2(η +m)
× dv(t)

t
=
αdv(t)

t
(5)

where α = 2η+m
2(η+m) .

To solve Equation 5, we need to find the initial degree of
vertex v, i.e. the number of edges v finds when it is added to
the network at tv . At time interval tv , v finds m edges due
to preferential attachment, and it expects to find ηm

e(tv)
edges

due to transitivity. Therefore, its expected initial degree
will be m+ ηm

(m+η)tv
.

Then, using the continuum theory [2], we obtain

dv(t) =

(
m+

ηm

(m+ η)tv

)(
t

tv

)α
(6)

particularly

dv(T) =

(
m+

ηm

(m+ η)tv

)(
T

tv

)α
(7)

If v is added to the network at a large enough time interval
(i.e., tv is larger than a lower bound L), Equations 6 and 7
can be written as

dv(t) = m

(
t

tv

)α
(8)

and

dv(T) = m

(
T

tv

)α
(9)

The probability that at time interval T a vertex v has a de-
gree dv(T) smaller than k is

Pr[dv(T) < k] = Pr[m

(
T

tv

)α
< k] = Pr[tv >

T×m 1
α

k
1
α

]

(10)

and

Pr[dv(T) < k] = 1− Pr[tv ≤
T×m 1

α

k
1
α

] (11)

We suppose that the vertices are added to the network at
equal time intervals Pr[tv] =

1
T . Putting it into Equation

11, we get

Pr[dv(T) < k] = 1− T×m 1
α

T× k 1
α

= 1−
(m
k

) 1
α

(12)

2In our MCMC simulations with 1, 000 runs, the approxima-
tion is unbiased, i.e. the difference between the mean of the em-
pirical distribution and the approximated quantity is only 0.061
times the standard deviation.

Then, the degree distribution Pr[k] can be computed as

Pr[k] =
∂ Pr[dv(T) < k]

∂k
=
m

1
α

α
× k−(1+ 1

α ) (13)

which means Pr[k] ∼ k−(1+
1
α ). Therefore, we have a

power law degree distribution Pr[k] ∼ k−γ , where

γ = 1 +
1

α
=

4η + 3m

2η +m
= 2 +

m

2η +m
(14)

2.3 The small world property

Reuven Cohen and Shlomo Havlin [8] showed that scale-
free networks have a small diameter. In particular, they
proved that the scale-free networks with 2 < γ < 3 have a
very small diameter which is proportional to lnlnn. They
also showed that for γ = 3 the diameter is proportional to
lnn

lnlnn , and for γ > 3 it is proportional to lnn. In all cases
the scale-free network satisfies the small-world property.
We note that here the diameter is the mean distance be-
tween vertices. As Equation 14 indicates, for the η model
we have: 2 ≤ γ ≤ 3. Particularly, for non-zero values
of η and m, we have 2 < γ < 3. This means that the
η model satisfies the required conditions, i.e. it produces
graphs with the small-world property where the diameter is
proportional to lnn.

2.4 Clustering coefficient

In this section, we provide a lower bound on the clustering
coefficient of the networks produced by the η model, which
is independent of the network size and depends only on the
η and m parameters.

Watts and Strogatz [28] defined the clustering coefficient
of a network as3

〈CC〉 = 1

n

∑

v∈VG

〈CCv〉 (15)

where n is the number of vertices of the network and

〈CCv〉 =
Cv(
dv
2

) (16)

where Cv is the number of edges among the neighbors of
v. 〈CCv〉 is called the local clustering coefficient of v.

For a network produced by the η model, Cv can be written
as

Cv =
T∑

t=tv

(〈Cv〉T (t) + 〈Cv〉P (t)) (17)

where
3An alternative definition of the clustering coefficient which

is also widely used, was introduced by Barrat and Weigt [4]:
3×number of triangles in the network
number of connected triples of vertices .
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• 〈Cv〉P (t) is the number of edges between neighbors
of v which are added to G during the preferential at-
tachment step at time interval t, and

• 〈Cv〉T is the number of edges between neighbors of
v which are added to G during the transitivity step at
time interval t.

Then, for a vertex v, at every time interval t ≥ tv , we define
τv(t) as

τv(t) =
t∑

t′=tv

〈Cv〉T (t′) (18)

We have

Cv ≥ τv(T) (19)

Therefore

〈CCv〉 ≥
τv(T)(
dv(T)

2

) (20)

Suppose that v is added to the network at a time interval
greater than a lower bound L (i.e. tv ≥ L) such that we
can use Equation 8 to describe its degree. In the following,
we compute τv(T).

For t ≥ tv , τv satisfies the dynamical equation

∂τv(t)

∂t
=
ηdv(t)

2e(t)
=

ηmtα−1

2(η +m)tv
α (21)

Then, at time interval T, we will have:

τv(T)− τv(tv) =
∫ T

tv

ηm

2(m+ η)tv
α × tα−1∂t (22)

To solve this dynamical equation, we need to find τv(tv).
Since at time interval tv vertex v finds m+ ηm

(m+η)tv
edges,

τv(tv) will be:

τv(tv) =
η ×

(
m+ η+m

(m+η)tv

)

2(m+ η)tv
≥ ηm

2(m+ η)tv
(23)

Therefore after solving the integral of Equation 22, we will
have

τv(T) ≥ mK ×
(

Tα

2tv
α −

1

2

)
+

ηm

2(m+ η)tv
(24)

≥ mKTα

2tv
α − mK

2
(25)

where K = η
α×(m+η) =

2η
2η+m .

Now, we use Equation 20 to find a lower bound for 〈CCv〉:

〈CCv〉 ≥
τv(T)(
dv(T)

2

) ≥ 2τv(T)

dv(T)2
≥ Ktv

α

mTα
− Ktv

2α

mT2α
(26)

Let v be a vertex such that L ≤ tv ≤ T. Up to now, we
have computed a lower bound for 〈CCv〉. Now, we want
to compute a lower bound for the clustering coefficient of
the network induced by the vertices added to the network
at time intervals tL, tL+1, . . . , tT. We refer to this quantity
as 〈CC〉 since it is almost the clustering coefficient of the
whole network (compared to T, L is very small and only
for few vertices we cannot use Equation 8 to express the
degree).

Using Equations 15 and 26, we obtain

〈CC〉 ≥ 1

T− L+ 1

T∑

tv=L

(
Ktv

α

mTα
− Ktv

2α

mT2α

)
(27)

A simple form of the Riemann sum [26] says

b∑

x=a

xr ≥
∫ b

a−1
xr∂x

where r, a, b > 0.

This inequality and Equation 27 yield

〈CC〉 ≥ 1

T− L+ 1

∫ T

L−1

(
Ktv

α

mTα
− Ktv

2α

mT2α

)
∂tv (28)

After solving the integral, we obtain

〈CC〉 ≥ K

m(α+ 1)
− K

m(2α+ 1)
(29)

=
2η(η +m)

m(4η + 3m)(3η + 2m)
(30)

Therefore, a lower bound is provided for the clustering co-
efficient of a η network, which is independent of the net-
work size and depends on the η and m parameters. We
refer to Equation 30 as B.

3 Simulating real-world networks

In this section, we consider several real-world networks,
with different specifications and from different domains in-
cluding biology, technology, social and information net-
works, and aim to simulate them using the η model. Table 2
summarizes the characteristics of different real-world net-
works and the networks simulating them. Note that we only
describe one way of simulating the real-world networks by
the η model which is not unique and the only existing way.
In all simulated networks, the initial graph simply consists
of two vertices connected by an edge.
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Table 2: Real-world networks and the equivalent networks produced by the η model. C and Cη are clustering coefficient
of the real-world networks and clustering coefficient of the networks produced by the η model, respectively. CBA is the
clustering coefficient of the simulated network if transitivity is not used.

Real-world networks Simulated networks
Network # vertices # edges C m η # edges Cη CBA
electronic circuits 24, 097 53, 248 0.03 2 0.23 53, 121 0.034 0.009
email address books 16, 881 57, 029 0.13 3 0.5 58, 041 0.11 0.0047
marine food web 135 598 0.23 4 0.54 599 0.24 0.148
neural network 307 2, 359 0.28 5 2.8 2, 341 0.29 0.098
Roget’s thesaurus 1, 022 5, 103 0.15 4 1.4 5, 389 0.14 0.038

The first real-world network studied here is the electronic
circuits network. In this network vertices are electronic
components e.g., logic gates in digital circuits and resis-
tors, capacitors and diodes in analogic circuits, and edges
are the wires [5]. It has 24, 097 vertices and 53, 248 edges
and its clustering coefficient is 0.030. In order to simulate
this network, we produce an η graph with these parameters:
m = 2 and η = 0.23 and it has the same number of vertices
as the electronic circuits network. The graph produced by
the η model has 53, 121 edges, its clustering coefficient is
0.034 and its degree distribution is depicted in Figure 1(a).

The second real-world network is the network of email ad-
dress books [21]. In this network, vertices represent com-
puter users and an edge is drawn from user A to user B if
B’s email address appears in A’s address book. This net-
work has 16, 881 vertices and 57, 029 edges and its cluster-
ing coefficient is 0.13. We simulate this network by the η
model using the following parameters: m = 3 and η = 0.5
and the number of vertices in the produced graph is 16, 881.
The clustering coefficient of the simulated network is 0.11.
However, if we remove transitivity from the network (and
produce a BA network), its clustering coefficient will be
only 0.0047. Figure 1(b) presents degree distribution of
the simulated network.

The next two real-world networks are biological networks.
In the marine food web network, vertices represent species
in an ecosystem and an edge from vertex A to vertex B
indicates that A preys on B [14] and [7]. This network has
135 vertices and 598 edges and its clustering coefficient is
0.23. The following parameters are used by the η model to
simulate this network: m = 4, η = 0.54, and number of
vertices is 135. The produced graph has 599 edges and its
clustering coefficient is 0.24. Figure 1(c) presents degree
distribution of the networks simulated by the η model.

The other important class of biological networks are neu-
ral networks. The neural network of the nematode C. El-
egans reconstructed by White et al. [29] has 307 vertices
and 2, 359 edges and its clustering coefficient is 0.28. We
simulate it by a η network with m = 5 and η = 2.8. The
clustering coefficient of the produced graph is 0.29. Degree
distribution of the simulated network is shown in Figure

1(d).

The last real-world network investigated in this paper is the
Roget’s thesaurus network [17]. Each vertex of the graph
corresponds to one of the 1, 022 categories in the 1, 879
edition of Peter Mark Roget’s Thesaurus of English Words
and Phrases. An edge is drawn between two categories if
Roget gave a reference to the latter among the words and
phrases of the former, or if the two categories were related
to each other by their positions in Roget’s book. This net-
work has 5, 103 edges and its clustering coefficient is 0.15.
We simulate it by a η network with m = 4 and η = 1.4.
The produced graph has 5, 389 edges and its clustering co-
efficient is 0.14. Figure 1(e) presents degree distribution of
the simulated network.

Note that when the graph is dense, since m is large, the
preferential attachment step has a significant effect on the
clustering coefficient. However, the boundB does not con-
sider the clustering coefficient resulted by preferential at-
tachment and as a result, for dense graphs (e.g., the neu-
ral network graph) it is not tight. In summary, the bound
B is always tight for the clustering coefficient resulted by
transitivity, and it is tight for the clustering coefficient of a
network that is not very dense.

3.1 Empirical evaluation of the η model

In this section, we empirically evaluate the different prop-
erties of the η model. In order to investigate the impact
of η, we fix m to 2 and n to 10, 000, and produce networks
with different η: 0.4, 0.8, 1.2, 1.6, 2. Figure 2 illustrates the
degree distributions of the produced networks. If η is set to
0, a BA network is obtained. As we see in the figure, the
degree distributions follow a power-law. Furthermore, by
increasing η, the exponent γ slowly increases which is con-
sistent with Equation 14. Figure 3(a) compares the cluster-
ing coefficient of the networks and the boundB obtained in
Equation 30. In the produced networks,m is 2, n is 10, 000
and η varies between 0.4 and 2. It shows that by increas-
ing the clustering coefficient, B increases as well. Table 3
summarizes the characteristics of the simulated networks.
In the produced networks, by increasing η, the clustering
coefficient, average degree increase and the diameter de-
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(a) Electronic circuits (b) Email address books (c) marine food web

(d) nematode C. Elegans. (e) Roget’s thesaurus

Figure 1: Degree distributions of the η networks produced for the different real-world networks.

Table 3: Diameter, clustering coefficient, and average de-
gree of networks produced by the η model for different val-
ues of η. n is set to 10, 000 and m is set to 2.
η diameter clustering coefficient Avg. degree
0 5.28 0.0045 4
0.4 4.91 0.108 4.701
0.8 4.72 0.171 5.432
1.2 4.21 0.204 6.149
1.6 3.67 0.244 6.900
2 3.25 0.27 7.679

creases.

As depicted in Equations 6, 14 and 30, another parameter
affecting the η networks is m. In order to evaluate the in-
fluence of m, we fix η to 1 and n to 10, 000, and produce
networks with different values for m: 2, 3, 4 and 5. Fig-
ure 3 shows degree distributions of the produced networks.
As depicted in the figure, the degree distributions follow
a power-law. Similar to η, increasing m slightly increases
the exponent γ, which is consistent with Equation 14. Fig-
ure 3(b) compares the clustering coefficient of the networks
and the bound B obtained in Equation 30. In the produced
networks, n is 10, 000 and η is 1 andm varies between 2 to
5. It shows that by decreasing B, the clustering coefficient
decreases as well and as Equation 30 says, increasing m,
reduces B. In Table 4, we describe the specifications of the
networks. By increasing m, both the clustering coefficient
and the diameter decrease but the average degree increases.

Table 4: Diameter, clustering coefficient, and average de-
gree of networks produced by the η model for different val-
ues of m. n is set to 10000 and η is set to 1.
m diameter clustering coefficient Avg. degree
2 4.34 0.19 5.826
3 3.88 0.09 7.804
4 3.32 0.0638 9.91
5 3.47 0.05 11.928

4 Related work

In [1], a power-law model P (α, β) is proposed as follows:
let y be the number of vertices with degree x. P (α, β)
assigns uniform probability to all graphs with y = eα/xβ .
The authors study the giant component and the evolution of
random graphs in this model. The authors of [27] present a
model to explain social network searchability. Their model
defines a class of searchable networks and a method for
searching them.

Chung and Lu [6] consider a family of random graphs with
a given expected degree sequence. In this model each edge
is selected independently with probability proportional to
the product of the expected degrees of its endpoints. Eu-
bank et al. [11] show that many basic characteristics of the
social network of the city of Portland, Oregon, USA, are
well-modeled by the random graph model of Chung and
Lu. They also present approximation algorithms for com-
puting basic structural properties such as clustering coeffi-
cients and shortest paths distribution.
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(a) BA network with m = 2 (b) An η network with m = 2 and η = 0.4 (c) η model, m = 2, η = 0.8

(d) An η network with m = 2 and η = 1.2 (e) η model, m = 2, η = 1.6 (f) η model, m = 2, η = 2

Figure 2: Comparison of degree distributions of a BA network and five η networks having different values of η.

In [20], the authors formulate models of the time evolu-
tion of the networks that obtain and lose vertices over time.
They show that the model generates networks with power-
law degree distributions. In their models new vertices ob-
tain edges by preferential attachment, but the number of
added vertices is equal to the number of deleted vertices. In
[32] and [33], the authors study and analyze different prop-
erties such as degree distribution, clustering coefficient, av-
erage path length and phase transition of an evolving email
network model.

Takemoto and Oosawa [25] propose a model for evolving
networks by merging complete graphs (cliques) as building
blocks. The model shows power-law degree distribution,
power-law clustering spectra and high average clustering
coefficients independent of the size of network. However,
most real-world networks are formed in a different way:
they grow over time by obtaining new vertices, rather than
by merging cliques.

Serrano, Krioukov and Boguna [24] show that a class of
hidden variable models with underlying metric spaces are
able to reproduce specific properties (such as topology)
in real-world networks. Li and Maini [19] propose an
evolving network model that produces community struc-
tures. The model is based on two mechanisms: the inner-
community preferential attachment and inter-community
preferential attachment. However, while their theoretical
and numerical simulations show that this network model
has community structure, they do not provide a theoretical
analysis for the clustering coefficient of the model. Further-

more, their numerical simulations show that the clustering
coefficient of their model is still significantly lower than the
clustering coefficient of real-world networks.

Yang and Leskovec [30] model the global influence of a
vertex on the rate of diffusion through the network. The
same authors in [31] investigate several large scale social,
collaboration and information networks and find out that
the community overlaps are more densely connected than
the non-overlapping parts. Kin and Leskovec [16] propose
the Multiplicative Attribute Graphs (MAG) model that em-
ploys interactions between the vertex attributes and the net-
work structure. In this model, the probability of having an
edge between two vertices is proportional to the attribute
link formation affinities. The same authors in [15] present
a parameter estimation method for the MAG model which
is based on variational expectation maximization.

5 Conclusions

In this paper, we proposed a new model, called the η model,
for describing transitivity relations in complex networks.
We theoretically analyzed the model and calculated a lower
bound on the clustering coefficient of the model which is
independent of the network size and depends only on the
model’s parameters (η and m). We proved that the model
satisfies important properties such as power-law degree dis-
tribution and the small-world property. We also evaluated
the model empirically and showed that it can precisely sim-
ulate real-world networks from different domains with dif-
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(a) m = 2, η = 1 (b) m = 3, η = 1

(c) m = 4, η = 1 (d) m = 5, η = 1

Figure 4: Comparison of degree distributions of four η networks having different values of m.

ferent specifications.
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[2] Réka Albert and Albert-László Barabási. Statistical
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Abstract

We develop a general framework for inverse op-
timal control that distinguishes between rational-
izing demonstrated behavior and imitating induc-
tively inferred behavior. This enables learning
for more general imitative evaluation measures
and differences between the capabilities of the
demonstrator and those of the learner (i.e., differ-
ences in embodiment). Our formulation takes the
form of a zero-sum game between a learner at-
tempting to minimize an imitative loss measure,
and an adversary attempting to maximize the loss
by approximating the demonstrated examples in
limited ways. We establish the consistency and
generalization guarantees of this approach and il-
lustrate its benefits on real and synthetic imita-
tion learning tasks.

1 INTRODUCTION

Inverse optimal control (IOC) [Kalman, 1964, Rust, 1988,
Boyd et al., 1994] and inverse reinforcement learning
(IRL) [Ng and Russell, 2000, Abbeel and Ng, 2004] at-
tempt to rationalize demonstrated sequential decision mak-
ing by estimating a reward/cost function that makes ob-
served decision sequences optimal. When the learned re-
ward is defined over abstract properties of states and ac-
tions [Ng and Russell, 2000], it can generalize to new deci-
sion processes with states and actions that are similarly de-
scribed. In contrast, methods that directly estimate a policy
mapping from states to controls—also known as “behav-
ioral cloning” [Pomerleau, 1989]—often generalize poorly
when attempting to predict goal-directed sequential deci-
sions when aspects of the decision process change.

Unfortunately, the basic IOC problem—selecting a re-
ward function that makes demonstrated decision sequences
optimal—is ill-posed, since degenerate solutions exist
(e.g., setting all rewards to zero makes every decision se-

quence optimal) [Ng and Russell, 2000]. When demon-
strated behavior is noisy, only degenerate solutions may
remain as valid solutions to the basic IOC problem.
Existing methods pose the problem in various ways to
avoid degenerate solutions. Maximum margin planning
(MMP) [Ratliff et al., 2006] seeks a reward function that
makes demonstrated sequences have larger reward than
all alternatives by a structured loss measure. Maximum
(causal) entropy IRL [Ziebart et al., 2010], and its exten-
sions [Boularias et al., 2011, Levine et al., 2011], seek an
entropy-maximizing distribution over sequences/policies
that matches the feature-based components of the reward
function with demonstrated sequences. Each method is
constructed around a specific loss function: MMP mini-
mizes the the structured hinge loss, while MaxEnt IRL min-
imizes the (causal) log loss.

A typical assumption in IOC is that the demonstrator and
the learner operate under identical decision processes. In
other words, it is assumed that the demonstrator and im-
itator utilize the same action space, and have the same
state transition dynamics. In such settings, imitation can
be effectively accomplished by adequately predicting what
a demonstrator would do in a new situation. We con-
sider generalized imitation learning problems where the
abilities of the demonstrator and the learner are differ-
ent. This situation arises frequently in practice due to
differences in embodiment between human demonstra-
tors and robotic imitators [Nehaniv and Dautenhahn, 2002,
Alissandrakis et al., 2002], and, more generally, when
autonomously-controlled devices are more expensive and
less capable than manually-controlled devices.

We propose a more general framework for inverse optimal
control that is both consistent and computationally practi-
cal for a range of loss functions and situations where imita-
tion learning across different embodiments is required. The
key philosophy of our approach is that unknown properties
of how the demonstrator would behave in new situations
should be treated as pessimistically as possible, since any
unwarranted assumptions could lead to substantial errors
when behavior is evaluated under more general loss func-

102



tions or transferred across embodiments. Our formulation
produces a zero-sum game between: the learner seeking a
control policy to minimize loss; and an adversary seeking a
control policy that adequately characterizes the demonstra-
tions, but maximizes the learner’s loss. We establish con-
sistency and generalization guarantees, develop algorithms
for inference and learning under this formulation, and il-
lustrate the benefits of this approach on synthetic and real
imitation learning tasks.

2 BACKGROUND & NOTATION

In this paper, we denote single variables with assigned
values in lowercase (e.g., a, s), multivariates with values
in bold (e.g., s1:T ), and random variables using upper-
case (e.g., At or S1:T ). Decision processes are defined
by state and action sets (S and A) and the state transi-
tion dynamics τ , which describe the distribution of next
states st+1 ∈ S given current state st ∈ S and action
at ∈ A: τ(st+1|st, at). We make use of causally con-
ditioned probability distributions [Kramer, 1998],

P (y1:T ||x1:T ) ,
T∏

t=1

P (yt|y1:t−1,x1:t),

to compactly represent a decision process’s state transi-
tion dynamics,

τ(s1:T ||a1:T−1) ,
T∏

t=1

τ(st|s1:t−1,a1:t−1),

and stochastic control policy,

π(a1:T ||s1:T ) ,
T∏

t=1

π(at|a1:t−1, s1:t).

Multiplied together, these produce a joint probability dis-
tribution over the states and actions:

P (a1:T , s1:T ) = π(a1:T ||s1:T )τ(s1:T ||a1:T−1).

We denote deterministic control policies (a special case
of stochastic control policies) mapping from states or state
histories to actions as δ(st) or δ(s1:t). In addition to denot-
ing the demonstrator’s full control policy, π, under dynam-
ics, τ , we also consider distributions of trajectories sampled
from the demonstrator’s distribution as π̃, τ̃ , and a learner’s
control policy, π̂, under a (possibly different) set of dynam-
ics τ̂ , and estimates of the demonstrator’s policy, π̌. We
similarly denote states, actions, and deterministic policies
corresponds to these different sources as s̃, ŝ, š, ã, â, δ̂, etc.

3 PROBLEM DEFINITION

We begin by formally defining the supervised learning task
of imitation learning with general loss measures in Defi-
nition 1. The learner’s performance is measured by a loss

Figure 1: Learning to imitate a slower robot capable of
walking over barriers.

function relating the expected state sequence of the learned
control policy with the state sequence resulting from the
demonstrator’s control policy. The key inductive reasoning
challenge is for the learner to produce a good control pol-
icy when demonstrations are unavailable by appropriately
inferring the demonstrator’s behaviors in such situations.

Definition 1. In the task of imitation learning with gen-
eral losses and embodiments, at training time: demon-
strated traces of behavior are available from distribu-
tion P̃ (A1:T ,S1:T ) under a dynamical system with known
dynamics, τ(S1:T ||A1:T ), and unknown control policy
π(A1:T ||S1:T ). The learner attempts to choose a con-
trol policy π̂(Â1:T ||Ŝ1:T ) for potentially different dynam-
ics, τ̂(Ŝ1:T ||Â1:T ), that, at testing time, minimizes a given
loss function relating (unknown) demonstration policies
and learned policies: minπ̂ lossτ,τ̂ (π, π̂).

When the demonstrator and the learner operate under dif-
ferent state-action transition dynamics, τ 6= τ̂ , we refer to
this setting as the imitation learning across embodiments
problem. We assume that a loss function expressing the un-
desirability of the imitator’s differences from the demon-
strator is available. The key challenge is that the learner
must still estimate the control policy of the demonstrator
to be able to generalize to new situations, while also con-
structing its own control policy to overcome its differences
in embodiment. We show a simple illustrative example of
this in Figure 1.

The ability to minimize the desired imitative loss func-
tion when provided enough demonstration data and a suf-
ficiently expressive characterization of decision policies is
desired in an imitation learning algorithm. This is formally
known as Fisher consistency (Def. 2).

Definition 2. An imitation learning algorithm producing
policy πimit is Fisher consistent if, given the demonstra-
tor’s control policy for any demonstrator/imitator decision
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processes, (τ, τ̂), and a sufficiently expressive feature rep-
resentation for policies, the policy πimit is a loss minimizer:

πimit ∈ argmin
π̂

E [lossτ,τ̂ (π, π̂)] . (1)

We focus our attention in this work on loss functions that
additively decompose over the state sequence1:

EP (a1:T ,s1:T ,â1:T ,ŝ1:T )

[
T∑

t=1

loss(St, Ŝt)
∣∣∣∣π, τ, π̂, τ̂

]
,

where the state-action distribution is obtained by
combining a stochastic control policy with a state-
transition dynamics distribution: P (a1:T , s1:T , â1:T , ŝ1:T ) =

τ(s1:T ||a1:T−1) π(a1:T ||s1:T ) τ̂(ŝ1:T ||â1:T−1) π̂(â1:T ||ŝ1:T ).
Important to this problem definition is the independence
between the demonstrator and the learner: there is no direct
influence of one’s actions on the other’s state or actions, as
shown in the factorization of the joint distribution.

4 ADVERSARIAL APPROACH

We develop an adversarial approach to the problem
of imitation learning with general losses and embodi-
ments (Definition 1) by combining the idea of rationaliz-
ing demonstrated behaviors from inverse optimal control
[Abbeel and Ng, 2004] with a game-theoretic perspective
[Topsøe, 1979, Grünwald and Dawid, 2004] that incorpo-
rates different imitative losses. Our approach assumes that
except for certain properties of the limited samples of avail-
able demonstrated behavior, the demonstrator’s policy is
the worst-case possible for the learner. This avoids gener-
alizing from available demonstrations in a optimistic man-
ner that may be unrealistic and ultimately detrimental to
the learner. Using tools from convex optimization (Theo-
rem 3) and constraint generation (Algorithm 1), this for-
mulation can be solved efficiently (Algorithm 2). Though
the demonstrator’s true policy is unlikely to be maximally
detrimental to the learner, considering it as such leads to
Fisher consistency (Theorem 1), provides strong general-
ization guarantees (Theorem 2), and avoids making any un-
warranted assumptions.

4.1 ADVERSARIAL FORMULATION AND
PROPERTIES

Our approach employs a game-theoretic formulation of
the prediction task for additive state-based losses. We in-
troduce an adversarially-estimated policy, π̌, which must
be similar to demonstrated training data traces, but is the
worst-case for the learner otherwise, as formalized in Defi-
nition 3.

1Loss functions for state-action pairs can also be incorporated
by defining new states that (partially) “remember” previous state-
action histories.

Definition 3. The adversarial inverse optimal control
learner for the joint demonstrator/learner transition dy-
namics, (τ, τ̂ ) is defined as a zero-sum game in which each
player chooses a stochastic control policy, π̂ or π̌, optimiz-
ing:

min
π̂

max
π̌∈Ξ̃

E

[
T∑

t=1

loss(Ŝt, Št)

∣∣∣∣∣π̌, τ, π̂, τ̂
]
, (2)

where Ξ̃ represents a convex set of constraints mea-
sured from characteristics of the demonstrated data (e.g.,
the moment-matching constraints: π̌ ∈ Ξ̃ ⇐⇒
E[
∑T
t=1 φ(Št)|π̌, τ ] = c̃ , E[

∑T
t=1 φ(St)|π̃, τ̃ ] of in-

verse reinforcement learning [Abbeel and Ng, 2004]) and
the joint state-action distributions are realized by com-
bining control policy and state-transition dynamics: e.g.,
P (â1:T , ŝ1:T ) = π̂(â1:T ||ŝ1:T )τ̂(ŝ1:T ||â1:T−1).

Though maximum margin methods, such as MMP
[Ratliff et al., 2006] in the imitation learning setting, can
similarly incorporate arbitrary structured loss functions,
they are not Fisher consistent (Def. 2) even for the rel-
atively simple Hamming loss (i.e., number of state mis-
matches between two sequences).2 We establish the con-
sistency of the adversarial inverse optimal control approach
in Theorem 1.

Theorem 1. Given a sufficiently rich feature representa-
tion defining the constraint set Ξ, the adversarial inverse
optimal control learner is a Fisher consistent loss function
minimizer for all additive, state-based losses.

Proof. A sufficiently rich feature representation is equiva-
lent to the constraint set Ξ containing only the true policy
π. Then, under π̌ = π, Eq. (2) then reduces to:

min
π̂

E

[
T∑

t=1

loss(Ŝt, Št)

∣∣∣∣∣π, τ, π̂, τ̂
]
, (3)

which is the loss function minimizer.

An additional desirable property of this approach—even
when the feature representation is not as expressive—is
that if the set Ξ̃ can be defined to include the demonstra-
tor’s true policy, π, then generalization performance will
be upper bounded by the expected adversarial training loss
(Theorem 2).
Theorem 2. The adversarial transfer IOC formulation
(Definition 3) provides a useful generalization bound: if the
true demonstrator policy π resides within the constraint set
Ξ̃ with probability at least 1 − α, then the generalization

2This follows directly from the Fisher inconsistency of mul-
ticlass classification [Liu, 2007, Tewari and Bartlett, 2007] using
the Crammer-Singer multi-class generalization of the hinge loss
[Crammer and Singer, 2002], which is a special case of the imita-
tion learning setting with a single time step.
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error will be worse than the training error (expected game
value) with probability no more than α:

P (π ∈ Ξ̃) ≥ 1− α =⇒ P

(
E

[
T∑

t=1

loss(Ŝt, St)|π, τ, π̂, τ̂
]

≥ E

[
T∑

t=1

loss(Ŝt, Št)|π̌, τ, π̂, τ̂
])
≤ α. (4)

Proof. If π ∈ Ξ̃, then

E

[
T∑

t=1

loss(Ŝt, St)|π, τ, π̂, τ̂
]
≤ E

[
T∑

t=1

loss(Ŝt, Št)|π̌, τ, π̂, τ̂
]
,

since replacing π with a worst case policy (maximizer of
the set), π̌, only makes the expected loss worse. Thus,
bounds on P (π ∈ Ξ̃) provide generalization guarantees
with at least as much probability.

4.2 LEARNING AND INFERENCE ALGORITHMS

Building on recently developed methods for tractably
solving adversarial prediction problems for classifica-
tion with cost-sensitive [Asif et al., 2015] and multivariate
[Wang et al., 2015] performance measures, we employ the
method of Lagrange multipliers to simplify from a game
with one player’s actions jointly constrained to a param-
eterized game with only probabilistic constraints on each
player’s policy (Theorem 3).

Theorem 3. An equilibrium for the game of Definition 3 is
obtained by solving an unconstrained zero-sum game pa-
rameterized by a vector of Lagrange multipliers:

min
w

min
π̂

max
π̌

E
[ T∑

t=1

loss(Št, Ŝt) + w·φ(Št)

∣∣∣∣π̌, τ, π̂, τ̂
]

−w · c̃.

Proof. The proof follows from applying the method of
Lagrangian multipliers (a) to the constrained optimization
problem of Eq. (2), and then employing strong Lagrangian
duality and minimax duality (b):

min
π̂

max
π̌∈Ξ̃

E

[
T∑

t=1

loss(Ŝt, Št)

∣∣∣∣∣π̌, τ, π̂, τ̂
]

(a)
= min

π̂
max
π̌

min
w

E

[
T∑

t=1

loss(Ŝt, Št)

+ w ·
(

T∑

t=1

φ(Št)− c̃

)∣∣∣∣∣π̌, τ, π̂, τ̂
]

(b)
= min

w
min
π̂

max
π̌

E

[
T∑

t=1

loss(Ŝt, Št) + w · φ(Št)

∣∣∣∣∣π̌, τ, π̂, τ̂
]

−w · c̃.

Note that we assume that the loss function is an expected
loss over state predictions. The objective function of our

optimization is therefore a bilinear function of the learner’s
strategy and the adversary’s strategy, which provides the
strong Lagrangian duality that we employ. No stronger as-
sumption about the state-based loss function is needed so
long as it takes this bilinear form.

We form the stochastic policy of each player π̌, π̂ as a mix-
ture of deterministic policies: δ̌ and δ̂. Conceptually, the
payoff matrix of the zero-sum game can be constructed by
specifying each combination of deterministic policies, δ̌, δ̂,
having payoff: E[

∑T
t=1 loss(Št, Ŝt) +w · φ(Št)|δ̌, τ, δ̂, τ̂ ].

An example payoff matrix is shown in Table 1 with the
adversary choosing a distribution over columns, and the
learner choosing a distribution over rows.

Table 1: The payoff matrix for the adversarial IOC pre-
diction game with `(δ̌, δ̂) = E[

∑T
t=1 loss(Št, Ŝt)|δ̌, τ, δ̂, τ̂ ]

and ψ(δ̌) = w · E[
∑T
t=1 φ(Št)|δ̌, τ ].

δ̌1 δ̌2 . . . δ̌k

δ̂1
`(δ̌1, δ̂1)

+ψ(δ̌1)

`(δ̌2, δ̂1)

+ψ(δ̌2)
. . .

`(δ̌k, δ̂1)

+ψ(δ̌k)

δ̂2
`(δ̌1, δ̂2)

+ψ(δ̌1)

`(δ̌2, δ̂2)

+ψ(δ̌2)
. . .

`(δ̌k, δ̂2)

+ψ(δ̌k)
...

...
...

. . .
...

δ̂j
`(δ̌1, δ̂j)

+ψ(δ̌1)

`(δ̌2, δ̂j)

+ψ(δ̌2)
. . .

`(δ̌k, δ̂j)

+ψ(δ̌k)

Unfortunately, this leads to a payoff matrix with a size that
is exponential in terms of the actions in the decision pro-
cess. This cannot be explicitly constructed for practical
problems of even modest size. We employ the double or-
acle method [McMahan et al., 2003] to construct a smaller
sub-portion of the matrix that supports the Nash equilib-
rium strategy for the full game. The basic strategy, outlined
in Algorithm 1, iteratively computes a Nash equilibrium for
a payoff sub-matrix and augments the payoff matrix with
an additional column and row that provide the most im-
provement for each player.

Finding the best response for each player:

argmin
δ̂

E

[
T∑

t=1

loss(Št, Ŝt)
∣∣∣∣π̌, τ, δ̂, τ̂

]
; or (5)

argmax
δ̌

E

[
T∑

t=1

loss(Št, Ŝt) + w · φ(Št)

∣∣∣∣δ̌, τ, π̂, τ̂
]
,

reduces to a time-varying optimal control problem. Con-
sider finding the best demonstrator estimation policy δ̌∗.
The “expected loss” can be treated as a reward for state
st ∈ SD with a numerical value of:

reward(st) = E[loss(st, Ŝt)|π̂] + w · φ(st).
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Algorithm 1 Double oracle method for adversarial IOC
Input: Demonstrator’s state transition dynamics τD;

learner’s state transition dynamics, τ̂ ; loss function:
loss(st, ŝt); initial policy sets: Π̌ and Π̂; feature func-
tion φ(st); and Lagrange multipliers w.

Output: A Nash equilibrium (π̌∗, π̂∗).

1: repeat
2: Compute Nash equilibrium (π̌∗D, π̂

∗) and its game
value v̌∗ for sub-game Π̌, Π̂, loss(·, ·), φ(·), and w

3: Compute best response δ̌∗ to π̂∗ with value v̌δ̌∗
4: if v̌∗ 6= vδ̌∗ then
5: Add action to set: Π̌← Π̌ ∪ δ̌∗
6: end if
7: Compute Nash equilibrium (π̌∗, π̂∗) and its game

with value v̂∗ for sub-game Π̌, Π̂, loss(·, ·), φ(·), and
w

8: Compute best response δ̂∗ to π̌ value v̂δ̂∗
9: if v̂∗ 6= v̂δ̂∗ then

10: Add action to set: Π̂← Π̂ ∪ δ̂∗
11: end if
12: until v̌δ̌∗ = v̂δ̂∗ = v̌∗ = v̂∗

13: return (π̌∗, π̂∗)

Once the reward function is constructed, this time-varying
optimal control problem can be solved efficiently in
O(|S||A|T ) time using value iteration [Bellman, 1957].
We assume that the set of deterministic policies defining
each player’s stochastic policy is relatively small so that
marginalizing to compute state rewards is dominated by
the run time of solving the optimal control problem. Each
player’s best response can be constructed in this manner.
Upon termination, neither player’s (mixed) strategy can be
improved with an additional game action (i.e., determinis-
tic policy), and, thus, by definition π̌∗ and π̂∗ must be an
equilibrium pair [McMahan et al., 2003].

Algorithm 2 Learning algorithm for adversarial IOC

Input: Demonstration P̃ (A1:T ,S1:T ) from given decision
processes, (τ, τ̂ ); loss function: loss(·, ·); and learning
rate schedule λt

Output: Parameters w providing adversarial generaliza-
tion

1: w← 0
2: while w not converged do
3: Compute π̌∗ from parameters w using double oracle

method (Alg. 1) given τ, τ̂
4: Gradient update of parameters: w ← w −

λt(EP (Š1:T ,Ǎ1:T )[
∑T
t=1 φ(Št)|π̌∗, τ ]− c̃)

5: end while

Model parameters w are estimated using a convex opti-
mization routine described in Algorithm 2. We refer the
reader to Asif et al. [Asif et al., 2015] for the proof of con-

vexity for adversarial prediction learning problems of this
form with payoff values that are constant with respect to
the probability of each player’s actions, but not the values
themselves.

4.3 EXISTING METHOD RELATIONSHIPS

We conclude our development of the adversarial IOC
method by highlighting its conceptual similarities to and
differences from previous methods for imitating and pre-
dicting sequential decision making policies with the aid of
Figure 2.

a. b.

c. d.

Figure 2: A set of deterministic policies, δa, . . . , δo,
represented as points in the two-dimensional feature
space based on the expected sum of features under
the policy, E[

∑
t φk(St)|δ]. Maximum margin plan-

ning [Ratliff et al., 2006] chooses weight w to separate
demonstration δk from δf and δn (top left); Abbeel &
Ng’s feature-matching algorithm [Abbeel and Ng, 2004]
mixes between policies δa, δd, and δn (top right); maxi-
mum entropy IRL [Ziebart et al., 2010] chooses a weight
direction and produces a probability distribution over
all policies (bottom left); and our adversarial approach
generates an equilibrium over deterministic policies,
δf , δg, δj , δk, δl, δn, and δo, based on the learned weight w
(bottom right).

When a single demonstrated trajectory resides on the
convex hull of the expected feature space (e.g., δk in
Figure 2a), Abbeel & Ng’s feature-matching IRL al-
gorithm [Abbeel and Ng, 2004], maximum margin plan-
ning [Ratliff et al., 2006], maximum causal entropy IRL
[Ziebart et al., 2010] and our adversarial IOC approach will
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produce weight estimates w that make the demonstrated
policy (uniquely) optimal. They differ in that Abbeel &
Ng’s algorithm will be satisfied with any weight w that
makes δk uniquely optimal, since this would match feature
counts with the distribution of demonstrated sequences:
1
n

∑n
i=1 E[

∑T
t=1 φ(S

(i)
t )|π, τ ] = 1

n

∑n
i=1

∑T
t=1 φ(s

(i)
t ),

guaranteeing equivalent expected reward under the as-
sumption that the reward function is linear in the feature
vector, φ [Abbeel and Ng, 2004]. As a refinement to this
idea, maximum margin planning [Ratliff et al., 2006] seeks
parameter weights that make a demonstrated policy on
the convex hull “more optimal” than other policies by a
structured margin (using a structured loss to penalize be-
ing “almost as optimal” from a policy that is very differ-
ent from the demonstration policy), as shown in Figure 2a.
Maximum (causal) entropy inverse reinforcement learning
[Ziebart et al., 2010], which employs a Boltzmann distri-
bution over actions for each state, similarly converges to
allocate all of its probability to the actions of the demon-
strated policy. Adversarial IOC’s behavior is equivalent to
that of maximum margin planning (when a small amount
of regularization is included) in this situation: it obtains a
weight vector w so that the demonstrated policy is better
than all alternatives by the structured loss.

When demonstrated trajectories are on the interior of the
convex hull, as shown in Figure 2b-d, the behaviors of
the methods differ substantially. Abbeel & Ng’s feature-
matching algorithm [Abbeel and Ng, 2004] produces a
mixture of deterministic policies (e.g., a mixture of δa, δd,
and δn with probabilities of 10%, 10%, and 80%, as shown
in Figure 2b) that match demonstrated feature counts. Un-
fortunately, many such mixtures exist and switching be-
tween the extremes of the convex hull often proves to imi-
tate poorly in practice. Maximum (causal) entropy inverse
reinforcement learning [Ziebart et al., 2010] provides a dis-
tribution that places some probability on each deterministic
policy, with higher probabilities specified by the learned
weight vector w, as shown in Figure 2c. This avoids
mixing between extremely different deterministic policies
[Abbeel and Ng, 2004], but requires a computationally ex-
pensive integration over all policies instead of using an op-
timal MDP policy solver as a sub-routine for learning.

An additional limitation of maximum (causal) entropy
inverse reinforcement learning [Ziebart et al., 2010] is
due to its global normalization over control policies.
This normalization imposes burdensome implicit con-
straints on learned cost functions3 due to cycle sensitivity
[Monfort et al., 2015, Ziebart, 2010], as defined below and
illustrated in Figure 3. These cost function constraints can
increase the loss of resulting maximum entropy IRL pre-
dictions in practice even when demonstrated behavior tra-

3These implicit cost function constraints are in contrast to ex-
plicit constraint, like cost function non-negativity to prevent neg-
ative cost cycles.

Figure 3: A deterministic Markov decision process with
initial state s1 and absorbing state s3 in which we assume
for simplicity that state two and four have identical fea-
tures: φ(s4) = φ(s5). Under maximum entropy inverse
reinforcement learning [Ziebart et al., 2010], P (s1:T ) ∝
e−w·

∑T
t=1 φ(st) The number of paths terminating in the ab-

sorbing state of odd length n ≥ 3 is 2
n−3
2 , each with cost

of C0 + n−3
2 C1, where C0 , w · (φ(s1) + φ(s2) + φ(s3))

and C1 , w · (φ(s2) + φ(s4)). The normalization con-
stant under maximum entropy inverse optimal control is∑∞
i=0 2ie−C0+iC1 = e−C0

∑∞
i=0 e

i ln 2−iC1 , and requires
that C1 > ln 2 for it to be finite.

jectories do not include the states of the cycles. Conversely,
removing a completely irrelevant cycle from a Markov
decision process can drastically change the estimated re-
ward/cost function.

Definition 4. An inverse optimal control method is char-
acterized as being cycle sensitive when differences in a
decision process’s state representation and dynamics—
independent from demonstrated trajectories through the
decision process—can introduce arbitrary additional con-
straints on the estimated cost function.

When provided with sub-optimal demonstration policies,
our adversarial approach mixes together deterministic poli-
cies to match feature expectations with demonstrated poli-
cies. Unlike the extreme convex hull policies of the feature-
matching algorithm [Abbeel and Ng, 2004], the determin-
istic policies mixed together by the adversarial IOC method
are “competitive” with the demonstrated policy. They are
specified by the learned weight vector w, which determines
thresholds for which deterministic policies need to be con-
sidered for mixing. For example, deterministic policies
δk, δn, δo, δl, δj , δg are included in the strategic game and
appropriately mixed together when δl is demonstrated, as
shown in Figure 2d. From this perspective, adversarial IOC
can be viewed as combining the mixing behavior of Abbeel
& Ng’s feature-matching algorithm [Abbeel and Ng, 2004]
with MMP’s margin-like [Ratliff et al., 2006] selection of
policies to mix, while avoiding the integration over all poli-
cies required by maximum (causal) entropy inverse rein-
forcement learning [Ziebart et al., 2010] and its sensitivity
to irrelevant cycles in the MDP.
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5 EXPERIMENTS

We demonstrate the benefits of our approach on synthetic
and real imitation learning tasks with application-specific
imitation losses and/or different embodiments.

5.1 NAVIGATION ACROSS A GRID

Our first experiment considers trajectories collected from
simulated navigation across a discrete grid with various
characteristics. For each task, a robot navigates through
the environment to reach a target location. Each cell of the
grid world is denoted by its horizontal and vertical posi-
tions, (x, y), where each is an integer value from 1 to N .
The robot’s goal is to reach the target location while min-
imizing the navigation cost within a fixed period of time.
We define this fixed time horizon as the maximum number
of steps needed to reach any cell of the grid world. The nav-
igation task stops once the robot reaches the target, which
is equivalent to representing that the robot stays in the cell
where the target exists until the end of the final time step.
We formulate the robot navigation problem to be an opti-
mal sequential decision-making problem in a finite Markov
decision process (MDP) in which the policy minimizes the
expected cost of successful navigation.

Differing initial positions for the robot and the target lo-
cation are sampled uniformly from the N × N cells. We
generate the cost C(s) for the demonstrator to traverse a
particular grid cell (x, y position in the grid) in our simu-
lations based on a linear function of feature vectors, φ(s),
which characterize the state: C(s) = θTφ(s) + ε(s), and
a noise component, ε(s). We employ a 7-element feature
function vector, φ(s), in these grid experiments and choose
each element of θ by sampling from the uniform distribu-
tion U(0, 1). The noise component is similarly sampled
from a uniform distribution, U(0, ε), bounded by a scalar
parameter ε that controls the amount of noise in the imita-
tion learning task. We setC(s) = 0 when the robot reaches
the cell where the target exists. Note that the cost is sta-
tionary; all values of C(s) are sampled and fixed for each
navigation task. The robot can attempt to move one step
from its position in each of the cardinal directions (north,
south, east and west), except it is unable to move beyond
the boundaries of the grid. When the state transition dy-
namics are stochastic, the robot may accidentally move into
another neighboring cell rather the intended one (e.g., north
or south when attempting to move east). The state transi-
tion dynamics are formally then:

p(st+1|st, at) =

{
pm matching the action

1−pm
number of neighbor cells neighbor cells

where we call pm the matching probability. The opti-
mal policy from solving the finite MDP problem gives the
robot’s navigation strategy which then can generate a navi-
gation trajectory for learning.

We establish a specific set of grid world navigation simula-
tion characteristics as the base setting of our simulations:

• The size of the grid world is 9× 9;

• The noise weight ε is 1; and

• The matching probability pm is 0.7.

We repeat the simulation 200 times, yielding 200 naviga-
tion trajectories of which we use 100 as training data, and
the remainder as testing data. We compare adversarial IOC
to MMP [Ratliff et al., 2006] across various settings of the
size of the grid, the amount of feature noise, the matching
probability, and the number of training/testing datapoints.
For our grid navigation experiments, we evaluate the loss
as the Euclidean distance between the demonstrator’s grid
position (x, y) and the imitator’s grid position (x̂, ŷ), nor-
malized by the maximum loss, m:

1

Ntest

Ntest∑

n=1

E

[
T∑

t=1

m−1

√(
X

(n)
t − X̂(n)

t

)2

+
(
Y

(n)
t − Ŷ (n)

t

)2
]
,

where (X
(n)
t and Y

(n)
t ) are random variables under the

demonstrator’s control policy—the policy from solving the
simulated finite MDP problem—and (X̂

(n)
t and Ŷ (n)

t ) are
the ones with estimated policy. We employ this normalized
Euclidean loss as the structured loss function for the margin
in MMP and the game payoff in our adversarial method.

As shown in the first four plots of Figure 4, our adversar-
ial IOC approach (Adv) provides significant improvements
in reducing the imitation loss over the trajectory compared
to maximum margin planning (MMP) under equivalent em-
bodiment setting (i.e., standard imitation learning). Though
the imitator’s performance generally becomes worse as the
imitation task becomes more difficult (less determinism in
the state transition dynamics, increased amounts of noise
influencing the demonstrator’s optimal policy, and larger
sizes of the grid), adversarial IOC consistently outperforms
MMP across all of these settings. Very little dependence of
the imitation performance on the number of training ex-
amples in the fourth plot reveals the general efficiency of
training using IOC/IRL methods that estimate the motivat-
ing cost function.

We also compare the performance of our adversarial
IOC imitation policy with the policy produced by MMP
[Ratliff et al., 2006] when demonstrator and imitator have
different embodiments. We assume that the demonstration
robot’s dynamics are noise free and more flexible. In our
first experiment, the demonstrator has deterministic state
transition dynamics with matching probability 1, and we
evaluate the performance of the learner operating under
stochastic dynamics with various matching probabilities
from 0.9 to 0.5. In the second experiment, we set some
obstacles in the grid world so that the imitating robot has
to make a detour when it faces any of them, but the demon-
strator does not. We evaluate the performance of learner on
various number of obstacles from 20 to 60.
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Figure 4: Experimental results with 95% confidence interval of various settings of the grid world’s characteristics, includ-
ing: the degree of stochasticity of the dynamics (top, left); varying amount of cost noise generating the demonstrator’s
trajectories (top, center); differences size of the grid world from 5x5 to 15x15 (top, right); different amount of training
(test) data (bottom, left); the learner’s dynamics differing from the demonstrator’s (bottom, center); and the introduction of
impassible obstacles for the learner (bottom, right).

The performance of the two methods under different em-
bodiments is similarly evaluated according to the average
expected trajectory loss of withheld test data, as shown in
the final two plots of Figure 4. Our adversarial IOC method
also outperforms MMP in these experimental settings.

5.2 LEARNING CAMERA CONTROL FROM
DEMONSTRATION

We consider the task of learning to autonomously control a
camera in a manner that appropriately captures the action
of a basketball game based on human demonstrations of
camera control [Chen and Carr, 2015]. The decision pro-
cess characterizing camera control can be divided into a
probabilistic model describing the state of the basketball
game (the presence of players in different locations), and
a dynamics model describing how camera movement con-
trols effect the camera’s state (quantized pan angle, θ, and
quantize pan angle velocity, θ̇). As our focus is on the sep-
aration of rationalization and imitation evaluation measure,
we assume that camera controls have no influence on the
basketball game. Also based on this focus, we employ the
empirical distribution of player locations rather than con-
structing a predictive model for those locations.

Our dataset is collected from high school basketball games.
The camera recording the basketball game was operated
by a human expert. The dataset consists of 46 sequences
collected at 60Hz. The average number of frames for the
sequences is 376. The output for each frame is the cam-
era’s horizontal pan angle, and the input is a 14 element
vector that describes the state of the basketball game (the
presence of players in different locations on the basketball
court). The degree of the camera’s pan angle in this dataset
ranges from−30 degrees (left) to 30 degree (right), and we
quantize the pan angle θ into discrete 61 levels. The pan
angel velocity θ̇ of a particular frame is the difference be-
tween the current pan angle and the previous one, which
is then mapped to 5 discrete levels [−2,−1, 0, 1, 2] repre-
senting high speed of turning left to high speed of turning
right. Overall, by combining the discrete pan angles and
pan angle velocities, there are 305 total possible states for
each frame. We use the first 23 sequences as our train-
ing dataset and the 23 remaining sequences as the testing
dataset. We measure the performance of our adversarial
IOC method and baseline methods using the average square
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Figure 5: Imitating human camera operator’s pan angle control (the Real trajectory on the left) using a regression approach,
maximum margin planning, and our adversarial inverse optimal control method. Average squared loss and absolute loss of
the imitator (with 95% mean confidence intervals estimates) are shown in the center and right plots, with maximum margin
planning results suppressed due to being significantly worse and off of the presented scale.

loss per frame between pan angles:

N∑

n=1

Tn∑

t=1

(θ
(n)
t − θ̂(n)

t )2/

N∑

n=1

Tn. (6)

We compare our adversarial structured prediction method
with a few forms of least squares linear regression models:
one that is not constrained by the camera dynamics (LS);
one that is constrained by the empirical dynamics of the
camera (LSC); and one Markovian-based model that also
conditions on the previous camera location (LSMI). Ad-
ditionally, we consider two variants of maximum marginal
planning methods: MMPSL is provided with the starting
location of the human-operated camera, while MMP is not.
Similarly, AdvSL is our adversarial IOC method provided
with the starting location of the human-operated camera,
while Adv is not. Let Xt denotes the 14 entry feature vec-
tor of the state of the basketball game at timestep t. The
feature vector φ(St) of our adversarial method in Defini-
tion 3 is a 33 entry vector [θ, θ2, θ̇, θ̇2, θXt, θ̇Xt], which
combines the basketball game state features and the cam-
era angle and angle velocity state. For the regression mod-
els, the estimated sequence is a standard linear regression
method θ̂t = âXt + b̂ where â and b̂ are trained from the
training dataset. For the constrained regression method, the
predicted camera angle is projected to the closest angle for
which transitioning is feasible.

The result of a test sequence of our experiment is shown in
the left plot of Figure 5. The first two regression methods
are generally very noisy as the predicted pan angle changes
rapidly based on the rapid changes of the underlying inputs
corresponding to the game state. The Markovian regres-
sion model performs well initially, but diverges from the
demonstrated trajectory over time. Both of the MMP meth-
ods have much worse performance than the other methods
presented. Our adversarial approaches tend to be similar
to the regression model, but are much less noisy and pro-
vide a closer match to the demonstrated trajectory with sig-

nificantly lower amounts of squared and absolute loss, as
shown in the other plots of Figure 5.

6 CONCLUSION

In this paper, we introduced an adversarial framework for
imitation learning using inverse optimal control. It takes
the form of a game between an adversary seeking to maxi-
mize loss by approximating the training data, and a learner
seeking to minimize the loss. Algorithmically, our ap-
proach possesses similarities with existing inverse optimal
control methods, while resolving some of the deficiencies
of those methods (e.g., lack of consistency, sensitivity to
low cost cycles) in a principled manner. A key benefit
of our approach is that it separates the rationalization of
demonstrated decision sequences with the learner’s opti-
mization of an imitative loss function. We focused this
added flexibility on the problem of learning to imitate under
differences in embodiment. This is an underexplored, but
important problem for imitation learning to be employed in
practice. We established the consistency and useful gener-
alization bounds for our adversarial inverse optimal control
approach. We developed and presented efficient algorithms
for inference and learning under this formulation. Finally,
we demonstrated the benefits of adversarial inverse optimal
control in a set of synthetic experiments and an autonomous
camera control task where an autonomous camera is trained
based on observations of human camera control. In the fu-
ture, we plan to apply the developed framework to imitation
learning settings for robotics applications for which we be-
lieve that generalizing across different embodiments will
be especially useful.
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Abstract

Probabilistic mixture models are among the
most important clustering methods. These
models assume that the feature vectors of the
samples can be described by a mixture of several
components. Each of these components follows
a distribution of a certain form. In recent years,
there has been an increasing amount of interest
and work in similarity-matrix-based methods.
Rather than considering the feature vectors,
these methods learn patterns by observing the
similarity matrix that describes the pairwise
relative similarity between each pair of samples.
However, there are limited works in probabilistic
mixture model for clustering with input data in
the form of a similarity matrix. Observing this,
we propose a generative model for clustering
that finds the block-diagonal structure of the
similarity matrix to ensure that the samples
within the same cluster (diagonal block) are
similar while the samples from different clusters
(off-diagonal block) are less similar. In
this model, we assume the elements in the
similarity matrix follow one of beta distributions,
depending on whether the element belongs to
one of the diagonal blocks or to off-diagonal
blocks. The assignment of the element to a block
is determined by the cluster indicators that follow
categorical distributions. Experiments on both
synthetic and real data show that the performance
of the proposed method is comparable to the
state-of-the-art methods.

1 INTRODUCTION

In many applications, we want to divide the data into a
few groups. Clustering is a task of finding the structure
and interesting patterns in data, by grouping objects in
such a way that objects in the same group are similar to

each other, but objects in different groups are different.
Recently, much research has been focused on developing
clustering techniques and on applying these techniques to
different fields such as image segmentation and text mining
[26].

Probabilistic mixture models [3, 8] are among the most
important clustering methods. These models assume
that the feature vectors of data can be described by a
mixture of several components. Each of these components
follows a distribution of a certain form. Although
different probabilistic mixture models differ in the detailed
assumptions, most of them try to fit the feature vectors with
a mixture of distributions.

In recent years, there has been an increasing amount of
interest and work in similarity-matrix-based methods.
Rather than observing the feature vectors of the
data, as existing probabilistic mixture models do,
similarity-matrix-based methods learn patterns by
observing the similarity matrix that describes the pairwise
relative similarity between each pair of data samples.
One example of these methods is spectral clustering
[14, 20]. Similarity-matrix-based methods have been very
successful in different applications, because it could be
applied to data of any form, as long as we can compare
the similarity between samples. However, there are limited
works in generative models for clustering where the input
is a similarity matrix.

In clustering problems, we want to ensure that the samples
within the same cluster are similar while the samples from
different clusters are less similar. Therefore, given a
similarity matrix, if we sort the indices of the similarity
matrix according to the cluster indicators, the elements
in diagonal blocks usually have larger values, because
these elements measure the similarity between samples in
the same cluster; while the elements in the off-diagonal
blocks usually have smaller values, because these elements
measure the similarity between samples from different
clusters. The block structure in a similarity matrix is
illustrated in Figure 1. Observing this, we propose
to cluster by finding the block-diagonal structure in the
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Figure 1: The block-diagonal structure in the similarity
matrix. After we sort the indices of the similarity
matrix according to the cluster indicators, elements in
diagonal blocks have larger values, while elements in the
off-diagonal blocks have smaller values.

similarity matrix.

Observing this, we propose a similarity-matrix-based
probabilistic model for clustering, called Block Mixture
Model (BMM). It is a generative model that discovers
clusters by finding the block-diagonal structure in the
similarity matrix. In BMM, we assume that the elements
in the similarity matrix are drawn from a mixture of beta
distributions, where the elements in the diagonal blocks
are drawn from a beta distribution that is skewed towards
one, and the elements in the off-diagonal blocks are drawn
from a background beta distribution that is skewed towards
zero. The assignment of each element to the blocks is
determined by the cluster indicators for samples that follow
categorical distributions. As a Bayesian method, BMM
takes model uncertainty into consideration, allows us to
provide an informative prior to the model, and safeguards
against over-fitting [6].

Related Work Gaussian Mixture Model (GMM)
[3] is the most well known generative model for
clustering. GMM assumes data can be divided into
several components and each component follows a
Gaussian distribution. GMM usually has difficulty to
cluster data with non-elliptical shape. To overcome
this limitation, [8] proposes to warp a latent mixture of
Gaussian distributions using Gaussian processes. This
model can be applied when the clusters have more complex
shapes. Although these generatives model methods differ
in detailed assumptions, they all fit the real-valued feature
vectors with a mixture of distributions. On the other
hand, as a similarity-matrix-based method, BMM takes
the similarity matrix as input. Therefore, it can be used to
analyse any data types as long as the similarity between
samples can be measured.

Spectral clustering [14, 20, 25, 21, 18] is a
similarity-matrix-based clustering method. With this
method, we first compute the eigenvectors of the
Laplacian matrix that is derived from the similarity matrix.
Then the clustering results are obtained by applying
k-means [14, 20], or a probabilistic model [25, 21, 18] to
analyse these eigenvectors. Unlike these methods, BMM
is a generative model for the similarity matrix, which does
not make use of the eigenvectors.

Stochastic blockmodels [24, 1, 10] are also generative
models that find clusters. In these models, each sample
belongs to a cluster and the connections between samples
are determined by the corresponding pair of clusters. These
methods are usually applied to an observed network, rather
than similarity measures.

A generative clustering model for similarity matrices
is proposed in [19]. It is assumed that the observed
network is a noisy version of a latent network, where
the latent network can be divided into several connected
sub-networks. In contrast, BMM adopts a different
strategy, where we try to find a block-diagonal structure
in the similarity matrix. BMM tends to lead to better
clustering results as demonstrated in the experiments (see
Section 4).

The model proposed in [23] finds a block structure in
Gaussian Graphical Models. Another related model is
the orthogonal nonnegative matrix tri-factorization [4] that
factorizes an observed matrix into 3 factors, which is
equivalent to completing a non-negative matrix using a
block structure. Both methods differ from BMM in that
they are not probabilistic models and they are applied to the
feature vectors directly but not on the similarity matrices.

Contributions of this work The contributions of this
work can be summarized as follows:

1. We propose a new generative model for
similarity-matrix-based clustering, we call Block
Mixture Model (BMM), that searches for the
diagonal-block structure in a similarity matrix.

2. We derive variational inference for BMM.
3. We test BMM on both synthetic and real data, and

observe that the performance of BMM is comparable
to the state-of-the-art methods.

2 MODEL FORMULATION

We propose a generative clustering model for the similarity
matrix with a block-diagonal structure, we call Block
Mixture Model (BMM), to solve a clustering problem. To
begin with, we construct a similarity matrix. Given a set
of N data samples with C dimension {x1,x2, . . . ,xN},
where xn ∈ RC for n = 1, . . . , N . One possible way to
construct a similarity matrix is to use the Gaussian kernel
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Figure 2: Beta distributions with different parameters

W ∈ RN×N is defined as

W ij = exp(−||xi − xj ||2
2σ2

), for i, j = 1, . . . , N, (1)

where σ is a positive real bandwidth parameter. In this
paper, we focus our discussion on Gaussian kernel; but
BMM can be applied to other similarity measures whose
values range from 0 to 1 (e.g., cosine similarity).

In BMM, we assume that the data can be divided into K
clusters, where K is a pre-defined integer. BMM can be
easily extended to a nonparametric version, with Dirichlet
process mixtures [7], such that the model can automatically
find K. Since this is not the major focus of this paper,
we introduce a simpler, more accessible version where K
is pre-defined. We assign each sample xn a K-element
cluster indicator zn = {znk}Kk=1 such that znk = 1 if and
only if xn belongs to the k-th cluster, and otherwise znk =
0. We let zn follow a categorical distribution such that

zn ∼ Categorical(π), (2)

whereπ is aK-element vector, representing the probability
that each cluster is assigned. We let π be a sample
from a symmetric Dirichlet distribution, with concentration
parameter λ, i.e.

π ∼ Dirichlet(λ). (3)

Note that in Gaussian kernel W , all elements satisfying
0 < W ij ≤ 1, where a large W ij indicates that the
i-th and j-th samples are similar. Because of the range
of W ij , we model it using beta distributions, which are
distributions defined on the interval (0, 1), parameterized
by two positive shape parameters α and β. We choose beta
distribution because it is a simple and flexible distribution
that describes random variables between 0 and 1. We
plot some probability density function (PDF) of beta
distributions with different parameters in Figure 2.

If a random variable t follows a beta distribution such that
t ∼ Beta(α, β), then its expected value and variance are
given by [9]

E[x] = α

α+ β
, (4)

Var[x] =
αβ

(α+ β)2(α+ β + 1)
=

E[x](1− E[x])
α+ β + 1

. (5)

Now we assume that the similarity matrix W can be
separated intoK clusters. Then if we sort the indices of the
similarity matrix according to the cluster indicators, we can
observe a block-diagonal structure as shown in Figure 1. If
W ij is in one of the diagonal blocks, then it tends to have
a large value. In this case, we let W ij be a sample from a
beta distribution that is parameterized by Θk = (αk, βk),
such that it is skewed towards one. We assign a different
parameter Θk for each diagonal block, because in some
clusters, the within cluster similarity might be larger than
others. If W ij is in off-diagonal blocks, then we let
Θ0 = (α0, β0) be the parameters for the beta distribution,
such that it is close to zero. Since whether the i-th and
j-th elements are in the diagonal or off-diagonal blocks can
be derived by observing the cluster indicators zi and zj
respectively, the probability density function of W ij can
be expressed as

p(W ij |{Θk}Kk=1,Θ0,Z) =Beta(W ij |α0, β0)
1−∑K

k zikzjk

K∏

k=1

Beta(W ij |αk, βk)zikzjk .

(6)

Note that if both samples xi and xj belong to the same
cluster k, then zikzjk = 1 and Wij belongs to the k-th
diagonal block. Therefore, in the equation, the term zikzjk
is an indicator that W ij is in the k-th diagonal block and
the term 1 −∑K

k zikzjk is an indicator that the W ij is in
the off-diagonal blocks. With the equation, we let elements
in the diagonal blocks and off-diagonal blocks follow the
corresponding beta distributions, respectively. Note that,
we do not care about the diagonal elements in the similarity
matrix {W ii}Ni=1, because these elements do not contain
clustering information. BecauseW is a symmetric matrix;
in the generative process, we only need to generate the
upper triangle of this matrix.

If the data contain clustering structure, the elements
in the diagonal blocks should have larger values
than the off-diagonal blocks. Therefore, we
assign different prior distributions to the beta
distribution parameters {Θk}Kk=1 and Θ0. We let

p(Θk|ζ) ∝ Beta(
αk

αk + βk
|αζ , βζ)Lognormal(αk + βk|µζ , σ2

ζ), (7)

p(Θ0|η) ∝ Beta(
α0

α0 + β0

|αη, βη)Lognormal(α0 + β0|µη, σ2
η), (8)

where ζ = {µζ , σ2
ζ , αζ , βζ} and η = {µη, σ2

η, αη, βη} are
the hyper-parameters for {Θk}Kk=1 and Θ0 respectively.
The expected value of a beta distribution, as described in
Equation (4), has a value between 0 and 1. Therefore,
we use another beta distribution to model this expected
value, which is represented by the first factor in Equations
(7) and (8). As shown in Equation (5) that given its
expected value, the variance of the beta distribution is
inversely proportional to the value of α+ β + 1; therefore,
we let α + β follow a log-normal distribution, which is
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Algorithm 1 Generative Process
for k ← 1 to K do

Generate Θk according to Equation (7)
end for
Generate Θ0 according to Equation (8)
Generate π according to Equation (3)
for n← 1 to N do

Generate zn according to Equation (2)
end for
for i← 1 to N do

for j ← 1 to i− 1 do
GenerateW ij according to Equation (6)
W ji ←W ij

end for
end for

represented by the second factor in Equations (7) and
(8). Since we multiply two distributions to form the prior
distributions in Equations (7) and (8), we need to introduce
a normalization constant to make sure the integral of the
new pdf over the entire space is equal to one. With the
prior distributions in Equations (7) and (8), we can control
the expected value and the variance of a beta distribution
by adjusting the hyper-parameters ζ and η.

We assign the hyper-parameters ζ and η to make sure
that the similarity matrix demonstrates a diagonal-block
structure as shown in Figure 1. We want the diagonal
blocks to be relatively dense and distributed with smaller
variance. Therefore, we let the value µζ to be relatively
large, and αζ larger than βζ . In practice, we let µζ = 15,
σ2
ζ = 1, αζ = 80, 000 and βζ = 20, 000. We also want

to make sure the off-diagonal blocks are relatively sparse
and distributed with larger variance. Therefore, we let the
value µη to be relatively small and αη smaller than βη . In
practice, we let µη = 0, σ2

η = 1, αη = 1, 000 and βη =
9, 000. The prior seems relatively strong. However, note
that the number of observations for each beta distribution
is proportional toN2. Therefore, the posterior distributions
may still be very different from the prior distributions
because of the large number of observations. We analyse
the sensitivity of these hyper-parameters in Section 4.3

The model is described using a directed graphical model in
Figure 3. The generative process of BMM is summarized in
Algorithm 1. In the generative process, due to symmetry of
the similarity matrix, we only generate the upper triangular
elements,W ij , i ∈ 1, . . . , N and j ∈ 1, . . . , i− 1.

3 INFERENCE

In this section, we introduce how the latent variables in
BMM model can be learned via variational inference.
The joint probability of the model is given by

W ij

N ×N

znk

N ×K

Θk

K

Θ0

πα

ζη

Figure 3: The graphical model. The dots represent
the hyper-parameters. The regular circle represent latent
random variables. The shaded circles represent observed
random variables. The arrows represent the dependency
between hyper-parameters and random variables. Each
plate denotes that the structure inside the plate is repeated.

p(W ,π,Z, {Θk}Kk=1,Θ0|ζ,η, λ)

=p(Θ0|η)
K∏

k=1

p(Θk|ζ)p(π|λ)
N∏

n=1

p(zn|π)

N∏

i=1

i−1∏

j=1

p(W ij |{Θk}Kk=1,Θ0,Z)

(9)

We want to calculate the posterior distribution for the latent
variables given the observed similarity matrix and the
hyper-parameters, i.e. p(π,Z, {Θk}Kk=1,Θ0|W , ζ,η, λ).
It is computationally intractable to directly calculate this
posterior distribution. Therefore, we use a variational
distribution q(π,Z, {Θk}Kk=1,Θ0) to approximate the
posterior distribution by minimizing the KL divergence
KL(q||p) [2]. As proven in [2], this is equivalent
to maximizing a lower-bound L(q) that is defined as

L(q) = Eq[log p(W ,π,Z, {Θk}Kk=1,Θ0)|ζ,η, λ] +H(q)
(10)

where Eq denotes that the expected value is taken with
respect to the variational distribution q, and H(q) denotes
the entropy of this variational distribution.

It is still impossible to directly calculate the variational
distribution q. Therefore, we further assume that
this distribution q can be factorized such that

q(π,Z, {Θk}Kk=1,Θ0) = qπ(π)

N∏

n=1

qzn (zn)

K∏

k=1

qΘk (Θk)qΘ0 (Θ0)

(11)
Because we do not use the conjugate prior distributions
as the prior for the latent variables {Θk}Kk=1 and Θ0, we
cannot estimate the distributions qΘk(Θk) and qΘ0

(Θ0)
in closed form. However, note that given the expected
values EZ(Z), the distributions qΘk(Θk) and qΘ0(Θ0)
are independent in the lower-bound L(q) described in
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Equation (10). Therefore, we can find point estimators for
{Θ̂k}Kk=1 and Θ̂0 that maximizes L(q), such that

Θ̂k = argmax
(αk,βk)

L(q) (12)

Θ̂0 = argmax
(α0,β0)

L(q) (13)

We find these point estimators using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
[17].

Given these point estimators, we calculate the optimal
variational distributions q∗π and {q∗zn}Nn=1. According
to [2], with the factorization assumption introduced
in Equation (11), the optimal factorized variational
distribution q∗Y j (Y j) is given by

log q∗Y j (Y j) = Ei6=j [log p(X,Y )] + const (14)

where X represents the observed data, Y = {Y i}Mi=1

represents all M factorized latent variables and Ei6=j
represents that the expected value is taken with respect to
{qY i}i 6=j .
By applying Equation (14), the optimal variational
distribution {q∗zn}Nn=1 is given by

log q
∗
zn

(zn) =

K∑

k=1

znk{Eπ [logπk]

+
∑

i6=n
Ezi [zik][logB(α̂0, β̂0)− logB(α̂k, β̂k)

+(α̂k − α̂0) logWin + (β̂k − β̂0) log(1−Win)]}+ const

(15)
where B represents the beta function. By observing this
equation, we conclude that

q∗zn(zn) = Categorical(ωn) (16)

where ωn is a K-element vector such that

ωnk ∝ exp(Eπ [logπk] +
∑

i6=n
Ezi [zik]{logB(α̂0, β̂0)− logB(α̂k, β̂k)

+ (α̂k − α̂0) logWin + (β̂k − β̂0) log(1−Win)})
(17)

and ωn is normalized such that
∑K
k=1 ωnk = 1.

By applying Equation (14), the optimal variational
distribution q∗π is given by

log q∗π(π) =
K∑

k=1

(
λ+

N∑

n=1

Ezn [znk]− 1

)
logπk + const

(18)

By observing this equation, we note that

q∗π(π) = Dirichlet(φ) (19)

where φ is a K-element vector, whose k-th element is
given by

φk = λ+

N∑

n=1

Ezn [znk] (20)

Algorithm 2 Variational Inference
Initialize {q∗zn}Nn=1

Initialize q∗π
repeat

for k ← 1 to K do
Calculate Θ̂k according to Equation (12)

end for
Calculate Θ̂0 according to Equation (13)
for n← 1 to N do

Update q∗zn according to Equation (16)
end for
Update qπ∗ according to Equation (19)

until Convergence

We iteratively update {Θ̂k}Kk=1, Θ̂0, {qzn(zn)∗}Nn=1 and
q∗π(π) until convergence. The expected values involved in
the updates are obtained by

Ezn [znk] = ωnk (21)

Eπ[logπk] = ψ(φk)− ψ
(

K∑

i=1

φi

)
(22)

where ψ is the digamma function that is defined as
the logarithmic derivative of the gamma function. The
algorithm is summarized in Algorithm 2.

4 EXPERIMENTS

In this section, we test BMM using both synthetic and
real data. We choose the bandwidth parameter of the
Gaussian kernel σ in Equation (1) to be the median of the
pairwise Euclidean distances. If not specified otherwise,
the parameters for BMM are given as µζ = 15, σ2

ζ =

1, αζ = 80, 000, βζ = 20, 000, µη = 0, σ2
η = 1,

αη = 1, 000, βη = 9, 000 and λ = 1. We discuss the
choice of the parameters in more details in Section 4.3.
Because variational inference can only guarantee finding
local minima, we run the algorithm with 10 different
initial values, and select the solution with the maximum
lower-bound value. We generate 5 of the initial values
using random initialization, and generate the other 5 of the
initial values using spectral clustering. Note that spectral
clustering might give different results, because k-means
is applied after embedding, and k-means only guarantees
local optima.

4.1 SYNTHETIC 2D DATA

To demonstrate that BMM works when the clusters have
complex shape , we test BMM using some 2-dimensional
synthetic data. The clustering results of BMM , with each
cluster shown in different color, are illustrated in Figure 4.
We can observe that BMM is able to separate all of these

116



Figure 4: Clustering results for 2d synthetic data.

data perfectly. GMM fails to give similar results, because
the cluster structure is complex shaped.

4.2 SYNTHETIC SIMILARITY MATRICES

In some applications, we are not directly given the feature
vectors, but a similarity matrix. Similar to spectral
clustering, BMM can also directly take a similarity matrix
as an input. In this section, we test BMM using synthetic
similarity matrices.

4.2.1 SIMILARITY MATRICES WITH A
BLOCK-DIAGONAL STRUCTURE

To begin with, we test BMM using similarity matrices with
different strength of block-diagonal structure. To generate
a similarity matrix W with a block-diagonal structure, we
let

W = XTX, (23)

where X is a 100 × 3 matrix. Each row of X is a
sample from a 3-element symmetric Dirichlet distribution
with a positive concentration parameter α. We control the
strength of the block-diagonal structure in the similarity
matrix W by adjusting α. When α has a small value, the
mass of the Dirichlet distribution tends to be concentrated
in one of the three elements, and the similarly matrix has
a strong block-diagonal structure, and vise versa. The
ground-truth clustering label for each sample Xn is given
by Ln = argmaxi=1,2,3Xni. To illustrate how α affects
the block-diagonal structure, we plot W with different α
in Figure 5, where indices of samples are sorted according
to the ground-truth label L = {Ln}100n=1. In the figure,
we observe that when α is small (e.g., α = 0.25), the
block-diagonal structure is clear such that we can easily
distinguish diagonal blocks from the off-diagonal blocks.
However, when α is larger (e.g., α = 2), the block structure
is less clear.

We test BMM on W generated with different α between
0.06 to 4. For each α, we test BMM on 10 different
random generated W. We compare the clustering results of
BMM against the results given by state-of-the-art methods
that takes similarity matrices as input, including spectral

(a) α = 0.25 (b) α = 2

Figure 5: W with different α. The indices of samples are
sorted according to the ground-truth labels Ln.

Figure 6: NMI on synthetic data W generated with
different α. The line represents the mean value of the NMI,
and the error bar demonstrates the standard deviation. The
ticks on the horizontal axis are plotted with log scales.

clustering [14], Non-negative Matrix Factorization (NMF)
[11] and Latent Network Model (LNM) [19]. We estimate
the performance of the algorithms using Normalized
Mutual Information (NMI) between the clustering results
with respect to the labels L. The NMI between two random
variables X and Y is defined as [22]
∑
x∈X

∑
y∈Y p(x, y)[log p(x, y)− log p(x)p(y)]

√
H(X)H(Y )

(24)

where H(X) and H(Y ) are the entropy for random
variables X and Y respectively. The NMI ranges from 0
to 1, where a higher value indicates X and Y agree stronger
with each other. We plot the mean values and standard
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deviations of NMI for the clustering results with respect
to the ground-truth label L in Figure 6. In this figure the
lines represent the mean values of NMI, and the error bars
denote the standard deviations.

We can observe from the figure that NMF and spectral
clustering outperform all other methods in this test. This
is expected because W is generated based on non-negative
matrix multiplication, which is consistent with the NMF
assumption; and it is proved in [5] that there spectral
clustering can be regarded as a relaxed version of NMF. We
also observe from the figure that when α ≤ 1, the BMM
results are comparable to the spectral clustering results.
However, if α > 1, the performance of BMM is worse.
This is also expected since BMM gives clustering results
based on the block-diagonal structure. When the similarity
matrix contains a stronger block-diagonal structure, the
performance of BMM is better. Note that in practice, we
generate similarity matrices using Gaussian kernels that is
described in Equation (1), with a bandwidth parameter σ
set as the median value of the pairwise Euclidean distances.
Therefore, the similarity matrix will be more similar to
Figure 5(a) rather than Figure 5(b), because the pairwise
similarity measures computed in this way usually differ
significantly. LNM usually performs worse, because it only
ensures samples in each cluster are well connected to their
nearest neighbors respectively. LNM is more sensitive to
the non-zero elements in the off-diagonal blocks.

4.2.2 SIMILARITY MATRICES WITH
STRUCTURED NOISE

Now we consider the case when the similarity matrices
contain structured noise. We generate two similarity
matrices W (1) and W (2) in the same way as described
in Equation (23), with α = 0.25 such that they contains
clear block-diagonal structure. We denote the ground-truth
labels samples represented by W (1) and W (2) using L(1)

and L(2), respectively.

Then we generate a similarity matrix T = ρW (1) + (1 −
ρ)W (2), where ρ is a real-value parameter between 0 and 1.
By taking the weighted sum of matrices W (1) and W (2),
we introduce structured noise to the similarity matrix. After
summation, T simultaneously have two block-diagonal
structures, this is illustrated in Figures 7(a) and 7(b).
Note that both figures show the same matrix T , but we
sort it according to the block-diagonal structure of W (1)

and W (2) respectively. Multiple possible block-diagonal
structures indicate that there are more than one meaningful
way to separate the data into clusters, which are common
in real applications, because objects might be divided into
groups by different criteria, or they can be interpreted in
different ways [16, 15].

We vary the values of ρ between 0.4 to 0.6. For each
ρ we generate 10 different matrices W and test BMM,

(a) Plot of T , with indices
sorted according to the
labels L(1).

(b) Plot of T , with indices
sorted according to the
labels L(2).

Figure 7: T is constructed such that T = ρW (1) + (1 −
ρ)W (2), with ρ = 0.45. Both W (1) and W (2) contain a
block-diagonal structure.

(a) NMI between the
clustering results and the
labels L(1)

(b) NMI between the
clustering results and the
labels L(2)

Figure 8: NMI on synthetic data. The line represents the
mean value of the NMI, and the error bar demonstrates the
standard deviation.

spectral clustering, NMF and LNM using these matrices.
The results are summarized in Figure 8.

In Figure 8, we observe that when 0.4 < ρ < 0.45,
the block-diagonal structure of W (2) dominates the matrix
T , and we can consider L(2) as the ground truth. As
shown in Figure 8(b), BMM outperforms all other methods,
since its results have a higher NMI with respect to L(2).
When 0.45 < ρ < 0.55, the contribution of W (1) or
W (2) becomes similar. We observed that BMM usually
has a higher mean NMI value with respect to both L(1)

and L(2) compared to other methods. In addition, BMM
has a higher standard deviation. This indicates that BMM
tends to reveal the block-diagonal structure of either W (1)

and W (2), but other methods usually find neither of them.
When ρ > 0.55, the block-diagonal structure of W (1)

dominates the matrix W , and we can consider L(1) as the
ground truth. As shown in 8(a), BMM also outperforms
spectral clustering, since its results have a higher mean
NMI with respect to L(1).

From the observation above, we conclude that BMM
outperforms other methods if such structured noise is
present. This is because spectral clustering finds the
clusters by observing the eigenvectors of the Laplacian
matrix that is derived from the similarity matrix. Spectral
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clustering can find the correct clusters for W (1) and W (2)

individually according to these eigenvectors respectively.
However, when we take the weighted sum of W (1)

and W (2), the eigenvectors will change in general, and
therefore, the clustering results given by spectral clustering
are different from either L(1) or L(2). Due to the
equivalence between NMF and spectral clustering [5],
NMF performs similarly compared to spectral clustering.
BMM avoids making use of the eigenvectors and looks for
the strongest block-diagonal structure. It is more robust
against the structured noise and is able to find the clusters
similar to either L(1) or L(2).

In summary, in this section, we test BMM on synthetic
similarity matrices. We observe that when the similarity
matrix contains clear diagonal structure, BMM is
comparable to spectral clustering. BMM is more robust to
structured noise compared to spectral clustering and NMF.

4.3 HYPER-PARAMETER SENSITIVITY
ANALYSIS

In this section, we discuss how the hyper-parameters
µζ , σ

2
ζ , αζ , βζ , µη, σ

2
η, αη, and βη affect the performance

of BMM. We generate 10 synthetic random similarity
matrices according to Equation (23) with α = 1. We test
BMM on each of the similarity matrices. In each test, we
change one pair of the hyper-parameters at a time and keep
all other hyper-parameters using the default values. We
summarize the means of the NMI between the clustering
results and the ground-truth label across the 10 similarity
matrices, with each of the hyper-parameter settings, in
Figure 9.

In Figures 9(a) and 9(b), we observe that the choices
of µζ , σ2

ζ , µη and σ2
η influence the clustering results less

significantly. The mean NMI values are above 0.85, no
matter what values are chosen. We set µζ = 15, σ2

ζ =

1, µη = 0 and σ2
η = 1, since these values are consistent

with the heuristic that the variance of the similarity
measures in the diagonal blocks is smaller than that in the
off-diagonal blocks. Note that they also provide high mean
NMI.

From Figures 9(c) and 9(d), we can conclude that the values
of αζ , βζ , αη and βζ have more effect on the clustering
results. As mentioned in Section 2, we need to make sure
the diagonal blocks are more dense than the off-diagonal
blocks, i.e., αζ/(αζ + βζ) > αη/(αη + βη). Therefore,
we choose αζ = 80, 000, βζ = 20, 000, αη = 1, 000 and
βη = 9, 000. We set hyper-parameters to these values in all
other experiments in Section 4.

4.4 REAL DATA

In this section, we test BMM on several real dataset,
and compare it with the state-of-the-art methods. Similar

to spectral clustering, instead of just starting from the
Gaussian kernel W defined in Equation (1), we also utilize
the normalized similarly matrix that is defined as

W̃ =D−1/2WD−1/2, (25)

whereD is a diagonal matrix such thatDii =
∑N
j=1W ij .

In this , we present the results using both un-normalized
W and normalized W̃ . In addition to the three
similarity-matrix-based methods that are introduced in
4.2.1, we also compare BMM against k-means [13] and
GMM [3].

First we introduce the experimental results on the Semeion
handwritten digit dataset [12]. This dataset contains 1593
handwritten digits from 0 to 9 from 80 persons. The digits
are stretched in a rectangular box 16x16 with 0/1 values.
We test the methods using different subsets of the dataset
as different clustering tasks. In each task, we divide the
dataset into 5 sets. We repeat the test 5 times, each time
with one set taken out. The results are summarized in
Table 1. The values in the table represent the means of
the NMI. The values in the brackets represent the standard
deviations. The values in bold is the largest mean NMI for
each task.

We observe from Table 1 that BMM with the normalized
similarity matrix W̃ is one of the best methods. In
some tasks, this method outperforms all other methods
by a relatively large margin. For example in the task of
distinguishing 6 from 8, this outperforms the second best
method by more than 0.1 in terms of mean NMI.

We also observe that making use of the normalized
similarity matrix W̃ usually leads to better results, but in
some tasks, such as the {0, 8} and {4, 9} tasks, utilizing
the un-normalized similarity matrixW gives better results.
However, in the {2, 3} task, BMM with un-normalized
similarity matrix W obtains a worse result compared
to other methods. Although making the un-normalized
similarity matrix might get better results in some of the
tasks, we still recommend to use the normalized similarity
matrix because its performance is better in general. In the
{1, 7} task, we observe that the performance of GMM is
much better than all other methods. This might be due to
that in the methods we compared, GMM is the only method
that can scale the features. LNM usually performs worse,
because it only ensures samples in each cluster are well
connected to their nearest neighbors respectively, but do not
guarantee that they are pairwise well connected. Note that
BMM with normalized similarity matrix either performs
comparably or outperforms spectral clustering and NMF in
almost all tasks.

In addition to the Semeion data, we also compare BMM
with the state-of-the-art methods using following UCI
datasets [12]: iris dataset contains 150 samples from 3
classes of iris plants that are described using 4 features;
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(a) µζ vs. σ2
ζ (b) µη vs. σ2

η (c) αζ vs. βζ (d) αη vs. βη

Figure 9: Means NMI between the clustering results and the ground-truth label, with each hyper-parameter settings. We
change a pair of hyper-parameters at a time.

Table 1: NMI on Semeion handwritten digit data
BMM (W̃ ) BMM (W ) Spectral K-means GMM NMF LNM

{0, 8} 0.901(0.016) 0.916(0.020) 0.816 (0.017) 0.899(0.014) 0.820(0.028) 0.835(0.015) 0.191(0.025)
{1, 7} 0.177(0.015) 0.258(0.038) 0.176(0.012) 0.210(0.049) 0.588(0.073) 0.183(0.041) 0.118(0.013)
{2, 3} 0.823(0.057) 0.159(0.027) 0.531(0.033) 0.765(0.039) 0.708(0.042) 0.516(0.059) 0.095(0.031)
{4, 9} 0.734(0.053) 0.792(0.058) 0.728(0.054) 0.774(0.054) 0.719(0.050) 0.740(0.058) 0.104(0.020)
{6, 8} 0.879(0.040) 0.543(0.342) 0.617(0.019) 0.755(0.100) 0.688(0.033) 0.588(0.060) 0.155(0.018)
{0,1,2,3,4} 0.740(0.005) 0.610(0.009) 0.693(0.031) 0.690(0.018) 0.693(0.016) 0.606(0.047) 0.263(0.022)
{5,6,7,8,9} 0.553(0.015) 0.415(0.021) 0.542(0.018) 0.451(0.036) 0.419(0.022) 0.470(0.021) 0.195(0.047)

{0,1,2,3,4,5,6,7,8,9} 0.522(0.037) 0.501(0.032) 0.502(0.019) 0.497(0.051) 0.507(0.009) 0.512(0.046) 0.259(0.028)

Table 2: NMI on UCI data
BMM (W̃ ) BMM(W ) Spectral K-means GMM NMF LNM

Iris 0.631(0.035) 0.650(0.035) 0.624(0.020) 0.664(0.051) 0.810(0.046) 0.648(0.024) 0.350(0.025)
Synthetic Control 0.781(0.012) 0.739(0.013) 0.747(0.029) 0.696(0.012) 0.773(0.003) 0.686(0.030) 0.547(0.013)

Faults 0.566(0.021) 0.494(0.068) 0.493(0.070) 0.461(0.040) 0.494(0.081) 0.490(0.034) 0.336(0.035)
Wine 0.723(0.021) 0.776(0.017) 0.589(0.063) 0.707(0.032) 0.720(0.037) 0.690(0.043) 0.359(0.025)

CMU faces 0.834(0.083) 0.674(0.036) 0.867(0.027) 0.743(0.027) 0.852(0.019 ) 0.684(0.045) 0.462(0.077)

Figure 10: Similarity matrix for the CMU faces dataset.

synthetic control dataset contains 600 control charts that
are synthetically generated from 6 classes; faults dataset
contains 1, 941 samples from 7 types of steel plates faults;
wine dataset contains chemical analysis results of 178
samples of wines that are derived from 3 different cultivars;
CMU faces dataset consists of 640 face images of 20 people
taken at varying poses.

The results are summarized in Table 2. In this table, we
observe GMM performs well in the iris dataset because
the iris clusters are elliptically shaped. BMM with
normalized similarity W̃ is one of the best methods in
most of the tasks. It outperforms all other methods in
the synthetic control and faults datasets, while it has a
comparable performance with most of the methods in iris
and wine datasets. However, we observe that in the CMU
faces dataset, BMM performs slightly worse than spectral
clustering. To illustrate why BMM perform worse, we
plot the similarity matrix for this dataset, with indices
sorted using the ground-truth identity labels in Figure

10. We observe the elements in the off-diagonal blocks
differ significantly in values. Note that, BMM uses only
one background beta distribution to model all elements in
off-diagonal blocks. The CMU faces dataset violates this
assumptions of BMM, making BMM perform worse.

5 CONCLUSION

In this paper, we propose Block Mixture Model (BMM),
a generative model for the similarity matrix with
block-diagonal structure, to solve the clustering problem.
In this model, we assume the elements in the similarity
matrix follow one of beta distributions, depending on
whether the element belongs to either one of the diagonal
blocks or to the off-diagonal blocks. We derive
variational inference to learn the latent variables in BMM.
Experiments on synthetic data demonstrate that BMM
performs at least comparably to spectral clustering if the
similarity matrix contains a clear block-diagonal structure,
and it is more robust to structured noise. We test BMM
on real data and observe that the performance of BMM is
comparable to the state-of-the-art methods.
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Abstract

We consider stochastic strongly convex opti-
mization with a complex inequality constraint.
This complex inequality constraint may lead to
computationally expensive projections in algo-
rithmic iterations of the stochastic gradient de-
scent (SGD) methods. To reduce the compu-
tation costs pertaining to the projections, we
propose an Epoch-Projection Stochastic Gradi-
ent Descent (Epro-SGD) method. The proposed
Epro-SGD method consists of a sequence of
epochs; it applies SGD to an augmented objec-
tive function at each iteration within the epoch,
and then performs a projection at the end of each
epoch. Given a strongly convex optimization and
for a total number of T iterations, Epro-SGD re-
quires only log(T ) projections, and meanwhile
attains an optimal convergence rate of O(1/T ),
both in expectation and with a high probabil-
ity. To exploit the structure of the optimization
problem, we propose a proximal variant of Epro-
SGD, namely Epro-ORDA, based on the opti-
mal regularized dual averaging method. We ap-
ply the proposed methods on real-world applica-
tions; the empirical results demonstrate the effec-
tiveness of our methods.

1 INTRODUCTION

Recent years have witnessed an increased interest in adopt-
ing the stochastic (sub)gradient (SGD) methods [1, 3, 21]
for solving large-scale machine learning problems. In each
of the algorithmic iterations, SGD reduces the computa-
tion cost by sampling one (or a small number of) example
for computing a stochastic (sub)gradient. Thus the compu-
tation cost in SGD is independent of the size of the data
available for training; this property makes SGD appealing
for large-scale optimization. However, when the optimiza-
tion problems involve a complex domain (for example a

positive definite constraint or a polyhedron one), the pro-
jection operation in each iteration of SGD, which is used
to ensure the feasibility of the intermediate solutions, may
become the computational bottleneck.

In this paper we consider to solve the following constrained
optimization problem

min
x∈Rd

f(x)

s.t. c(x) ≤ 0,
(1)

where f(x) is β-strongly convex [23] and c(x) is con-
vex. We assume a stochastic access model for f(·), in
which the only access to f(·) is via a stochastic gradi-
ent oracle; in other words, given arbitrary x, this stochas-
tic gradient oracle produces a random vector g(x), whose
expectation is a subgradient of f(·) at the point x, i.e.,
E[g(x)] ∈ ∂f(x), where ∂f(x) denotes the subdifferen-
tial set of f(·) at x. On the other hand we have the full
access to the (sub)gradient of c(·).

The standard SGD method [5] solves Eq. (1) by iterating
the updates in Eq. (2) with an appropriate step size ηt, e.g.,
ηt = 1/(βt)), as below

xt+1 = P{x∈Rd:c(x)≤0} [xt − ηtg(xt)] , (2)

and then returning x̂T =
∑T
t=1 xt/T as the final solution

for a total number of iterations T . Note that PD[x̂] is a
projection operator defined as

PD[x̂] = arg min
x∈D
‖x− x̂‖22. (3)

If the involved constraint function c(x) is complex (e.g., a
polyhedral or a positive definite constraint), computing the
associated projection may be computationally expensive;
for example, a projection onto a positive definite cone over
Rd×d requires a full singular value decomposition (SVD)
operation with time complexity of O(d3).

In this paper, we propose an epoch-based SGD method,
called Epro-SGD, which requires only a logarithmic num-
ber of projections (onto the feasible set), and mean-
while achieves an optimal convergence rate for stochastic
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strongly convex optimization. Specifically, the proposed
Epro-SGD method consists of a sequence of epochs; within
each of the epochs, the standard SGD is applied to optimize
a composite objective function augmented by the complex
constraint function, hence avoiding the expensive projec-
tions steps; at the end of every epoch, a projection operation
is performed to ensure the feasibility of the intermediate so-
lution. Our analysis shows that given a strongly convex op-
timization and for a total number of T iterations, Epro-SGD
requires only log(T ) projections, and meanwhile achieves
an optimal rate of convergence at O(1/T ), both in expec-
tation and with a high probability.

To exploit the structure (for example the sparisty) of the
optimization problem, we propose a proximal variant of
the Epro-SGD method, namely Epro-ORDA, which uti-
lizes an existing optimal dual averaging method to solve
the involved proximal mapping. Our analysis shows that
Epro-ORDA similarly requires only a logarithmic number
of projections while enjoys an optimal rate of convergence.

For illustration we apply the proposed Epro-SGD meth-
ods on two real-world applications, i.e., the constrained
Lasso formulation and the large margin nearest neigh-
bor (LMNN) classification. Our experimental results
demonstrate the efficiency of the proposed methods, in
comparison to the existing methods.

2 RELATED WORK

The present work is inspired from the break-through work
in [20], which proposed two novel one-projection-based
stochastic gradient descent (OneProj) methods for stochas-
tic convex optimizations. Specifically the first OneProj
method was developed for general convex optimization; it
introduces a regularized Lagrangian function as

L(x, λ) = f(x) + λc(x)− γ

2
λ2, λ ≥ 0,

then applies SGD to the convex-concave problem
minx∈Bmaxλ≥0 L(x, λ), and finally performs only one
projection at the end of all iterations, where B is a bounded
ball subsuming F = {x ∈ Rd : c(x) ≤ 0} as a subset.

The second OneProj method was developed for strongly
convex optimization. The proposed method introduced an
augmented objective function

F (x) = f(x) + γ ln

(
1 + exp

(
λc(x)

γ

))
, (4)

where γ is a parameter dependent on the total number of
iterations T , and λ is a problem specific parameter [20].
OneProj applies SGD to the augmented objective func-
tion, specifically using a stochastic subgradient of f(x)
and a subgradient of c(x), and then performs a projec-
tion step after all iterations. For a total number T it-

erations, the OneProj method achieves a rate of conver-
gence at O(log T/(βT )), which is suboptimal for stochas-
tic strongly convex optimization.

Several recent works [15, 26] propose optimal methods
with optimal rates of convergence at O(1/T ) for stochas-
tic strongly convex optimization. In particular, the Epoch-
SGD method [15] consists of a sequence of epochs, each of
which has a geometrically decreasing step size and a geo-
metrically increasing iteration number. This method how-
ever needs to project the intermediate solutions onto a fea-
sible set at every algorithmic iteration; when the involved
constraint is complex, the involved projection is usually
computationally expensive. This limitation restricts the
practical applications on large scale data analysis. There-
fore we are motivated to develop an optimal stochastic al-
gorithm for strongly convex optimization but with a con-
stant number of projections.

Another closely related work is the logT-SGD [33] for
stochastic strongly convex and smooth optimization. LogT-
SGD achieves an optimal rate of convergence, while re-
quire to perform O(κ log2 T ) projections, where κ is the
ratio of the smoothness parameter to the strong convexity
parameter. There are several key differences between our
proposed Epro-SGD method and logT-SGD: (i) logT-SGD
and its analysis rely on both the smoothness and the strong
convexity of the objective function; in contrast, Epro-SGD
only assumes that the objective function is strongly convex;
(ii) the number of the required projections in logT-SGD is
O(κ log2 T ), where the conditional number κ can be very
large in real applications; in contrast, Epro-SGD requires
at most log2 T projections.

Besides reducing the number of projections in SGD, an-
other line of research is based on the conditional gradi-
ent algorithms [7, 14, 17, 18, 32]; this type of algorithms
mostly build upon the Frank-Wolfe technique [11], which
eschews the projection in favor of a linear optimization
step; however in general, they require the smoothness as-
sumption in the objective function. On the other hand, [12,
16] extended Frank-Wolfe techniques to stochastic or on-
line setting for general and strongly convex optimizations.
Specifically [16] presents an online/stochastic Frank-Wolfe
(OFW) algorithm with a convergence rate O(1/T 1/3) for
general convex optimization problems, which is slower
than the optimal rate O(1/

√
T ). [12] presents an algorithm

for online strongly convex optimization with an O(log T )
regret bound, implying an O(log T/T ) convergence rate
for stochastic stronlgy convex optimization. This algorithm
requires the problem domain to be a polytope, instead of
a convex inequality constraint used in this paper; it also
hinges on an efficient local linear optimization oracle that
amounts to approximately solve a linear optimization prob-
lem over an intersection of a ball and and the feasible do-
main; furthermore the convergence result only holds in ex-
pectation and is sub-optimal.
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3 EPOCH-PROJECTION SGD
ALGORITHM

In this section, we present an epoch-projection SGD
method, called Epro-SGD, for solving Eq. (1) and discuss
its convergence result. Based on a stochastic dual averag-
ing algorithm, we then present a proximal variant of the
proposed Epro-SGD method.

3.1 SETUP AND BACKGROUND

Denote the optimal solution to Eq. (1) by x∗ and its domain
set byD = {x ∈ Rd : c(x) ≤ 0}. Since f(x) is β-strongly
convex [23] and c(x) is convex, the optimization problem
in Eq. (1) is strongly convex. Note that the strong convexity
in f(·) implies that f(x) ≥ f(x∗) + (β/2)‖x − x∗‖2 for
any x. Our analysis is based on the following assumptions:

A1. The stochastic subgradient g(x) is uniformly bounded
by G1, i.e., ‖g(x)‖2 ≤ G1.

A2. The subgradient ∂c(x) is uniformly bounded by G2,
i.e., ‖∂c(x)‖2 ≤ G2 for any x.

A3. There exists a positive value ρ > 0 such that
[

min
c(x)=0,v∈∂c(x),v 6=0

‖v‖2
]
≥ ρ. (5)

Remarks Assumptions A1 and A2 respectively impose an
upper bound on the stochastic subgradient of the objective
function f(·) and the constraint function c(·). Assumption
A3 ensures that the projection of a point onto a feasible
domain does not deviate too much from this intermediate
point. Note that Assumption A1 is previously used in [15];
a condition similar to Assumption A3 is used in [20], which
however simply assumes that minc(x)=0 ‖∇c(x)‖2 ≥ ρ,
without considering possible non-differentiability in c(·).

A key consequence of Assumption A3 is presented in the
following lemma.
Lemma 1. For any x̂, let x̃ = arg minc(x)≤0 ‖x− x̂‖22. If
Assumption A3 holds, then

‖x̂− x̃‖2 ≤
1

ρ
[c(x̂)]+, ρ > 0, (6)

where [s]+ is a hinge operator defined as [s]+ = s if s ≥ 0,
and [s]+ = 0 otherwise.

Proof. If c(x̂T ) ≤ 0, we have x̂ = x̃; the inequality in
Eq. (6) trivially holds. If c(x̂T ) > 0, we can verify that
c(x̃T ) = 0, and there exists s ≥ 0 and v ∈ ∂c(x̃T ) such
that x̃T − x̂T + sv = 0 (using duality theory). It follows
that x̂T − x̃T = sv (v 6= 0), and thus x̂T − x̃T is the same
direction as v. It follows that

c(x̂T ) = c(x̂T )− c(x̃T ) ≥ (x̂T − x̃T )>v

= ‖v‖2‖x̂T − x̃T ‖2 ≥ ρ‖x̂T − x̃T ‖2,

where the last inequality uses Assumption A3. This com-
pletes the proof of this lemma.

The result in Lemma 1 is closely related to the polyhedral
error bound condition [13, 31]; this condition shows that
the distance of a point to the optimal set of a convex opti-
mization problem is bounded by the distance of the objec-
tive value at this point to the optimal objective value scaled
by a constant. For illustration, we consider the optimization
problem

min
x∈Rd

[c(x)]+

with an optimal set as {x ∈ Rd : c(x) = 0}. If c(x̂) > 0,
x̃ = arg minc(x)≤0 ‖x− x̂‖22 = arg minc(x)=0 ‖x− x̂‖22 is
the closest point in the optimal set to x̂. Therefore, by the
polyhedral error bound condition of a polyhedral convex
optimization, if c(x) is a polyhedral function, there exists a
ρ > 0 such that

‖x̂− x̃‖2 ≤
1

ρ

(
[c(x̂)]+ −min

x
[c(x)]+

)
=

1

ρ
[c(x̂)]+.

Below we present three examples in which Assumption
A3 or Lemma 1 is satisfied. Example 1: an affine
function c(x) = c>x − b with ρ = ‖c‖2. Exam-
ple 2: the `1 norm constraint ‖x‖1 ≤ B where ρ =
minx:‖x‖1=B ‖∂‖x‖1‖2 ≥ 1. Example 3: the max-
imum of a finite number of affine functions c(x) =
max1≤i≤m c>i x − bi satisfying Lemma 1 as well as the
polyhedral error bound condition [31].

3.2 MAIN ALGORITHM

To solve Eq. (1) (using Epro-SGD), we introduce an aug-
mented objective function by incorporating the constraint
function as

F (x) = f(x) + λ[c(x)]+. (7)

It is worth noting that the augmented function in Eq. (7)
does not have any iteration-dependent parameter, for exam-
ple the parameter γ in Eq. (4). λ is a prescribed parameter
satisfying λ > G1/ρ, as illustrated in Lemma 2.

The details of our proposed Epro-SGD algorithm is pre-
sented in Algorithm 1. Similar to Epoch-SGD [15], Epro-
SGD consists of a sequence of epochs, each of which has a
geometrically decreasing step size and a geometrically in-
creasing iteration number (Line 9 in Algorithm 1). The up-
dates in every intra-epoch (Line 5 - 6) are standard SGD
steps applied to the augmented objective function F (x)
with x = xkt . Epro-SGD is different from Epoch-SGD
in that the former computes a projection only at the end of
each epoch, while the latter computes a projection at each
iteration. Consequently, when the projection step is com-
putationally expensive (e.g., projecting onto a positive def-
inite constraint), Epro-SGD may require much less compu-
tation time than Epoch-SGD.
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Algorithm 1 Epoch-projection SGD (Epro-SGD)
1: Input: an initial step size η1, total number of iterations
T , and number of iterations in the first epoch T1, a La-
grangian multiplier λ (λ > G1/ρ)

2: Initialization: x1
1 ∈ D and k = 1

3: while
∑k
i=1 Ti ≤ T do

4: for t = 1, . . . , Tk do
5: Compute a stochastic gradient g(xkt )
6: Compute xkt+1 = xkt − ηk(g(xkt ) + λ∂[c(xkt )]+)
7: end for
8: Compute x̃kT = PD[x̂kT ], where x̂kT =

∑Tk
t=1 x

k
t /Tk

9: Update xk+1
1 = x̃kT , Tk+1 = 2Tk, ηk+1 = ηk/2

10: Set k = k + 1
11: end while

In Lemma 2, we present an important convergence analy-
sis for the intra-epoch steps of Algorithm 1, which are key
building blocks for deriving the main results in Theorem 1.

Lemma 2. Under Assumptions A1∼A3, if we apply the up-
date xt+1 = xt− η(∇̃f(xt; εt) + λ∇[c(xt)]+) for a num-
ber of T iterations, the following equality holds

E[f(x̃T )]−f(x∗)≤µ
[
η(G2

1 + λ2G2
2)+

E[‖x1 − x∗‖22]

2ηT

]
,

where µ = ρ/(ρ−G1/λ).

Proof. Let F (x) = f(x) + λ[c(x)]+ and denote by Et[X]
the expectation conditioned on the randomness until round
t − 1. It is easy to verify that F (x) ≥ f(x), F (x) ≥
f(x) + λc(x) and F (x∗) = f(x∗). For any x, we have

(xt − x)>∇F (xt) ≤ 1

2η

(
‖x− xt‖22 − ‖x− xt+1‖22

)
+

η

2
‖∇̃f(xt, ξt) + λ∇[c(xt)]+‖22 +

(x− xt)
>(g(xt)−∇f(xt))

≤ 1

2η

(
‖x− xt‖22 − ‖x− xt+1‖22

)
+

η
(
G2

1 + λ2G2
2

)
+ ζt(x),

where ζt(x) = (x− xt)
>(g(xt)−∇f(xt)). Furthermore

by the convexity of F (x), we have

F (xt)− F (x) ≤ 1

2η

(
‖x− xt‖22 − ‖x− xt+1‖22

)
+

η(G2
1 + λ2G2

2) + ζt(x).

Noting that Et[ζt(x)] = 0, taking expectation over ran-
domness and summation over t = 1, . . . , T , we have

1

T
E

[
T∑

t=1

(F (xt)− F (x))

]
= E [F (x̂t)− F (x)]

≤ E[‖x1 − x‖22]

2ηT
+ η(G2

1 + λ2G2
2).

Let B = E[‖x1 − x∗‖22]/ (2ηT ) + η(G2
1 + λ2G2

2). Since
x∗ ∈ D ⊆ B, we have

E [F (x̂t)− F (x∗)] ≤ B. (8)

It follows that

E[f(x̂T ) + λ[c(x̂T )]+] ≤ f(x∗) +B. (9)

If c(x̂T ) ≤ 0, we have x̃T = x̂T . Following from
F (x̃T ) ≥ f(x̃T ) and F (x∗) = f(x∗), we can verify that
E[f(x̂T )] − f(x∗) ≤ B and also E[f(x̂T )] − f(x∗) ≤
ρB/ (ρ−G1/λ) holds.

Next we show that E[f(x̂T )]− f(x∗) ≤ ρB/ (ρ−G1/λ)
holds when c(x̂T ) > 0. From Lemma 1, we have

c(x̂T ) ≥ ρ‖x̂T − x̃T ‖2. (10)

Moreover it follows from ‖∂f(x)‖2 ≤ G1 and f(x∗) ≤
f(x̃T ) that the following inequality holds

f(x∗)− f(x̂T ) ≤ f(x∗)− f(x̃T ) + f(x̃T )− f(x̂T )

≤ G1‖x̂T − x̃T ‖2. (11)

Substituting Eqs. (10) and (11) into Eq. (9), we have

λρE[‖x̂T − x̃T ‖2] ≤ E[f(x∗)− f(x̂T )] +B

≤ G1E[‖x̂T − x̃T ‖2] +B.

By some rearrangement, we have E[‖x̂T − x̃T ‖2] ≤
B/ (λρ−G1). Furthermore we have

E[f(x̃T )]− f(x∗) ≤ E[f(x̃T )− f(x̂T )] + E[f(x̂T )]

−f(x∗) ≤ E[G1‖x̂T − x̃T ‖2] +B ≤ λρ

λρ−G1
B,

where the second inequality follows from ‖∇f(x)‖2 ≤
E‖∇f(x; ε)‖ ≤ G1, and |f(x) − f(y)| ≤ G1‖x − y‖2
for any x,y. This completes the proof of the lemma.

We present a main convergence result of the Epro-SGD al-
gorithm in the following theorem.

Theorem 1. Under Assumptions A1∼A3 and given that
f(x) is β-strongly convex, if we let µ = ρ/(ρ − G1/λ),
G2 = G2

1 + λ2G2
2, and set T1 = 8, η1 = µ/(2β), the total

number of epochs k† in Algorithm 1 is given by

k† =

⌈
log2

(
T

8
+ 1

)⌉
≤ log2

(
T

4

)
, (12)

the solution xk
†+1

1 enjoys a convergence rate of

E[f(xk
†+1

1 )]− f(x∗) ≤
32µ2G2

β(T + 8)
, (13)

and c(xk
†+1

1 ) ≤ 0.
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Proof. From the updating rule Tk+1 = 2Tk, we can easily
verify Eq. (12). Since xk

†+1
1 = x̃k

†
T ∈ D, the inequality

c(xk
†+1

1 ) ≤ 0 trivially holds.

Let Vk = µ2G2/
(
2k−2β

)
. It follows that Tk = 2k+2 =

16µ2G2/ (Vkβ) and ηk = µ/
(
2kβ

)
= Vk/

(
4µG2

)
. Next

we show the inequality

E[f(xk)]− f(x∗) ≤ Vk (14)

holds by induction. Note that Eq. (14) implies
E[f(xk+1

1 )]− f(x∗) ≤ 32µ2G2/ (β(T + 8)), due to Vk <
32µ2G2/ (β(T + 8)). Let ∆k = f(xk1)−f(x∗). It follows
from Lemma 5 (detailed provided in Appendix), µ > 1,
andG2 > G2

1, the inequality in Eq. (14) holds when k = 1.
Assuming that Eq. (14) holds for k = k†, we show that
Eq. (14) holds for k = k†1 + 1.

For a random variable X measurable with respect to the
randomness up to epoch k† + 1. Let Ek† [X] denote the
expectation conditioned on all the randomness up to epoch
k†. Following Lemma 2, we have

Ek† [∆k†+1] ≤ µ
[
ηk†G

2 +
E[‖xk†1 − x∗‖22]

2ηk†Tk†

]
.

Since ∆k† = f(xk
†

1 ) − f(x∗) ≥ β‖xk†1 − x∗‖22/2 by the
strong convexity in f(·), we have

E[∆k†+1] ≤ µ

[
ηk†G

2 +
E[∆k† ]

ηk†Tk†β

]

= µηk†G
2 +

Vk†µ

ηk†Tk†β
=
Vk†

4
+
Vk†

4
= Vk†+1,

which completes the proof of this theorem.

Remark We compare the obtained main results in Theo-
rem 1 with several existing works. Firstly Eq. (13) implies
that Epro-SGD achieves an optimal boundO(1/T ), match-
ing the lower bound for a strongly convex problem [15].
Secondly in contrast to the OneProj method [20] with a
convergence rate O(log T/T ), Epro-SGD uses no more
than log2(T/4) projections to obtain an O(1/T ) conver-
gence rate. Epro-SGD thus has better control over the
solution for not deviating (too much) from the feasibil-
ity domain in the intermediate iterations. Thirdly com-
pared to Epoch-SGD with its convergence rate bounded by
O
(
8G2

1/ (βT )
)
, the convergence rate bound of Epro-SGD

is only worse by a factor of constant 4µ2G2/G2
1. Partic-

ularly consider a positive definite constraint with ρ = 1,
µ = 2, and λ = 2G1/ρ, we have G2 = 5G2

1 and the bound
of Epro-SGD is only worse by a factor of 80 than Epoch-
SGD. Finally compared to the logT-SGD algorithm [33]
which requires O(κ log2 T ) projections (κ is the condi-
tional number), the number of projections in Epro-SGD is
independent of the conditional number.

The main results in Lemma 2 and Theorem 1 are expected
convergence bounds. In Theorem 2 (proof provided in
Appendix) we show that Epro-SGD also enjoys a high
probability bound under a boundedness assumption, i.e.,
‖x∗ − xt‖2 ≤ D for all t. Note that the existing Epoch-
SGD method [15] uses two different methods to derive its
high probability bounds. Specifically the first method relies
on an efficient function evaluator to select the best solutions
among multiple trials of run; while the second one modi-
fies the updating rule by projecting the solution onto the in-
tersection of the domain and a center-shifted bounded ball
with decaying radius. These two methods however may
lead to additional computation steps, if being adopted for
deriving high probability bounds for Epro-SGD.
Theorem 2. Under Assumptions A1∼A3 and given ‖xt −
x∗‖2 ≤ D for all t. If we let µ = ρ/(ρ − G1/λ), G2 =
G2

1+λ2G2
2, C =

(
8G2

1/β + 2G1D
)

ln(m/ε)+2G1D, and
set T1 ≥ max

(
3Cβ/

(
µG2

)
, 9
)
, η1 = µ/(3β), the total

number of epochs k† in Algorithm 1 is given by

k† =

⌊
log2

(
T

T1
+ 1

)⌋
≤ log2(T/4),

and the final solution xk
†+1

1 enjoys a convergence rate of

f(xk
†+1

1 )− f(x∗) ≤
4T1µ

2G2

β(T + T1)

with a probability at least 1− δ, where m = d2 log2 T e.

Remark The assumption ‖x∗ − xt‖2 ≤ D can be sat-
isfied practically, if we estimate the value of D such that
‖x∗‖2 ≤ D/2, and then project the intermediate solutions
onto ‖x‖2 ≤ D/2 at every iteration. Note that Epoch-
SGD [15] requires a total number of T projections, and
its high probability bound of Epoch-SGD is denoted by
f(xk

†+1
1 )−f(x∗) ≤ 1200G2

1 log(1/δ̃)/ (βT ) with a prob-
ability at lest 1− δ, where δ̃ = δ/ (blog2(T/300 + 1)c).

3.3 A PROXIMAL VARIANT

We propose a proximal extension of Epro-SGD, by exploit-
ing the structure of the objective function. Let the objective
function in Eq. (1) be a sum of two components

f̂(x) = f(x) + g(x),

where g(x) is a relatively simple function, for example a
squared `2-norm or `1-norm, such that the involved proxi-
mal mapping

min
x∈Rd

g(x) +
1

2
‖x− x̂‖22

is easy to compute. The optimization problem in Eq. (1)
can be rewritten as

min
x∈Rd

f(x) + g(x)

s.t. c(x) ≤ 0.
(15)
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Denote by x∗ the optimal solution to Eq. (15). We similarly
introduce an augmented objective function as

F (x) = f(x) + λ[c(x)]+ + g(x). (16)

Subsequently the update of the proximal SGD method [9,
10, 22] is given by

xt+1 = arg min
x∈D

1

2
‖x− (xt − ηg(xt))‖22 + ηg(x). (17)

If g(x) is a sparse regularizer, the proximal SGD can guar-
antee the sparsity in the intermediate solutions and usually
yields better convergence than the standard SGD. However,
given a complex constraint, solving the proximal mapping
may be computational expensive. Therefore, we consider
a proximal variant of Epro-SGD which involves only the
proximal mapping of g(x) without the constraint x ∈ D.
An instinctive solution is to use the following update in
place of step 6 in Algorithm 1:

xkt+1 =arg min
x∈Rd

1

2
‖x−

[
xkt−ηk(g(xkt )+λ∂[c(xkt )]+)

]
‖22+ηkg(x).(18)

Based this update and using techniques in Lemma 2, we
obtain similar convergence results (proof provided in Ap-
pendix), as presented in the following lemma [8].
Lemma 3. Under Assumptions A1∼A3 and setting µ =
ρ/ (ρ−G1/λ), by applying the update in Eq. (18) a num-
ber of T iterations, we have

E[f̂(x̃kT )]− f̂(x∗) ≤ µE

[
ηG2 +

‖xk1 − x∗‖22
2ηT

+
g(xk1)− g(xkT+1)

T

]
, (19)

where G2 = (G2
1 + λ2G2

2), and x̃kT denotes the projected
solution of the averaged solution x̂kT =

∑T
t=1 x

k
t /T .

Different from the main result in Lemma 2, Eq. (19) has an
additional term (g(xk1) − g(xkT+1))/Tk; it makes the con-
vergence analysis in Epro-SGD difficult. To overcome this
difficulty, we adopt the optimal regularized dual averaging
(ORDA) algorithm [6] for solving Eq. (16). The details of
ORDA are presented in Algorithm 2. The main conver-
gence results of ORDA are summarized in the following
lemma (proof provided in Appendix).
Lemma 4. Under Assumptions A1∼A3 and setting µ =
ρ/ (ρ−G1/λ), by running ORDA a number of T iterations
for solving the augmented objective (16), we have

E[F (x̂T )− F (x∗)] ≤
4‖x1 − x∗‖22

η
√
T

+
2η(3G1 + 2λG2)2√

T
,

and

E[f̂(x̃T )]− f̂(x∗) ≤ µE

[
4‖x1 − x∗‖22

η
√
T

+

2η(3G1 + 2λG2)2√
T

]
,

Algorithm 2 Optimal Regularized Dual Averaging (ORDA)
1: Input: a step size η, the number iterations T , and the

initial solution x1,
2: Set θt = 2

t+1 , νt = 2
t , γt = t3/2

η and z1 = x1

3: for t = 1, . . . , T + 1 do
4: compute ut = (1− θt)xt + θtzt
5: compute a stochastic subgradient g(xt) of f(x) at

xt and a subgradient of [c(xt)]+

6: let ḡt = θtνt

(∑t
τ=1

g(xτ )+λ∂[c(xτ )]+
ντ

)

7: compute zt+1 = arg minx ḡ
>
t x + θtνtγt+1

2 ‖x −
x1‖22 + g(x)

8: compute xt+1 = arg minx x
>(g(xt) +

λ∂[c(xt)]+) + γt
2 ‖x− ut‖22 + g(x)

9: end for
10: Output: x̂T = xT+2

Algorithm 3 Epoch-projection ORDA (Epro-ORDA)
1: Input: an initial step size η1, total number of iterations
T , and number of iterations in the first epoch T1, a La-
grangian multiplier λ > G1/ρ

2: Initialization: x1
1 ∈ D and k = 1.

3: while
∑k
i=1 Ti ≤ T do

4: Run ORDA to obtain x̂kT = ORDA(xk1 , ηk, Tk)
5: Compute x̃kT = PD[x̂kT ]
6: Update xk+1

1 = x̃kT , Tk+1 = 2Tk, ηk+1 = ηk/
√

2
7: Set k = k + 1
8: end while

where x̃T denotes the projected solution of the final solu-
tion x̂T .

We present a proximal variant of Epro-SGD, namely Epro-
ORDA, in Algorithm 3, and summarize its convergence re-
sults in Theorem 3. Note that Algorithm 2 and the conver-
gence analysis in Lemma 4 are independent of the strong
convexity in f̂(x); the strong convexity is however used
for analyzing the convergence of Epro-ORDA in Theo-
rem 3 (proof provided in Appendix).

Theorem 3. Under Assumptions A1∼A3 and given that
f̂(x) is β-strongly convex, if we let µ = ρ/(ρ − G1/λ)
and G = 3G1 + 2λG2, and set T1 = 16, η1 = µ/β, then
the total number of epochs k† in Algorithm 3 is given by

k† =

⌊
log2

(
T

17
+ 1

)⌋
≤ log2(T/8),

and the final solution xk
†+1

1 enjoys a convergence rate of

E[f̂(xk
†+1

1 )]− f̂(x∗) ≤
68µ2G2

β(T + 17)
,

and c(xk
†+1

1 ) ≤ 0.
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4 AN EXAMPLE OF SOLVING LMNN
VIA EPRO-SGD

In this section, we discuss an application of applying the
proposed Epro-SGD to solve a high dimensional distance
metric learning (DML) with a large margin formulation,
i.e., the large margin nearest neighbor (LMNN) classifica-
tion method [30]. LMNN classification is one of the state-
of-the-art methods for k-nearest neighbor classification. It
learns a positive semi-definite distance metric, based on
which the examples from the k-nearest neighbors always
belong to the same class, while the examples from differ-
ent classes are separated by a large margin.

To describe the LMNN method, we first present some nota-
tions. Let (xi, yi), i = 1, 2, · · · , N̂ , be a set of data points,
where xi ∈ Rd and y ∈ Y denote the feature representation
and the class label, respectively. Let A be a positive defi-
nite matrix that defines a distance metric as dist(x1, x2) =
‖x1− x2‖2A = (x1− x2)>A(x1− x2). To learn a distance
metric that separates the examples from different classes by
a large margin, one needs to extract a set of similar exam-
ples (from the same class) and dissimilar examples (from
a different class), denoted by (xj1, x

j
2, x

j
3), j = 1, . . . N ,

where xj1 shares the same class label to xj2 and a different
class from xj3. To this end, for each example xj1 = xi one
can form xj2 by extracting the k nearest neighbors (defined
by an Euclidean distance metric) that share the same class
label to xi, and form xj3 by extracting a set of examples that
have a different class label. Then an appropriate distance
metric could be obtained from the following constrained
optimization problem

min
A

c

N

N∑

j=1

`
(
A, xj1, x

j
2, x

j
3

)
+(1− c)tr(AL)+

µ1

2
‖A‖2F

s.t. A � εI, (20)

where `(A, xj1, x
j
2, x

j
3) = max(0, ‖xj1 − xj2‖2A − ‖xj1 −

xj3‖2A + 1) is a hinge loss and c ∈ (0, 1) is a trade-
off parameter. In Eq. (20), A � εI is used as the con-
straint to ensure that Assumption A3 holds. Minimizing
the first term is equivalent to maximizing the margin be-
tween ‖xj1 − xj3‖2A and ‖xj1 − xj2‖2A. The matrix L en-
codes certain prior knowledge about the distance metric;
for example, the original LMNN work [30] defines L as
L =

∑m
l=1 ‖xl1−xl2‖2A/m, where (xl1, x

l
2) are all k-nearest

neighbor pairs from the same class. Other works [19] have
used a weighted summation of distances between all data
pairs L =

∑n
i 6=j wij‖xi − xj‖2A/n(n − 1) or intra-class

covariance matrix [25]. The last term ‖A‖2F /2 is used as
a regularization term and also makes the objective function
strongly convex.

For data sets of very high dimensionality, i.e., d � n,
LMNN in Eq. (20) usually produces a sub-optimal solu-
tion [25], as this formulation does not capture the sparsity

structure of the features. Therefore we add a sparse regu-
larizer and express the formulation below

min
A

c

N

N∑

j=1

`
(
A, xj1, x

j
2, x

j
3

)
+ (1− c)tr(AL)

+
µ1

2
‖A‖2F + µ2‖A‖off

1

s.t. A � εI, (21)

where ‖A‖off
1 =

∑
i 6=j |Aij | is an elmenent-wise `1-norm

excluding the diagonal entries. Note that this sparse regu-
larizer ‖A‖off

1 have been previously used in [25] for a dif-
ferent purpose.

Many standard optimization solvers or algorithms may not
be efficient for solving Eq. (21). Firstly, the optimiza-
tion problem in Eq. (21) can be formulated as a semi-
definite program (SDP); however, general SDP solvers usu-
ally scale poorly with the number of triplets and is not suit-
able for large scale data analysis. Secondly, the gradient de-
cent method presented in [30] requires to project interme-
diate solutions onto a positive definite cone; this operation
invokes expensive singular value decomposition (SVD) for
a large matrix and this limitation restricts the real-world
applications of the gradient descent method. Thirdly, [25]
employs a block coordinate descent (BCD) method to solve
an L1-penalized log-det optimization problem; the BCD
method is not suitable for solving Eq. (21), as the loss func-
tion is not linear in the variable A.

We employ the proposed Epro-SGD algorithm to solve
the LMNN formulation in Eq. (21). Let f(A) =
c
N

∑N
j=1 `(A, x

j
1, x

j
2, x

j
3) + (1 − c)tr(AL) and g(A) =

µ1

2 ‖A‖2F + µ2‖A‖off
1 . The positive definite constraint can

be rewritten into an inequality constraint as c(A) = ε −
λmin(A) ≤ 0, where λmin(·) denotes the minimum eigen-
value of the matrix A. We also make the correspondences
Rd → Rd×d, x → A, ‖x‖2 → ‖A‖F , and provide neces-
sary details below in a question-answer form

• How to compute the stochastic gradient of f(A)? First
sample one triplet (xj1, x

j
2, x

j
3) (or a small number

of triplets) and then compute ∇̃f(A; ε) = c[(xj1 −
xj2)(xj1− xj2)>− (xj1− xj3)(xj1− xj3)>] + (1− c)L if
`(‖xj1 − xj2‖2A − ‖xj1 − xj3‖2A + 1) > 0, ∇̃f(A; ε) =
(1− c)L otherwise.

• How to compute the gradient of [c(A)]+ = [ε −
λmin(A)]+? By the theory of matrix analysis, the
subgradient of [c(A)]+ can be computed by ∂c(A) =
−uu> if c(A) > 0, and zero otherwise, where u de-
notes the eigevector ofA associated with its minimum
eigenvalue.

• What is the solution to the following proximal gradi-
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ent step?

min
A

1

2
‖A− Āt+1‖2F + η

(µ1

2
‖A‖2F + µ2‖A‖off

1

)
.

The solution can be obtained via a soft-thresholding
algorithm [2].

• What are the appropriate values for β, ρ, r, λ, that are
necessary for running the algorithm? The value of
β = µ1. The value of ρ is minc(A)=0 ‖∇c(A)‖F = 1.
The value of r can be set to

√
2c/µ1. The value

of G2 = 1. The value of G1 can be estimated as
8cR2 + (1 − c)‖L‖F + µ1r + µ2d if we assume
‖xi‖2 ≤ R, i = 1, . . . , n. The value of λ > G1 is
usually tuned among a set of prespecified values.

Finally, we discuss the impact of employing Epro-SGD and
Epro-ORDA method on accelerating the computation for
solving LMNN. Note that at each iteration to compute the
gradient of c(A), we need to compute the minimum eigen-
value and its eigen-vector. For a dense matrix, it usually
involves a time complexity of O(d2). However, by em-
ploying a proximal projection, we can guarantee that the
intermediate solution At is a element-wise sparse solution,
for which the computation of the last eigen-pair can be sub-
stantially reduced to be linear to the number of non-zeros
elements in At.

To analyze the running time compared to the Epoch-SGD
method, let us assume we are interested in a ε-accurate so-
lution. In the following discussion, we take a particular
choice of λ = 2G1 and suppress the dependence on con-
stants and only consider dependence on T , G1 and d. The
number of iterations required by Epro-SGD is Ω

(
G2

1/εµ1

)
,

and that by Epro-ORDA is Ω
(
G2

1/εµ1

)
. Taking into ac-

count the running time per iteration, the total running time
of Epoch-SGD is Ω

(
G2

1d
3/ (εµ1)

)
and that of Epro-ORDA

is Ω
(
G2

1d
2/ (εµ1)

)
. When d is very large, the speed-up can

be orders of magnitude.

5 EXPERIMENTS

In this section, we empirically demonstrate the efficiency
and effectiveness of the proposed Epro-SGD algorithm. We
compare the following four algorithms:

• Stochastic sub-Gradient Descent method (SGD) [27]:
we set the step size ηt = 1/(λt) and SGD achieves a
rate of convergence O(logT/T ), requiring O(T ) pro-
jections for a constrained convex optimization prob-
lem.

• One-Projection SGD method (OneProj) [20]: we set
the step size ηt = 1/(λt) and OneProj achieves a rate
of convergence O(logT/T ), requiring only one pro-
jection for a constrained strongly convex optimization
problem.
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Figure 1: Empirical comparison of the four competing
methods for solving Eq. (22). (1) Left plot: the change
of the objective values with respect to the iteration num-
ber. (2) Right plot: the change of the objective values with
respect to the computation time (in seconds).

• O(logT )-projections SGD method (logT) [33]: we set
the step size ηt = 1/(

√
6L) and logT achieves a rate

of convergence O(1/T ), requiring O(log T ) projec-
tions steps for a constrained strongly convex optimiza-
tion problem.

• the proposed Epro-SGD withO(logT ) number of pro-
jections (Epro): we set the step size ηt = 1/(λt)
and Epro archives a rate of convergence O(1/T ) with
O(log T ) projections steps for a constrained strongly
convex optimization problem.

For illustration, we apply the competing algorithms for
solving the constrained Lasso problem and the Large Mar-
gin Nearest Neighbor Classification (LMNN) in Eq. (21)
respectively. We implement all algorithms using Matlab
R2015a and conduct all simulations on an Intel(R) Xeon(R)
CPU E5-2430 (15M Cache, 2.20 GHz).

5.1 EXPERIMENTS ON THE CONSTRAINED
LASSO FORMULATION

We apply the proposed Epro-SGD algorithm and the other
three competing algorithms to solve the L1-norm con-
strained least squares optimization problem

min
w

1

2N

N∑

i=1

(
xTi w − yi

)2
+ α‖w‖2

s.t. ‖w‖1 ≤ β. (22)

Eq. (22) is an equivalent constrained counterpart of the well
studied Lasso formation [29]. They aim at achieving entry-
wise sparsity in the weight vector w while computing a lin-
ear predictor for regression.

We use the algebra data, a benchmark data from KDD Cup
2010 [28], for the following experiments. Specifically we
use a preprocessed version of the algebra data1 for our sim-
ulations. This preprocessed data set consists of 8, 407, 752

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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samples from two classes, and each of the samples is repre-
sented as a feature feature of dimensionality 20, 216, 830.
In our experiments, we set α = 1 and β = 0.5 for Eq. (22).
We tune the initial step size respectively for each of the
competing algorithms to get the (nearly) best performance;
specifically in this experiments, we set η0 = 0.5 for SGD,
η0 = 0.3 and λ = 0.03 for Epro, η0 = 0.1 for OneProj,
and η0 = 0.1 for LogT.

In the experiments, we respectively run all competing al-
gorithms for 2000 iterations; we then record the obtained
objective values and the corresponding computation time.
The experimental results are presented in Figure 1. The
left plot shows how the objective value is changed with re-
spect to the algorithm iteration. Note that for Eq. (22), the
number of algorithm iterations is equal to the number of
stochastic gradient computation (the access to the subgra-
dient of the objective function). From this plot, we can
observe that after running 2000 iterations, Epro and SGD
attain smaller objective values, compared to OneProj and
LogT; we can also observe that OneProj empirically con-
verges slightly faster than logT. The right plot shows how
the objective value is changed with respect to the com-
putation time. For this experiment, we set the maximum
computation time to 3035 seconds, which is the computa-
tion time required by running Epro for 2000 iterations. We
can observe that Epro attain a smaller objective value, com-
pared to the other three competing method; meanwhile, the
standard SGD and OneProj attain similar objective values,
given a fixed amount of computation time.

5.2 EXPERIMENTS ON THE LMNN
FORMULATION

We apply the four competing algorithms to solve the
LMNN formulation in Eq. (21). We use the Cora data [24]
for the following experiments. Cora consists of 2708 sci-
entific publications exclusively from 7 different categories.
Each publication is represented by a normalized vector of
length 1 and dimensionality 1433. From this data, we
construct 5416 neighbor pairs (NP) by randomly select-
ing 2 publications of the same label; we then construct
16248 non-neighbor (NNT) by randomly selecting 3 non-
neighbor publications (of a different label) for each of the
NPs. Therefore, in each iteration of the SGD-type meth-
ods, we can use a NP and a NNT to construct a stochastic
gradient for the optimization formulation. We set c = 0.5,
µ1 = 10−4, and µ2 = 10−3 in Eq. (21). We terminate the
algorithms when the iteration number is larger than 4, 000
or the relative change of the objective values in two itera-
tions is smaller than 10−8; we also record the obtained ob-
jective values, the required iteration number, and the com-
putation time. Similarly we tune the initial step size re-
spectively for the competing algorithms; specifically, we
set η0 = 4 × 10−8 for SGD, η0 = 10−5 and λ = 0.1 for
Epro, η0 = 5×10−7 for OneProj, and η0 = 10−6 for LogT.
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Figure 2: Empirical comparison of the four competing
methods for solving Eq. (21). (1) Left plot: the change
of the objective values with respect to the iteration num-
ber. (2) Right plot: the change of the objective value with
respect to the computation time.

The experimental results are presented in Figure 2. Simi-
larly in the left plot, we illustrate how the objective value
changes with respect to the iteration number. For the
LMNN formulation in Eq. (21), we can observe that Epro
converges empirically much faster than all three competing
algorithms; in particular, Epro converges after 1024 itera-
tions, while the other 3 algorithms need more iterations. In
the right plot, we illustrate how the objective value changes
with respect to the computation time. We can observe
that Epro converges using a smaller amount of computa-
tion time. specifically, in our experiment Epro converges
with the computation time as 3622 seconds; while the other
three competing algorithms need much more computation
time.

6 CONCLUSIONS

We proposed an epoch-projection based SGD method,
called Epro-SGD, for stochastic strongly convex optimiza-
tion. The proposed Epro-SGD applies SGD on each iter-
ation within its epochs and only performs a projection at
the end of each epoch. Our analysis shows that Epro-SGD
requires only a logarithmic number of projections, while
achieves a guaranteed optimal rate of convergence both in
expectation as well as with high probability. Additionally
we proposed a variant of Epro-SGD based on an existing
dual averaging method, called Epro-ORDA, which exploit
structures of the optimization problems by incorporating
an associated proximal mapping iteratively. For illustra-
tion, we applied the proposed Epro-SGD method for solv-
ing a large margin distance metric learning formulation and
a constrained Lasso formulation respectively with a posi-
tive definite constraint. Our empirical results demonstrate
the effectiveness of the proposed method.
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Abstract

We propose an accelerated stochastic block co-
ordinate descent algorithm for nonconvex opti-
mization under sparsity constraint in the high di-
mensional regime. The core of our algorithm
is leveraging both stochastic partial gradient and
full partial gradient restricted to each coordinate
block to accelerate the convergence. We prove
that the algorithm converges to the unknown true
parameter at a linear rate, up to the statistical
error of the underlying model. Experiments on
both synthetic and real datasets backup our the-
ory.

1 INTRODUCTION

High-dimensional statistics (Bühlmann and Van De Geer,
2011) deals with models in which the number of param-
eters d is comparable to or even larger than the sample
size n. Since it is usually impossible to obtain a consis-
tent estimator when both d and n increase, various types
of statistical models with structural assumptions includ-
ing sparse vectors, sparse matrices, low-rank matrices have
been proposed and widely studied. In such a high di-
mensional regime, a general approach is solving a regular-
ized optimization problem, which consists of a loss func-
tion measuring how well the model fits the data and some
penalty function that encourages the assumed structures.
For an overview of high dimensional statistics, please re-
fer to Bühlmann and Van De Geer (2011); Negahban et al.
(2009).

In this paper, instead of considering regularized estimator,
we focus on the following sparsity constrained optimiza-
tion problem:

min
β
F (β) subject to ‖β‖0 ≤ s, (1.1)

where F (β) = n−1
∑n
i=1 fi(β) is a sum of a finite num-

ber of convex and smooth functions, ‖β‖0 is the number

of nonzero elements in β, and s is a tuning parameter that
controls the sparsity of β. The above problem is common
in machine learning and statistics, such as the empirical
risk minimization (ERM) and M-estimator, where F (β) is
the empirical loss function averaged over the training sam-
ple. For example, by choosing the squared loss fi(β) =
(〈β,xi〉−yi)2/2, (1.1) becomes a sparsity constrained lin-
ear regression problem (Tropp and Gilbert, 2007).

Due to the nonconvexity of the sparsity constraint, the
problem in (1.1) is in general NP hard. In order to ob-
tain an approximate solution to (1.1), a variety of algo-
rithms have been proposed. For example, when the objec-
tive function F (β) is chosen to be the square loss function,
it can be solved approximately by matching pursuit (Mal-
lat and Zhang, 1993), orthogonal matching pursuit (Tropp
and Gilbert, 2007), CoSaMP (Needell and Tropp, 2009),
hard thresholding pursuit (Foucart, 2011), iterative hard
thresholding (Blumensath and Davies, 2009) and forward
backward feature selection algorithm (Zhang, 2011). For
general loss functions, there also exists a set of algorithms
such as forward feature selection (Shalev-Shwartz et al.,
2010; Bahmani et al., 2013), forward backward feature se-
lection algorithm (Jalali et al., 2011; Liu et al., 2013) and
iterative gradient hard thresholding (Yuan et al., 2013; Jain
et al., 2014). However, all the above algorithms are based
on deterministic optimization such as gradient descent al-
gorithm. In each iteration of gradient descent algorithm,
it requires the evaluation of the full gradient over the n
component functions, which is computationally very ex-
pensive, especially when n is large. In order to address
this issue, Nguyen et al. (2014) proposed two stochastic
iterative greedy algorithms. Yet neither of the algorithms
attain linear rate of convergence for the objective function
value. Li et al. (2016) proposed a stochastic variance re-
duced gradient hard thresholding algorithm. Nevertheless,
it cannot leverage the coordinate block to accelerate the
convergence.

In this paper, by leveraging the advantages of both stochas-
tic gradient descent (Nemirovski et al., 2009; Lan, 2012)
and randomized block coordinate descent (Shalev-Shwartz
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and Tewari, 2011; Nesterov, 2012; Beck and Tetruashvili,
2013; Richtárik and Takáč, 2014; Lu and Xiao, 2015), we
propose a stochastic block coordinate gradient descent al-
gorithm to solve the nonconvex sparsity constrained opti-
mization problem in (1.1). The core of our algorithm is
to exploit both stochastic partial gradient and full partial
gradient restricted to each coordinate block. In detail, our
algorithm consists of two layers of loops. For each iteration
of the outer loop, the full gradient is computed once; while
in the follow-up inner loop, partial stochastic gradient is
computed to adjust the full gradient. We also incorporate
mini-batch gradient computation into our algorithm, to fur-
ther accelerate the convergence. Replacing full gradients
with stochastic gradients restricted on coordinate blocks es-
sentially trades the number of iterations with a low compu-
tational cost per iteration. We prove that the algorithm is
guaranteed converge to the unknown true parameter β∗ at
a linear rate up to statistical error. The gradient complexity1

of our algorithm is

O
((
n+ κs̃|B|/k

)
log(1/ε)

)
,

where k is the number of coordinate blocks, |B| is the mini
batch size, ε is the optimization error for the objective func-
tion value, and κs̃ is the condition number of the Hessian
matrix ∇2F (β) restricted on any s̃ × s̃ principal subma-
trix. When k = 1 and |B| = 1, our algorithm is reduced
to accelerated gradient descent for the sparsity constrained
nonconvex optimization problem. It improves the gradi-
ent complexity for gradient hard thresholding algorithms
(Yuan et al., 2013; Jain et al., 2014) from O(nκs̃ log(1/ε))
to O[(n + κs̃) log(1/ε)]. Furthermore, for both sparse lin-
ear regression and sparse generalized linear model estima-
tion, we show that the estimator from our algorithm attains
the minimax optimal statistical rate. Experiments on both
synthetic and real datasets backup our theory.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review some related work. In Section 3,
we review two examples of the optimization problems. We
present the algorithm in Section 4, and analyze it in Section
5. In addition, we apply our theory to two specific exam-
ples and illustrate the corresponding theory for the two ex-
amples. We compare the proposed algorithm with existing
algorithms in Section 6. Finally, we conclude this paper in
Section 7.

Notation Let A = [Aij ] ∈ Rd×d be a matrix and x =
[x1, . . . , xd]

> ∈ Rd be vector. For 0 < q < ∞, we define
the `0, `q and `∞ vector norms as ‖x‖0 =

∑d
i=1 1(xi 6=

0), ‖x‖q =

(∑d
i=1 |xi|q

) 1
q

and ‖x‖∞ = max1≤i≤d |xi|,
where 1(·) represents the indicator function. For a vector

1Gradient complexity is defined to be the iteration complex-
ity times the number of gradient evaluation on each component
function

x, we define supp(x) as the index set of nonzero entries of
x, and supp(x, s) as the index set of the top s entries of x
in terms of magnitude. In addition, we denote by xS the
restriction of x onto a index set S, such that [xS ]i = xi
if i ∈ S, and [xS ]i = 0 if i /∈ S. In addition, we denote
by xs the restriction of x onto the top s entries in terms of
magnitude, i.e., [xs]i = xi if i ∈ supp(x, s), and [xs]i = 0
if i /∈ supp(x, s). For a set B, we denote its cardinality by
|B|. For a matrix X, its i-th row is denoted by Xi∗ and its
j-th column is denoted by X∗j .

2 RELATED WORK

In this section, we briefly review additional lines of re-
search beyond the sparsity constrained nonconvex opti-
mization, that are relevant to our work.

Gradient descent is computationally expensive at each iter-
ation, hence stochastic gradient descent is often used when
the data set is large. At each iteration, only one or a mini-
batch of the n component functions fi is sampled (Ne-
mirovski et al., 2009; Lan, 2012). Due to the variance in
estimating the gradient by stochastic sampling, stochastic
gradient descent has a sublinear rate of convergence even
when F (β) is strongly convex and smooth. To acceler-
ate stochastic gradient descent, various types of acceler-
ated stochastic gradient descent algorithms (Schmidt et al.,
2013; Johnson and Zhang, 2013; Konečnỳ and Richtárik,
2013; Defazio et al., 2014b; Mairal, 2014; Defazio et al.,
2014a). The most relevant work to ours is stochastic vari-
ance reduced gradient (SVRG) (Johnson and Zhang, 2013)
and its variants (Xiao and Zhang, 2014; Konečnỳ et al.,
2014a).

In contrast to gradient descent, block coordinate descent
(BCD) (Shalev-Shwartz and Tewari, 2011; Nesterov, 2012;
Beck and Tetruashvili, 2013; Richtárik and Takáč, 2014; Lu
and Xiao, 2015) only computes the full gradient of F (β)
restricted on a randomly selected coordinate block at each
iteration. Compared with gradient descent, the per-iteration
time complexity of RBCD is much lower. However, such
algorithms still compute the partial full gradient based on
all the n component functions per iteration.

Stochastic block coordinate gradient descent was proposed
recently (Dang and Lan, 2015; Xu and Yin, 2015; Reddi
et al., 2014), which integrates the advantages of stochastic
gradient descent and block coordinate descent. Such algo-
rithms compute the stochastic partial gradient restricted to
one coordinate block with respect to one component func-
tion, rather than the full partial derivative with respect to
all the component functions. These algorithms essentially
employ sampling of both coordinates and data instances at
each iteration. However, they can only achieve a sublinear
rate of convergence. Recently, randomized block coordi-
nate descent using mini-batches (Zhao et al., 2014; Wang
and Banerjee, 2014; Konečnỳ et al., 2014b) are proposed
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independently to accelerate the convergence of stochastic
block coordinate gradient descent.

Our work departs from the above studies by considering
a sparsity constrained nonconvex optimization problem in-
stead of convex optimization. Due to the nonconvex nature
of (1.1), our algorithm is no longer guaranteed to converge
to the global optimum. Nevertheless, by taking into ac-
count the underlying statistical models, we illustrate that
proposed algorithm is guaranteed to converge to the un-
known true model parameters up to the statistical error.

3 ILLUSTRATIVE EXAMPLES OF
SPARSITY CONSTRAINED
OPTIMIZATION

In this section, we give two examples of the statistical es-
timation problems, which fall in the sparsity constrained
optimization problem in (1.1). We return to demonstrate
the implication of our general algorithm and theory to these
examples in Section 5.

Example 3.1 (Sparse Linear Regression). Consider the
following linear regression model

y = Xβ∗ + ε, (3.1)

where y ∈ Rn denotes a vector of the responses, and
X ∈ Rn×d is the design matrix, β∗ ∈ Rd is the unknown
regression coefficient vector such that ‖β∗‖0 ≤ s∗, and
ε ∈ Rd is a noise vector. A commonly used estimator for
the above sparse linear regression problem is the Lasso es-
timator (Tibshirani, 1996) with `1 norm penalty. An alter-
native estimator is the sparsity constrained estimator

min
β∈Rd

1

2n
‖Xβ − y‖22 subject to ‖β‖0 ≤ s, (3.2)

where s is a tuning parameter, which controls the sparsity
of β. This is indeed an example of the nonconvex optimiza-
tion problem in (1.1) where F (β) = 1/(2n)‖Xβ − y‖22,
fi(β) = 1/2(x>i β − yi)2 and xi ∈ Rd is the i-th row of
X. Similar estimator has been studied by Tropp and Gilbert
(2007); Zhang (2011); Jain et al. (2014), to mention a few.

Example 3.2 (Sparse Generalized Linear Models). We as-
sume that the observations in each task are generated from
generalized linear models

P(y|x,β∗, σ) = exp

{
y〈β∗,x〉 − Φ(β∗>x)

c(σ)

}
, (3.3)

where Φ(·) : R → R is a link function, y ∈ R is the re-
sponse variable, x ∈ Rd is the predictor vector, β∗ ∈ Rd is
the parameter such that ‖β∗‖0 ≤ s∗, and c(σ) ∈ R is fixed
and known scale parameter. A special example of general-
ized linear model is the linear regression model where the
noise follows from a Gaussian distribution, which corre-
sponds to c(σ) = σ2 and Φ(t) = t2. Logistic regression is

another special case of the generalized linear model, where
Φ(t) = log(1 + exp(t)), c(σ) = 1 and y ∈ {0, 1}.
Given {xi, yi}ni=1, a widely used estimator for β∗ is the
`1 regularized maximum likelihood estimator (Negahban
et al., 2009; Loh and Wainwright, 2013). An alternative
estimator is the sparsity constrained maximum likelihood
estimator as follows

min
β
− 1

n

n∑

i=1

1

c(σ)

[
yi〈β,xi〉 − Φ(β∗>x)

]
,

subject to ‖β‖0 ≤ s. (3.4)

The estimator in (3.4) has been investigated by Jalali et al.
(2011); Yuan et al. (2013); Li et al. (2016).

For more examples, please refer to Yuan et al. (2013); Jain
et al. (2014) and references therein.

4 THE PROPOSED ALGORITHM

In this section, we present an accelerated stochastic block
coordinate descent algorithm based on nonconvex opti-
mization for solving the proposed estimator in (1.1). The
key motivation of the algorithm is using iterative hard
thresholding to ensure cardinality constraint and mixed
mini-batch partial gradient to reduce the variance of the
stochastic gradient and accelerate the convergence. We dis-
play the algorithm in Algorithm 1.

Algorithm 1 Accelerated Stochastic Block Coordinate
Gradient Descent with Hard Thresholding (ASBCDHT)

1: Initialization: β̃(0) with ‖β̃(0)‖0 ≤ s
2: for ` = 1, 2, . . . do
3: β̃ = β̃(`−1)

4: µ̃ = 1
n

∑n
i=1∇fi(β̃)

5: β(0) = β̃
6: Randomly sample z uniformly from {0, . . . ,m −

1}
7: for t = 0, 1, . . . , z − 1 do
8: Randomly sample a mini-batch B from

{1, . . . , n} uniformly
9: Randomly sample j from {1, . . . , k} uniformly

10: [v]Gj = 1
|B|
∑
i∈B∇Gjfi(β(t))−∇Gjfi(β̃)+µ̃Gj

11: β(t+0.5) = β(t) − η[v]Gj
12: β(t+1) = HT

(
β(t+0.5), s

)

13: end for
14: Set β̃(`) = β(z)

15: end for

Note that in Algorithm 1, we have two layers of loops.
In the outer loop, β̃(r−1) denotes the estimated parameter
from previous stage, and µ̃ denotes the full gradient com-
puted based on β̃(r−1).
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In the inner loop, Algorithm 1 integrates the advantages of
randomized block coordinate descent and stochastic gra-
dient descent together. Let {G1, . . . ,Gk} be a partition of
all the d coordinates where Gj is a block of coordinates.
In step 7, it uniformly samples a mini batch of component
functions. And in step 8, it uniformly samples a coordi-
nate block. The random sampling significantly reduces the
computational cost. Based on the mini batch of component
functions, and the coordinate block, it calculates the mixed
partial gradient [v]Gj restricted on the selected coordinate
block, which is the combination of the partial stochastic
gradient and the partial full gradient (See step 9). Note that
similar mixed gradient has been originally introduced in
Johnson and Zhang (2013) and later adopted by Xiao and
Zhang (2014); Konečnỳ et al. (2014a); Zhao et al. (2014);
Konečnỳ et al. (2014b) to reduce the variance introduced by
random sampling. More specifically, we can show that the
variance of [v]Gj i.e., E[‖vS̃ − ∇S̃F (β(t))‖22] diminishes
when β(t) approaches the unknown true model parameter
vector β∗. β(t+0.5) is the output of coordinate gradient de-
scent step. Since β(t+0.5) is not necessarily sparse after
the coordinate descent update, in order to make it sparse,
we apply a hard thresholding procedure (Yuan et al., 2013;
Jain et al., 2014) right after coordinate descent step. The
hard thresholding operator is defined as follows:

[HT(β, s)]i =

{
βi, if i ∈ supp(β, s),
0, otherwise. (4.1)

The hard thresholding step preserves the entries of β(t+0.5)

with the top s large magnitudes and sets the rest to zero.
This gives rise to β(t+1). Recall that s is a tuning parameter
that controls the sparsity level.

5 MAIN THEORY AND IMPLICATIONS

In this section, we will present the main theory that char-
acterizes the performance of Algorithm 1, followed which
we show the consequences of our theory when it is applied
to the two examples in Section 3.

5.1 MAIN THEORETICAL RESULTS

We first layout a set of definition and assumptions, that are
essential for our main theory.

Definition 5.1 (Sparse Eigenvalues). Let s̃ be a positive
integer. The largest and smallest s-sparse eigenvalues of
the Hessian matrix∇2F (β) are

ρ+(s̃) = sup
v

{
v>∇2F (β)v : ‖v‖0 ≤ s̃, ‖v‖2 = 1,β ∈ Rd

}
,

ρ−(s̃) = inf
v

{
v>∇2F (β)v : ‖v‖0 ≤ s̃, ‖v‖2 = 1,β ∈ Rd

}
.

Moreover, we define the restricted condition number κs̃ =
ρ+(s̃)/ρ−(s̃).

Based on the sparse eigenvalues, we make the following
assumptions on fi(β) and F (β) with respect to ρ+(s̃) and
ρ−(s̃) mentioned above.

Assumption 5.2 (Restricted Strong Smoothness). fi(β)
satisfies restricted strong smoothness condition at sparsity
level s̃ with a constant ρ+(s̃) > 0: for all β,β′ such that
‖β − β′‖0 ≤ s̃, we have

fi(β) ≤ fi(β′) +∇fi(β′)>(β − β′) +
ρ+(s̃)

2
‖β − β′‖22.

Assumption 5.3 (Restricted Strong Convexity). F (β) sat-
isfies restricted strong convexity condition at sparsity level
s̃ with a constant ρ−(s̃) > 0: for all β,β′ such that
‖β − β′‖0 ≤ s̃, we have

F (β) ≥ F (β′) +∇F (β′)>(β − β′) +
ρ−(s̃)

2
‖β − β′‖22.

Assumptions 5.2 and 5.3 indicate that function fi(β) is
smooth and function F (β) is strongly convex when re-
stricted on to a sparse subspace. These restricted strong
smoothness and strong convexity conditions ensure that the
standard convex optimization results for strongly convex
and smooth objective functions (Nesterov, 2004) can be ap-
plied to our problem settings as well. It is worth noting that
we do not require each fi(β) to be restricted strongly con-
vex, we only require their summation F (β) is restricted
strongly convex. fi(β) typically does not satisfy restricted
strong convexity for s̃ > 1. Recall that, in Example 3.1,
fi(β) = 1/2(x>i β−yi)2, which is obviously not restricted
strongly convex unless s̃ = 1.

Now we are ready to present our main theorem.

Theorem 5.4. Suppose Assumptions 5.2 and 5.3 hold with
s̃ = 2s + s∗. In addition, assume that 0 < η ≤
1/(18ρ+(s̃)) and m, s are chosen such that,

α =
2kτm−1(τ − 1)

ρ−(s̃)ηγ(τm − 1)
+

12ηρ+(s̃)(n− |B|)
|B|(n− 1)γ

< 1,

where γ = 1−12ηρ+(s̃)(n−|B|)/
[
|B|(n−1)

]
−6ηρ+(s̃)

and τ = 1 + 2
√
s∗/
√
s− s∗. Then the estimator β̃(`) from

Algorithm 1 satisfies

E
[
F (β̃(`))− F (β∗)

]
≤ α`E

[
F (β̃(0))− F (β∗)

]

+
3η

2γ(1− α)
‖∇s̃F (β∗)‖22. (5.1)

We have the following remarks regarding the above theo-
rem results:

Remark 5.5. Theorem 5.4 implies that in order to achieve
linear rate of convergence, the learning rate η need to be set
sufficiently small, the sparsity constraint s and the number
of inner loop iterations m should be set sufficiently large
such that α ≤ 1. Here we provide an example showing
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Table 1: A comparison of gradient complexity for different
algorithms.

Algorithms Gradient Complexity

Nguyen et al. (2014) O
(
1/ε
)

Yuan et al. (2013) O
(
nκs̃ · log(1/ε)

)

Li et al. (2016) O
(
[n+ κs̃] · log(1/ε)

)

Ours O
(
(n+ κs̃|B|/k) · log(1/ε)

)

this is absolutely achievable. Without loss of generality, we
consider the simplified scenario where the batch size |B| =
1 and coordinate block number k = 1. As stated in the
theorem condition, suppose we choose η = 1/(36ρ+(s̃)),
then we have γ = 1/2. This simplifies the expression of α
to:

α = 144κs̃ ·
τm

τm − 1

(
1− 1

τ

)
+

2

3
,

Therefore, provided that s is chosen to be

s ≥
(
1 + 4(1728κs̃ − 1)2

)
s∗, m ≥ log 2 · (1728κs̃ − 1),

we have,

τm

τm − 1
≤ 2,

(
1− 1

τ

)
≤ 1

1728κs̃
,

which immediately verifies that α ≤ 5
6 < 1.

Remark 5.6. Theorem 5.4 illustrates the linear rate of con-
vergence in objective function value gap. From (5.1), in
order to ensure that the linear converging term satisfies
α`
[
F (β̃(0)) − F (β∗)

]
≤ ε, the number of stages should

satisfy

` ≥ logα−1

F (β̃(0))− F (β∗)
ε

.

Thus we needO(log(1/ε)) outer iterations in Algorithm 1.
Recall that from Remark 5.5, we have m = Ω(κs̃). Since
in each outer iteration, we need to compute one full gradi-
ent and m mixed mini-batch gradient, the overall gradient
complexity is O

(
(n + κs̃ · |B|/k) · log(1/ε)

)
, where k is

the number of coordinate blocks, |B| is the batch size, and
κs̃ is the restricted condition number of ∇2F (β∗). For the
ease of comparison, we summarize the gradient complexity
of our algorithm as well as the other state of the art algo-
rithms in Table 1. As we can see, our proposed algorithm
improves gradient complexity over previous work. In par-
ticular, with k > 1 and |B| = 1, the gradient complexity
of our algorithm outperforms that of Li et al. (2016). In
the special case that k = 1 and |B| = 1, our algorithm has
the same gradient complexity as Li et al. (2016). In gen-
eral, our algorithm provides more flexibility than Li et al.
(2016) by incorporating mini-batch technique.

Theorem 5.4 immediately implies the following results.

Corollary 5.7. Under the same conditions of Theorem 5.4,
the estimator β̃(`) from Algorithm 1 satisfies

E‖β̃(`) − β∗‖2 ≤ α`/2
√

2
[
F (β̃(0))− F (β∗)

]

ρ−(s̃)︸ ︷︷ ︸
Optimization Error

+

(
2

ρ−(s̃)
+

√
3η

γρ−(s̃)(1− α)

)
√
s̃‖∇F (β∗)‖∞

︸ ︷︷ ︸
Statistical Error

.

(5.2)

We have the following remark regarding the above result.

Remark 5.8. The right hand side of (5.2) consists of two
terms. The first term is the optimization error, which goes
to zero as ` increase, since α ∈ (0, 1). The second term
corresponds to the statistical error, and is proportional to√
s̃‖∇F (β∗)‖∞. Since s̃ = s + s∗ and s = O(s∗),

the statistical is actually in the order of
√
s∗‖∇F (β∗)‖∞.

Note that the statistical error of the regularized M estima-
tors (Negahban et al., 2009; Loh and Wainwright, 2013)
for sparse linear regression and generalized linear models,
is also proportional to

√
s∗‖∇F (β∗)‖∞. Theorem 5.7 sug-

gests that our algorithm attains a linear rate of convergence
to the true parameter, up to the statistical error. In other
words, our algorithm linearly converges to a local optima,
which enjoys good statistical property.

5.2 IMPLICATION FOR SPECIFIC STATISTICAL
ESTIMATION PROBLEMS

We now turn to the consequences of our algorithm and gen-
eral theory for specific statistical estimation problems that
arise in applications. In particular, we show the theoretical
results by applying our theory to the two examples intro-
duced in Section 3.

We begin with a corollary for the problem of sparse lin-
ear regression, as introduced in Example 3.1. We assume
that the noise vector ε in (3.1) is zero-mean and has sub-
Gaussian tails.

Assumption 5.9. ε is a zero mean random vector, and
there exists a constant σ > 0 such that for any fixed
‖v‖2 = 1, we have

P
(
|v>ε| > δ

)
≤ 2 exp

(
− δ2

2σ2

)
for all δ > 0.

In addition, without loss of generality, we make an addi-
tional assumption on the design matrices X in (3.1).

Assumption 5.10. For all columns in X ∈ Rn×d, we have
‖X∗j‖2 ≤

√
n, where X∗j is the j-th column of X.

Note that Assumption 5.10 is often made in the analysis of
Lasso estimator (Negahban et al., 2009; Zhang et al., 2009).
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Corollary 5.11. Under the same conditions as Corollary
5.7, if Assumptions 5.9 and 5.10 hold, then with probability
at least 1 − 1/d, the estimator β̃(`) from Algorithm 1 for
sparse linear regression in (3.2) satisfies

E‖β̃(`) − β∗‖2 ≤ α`/2
√

2
[
F (β̃(0))− F (β∗)

]

ρ−(s̃)︸ ︷︷ ︸
Optimization Error

+ C

(
2

ρ−(s̃)
+

√
3η

γρ−(s̃)(1− α)

)
σ

√
s∗ log d

n
︸ ︷︷ ︸

Statistical Error

, (5.3)

where σ is the variance proxy of the sub-Gaussian random
vector ε.

Corollary 5.11 suggests that when applying our algorithm
to sparse linear regression, it achieves O(

√
s∗ log d/n)

statistical error. It matches the minimax optimal rate for
sparse linear regression (Raskutti et al., 2011).

We then provide a corollary for the problem of sparse gen-
eralized linear model estimation, as introduced in Exam-
ple 3.2. For generalized linear model, we need the follow-
ing assumption on its link function Φ(t), which is intro-
duced in (3.3).

Assumption 5.12. There exists one αu > 0 such that the
second derivative of the link function satisfies Φ′′(t) ≤ αu
for all t ∈ R.

Similar assumption has been made in Loh and Wainwright
(2013).

Corollary 5.13. Under the same conditions as Corollary
5.7, if Assumptions 5.10 and 5.12 hold, then with probabil-
ity at least 1−1/d, the estimator β̃(`) from Algorithm 1 for
sparse generalized linear models in (3.4) satisfies

E‖β̃(`) − β∗‖2 ≤ α`/2
√

2
[
F (β̃(0))− F (β∗)

]

ρ−(s̃)︸ ︷︷ ︸
Optimization Error

+ C

(
2

ρ−(s̃)
+

√
3η

γρ−(s̃)(1− α)

)
αu

√
s∗ log d

n
︸ ︷︷ ︸

Statistical Error

,

(5.4)

where αu is an upper bound on the second derivative of the
link function Φ(t).

Corollary 5.13 demonstrates that when applying our al-
gorithm to sparse generalized linear models, it achieves
O(
√
s∗ log d/n) statistical error rate. It is also minimax

rate-optimal.

6 EXPERIMENTS

In this section, we apply Algorithm 1 to the two examples
discussed in Section 3, and present numerical results on
both synthetic and large-scale real datasets to verify the per-
formance of the proposed algorithm, and compare it with
state-of-the-art sparsity cardinality constraint methods.

6.1 BASELINE METHODS

We compare our algorithm with several state-of-the-art
baseline methods: (1) gradient descent with hard thresh-
olding (GraHTP) by Yuan et al. (2013) ; (2) stochastic vari-
ance reduced gradient with hard thresholding by Li et al.
(2016) (SVRGHT); (3) Our proposed accelerated stochas-
tic block coordinate gradient descent with hard threshold-
ing (ASBCDHT) with batch size |B| = 1; and (4) Our pro-
posed accelerated stochastic block coordinate descent with
hard thresholding (ASBCDHT) with batch size |B| = 10.
Since our algorithm involves coordinate block, we set the
block number as k = 10, where each block has (almost) the
same number of coordinates. In addition, SVRGHT and
ASBCDHT are based on mixed (partial) gradients, hence
we need to specify the number of iterations for the inner
loop. We simply choose m = n since our theory demon-
strates that m should be chosen as Ω(κs̃).

In order to fairly compare the above algorithms, we notice
that at each iteration of GradHTP and SVRGHT, the gra-
dient is updated with respect to all coordinates. When in
our algorithm, at each iteration of Algorithm 1 the gradi-
ent is updated with respect to only a sampled coordinate
block among all coordinates, so the computational cost is
lower than that of gradient descent per iteration. Therefore,
comparing algorithms that update the gradient with respect
to different numbers of coordinates per iteration should be
based on the same number of entire data passes (the least
possible iterations for passing through the entire data set
with respect to all coordinates).

6.2 SPARSE LINEAR REGRESSION

We first investigate the sparsity constrained linear regres-
sion problem in (3.2).

6.2.1 Synthetic Data

We generate an n × d design matrix X with rows
drawn independently from a multivariate normal distribu-
tion N(0,Σ), where each element of Σ is defined by
Σij = 0.6|i−j|. The true regression coefficient vector β∗

has s∗ nonzero entries that are drawn independently from
the standard normal distribution. The response vector is
generated by y = X>β∗ + ε, where each entry of ε fol-
lows a normal distribution with zero mean and variance
σ2 = 0.01. In this part, we test our proposed algorithm
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Figure 1: Comparison of different algorithms for sparsity constrained sparse linear regression on the two synthetic datasets:
(1) n = 1000, d = 2000, s∗ = 100 (shown in (a) and (b)); (2) n = 5000, d = 10000, s∗ = 500 (shown in (c) and (d)). (a)
and (c) show the logarithm of the function value gap for the two datasets. (b) and (d) demonstrate the estimation error for
the two datasets.

Table 2: Regression on E2006-TFIDF: MSE comparison of algorithms for the same entire effective data passes over 10
replications. The boldfaced results denote the lowest MSE among all the algorithms for the same entire effective data
passes.

Method #Data Passes=3 #Data Passes=6 #Data Passes=9 #Data Passes=12 #Data Passes=15

GraHTP 1.3388 1.1204 1.0522 1.0190 0.9970
SVRGHT 0.8809±0.0949 0.8150±0.0718 0.7819±0.0612 0.7574±0.0539 0.7385±0.0483
ASBCDHT(|B| =1) 0.7039±0.1037 0.6835±0.0789 0.6709±0.0677 0.6607±0.0600 0.6518±0.0533
ASBCDHT(|B| =10) 0.7003±0.1118 0.6769±0.0806 0.6627±0.0626 0.6519±0.0519 0.6426±0.0415
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Figure 2: Comparison of different algorithms in terms of
the logarithm of objective function value gap on E2006-
TFIDF dataset.

along with with the state-of-the-art algorithms in two dif-
ferent settings: (1) n = 1000, d = 2000, s∗ = 100; and
(2) n = 5000, d = 10000, s∗ = 500. Each experiment is
repeated for 10 times. For each algorithm, we plot the loga-
rithm of the objective function value gap and the estimation
error ‖β(t)−β∗‖2 for comparison. The sparsity parameter
s is set to s = 1.2s∗ for all the algorithms according to the
theory. The step size η of different algorithms is tuned by
cross validation.

In Figure 1, we compare the logarithm of the function value
gap and the estimation error in the above two datasets for

all algorithms. Figure 1 (a) and (c) demonstrate that the
optimization error decreases to zero at a linear rate while 1
(b) and (d) show that the estimation error of the estimator
converges to certain level after some number of effective
data passes. This is consistent with our theory in Corol-
lary 5.11 that the estimation error of our algorithm consists
of two terms: the optimization error that goes to zero, and
the statistical error that depends on the problem parame-
ters (d, n, s∗ and so on). From Figure 1, it is obvious that
our proposed algorithm outperforms other state-of-the-art
algorithms in estimation error after the same number of ef-
fective data passes. Also note that when the data size is rel-
atively small, our algorithm with batch size equals 10 per-
forms better than the case when batch size equals 1, while
this advantage decays as the data size grows. This is proba-
bly because the mini-batch sampling is more advantageous
when the data are relatively small.

6.2.2 E2006-TFIDF Data

We use E2006-TFIDF dataset to test the sparsity con-
strained linear regression, which predicts risk from finan-
cial reports from thousands of publicly traded U.S. com-
panies (Kogan et al., 2009). It contains 16, 087 training
instances, 3, 308 testing instances and we randomly sam-
ple 50, 000 features for this experiment. In this section, we
choose s = 2000 and compare all algorithms using mean
square error (MSE) for 15 entire effective data passes over
10 replications. The step size η is chosen by cross valida-
tion on the training data.
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Figure 3: Comparison of different algorithms for sparsity constrained sparse logistic regression on the two synthetic
datasets: (1) n = 1000, d = 2000, s∗ = 100 (shown in (a) and (b)); (2) n = 5000, d = 10000, s∗ = 500 (shown in
(c) and (d)). (a) and (c) show the logarithm of the function value gap for the two datasets. (b) and (d) are the estimation
error for the two datasets.

Table 3: Classification on RCV1: classification error comparison of algorithms for the same entire effective data passes
over 10 replications. The boldfaced results denote the lowest classification error among all the algorithms for the same
entire effective data passes.

Method #Data Passes=3 #Data Passes=6 #Data Passes=9 #Data Passes=12 #Data Passes=15

GraHTP 0.0758 0.0748 0.0739 0.0733 0.0727
SVRGHT 0.0848±0.0043 0.0763±0.0034 0.0708±0.0029 0.0677±0.0025 0.0671±0.0020
ASBCDHT(|B| =1) 0.0662±0.0044 0.0648±0.0025 0.0644±0.0019 0.0642±0.0021 0.0639±0.0021
ASBCDHT(|B| =10) 0.0550±0.0043 0.0542±0.0034 0.0539±0.0029 0.0534±0.0025 0.0527±0.0020

Figure 2 illustrates the logarithm of the objective function
value gap for all the baseline algorithms and ours. We
can see that our algorithm converges faster than the other
baselines and our algorithm converges to much smaller ob-
jective function value than the other algorithms. In addi-
tion, Table 2 shows the mean value as well as the stan-
dard error of MSE for all the algorithms with respect to
the number of effective data passes. Since there is no ran-
domness in GraHTP, its standard error is zero. We can see
that our algorithm attains much smaller mean square error
than the other baseline algorithms for the same entire ef-
fective data passes. In particular, when the number of data
passes equals 3, 6, 9 and 12, our ASBCDHT with batch size
B = 10 achieves the lowest MSE; and when the number
of data passes equals 15, our ASBCDHT with batch size
B = 1 achieves the best performance.

6.3 SPARSE LOGISTIC REGRESSION

We then evaluate the sparsity constrained generalized lin-
ear model, by considering a particular instance of sparse
generalized linear model, i.e., sparse logistic regression. Its
estimator is given by

min
β∈Rd

1

n

n∑

i=1

[
− yi · x>i β + log

(
1 + exp(x>i β)

)]

subject to ‖β‖0 ≤ s,
where yi ∈ {0, 1}. Similar estimator has been studied by
Yuan et al. (2013).
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Figure 4: Comparison of different algorithms in terms of
the logarithm of the objective function value gap on RCV1
dataset.

6.3.1 Synthetic Data

We generate an n × d design matrix X with rows
drawn independently from a multivariate normal distribu-
tion N(0, I), where I is a d × d identity matrix. The true
regression coefficient vector β∗ has s∗ nonzero entries that
are drawn independently from the standard normal distribu-
tion. Each response variable is generated from the logistic
distribution

yi =

{
1, with probability 1/(1 + exp(x>i β

∗)),

0, with probability 1− 1/(1 + exp(x>i β
∗)).
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In this part, we test our proposed algorithm along with
the baseline algorithms in two different datasets: (1) n =
1000, d = 2000, s∗ = 100; and (2) n = 5000, d =
10000, s∗ = 500. Each experiment is repeated for 10 times
and for all algorithms we plot the logarithm of the objective
function value gap and the estimation error ‖β(t) − β∗‖2
for comparison. The sparsity parameter s is again set to
s = 1.2s∗. And the step size η is chosen by cross valida-
tion.

Figure 3 illustrates the logarithm of the function value gap
and the estimation error ‖β(t)−β∗‖2. The four sub-figures
in Figure 3 demonstrate the similar trends as in Figure 1.
Our proposed algorithm outperforms the other baseline al-
gorithms by a large margin.

6.3.2 RCV1 Data

In order to evaluate the sparsity constrained logistic regres-
sion, we use RCV1 dataset, which is a Reuters Corpus Vol-
ume I data set for text categorization research (Lewis et al.,
2004). Reuters Corpus Volume I (RCV1) is an archive of
over 800,000 manually categorized newswire stories made
available by Reuters, Ltd. for research purposes. This
dataset contains 20, 242 training instances, 677, 399 test-
ing instances and 47, 236 features. We use the whole train-
ing set and a subset of the test set, which contains 20, 000
testing instances for our experiment. In detail, we choose
s = 500 and compare all algorithms in terms of their clas-
sification error on the test set for 15 entire effective data
passes over 10 replications. The step size η is chosen by
cross validation on the training set.

Table 3 demonstrates the classification results for the four
algorithms including ours. It is obvious that our proposed
algorithm achieves the lowest test error on RCV1 dataset on
all periods of effective data passes and beats the other state-
of-the-art baseline algorithms. Figure 4 further illustrates
the logarithm of the objective function value gap for both
the baseline algorithms and ours. This clearly demonstrates
the superiority of our algorithm.

7 CONCLUSIONS

We proposed an accelerated stochastic block coordinate de-
scent algorithm for sparsity constrained nonconvex opti-
mization problems. We show that the algorithm enjoys a
linear rate of convergence to the unknown true parameter
up to the statistical error. Experiments on both synthetic
and real datasets verify the effectiveness of our algorithm.
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BÜHLMANN, P. and VAN DE GEER, S. (2011). Statistics
for high-dimensional data: methods, theory and applications.
Springer Science & Business Media.

DANG, C. D. and LAN, G. (2015). Stochastic block mirror
descent methods for nonsmooth and stochastic optimization.
SIAM Journal on Optimization 25 856–881.

DEFAZIO, A., BACH, F. and LACOSTE-JULIEN, S. (2014a).
Saga: A fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in Neural
Information Processing Systems.

DEFAZIO, A. J., CAETANO, T. S. and DOMKE, J. (2014b).
Finito: A faster, permutable incremental gradient method for
big data problems. In Proceedings of the International Confer-
ence on Machine Learning.

FOUCART, S. (2011). Hard thresholding pursuit: an algorithm for
compressive sensing. SIAM Journal on Numerical Analysis 49
2543–2563.

JAIN, P., TEWARI, A. and KAR, P. (2014). On iterative hard
thresholding methods for high-dimensional m-estimation. In
Advances in Neural Information Processing Systems.

JALALI, A., JOHNSON, C. C. and RAVIKUMAR, P. K. (2011).
On learning discrete graphical models using greedy methods.
In Advances in Neural Information Processing Systems.

JOHNSON, R. and ZHANG, T. (2013). Accelerating stochastic
gradient descent using predictive variance reduction. In Ad-
vances in Neural Information Processing Systems.

KOGAN, S., LEVIN, D., ROUTLEDGE, B. R., SAGI, J. S. and
SMITH, N. A. (2009). Predicting risk from financial reports
with regression. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics. As-
sociation for Computational Linguistics.
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Abstract

Bipartite ranking aims to maximize the area un-
der the ROC curve (AUC) of a decision function.
To tackle this problem when the data appears
sequentially, existing online AUC maximization
methods focus on seeking a point estimate of the
decision function in a linear or predefined sin-
gle kernel space, and cannot learn effective ker-
nels automatically from the streaming data. In
this paper, we first develop a Bayesian multiple
kernel bipartite ranking model, which circum-
vents the kernel selection problem by estimating
a posterior distribution over the model weights.
To make our model applicable to streaming da-
ta, we then present a kernelized online Bayesian
passive-aggressive learning framework by main-
taining a variational approximation to the poste-
rior based on data augmentation. Furthermore,
to efficiently deal with large-scale data, we de-
sign a fixed budget strategy which can effectively
control online model complexity. Extensive ex-
perimental studies confirm the superiority of our
Bayesian multi-kernel approach.

1 INTRODUCTION

Aiming to learn a ranking decision function that is likely to
place a positive instance before most negative ones, bipar-
tite ranking [Agarwal and Roth, 2005; Clémençon et al.,
2008; Kotlowski et al., 2011] is especially useful for
imbalanced data sets, where the area under the ROC
curve (AUC) [Hanley and McNeil, 1982; Bradley, 1997;
Cortes and Mohri, 2004] is a commonly used evaluation
metric. Recently, several online AUC maximization al-
gorithms with pairwise loss functions were proposed to
tackle this problem when the data appears sequential-
ly [Zhao et al., 2011a,b; Zhao and Hoi, 2012; Yang et al.,
2013; Gao et al., 2013; Hu et al., 2015; Ding et al., 2015].

Furthermore, the generalization performance of online
learning algorithms with pairwise loss functions have been
investigated in [Wang et al., 2012; Kar et al., 2013].

Nevertheless, existing work only focus on seeking a point
estimate of the decision function in a linear or predefined
single kernel space, and cannot learn effective kernels auto-
matically from the streaming data. As well known, choos-
ing an appropriate kernel for real-world situations usually
is not easy for users without enough domain knowledge.
Multiple Kernel Learning (MKL) [Rakotomamonjy et al.,
2008; Gönen and Alpaydın, 2011] can circumvent such a
problem by learning an optimal linear combination of a set
of predefined kernels. However, conventional online MKL
algorithms [Luo et al., 2010; Hoi et al., 2013; Sahoo et al.,
2014] are unsuitable for a direct use since AUC is a met-
ric represented by the sum of pairwise losses between in-
stances from different classes. More importantly, existing
online MKL methods typically maintain a point estimate
of their model weights, which can be affected seriously by
online outliers and usually needs a tough tuning process for
their penalty parameters.

Focusing on these problems, we first develop a Bayesian
Bipartite Ranking model with Multiple Kernels (B2RMK),
which circumvents the kernel selection problem by esti-
mating a posterior distribution over the model weights.
Specifically, B2RMK imposes global-local sparsity shrink-
age priors on the weights of kernels and support vectors
and adopts a margin-based ranking pseudo-likelihood func-
tion that mimics the pairwise hinge loss and can be ex-
pressed as a location-scale mixture of normals. Within the
Bayesian formalism, the new model can automatically infer
the weight penalty parameters and naturally alleviate over-
fitting to small training sets via model averaging over the
posterior.

To make our model applicable to streaming data, we then
present a kernelized online Bayesian Passive-Aggressive
(PA) [Crammer et al., 2006] learning framework. As far as
we know, this is the first effort to perform online Bayesian
learning with multiple kernels. The key of Bayesian PA
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is to maintain a posterior distribution at each time step.
Unfortunately, exact posterior inference of B2RMK is in-
tractable, so we devise an efficient data augmentation
[Tanner and Wong, 1987] based variational method to ap-
proximate the posterior with mean-field assumption.

Unlike most existing online MKL methods [Jin et al.,
2010; Luo et al., 2010; Hoi et al., 2013], which don’t
bound their model complexity and require more and more
memory and computation when the data arrives sequential-
ly, online B2RMK only maintains two fixed-size buffers
(one for positive instances, and another for negative ones)
to store the learned support vectors, thus are much more
efficient for large-scale data sets. When a buffer is full,
we propose a principled strategy to update it, which can
guarantee that the most important support vectors won’t be
discarded. As in [Hu et al., 2015], smooth updating and
compensation schemes are employed to further boost per-
formance when updating the buffer. Extensive experimen-
tal studies confirm the superiority of our online Bayesian
multi-kernel approach.

2 PRELIMINARIES

To better motivate our work, we first introduce some pre-
liminaries, including bipartite ranking, AUC optimization
and MKL. Let X = {x ∈ Rd} be the instance space,
Y = {+1, −1} be the label set, and S = S+ ∪ S− be
a set of training instances, where S+ and S− include N+

positive instances and N− negative instances, respectively.
The goal of bipartite ranking is to learn a ranking decision
function that is likely to place a positive instance before
most negative ones. AUC is a commonly used evaluation
metric for bipartite ranking. For a ranking decision func-
tion f : X → R, its AUC measure on S is defined as:

AUC(f) = 1 −
∑N+

i=1

∑N−
j=1 I(f(x+

i )≤f(x−
j ))

N+N−

where I(π) is the indicator function that equals 1 when π is
true and 0 otherwise. Since directly maximizing AUC(f)
leads to a difficult combinatorial optimization problem, in
practice, the indicator function is usually replaced by its
convex surrogate, e.g., pairwise hinge loss [Hu et al., 2015;
Zhao et al., 2011a] and squared loss [Gao et al., 2013],
which leads to minimizing the following regularized pair-
wise learning task [Christmann and Zhou, 2015]:

L(f) =
c

2
∥f∥2

H +

N+∑

i=1

N−∑

j=1

ℓ
(
f ; x+

i , x−
j

)

where ∥ · ∥H denotes the norm in Reproducing Kernel
Hilbert Space (RKHS), ℓ(·) is the convex surrogate loss
function and c is the regularization parameter balancing the
model complexity and training errors.

A kernelized ranking decision function f : X → R that is
used to predict the ranking score of a test instance xi can

be written as
f(xi) = a⊤ki + b

where a = [a1, . . . , aN ]⊤ denotes the vector of weight-
s assigned to each training instance (N = N+ + N−); b
is the bias; and ki = [K(x1, xi), . . . , K(xN , xi)]

⊤, where
K : X × X → R is a kernel function that measures the
similarities between xi and xj , j = 1, 2, . . . , N .

An important problem in single kernel learning is to pre-
specify the kernel parameters, which is often done in an
empirical way. This problem can be circumvented by using
the MKL framework [Rakotomamonjy et al., 2008], which
is a popular technique for learning an optimal linear com-
bination of a set of predefined kernels. MKL algorithms
basically use a weighted sum of P kernels {Km : X ×X →
R}P

m=1 to get the following multi-kernel ranking decision
function:

f(xi) = a⊤
(

P∑
m=1

emkm,i

)
+ b =

P∑
m=1

ema⊤km,i + b

where km,i = [Km(x1, xi), . . . , Km(xN , xi)]
⊤, and em

denotes the weight assigned to the m-th kernel.

In the sequel, the m-th N × N kernel matrix will be de-
noted by Km, and the vector of ranking scores of positive
instances and negative instances will be denoted by f+ and
f−, respectively, and f =

[
f⊤
+ f⊤

−
]⊤

.

3 BAYESIAN MULTIPLE KERNEL
BIPARTITE RANKING

In this section, we formulate a probabilistic model for
multi-kernel bipartite ranking. We impose a fairly gener-
al global-local shrinkage prior on the sample weights and
kernel combination weights to keep the sparsity of them.
Since pairwise hinge loss makes traditional Bayesian anal-
ysis hard, we then define a margin-based ranking pseudo-
likelihood function to overcome this situation. After intro-
ducing a set of augmented variables and making the mean-
field assumption, the intractable inference problem of our
model can be transformed into a tractable one.

3.1 BAYESIAN SPARSITY SHRINKAGE PRIOR

Similar as in kernelized SVM, the sample weights a is of-
ten expected to be sparse for selecting support vectors ac-
tually needed in decision function. From the Bayesian per-
spective, a fairly general global-local shrinkage prior is the
Three Parameter Beta Normal (T PBN ) [Armagan et al.,
2011], which favors strong shrinkage of small signals while
having heavy tails to avoid over-shrinkage of the larger sig-
nals. Thus, concentrated at zero, T PBN can yield sparse
model representations by suppressing unnecessary support
vectors. In this paper, we select T PBN as the sparsi-
ty shrinkage prior due to its better mixing properties than
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priors such as spike-slab and Laplace. Besides, T PBN
works well for high-dimensional settings since it can spec-
ify global and local properties independently. Assuming
a ∼ ∏N

i=1 T PBN (ai|αa, βa, ϕ), we have the following
hierarchical prior:

ai|λi ∼ N (ai|0, λi),

λi|ξi ∼ Γ(λi|αa, ξi), ξi|ϕ ∼ Γ(ξi|βa, ϕ),

ϕ|η ∼ Γ(ϕ|1/2, η), η ∼ Γ(η|1/2, 1),

where Γ(·) is the Gamma distribution (with shape-rate pa-
rameterization). Note that sample-level sparsity can be
tuned by assigning suitable values to the hyper-parameters
(αa, βa). Setting αa = βa = 0.5, a special case of T PBN
corresponds to the horseshoe prior.

Similarly, sparsity on kernel combination weights e =
[e1, . . . , eP ]⊤ is also desirable for better interpretability.
So, we assume e ∼ ∏P

m=1 T PBN (em|αe, βe, ρ), involv-
ing latent variables ωm, φm and τ . Kernel-level sparsity
can also be tuned by changing (αe, βe).

With the above priors on model weights, we assume the
ranking scores of our B2RMK model have the following
distributions,

G|a, {Km}P
m=1, υ ∼

P∏

m=1

N∏

i=1

N
(
gmi|a⊤km,i, υ

−1
)
,

f+|e,G, b, c ∼
N+∏

i=1

N
(
fi|e⊤g·i + b, c−1

)
,

f−|e,G, b, c ∼
N−∏

j=1

N
(
fj |e⊤g·j + b, c−1

)
,

where υ ∼ Γ (υ|αυ, βυ), b|γ ∼ N
(
b|0, γ−1

)
, γ ∼

Γ (γ|αγ , βγ), c ∼ Γ (c|αc, βc). The intermediate vari-
ables gmi (m = 1, . . . , P, i = 1, . . . , N ) are introduced
to make the inference procedures efficient. The P × N
matrix of intermediate variables is denoted by G, and the
m-th row and i-th column of G by gm· and g·i, respec-
tively. In the sequel, all hyper-parameters will be denoted
by Υ = {αa, βa, αe, βe, αυ, βυ, αγ , βγ , αc, βc}, while the
priors by Ψ = {λ, ξ, ϕ, η, ω, φ, ρ, τ, υ, γ, c} and the re-
maining variables by Ω = {a, b, e,G, f+, f−}.

3.2 MARGIN-BASED RANKING LIKELIHOOD

Several loss functions are available for bipartite ranking.
Among them, pairwise hinge loss is the tightest convex up-
per bound on the rank loss, which is beneficial for better
performance and faster convergence. Specifically, the pair-
wise hinge loss on data set S can be written as

ℓ(f ;S) =

N+∑

i=1

N−∑

j=1

max
(
0, 1 − f(x+

i ) + f(x−
j )

)
,

which does not lend itself to a convenient description of a
likelihood function. To overcome this situation, we propose
to define a margin-based ranking pseudo-likelihood

L(y|f) =

N+∏

i=1

N−∏

j=1

exp (−2max(0, 1 − fi + fj)) ,

where y is the label vector and has been divided out.
With T PBN priors and the above margin-based ranking
pseudo-likelihood, we can get the following pseudo poste-
rior distribution using Bayes’ rule

p(Ψ, Ω|y) = L(y|f)p(Ω|Ψ)p(Ψ)/p(y|Υ),

where p(y|Υ) is the normalization constant. Note that it
is hard to compute p(Ψ,Ω|y) analytically due to the max
function in L(y|f). Fortunately, we can re-express L(y|f)
as the product of N+ · N− location-scale mixtures of nor-
mals (see Supplement Section A) based on data augmenta-
tion idea [Tanner and Wong, 1987]

L(y|f) =

N+∏

i=1

N−∏

j=1

∫ ∞

0

exp
(

(θij+1−fi+fj)
2

−2θij

)

√
2πθij

dθij , (1)

where θij is the augmented variable. In the following, the
matrix of augmented variables will be denoted by θ, and
the i-th row and j-th column of θ by θi· and θ·j , respective-
ly. (1) indicates that the posterior distribution p(Ψ, Ω|y)
can be expressed as the marginal of a higher-dimensional
distribution that includes the augmented variables. There-
fore, the augmented posterior distribution has the form

p(Ψ, Ω,θ|y) =
L(y,θ|f)p(Ω|Ψ)p(Ψ)

p(y|Υ)
, (2)

where the unnormalized joint distribution of y and θ con-
ditioned on f is

L(y, θ|f) =

N+∏

i=1

N−∏

j=1

1√
2πθij

exp

(
(θij + 1 − fi + fj)

2

−2θij

)
.

3.3 VARIATIONAL APPROXIMATE INFERENCE

Directly solving for the augmented posterior is intractable
due to the normalization constant p(y|Υ), thus we appeal
to the mean-field variational approximate Bayesian infer-
ence method, which is generally much more efficient than
the Markov Chain Monte Calo (MCMC) based sampling
methods. Specifically, we assume there are a family of fac-
torable and free-form variational distributions

q(Ψ, Ω, θ) = q(λ)q(ξ)q(ϕ)q(η)q(ω)q(φ)q(ρ)q(τ)q(υ)

·q(γ)q(c)q(a)q(b, e)q(G)q(f+)q(f−)q(θ),

and the objective is to get the optimal one which minimizes
the Kullback-Leibler (KL) divergence between the approx-
imating distribution and the target posterior, i.e.,

min
q(Ψ,Ω,θ)∈P

KL (q(Ψ, Ω, θ)∥p(Ψ,Ω, θ|y)) ,
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where P is the space of probability distributions. To this
end, we first initialize the moments of all factor distribu-
tions of q(Ψ, Ω,θ) appropriately and then iteratively opti-
mize each of the factors in turn using the current estimates
for all of the other factors. It can be shown that when keep-
ing all other factors fixed the optimal distribution q∗(a) sat-
isfies

q∗(a) ∝ exp{E−a[log p(Ψ, Ω, θ, {Km}P
m=1,y)]}, (3)

where E−a denotes the expectation with respec-
t to p(Ψ, Ω,θ) over all variables except for a, and
p(Ψ,Ω, θ, {Km}P

m=1,y) is the joint distribution of data
and all variables, which has the following form

p(Ψ,Ω, θ, {Km}P
m=1,y) =

L(y, θ|f)p(f |e,G, b, c)p(G|a, {Km}P
m=1, υ)

·p(a|λ)p(e|ω)p(b|γ)p(λ|ξ)p(ξ|ϕ)p(ϕ|η)p(η)

·p(ω|φ)p(φ|ρ)p(ρ|τ)p(τ)p(υ)p(γ)p(c).

Expanding the right side of (3) and ignoring the terms un-
related to a, we can further get1

q∗(a) ∝ exp{E−a[log p(G|a, {Km}P
m=1, υ) + log p(a|λ)]}

= N
(
Σa

(
⟨υ⟩

∑P

m=1
Km⟨g⊤

m·⟩
)

, Σa

)
,

where Σa =
(
⟨υ⟩∑P

m=1KmK⊤
m + ⟨Λ−1

λ ⟩
)−1

and Λ−1
λ =

diag(λ)−1. Similarly, we can also get

q∗(b, e) = N
(
Σ(b,e)⟨c⟩

[
1, ⟨G⟩⊤]⊤ ⟨f⟩, Σ(b,e)

)
,

q∗(G) =
N∏

i=1

N
(
µg·i ,

(
⟨c⟩⟨ee⊤⟩ + ⟨υ⟩I

)−1
)

,

q∗(f+) = N
(
µf+ ,

( N−∑

j=1

⟨Λ−1
θ·j

⟩ + ⟨c⟩I
)−1)

,

q∗(f−) = N
(
µf− ,

( N+∑

i=1

⟨Λ−1
θi·

⟩ + ⟨c⟩I
)−1)

,

q∗(θ) =

N+∏

i=1

N−∏

j=1

GIG
(1

2
, 1, ⟨(1 − fi + fj)

2⟩
)
,

where

Σ(b,e) =

[
⟨c⟩N + ⟨γ⟩, ⟨c⟩1⊤⟨G⊤⟩
⟨c⟩⟨G⟩1, ⟨c⟩⟨GG⊤⟩ + ⟨Λ−1

ω ⟩

]−1

,

µg·i = Σg·i(⟨c⟩ (⟨fi⟩⟨e⟩ − ⟨be⟩) + ⟨υ⟩K⊤
i ⟨a⟩),

µf+ = Σf+(N−1+⟨θ−1⟩ (⟨f−⟩ + 1)+⟨c⟩(⟨G⊤
+⟩⟨e⟩+⟨b⟩1)),

µf− = Σf−(⟨θ−1⟩⊤ (⟨f+⟩ − 1)−N+1+⟨c⟩(⟨G⊤
−⟩⟨e⟩+⟨b⟩1)).

1Here ⟨·⟩ means the expectation operator, e.g., ⟨υ⟩ means the
expectation of υ over its current optimal variational distribution.

Note that, θ−1 is the element-wise inversion of θ, and G+

(G−) denotes the part of G corresponding to positive (neg-
ative) instances. The detailed derivations of the above e-
quations together with the equations for all other variables
can be found in the Supplement Section B.

4 ONLINE B2RMK LEARNING

The above batch B2RMK model still suffers from efficien-
cy problems, e.g., huge memory consumption in dealing
with large data sets and time-consuming re-training when
the data appears sequentially. Online Passive-Aggressive
(PA) [Crammer et al., 2006] learning is a principled way
to solve such problems. However, it is less explored under
the Bayesian framework. Here, we present a fixed budget
strategy to conduct online multiple kernel PA learning in
Bayesian manner. Our method can be seen as an exten-
sion of the linear framework in [Shi and Zhu, 2014], which
studied online max-margin topic models.

In the online setting, what we truly care about is how to
update the current model, on the arrival of a new data. So,
assume we already have an existing B2RMK model at the
t-th trial. In the updating of the kernel-based ranking de-
cision function, the main problem is to compute the Gram
matrix of pairwise kernel evaluations between the historical
instances and new arriving instance, and we have to store
all the received historical instances, making it impractical
for large-scale online learning tasks. We address this chal-
lenge by maintaining only a small number of received his-
torical instances. Specifically, we define two buffers B+

t

and B−
t of size |B+

t | and |B−
t |, for storing the learned im-

portant positive and negative support vectors at the t-th tri-
al, respectively. These support vectors in B+

t and B−
t are

essential for constructing the ranking decision function at
the (t+1)-th trial, thus are expected to keep track of the
global information of the decision boundary. To this end,
existing online MKL methods [Luo et al., 2010; Hoi et al.,
2013] typically assume an infinite buffer. However, their
naive treatment of storing all received historical instances,
requires more and more memory and computation when
the data arrives sequentially. On the contrary, we con-
trol the computational complexity of our Online B2RMK
(OB2RMK) model by fixing the buffer size to an appro-
priate value, assuming that the performance of OB2RMK
increases gradually with the increase of the buffer and it
will be saturated when the buffer is large enough. As will
be seen in the experimental section, such assumptions are
well validated. Overall, the proposed OB2RMK consists of
two key modules, i.e., buffer update and model update.

4.1 UPDATE BUFFER

How to maintain the buffers with the most informative sup-
port vectors to get better generalization performance is a
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key challenge. Traditionally, First-In-First-Out (FIFO) and
Reservoir Sampling (RS) are two typical stream oblivi-
ous policies to update the buffers and have demonstrat-
ed their effectiveness in online linear AUC maximization
[Zhao et al., 2011a]. However, FIFO and RS will cast off
the important support vectors, thus will degrade the perfor-
mance of the online learning algorithms. Compared with
linear algorithms, this adverse impact will be more intense
in the kernel-based algorithms which work with the Gram
matrix of pairwise kernel evaluations [Yang et al., 2013;
Hu et al., 2015]. In the following, we will propose a nov-
el strategy to update the buffers for OB2RMK, aiming to
preserve the most important support vectors.

For the incoming new instance (x⋆, y⋆), instead of counting
its pairwise losses with all support vectors in the opposite
buffer which is easily affected by outliers, we only count
the pairwise losses with its k-nearest opposite support vec-
tors Xk. This allows us to utilize the local information
around x⋆ and improve the robustness of the ranking de-
cision function [Hu et al., 2015].

When the buffers B+
t and B−

t are not full, the incoming
new instance will be put into one of the buffers directly,
thus the pairwise hinge loss at the (t+1)-th trial is

ℓ(f ;x⋆, Xk) =



∑k
j=1 max

(
0, 1 − f(x⋆) + f(x−

j )
)
, y⋆ = 1,

∑k
i=1 max

(
0, 1 − f(x+

i ) + f(x⋆)
)
, y⋆ = −1.

When either buffer is full, one of the instances in this buffer
should be discarded, to accommodate the incoming new
instance. Recall that the T PBN prior concentrates at ze-
ro, thus a positive (negative) support vector xi is likely to
have a positive (negative) weight ai to attain a discrimi-
native decision function. Supposing B+

t (B−
t ) is full, we

first search for a support vector xr which has the small-
est (largest) weight in the buffer. Instead of discarding xr

directly, we put xr and x⋆ together to count the pairwise
losses between them and Xk. This compensation scheme
guarantees the useful information of xr can be fully uti-
lized before it is discarded. Hence, the pairwise hinge loss
at the (t+1)-th trial is

ℓ(f ;x⋆, xr, Xk) =




∑k
j=1{max(0, 1 − f(x⋆) + f(x−

j ))

+ max(0, 1 − f(xr) + f(x−
j ))}, y⋆ = 1,

∑k
i=1{max(0, 1 − f(x+

i ) + f(x⋆))
+ max(0, 1 − f(x+

i ) + f(xr))}, y⋆ = −1.

Concisely, the pairwise hinge loss at the (t+1)-th trial can
be uniformly written as

ℓ(f ;x⋆, Bt) =

Ñ+∑

i=1

Ñ−∑

j=1

max
(
0, 1 − f(x+

i ) + f(x−
j )

)
,

where Bt = B+
t ∪ B−

t , and Ñ+ and Ñ− are the number
of positive and negative instances, respectively, in counting
the pairwise hinge loss at the (t+1)-th trial. For example,
we have Ñ+ = 1, Ñ− = k when y⋆ = 1 and B+

t was not
full (i.e., without xr), and Ñ+ = 2, Ñ− = k when y⋆ = 1
and B+

t was full (i.e., with xr).

4.2 UPDATE MODEL

In online B2RMK, the model parameters a, b and e should
vary with t, to update the ranking decision function. Note
that the dimensionality of a will increase until the buffers
are full, whereas b and e are always fixed-size.

4.2.1 Priors

Let pt(at, b,e) denote the posterior distribution of (a, b, e)
at the t-th trial, which will become a prior distribution at the
(t+1)-th trial. Assuming a⋆ is the corresponding weight of
x⋆ at the (t+1)-th trial. After imposing a T PBN prior
on a⋆, i.e., a⋆|αa⋆ , βa⋆ , ϕ⋆ ∼ T PBN (a⋆|αa⋆ , βa⋆ , ϕ⋆),
we have the hierarchical priors: a⋆|λ⋆ ∼ N (a⋆|0, λ⋆),
λ⋆|ξ⋆ ∼ Γ(λ⋆|αa⋆ , ξ⋆), ξ⋆|ϕ⋆ ∼ Γ(ξ⋆|βa⋆ , ϕ⋆), ϕ⋆|η⋆ ∼
Γ(ϕ⋆|1/2, η⋆) and η⋆ ∼ Γ(η⋆|1/2, 1).

The prior distributions of G, f+, f−, υ and c are omit-
ted here as they are similar as in B2RMK. Now let
Υ̃ = {αa⋆ , βa⋆}, Ψ̃ = {λ⋆, ξ⋆, ϕ⋆, η⋆} and Ω̃ =
{f+, f−,G, υ, c} for notational simplicity.

4.2.2 Posterior Updating

Since a, b, e, Ψ̃ and Ω̃ actually are random variables, we
have to average the loss ℓ(f ; x⋆, Bt) over their joint dis-
tribution. Let Ep(a,b,e,Ψ̃,Ω̃) denote the expectation over
p(a, b, e, Ψ̃, Ω̃), then we define the following expected
pairwise hinge loss at the (t+1)-th trial:

R(p(a, b,e, Ψ̃, Ω̃)) =
Ñ+∑
i=1

Ñ−∑
j=1

Ep(a,b,e,Ψ̃,Ω̃)[max (0, 1 − fi + fj)].

Note that, expected pairwise hinge loss is an upper bound
of the pairwise hinge loss of the expected bipartite ranking
model by Jensen’s inequality, and is more convenient for
our inference as shown below.

Now we can infer the new posterior distribution
pt+1(a, b, e) on the arrival of the new data (x⋆, y⋆) by solv-
ing the following optimization problem:

min
p(a,b,e)∈P

KL (p(a, b, e)∥pt(at, b, e)p(a⋆))

+2C · R(p(a, b, e, Ψ̃, Ω̃)), (4)

where C is a positive regularization parameter, the constant
2 is just for convenience, and R(p(a, b, e, Ψ̃, Ω̃)) is the ex-
pected pairwise hinge loss at the (t+1)-th trial. Intuitively,
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we find a posterior distribution pt+1(a, b, e) in the feasi-
ble zone that is not only close to pt(at, b, e)p(a⋆), but also
has small loss at the new trial. Note that a =

[
a⊤

t a⋆

]⊤

at the (t+1)-th trial, but if B+
t (B−

t ) is already full and
y⋆ = 1 (y⋆ = −1), the weight vector at has been truncated
one dimension before the optimization (4) to accommodate
a⋆, which corresponds to an updating of the buffer.

Directly optimizing (4) with R is difficult and inefficient.
Here we regard

Lt+1(y|a, b, e) =

Ñ+∏
i=1

Ñ−∏
j=1

exp
{

−2C · Ep(Ψ̃,Ω̃) [max(0, 1 − fi + fj)]
}

,

as the unnormalized pseudo-likelihood of label vector y,
then (4) can be rewritten as

min
p(a,b,e)∈P

KL (p(a, b, e)∥pt(at, b, e)p(a⋆))

−Ep(a,b,e)[log(Lt+1(y|a, b, e))].

It is straightforward to verify that the solution of this infor-
mation theoretical optimization problem is

p(a, b, e) =
pt(at, b, e)p(a⋆)Lt+1(y|a, b, e)

p(y|Υ̃)
,

where p(y|Υ̃) is the normalization constant, and the pos-
terior at the t-th trail pt(at, b, e) becomes a prior. Since it
is hard to compute the expectation with respect to p(Ψ̃, Ω̃)
in Lt+1(y|a, b,e), we can regard the posterior distribution
p(a, b, e) as the marginal of a higher-dimensional distribu-
tion that includes variables Ψ̃ and Ω̃. Note that Ψ̃ and Ω̃
will play only an auxiliary role in the inference procedure.

Therefore, the higher-dimensional distribution of a, b, e, Ψ̃
and Ω̃ at the (t+1)-th trial satisfies the following form:

pt+1(a, b, e, Ψ̃, Ω̃) =
pt(at, b, e)p(a⋆)p(Ψ̃, Ω̃)Lt+1(y|f)

p(y|Υ̃)
,

Lt+1(y|f) =

Ñ+∏

i=1

Ñ−∏

j=1

exp (−2C · max(0, 1 − fi + fj)) ,

which is intractable to compute analytically due to the max
function in it. Similar as in B2RMK, where data augmen-
tation presents an elegant way to deal with the challenging
posterior inference problem, we transform Lt+1(y|f) into
the product of Ñ+ ·Ñ− location-scale mixtures of normals:

Lt+1(y|f) =

Ñ+∏

i=1

Ñ−∏

j=1

∫ ∞

0

exp
(

(θij+C(1−fi+fj))
2

−2θij

)

√
2πθij

dθij .

Now Lt+1(y|f) can also be seen as the marginal of the
higher-dimensional distribution

Lt+1(y, θ|f) =

Ñ+∏

i=1

Ñ−∏

j=1

exp
(

(θij+C(1−fi+fj))
2

−2θij

)

√
2πθij

,

and the complete posterior distribution at the (t+1)-th trial
can be expressed as

pt+1(a, b, e, Ψ̃, Ω̃, θ) =

pt(at, b, e)p(a⋆)p(Ψ̃, Ω̃)Lt+1(y, θ|f)
p(y|Υ̃)

.

4.2.3 Approximate Inference

We then make the variational approximate inference for
pt+1(a, b, e, Ψ̃, Ω̃, θ). Specifically, assume there are a fam-
ily of factorable and free-form variational distributions

qt+1(a, b, e, Ψ̃, Ω̃, θ) =

qt+1(a)qt+1(b, e)qt+1(λ⋆)qt+1(ξ⋆)qt+1(ϕ⋆)qt+1(η⋆)

·qt+1(υ)qt+1(c)qt+1(G)qt+1(f+)qt+1(f−)qt+1(θ),

and the goal is to get the optimal one which minimizes
KL(qt+1(a, b, e, Ψ̃, Ω̃, θ)∥pt+1(a, b,e, Ψ̃, Ω̃, θ)) between
the approximating distribution and the target posterior. Fol-
lowing similar derivations as in B2RMK model, we can in-
fer the optimal distributions for all involved variables at the
(t+1)-th trial, and the detailed descriptions are shown in
Supplement Section C.

5 CONVERGENCE, COMPLEXITY AND
PREDICTION

In both B2RMK and OB2RMK, the inference mechanis-
m sequentially updates the approximate posterior distribu-
tions of the model parameters and the augmented parame-
ters until convergence, which is guaranteed because the KL
divergence is convex with respect to each of the factors.

Rather than addressing the high-dimensionality problem
directly, our kernel-based approach always transforms the
original data into kernel matrices whose sizes only depend
on the number of instances. Meanwhile, our online al-
gorithm can naturally overcome the memory consumption
challenge posed by large training sets.

For B2RMK, the computational complexity for trans-
forming original data into kernel matrices {Km}P

m=1 is
O(N2Pd), where d is the dimensionality of the original
data. Note that

∑P
m=1 KmK⊤

m should be cached before
starting inference to reduce the computation. The compu-
tational complexity for each iteration of the variational in-
ference on training data is O(N3 + P 3), where the matrix
inversions for computing the covariances Σa and Σb,e con-
sume O(N3) and O(P 3) computation, respectively. Note
that we can explore the symmetric positive semi-definite
property to accelerate these matrix inversions.
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For OB2RMK, the computational complexity for the con-
struction of P kernel matrices {Km}P

m=1 at the t-th tri-
al is O(|Bt|ÑPd), where |Bt| = |B+

t | + |B−
t | and

Ñ = Ñ+ + Ñ−. The computational complexity for
each iteration of the variational inference during training
is O(|Bt|3 + P 3), which indicates that the computational
complexity of OB2RMK will be limited by the buffer size
|Bt| when P is given.

After obtaining the approximate posterior distributions
q∗(a) and q∗(b, e), the ranking score for a new instance
xnew can be calculated by:

fnew = ⟨a⟩⊤
(∑P

m=1⟨em⟩km,new

)
+ ⟨b⟩.

6 EXPERIMENTS

In this section, we present extensive experimental results
on real data sets to demonstrate the effectiveness of the pro-
posed B2RMK and OB2RMK with fixed budgets. Specifi-
cally, we compare them with the following algorithms:

• Three batch learning algorithms, including SVMperf

for ordinal regression (SVM-OR) [Joachims, 2006], a
bipartite ranking model with univariate logistic loss
(Uni-Log) [Kotlowski et al., 2011] and least square
SVM (LS-SVM);

• Several state-of-the-art online AUC maximization
algorithms, including one-pass AUC optimization
(OPAUC) [Gao et al., 2013], kernelized online imbal-
anced learning (KOIL) algorithm with fixed budgets
[Hu et al., 2015] and a bounded kernel-based online
learning algorithm (Projectron++) [Orabona et al.,
2009];

• A latest online multiple kernel classification (OMKC)
algorithm with infinite buffer size, which doesn’t
bound its model complexity, thus requires more and
more computational resources when the data arrives
sequentially [Hoi et al., 2013].

6.1 EXPERIMENTAL TESTBED AND SETUP

We conduct experiments on a variety of data sets obtained
from the UCI and the LIBSVM websites, as summarized in
Table 1. To be consistent with previous studies [Gao et al.,
2013; Hu et al., 2015], the features have been scaled to
[−1, 1] for all data sets, and multi-class data sets have been
transformed into class-imbalanced binary ones. On each
data set, we conduct four independent trials of 5-fold cross
validation for all the algorithms, where four folds of the da-
ta are used for training while the rest for test in each trial.
The averaged AUC value over these 20 runs is reported. For
kernelized methods, we predefine a pool of 18 kernel func-
tions on all features, including Gaussian kernels with 13 d-
ifferent widths {2−6, 2−5, . . . , 26} and polynomial kernels

with 5 different degrees {1, 2, . . . , 5}. Following [Gönen,
2012], all kernel matrices are normalized to have unit di-
agonal entries, i.e., spherical normalization, which can be
done online. Note that our Bayesian multi-kernel approach
infers model parameters automatically via posterior infer-
ence rather than time-consuming grid search. Though we
still have to specify the hyper-parameters, they are fixed for
all 15 data sets without re-adjustment on each data set.

Table 1: Details of the data sets used in our experiments.
Datasets #instances Datasets #instances Datasets #instances
sonar 208 svmguide2 391 svmguide3 1243
glass 214 diabetes 768 segment 2310
heart 270 fourclass 862 satimage 4435
bupaliver 345 german 1000 spambase 4601
ionosphere 351 splice 1000 usps 9298

6.2 PERFORMANCE EVALUATION

6.2.1 Batch Learning

Though we mainly focus on online learning, we also briefly
compare the proposed B2RMK with three batch method-
s. We force sparsity at both sample-level and kernel-level
by imposing sparsity-inducing priors (T PBN ) on the sam-
ple weights and kernel weights, respectively. Specifically,
the hyper-parameters of the proposed B2RMK are set to
(αa, βa) = (αe, βe) = (0.5, 0.5), (αυ, βυ) = (αc, βc) =
(10+2, 10−2) and (αγ , βγ) = (10−2, 10−2) for all data set-
s, while 5-fold cross validation is conducted on training set-
s to choose a better regularization parameter from 2[−10:10]

for other methods. The averaged AUC values of these batch
algorithms are listed in Table 2, which show that B2RMK
performs significantly better than the competitors on 3 out
of 5 data sets. Figure 1 illustrates the kernel weights and
sample weights obtained by B2RMK on ‘fourclass’ data
set, which show that our model can effectively identify the
key kernels and support vectors that are actually needed.

Table 2: Average AUC of batch learning methods.

Methods diabetes fourclass german splice usps

SVM-OR .832±.032 .831±.031 .793±.035 .924±.009 .963±.005
Uni-Log .833±.032 .829±.031 .799±.034 .921±.011 .964±.004
LS-SVM .832±.033 .831±.031 .799±.034 .925±.009 .963±.005
B2RMK .832±.028 1.000±.000 .795±.027 .936±.012 .999±.001
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Figure 1: (a) Kernel weights and (b) sample weights ob-
tained by B2RMK on ‘fourclass’ data set.

148



6.2.2 Online Learning

In real world online learning problems, there is usually very
few training data at the beginning, and it is required to
maintain a dynamic model with the sequentially arriving
data. Since revisiting historical data is expensive for on-
line algorithms, we cannot do cross validation on the entire
training set. As such, we assume a half of one fold in the
training data is available in a batch manner, and all algo-
rithms tune their parameters on them.

For KOIL updated by RS++ or FIFO++, we set the learn-
ing rate η = 0.01 and select the penalty parameter C from
2[−10:10] as suggested in their paper. For OPAUC, we select
the learning rate parameter η and the regularization param-
eter λ from 2[−12:10] and 2[−10:2], respectively. For Projec-
tron++, we select the parameter of projection difference η
from 2[−10:10]. For OMKC, we adopt the deterministic up-
dating and combination strategy, and the discount weight
parameter β and smoothing parameter δ are fixed to 0.8
and 0.01, respectively. For OB2RMK, we initially conduct
B2RMK on the half fold of training data to get the poste-
rior distribution p(a, b, e). Then the hyper-parameters of
OB2RMK are set to (αa⋆ , βa⋆) = (αυ, βυ) = (αc, βc) =
(1, 1). The parameter k is fixed to 3, and the regularization
parameter C is chosen from {0.1, 1, 3}. Furthermore, to
provide KOIL and Projectron++ with multiple kernel infor-
mation, we also run them with an unweighted combination
of all the kernels as well as the best kernel among the pool
of kernels. The symbols u and ∗ marked on the upper right
corner are used for denoting them, respectively. All buffer
sizes for KOIL and OB2RMK are set to 100.

Table 3 summarizes the average AUC values of the com-
pared online algorithms. We also list the performance of
the proposed batch B2RMK in the last column for refer-
ence. Several observations can be drawn as follows. First,
by comparing the proposed OB2RMK algorithm against
the other online algorithms, we can find that the OB2RMK
performs considerably better on most data sets. In particu-
lar, the AUC values of OB2RMK significantly surpass the
baseline algorithms on some data sets. For example, on
‘bupaliver’, the AUC values for the baseline algorithms are
lower than 71%, while OB2RMK is able to achieve 75.8%.
Secondly, online multiple kernel learning algorithms show
better AUC performance than the single kernel and linear
online learning algorithms on most data sets. This demon-
strates the power of multiple kernel learning methods in
classifying real-world data sets. Thirdly, OPAUC achieves
fairly comparable or even better results than kernel-based
algorithms on the data sets of ‘svmguide2’ and ‘german’.
We attribute this to the fact that a linear algorithm is enough
to achieve good performance on some data sets, while the
kernel-based algorithms may be easily affected by outlier-
s. Finally, by examining the proposed OB2RMK algo-
rithm against the online multiple kernel learning algorith-
m OMKC(D,D) with infinite buffers, we can find that the

OB2RMK algorithm tends to outperform the OMKC(D,D)

algorithm on most data sets. This encouraging result shows
that the OB2RMK algorithm with fixed buffer size is able
to maintain an accurate sketch of historical training exam-
ples by exploring the compensation scheme.

6.3 SENSITIVITY ANALYSIS

The default values of parameter C, the buffer size and the
number of iterations for each online updating are 1, 100
and 30 respectively. When we study one of them through
varying its values, the other two are fixed to their default
values. First, from Figure 2 we observe that the perfor-
mance of OB2RMK increases gradually with the increase
of the buffer size and it is saturated when the size is rel-
atively large, which is consistent with the observations in
[Zhao et al., 2011a; Hu et al., 2015]. Then, we can con-
clude from Figure 3 (a) that the regularization parameter C
should not be too large, whereas there is a relatively broad
range between [10−3, 1] where OB2RMK achieves good
results. Finally, Figure 3 (b) shows that OB2RMK con-
verges rapidly, and typically stable results can be attained
within 30 iterations.
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Figure 2: Average AUC of OB2RMK vs. buffer size.
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Figure 3: Average AUC of OB2RMK when different (a)
parameter C and (b) number of iterations are used.

7 RELATED WORK

Online pairwise learning has gained increasing attention
recently. In [Zhao et al., 2011a], a buffer sampling based
linear Online AUC maximization (OAM) model was pro-
posed. In [Hu et al., 2015], the Kernelized Online Imbal-
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Table 3: Average AUC values (mean±std) on a variety of data sets. •/◦ indicates that OB2RMK is significantly bet-
ter/worse than the corresponding method (pairwise t-tests at 95% significance level).

Datasets OB2RMK KOILu
RS++ KOIL∗

RS++ KOILu
FIFO++ KOIL∗

FIFO++ OMKC(D,D) Projectron++u Projectron++∗ OPAUC B2RMK

sonar .915±.044 .865±.050• .847±.051• .865±.050• .850±.049• .916±.036 .713±.082• .825±.071• .813±.082• .942±.034◦
glass .896±.035 .842±.050• .784±.053• .839±.052• .785±.054• .856±.071• .582±.098• .763±.066• .822±.059• .898±.034

heart .895±.050 .893±.057 .895±.056 .894±.057 .895±.056 .854±.075• .773±.056• .806±.055• .893±.051 .905±.053◦
bupaliver .758±.058 .703±.056• .689±.062• .707±.054• .690±.059• .654±.074• .511±.020• .587±.053• .685±.068• .755±.061

ionosphere .982±.012 .982±.012 .971±.015• .982±.012 .974±.018• .969±.021• .850±.041• .898±.040• .826±.075• .980±.012

svmguide2 .943±.040 .939±.033 .924±.032• .942±.032 .919±.038• .921±.043• .790±.065• .836±.040• .922±.035• .942±.035

diabetes .824±.028 .808±.039• .789±.045• .817±.036• .798±.038• .789±.022• .574±.047• .681±.041• .742±.067• .832±.028◦
fourclass 1.000±.000 .987±.039• .999±.001 .987±.039• .999±.001 .999±.001 .815±.045• .998±.002• .830±.021• 1.000±.000

german .768±.029 .760±.039• .724±.046• .761±.042• .733±.041• .723±.042• .544±.030• .625±.031• .749±.043• .795±.027◦
splice .894±.019 .886±.021• .869±.018• .887±.019• .872±.024• .906±.022◦ .701±.030• .797±.024• .865±.020• .936±.012◦

svmguide3 .732±.023 .686±.039• .620±.052• .685±.051• .625±.045• .725±.034• .503±.005• .626±.031• .715±.042• .807±.026◦
segment .984±.005 .975±.006• .959±.011• .975±.006• .957±.009• .970±.006• .789±.036• .962±.010• .895±.016• .998±.001◦
satimage .978±.006 .958±.006• .973±.007• .956±.008• .973±.007• .974±.003 .903±.016• .937±.006• .848±.028• .991±.002◦
spambase .944±.010 .938±.016• .922±.017• .938±.009• .927±.015• .958±.007◦ .866±.021• .893±.019• .941±.009 .983±.004◦

usps .990±.003 .985±.004• .988±.004 .984±.005• .988±.003 .986±.002 .867±.030• .976±.003• .957±.003• .999±.001◦
win/tie/loss 12/3/0 12/3/0 12/3/0 12/3/0 9/4/2 15/0/0 15/0/0 13/2/0 0/5/10

anced Learning (KOIL) algorithm extended OAM to the
nonlinear case with a predefined single kernel. Both of
them provided regret bound based on pairwise hinge loss.
[Ding et al., 2015] extended OAM with adaptive gradien-
t method which can exploit the knowledge of historical
gradients. Besides, [Gao et al., 2013] proposed a linear
one-pass AUC optimization model which scans through
the training data only once owing to the use of squared
loss. A more recent squared loss based algorithm, named
OPERA, was proposed in [Ying and Zhou, 2015], where a
non-strongly convex objective was formulated in an uncon-
strained reproducing kernel Hilbert space. All the afore-
mentioned methods seek point estimates of the decision
function in a linear or single kernel space.

On the other hand, recent years witnessed the efforts on
online extensions of multiple kernel learning due to its ef-
ficiency constrictions. Luo et al. [Luo et al., 2010] first in-
troduced an Online Multiclass Multi-kernel (OM2) classifi-
cation algorithm with hinge loss. In [Hoi et al., 2013], Hoi
et al. proposed several Online Multiple Kernel Classifica-
tion (OMKC) algorithms that aim to learn multiple kernel-
ized classifiers and their linear combination simultaneous-
ly. In [Sahoo et al., 2014], a family of Online Multiple K-
ernel Regression (OMKR) algorithms were proposed with
sliding windows to address non-stationary times-series da-
ta. [Xia et al., 2014] proposed an Online Multiple Kernel
Similarity (OMKS) learning method, which learns a flexi-
ble nonlinear proximity function for visual search. These
online MKL methods are effective for their specific appli-
cations, but generally involves several regularization pa-
rameters that are difficult to tune in real online scenario.

Bayesian learning is a principled way to infer the en-
tire posterior distribution of various model parameter-
s (e.g., kernel weights) from data automatically, provid-
ing the user a more simple way to accurately model da-

ta. In [Girolami and Rogers, 2005] and [Gönen, 2012],
the authors studied Dirichlet and Gaussian priors for the
kernel weights respectively. While both of them yield
promising results, the former is difficult for inference.
[Christoudias et al., 2009] studied Bayesian localized MK-
L with Gaussian processes. So far, there is not only no on-
line Bayesian MKL model but also no Bayesian multiple
kernel AUC optimization model. Our margin-based model
is the first combination of pairwise learning/AUC optimiza-
tion with Bayesian MKL in the online setting.

8 CONCLUSION AND FUTURE WORK

We developed a Bayesian multi-kernel bipartite ranking
model, which can circumvent the kernel selection prob-
lem by estimating a posterior distribution over the mod-
el weights. To make our model applicable to stream-
ing data, we presented a kernelized online Bayesian PA
learning framework by maintaining a variational approx-
imation to the posterior. Furthermore, to efficiently deal
with large-scale data, we maintained two fixed size buffer-
s to control the number of support vectors while keep-
ing track of the global information of the decision bound-
ary. Extensive experimental studies confirmed the supe-
riority of our Bayesian multi-kernel approach. In future,
we plan to extend our model to deal with multi-source da-
ta with multi-task and transfer learning [Evgeniou et al.,
2005; Gönen and Margolin, 2014].
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Abstract

We give a novel algorithm for finding a parsimo-
nious context tree (PCT) that best fits a given data
set. PCTs extend traditional context trees by al-
lowing context-specific grouping of the states of a
context variable, also enabling skipping the vari-
able. However, they gain statistical efficiency
at the cost of computational efficiency, as the
search space of PCTs is of tremendous size. We
propose pruning rules based on efficiently com-
putable score upper bounds with the aim of reduc-
ing this search space significantly. While our con-
crete bounds exploit properties of the BIC score,
the ideas apply also to other scoring functions.
Empirical results show that our algorithm is typi-
cally an order-of-magnitude faster than a recently
proposed memory-intensive algorithm, or alterna-
tively, about equally fast but using dramatically
less memory.

1 INTRODUCTION

The conditional distribution of a response variable y, given
some explanatory variables x1, x2, . . . , xd, is a key ingredi-
ent in common probabilistic models. Often the modeler’s in-
terest is in distributions that admit a compact, structured rep-
resentation, thereby facilitating statistically efficient learn-
ing and computationally efficient inference, as well as easy
human interpretation.

Examples of general-purpose model classes include decision
trees (Breiman et al., 1984; Friedman & Goldszmidt, 1996),
decision graphs (Oliver, 1993; Chickering et al., 1997),
multi-linear functions (Chavira & Darwiche, 2005), and
conditional independence trees (Su & Zhang, 2005). These
models allow for representing context-specific independence
(Boutilier et al., 1996): given a context, i.e., an assignment
for a subset of the explanatory variables xi, the response y
becomes independent of the rest.

When the explanatory variables are equipped with a natural
linear ordering, more specialized models of context-specific
independence are justified. In particular, context trees (CTs)
of depth d over an alphabet Ω (Rissanen, 1983; Bühlmann
& Wyner, 1999) model the distribution of the next symbol y
after a sequence xdxd−1 · · ·x1 assuming each context is an
assignment a` · · · a1 for the ` ≤ d immediate predecessors
x` · · ·x1 of y, where the length ` may vary with the context.
While context trees excel in computational efficiency, their
statistical efficiency decays when there are long-range de-
pendencies (requiring long contexts) and when the alphabet
is non-binary.

To address the shortcoming of CTs, Bourguignon & Ro-
belin (2004) proposed parsimonious context trees (PCTs),
in which a context is a sequenceC` · · ·C1 of sets of symbols
Ci ⊆ Ω. The idea is that the conditional distribution of y is
the same of all assignments ad · · · a1 that match the context,
that is, ai ∈ Ci for i = 1, . . . , `. In effect, PCTs allow for
a compact representation and statistically efficient learning
even in the presence of long-range dependencies. PCTs
have found applications particularly within computational
biology (Seifert et al., 2012; Eggeling et al., 2015b), where
modeling sequential data over discrete alphabets constitutes
a recurring challenge.

From a computational point of view, learning PCTs (i.e.,
maximizing a given scoring function) is, however, very
challenging for larger depth d and alphabet size |Ω|. The
dynamic programming (DP) algorithm of Bourguignon &
Robelin (2004) avoids explicit enumeration of all PCTs. Yet,
it has to explore all possible contexts C` · · ·C1, with ∅ ⊂
Ci ⊆ Ω, each of which is a potential node of an optimal PCT
and corresponds to a subproblem of optimizing the subtree
rooted at it. Recently, Eggeling et al. (2015a) enhanced the
DP algorithm by observing that two contexts of the same
length are equivalent (i.e., have identical optimal subtrees)
if they are matched by exactly the same set of data points;
thus the respective subproblem needs to be solved only once.
While this memoization variant is effective in reducing the
time requirement of PCT optimization in practice, it has the
disadvantage of increased memory consumption.
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Here, we investigate a new idea to expedite PCT optimiza-
tion in practice. We present pruning rules, which allow us
to ignore subproblems that are guaranteed to not contribute
to an optimal PCT. To obtain such guarantees, we derive
upper bounds specifically for the BIC score, similar in spirit
to the bounds on local scores by Tian (2000) and de Cam-
pos & Ji (2011) for structure learning in Bayesian networks.
While for Bayesian networks also global bounds, useful
in branch-and-bound search, can be derived by structural
relaxations (de Campos & Ji, 2011; Yuan & Malone, 2013),
with no assumptions on local scores, for PCTs a separate
global view is absent and utilizing concrete properties of a
particular score seems necessary.

As our subproblems form a so-called AND/OR search
space (Dechter & Mateescu, 2007; Nilsson, 1980), we can-
not prune a subproblem based solely on the associated
bound, but we need to combine the bounds of a multitude of
subproblems; in essence, we have to consider all alternative
partitions of a subproblem into smaller subproblems, all of
which need to be solved. To this end, we propose an efficient
treatment, which resembles a simple pruning rule popular in
structure learning in Bayesian networks (Teyssier & Koller,
2005); however, while the latter concerns the “is subset
of” relation, our rule concerns the “refines” relation on set
partitions. We note that our algorithm is an instantiation of
so-called General Branch and Bound (Nau et al., 1984), but
not of the more special A* algorithm for OR spaces.

Our pruning technique is orthogonal to the memoization
technique of Eggeling et al. (2015a). In particular, our
technique can be employed with or without memoization,
resulting in high or low memory consumption, respectively.
Because the effectiveness of our ideas is data-dependent,
we evaluate the proposed algorithms empirically on a wide
selection of real-world data sets.

2 PRELIMINARIES

In this section, we revisit the definition of PCTs, the ba-
sic structure learning algorithm, and a recently proposed
memoization technique for improving it.

2.1 PARSIMONIOUS CONTEXT TREES

A parsimonious context tree (PCT) T of depth d over an
alphabet Ω is a rooted, balanced, node-labeled tree of depth
d with the following additional property: For each node of
depth ` < d the labels of its children partition Ω, i.e., the
labels of the children are pairwise disjoint nonempty subsets
of Ω whose union is Ω.

We identify each node with the sequence of labels V` · · ·V1

of the nodes on the unique path from the node up to the
root, denoted by V for short. We can also interpret the
node V as the set of all sequences it represents. We say
that a sequence xd · · ·x1 matches node V, and denote it by

xd · · ·x1 ∈ V, if xi ∈ Vi for all positions i = `, . . . , 1 (the
remaining positions are ignored).

Given a PCT T and its node V, we denote by T (V) the
subtree of T rooted at V. We say the subtree is minimal if
it consists of a single chain of nodes down to a single leaf,
thus all nodes labeled by Ω, and maximal if it consists only
of nodes labeled with single symbols a ∈ Ω, thus having
|Ω|d−`(V) leaves. Here, `(V) denotes the depth of node V.

To model the conditional distribution of the response vari-
able y given a sequence x, we equip each leaf V of a PCT
with |Ω| parameters θVa, one parameter for each a ∈ Ω.
We interpret θVa as the probability that y takes the value a
given that x matches V. In a data set z = (xt, yt)Nt=1 we
assume that, given xt, the response yt is independent of the
remainder of the data. Writing ΘT for the parameters of a
PCT T , we obtain the likelihood function

LT (ΘT ) :=
∏

leaf V of T

∏

a∈Ω

θNVa

Va , (1)

where NVa denotes the count of the response a in data
points where the explanatory variables match V:

NVa := |{t : xt ∈ V and yt = a}| . (2)

We will further denote NV :=
∑
a∈ΩNVa.

2.2 BASIC STRUCTURE LEARNING

We consider a score-and-search approach to learn a PCT
from a given data set. Suppose we are given a scoring
function S that associates each PCT T with a real-valued
score ST . The task is to find an optimal PCT,

T̂ ∈ argmax
T

ST . (3)

Aside from the fact that multiple PCTs may achieve the
optimum, this task is practically equivalent to the task of
finding the optimal score ST̂ . For convenience, we focus on
the latter problem for the rest of the paper. An optimal tree
T̂ can be constructed via, e.g., standard backtracking (see
Section 2.3 for details).

Bourguignon & Robelin (2004) presented a dynamic pro-
gramming algorithm for finding ST̂ . It relies on the mild
assumption that the scoring function decomposes into a sum
of leaf scores:

ST =
∑

leaf V of T
S(V) . (4)

This property is fulfilled by the log-likelihood function
(Eq. 1) and thus also by scoring functions that can be written
as penalized maximum log-likelihood with a decomposable
penalty term, such as AIC (Akaike, 1974), BIC (Schwarz,
1978), and the Bayesian marginal likelihood with a decom-
posable prior.
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(a) Extended PCT before optimization

(b) Second layer optimized (c) Final PCT

A B,C

C A,B C A,B

A B C A,B A,C B,C A,B,C

C A,B B A,C A,B,C A B C A,B,C C A,B A,B,C

A B C A,B A,C B,C A,B,C

A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C

Figure 1: Basic PCT optimization. We show the bottom-up reduction of the extended PCT for a toy example of d = 2 and
Ω = {A,B,C}. (a) Initially only the leaf scores of the extended PCT have an exact, optimal score assigned to them. (b) For
each set of sibling leaves, the optimal valid selection of children is computed, the non-contributing siblings are discarded,
and the winning score is propagated upwards to become the score of the parent. (c) The same principle is applied on the
higher layer in order to select the optimal children of the root, obtaining a valid PCT with optimal score.

To describe the algorithm, we denote by ST (V)(V) the sum
of the leaf scores in the subtree T (V) rooted at an inner
node V of T ; for a leaf V, we put ST (V)(V) := S(V).
We have the recurrence

ST (V)(V) =
∑

child C of V

ST (C)(C) , (5)

and, in particular, ST = ST (Λ), where Λ is the root node of
T . Exploiting this recurrence, the algorithm of Bourguignon
& Robelin (2004) optimizes the score over the subtrees
rooted at C, independently for each possible child node
C, and then selects a set of children that form an optimal
partition of the parent node V. For the base case of each leaf,
the algorithm sets the optimal score S∗(V) := S(V), and
for each inner node it computes the optimal score defined
by

S∗(V) := max
{C1,...,Cr}
partition of Ω

{
S∗(C1V) + · · ·+ S∗(CrV)

}
. (6)

It follows that the maximum score over all PCTs of depth d
is obtained as

max
T

ST = S∗(Λ) . (7)

The algorithm computes the leaf scores of (2|Ω| − 1)d pos-
sible leaves and, in addition, finds an optimal set of children
in O(3|Ω|) time for each of slightly more than (2|Ω|−1)d−1

inner nodes. Since the complexitity is a product of two terms
which are both exponential in |Ω|, PCTs are to date limited
to applications of small to moderate alphabet size (Eggeling
et al., 2015a).

2.3 INTERPRETATION AS REDUCTION OF
EXTENDED PCT

The inner workings of the algorithm of Bourguignon & Ro-
belin (2004) and the construction of the optimal PCT itself

can be viewed as bottom-up reduction of a data structure
called extended PCT, as illustrated in Figure 1. In contrast to
a PCT, the sibling nodes in an extended PCT do not partition
their parent node, but are labeled by all nonempty subsets
of Ω. An extended PCT thus contains all possible PCTs as
subtrees, as illustrated in Figure 1a. We denote the set of all
nodes of an extended PCT by V , and treat a PCT T as its
proper subset, i.e., T ⊂ V .

Given an extended PCT, the base case of the algorithm
requires the computation of leaf scores, and the task is now
to reduce the extended PCT so that a PCT with maximal
score remains. For each inner node it then (i) computes an
optimal selection of children with the constraint that the
node labels must form a partition of Ω, and (ii) removes
all children and subtrees below that do not belong to this
optimal partition.

Since an inner node can be optimized only if all of its chil-
dren have already a score attached to them and are thus
roots of valid PCT subtrees, the recursion leads essentially
to a bottom-up reduction of the extended PCT beginning at
the deepest layer, which comprises all nodes of the same
depth, as displayed in Figure 1b. The optimization termi-
nates once an optimal selection of children of the root node
are computed; a possible final result is shown in Figure 1c.

2.4 MEMOIZATION

Eggeling et al. (2015a) proposed a memoization technique
for speeding up PCT learning by exploiting regularities in
the observed explanatory variables.

The core idea is to implement the algorithm of Bourguignon
& Robelin (2004) in a top-down fashion and to store the
result of subtree optimization for node V with the depth
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`(V) and the index set I(V) := {t : xt ∈ V} as key,
e.g., in a hash table. When the algorithm needs an optimal
subtree (or its score) for another node V′, the algorithm
checks whether the key (`(V′), I(V′)) exists in the storage
already and the associated result can be re-used. To work
correctly, memoization requires that the score S∗(V) de-
pends on V only through I(V) and `(V). This property
holds for many relevant scoring functions such as penalized
maximum log-likelihood scores, but not for the Bayesian
marginal likelihood with context-dependent pseudo-counts.

While memoization has shown to be rather effective partic-
ularly on highly structured data sets, it increases memory
consumption. The original DP algorithm of Bourguignon
& Robelin (2004) is relatively memory-efficient as only a
small fraction of nodes of the extended PCT needs to be
stored in memory at a given time, provided that the extended
PCT is constructed, traversed, and reduced top-down in a
depth-first manner. Memoization, in contrast, requires stor-
ing the scores and the associated data subset indices for all
visited inner nodes of the extended PCT.

3 PRUNING RULES

We derive pruning rules, which utilize score upper bounds to
decide at any given node whether we can avoid the explicit
optimization over possible subtrees.

3.1 SCORING FUNCTION: BIC

In order to obtain effective upper bounds, we focus on the
BIC score, derived from be Bayesian Information Crite-
rion (Schwarz, 1978). It is an approximation of the Bayesian
marginal likelihood and has been empirically shown to be
suitable for PCT learning on real-world data due to its harsh
penalty term, which favors sparse trees (Eggeling et al.,
2014). The score can also be given a two-part-MDL inter-
pretation (Rissanen, 1978). For a PCT T , the BIC score is
given by

SBIC
T = lnLT (Θ̂T (z))− k

2
lnN , (8)

where Θ̂T (z) denotes the maximum-likelihood parameter
estimate on z and k denotes the number of free parameters.
Since k is proportional to the number of leaves and since
the likelihood (Eq. 1) is a product of leaf terms, the BIC
score decomposes into a sum of

SBIC(V) :=

L(V)︷ ︸︸ ︷∑

a

NVa ln
NVa

NV
−

K︷ ︸︸ ︷
1

2

(
|Ω| − 1

)
lnN . (9)

Here, L(V) is the maximized log-likelihood of leaf V and
K is the BIC penalty contribution of a single leaf, involving
|Ω| − 1 free parameters and a global sample size of N . We
observe that the score of a leaf V does actually not depend
on all data points in z, but only on those that match V.

3.2 UPPER BOUNDING THE BIC SCORE

Consider an inner node V ∈ V . To upper bound the BIC
score over all possible subtrees rooted at V, we upper bound
the largest possible gain in the maximum-likelihood term
on one hand, and lower bound the inevitable penalty due to
increased model complexity on the other hand.

Consider first the likelihood term. We make use of the
observation that every PCT is nested in the maximal PCT,
which has |Ω|d leaves, each representing a single realization
of the explanatory variables. The same holds also locally
for any PCT subtree below a particular node V. Hence, the
likelihood term is maximized by the maximal model, which
partitions all realizations perfectly. We obtain the upper
bound

L̃(V) :=
∑

a∈Ωd−`(V)

L(aV) , (10)

that is, we have L(V) ≤ L̃(V). Here, aV denotes the leaf
node obtained by extending the context of node V with a
single realization a of the remaining explanatory variables.
Note that L̃(V) can be computed fast by summing over the
sequences a that occur in the data points that match V. Now
we distinguish:

Case 1 The minimal subtree is optimal. In this case, we can
compute the exact score directly, without recursion.

Case 2 The minimal subtree is not optimal. Thus an opti-
mal subtree makes at least one split, and therefore has
at least two leaves. In this case, the likelihood term is
upper bounded by L̃(V) (Eq. 10), while the penalty
term is at least 2K.

Combining the two cases yields the following bound.

Proposition 1 (Score upper bound). For an arbitrary inner
node V ∈ V it holds that

SBIC
∗ (V) ≤ SBIC

0 (V) ,

with

SBIC
0 (V) := max{L(V)−K, L̃(V)− 2K} .

We will use this upper bound twice to device two pruning
rules in the next two sections.

3.3 STOPPING RULE

First, we consider a simple rule for pruning, which is an
immediate consequence of the aforementioned upper bound.
The idea can be phrased as follows:

Stop optimizing the subtree below a node when
context-specific independence can be declared
already without even entering the recursion.
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AD BC ABCD AB CD

Upper-bound
pruning

Recursive
computation
of optimal subtrees

First-layer
optimization

-7.6 -3.5 -11.1

AB CD

AD BC ABCD

S0(AB)+S0(CD) > S*(ABCD)AB and CD, because...

AB CD ABCD

? ? ? ? AB CD

Deletion rule applies?

✘
✔ AC, because...

✔ All remaining siblings

S0(AC)+S0(BD) < S*(ABCD)    and    S0(AC)+S0(B)+S0(D) < S*(ABCD) 

......

Figure 2: Example of the deletion rule. We consider a small data set of N = 10 for two explanatory variables over the
alphabet Ω = {A,B,C,D} (bottom-left box). The root of each subtree for which exact BIC scores have been computed
already is marked in green and corresponding score displayed in boldface below the subtree. The remaining other subtrees
are associated with an upper bound on the BIC score. The root of a subtree which contributes to an upper-bounded partition
score that is greater than the exact score of the maximal sibling node, and thus has to optimized explicitly, is displayed in
orange.

Formally, we have the following.

Proposition 2 (Stopping rule). Let V ∈ V with `(V) < d,
and let T ′ be the minimal subtree rooted at V. If

SBIC
0 (V) = L(V)−K ,

then SBIC
∗ (V) = SBIC

T ′ (V).

The correctness can be shown by contradiction. Assume
T ′ does not yield the optimal score. Then L(V) − K <
SBIC
∗ (V). But since SBIC

∗ (V) ≤ SBIC
0 (V), this violates the

premise.

3.4 DELETION RULE

The idea of our second rule is to identify a node with so low
a score that the node cannot appear in any optimal PCT. In
an idealized form, the rule reads:

Delete a child node if the best set of children it
belongs to is worse than some other set of children
(to which the node does not belong).

As we wish to delete as many potential child nodes as possi-
ble and not compute their optimal scores, we cannot assume
the optimal scores of the sibling nodes are available. Thus,
to make the rule concrete, we resort to upper bounds on the
scores. Likewise, we need to lower bound the optimal score
among the valid sets of children. While, in principle, vari-
ous lower bounding schemes would be possible, we have
chosen to use a particularly simple bound: the optimal score

of the Ω-labeled child. We next describe the bounds and the
rule more formally.

Consider a node V. To efficiently check whether a child
node CV can be deleted, we need an upper bound on the
score obtained by a partition of V that includes CV. To
this end, we associate any set function f : 2Ω → R with
another function f ′ : 2Ω → R defined by letting f ′(∅) := 0
and, for all ∅ ⊂ B ⊆ Ω,

f ′(B) := max
{C1,...,Cr}
partition ofB

{
f(C1) + · · ·+ f(Cr)

}
. (11)

A folklore dynamic programming algorithm computes f ′

for a given f in O(3|Ω|) time, based on the recurrence

f ′(B) = max
∅⊂C⊆B

{
f(C) + f ′(B \ C)

}
. (12)

Eggeling et al. (2015a) made use of this observation to
compute the optimal score over all partitions of the alphabet,
given by f ′(Ω) with a suitable function f . Here, we apply
it to score upper bounds, and we also use several of the
values f ′(B) in order to stay within O(3|Ω|) for computing
all upper bounds required:

Proposition 3 (Deletion rule). Let V ∈ V with `(V) < d,
and let ∅ ⊂ C ⊂ Ω. Let f(C ′) := S0(C ′V) for all ∅ ⊂
C ′ ⊆ Ω. If

S0(CV) + f ′(Ω \ C) < S∗(ΩV) ,

then the node CV does not belong to any optimal PCT.
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The correctness can be shown by contradiction. Suppose
CV did belong to an optimal PCT even though the premise
was fulfilled. Then S∗(CV) + f ′(Ω \ C) ≥ S∗(ΩV) ,
leading to S0(CV) < S∗(CV), which violates the property
of S0 being an an upper bound of S∗.

We illustrate the deletion rule by a small toy example in
Figure 2. Here, we focus on the first layer, where only
for the maximal node an optimal PCT subtree is computed
and thus an exact score is available already, whereas for
the other siblings only upper-bounded scores exist. Based
on those scores, we compute the upper-bounded scores of
every possible partition and observe and observe that only
one partition, consisting of the two child nodes AB and
CD, has an upper-bounded score that is greater than the
exact score of the maximal sibling node ABCD. All other
siblings can thus not contribute to an optimal partition of
child nodes, as even the best partition they contribute to
has an upper-bounded score smaller than what is already
achieved. Hence, the corresponding subtrees do not need to
be optimized explicitly and can be deleted.

The deletion rule does invest a certain amount of effort that
the obtained savings need to compensate before the rule
becomes effective: In the worst case, we need to compute
the optimal partition of children twice for each inner node,
once with the upper-bounded scores for excluding subtrees
from further optimization, and once with the exact scores.
As a positive side note, we observe that, while we focus
on BIC upper bounds in this work, the deletion rule is in
principle independent of the used scoring function, as long
as an effective upper bound S0 ≤ S∗ can be specified.

3.5 LOOKAHEAD

The upper bound of Section 3.2 can be computed directly
for a given node without entering the recursion. However,
we can tighten the bound, if we do enter the recursion for
one or more steps, in effect, performing a lookahead on
the data. To this end, for all nodes V and number of steps
q = 1, . . . , d− `(V), define

Sq(V) := max
{C1,...,Cr}
partition of Ω

r∑

i=1

Sq−1(CiV) , (13)

with S0(V) being the base case of a flat upper bound.

Proposition 4 (Lookahead bound). For all V ∈ V and
q = 1, . . . , d− `(V), it holds that

S∗(V) ≤ Sq(V) ≤ S0(V) . (14)

Using the lookahead bound with large q does constitute a
substantial computational effort. If q = d−`(V), the bound
matched the optimal score and, in essence, is obtained by
traversing through all possible PCT subtrees. Hence, the
choice of q is critical in order to obtain a trade-off between

gained savings and additional invested effort in relation to
the flat bound.

One possibility to cope with that issue is to dynamically
increase q, i.e., to first test whether pruning on flat upper
bounds S0 is possible. If this is not the case, q is increased
by one, up to the maximal value of d− `(V). However, in
this work we refrain from exploring this procedure in full,
as in our preliminary studies one-step lookahead (q = 1)
turned out to perform the best in the vast majority of cases.

3.6 FINAL ALGORITHM

We combine the presented ideas using pseudo code. Con-
sider first the task of computing, for all nonempty subsets
B ⊆ Ω, the maximum total score over all partitions of B,
in other words, the set function f ′ for a given set function
f , as defined in Eq. 11. The procedure MAX-PART given
below completes this task based on the recurrence in Eq. 12.

MAX-PART(f)

1 g [∅]← 0
2 for each ∅ ⊂ B ⊆ Ω in quasi-lexicographical order
3 do g [B]← −∞
4 for each ∅ ⊂ C ⊆ B
5 do g [B]←max{g [B], f [C]+g [B\C]}
6 return g

The main algorithm, given below as procedure MAX-PCT,
calls MAX-PART(f) both with exact scores and with up-
per bounds, as specified by the argument f . The call
MAX-PCT(V) returns the optimal score S∗(V). We thus
obtain the maximum score over all PCTs of depth d by
calling MAX-PCT(Λ).

MAX-PCT(V)

1 score ← L(V)−K
2 if `(V) < d and score < SBIC

0 (V)
3 then s[Ω]← MAX-PCT(ΩV)
4 for each ∅ ⊂ B ⊆ Ω
5 do u[C]← SBIC

q (CV)
6 u ′ ← MAX-PART(u)
7 for each ∅ ⊂ B ⊆ Ω
8 do s[C]← −∞
9 if u[C] + u ′[Ω \ C] > s[Ω]

10 then s[C]←MAX-PCT(CV)
11 s ′ ← MAX-PART(s)
12 score ← s ′[Ω]
13 return score

3.7 INCORPORATING MEMOIZATION

While we omitted it for the sake of simplicity in the
pseudocode, incorporating the memoization technique of
Eggeling et al. (2015a) into the proposed algorithm is
straightforward.
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We can add a test that checks whether the index set I(V)
has already occurred with some other node at the same depth
directly when entering the function. If the test is positive,
the score is re-used and the rest of the function is skipped.
If the test is negative, the score is stored in a hash data
structure at the end of the function with the current data
subset (index set) and the depth of the node as key.

4 CASE STUDIES

In the empirical part of this work, we evaluate the ef-
fect of the proposed pruning techniques using a Java-
implemententation based on the Jstacs library (Grau et al.,
2012). We focus on the metric of visited nodes in the ex-
tended PCT, which includes all created nodes, included
those used only for look-ahead computations. In addition,
we also measure the elapsed running time. We consider
the problem of modeling DNA binding sites of regulatory
proteins such as transcription factors, which constitutes one
established application of PCTs.

4.1 DATA AND PREDICTION STUDY

A data set of DNA binding sites consists of short sequences
of the same length over the alphabet Ω = {A,C,G, T} that
are considered to be recognized by the same DNA-binding
protein. We use 25 data sets, which all show at least some
degree of statistical dependence among sequence positions,
from the publicly available data base JASPAR (Mathelier
et al., 2013). The data sets differ in sequence length L from
10 to 21 symbols, in the sample size N from 156 to 3629
sequences, and in the strength of the signal.

To exhibit the general properties of this data, we perform a
prediction experiment based on the model class and learn-
ing framework of Eggeling et al. (2014), which makes a
position-specific use of PCTs. We perform a leave-one-out
cross-validation for different PCT depths d ∈ {0, . . . , 6}
and compute the mean log predictive probability over the
test sequences from all iterations. We aggregate the result-
ing 7× 25 mean log predictive probabilities in two different
ways and visualize the results in Figure 3. First, we check
for each data set, which d yields the highest predictive prob-
ability, and in case that several depths share rank one (which
can happen if all subtrees below a certain depth are mini-
mal), we note the smallest d. Second, we average the mean
log predictive probabilities for each d over all 25 data sets.

We observe that all data sets contain indeed statistical depen-
dencies to some degree, since d = 0 is never the best choice,
and increasing d yields – on average – an increased predic-
tive performance, though the magnitude of improvement
decreases gradually. This indicates that (i) the used BIC
score for PCT optimization works reasonably well in order
to avoid overfitting, and (ii) the data sets have a non-trivial
structure so that the optimization problem is hard.
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Figure 3: Prediction study. We show the results of a leave-
one-out cross validation. Green bars indicate for how many
data sets a certain PCT depth d is the smallest depth that
yields an optimal prediction. The blue line shows the aver-
age predictive performance over all data sets as a function
of d.

4.2 ONE DATA SET IN DETAIL

Next, we consider a single data set and investigate the effec-
tiveness of the pruning rule in relation to the basic algorithm
and to the memoization technique of Eggeling et al. (2015a).
We focus on the DNA-binding protein CTCF (Kim et al.,
2007), where the corresponding JASPAR data set consists
of N = 908 sequences of length L = 19.

Figure 4a shows for this data set the sequence logo (Schnei-
der & Stephens, 1990), which is a common visualization
of the marginal distribution of the individual sequence posi-
tions. For each position, the four possible symbols are scaled
relative to the marginal probability p = (pA, pC, pG, pT) and
the height of the symbol stack is scaled by 2−H(p) (which
is often called information content), with H denoting the
Shannon entropy in bits. Figure 4b shows the fraction of the
visited nodes in the extended PCT of depth 5 for the pruning
technique, the memoization technique, and the combination
of both in relation to the basic algorithm.

We observe that pruning is effective in particular at positions
where the marginal distribution of the response variable is
far from uniform, with clear examples being position 10 and
position 13. In fact, the correlation coefficient between the
information content of the response variable and the com-
mon logarithm of fraction of visited nodes using the pruning
rule in relation to the basic algorithm amounts −0.821. For
memoization, a similar effect occurs, but here marginal
distributions of the explanatory variables are the deciding
factor: the largest saving occurs at position 14, where highly
informative positions 10 and 13 are in the context.
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Figure 4: Detailed result for CTCF data set. Subfigure (a)
shows the position-specific marginal nucleotide frequencies
for each position in the sequence. Subfigure (b) shows
the fraction of visited nodes required for PCT optimization
(d = 5) for every sequence position j = 6, . . . , 19, and
for the three algorithmic variants in relation to the basic
algorithm.

We summarize that the empirical performance does indeed
satisfy the theoretical expectations: While memoization ex-
ploits regularities in the realizations of the explanatory vari-
ables, the pruning rules exploit regularity in the response
variable, and the effect of the latter is often, though not
always, greater. Combining both techniques generally re-
sembles the sole application of pruning, albeit additional
savings due to memoization do occur.

4.3 BROADER STUDY

We now take a broader view by considering all data sets.
Given a PCT depth d, we (i) average the number of visited
nodes and the absolute running times for each data set over
all sequence positions, and (ii) take the median of average
visited nodes and average running times over all data sets.
The results are displayed for d = 3, . . . , 6 in Figure 5, and
confirm the observations made for a single data set in the
previous section: Pruning outperforms memoization, yet the
combination of both techniques yields the largest overall
effect.

However, we observe a striking divergence between savings
in terms of visited nodes in the extended PCT as displayed
in Figure 5a and the improvements in terms of running times
as displayed in Figure 5b. Whereas the savings in the first
case are up to two orders of magnitude, the absolute running
time yields a smaller improvement of roughly one order of
magnitude for PCTs of d = 5.
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Figure 5: Aggregated results for all four algorithmic
variants. For each data set, we average the visited nodes
and running times over all sequence positions. We then
plot (a) the median number of visited nodes and (b) median
running times over all data sets.
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Figure 6: Effect of sample size on savings ratio for prun-
ing algorithm. For all 25 data sets, for d = {4, 6}, we plot
Φ(d) of Eq. 15 against the sample size N .

In order to investigate this issue further, we measure how
strong the runtime reduction deviates from the reduction
in terms of visited nodes. Let VN(d) denote the number
of visited nodes in the extended PCT for finding an opti-
mal PCT of depth d using the pruning technique, and let
RT(d) denote the corresponding running time. Let further
VNbasic(d) and RTbasic(d) denote the same quantities for
the basic algorithm. We define

Φ(d) =
VN(d)× RTbasic(d)

VNbasic(d)× RT(d)
, (15)

which yields a value of 1, if the savings in visited nodes are
translated one-to-one into savings in running times, and a
value smaller than 1, if savings in terms of visited nodes
are larger. Next, we plot Φ(4) and Φ(6) for each data set
against the sample size (Figure 6).
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We observe a correlation between Φ and sample size: for
small data sets the discrepancy between running time and
visited nodes is smaller than for larger data sets, which is
beneficial since the statistical efficiency of PCTs is relevant
in particular for small data settings. The one outlier in the
plot at sample size close to 1000 where the Φ(6) is clearly
off belongs to a highly-regular data set where pruning is so
effective that reading the data and initializing all data struc-
tures becomes the dominating factor, albeit requiring only
few milliseconds in absolute terms. Ignoring that outlier
and extrapolating Φ in Figure 6 to a hypothetical sample
size of zero, it appears that savings in running times and
visited nodes could match.

To explain this behavior, we have to reconsider the theoreti-
cal expectations of the running time of the basic algorithm
(Section 2.2). It assumes the work to be performed in each
inner node to be dominated by the alphabet partitioning
problem and thus constant for a fixed Ω. For small |Ω|,
however, data-management operations, such as determining
I(CV) given I(V), become a significant factor. Unlike
alphabet partitioning, data-management is not equally de-
manding within each node: Nodes close to the root match
on average more data points than nodes close to the leaves.
Moreover, assuming the siblings in the extended PCT are
ordered quasi-lexicographically as in the example of Fig-
ure 1a, we observe that the right half of the extended PCT
(or any subtree of it) matches on average more data points
than the left half. However, the subtrees of the extended
PCT not traversed explicitly due to the pruning or memo-
ization technique are predominantly the subtrees that match
comparably few data points, which explains why the sav-
ings in visited nodes do not directly translate into the same
saving factors for running times.

5 CONCLUDING REMARKS

We have investigated a bound-and-prune approach to finding
a maximum-score parsimonious context tree (PCT). Specifi-
cally, we derived local score upper bounds for the BIC score,
with an option for a few-step lookahead, and we presented
two pruning rules: a stopping rule and a deletion rule.

Empirical results on DNA binding site data showed that
pruning alone, which essentially exploits regularities in the
response variable, is slightly more effective than the memo-
ization technique of Eggeling et al. (2015a), which exploits
regularities in the explanatory variables. While the com-
bination of pruning and memoization runs an about order-
of-magnitude faster, it partially inherits the large memory
requirements of memoization; however, pruning does re-
duce the memory requirement, too, as a smaller number of
subproblems need to be solved explicitly. These finding
suggest that pruning should always be included, and memo-
ization can be added to gain further speedups provided that
memory consumption is not an issue.

While we have restricted our attention to learning PCTs and
to the BIC score, we believe many of the presented ideas
are applicable more generally. First, the BIC score can,
in principle, be replaced by any other scoring function for
which good upper bounds similar to Proposition 1 can be
established. Second, the techniques should easily extend to
learning decision trees with many categorical explanatory
variables. Third, the bound-and-prune approach might be
effective also in expediting other algorithms that are based
on recursive set partitioning, like the one by Kangas et al.
(2014) for learning chordal Markov networks.
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Abstract

Learning the influence structure of multiple time
series data is of great interest to many disciplines.
This paper studies the problem of recovering the
causal structure in network of multivariate linear
Hawkes processes. In such processes, the occur-
rence of an event in one process affects the prob-
ability of occurrence of new events in some other
processes. Thus, a natural notion of causality ex-
ists between such processes captured by the sup-
port of the excitation matrix. We show that the
resulting causal influence network is equivalent
to the Directed Information graph (DIG) of the
processes, which encodes the causal factorization
of the joint distribution of the processes. Further-
more, we present an algorithm for learning the
support of excitation matrix of a class of multi-
variate Hawkes processes with exponential excit-
ing functions (or equivalently the DIG). The per-
formance of the algorithm is evaluated on syn-
thesized multivariate Hawkes networks as well
as a stock market and MemeTracker real-world
dataset.

1 INTRODUCTION

In many disciplines, including biology, economics, social
sciences, and computer science, it is important to learn the
structure of interacting networks of stochastic processes. In
particular, succinct representation of the causal interactions
in the network is of interest.

A lot of studies in the causality fields focus on causal dis-
covery from time series. To find causal relations from
time series, one may fit vector autoregressive models on
the time series, or more generally, evaluate the causal in-
fluences with transfer entropy [22] or directed information
[19]. This paper considers learning causal structure for a
specific type of time series, multivariate linear Hawkes pro-
cess [8]. Hawkes processes were originally motivated by

the quest for good statistical models for earthquake occur-
rences. Since then, they have been successfully applied to
seismology [15], biology [21], criminology [13], compu-
tational finance [5, 12, 14], etc. It is desirable to develop
specific causal discovery methods for such processes and
study the properties of existing methods in this particular
scenario.

In multivariate or mutually exciting point processes, occur-
rence of an event (arrival) in one process affects the con-
ditional probability of new occurrences, i.e., the intensity
function of other processes in the network. Such inter-
dependencies between the intensity functions of a linear
Hawkes process are modeled as follows: the intensity func-
tion of processes j is assumed to be a linear combination
of different terms, such that each term captures only the ef-
fects of one other process (See Section 2.1). Therefore, a
natural notion of functional dependence (causality) exists
among the processes in the sense that in linear mutually
exciting processes, if the coefficient pertaining to the ef-
fects of process i is non-zero in the intensity function of
process j, we know that process i is influencing process j.
This dependency is captured by the support of the excita-
tion matrix of the network. As a result, estimation of the
excitation (kernel) matrix of multivariate processes is cru-
cial both for learning the structure of their causal network
and for other inference tasks and has been the focus of re-
search. For instance, maximum likelihood estimators were
proposed for estimating the parameters of excitation matri-
ces with exponential and Laguerre decay in [16, 25]. These
estimators depend on existence of i.i.d. samples. However,
often we do not have access to i.i.d. samples when analyz-
ing time series. Second-order statistics of the multivariate
Hawkes processes were used to estimate the kernel matrix
of a subclass of multivariate Hawkes processes called sym-
metric Hawkes processes [1]. Utilizing the branching prop-
erty of the Hawkes processes, an expectation maximization
algorithm was proposed to estimate the excitation matrix in
[10].

We aim to investigate efficient approaches to estimation of
excitation matrix of Hawkes processes from time series that
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does not require i.i.d. samples and investigate how the con-
cept of causality in such processes is related to other estab-
lished approaches to analyze causal effects in time series.

1.1 SUMMARY OF RESULTS AND
ORGANIZATION

Our contribution in this paper is two fold. First, we prove
that for linear multivariate Hawkes processes, the causal re-
lationships implied by the excitation matrix is equivalent to
a specific factorization of the joint distribution of the sys-
tem called minimal generative model. Minimal generative
models encode causal dependencies based on a generalized
notion of Granger causality, measured by causally condi-
tioned directed information [20]. One significance of this
result is that it provides a surrogate to directed informa-
tion measure for capturing causal influences for Hawkes
processes. Thus, instead of estimating the directed infor-
mation, which often requires estimating a high dimensional
joint distribution, it suffices to learn the support of the exci-
tation matrix. Our second contribution is indeed providing
an estimation method for learning the support of excitation
matrices with exponential form using second-order statis-
tics of the Hawkes processes.

Our proposed learning approach, in contrast with the pre-
vious work [1, 24], is not limited to symmetric Hawkes
processes. In a symmetric Hawkes process, it is assumed
that the Laplace transform of the excitation matrix can be
factored into product of a diagonal matrix and a constant
unitary matrix. Moreover, it is assumed that the expected
values of all intensities are the same. A numerical method
to approximate the excitation matrix from a set of coupled
integral equations was recently proposed in [3]. Our ap-
proach is based on an exact analytical solution to find the
excitation matrix. Interestingly, the exact approach turns
out to be both more robust and less expensive in terms of
complexity compared to the numerical method of [3].

The rest of this paper is organized as follows. Background
material, some definitions, and the notation are presented
in Section 2. Specifically, therein, we formally introduce
multivariate Hawkes processes and directed information
graphs. In Section 3, we establish the connection between
the excitation matrix and the corresponding DIG. In Sec-
tion 4, we propose an algorithm for learning the excita-
tion matrix or equivalently the DIG of a class of stationary
multivariate linear Hawkes processes. Section 5 illustrates
the performance of the proposed algorithm in inferring the
causal structure in a network of synthesized mutually excit-
ing linear Hawkes processes and in stock market. Finally,
we conclude our work in Section 6.

2 PRELIMINARY DEFINITIONS

In this Section we review some basic definitions and our
notation. We denote random processes by capital let-

ters and a collection of m random processes by X [m] =
{X1, ..., Xm}, where [m] := {1, ...,m}. We denote the ith
random process at time t by Xi(t), the random process Xi

from time s up to time t by Xt
i,s, and a subset K ⊆ [m] of

random process up to time t byXt
K. The Laplace transform

and Fourier Transform of Xi are denoted, respectively by

L[Xi](s) =

∫ ∞

0

Xi(t)e
−stdt, (1)

F [Xi](ω) =

∫ ∞

−∞
Xi(t)e

−jωtdt,

where j =
√
−1. The convolution between two functions

f and g is defined as f ∗ g(t) :=
∫
R f(x)g(t − x)dx. The

joint distribution of processes {Xn
1 , ..., X

n
m} is represented

by PX(n).

2.1 MULTIVARIATE HAWKES PROCESSES

Fix a complete probability space (Ω,F , P ). Let N(t)
denotes the counting process representing the cumulative
number of events up to time t and let {F t}t≥0 be a set
of increasing σ-algebras such that F t = σ{N t}. The non-
negative,F t-measurable process λ(t) is called the intensity
of N(t) if

P (N(t+ dt)−N(t) = 1|F t) = λ(t)dt+ o(dt).

A classical example of mutually exciting processes, a mul-
tivariate Hawkes process [8], is a multidimensional process
N(t) = {N1, ..., Nm} such that for each i ∈ [m]

P
(
dNi(t) = 1|F t

)
= λi(t)dt+ o(dt), (2)

P (dNi(t) > 1|F t) = o(dt),

where F t = σ{N t}. The above equations imply that
E[dNi(t)/dt|F t] = λi(t). Furthermore, the intensities are
all positive and are given by

λi(t) = vi +

m∑

k=1

∫ t

0

γi,k(t− t′)dNk(t′). (3)

The exciting functions γi,k(·)s are in `1 such that λi(t) ≥ 0
for all t > 0. Equivalently, in matrix representation:

Λ(t) = v +

∫ t

0

Γ(t− t′)dN(t′), (4)

where Γ(·) denotes an m × m matrix with entries γi,j(·);
dN,Λ(·), and v are m × 1 arrays with entries dNi, λi(·),
and vi, respectively. Matrix Γ(·) is called the excitation
(kernel) matrix. Figure 1 illustrates the intensities of a
multivariate Hawkes process comprised of two processes
(m = 2) with the following parameters

v =

(
0.5
0.4

)
, Γ(t) =

(
0.1e−t 0.3e−1.1t

0.5e−0.9t 0.3e−t

)
u(t),

where u(t) is the unit step function.
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Figure 1: Intensities of the multivariate Hawkes process.

Assumption 1 A joint distribution is called positive (non-
degenerate), if there exists a reference measure φ such that
PX � φ and dPX

dφ > 0, where PX � φ denotes that PX is
absolutely continuous with respect to φ1.

Note that the Assumption 1 states that none of the processes
is fully determined by the other processes.

2.2 CAUSAL STRUCTURE

A causal model allows the factorization of the joint distri-
bution in some specific ways. Generative model graphs are
a type of graphical model that similar to Bayesian networks
[17] represent a causal factorization of the joint [19]. More
precisely, it was shown in [19] that under Assumption 1,
the joint distribution of a causal2 discrete-time dynamical
system with m processes can be factorized as follows,

PX =
m∏

i=1

PXi||XBi
, (5)

where B(i) ⊆ −{i} is the minimal3 set of processes that
causes process Xi, i.e., parent set of node i in the corre-
sponding minimal generative model graph. Such factoriza-
tion of the joint distribution is called minimal generative
model. In Equation (5),

PXi||XBi
:=

n∏

t=1

PXi(t)|Ft−1
B∪{i}

,

and F t−1
B∪{i} = σ{Xt−1

B∪{i}}.

1A measure PX on Borel subsets of the real line is absolutely
continuous with respect to measure φ if for every measurable set
B, φ(B) = 0 implies PX(B) = 0.

2In causal systems, given the full past of the system, the
present of the processes become independent.

3Minimal in terms of its cardinality.

X1

X2

X3

ss

++ ��

Figure 2: Minimal generative model graph of Example 1.

Extending the definition of generative model graphs
to continuous-time systems requires some technicalities
which are not necessary for the purpose of this paper.
Hence we illustrate the general idea through an example.

The following example demonstrates the minimal genera-
tive model graph of a simple continuous-time system.

Example 1 Consider a dynamical system in which the pro-
cesses evolve over time horizon [0, T ] through the following
coupled differential equations:

dX1 = f(X1, X2)dt+ dW,

dX2 = g(X2)dt+ dU,

dX3 = h(X1, X2, X3)dt+ dV,

where W,U and V are independent exogenous noises. For
small time dt, this becomes,

dX1(t+ dt) ≈ ∆f(X1(t), X2(t)) + dW (t),

dX2(t+ dt) ≈ ∆g(X2(t)) + dU(t),

dX3(t+ dt) ≈ ∆h(X1(t), X2(t), X3(t)) + dV (t).

(6)

In this example, since the system is causal, the correspond-
ing joint distribution can be factorized as follows,

PX =
3∏

j=1

∏

k≥0

PXj(T−kdt)|FT−(k+1)dt , (7)

where FT−(k+1)dt = σ{XT−(k+1)dt
{1,2,3} }. Due to (6), we can

rewrite (7) as

PX = PX1||X2
PX2

PX3||X1,X2
. (8)

Figure 2 demonstrates the corresponding generative model
graph of the factorization in (8).

In general, the joint distribution of a causal dynamical sys-
tem can be factorized as PX =

∏m
i=1 PXi||XBi

, where
B(i) ⊆ −{i} is the parent set of node i in the correspond-
ing minimal generative model graph, and

PXi||XBi
=
∏

k≥0

P
Xi(T−kdt)|FT−(k+1)dt

Bi

.

3 TWO EQUIVALENT NOTATIONS OF
CAUSALITY FOR HAWKES
PROCESSES

In linear multivariate Hawkes processes, a natural notion
of causation exists in the following sense: if γi,j 6= 0, then
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occurrence of an event in jth process will affect the likeli-
hood of the arrivals in ith process. Next, we establish the
relationship between the excitation matrix of multivariate
Hawkes processes and their generative model graph. To do
so, first, we discuss the equivalence of directed informa-
tion graphs and generative models graphs which was estab-
lished in [20].

3.1 DIRECTED INFORMATION GRAPHS (DIGs)

An alternative graphical model to encode statistical interde-
pendencies in stochastic causal dynamical systems are di-
rected information graphs (DIGs) [19]. Such graphs are de-
fined based on an information-theoretic quantity, directed
information (DI) that generalizes the Granger causality and
it was shown in [20] that under some mild assumptions,
they are equivalent to the minimal generative model graphs.
Hence, DIGs also represent a minimal factorization of the
joint distribution.

In a DIG, to determine whether Xj causes Xi over a time
horizon [0, T ] in a network of m random processes, two
conditional probabilities are compared in KL-divergence
sense: one is the conditional probability ofXi(t+dt) given
full past, i.e., F t := σ{Xt} and the other one is the con-
ditional probability of Xi(t+ dt) given full past except the
past of Xj , i.e., F t−{j} := σ{Xt

−{j}}. It is declared that
there is no influence from Xj on Xi, if the two conditional
probabilities are the same. More precisely, there is an in-
fluence from Xj on Xi if and only if the following directed
information measure is positive [19],

IT (Xj → Xi||X−{i,j}) := inf
t∈T (0,T )

Ĩt(Xj → Xi||X−{i,j}),
(9)

where−{i, j} := [m]\{i, j}, T denotes the set of all finite
partitions of the time interval [0, T ] [23], and

Ĩt(Xj → Xi||X−{i,j}) :=
n∑

k=0

I
(
Xtk
i,tk−1

;Xtk
j,0|F

tk−1

−{j}

)
,

where t := (0 = t0, t1, ..., tn = T ). Finally, I(X;Y |Z)
represents the conditional mutual information between X
and X given Z and it is given by

I(X;Y |Z) := EPX,Y,Z

[
log

dPX|Y,Z
dPX|Z

]
.

3.2 EQUIVALENCE BETWEEN GENERATIVE
MODEL GRAPHS AND SUPPORT OF
EXCITATION MATRIX

As mentioned earlier, the corresponding minimal genera-
tive model graph and the DIG of a causal dynamical sys-
tem are equivalent. Thus, to characterize the corresponding
minimal generative model graphs of a multivariate Hawkes
system, we study the properties of its corresponding DIG.

Proposition 1 Consider a set of mutually exciting pro-
cesses N with excitation matrix Γ(t). Under Assumption
1, IT (Nj → Ni||N−{i,j}) = 0 if and only if γi,j ≡ 0 over
time interval [0, T ].

Proof: See Section 7.1. �
Proposition 1 signifies that the support of the excitation ma-
trix Γ(·) determines the adjacency matrix of the DIG and
vice versa. Therefore, learning DIG of a mutually exciting
Hawkes processes satisfying Assumption 1 is equivalent to
learning the excitation matrix given samples from each of
the processes. In other word, in the presence of side infor-
mation that the processes are Hawkes, it is more efficient
to learn the causal structure through learning the excita-
tion matrix rather than the directed information needed for
learning the DIG in general.

4 LEARNING THE EXCIATIONA
MATRIX

In this section, we present an approach for learning the
causal structure of a stationary Hawkes network with ex-
ponential exciting functions through learning the excitation
matrix. This method is based on second order statistic of
the Hawkes processes and it is suitable for the case when
no i.i.d. samples are available. Note that when i.i.d. sam-
ples are available, non-parametric methods for learning the
excitation matrix such as MMEL algorithm [25] exist. In
this approach the exciting functions are expressed as linear
combination of a set of base kernels and a penalized like-
lihood is used to estimate the parameters of the model. As
mentioned earlier, we focus on learning the excitation ma-
trix of multivariate Hawkes processes with exponential ex-
citing functions. This class of Hawkes processes has been
widely applied in many areas such as seismology, criminol-
ogy, and finance [15, 21, 13, 5].

Definition 2 The excitation matrix of a multivariate
Hawkes processes with exponential exciting functions is de-
fined as follows

E xp(m) := {
D∑

d=1

Ade
−βdtu(t) : Ad ∈ Rm×m,

(
D∑

d=1

Ade
−βdt)i,j ≥ 0, ρ(

D∑

d=1

Ad
βd

) < 1, D ∈ N}, (10)

where {βd} > 0 is called the set of exciting modes.

Example 2 Consider a set ofm = 5 mutually exciting pro-
cesses with the following exponential excitation matrix
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Figure 3: Corresponding DIG of the network in Example 2
with the excitation matrix given by (11)




2 0 0 0 0
0 0 .5 0 0
0 1.5 0 0 0
0 0 0 1.3 0
0 0 0 0 1


 e−t

20
+




0 0 .5 0 0
0 0 0 0 2
0 1 0 2.5 0
.1 0 0 0 0
0 0 0 1 0


 e−1.4t

20

+




1 1.5 1 0 0
0 0 0 0 −1
0 0 2 0 0
2 0 0 0 0
0 0 0 0 0


 e−2t

20
(11)

In this example D = 3 and the exciting modes are
{1, 1.4, 2}. By Proposition 1, the adjacency matrix of the
corresponding DIG of this network is given by the support
of its excitation matrix. Figure 3 depicts the corresponding
DIG.

Before describing our algorithm, we need to derive some
useful properties of moments of the process. A multivariate
Hawkes process with the excitation matrix Γ has stationary
increments, i.e., the intensity processes is stationary, if and
only if the following assumption holds [8, 6]:

Assumption 2 The spectral radius (the supremum of the
absolute values of the eigenvalues) of the matrix Γ, where
[Γ]i,j = ||γi,j ||1 is strictly less than one, i.e., ρ(Γ) < 1.

In this case, from (4) and Equation (2):

Λ = E[Λ(t)] = v +

∫ t

0

Γ(t− t′)E[dN(t′)]

= v +

∫ t

0

Γ(t− t′)Λdt′ = v + ΓΛ. (12)

By Assumption 2,
∑
i≥0 Γ

i
converges to (I − Γ)−1, thus

Λ = (I − Γ)−1v. The normalized covariance matrix of
a stationary multivariate Hawkes process with lag τ and
window size z > 0 is defined by

Σz(τ) :=
1

z
E
[∫ t+z

t

dN(x)

∫ t+τ+z

t+τ

(dN(y))T
]
−ΛΛT z,

(13)
where

∫ t+t′
t

dN(x) denotes the number of events in time
interval (t, t+ t′].

Theorem 3 [1] The Fourier transform of the normalized
covariance matrix of a stationary multivariate Hawkes pro-
cess with lag τ and window size z > 0 is given by

F [Σz](−ω) (14)

= 4
sin2 zω/2

ω2z
(I −F [Γ](ω))

−1
diag(Λ) (I −F [Γ](ω))

−†
,

where A† denotes the Hermitian conjugate of matrix A,
and diag(Λ) is a diagonal matrix with vector Λ as the main
diagonal.

In order to learn the excitation matrix with exponential
exciting functions, we need to learn the exciting modes
{βd}, the number of components D, and coefficient matri-
ces {Ad}. Next results establishes the relationship between
the exciting modes and the number of components D with
the normalized covariance matrix of the process.

Corollary 4 Consider a network of a stationary multivari-
ate Hawkes processes with excitation matrix Γ(t) belong-
ing to Exp(m). Then the exciting modes of Γ(t) are the
absolute values of the zeros of 1/TrF [Σz]

−1(ω).

Proof: See Section 7.2. �
Next, we need to find the coefficient matrices {Ad}. To
do so, we use the covariance density of the processes. The
covariance density of a stationary multivariate Hawkes pro-
cess for τ > 0 is defined as [8]

Ω(τ) := E
[
(dN(t+ τ)/dt− Λ)(dN(t)/dt− Λ)T

]
.

(15)
Since the processes have stationary increments, we have
Ω(−τ) = ΩT (τ).

Lemma 5 [8]

Ω(τ) = Γ(τ)diag(Λ) + Γ ∗ Ω(τ), τ > 0. (16)

It has been shown in [3] that the above equation admit a
unique solution for Γ(τ). Next proposition provides a sys-
tem of linear equations that allows us to learn the coeffi-
cient matrices.

Proposition 6 Consider a network of a stationary multi-
variate Hawkes processes with excitation matrix Γ(t) ∈
Exp(m), and exciting modes {β1, ..., βD}. Then {Ad} are
a solution of the linear system of equations: S = AH,
where Hm2×m2 is a block matrix with (i, j)th block given
by

Hi,j =
diag(Λ) + L[Ω](βj) + L[Ω]T (βi)

βj + βi
,

and A = [A1, ..., AD] and S = [L[Ω](β1), ...,L[Ω](βD)].

Proof: See Section 7.3.�
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Combining the results of Corollary 4 and Proposition 6 al-
lows us to learn the excitation matrix of exponential multi-
variate Hawkes processes from the second order moments.
Consequently applying Proposition 1, the causal structure
of the network can be learned by drawing an arrow from
node i to j, when

∑D
d=1 |(Ad)j,i| > 0.

4.1 ESTIMATION AND ALGORITHM

This section discusses estimators for the second order mo-
ments, namely the normalized covariance matrix and the
covariance density of a stationary multivariate Hawkes pro-
cesses from data. Once such estimators are available, the
approach of previous section maybe used to learn the net-
work. The most intuitive estimator for Λ defined by Equa-
tion (12) is N(T )/T . It turns out that this estimator con-
verges almost surely to Λ as T goes to infinity [2]. Further-
more, [2] proposes an empirical estimator for the normal-
ized covariance matrix as follows

Σ̂z,T (τ) :=
1

T

bT/zc∑

i=1

(Xiz −X(i−1)z)(Xiz+τ −X(i−1)z+τ )T ,

(17)
where Xt := N(t) − Λt. In the same paper, it has
been shown that under Assumption 2, the above estima-
tor converges in `2 to the normalized covariance matrix
(13), i.e., Σ̂z,T (τ) −→

T→∞
Σz(τ). Notice that the normal-

ized covariance matrix and the covariance density are re-
lated by Σdt(τ)/dt = ΩT (τ). Therefore, we can esti-
mate the covariance density matrix using Equation (17)
by choosing small enough window size z = ∆. Namely,
Ω̂T∆(τ) = Σ̂∆(τ)/∆.

Algorithm 1
1: Input : NT .
2: Output : DIG.
3: Λ̂← N(T )/T
4: Choose σ > 0, z > 0, and small ∆ > 0.
5: Compute Σ̂z,T (τ) and Ω̂∆(τ) using (17).
6: {β̂d}D̂d=1 ← Zeros of 1/TrF [Σz]

−1(ω).
7: Compute L[Ω̂∆](β̂d) for d = 1, ..., D̂.
8: Solve the set of equations arises from (20) for Âd.
9: Draw (j, i) if

∑D̂
d=1 |(Âd)i,j | ≥ σ.

Algorithm 1 summarizes the steps of our proposed ap-
proach for learning the excitation matrix and consequently
the causal structure of an exponential multivariate Hawkes
process.

5 EXPERIMENTAL RESULTS

In this section, we present our experimental results for both
synthetic and real data.
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Figure 5: True causal structure of the synthesized example.

5.1 SYNTHETIC DATA

We apply the proposed algorithms to learn the causal struc-
ture of the multivariate Hawkes network of Example 2 with
v = (0.5, 0.4, 0.5, 1, 0.3)T . This network satisfies As-
sumption 2, since ρ(Γ) ≈ 0.16. The exciting modes are
{1, 1.4, 2}. We observed the arrivals of all processes dur-
ing a time period T . Figure 4 depicts the outputs of al-
gorithms 1 for ∆ = 0.2, z = 2, and observation lengths
T ∈ {1000, 2100}. As illustrated in Figure 4, by increas-
ing the length of observation T , the output graph converges
the true DIG shown in Figure 3. As a comparison, we ap-
plied the MMEL algorithm proposed in [25] to learn the ex-
citation matrix for this example and the numerical method
based on Nystrom method proposed in [3] with T = 2100
and the number of quadrature Q = 70. Since MMEL re-
quires i.i.d. samples, we generate 35 i.i.d. samples each of
length 60 to obtain Figure 4(MMEL). Our proposed algo-
rithm outperforms both MMEL and the numerical method
of [3].

Furthermore, we conducted another experiment for a net-
work of 15 processes with 102 edges illustrated in Figure
5. For a sample of length T = 2500, our algorithm was
able to recover 70 edges correctly but identified 34 false ar-
rows. MMEL could only recover 58 arrows correctly while
detecting another 41 false arrows. The input for MMEL
was 25 sequences each of length 100.

5.2 STOCK MARKET DATA

As an example of how our approach may discover causal
structure in real-world data, we analyzed the causal rela-
tionship between stock prices of 12 technology companies
of the New York Stock Exchange sourced from Google Fi-
nance. The prices were sampled every 2 minutes for twenty
market days (03/03/2008 - 03/28/2008). Every time a stock
price changed by ±1% of its current price an event was
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Figure 4: Recovered DIG of the network in Example 2 with the excitation matrix given by (11), (a), (b) Algorithm 1 with
∆ = 0.2, z = 2, and T ∈ {1000, 2100}, (c) the numerical method of [3] with Q = 70 and T = 2100, and (d) MMEL with
35 i.i.d. samples each of length 60. Our approach learns the graph with T = 2100, while other approaches fail at the same
sample size.
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Figure 6: Causal structures for the S&P (a) using Algorithm 1, (b) by estimating the directed information DIG, and (c)
using MMEL algorithm.

logged on the stock’s process. In order to prevent the sub-
stantial changes in stock’s prices due to the opening and
closing of the market, we ignored the samples at the be-
ginning and at the end of each working day. For this part,
we have assumed that the jumps occurring in stock’s prices
are correlated through a multivariate Hawkes process. This
model class was advocated in [11, 2]. Figure 6(a) illustrate
the causal graph resulting from Algorithm 1, with z = 30
and ∆ = 2 minutes.

To compare our learning approach with other approaches,
we applied the MMEL algorithm to learn the correspond-
ing causal graph. For this scenario, we assumed that the
data collected from each day is generated i.i.d. Hence,
a total of 20 i.i.d. samples were used. Figure 6(c) illus-
trates the resulting graph. As one can see, Figures 6(a) and
6(c) convey pretty much a similar causal interactions in the
dataset. For instance both of these graphs suggest that one
of the most influential companies in that period of time was
Hewlett-Packard (HP). Looking into the global PC market
share during 2008, we find that this was indeed the case.4

To use another modality, we derive the corresponding DIG

4Gartner, http://www.gartner.com/newsroom/id/856712

of this network applying Equation (9). For this part, we
used the market based on the Black-Scholes model [4] in
which the stock’s prices are modeled via a set of coupled
stochastic PDEs. We assumed that the logarithm of the
stock’s prices are jointly Gaussian and therefore the cor-
responding DIs were estimated using Equation (24) in [7].
The resulting DIG is shown in Figure 6(b). Note that this
DIG is derived from the logarithm of prices and not the
jump processes we used earlier. Still it shares a lot of simi-
larities with the two other graphs. For instance, it also iden-
tifies HP as one of the most influential companies and Mi-
crosoft as one the most influenced companies in that time
period.

Alg. 1 DIG MMEL
Alg. 1 33 25 26
DIG 25 30 24
MMEL 26 24 34

This table shows the number of edges that each of the
above approaches recovers and the number of edges that
they jointly recover. This demonstrates the power of expo-
nential kernels even when data does not come from such a
model class.
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5.3 MEMETRACKER DATA

We also studied causal influences in a blogosphere. The
causal flow of information between media sites may be cap-
tured by studying hyperlinks provided in one media site to
others. Specifically, the time of such linking can be mod-
eled using a linear multivariate Hawkes processes with ex-
ponential exciting functions [25, 18]. This model is also
intuitive in the sense that after emerging a new hot topic, in
the first several days, the blogs or websites are more likely
feature that topics and it is also more likely that the topic
would trigger further discussions and create more hyper-
links. Thus, exponential exciting functions are well suited
to capture such phenomenon as the exiting functions should
have relatively large values at first and decay fast as time
elapses.

For this experiment, we used the MemeTracker5 dataset.
The data contains time-stamped phrase and hyperlink in-
formation for news media articles and blog posts from over
a million different websites. We extracted the times that
hyperlinks to 10 well-known websites listed in Table 1 are
created during August 2008 to April 2009. When a hy-
perlink to a website is created at a certain time, an arrival
events is recorded at that time. More precisely, in this ex-
periment, we picked 30 different phrases that appeared on
different websites at different times. If a website that pub-
lished one of the phrases at time t also contained a hyper-
link to one of the 10 listed websites, an arrival event was
recorded at time t for that website in our list.

Figure 7(a) illustrates the resulting causal structure learned
by Algorithm 1 for z = 12 hours and ∆ = 1 hour. In this
graph, an arrow from a node to another, say node Ye to Yo,
means creating a hyperlink to yelp.com triggers creation
of further hyperlinks to youtube.com.

We also applied the MMEL algorithm with one exponential
kernel function to learn the excitation matrix. For this ex-
periment, the data corresponding to each phrase was treated
as an i.i.d. realization of the system. The resulting causal
structure is depicted in Figure 7(b).

As Figure 7(a) illustrates, the nodes can be clustered into
two main groups: {Cr, Ye, Am, Yo} and {Bb, Cn, Gu,
Hu, Sp, Wi}. The first group consists of mainly merchan-
dise and reviewing websites and the second group contains
the broadcasting websites. However, this is not as clear in
Figure 7(b). This is because MMEL requires more i.i.d.
samples (phrases) to be able to identify the correct arrows.
Note that as we increase the number of phrases (110), Fig-
ure 7(c), both graphs become similar with two clearly visi-
ble main clusters.

5
http://memetracker.org/data/links.html

Cr craigslist.org
Ye yelp.com
Am amazon.com
Sp spiegel.de
Wi wikipedia.org
Yo youtube.com
Cn cnn.com
Gu guardian.co.uk
Hu humanevents.com
Bb bbc.co.uk

Table 1: List of websites studied in MemeTracker experi-
ment.

6 CONCLUSION

Learning the causal structure (DIG) of a stochastic network
of processes requires estimation of conditional directed in-
formation (9). Estimating this quantity in general has high
complexity and requires a large number of samples. How-
ever, the complexity of the learning task could be signif-
icantly reduced, if side information about the underlying
structure of system dynamics is available. As proved in 1,
for multivariate Hawkes processes, estimating the support
of the excitation matrix suffices to learn the associated DIG.
Therefore, all approaches for learning the excitation matrix
of the multivariate Hawkes processes such as ML estima-
tion [16, 25], EM algorithm [10], non-parametric estima-
tion techniques proposed in [2], and the proposed method
in this paper may be used to learn the causal interactions
in such networks. The previous estimation approaches ei-
ther require i.i.d. samples such as MMEL or are limited to
the class of symmetric Hawkes processes. The proposed
algorithm in this work allows us to learn the support of the
excitation matrix in a larger class of matrices in the absence
of i.i.d. samples.
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7 TECHNICAL PROOFS

7.1 Proof of Proposition 1

Suppose γi,j ≡ 0. (3) implies that for every t ≤ T , λi(t) is
F t−{j}(= σ{N t

−{j}})-measurable and from (2), we have

P
(
dNi(t) = 1|F t

)
= P (dNi(t) = 1|F t−{j}).

Equivalently, for every 0 ≤ tk−1 < tk,

I
(
N tk
i,tk−1

;N tk
j,0|F

tk−1

−{j}

)
= 0, (18)
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Figure 7: Recovered causal structure of the MemeTracker dataset using (a) Algorithm 1, (b) MMEL for 30 different
phrases, and (c) both Algorithm 1 and MMEL for 110 different phrases.

and thus, Ĩt(Nj → Ni||N−{i,j}) = 0, for any finite parti-
tion t ∈ T (0, T ).
For the converse we use proof by contradiction. Suppose
IT (Nj → Ni||N−{i,j}) = 0 and γi,j 6= 0. Using the def-
inition in (9), it is straightforward to observe that for any
t < T ,

It(Nj → Ni||N−{i,j}) = 0.

Similarly, It+dt(Nj → Ni||N−{i,j}) = 0. Consequently,

0 = It+dt(Nj → Ni||N−{i,j})− It(Nj → Ni||N−{i,j})

= I
(
dNi(t);N

t
j,0|F t−{j}

)
.

This implies P (dNi(t) = 1|F t−{j}) = λi(t)dt+ o(dt), or
λi(t) isF t−{j}-measurable. Since, we have assumed γi.j 6=
0, we obtain Nj(t) is F t−{j}-measurable, for all t ≤ T . In
words, jth process is determined by other processes which
contradicts with the Assumption 1 that states there is no
deterministic relationships between processes.

7.2 Proof of Corollary 4

If the excitation matrix belongs to Exp(m), from Equation
(14) we have
(
I −

D∑

d=1

ATd
jω + βd

)
diag(Λ)−1

(
I −

D∑

d=1

Ad
−jω + βd

)

=
4 sin2 zω/2

ω2z
F [Σz]

−1(ω).

By evaluating the trace of the above equation, we obtain

m∑

i=1

|1− ai,i|2
λi

+
∑

i6=j

|ai,j |2
λi

=
4 sin2 zω/2

ω2z
TrF [Σz]

−1(ω),

(19)

where ai,j =
∑D
d=1

a
(d)
i,j

−jω+βd
, and Ad = [a

(d)
i,j ]. To learn

the entire set {±jβd}, we have to show that there are no

pole zero cancellations in (19). That is, the nominator and
denominator of (19) have no common roots. Let

g(ω) :=




m∑

i=1

|1− ai,i|2
λi

+
∑

i 6=j

|ai,j |2
λi




D∏

d=1

|−jω+βd|2,

which is the nominator of Equation (19). It is straightfor-
ward to check that for ω = −jβk, the above quantity is
non-zero, due to the fact that βds are distinct and Ak 6= 0.
Since g(ω) is a polynomial with real coefficients, from
complex conjugate root theorem [9], we have g(jβk) 6= 0.
Therefore, the set {±jβd} contains all the poles of (19).

7.3 Proof of Proposition 6

From Lemma 5, the Laplace transform of the covariance
density can be written as

L[Ω](s) = L[Γ](s) (diag(Λ) + L[Ω](s))

+

∫ ∞

0

∫ ∞

t

Γ(t′)ΩT (t)e−s(t
′−t)dt′dt.

When Γ(t) ∈ Exp(m), it can be shown that (1) becomes

L[Ω](s) =
D∑

d=1

Ad
s+ βd

(
diag(Λ) + L[Ω](s) + L[Ω]T (βd)

)
.

(20)
If the set of exciting modes are given, we can insert s =
βd, for d = 1, . . . , D in the above equation and obtain the
system of D equations.
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Abstract

Markov Chain Monte Carlo techniques remain
the gold standard for approximate Bayesian in-
ference, but their practical issues — includ-
ing onerous runtime and sensitivity to tuning
parameters — often lead researchers to use
faster but typically less accurate determinis-
tic approximations. Here we couple the fast
but biased deterministic approximation offered
by expectation propagation with elliptical slice
sampling, a state-of-the-art MCMC method.
We extend our hybrid deterministic-MCMC
method to include recycled samples and ana-
lytical slices, and we rigorously prove the va-
lidity of each enhancement. Taken together,
we show that these advances provide an or-
der of magnitude gain in efficiency beyond ex-
isting state-of-the-art sampling techniques in
Bayesian classification and multivariate gaus-
sian quadrature problems.

1 INTRODUCTION

Exact posterior inference in Bayesian models is rarely
tractable, a fact which has prompted vast amounts of re-
search into efficient approximate inference techniques.
Deterministic methods such as the Laplace approxima-
tion, Variational Bayes, and Expectation Propagation of-
fer fast and analytical posterior approximations, but in-
troduce potentially significant bias due to their restricted
form which can not capture important characteristics of
the true posterior. Markov Chain Monte Carlo (MCMC)
methods represent the target posterior with samples,
which while asymptotically exact, can be slow, require
substantial tuning, and perform poorly when variables
are highly correlated.

Conceptually, these two techniques can be combined to

great benefit: if a deterministic approximation can cover
the true posterior mass accurately, then a subsequent
MCMC sampler should be much faster and be less sus-
ceptible to inefficiency due to correlation (as the deter-
ministic approximation would have captured this corre-
lation). To do so, however, is practically quite diffi-
cult. First, both the Laplace and Variational Bayesian
approximations fit local mass of a posterior (in Varia-
tional Bayes this is sometimes called the exclusive prop-
erty of optimizing the Kullback-Liebler divergence from
the approximation to the true posterior [Minka, 2005]).
While excellent in many situations, this property is in-
appropriate for initializing an MCMC sampler, since it
will be very difficult for that sampler to explore other ar-
eas of posterior mass (e.g., other modes). Expectation
Propagation (EP, [Minka, 2001]), on the other hand, is
typically derived as an inclusive approximation that, at
least approximately, attempts to match the global suffi-
cient statistics of the true posterior (most often the first
and second moments, producing a Gaussian approxima-
tion). Such a choice is superior for an MCMC sampler.

Secondly, we require a sensible choice of MCMC sam-
pler so as to leverage a deterministic approximation like
EP. Given an unnormalized target distribution p∗(x), we
can write:

p∗(x) = p̂(x)
p∗(x)

p̂(x)
≡ p̂(x)L̂(x),

which allows us to treat the true posterior as the product
of an effective prior p̂ and likelihood L̂. We then have
freedom to choose p̂, which we will set to be the de-
terministic (Gaussian) posterior approximation from EP.
Amongst all MCMC methods, Elliptical Slice Sampling
(ESS, [Murray et al., 2010]) handles the above reformu-
lations seamlessly. ESS has become an important and
generic method for posterior inference with models that
have a strong Gaussian prior. It inherits the attractive
properties of slice sampling generally [Neal, 2003], and
notably lacks tuning parameters that are often highly bur-
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densome in other state-of-the-art methods like Hamilto-
nian Monte Carlo (HMC; Neal [2011]). The critical ob-
servation is that, if EP provides a quality posterior ap-
proximation p̂ ≈ p∗, the likelihood term L̂ will typically
be weak, which puts ESS in the regime where it is most
efficient.

What results is a new MCMC sampler that combines
EP and ESS, is faster than state-of-the-art samplers like
HMC, and is able to explore the parameter space effi-
ciently even in the presence of strong dependency among
variables. Specifically, our contributions include:

1. In Section 2, we propose Expectation Propagation
based Elliptical Slice Sampling (EPESS) where we
justify the use of EP as the “prior” for ESS.

2. In Section 3, we investigate a method to improve
the overall run time of ESS by sampling multiple
points each iteration. It reduces the average number
of shrinkage steps giving it a computational advan-
tage. We call it Recycled ESS and integrate it with
EPESS to further increase its efficiency.

3. We extend our method to Analytic Elliptical Slice
Sampling in Section 4. As the name suggests, we
can analytically find the region corresponding to
a slice and sample uniformly from it. In addi-
tion to decorrelating samples, it offers the compu-
tational advantage of avoiding expensive shrinkage
steps. It is applicable to only a few target distribu-
tions and we illustrate it, in the context of EPESS,
for linear Truncated Multivariate Gaussian (TMG)
quadrature.

4. We offer empirical evaluation of EPESS (Sec-
tion 5), which show an order of magnitude improve-
ment over the state-of-the art MCMC methods for
TMG and probit models.

2 EXPECTATION PROPAGATION AND
ELLIPTICAL SLICE SAMPLING

In this section we introduce our combined EP and ESS
sampling method. We begin with background of the two
building blocks of this method, to place them in context
of current literature.

2.1 ELLIPTICAL SLICE SAMPLING

There are many problems where dependency between la-
tent variables is induced through a Gaussian prior, for ex-
ample in Gaussian Processes. Elliptical Slice Sampling
(ESS, [Murray et al., 2010]) is specifically designed for

efficiently sampling from such distributions and is con-
sidered state-of-the-art on these problems. ESS consid-
ers posteriors of the form

p∗(x) =
1

Z
N (x; 0,Σ)L(x) (1)

where L is a likelihood function,N (0,Σ) is a multivari-
ate Gaussian prior and Z is the normalizing constant.

ESS is a variant of slice sampling [Neal, 2003] that takes
advantage of the Gaussian prior to improve mixing time
and eliminate parameter tuning. At the beginning of each
iteration of ESS two random variables are sampled. The
first is the slice height y which is uniformly distributed
over [0,L(x)], where x is the current sample. The second
variable ν is sampled from the prior N (x; 0,Σ) and, to-
gether with the current sample x, defines an ellipse:

x′(θ) = x cos(θ) + ν sin(θ). (2)

Next, a one-dimensional angle bracket [θmin, θmax] of
length 2π is proposed containing the point θ = 0 (cor-
responding to the current point x). The bracket is then
shrunk toward θ = 0 until a point is found within the
bracket that satisfies L(x′(θ)) > y. This point is ac-
cepted as the next point in the Markov chain.

ESS is known to work well when the prior aligns with
the posterior and the likelihood is weak [Murray et al.,
2010, Section 2.5]. However, when this is not the case
then ESS can perform poorly, as we demonstrate below.

Figure 1 illustrates the problem when the prior and the
posterior do not align: here we have aN (0, I) prior with
an observed Bernoulli likelihood L(x) = 1(x ∈ A) for
some rectangle A. The posterior is a truncated Gaus-
sian within A. In this example we have placed A away
from the origin, with the result that that most of the pos-
terior density lies vertically on the left boundary of the
box. Accordingly, a good sampler should be able to make
large vertical moves to effectively explore the posterior
mass.

ν

x

A

Figure 1: ESS ellipse shown in dashed red.

As the likelihood rectangle A moves further right, the
posterior moves away from the prior. As a result most
of the points proposed on the ellipse will not lie in A, so
more shrinkage steps will be necessary until a point is
accepted, leading to an inefficient algorithm. Moving A
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further to the right also makes the ellipse more eccentric
which prevents vertical movement, resulting in further
inefficiency.

The other pathology afflicting ESS is that of strong likeli-
hoods. This happens when L(x) is extremely large in re-
gions of non-negligible posterior density. Once the sam-
pler is in such a region, only with low probability will
it be able to accept points proposed outside the region,
hence it will get stuck. This will occur, for instance,
when the prior underestimates the variance of the pos-
terior and L(x) becomes large in the tails. We refer the
reader to an extended explanation of this effect in [Nishi-
hara et al., 2014]. Indeed, this motivates our choice of
EP as a prior, since Variational Bayes and Laplace ap-
proximations are known to often underestimate posterior
variance whereas EP does not [Minka, 2005].

We address both these problems by choosing an EP prior
(Section 2.2) for ESS. How to incorporate EP into ESS
is explained in Section 2.3.

2.2 EXPECTATION PROPAGATION

Expectation Propagation (EP) is a method for finding a
Gaussian approximation q to a given distribution p∗ by it-
eratively matching local moments and then updating the
global approximation via a so-called ‘tilted’ distribution
[Minka, 2001]. At termination the distribution q will op-
timize a global objective that approximates the Kullback-
Liebler divergence KL(p∗||q) [Wainwright and Jordan,
2008]. The resulting Gaussian approximation is an inclu-
sive estimate of p∗ that approximately matches its zeroth,
first, and second moments.

Although EP has few theoretical guarantees [Dehaene
and Barthelmé, 2015], it is known to be accurate for
many models including truncated multivariate gaussian
[Cunningham et al., 2011], probit and logistic regression
[Nickisch and Rasmussen, 2008], log-Gaussian Cox pro-
cesses [Ko and Seeger, 2015], and more [Minka, 2001].
It is also known to have superior performance compared
to the Laplace approximation and Variational Bayes in
terms of approximating marginal distributions accurately
[Kuss and Rasmussen, 2005, Cseke and Heskes, 2011,
Deisenroth and Mohamed, 2012].

2.3 ELLIPTICAL SLICE SAMPLING WITH
EXPECTATION PROPAGATION

As outlined in Section 1, we incorporate a posterior ap-
proximation p̂ as a proposal distribution for ESS. We do
so by defining:

p∗(x) = p̂(x)
p∗(x)

p̂(x)
= p̂(x)L̂(x) (3)

where p∗ is the posterior distribution of interest from
Equation (1), p̂ is our new prior and L̂ is our new like-
lihood. As explained in Section 2.1, for ESS to work
well, p̂ should have two desirable properties: (i) It should
approximate the posterior p∗. The most obvious candi-
dates for p̂ includes Laplace, Variational Bayes and EP
approximations, (ii) It should ensure that the new like-
lihood L̂ = p∗/p̂ is weak, in the sense as described in
Section 2.1. Using either Laplace or Variational Bayes
may result in large values of L̂ in the tails due to vari-
ance underestimation, which could cause the sampler to
get stuck. The more inclusive nature of the EP estimate,
on the other hand, makes it a sensible choice to obtain a
Gaussian posterior approximation p̂.

To demonstrate the power of this approach we return to
the problematic example given in Figure 1. Using the EP
approximation we can shift our prior to align with the
posterior density on the left side of the likelihood rect-
angeA. The ellipses become short and vertical, allowing
ESS to mix efficiently. This is illustrated in Figure 2.
To demonstrate the difference in the sampling behavior
between EPESS and ESS, Figure 2.3 plots 400 samples
from both EPESS and ESS. EPESS is clearly superior
and manages to explore the entire distribution whereas
ESS moves consistently less.

x

ν

Figure 2: The EP approximation is in teal and an EPESS
elliptical slice is in dashed red.

The idea of Equation (3) is not unique to this paper.
Nishihara et al. [2014] use a similar construction where
the Gaussian approximation is learned from samples. Al-
though this has the advantage of not relying on EP to do
moment matching, it requires parallelism and expensive
moment calculations. EPESS will be simpler and more
efficient when an accurate EP approximation is available.
Braun and Bonfrer [2011] also have a similar method
where they use the Laplace approximation, which as dis-
cussed, is a poor choice. We remark that using Power EP
approximations is also a viable choice for a prior, a point
that we will return to in Section 6.
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Figure 3: EPESS vs ESS: 400 samples of EPESS and
ESS for a 2-d Gaussian N (0, I) truncated in a rectangu-
lar box {50 ≤ x ≤ 51,−1 ≤ y ≤ 1}. EPESS explores
the parameter space effectively whereas ESS does not.

3 RECYCLED ELLIPTICAL SLICE
SAMPLING

In this section we show how to sample J > 1 points
at every ESS iteration without a significant increase in
computational complexity. This idea is inspired by the
work of Nishimura and Dunson [2015] on HMC. In that
work an HMC algorithm is devised which “recycles” the
intermediate points as valid samples from the target dis-
tribution. We borrow the phrase “recycling” from them
and call our method Recycled Elliptical Slice Sampling.

Recall that in every ESS iteration, we propose points
along an ellipse within an angle bracket, which is iter-
atively shrunk, until a point is accepted. In Recycled
ESS, we don’t stop after accepting the first point but
continue to propose points starting from the last angle
bracket used. This procedure is continued until J points
are accepted. One of the J points is randomly selected to
propagate the Markov chain.

As we shrink the angle bracket [θmin, θmax] towards
θ = 0 (corresponding to the current point), the proba-
bility of the next proposal point being accepted tends to
increase. Hence the number of shrinkage steps required
to accept latter points is typically smaller than that for
first accepted point. Since the number of likelihood func-
tion evaluations is proportional to the number of shrink-
age steps, Recycled ESS is able to sample more points
with only a small increase in computational complexity,
leading to improved run times per sample. This approach
is formalized in Algorithm 1, where ESS inner loop
function is the regular ESS inner loop and can be found

Algorithm 1: Recycled ESS

Input : Log-likelihood function (logL) , initial point
x
(1)
1 ∈ Rd, prior N (0,Σ), number of iterations
N , number of recycled points J

Output: Samples from Markov Chain
((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

1 for i = 1 to N do
2 u ∼ Uniform [0, 1]

3 log y ← logL(x
(i−1)
1 ) + log u

4 ν ∼ N (0,Σ)
5 θmax ∼ Uniform [0, 2π]
6 θmin ← θmax − 2π
7 for j = 1 to J do
8 (x̂

(i)
j , θmin, θmax)← ESS inner loop

9 (logL, log y,ν,x
(i−1)
1 , θmin, θmax )

10 end
11 (x

(i)
1 , ...,x

(i)
J )← rand perm(x̂

(i)
1 , ..., x̂

(i)
J )

12 end
13 return ((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

in Figure 2 of [Murray et al., 2010].

It is clear from Algorithm 1 that we treat each sample x(i)j
as an element in a large Markov chain with state space
(x

(i)
1 , ...,x

(i)
J ). We prove in Theorem 3.2 that each ele-

ment x(i)j has its stationary marginal distribution as p∗. In
order to do so, we first show in Lemma 3.1 that the tran-
sition operator of accepting the jth point is reversible.

Lemma 3.1. Let Tj correspond to the transition opera-
tor from x

(i−1)
1 → x̂

(i)
j . Then Tj is invariant to p∗.

A detailed proof is given in the appendix. Theorem 3.2
easily follows:

Theorem 3.2. Each element in the Recycled ESS Markov
chain has marginal stationary distribution p∗.

Proof. The sequence of points {x(i)
1 } follow a Markov

Chain. At each step the transition operator is uniformly
sampled from the set {Tj : j = 1, ..., J}, with each Tj
being invariant to p∗ (Lemma 3.1). Therefore we have
that x

(i)
1

dist.−−−→ x* where x* ∼ p∗. Also, at any fixed
iteration i, we have that all points in {x(i)

j : j = 1, ..., J}
are identically distributed. This follows from the random
permutations:

p(x
(i)
j |(x̂

(i)
1 , ..., x̂

(i)
J )) = Uniform(x̂

(i)
1 , ..., x̂

(i)
J )

= p(x
(i)
k |(x̂

(i)
1 , ..., x̂

(i)
J )).

Integrating over p(x̂(i)
1 , ..., x̂

(i)
J ) gives us that p(x(i)

j ) =
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p(x
(i)
1 ) for any i, j. Since we have that x

(i)
1

dist.−−−→ x*, it

follows that for all j: x
(i)
j

dist.−−−→ x*.

The downside of Recycled ESS is that the latter accepted
points (corresponding to j ≈ J) are sampled from a very
small angle bracket and so are highly correlated. On the
other hand these points only require a small number of
function evaluations. Overall the effect of recycling is a
small increase in the effective number of samples, with a
small increase in computational complexity. Whether or
not this is beneficial is investigated empirically in Sec-
tion 5.

4 ANALYTIC ELLIPTICAL SLICE
SAMPLING

Consider the ellipse

E = {x′ : x′(θ) = x cos(θ) + ν sin(θ)}

as in an ESS iteration as defined by Equation (2). Let
S(y; E) be the slice corresponding to the acceptable
points in E for a given slice height y:

S(y; E) = {x′ ∈ E : L(x′) > y}.

If we can analytically characterize S(y; E) then we only
need to sample a point uniformly from the slice to prop-
agate the Markov Chain [Neal, 2003]. This has three
advantages: (i) We eliminate expensive slice shrinkage
steps which reduces the computational cost of our sam-
pler; (ii) In standard slice sampling algorithms, shrink-
age steps bias the next sample to be close to the current
sample thereby introducing correlations. Since we uni-
formly sample over S(y; E), the resulting samples are
less correlated as we are not biased towards the current
point; (iii) We can easily incorporate the recycling idea
here resulting in an extremely efficient algorithm, which
we refer to as Analytic Elliptical Slice Sampling.

As in Recycled ESS, in Analytic ESS we sample J > 1
points from each ellipse E . We first sample J different
y values, which are evenly spaced in a Quasi Monte-
Carlo way. Corresponding to each y value, we analyt-
ically solve for S(y; E) (which has only a small amor-
tized computational cost). One point is then uniformly
sampled from each slice S(y; E). The pseudocode for
Analytic ESS is given in Algorithm 2 and in Theorem 4.1
we prove its validity.

Theorem 4.1. Each element in the Analytic ESS Markov
chain has marginal stationary distribution p∗.

Proof. The proof follows exactly the same argument as
in Theorem 3.2.

Algorithm 2: Analytic Slice Sampling

Input : Likelihood L̂, prior p̂, initial point x
(0)
1 ,

subroutine Sample Ellipse to sample an
ellipse, subroutine Characterize Slice
to analytically characterize S(·; E), number of
iterations N , number of slices per iteration J

Output: Samples from Markov Chain
((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

1 for i = 1 to N do
2 E ← Sample Ellipse(x(i−1)

1 , p̂)
3 S(·; E)←Characterize Slice(E)
4 u ∼ Uniform [0, 1]
5 for j = 1 to J do
6 y ← (j − u)/J · L̂(x

(i−1)
1 )

7 x
(i)
j ← Uniform {x : x ∈ S(y; E)}

8 end
9 (x

(i)
1 , ...,x

(i)
J )← rand perm(x̂

(i)
1 , ..., x̂

(i)
J )

10 end
11 return ((x

(1)
1 , ...,x

(1)
J ), ..., (x

(N)
1 , ...,x

(N)
J ))

Unfortunately solving for S(y; E) in closed form is not
possible in general, although it can be done for Trun-
cated Multivariate Gaussian (TMG) quadrature as shown
below.

4.1 ANALYTIC EPESS FOR TMG

The (linear) TMG distribution is defined as:

p∗(x) =
1

Z
N (x; 0, I)

M∏

j=1

1(L>j x ≥ 0).

Using the EP approximation N (x;µ,Σ) and Equation
(3), we can rewrite the density p∗ as:

p∗(x) ∝ N (x; 0, I)
m∏

j=1

1(L>j x ≥ 0)

∝ N (x;µ,Σ)
N (x; 0, I)

N (x;µ,Σ)

m∏

j=1

1(L>j x ≥ 0)

= N (z; 0,Σ)
N (z;−µ, I)

N (z; 0,Σ)

m∏

j=1

1(L>j (z + µ) ≥ 0)

≡ N (z; 0,Σ)L̂(z)

≡ p̃(z)

where x = z + µ is a transformation with identity Jaco-
bian. We are able to apply Analytic ESS to p̃(z) and can
then recover samples for x by reversing the transforma-
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tion. First we analytically characterize the slice:

S(y; E) = {θ ∈ [0, 2π) : L(z′(θ)) > y}
= ∩mj=1{θ ∈ [0, 2π) : L>j z′(θ) + L>j µ ≥ 0}

∩ {θ ∈ [0, 2π) :
N (z′(θ);−µ, I)

N (z′(θ); 0,Σ)
> y}

≡ ∩mj=1Θj ∩Θy,

where z′(θ) = z cos(θ) + ν sin(θ). The region Θj

is the part of the ellipse that lies in the halfspace de-
fined by Lj . Since it is defined by a linear inequality
of sin(θ) and cos(θ), it is easily characterized using ba-
sic trigonometry. The resulting region may be rewrit-
ten as Θj = [0, lj ] ∪ [uj , 2π] for some lj , uj ∈ (0, 2π).
Due to this nice structure, taking the intersection of all
m regions can be computed in O(m). Region Θy can
be simplified by taking logarithms on both sides of its
inequality and reduces to the form:

a0 + a1 cos θ+ a2 sin θ+ a3 cos θ sin θ+ a4 cos2 θ > 0.

The roots of this inequality can be obtained by solving a
quartic equation. This completes our analytic characteri-
zation of S(y; E).

The most expensive operations in Analytic ESS are gen-
erating E and characterizing S(y; E), as sampling from
S(y; E) is relatively cheap. To see this, let d denote the
dimension of x and m the number of linear truncations.
To sample the ellipse E we must draw ν from the Gaus-
sian prior which costs O(d2). Characterizing the slice
S(y; E) involves m inner products of x and ν with the
linear truncations Lj and can be calculated in O(md).
The total computational overhead is thus O(d2 + md).
Once this is done, sampling from S(y; E) is cheap. It in-
volves sampling from an intersection of O(m) intervals
which can be done in O(d + m) (here we have factored
in the expense of storing each sample at a cost O(d)).

Since the upfront cost of characterizing the slice S(y; E)
isO(d2 +md), we can sampleO(d) points per ellipse E
without significantly increasing the total computational
complexity. This leads to a high effective sample size
relative to the computational complexity.

The Exact-HMC algorithm for TMG [Pakman and
Paninski, 2014] has an intimate relationship with Ana-
lytic ESS and inspired our analytic framework. We ex-
plain this connection in Section 5.2.

5 EXPERIMENTAL RESULTS

In this section we compare the empirical performance
of the algorithms introduced in Sections 2.3–4 to other
state-of-the-art MCMC methods. Comparisons are

shown for the Probit regression and the TMG problem,
both of which are often encountered in machine learn-
ing contexts, as well as the log-Gaussian Cox process.
We quantify the mixing of MCMC samplers by compar-
ing their effective number of samples. Effective sample
size is estimated using the method as described in [Gel-
man et al., 2014] which is implemented in the MCMC
Diagnostics Tool box for Matlab [Särkkä and Vehtari,
2014-02-34]. We compare the results in terms of effec-
tive sample size divided by the number of density func-
tion evaluations of p∗, which is the dominant computa-
tional expense of running the samplers.

5.1 PROBIT REGRESSION

Probit regression is one of the most common problems
in machine learning and is often used as a benchmark for
comparing Bayesian computation methods. A nice re-
view of the state-of-the-art algorithms for probit can be
found in [Chopin and Ridgway, 2015]. For our experi-
ments, we choose 4 data sets of moderate size from UCI
repository as listed in Table 1, with their dimension and
number of datapoints. These are the Breast Cancer [Wol-
berg et al., 1995], Ionosphere [Sigillito, 1989], Sonar
[Son] and Musk [AI Group at Arris Pharmaceutical Cor-
poration, 1994] data sets. As is standard, each dataset
is preprocessed to have zero mean and unit variance for
each regressor, a unit intercept term has been included
and the prior on each latent variable is N (0, 10).

Table 1: Datasets for probit: dimensions and number of
data points.

DATASET DIMENSION DATA POINTS

Breast Cancer 31 569
Ionosphere 31 351
Sonar 61 97
Musk 165 419

We compare EPESS and Recycled EPESS (denoted by
EPESS(J) where J is the number of recycled points per
slice) against Metropolis-Hastings with an EP proposal
(EPMH) and HMC using the No-U-Turn sampler as im-
plemented in Stan [Carpenter et al., 2015]. EPMH is con-
sidered as state-of-the-art for Probit [Chopin and Ridg-
way, 2015] . The chains were initialized at the EP mean
for all EPESS methods and the Stan implementation de-
cides on its own initialization. We use the R package of
Ridgway [2016] to find the EP approximation. Its CPU
time is negligible compared to the time to run the sam-
plers.

We run 100 chains with 20,000 samples per chain. For
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EPMH we ran it until 20,000 unique samples (i.e., ac-
cepted proposed points) were collected to make it com-
parable with the other methods. The results are shown in
the top three plots of Figure 4. EPESS outperforms HMC
and EPMH by about a factor of 5 for effective sample
size relative to number of function evaluations. As com-
pared to EPMH, EPESS gives a slightly smaller effective
number of samples but takes far fewer function evalua-
tions. The number of function evaluations for Recycled
EPESS is smaller than that of EPESS, however the effec-
tive number of samples are also proportionately small as
the samples are highly correlated (this is expected: see
Section 3). Overall Recycled EPESS does not improve
the effective sample size relative to number of function
evaluations above EPESS.

5.2 TRUNCATED MULTIVARIATE GAUSSIAN

The Truncated Multivariate Gaussian (TMG) is an im-
portant distribution which commonly arise in diverse
models such as Probit/Tobit models, Neural models [Pil-
low et al., 2003], Bayesian bridge model in finance [Pol-
son et al., 2014], True-skill model for competitions [Her-
brich et al., 2006] and many others. There has been some
recent work including [Lan and Shahbaba, 2015] focus-
ing on sampling from TMG, but Exact-HMC algorithm
[Pakman and Paninski, 2014] is considered to be state-
of-the-art (see [Altmann et al., 2014] for a nice review).
We treat it as the benchmark for comparisons in our ex-
periments.

The equations of motion for Exact-HMC are the same as
that of standard ESS,

x′(t) = x cos(t) + ν sin(t),

and so it suffers from the same problems as described in
Section 2.1 and illustrated in Figure 1. The elliptical path
enables exact calculation of where the HMC particle hits
the truncations, hence the term Exact-HMC. These are
the same calculations used to find the regions Θj in An-
alytic ESS, although being an HMC method, it does not
have a slice height y with the corresponding region Θy . It
also cannot incorporate an EP prior as this would destroy
the elliptical path and render the calculations intractable.
A tuning parameter T is required and for all our exper-
iments we have fixed T to be π/2 as recommended by
Pakman and Paninski [2014]. We only show compara-
tive results for Analytic EPESS as it is faster than EPESS
since it avoids slice shrinkages. We obtain an EP ap-
proximation for TMG using the method as described in
[Cunningham et al., 2011] which is fast and scales well
for high dimensions. It runs in negligible CPU time as
compared to the running time of different sampling algo-
rithms.

We run 100 chains with 20,000 samples per chain. The
fourth plot in Figure 4 shows the results for a 2-d stan-
dard Gaussian where the truncated region is a rectangu-
lar box: {s ≤ x ≤ s+ 1,−1 ≤ y ≤ 1}. As we shift the
box to the right, we see Analytic EPESS outperforming
Exact-HMC by orders of magnitude. This trend carries
over to higher dimensions as shown in the fifth plot in
Figure 4. Results for d = 500 and d = 1000 have been
omitted as Exact-HMC with T = π/2 takes prohibitively
long to run.

5.3 LOG-GAUSSIAN COX PROCESS

We conducted experiments on a Log-Gaussian Cox Pro-
cess (LGCP) applied to the coal mining disaster dataset
as set up in the original ESS paper [Murray et al., 2010].
Although a convergent EP is available for the LGCP, it
is not accurate with the EP mean substantially deviating
from the true mean [Ko and Seeger, 2015]. Our exper-
iments showed that EPESS fared no better than ESS on
this problem, with the effective number of samples being
about the same. This demonstrates the fact that EPESS
will only perform well when EP is accurate.

6 DISCUSSION AND CONCLUSION

In this work we have shown how the ideas of ESS,
EP and recycling can be combined to yield highly effi-
cient MCMC methods. For both probit regression and
Gaussian quadrature, performance exceeds state-of-the-
art samplers by an order of magnitude. In the case of
TMG, this can be multiple orders of magnitude.

We investigated two different types of recycling: sam-
pling multiple points per slice (Recycled ESS), and sam-
pling multiple points at different slice heights from the
same ellipse (Analytic ESS). The benefit of Recycled
ESS is questionable as it seems not to improve perfor-
mance in probit, due to having highly correlated samples.
It also introduces a tuning parameter which makes the
algorithm more difficult to implement. Analytic EPESS
for TMG does not have the above-mentioned issues of
Recycled ESS. In this case recycling is of clear benefit as
can be seen in the experimental results of Section 5.2. It
is here where EPESS outperforms the state-of-the-art by
the largest margin.

The example of the Log-Gaussian Cox process shows
that EPESS will only offer an advantage over ESS when
EP is accurate. This restricts the applicability of EPESS
as a general method. Improving the accuracy of EP is
a subject of active research and any developments made
will be immediately be inherited by EPESS.

There are multiple directions of future work. Instead of
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Figure 4: Plots of empirical results. In the top three plots all values are normalized so that EPESS(1) has value 1.
In the bottom 2 plots all values are normalized so that Exact-HMC has value 1. The naming convention: EPESS(J)
denotes Recycled EPESS with J points sampled per slice. EPESS(1) denotes EPESS without recycling. Ana EPESS(J)
denotes Analytic EPESS with J threshold levels per iteration. Error bars in plot 3 for all algorithms are effectively
zero.
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choosing the prior that minimizes α = 1 divergence,
we could choose a prior corresponding to α > 1 by re-
placing EP with Power-EP [Minka, 2004]. This might
make the likelihood even weaker in EPESS and further
improve performance.
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Abstract

Kernel methods are one of the mainstays of ma-
chine learning, but the problem of kernel learn-
ing remains challenging, with only a few heuris-
tics and very little theory. This is of particu-
lar importance in methods based on estimation
of kernel mean embeddings of probability mea-
sures. For characteristic kernels, which include
most commonly used ones, the kernel mean em-
bedding uniquely determines its probability mea-
sure, so it can be used to design a powerful sta-
tistical testing framework, which includes non-
parametric two-sample and independence tests.
In practice, however, the performance of these
tests can be very sensitive to the choice of ker-
nel and its lengthscale parameters. To address
this central issue, we propose a new probabilistic
model for kernel mean embeddings, the Bayesian
Kernel Embedding model, combining a Gaus-
sian process prior over the Reproducing Kernel
Hilbert Space containing the mean embedding
with a conjugate likelihood function, thus yield-
ing a closed form posterior over the mean em-
bedding. The posterior mean of our model is
closely related to recently proposed shrinkage es-
timators for kernel mean embeddings, while the
posterior uncertainty is a new, interesting feature
with various possible applications. Critically for
the purposes of kernel learning, our model gives
a simple, closed form marginal pseudolikelihood
of the observed data given the kernel hyperpa-
rameters. This marginal pseudolikelihood can ei-
ther be optimized to inform the hyperparameter
choice or fully Bayesian inference can be used.

1 INTRODUCTION

A large class of popular and successful machine learning
methods rely on kernels (positive semidefinite functions),
including support vector machines, kernel ridge regression,
kernel PCA (Schölkopf and Smola, 2002), Gaussian pro-
cesses (Rasmussen and Williams, 2006), and kernel-based

hypothesis testing (Gretton et al., 2005, 2008, 2012a). A
key component for many of these methods is that of esti-
mating kernel mean embeddings and covariance operators
of probability measures based on data. The use of simple
empirical estimators has been challenged recently (Muan-
det et al., 2016) and alternative, better-behaved frequentist
shrinkage strategies have been proposed. In this article,
we develop a Bayesian framework for estimation of kernel
mean embeddings, recovering desirable shrinkage proper-
ties as well as allowing quantification of full posterior un-
certainty. Moreover, the developed framework has an addi-
tional extremely useful feature. Namely, a persistent prob-
lem in kernel methods is that of kernel choice and hyper-
parameter selection, for which no general-purpose strategy
exists. When a large dataset is available in a supervised set-
ting, the standard approach is to use cross-validation. How-
ever, in unsupervised learning and kernel-based hypothesis
testing, cross-validation is not straightforward to apply and
yet the choice of kernel is critically important. Our frame-
work gives a tractable closed-form marginal pseudolikeli-
hood of the data allowing direct hyperparameter optimiza-
tion as well as fully Bayesian posterior inference through
integrating over the kernel hyperparameters. We empha-
sise that this approach is fully unsupervised: it is based
solely on the modelling of kernel mean embeddings – go-
ing beyond marginal likelihood based approaches in, e.g.,
Gaussian process regression – and is thus broadly applica-
ble in situations, such as kernel-based hypothesis testing,
where the hyperparameter choice has thus far been mainly
driven by heuristics.

In Section 2 we provide the necessary background on Re-
producing Kernel Hilbert Spaces (RKHS) as well as de-
scribe some related works. In Section 3 we develop our
Bayesian Kernel Embedding model, showing a rigorous
Gaussian process prior formulation for an RKHS. In Sec-
tion 4 we show how to perform kernel learning and pos-
terior inference with our model. In Section 5 we empiri-
cally evaluate our model, arguing that our Bayesian Ker-
nel Learning (BKL) objective should be considered as a
“drop-in” replacement for heuristic methods of choosing
kernel hyperparameters currently in use, especially in un-
supervised settings such as kernel-based testing. We close
in Section 6 with a discussion of various applications of our
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approach and future work.

2 BACKGROUND AND RELATED
WORK

2.1 KERNEL EMBEDDINGS OF PROBABILITY
MEASURES

For any positive definite kernel function k : X × X →
R, there exists a unique reproducing kernel Hilbert space
(RKHS) Hk. RKHS is an (often infinite-dimensional)
space of functions h : X → R where evaluation can
be written as an inner product, and in particular h(x) =
〈h, k(·, x)〉Hk

for all h ∈ Hk, x ∈ X . Given a probability
measure P on X , its kernel embedding into Hk is defined
as:

µP =

∫
k (·, x)P(dx). (1)

Embedding µP is an element of Hk and serves as a rep-
resentation of P akin to a characteristic function. It rep-
resents expectations of RKHS functions in the form of an
inner product

∫
h(x)P(dx) = 〈h, µP〉Hk

. For a broad fam-
ily of kernels termed characteristic (Sriperumbudur et al.,
2011), every probability measure has a unique embedding
– thus, such embeddings completely determine their prob-
ability measures and capture all of the moment informa-
tion. This yields a framework for constructing nonpara-
metric hypothesis tests for the two-sample problem and for
independence, which are consistent against all alternatives
(Gretton et al., 2008, 2012a) – we review this framework in
the next section.

2.2 KERNEL MEAN EMBEDDING AND
HYPOTHESIS TESTING

Given a kernel k and probability measures P and Q, the
maximum mean discrepancy (MMD) between P and Q
(Gretton et al., 2012a) is defined as the squared RKHS
distance ‖µP − µQ‖2

Hk
between their embeddings. A re-

lated quantity is the Hilbert Schmidt Independence Crite-
rion (HSIC) (Gretton et al., 2005, 2008), a nonparametric
dependence measure between random variables X and Y
on domains X and Y respectively, defined as the squared
RKHS distance ‖µPXY

− µPXPY
‖2

Hκ
between the embed-

dings of the joint distribution PXY and of the product of the
marginals PXPY with respect to a kernel κ : (X × Y) ×
(X ×Y) → R on the product space. Typically, κ factorises,
i.e. κ ((x, y), (x′, y′)) = k(x, x′)l(y, y′). The empirical
versions of MMD and HSIC are used as test statistics for
the two-sample (H0 : P = Q vs. H1 : P 6= Q) and inde-
pendence (H0 : X ⊥⊥ Y vs. H1 : X 6 ⊥⊥ Y ) tests, respec-
tively. With the help of the approximations to the asymp-
totic distribution under the null hypothesis, corresponding
p-values can be computed (Gretton et al., 2012a). In addi-
tion, the so-called “witness function” which is proportional

to µP − µQ can be used to assess where the difference be-
tween the distributions arises.

2.3 KERNEL MEAN EMBEDDING
ESTIMATORS

For a set of i.i.d. samples x1, . . . , xn, the kernel mean
embedding is typically estimated by its empirical version

µ̂P = µP̂ =
1

n

n∑

i=1

k(·, xi), (2)

from which various associated quantities, including the
estimators of the squared RKHS distances between em-
beddings needed for kernel-based hypothesis tests, follow.
As an empirical mean in an infinite-dimensional space,
(2) is affected by Stein’s phenomenon, as overviewed by
Muandet et al. (2013) who also propose alternative shrink-
age estimators similar to the well known James-Stein es-
timator. Improvements of test power using such shrink-
age estimators are reported by Ramdas and Wehbe (2015).
Connections between the James-Stein estimator and em-
pirical Bayes procedures are classical (Efron and Morris,
1973), and thus a natural question to consider is whether
a Bayesian formulation of the problem of kernel embed-
ding estimation would yield similar shrinkage properties.
In this paper, we will give a Bayesian perspective of the
problem of kernel embedding estimation. In particular, we
will construct a flexible model for underlying probability
measures based on Gaussian measures in RKHSs which al-
lows derivation of a full posterior distribution of µP, recov-
ering similar shrinkage properties to Muandet et al. (2013),
as discussed in Section 4.2. The model will give us a fur-
ther advantage, however – as the marginal likelihood of the
data given the kernel parameter can be derived leading to
an informed choice of kernel parameters.

2.4 SELECTION OF KERNEL
PARAMETERS

In supervised kernel methods like support vector machines,
leave-one-out or k-fold crossvalidation is an effective and
widely used method for kernel selection, and the myriad
papers on multiple kernel learning (e.g. Bach et al. (2004);
Sonnenburg et al. (2006); Gönen and Alpaydın (2011)) as-
sume that some loss function is available and thus focus
on effective ways of learning combinations of kernels. In
the related but distinct world of smoothing kernels and ker-
nel density estimation, there are a variety of long-standing
approaches to bandwidth selection, again based on a loss
function (in this case, mean integrated squared error is a
popular choice (Bowman, 1985), and there is even a for-
mula giving the optimal smoothing parameter asymptoti-
cally, see Rosenblatt (1956); Parzen (1962)) but we are not
aware of work linking this literature to methods based on
positive definite/RKHS kernels we study here. Separately,
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Gaussian process learning can be undertaken by maximiz-
ing the marginal likelihood, which has a convenient closed
form. This is noteworthy for its success and general appli-
cability even for learning complicated combinations of ker-
nels (Duvenaud et al., 2013) or rich kernel families (Wilson
and Adams, 2013). Our approach has the same basic design
as that of Gaussian process learning, yet it is applicable to
learning kernel embeddings, which falls outside the realm
of supervised learning.

As noted in Gretton et al. (2012b), the choice of the ker-
nel k is critically important for the power of the tests pre-
sented in Section 2.2. However, no general, theoretically-
grounded approaches for kernel selection in this context
exist. The difficulty is that, unlike in supervised kernel
methods, a simple cross-validation approach for the ker-
nel parameter selection is not possible. What would be an
ideal objective function – asymptotic test power – cannot
be computed due to a complicated asymptotic null distribu-
tion. Moreover, even if we were able to estimate the power
by performing tests on “training data” for each of the in-
dividual candidate kernels, in order to account for multiple
comparisons, this training data would have to be disjoint
from the one on which the hypothesis test is performed,
which is clearly wasteful of power and appropriate only in
the type of large-scale settings discussed in Gretton et al.
(2012b). For these reasons, most users of kernel hypothe-
sis tests in practice resort to using a parameterized kernel
family such as squared exponential, and setting the length-
scale parameter based on the “median heuristic.”

The exact origins of the median heuristic are unclear (in-
terestingly, it does not appear in the book that is most com-
monly cited as its source, Schölkopf and Smola (2002))
but it may have been derived from Takeuchi et al. (2006)
and has precursors in classical work on bandwidth selec-
tion for kernel density estimation (Bowman, 1985). Note
that there are two versions of the median heuristic in
the literature: in both versions, given a set of observa-
tions x1, . . . , xn we calculate ℓ = median(‖xi − xj‖2)
and then one version (e.g. Mooij et al. (2015)) uses the
Gaussian RBF / squared exponential kernel parameter-
ized as k(x, x′) = exp(−‖x−x′‖2

ℓ2 ) and the second ver-
sion (e.g. Muandet et al. (2014)) uses the parameterization
k(x, x′) = exp(−‖x−x′‖2

2ℓ2 ). Some recent work has high-
lighted the situations in which the median heuristic can
lead to poor performance (Gretton et al., 2012b). Cases
in which the median heuristic performs quite well and also
cases in which it performs quite poorly are discussed in
(Reddi et al., 2015; Ramdas et al., 2015). We note that the
median heuristic has also been used as a default value for
supervised learning tasks (e.g. for the SVM implementa-
tion in R package kernlab) or when cross-validation is
simply too expensive.

Outside of kernel methods, the same basic conundrum

arises in spectral clustering in the choice of the parame-
ters for the similarity graph (Von Luxburg, 2007, Section
8.1) and it is implicitly an issue in any unsupervised statis-
tical method based on distances or dissimilarities, like the
distance covariance (which is in fact equivalent to HSIC
with a certain family of kernel functions (Sejdinovic et al.,
2013)), or even the choice of the number of neighbors k in
k-nearest neighbors algorithms.

3 OUR MODEL: BAYESIAN KERNEL
EMBEDDING

Below, we will work with a parametric family of ker-
nels {kθ(·, ·)}θ∈Θ. Given a dataset {xi}n

i=1 ∼ P of ob-
servations in RD for an unknown probability distribu-
tion P, we wish to infer the kernel embedding µP,θ =∫

kθ (·, x)P(dx) for a given kernel kθ in the parametric
family. Moreover, we wish to construct a model that will al-
low inference of the kernel hyperparameter θ as well. Note
that the two goals are related, since θ determines the space
in which the embedding µP,θ lies. When it is obvious from
context, we suppress the dependence of the embeddings on
the underlying measure P, writing µθ to emphasize the de-
pendence on θ. Similarly, we will use µ̂θ to denote the
simple empirical estimator from Eq. (2), which depends on
a fixed sample {xi}n

i=1.

Our Bayesian Kernel Embedding (BKE) approach consists
in specifying a prior on the kernel mean embedding µθ and
a likelihood function linking it to the observations through
the empirical estimator µ̂θ. This will then allow us to infer
the posterior distribution of the kernel mean embedding.
The hyperparameter θ can itself have a prior, with the goal
of learning a posterior distribution over the hyperparameter
space.

3.1 PRIOR

A given hyperparameter θ (which can itself have a prior dis-
tribution), parameterizes a kernel kθ and a corresponding
RKHS Hkθ

. While it is tempting to define a GP(0, kθ(·, ·))
prior on µθ, this is problematic since draws from such prior
would almost surely fall outside Hk (Wahba, 1990). There-
fore, we define a GP prior over µθ as follows:

µθ | θ ∼ GP(0, rθ(·, ·)) , (3)

rθ(x, y) :=

∫
kθ(x, u)kθ(u, y)ν(du) . (4)

where ν is any finite measure on X . This choice of rθ

ensures that µθ ∈ Hkθ
with probability 1 by the nuclear

dominance (Lukić and Beder, 2001; Pillai et al., 2007) of
kθ over rθ for any stationary kernel kθ and more broadly
whenever

∫
kθ(x, x)ν(dx) < ∞. For completeness, we

provide details of this construction in the Appendix in Sec-
tion A.2. Since Eq. (4) is the convolution of a kernel with

184



itself with respect to ν, for typical kernels kθ, the resulting
kernel rθ can be thought of as a smoother version of kθ. A
particularly convenient choice for X = RD is to take ν to
be proportional to a Gaussian measure in which case rθ can
be computed analytically for a squared exponential kernel
kθ. The derivation is given in the Appendix in Section A.3,
where we further show that if we set ν to be proportional
to an isotropic Gaussian measure with a large variance pa-
rameter, rθ becomes very similar to a squared exponential
kernel with lengthscale θ

√
2.

3.2 LIKELIHOOD

We need a likelihood linking the kernel mean embedding
µθ to the observations {xi}n

i=1. We define the likelihood
via the empirical mean embedding estimator of Eq. (2), µ̂θ

which depends on {xi}n
i=1 and θ. Consider evaluating µ̂θ at

some x ∈ RD (which need not be one of our observations).
The result is a real number giving an empirical estimate of
µθ(x) based on {xi}n

i=1 and θ. We link the empirical esti-
mate, µ̂θ(x), to the corresponding modeled estimate, µθ(x)
using a Gaussian distribution with variance τ2/n:

p(µ̂θ(x)|µθ(x)) = N (µ̂θ(x); µθ(x), τ2/n), x ∈ X .
(5)

Our motivation for choosing this likelihood comes from the
Central Limit Theorem. For a fixed location x, µ̂θ(x) =
1
n

∑n
i=1 kθ(xi, x) is an average of i.i.d. random variables

so it satisfies:
√

n(µ̂θ(x) − µθ(x))
D→ N (0, VarX∼P[kθ(X, x)]). (6)

We note that considering a heteroscedastic variance depen-
dent on x in (5) would be a straightforward extension to
our model, but we do not pursue this idea further here, i.e.
while τ2 can depend both on θ and x, we treat it as a single
hyperparameter in the model.

3.3 JUSTIFICATION FOR THE MODEL

There are various ways to understand the construction of
our hierarchical model. {xi}n

i=1 are drawn iid from P,
which we do not have access to. We could estimate P
directly (e.g. with a Gaussian mixture model) obtaining
P̂, and then estimate µθ,P̂. But since density estimation
is challenging in high dimensions, we posit a generative
model for µθ directly.

Beginning at the top of the hierarchy, we have a fixed or
random hyperparameter θ, which immediately defines kθ

and the corresponding RKHS Hkθ
. Then, we introduce a

GP prior over µθ to ensure that µθ ∈ Hkθ
. A few real-

izations of µθ drawn from our prior are shown in Figure 1
(A), for an illustrative one-dimensional example where the
prior is a Gaussian process with squared exponential kernel
with lengthscale θ = 0.25. Small values of θ yield rough
functions and large values of θ yield smooth functions.
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x
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Figure 1: An illustration of the Bayesian Kernel Embed-
ding model, where kθ is a squared exponential kernel with
lengthscale 0.1. Three draws of µθ from the prior are
shown in (A). The empirical mean estimator µ̂θ, which is
the link function for the likelihood, is shown in (B) with
the observations shown as a rug plot. In (C), the poste-
rior mean embedding (black line) with uncertainty intervals
(gray lines) is shown, as is the true mean embedding (blue
line) based on the true data generating process (a mixture
of Gaussians) and the same kθ.

Next, we need to define the likelihood, which links these
draws from the prior to the observations {xi}n

i=1. Since µθ

is an infinite dimensional element in a Hilbert space and
{xi}n

i=1 ∈ X we need to transform the observations so that
we can put a probability distribution over them. We use
the empirical estimate of the mean embedding µ̂θ as our
link function. Given a few observations, µ̂θ is shown in
Figure 1 (B). Our likelihood links µ̂θ to µθ at the observa-
tion locations {xi}n

i=1 by assuming a squared loss function,
i.e. Gaussian errors. As mentioned above, the motivation is
the Central Limit Theorem, but also the convenient conju-
gate form that a Gaussian process with Gaussian likelihood
yields. A plot of the posterior over the mean embedding
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is shown in Figure 1 (C). A few points are worth noting:
since the empirical estimator is already quite smooth (no-
tice its similarity to a kernel density estimate), the posterior
mean embedding is only slightly smoother than the empir-
ical mean embedding. Notice that unlike kernel density
estimation, there is no requirement that the kernel mean
embedding be non-negative, thus explaining the posterior
uncertainty intervals which are below zero.

Our original motivation for considering a Bayesian model
for kernel mean embeddings was to see whether there was
a coherent Bayesian formulation that corresponded to the
shrinkage estimators in Muandet et al. (2013), while also
enabling us to learn the hyperparameters. The first diffi-
culty we faced was how to define a valid prior over the
RKHS and a reasonable likelihood function. Our choices
are by no means definitive, and we hope to see further de-
velopment in this area in the future. The second difficulty
was that of developing a method for inferring hyperparam-
eters, to which we turn in the next section.

4 BAYESIAN KERNEL LEARNING

In this section we show how to perform learning and in-
ference in the Bayesian Kernel Embedding model intro-
duced in the previous section. Our model inherits various
attractive properties from the Gaussian process framework
(Rasmussen and Williams, 2006). First, we derive the pos-
terior and posterior predictive distributions for the kernel
mean embedding in closed form due to the conjugacy of
our model, and show the relationship with previously pro-
posed shrinkage estimators. We then derive the tractable
marginal likelihood of the observations given the hyperpa-
rameters allowing for efficient MAP estimation or posterior
inference for hyperparameters.

4.1 POSTERIOR AND POSTERIOR PREDICTIVE
DISTRIBUTIONS

Similarly to GP models, the posterior mean of µθ is avail-
able in closed form due to the conjugacy of Gaussians. Per-
haps given our data we wish to infer µθ at a new location
x∗ ∈ RD. Given a value of the hyperparameter θ we can
calculate the posterior distribution of µθ as well as the pos-
terior predictive distribution p(µθ(x

∗)|µ̂θ, θ).

Standard GP results (Rasmussen and Williams, 2006) yield
the posterior distribution as:

[µθ(x1), . . . , µθ(xn)]⊤ | [µ̂θ(x1), . . . , µ̂θ(xn)]⊤, θ

∼ N (Rθ(Rθ + (τ2/n)In)−1[µ̂θ(x1), . . . , µ̂θ(xn)]⊤,

Rθ − Rθ(Rθ + (τ2/n)In)−1Rθ),
(7)

where Rθ is the n × n matrix such that its (i, j)-th element
is rθ(xi, xj). The posterior predictive distribution at a new

location x∗ is:

µθ(x
∗)⊤ | [µ̂θ(x1), . . . , µ̂θ(xn)]⊤, θ

∼ N (R∗⊤
θ (Rθ + (τ2/n)In)−1[µ̂θ(x1), . . . , µ̂θ(xn)]⊤,

r∗∗
θ − R∗⊤

θ (Rθ + (τ2/n)In)−1R∗
θ)

(8)

where R∗
θ = [rθ(x

∗, x1), . . . rθ(x
∗, xn)]

⊤ and r∗∗
θ =

rθ(x
∗, x∗).

As in standard GP inference, the time complexity is O(n3)
due to the matrix inverses and the storage is O(n2) to store
the n × n matrix Rθ.

4.2 RELATION TO THE SHRINKAGE
ESTIMATOR

The spectral kernel mean shrinkage estimator (S-KMSE)
of Muandet et al. (2013) for a fixed kernel k is defined as:

µ̌λ = Σ̂XX(Σ̂XX + λI)−1µ̂, (9)

where µ̂ =
∑n

i=1 k(·, xi) is the empirical embedding,
Σ̂XX = 1

n

∑n
i=1 k(·, xi) ⊗ k(·, xi) is the empirical co-

variance operator on Hk, and λ is a regularization param-
eter. (Muandet et al., 2013, Proposition 12) shows that
µ̌λ can be expressed as a weighted kernel mean µ̌λ =∑n

i=1 βik(·, xi), where

β =
1

n
(K + nλI)−1K1

= (K + nλI)−1[µ̂(x1), . . . , µ̂(xn)]⊤.

Now, evaluating S-KMSE at any point x∗ gives

µ̌λ(x∗) =

n∑

i=1

βik(x∗, xi)

= K⊤
∗ (K + nλI)−1[µ̂(x1), . . . , µ̂(xn)]⊤,

where K∗ = [k(x∗, x1), . . . , k(x∗, xn)]
⊤. Thus, the pos-

terior mean in Eq. (7) recovers the S-KMSE estimator
(Muandet et al., 2013), where the regularization parameter
is related to the variance in the likelihood model (5), with a
difference that in our case the kernel kθ used to compute the
empirical embedding is not the same as the kernel rθ used
to compute the kernel matrices. We note that our method
has various advantages over the frequentist estimator µ̌λ:
we have a closed-form uncertainty estimate, while we are
not aware of a principled way of calculating the standard er-
ror of the frequentist estimators of embeddings. Our model
also leads to a method for learning the hyperparameters,
which we discuss next.

4.3 INFERENCE OF THE KERNEL
PARAMETERS

In this section we focus on hyperparameter learning in our
model. For the purposes of hyperparameter learning, we
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want to integrate out the kernel mean embedding µθ and
consider the probability of our observations {xi}n

i=1 given
the hyperparameters θ. In order to link our generative
model directly to the observations, we use a pseudolike-
lihood approach as discussed in detail below.

We use the term pseudolikelihood because the model in this
section will not correspond to the likelihood of the infinite
dimensional empirical embedding; rather it will rely on the
evaluations of the empirical embedding at a finite set of
points. Let us fix a set of points z1, . . . , zm in X ⊂ RD,
with m ≥ D. These points are not treated as random, and
the inference method we develop does not require any spe-
cific choice of {zj}m

j=1. However, to ensure that there is
a reasonable variability in the values of k(xi, zj), these
points should be placed in the high density regions of P.
The simplest approach is to use a small held out portion of
the data (with m ≪ n but m ≥ D). Now, when we eval-
uate µ̂θ at these points, our modelling assumption from (5)
on vector µ̂θ(z) = [µ̂θ(z1), . . . , µ̂θ(zm)] can be written as

µ̂θ(z)|µθ ∼ N
(

µθ(z),
τ2

n
Im

)
. (10)

However, as µ̂θ(zj) = 1
n

∑n
i=1 kθ(Xi, zj) and all the terms

kθ(Xi, zj) are independent given µθ, by Cramér’s decom-
position theorem, this modelling assumption is for the map-
ping φz : RD 7→ Rm, given by

φz(x) := [kθ(x, z1), . . . , kθ(x, zm)] ∈ Rm,

equivalent to:

φz(Xi)|µθ ∼ N
(
µθ(z), τ

2Im

)
. (11)

Applying the change of variable x 7→ φz(x) and using
the generalization of the change-of-variables formula to
non-square Jacobian matrices as described in (Ben-Israel,
1999), we obtain a distribution for x conditionally on µθ

and θ:

p(x|µθ, θ) = p (φz(x)|µθ(z)) vol [Jθ(x)] , (12)

where Jθ(x) =
[

∂kθ(x,zi)
∂x(j)

]
ij

is an m × D matrix,

and

vol [Jθ(x)] =
(
det

[
Jθ(x)⊤Jθ(x)

])1/2

=


det

[
m∑

l=1

∂kθ(x, zl)

∂x(i)

∂kθ(x, zl)

∂x(j)

]

ij




1/2

=: γθ(x) . (13)

The notation γθ(x) highlights the dependence on both θ
and x. An explicit calculation of γθ(x) for squared expo-
nential kernels is described in Section 4.4.

By the conditional independence of {φz(Xi)}n
i=1 given

µθ, we obtain the pseudolikelihood of all n observa-
tions:

p(x1, . . . , xn|µθ, θ) =
n∏

i=1

N
(
φz(xi); µθ(z), τ

2Im

)
γθ(xi)

= N
(
φz(x);mθ(z), τ

2Imn

) n∏

i=1

γθ(xi), (14)

where

φz(x) =
[
φz(x1)

⊤ · · · φz(xn)⊤]⊤
= vec {Kθ,zx} ∈ Rmn

and in the mean vector mθ(z) =
[
µθ(z)

⊤ · · · µθ(z)
⊤]⊤

,
µθ(z) repeats n times. Under the prior (3), this mean vector
has mean 0 and covariance 1n1⊤

n ⊗ Rθ,zz where Rθ,zz is
the m×m matrix such that its (i, j)-th element is rθ(zi, zj).
Combining this prior and the pseudolikelihood in (14), we
have the marginal pseudolikelihood:

p(x1, . . . , xn|θ) =

∫
p(x1, . . . , xn|µθ, θ)p(µθ|θ)dµθ

=

∫
N

(
φz(x);mθ(z), τ

2Imn

)
[

n∏

i=1

γθ(xi)

]
p(µθ|θ)dµθ

= N
(
φz(x);0,1n1⊤

n ⊗ Rθ,zz + τ2Imn

) n∏

i=1

γθ(xi).

(15)

While the marginal pseudolikelihood in Eq. (15) involves
a computation of the likelihood for an mn-dimensional
normal distribution, the Kronecker structure of the covari-
ance matrix allows efficient computation as described in
Appendix A.4. The complexity for calculating this like-
lihood is O(m3 + mn) (dominated by the inversion of
Rθ,zz + (τ2/n)Im). The Jacobian term depends on the
parametric form of kθ, but a typical cost as shown in Sec-
tion 4.4 for the squared exponential kernel is O(nD3 +
nmD2). In this case, the computation of matrices Rθ,zz

and φz(x) = vec {Kθ,zx} is O(m2D) and O(mnD) re-
spectively.

Just as in GP modeling, the marginal pseudolikelihood can
be maximized directly for maximum likelihood II (also
known as empirical Bayes) estimation, in which we look
for a single best θ̂, or it can be used to construct an efficient
MCMC sampler from the posterior of θ.

4.4 EXPLICIT CALCULATIONS FOR SQUARED
EXPONENTIAL (RBF) KERNEL

Consider the isotropic squared exponential kernel with
lengthscale matrix θ2ID defined by

kθ(x, y) = exp(−.5(x − y)⊤θ−2ID(x − y)). (16)
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In this case, we can analytically calculate rθ(x, y), exact
form is given in the Appendix in Section A.3.

The partial derivatives of kθ(x, y) with respect to x(i) for
i = 1, . . . D can be easily derived as

∂kθ(x, y)

∂x(i)
= kθ(x, y)

x(i) − y(i)

θ2

and therefore the Jacobian from Eq. (13) is equal to

γθ(x) =


det

[
m∑

l=1

kθ(x, zl)
2 (x(i) − z

(j)
l )2

θ4

]

ij




1/2

.

(17)

The computation of the matrix is O(mD2) and the determi-
nant is O(D3). Since we must calculate γθ(xi) for each xi,
the overall time complexity is O(nD3 + nmD2).

5 EXPERIMENTS

We demonstrate our approach on two synthetic datasets and
one example on real data, focusing on two-sample test-
ing with MMD and independence testing with HSIC. First,
we use our Bayesian Kernel Embedding model and learn
the kernel hyperparameters with maximum likelihood II,
optimizing the marginal likelihood. Second, we take a
fully Bayesian approach to inference and learning with our
model. Finally, we apply the PC algorithm for causal struc-
ture discovery to a real dataset. The PC algorithm relies
on a series of independence tests; we use HSIC with the
lengthscales set with Bayesian Kernel Learning.

Choosing lengthscales with the median heuristic is often a
very bad idea. In the case of two sample testing, Gretton
et al. (2012b) showed that MMD with the median heuristic
failed to reject the null hypothesis when comparing sam-
ples from a grid of isotropic Gaussians to samples from a
grid of non-isotropic Gaussians. We repeated this exper-
iment by considering a distribution P of a mixture of bi-
variate Gaussians centered on a grid with diagonal covari-
ance and unit variance and a distribution Q of a mixture
of bivariate Gaussians centered at the same locations but
with rotated covariance matrices with a ratio ǫ of largest to
smallest covariance eigenvalues.

As illustrated in Figures 2(A) and (B), for small values of
ǫ both distributions are very similar whereas the distinction
between P and Q becomes more apparent as ǫ increases.
For different values of ǫ, we sample 100 observations from
each mixture component, yielding 900 observations from
P and 900 observations from Q and then perform a two-
sample test (H0 : P = Q vs. H1 : P 6= Q) using the MMD
empirical estimate with an isotropic squared exponential
kernel with one hyperparameter, the lengthscale. The type
II error (i.e. probability that the test fails to reject the null

hypothesis that P = Q at α = 0.05) is shown in Figure
2(C) for differently skewed covariances (ǫ from 0.5 to 15)
when the median heuristic is chosen to select the kernel
lengthscale or when using the Bayesian Kernel Learning.
In this example, the median heuristic picks a kernel with a
large lengthscale, since the median distance between points
is large. With this large lengthscale MMD always fails to
reject at α = 0.05 even for simple cases where ǫ is large.
When we use Bayesian Kernel Learning and optimize the
marginal likelihood of Eq. (15) for τ2 = 1 (our results
were not sensitive to the choice of this parameter, but in
the fully Bayesian case below we show that we can learn
it) we found the maximum marginal likelihood at a length-
scale of 0.85. With this choice of lengthscale, MMD cor-
rectly rejects the null hypothesis at α = 0.05 even for very
hard situations when ǫ = 2. We observe that when ǫ is
smaller than 2, the type II error of MMD is very high for
both choices of lengthscale, because the two distributions P
and Q are so similar that the test always retains the null hy-
pothesis. In Figure 2(D) we illustrate the BKL marginal
likelihood across a range of lengthscales. Interestingly,
there are multiple local optima and the median heuristic
lies between the two main modes. The plot indicates that
multiple scales may be of interest for this dataset, which
makes sense given that the true data generating process is
a mixture model. This insight can be incorporated into the
Bayesian Kernel Embedding framework by expanding our
model, as discussed below. In Figure 2(E) we used the BKE
posterior to estimate the witness function µP,θ −µQ,θ. This
function is large in magnitude in the locations where the
two distributions differ. For ease of visualization we do not
try to include posterior uncertainty intervals, but these are
readily available from our model, and we show them for a
1-dimensional case below.

Our model does not just provide a better way of choos-
ing lengthscales. We can also use it in a fully Bayesian
context, where we place priors over the hyperparameters
θ and τ2, and then integrate them out to learn a posterior
distribution over the mean embedding. Switching to one
dimension, we consider a distribution P = N (0, 1) and a
distribution Q = Laplace(0,

√
.5). The densities are shown

in Figure 3(A). Notice that the first two moments of these
distributions are equal. To create a synthetic dataset we
sampled n observations from each distribution, and then
combined them together into a sample of size 2n, follow-
ing the strategy in the previous experiment to learn a sin-
gle lengthscale and kernel mean embedding for the com-
bined dataset. We ran a Hamiltonian Monte Carlo sampler
(HMC) with NUTS (Stan source code is in the Appendix in
Section B) for the Bayesian Kernel Embedding model with
a squared exponential kernel, placing a Gamma(1, 1) prior
on the lengthscale θ of the kernel and a Gamma(1, 1) prior
on τ2. We ran 4 chains for 400 iterations, discarding 200
iterations as warmup, with the chains starting at different
random initial values. Standard convergence and mixing

188



●
●

●
●

●
●
●

● ●●
●

●

●

●

●
●

● ●●●

●
●

●●
●●●

●

●

●●
●

●

●●
●●● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●●

●●
●

●●
●●

● ●

●
●

●

●

●
●

●
●

●

●
●
●

●
●●●
●●

● ●●
● ●●

●
●

●

●
● ●● ●

●
● ●

●

●

●●● ●●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●
● ●

●
●●●

●

●

●
●
● ●

●●●

●

●

●

●
● ●● ●

●
●●● ●●

●
●

●
●

●

●

●●● ●
●

●
●

●

●●●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●●● ●

●●
●

●

●
● ●

●

●

●

●

●
●●

● ●● ●
●

●
●
●

●
●●

●

●

●

●
● ●

●
●

●●
●

●

● ●
●

●

● ●
●

●

●●
●●

●●
●

●
●

● ●
●

●

●● ●
●●

●

●

● ●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●
●●

● ●
●

●
●

●
●
●●

●

●●●

●●

●●

●

●

●● ●

●

●●

●
●
●

●●
●●●

●

●

●●
●

●

●

●

●

●
● ● ●

●

●
●

●

●
● ●

●

● ●

●●
●
●

●
●●
●●

●

●

●

● ●●
● ●

●

●

●

●

●●

●
●

●

●
● ●●

●●

● ●●
●

●●● ●
●●

●●
●●
●

●

●

●
●●

●

●
●

● ●

●●

●

●●

●

●
●

●

●
●●

●
●

●

●●

●
●

●●●

●
●

●

●
●

●
●

●
●●

●

● ●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●
●

●● ●
●

●

●

●

●

●● ●
●

●

●
●
● ●

●
●

●
●

●

●

● ●

●

●●

●
●●

●
●●

●●
●

●●●●
● ●●●

●●
●

●
●

●
●

●
●●

●●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●● ●
●●

●

●

●●●●●

●

● ●
●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●●
●●

●●

● ●
●

●
●

● ●

●●
●

●●
●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

● ●
●

●●
●

● ●
●

●●

●
●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
● ●
●

●●
●●

●

●

●
●
●●

●●

●●
●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●
● ●

●
●

●●
●

●
●●

●●

●

●

● ●●●●
●●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●
●

●
●

●

● ●

●

●
●●

●

●●●●●
● ●

●

● ●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●●

●

●
●●
●

●
●●

●
●

● ●

●
●

●

●
●

●
●

●
●

●●
●

● ●

●

●●

●

● ●
●

●

●

●

●

● ●

●

●●●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●●●

● ●●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●● ●
●

●
●

●

0 20 40 60

10
30

50

(A) data, epsilon=2

●
●

●●●●
●

●●●●●● ●● ●
●

● ●●●
●
●● ●●●
●●●●● ●●
●●●

●
●●●

●
●
●●
●
●

●●
●
●●●

●
●
●●● ●● ●
●●●
●●●●
●● ●
●●●●●●

●●
● ●●●●●
●●●●●●
●●

●● ● ●
●●

● ●● ●●●●
●●●●●●●●

●
●
● ●

● ●

●
●●●
●

●
● ●

●●● ●●
●●
●
●

●●
●
●●

●
●●
●●
●●●●●●●●
●●

●● ●
●●●●●

●
●
● ●● ●
●
●

●●

●●

●
●●

●●●●●●●●
●●●●

●●
●●
●
●●

●

●
●● ●●●●

●●●
●

●●
● ●●●●

●
●
●●
●●●
●●● ●

●●●●
●●● ●
●●
●●
●

●
●
● ●●

●●●
●●

●
●●●

●●●
●
●
●

●
●●●
●
●●

●
●

●
● ●●

●
●●
●●●●●

●●●●
●●●●●● ●●●
●●
●●

●●●
●

●●
●●●●●●● ●
●
●●●●
●●●● ●● ●●

●

●●●●● ●
●● ●●

●

●●

●
● ●●●●
●● ●
●

●●●● ●
●

●
●●● ●●●
●●●●
●

●●●●
●●

●

●●
●

●●●
●●●●

●●●●
●
●●
●

●
●●●

● ●
●

●●
●

●●
●
●●● ●●●●
●

●●●
●●
●
●●
●●●●●
●●●●●● ●

●
●●●●
●
●●

●
●

●
●
●

● ●
●
●

●
●

●●● ●●●
●
●●
●

●●
●

●●
●●
●
●● ●●● ●●●●
●
●

● ●●● ●●●●

●
● ●●

●
●●
●

●
● ●●●●●●● ●● ●●●

●●
●
●

●
●●●●●
●

● ●●●
●● ●

●●
●●

●
●●●
● ●●
●
●
●

●●
● ●
●
●
●

●
●

● ●
●●● ●

●
● ●

●
●
●

●●●● ●●●
● ●●
●
●

●
●●●

●●●●
●
●

●●●
●
●●●
●

●
● ●

●

●●●●●●●●●●
●● ●●
●

●
●

● ●
●●
●

● ●
●●●
●

●
●

●●
●●●●●

●●
●●●●●●●●
●

●
●●●●
●●● ●

●●●●●● ●●
●

● ●
●●

●
●
●●●●●●

●
●●
●●●●●

●●● ●
●

●●●●●
● ●

●●
● ●●●
●●●

●
●●●●●

●●
● ●

●●
●●

●
●

●
●●●● ●

● ●●
●
●

●
●●

● ●
●

●

●● ●●
●●● ●●●●●●
●
●●●●
●

●●
● ●
●
●
●

●●●●●●●●
●

●
●

●●●●●
● ●●●●●●●

●●
● ●

● ●●●

●
● ●●●
●●
●●

●
●● ●
●●
●●
● ●● ●

●
● ●

●

●
●

●●●●●
● ●

●
●●●●
●●●●●● ●●

●●
●

●
●
●●●●●
●●●●

●
●●●
●●●● ●●●●●●●
●●
●●●● ●

●●
●
●●●
●

●●●● ●
●●
●

●●●

10 30 50

0
20

40
60

(B) data, epsilon=10

1 2 5 10

0.
0

0.
4

0.
8

(C) Type II error

epsilon

Ty
pe

 II
 e

rr
or

Median heuristic

BKL

0.5 1.0 2.0 5.0 20.0 50.0−
17

00
00

−
15

50
00

(D) Marginal log−likelihood, epsilon=2

bandwidth

lo
g 

m
ar

gi
na

l l
ik

el
ih

oo
d

Median 
heuristicBKL

10 30 50

10
30

50

(E) Witness function, epsilon=2

−0.2

−0.1

0.0

0.1

0.2

Figure 2: Two sample testing on a challenging simulated data set: comparing samples from a grid of isotropic Gaussians
(black dots) to samples from a grid of non-isotropic Gaussians (red dots) with a ratio ǫ of largest to smallest covariance
eigenvalues. Panels (A) and (B) illustrate such samples for two values of ǫ. (C) Type II error as a function of ǫ for significant
level α = 0.05 following the median heuristic or the BKL approach to choose the lengthscale. (D) BKL marginal log-
likelihood across a range of lengthscales. It is maximised for a lengthscale of 0.85 whereas the median heuristic suggests
a value of 20. (E) Witness function for the difficult case where ǫ = 2 using the BKL lengthscale.

diagnostics were good (R̂ ≈ 1), so we considered the re-
sult to be 800 draws from the posterior distribution. Recall
that for fixed hyperparameters θ and τ2 we can obtain a
posterior distribution over µP,θ and µQ,θ. For each of our
800 draws, we drew a sample from these two distributions
and then calculated the witness function as the difference,
thus obtaining a random function drawn from the posterior
distribution over µP,θ − µQ,θ (where in practice we eval-
uate this function at a fine grid for plotting purposes). We
thus obtained the full posterior distribution over the wit-
ness function, integrating over the kernel hyperparameter.
We followed this procedure twice to create a dataset with
n = 50 and a dataset with n = 400. In Figure 3(B) we see
that the witness function for the small dataset is not able to
distinguish between the distributions as it rarely excludes 0.
(Note that our model has the function 0 as its prior, which
corresponds to the null hypothesis that the two distributions
are equal. This could easily be changed to incorporate any
relevant prior information.). As shown in Figure 3(C), with
more data the witness function is able to distinguish be-
tween the two distributions, mostly excluding 0.

Finally, we consider the ozone dataset analyzed in Breiman
and Friedman (1985), consisting of daily measurements of
ozone concentration and eight related meteorological vari-
ables. Following the approach in Flaxman et al. (2015), we
first pre-whiten the data to control for underlying tempo-
ral autocorrelation, then we use a combination of Gaussian

process regression followed by HSIC to test for conditional
independence. Each time we run HSIC, we set the ker-
nel hyperparameters using Bayesian Kernel Learning. The
graphical model that we learn is shown in Figure 4. The
directed edge from the temperature variable to ozone is en-
couraging, as higher temperatures favor ozone formation
through a variety of chemical processes which are not rep-
resented by variables in this dataset (Bloomer et al., 2009;
Sillman, 1999). Note that this edge was not present in the
graphical model in Flaxman et al. (2015) in which the me-
dian heuristic was used.

6 DISCUSSION

We developed a framework for Bayesian learning of ker-
nel embeddings of probability measures. It is primarily
designed for unsupervised settings, and in particular for
kernel-based hypothesis testing. In these settings, one re-
lies critically on a good choice of kernel and our framework
yields a new method, termed Bayesian Kernel Learning, to
inform this choice. We only explored learning the length-
scale of the squared exponential kernel, but our method ex-
tends to the case of richer kernels with more hyperparame-
ters. We conceive of Bayesian Kernel Learning as a drop-
in replacement for selecting the kernel hyperparameters in
settings where cross-validation is unavailable. A sampling-
based Bayesian approach is also demonstrated, enabling in-
tegration over kernel hyperparameters, and e.g., obtaining
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Figure 3: The true data generating process is shown in (A)
where two samples of size n are drawn from distributions
with equal means and variances. We then fit our Bayesian
Kernel Embedding model, with priors over the hyperpa-
rameters θ and τ2 to obtain a posterior over the witness
function for two-sampling testing. The witness function
indicates the model’s posterior estimates of where the two
distributions differ (when the witness function is zero, it in-
dicates no difference between the distributions). Posterior
means and 80% uncertainty intervals are shown. In (B) the
small sample size means that the model does not effectively
distinguish between samples from a normal and a Laplace
distribution, while in (C) larger samples enable the model
to find a clear difference, with much of the uncertainty en-
velope excluding 0.

the full posterior distribution over the witness function in
two-sample testing.

While our method is designed for unsupervised settings,
there are various reasons it might be helpful in supervised
settings or in applied Bayesian modelling more generally.
With the rise of large-scale kernel methods, it has become
possible to apply, e.g. SVMs or GPs to very large datasets.

Ozone

Temp InvHt

Pres

Vis Hgt

Hum InvTmp

Wind

Figure 4: Graphical model representing an equivalence
class of DAGs for the Ozone dataset from Breiman and
Friedman (1985), learned using the PC algorithm follow-
ing the approach in Flaxman et al. (2015) with HSIC to test
for independence. We used BKL to set hyperparameters of
HSIC. Singly directed edges represent causal links, while
bidirected edges represent edges that the algorithm failed
to orient. The causal edge from temperature to ozone ac-
cords with scientific understanding, and was not present in
the graphical model learned in Flaxman et al. (2015) which
employed the median heuristic.

But even with efficient methods, it can be very costly to
run cross-validation over a large space of hyperparameters.
In practice, when, e.g. large scale approximations based
on random Fourier features (Rahimi and Recht, 2007) are
used, we have not seen much attention paid to kernel learn-
ing – the features are often just one part of a complicated
pipeline, so again the median heuristic is often employed.
For these reasons, we think that the developed method for
Bayesian Kernel Learning would be a judicious alterna-
tive. Moreover, it would be straightforward to develop scal-
able approximate versions of Bayesian Kernel Learning it-
self.
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Abstract

Bayesian inference has great promise for the
privacy-preserving analysis of sensitive data, as
posterior sampling automatically preserves dif-
ferential privacy, an algorithmic notion of data
privacy, under certain conditions (Dimitrakakis
et al., 2014; Wang et al., 2015b). While this
one posterior sample (OPS) approach elegantly
provides privacy “for free,” it is data inefficient
in the sense of asymptotic relative efficiency
(ARE). We show that a simple alternative based
on the Laplace mechanism, the workhorse of dif-
ferential privacy, is as asymptotically efficient as
non-private posterior inference, under general as-
sumptions. This technique also has practical ad-
vantages including efficient use of the privacy
budget for MCMC. We demonstrate the practi-
cality of our approach on a time-series analysis of
sensitive military records from the Afghanistan
and Iraq wars disclosed by the Wikileaks organi-
zation.

1 INTRODUCTION

Probabilistic models trained via Bayesian inference are
widely and successfully used in application domains where
privacy is invaluable, from text analysis (Blei et al.,
2003; Goldwater and Griffiths, 2007), to personalization
(Salakhutdinov and Mnih, 2008), to medical informatics
(Husmeier et al., 2006), to MOOCs (Piech et al., 2013).
In these applications, data scientists must carefully bal-
ance the benefits and potential insights from data analysis
against the privacy concerns of the individuals whose data
are being studied (Daries et al., 2014).

Dwork et al. (2006) placed the notion of privacy-preserving
data analysis on a solid foundation by introducing differen-
tial privacy (Dwork and Roth, 2013), an algorithmic for-
mulation of privacy which is a gold standard for privacy-
preserving data-driven algorithms. Differential privacy

measures the privacy “cost” of an algorithm. When de-
signing privacy-preserving methods, the goal is to achieve
a good trade-off between privacy and utility, which ideally
improves with the amount of available data.

As observed by Dimitrakakis et al. (2014) and Wang et al.
(2015b), Bayesian posterior sampling behaves synergisti-
cally with differential privacy because it automatically pro-
vides a degree of differential privacy under certain condi-
tions. However, there are substantial gaps between this ele-
gant theory and the practical reality of Bayesian data analy-
sis. Privacy-preserving posterior sampling is hampered by
data inefficiency, as measured by asymptotic relative effi-
ciency (ARE). In practice, it generally requires artificially
selected constraints on the spaces of parameters as well as
data points. Its privacy properties are also not typically
guaranteed for approximate inference.

This paper identifies these gaps between theory and prac-
tice, and begins to mend them via an extremely simple
alternative technique based on the workhorse of differen-
tial privacy, the Laplace mechanism (Dwork et al., 2006).
Our approach is equivalent to a generalization of Zhang
et al. (2016)’s recently and independently proposed algo-
rithm for beta-Bernoulli systems. We provide a theoretical
analysis and empirical validation of the advantages of the
proposed method. We extend both our method and Dimi-
trakakis et al. (2014); Wang et al. (2015b)’s one posterior
sample (OPS) method to the case of approximate inference
with privacy-preserving MCMC. Finally, we demonstrate
the practical applicability of this technique by showing how
to use a privacy-preserving HMM model to analyze sensi-
tive military records from the Iraq and Afghanistan wars
leaked by the Wikileaks organization. Our primary contri-
butions are as follows:

• We analyze the privacy cost of posterior sampling for
exponential family posteriors via OPS.

• We explore a simple Laplace mechanism alternative
to OPS for exponential families.
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• Under weak conditions we establish the consistency
of the Laplace mechanism approach and its data effi-
ciency advantages over OPS.

• We extend the OPS and Laplace mechanism methods
to approximate inference via MCMC.

• We demonstrate the practical implications with a case
study on sensitive military records.

2 BACKGROUND

We begin by discussing preliminaries on differential pri-
vacy and its application to Bayesian inference. Our novel
contributions will begin in Section 3.1.

2.1 DIFFERENTIAL PRIVACY

Differential privacy is a formal notion of the privacy of
data-driven algorithms. For an algorithm to be differen-
tially private the probabilities of the outputs of the algo-
rithms may not change much when one individual’s data
point is modified, thereby revealing little information about
any one individual’s data. More precisely, a randomized al-
gorithmM(X) is said to be (ε, δ)-differentially private if

Pr(M(X) ∈ S) ≤ exp(ε)Pr(M(X′) ∈ S) + δ (1)

for all measurable subsets S of the range ofM and for all
datasets X, X′ differing by a single entry (Dwork and Roth,
2013). If δ = 0, the algorithm is said to be ε-differentially
private.

2.1.1 The Laplace Mechanism

One straightforward method for obtaining ε-differential
privacy, known as the Laplace mechanism (Dwork et al.,
2006), adds Laplace noise to the revealed information,
where the amount of noise depends on ε, and a quantifiable
notion of the sensitivity to changes in the database. Specif-
ically, the L1 sensitivity4h for function h is defined as

4h = max
X,X′

‖h(X)− h(X′)‖1 (2)

for all datasets X, X′ differing in at most one element. The
Laplace mechanism adds noise via

ML(X, h, ε) = h(X) + (Y1, Y2, . . . , Yd) , (3)
Yj ∼ Laplace(4h/ε),∀j ∈ {1, 2, . . . , d} ,

where d is the dimensionality of the range of h. The
ML(X, h, ε) mechanism is ε-differentially private.

2.1.2 The Exponential Mechanism

The exponential mechanism (McSherry and Talwar, 2007)
aims to output responses of high utility while maintain-
ing privacy. Given a utility function u(X, r) that maps

database X/output r pairs to a real-valued score, the expo-
nential mechanismME(X, u, ε) produces random outputs
via

Pr(ME(X, u, ε) = r) ∝ exp
(εu(X, r)

24u
)

, (4)

where the sensitivity of the utility function is

4u , max
r,(X(1),X(2))

‖u(X(1), r)− u(X(2), r)‖1 , (5)

in which (X(1),X(2)) are pairs of databases that differ in
only one element.

2.1.3 Composition Theorems

A key property of differential privacy is that it holds under
composition, via an additive accumulation.

Theorem 1. If M1 is (ε1, δ1)-differentially private, and
M2 is (ε2, δ2)-differentially private, then M1,2(X) =
(M1(X),M2(X)) is (ε1 + ε2, δ1 + δ2)-differentially pri-
vate.

This allows us to view the total ε and δ of our procedure as
a privacy “budget” that we spend across the operations of
our analysis. There also exists an “advanced composition”
theorem which provides privacy guarantees in an adversar-
ial adaptive scenario called k-fold composition, and also
allows an analyst to trade an increased δ for a smaller ε in
this scenario (Dwork et al., 2010). Differential privacy is
also immune to data-independent post-processing.

2.2 PRIVACY AND BAYESIAN INFERENCE

Suppose we would like a differentially private draw of pa-
rameters and latent variables of interest θ from the posterior
Pr(θ|X), where X = {x1, . . . ,xN} is the private dataset.
We can accomplish this by interpreting posterior sampling
as an instance of the exponential mechanism with utility
function u(X, θ) = logPr(θ,X), i.e. the log joint proba-
bility of the chosen θ assignment and the dataset X (Wang
et al., 2015b). We then draw θ via

f(θ;X, ε) ∝ exp
( ε logPr(θ,X)

24 logPr(θ,X)

)
= Pr(θ,X)

ε
24 logPr(θ,X)

(6)
where the sensitivity is4 logPr(θ,X) ,

max
θ,(X(1),X(2))

‖ logPr(θ,X(1))− logPr(θ,X(2))‖1 (7)

in which X(1) and X(2) differ in one element. If the data
points are conditionally independent given θ,

logPr(θ,X) = logPr(θ) +
N∑

i=1

logPr(xi|θ) , (8)

where Pr(θ) is the prior and Pr(xi|θ) is the likelihood
term for data point xi. Since the prior does not depend
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on the data, and each data point is associated with a single
log-likelihood term logPr(xi|θ) in logPr(θ,X), from the
above two equations we have

4 logPr(θ,X) = max
x,x′,θ

| logPr(x′|θ)− logPr(x|θ)| .
(9)

This gives us the privacy cost of posterior sampling:

Theorem 2. If maxx,x′∈χ,θ∈Θ | logPr(x′|θ) −
logPr(x|θ)| ≤ C, releasing one sample from the posterior
distribution Pr(θ|X) with any prior is 2C-differentially
private.

Wang et al. (2015b) derived this form of the result from
first principles, while noting that the exponential mecha-
nism can be used, as we do here. Although they do not
explicitly state the theorem, they implicitly use it to show
two noteworthy special cases, referred to as the One Pos-
terior Sample (OPS) procedure. We state the first of these
cases:

Theorem 3. If maxx∈χ,θ∈Θ | logPr(x|θ)| ≤ B, releasing
one sample from the posterior distribution Pr(θ|X) with
any prior is 4B-differentially private.

This follows directly from Theorem 2, since if
| logPr(x|θ)| ≤ B, C = 4 logPr(θ,X) = 2B.

Under the exponential mechanism, ε provides an ad-
justable knob trading between privacy and fidelity. When
ε = 0, the procedure samples from a uniform distribu-
tion, giving away no information about X. When ε =
24 logPr(θ,X), the procedure reduces to sampling θ
from the posterior Pr(θ|X) ∝ Pr(θ,X). As ε approaches
infinity the procedure becomes increasingly likely to sam-
ple the θ assignment with the highest posterior probabil-
ity. Assuming that our goal is to sample rather than to
find a mode, we would cap ε at 24 logPr(θ,X) in the
above procedure in order to correctly sample from the true
posterior. More generally, if our privacy budget is ε′, and
ε′ ≥ 2q4 logPr(θ,X), for integer q, we can draw q pos-
terior samples within our budget.

As observed by Huang and Kannan (2012), the exponen-
tial mechanism can be understood via statistical mechanics.
We can write it as a Boltzmann distribution (a.k.a. a Gibbs
measure)

f(θ;x, ε) ∝ exp
(−E(θ)

T

)
, T =

24u(X, θ)

ε
, (10)

where E(θ) = −u(X, θ) = − logPr(θ,X) is the energy
of state θ in a physical system, and T is the temperature
of the system (in units such that Boltzmann’s constant is
one). Reducing ε corresponds to increasing the tempera-
ture, which can be understood as altering the distribution
such that a Markov chain moves through the state space
more rapidly.

3 PRIVACY FOR EXPONENTIAL
FAMILIES: EXPONENTIAL VS
LAPLACE

By analyzing the privacy cost of sampling from exponential
family posteriors in the general case we can recover the pri-
vacy properties of many standard distributions. These re-
sults can be applied to full posterior sampling, when feasi-
ble, or to Gibbs sampling updates, as we discuss in Section
4. In this section we analyze the privacy cost of sampling
from exponential family posterior distributions exactly (or
at an appropriate temperature) via the exponential mecha-
nism, following Dimitrakakis et al. (2014) and Wang et al.
(2015b), and via a method based on the Laplace mecha-
nism, which is a generalization of Zhang et al. (2016). The
properties of the two methods are compared in Table 1.

3.1 THE EXPONENTIAL MECHANISM

Consider exponential family models with likelihood

Pr(x|θ) = h(x)g(θ) exp
(
θᵀS(x)

)
,

where S(x) is a vector of sufficient statistics for data point
x, and θ is a vector of natural parameters. For N i.i.d. data
points, we have

Pr(X|θ) =
( N∏

i=1

h(x(i))
)
g(θ)N exp

(
θᵀ

N∑

i=1

S(x(i))
)

.

Further suppose that we have a conjugate prior which is
also an exponential family distribution,

Pr(θ|χ, α) = f(χ, α)g(θ)α exp
(
αθᵀχ

)
,

where α is a scalar, the number of prior “pseudo-counts,”
and χ is a parameter vector. The posterior is proportional
to the prior times the likelihood,

Pr(θ|X, χ, α) ∝ g(θ)N+α exp
(
θᵀ
( N∑

i=1

S(x(i)) + αχ
))

.

(11)
To compute the sensitivity of the posterior, we have

| logPr(x′|θ)− logPr(x|θ)| (12)

= |θᵀ
(
S(x′)− S(x)

)
+ log h(x′)− log h(x)| .

From Equation 9, we obtain4 logPr(θ,X) =

sup
x,x′∈χ,θ∈Θ

|θᵀ
(
S(x′)− S(x)

)
+ log h(x′)− log h(x)| .

(13)

A posterior sample at temperature T ,

PrT (θ|X, χ, α) ∝ g(θ)
N+α
T exp

(
θᵀ
∑N
i=1 S(x(i)) + αχ

T

)
,

T =
24 log p(θ,X)

ε
, (14)
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Mechanism Sensitivity S(X) is Release ARE Pay Gibbs cost

Laplace supX,X′ ‖
∑N
i=1 S(x′(i))−∑N

i=1 S(x(i))‖1 Noised Statistics 1 Once

Exponential supx,x′∈χ,θ∈Θ |θᵀ
(
S(x′)− S(x)

)
Rescaled One 1 + T Per update

(OPS) + log h(x′)− log h(x)| Sample (unless converged)

Table 1: Comparison of the properties of the two methods for private Bayesian inference.

has privacy cost ε, by the exponential mechanism. As an
example, consider a beta-Bernoulli model,

Pr(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1

=
1

B(α, β)
exp((α− 1

)
log p+ (β − 1

)
log(1− p))

Pr(x|p) = px(1− p)1−x = exp(x log p+ (1− x) log(1− p))

whereB(α, β) is the beta function. GivenN binary-valued
data points X = x(1), . . . , x(N) from the Bernoulli distri-
bution, the posterior is

Pr(p|X, α, β) ∝
exp

((
n+ + α− 1

)
log p+

(
n− + β − 1

)
log(1− p)

)

n+ =

N∑

i=1

x(i), n− =

N∑

i=1

(1− x(i)) .

The sufficient statistics for each data point are S(x) =
[x, 1 − x]ᵀ. The natural parameters for the posterior are
θ = [log p, log(1 − p)]ᵀ, and h(x) = 0. The exponen-
tial mechanism sensitivity for a truncated version of this
model, where a0 ≤ p ≤ 1 − a0, can be computed from
Equation 13,4 logPr(θ,X) =

sup
x,x′∈{0,1},p∈[a0,1−a0]

|x log p+ (1− x) log(1− p)

−
(
x′ log p+ (1− x′) log(1− p)

)
|

= − log a0 + log(1− a0) . (15)

Note that if a0 = 0, corresponding to a standard untrun-
cated beta distribution, the sensitivity is unbounded. This
makes intuitive sense because some datasets are impossible
if p = 0 or p = 1, which violates differential privacy.

3.2 THE LAPLACE MECHANISM

One limitation of the exponential mechanism / OPS ap-
proach to private Bayesian inference is that the temperature
T of the approximate posterior is fixed for any ε that we are
willing to pay, regardless of the number of data points N
(Equation 10). While the posterior becomes more accurate
as N increases, and the OPS approximation becomes more
accurate by proxy, the OPS approximation remains a fac-
tor of T flatter than the posterior at N data points. This
is not simply a limitation of the analysis. An adversary
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Figure 1: Privacy-preserving approximate posteriors for a
beta-Bernoulli model (ε = 1, the true parameter p = 0.3,
OPS truncation point a0 = 0.2, and number of observa-
tions N = 20). For the Laplace mechanism, 30 privatizing
draws are rendered.

can choose data such that the dataset-specific privacy cost
of posterior sampling approaches the worst case given by
the exponential mechanism as N increases, by causing the
posterior to concentrate on the worst-case θ (see the sup-
plement for an example).

Here, we provide a simple Laplace mechanism alternative
for exponential family posteriors, which becomes increas-
ingly faithful to the true posterior with N data points, as
N increases, for any fixed privacy cost ε, under general as-
sumptions. The approach is based on the observation that
for exponential family posteriors, as in Equation 11, the
data interacts with the distribution only through the aggre-
gate sufficient statistics, S(X) =

∑N
i=1 S(x(i)). If we re-

lease privatized versions of these statistics we can use them
to perform any further operations that we’d like, including
drawing samples, computing moments and quantiles, and
so on. This can straightforwardly be accomplished via the
Laplace mechanism:

Ŝ(X) = proj(S(X) + (Y1, Y2, . . . , Yd)) , (16)
Yj ∼ Laplace(4S(X)/ε),∀j ∈ {1, 2, . . . , d} ,

where proj(·) is a projection onto the space of sufficient
statistics, if the Laplace noise takes it out of this region.
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Figure 2: L1 error for private approximate samples from
a beta posterior over a Bernoulli success parameter p, as a
function of the number of Bernoulli(p) observations, aver-
aged over 1000 repeats. The true parameter was p = 0.1,
the exponential mechanism posterior was truncated at a0 =
0.05, and ε = 0.1.

For example, if the statistics are counts, the projection en-
sures that they are non-negative. The L1 sensitivity of the
aggregate statistics is

4S(X) = sup
X,X′

‖
N∑

i=1

S(x′(i))−
N∑

i=1

S(x(i))‖1 (17)

= sup
x,x′
‖S(x′)− S(x)‖1 ,

where X, X′ differ in at most one element. Note that per-
turbing the sufficient statistics is equivalent to perturbing
the parameters, which was recently and independently pro-
posed by Zhang et al. (2016) for beta-Bernoulli models
such as Bernoulli naive Bayes.

A comparison of Equations 17 and 13 reveals that the
L1 sensitivity and exponential mechanism sensitivities are
closely related. The L1 sensitivity is generally easier to
control as it does not involve θ or h(x) but otherwise in-
volves similar terms to the exponential mechanism sen-
sitivity. For example, in the beta posterior case, where
S(x) = [x, 1 − x] is a binary indicator vector, the L1
sensitivity is 2. This should be contrasted to the expo-
nential mechanism sensitivity of Equation 15, which de-
pends heavily on the truncation point, and is unbounded
for a standard untruncated beta distribution. The L1 sen-
sitivity is fixed regardless of the number of data points N ,
and so the amount of Laplace noise to add becomes smaller
relative to the total S(X) as N increases.

Figure 1 illustrates the differences in behavior between the
two privacy-preserving Bayesian inference algorithms for a

beta distribution posterior with Bernoulli observations. The
OPS estimator requires the distribution be truncated, here
at a0 = 0.2. This controls the exponential mechanism sen-
sitivity, which determines the temperature T of the distri-
bution, i.e. the extent to which the distribution is flattened,
for a given ε. Here, T = 2.7. In contrast, the Laplace
mechanism achieves privacy by adding noise to the suffi-
cient statistics, which in this case are the pseudo-counts of
successes and failures for the posterior distribution. In Fig-
ure 2 we illustrate the fidelity benefits of posterior sampling
based on the Laplace mechanism instead of the exponential
mechanism as the amount of data increases. In this case the
exponential mechanism performs better than the Laplace
mechanism only when the number of data points is very
small (approximately N = 10), and is quickly overtaken
by the Laplace mechanism sampling procedure. As N in-
creases the accuracy of sampling from the Laplace mecha-
nism’s approximate posterior converges to the performance
of samples from the true posterior at the current number of
observations N , while the exponential mechanism behaves
similarly to the posterior with fewer than N observations.
We show this formally in the next subsection.

3.3 THEORETICAL RESULTS

First, we show that the Laplace mechanism approximation
of exponential family posteriors approaches the true pos-
terior distribution evaluated at N data points. Proofs are
given in the supplementary.

Lemma 1. For a minimal exponential family given a
conjugate prior, where the posterior takes the form
Pr(θ|X, χ, α) ∝ g(θ)n+α exp

(
θᵀ
(∑n

i=1 S(x(i)) +

αχ
))

, where p(θ|η) denotes this posterior with a natural
parameter vector η, if there exists a δ > 0 such that these
assumptions are met:

1. The data X comes i.i.d. from a minimal exponential
family distribution with natural parameter θ0 ∈ Θ

2. θ0 is in the interior of Θ

3. The function A(θ) has all derivatives for θ in the inte-
rior of Θ

4. covPr(x|θ)(S(x))) is finite for θ ∈ B(θ0, δ)

5. ∃w > 0 s.t. det(covPr(x|θ)(S(x)))) > w for θ ∈
B(θ0, δ)

6. The prior Pr(θ|χ, α) is integrable and has support on
a neighborhood of θ∗

then for any mechanism generating a perturbed posterior
p̃N = p(θ|ηN + γ) against a noiseless posterior pN =
p(θ|ηN ) where γ comes from a distribution that does not
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depend on the number of data observations N and has fi-
nite covariance, this limit holds:

limN→∞E[KL(p̃N ||pN )] = 0 .

Corollary 2. The Laplace mechanism on an exponen-
tial family satisfies the noise distribution requirements of
Lemma 1 when the sensitivity of the sufficient statistics is
finite and either the exponential family is minimal, or if the
exponential family parameters θ are identifiable.

These assumptions correspond to the data coming from a
distribution where the Laplace regularity assumptions hold
and the posterior satisfies the asymptotic normality given
by the Bernstein-von Mises theorem. For example, in the
beta-Bernoulli setting, these assumptions hold as long as
the success parameter p is in the open interval (0, 1). For
p = 0 or 1, the relevant parameter is not in the interior of
Θ, and the result does not apply. In the setting of learning
a normal distribution’s mean µ where the variance σ2 > 0
is known, the assumptions of Lemma 1 always hold, as the
natural parameter space is an open set. However, Corol-
lary 2 does not apply in this setting because the sensitivity
is infinite (unless bounds are placed on the data). Our ef-
ficiency result, in Theorem 4, follows from Lemma 1 and
the Bernstein-von Mises theorem.

Theorem 4. Under the assumptions of Lemma 1, the
Laplace mechanism has an asymptotic posterior of
N (θ0, 2I−1/N) from which drawing a single sample has
an asymptotic relative efficiency of 2 in estimating θ0,
where I is the Fisher information at θ0.

Above, the asymptotic posterior refers to the normal dis-
tribution, whose variance depends on N , that the posterior
distribution approaches as N increases. This ARE result
should be contrasted to that of the exponential mechanism
(Wang et al., 2015b).

Theorem 5. The exponential mechanism applied to the ex-
ponential family with temperature parameter T ≥ 1 has an
asymptotic posterior ofN (θ∗, (1+T )I−1/N) and a single
sample has an asymptotic relative efficiency of (1 + T ) in
estimating θ∗, where I is the Fisher information at θ∗.

Here, the ARE represents the ratio between the variance of
the estimator and the optimal variance I−1/N achieved by
the posterior mean in the limit. Sampling from the posterior
itself has an ARE of 2, due to the stochasticity of sampling,
which the Laplace mechanism approach matches. These
theoretical results provide an explanation for the difference
in the behavior of these two methods asN increases seen in
Figure 2. The Laplace mechanism will eventually approach
the true posterior and the impact of privacy on accuracy will
diminish when the data size increases. However, for the
exponential mechanism with T > 1, the ratio of variances
between the sampled posterior and the true posterior given
N data points approaches (1 + T )/2, making the sampled

posterior more spread out than the true posterior even as N
grows large.

So far we have compared the ARE values for sampling,
as an apples-to-apples comparison. In reality, the Laplace
mechanism has a further advantage as it releases a full
posterior with privatized parameters, while the exponen-
tial mechanism can only release a finite number of samples
with a finite ε, which we discuss in Remark 1.

Remark 1. Under the the assumptions of Lemma 1, by
using the full privatized posterior instead of just a sam-
ple from it, the Laplace mechanism can release the priva-
tized posterior’s mean, which has an asymptotic relative
efficiency of 1 in estimating θ∗.

4 PRIVATE GIBBS SAMPLING

We now shift our discussion to the case of approximate
Bayesian inference. While the analysis of Dimitrakakis
et al. (2014) and Wang et al. (2015b) shows that posterior
sampling is differentially private under certain conditions,
exact sampling is not in general tractable. It does not di-
rectly follow that approximate sampling algorithms such
as MCMC are also differentially private, or private at the
same privacy level. Wang et al. (2015b) give two results to-
wards understanding the privacy properties of approximate
sampling algorithms. First, they show that if the approxi-
mate sampler is “close” to the true distribution in a certain
sense, then the privacy cost will be close to that of a true
posterior sample:

Proposition 3. If procedure A which produces samples
from distribution PX is ε-differentially private, then any
approximate sampling procedures A′ that produces a sam-
ple from P ′X such that ‖PX − P ′X‖1 ≤ δ for any X is
(ε, (1 + exp(ε)δ)-differentially private.

Unfortunately, it is not in general feasible to verify the con-
vergence of an MCMC algorithm, and so this criterion is
not generally verifiable in practice. In their second re-
sult, Wang et al. study the privacy properties of stochastic
gradient MCMC algorithms, including stochastic gradient
Langevin dynamics (SGLD) (Welling and Teh, 2011) and
its extensions. SGLD is a stochastic gradient method with
noise injected in the gradient updates which converges in
distribution to the target posterior.

In this section we study the privacy cost of MCMC, al-
lowing us to quantify the privacy of many real-world
MCMC-based Bayesian analyses. We focus on the case
of Gibbs sampling, under exponential mechanism and
Laplace mechanism approaches. By reinterpreting Gibbs
sampling as an instance of the exponential mechanism,
we obtain the “privacy for free” cost of Gibbs sampling.
Metropolis-Hastings and annealed importance sampling
also have privacy guarantees, which we show in the sup-
plementary materials.
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4.1 EXPONENTIAL MECHANISM

We consider the privacy cost of a Gibbs sampler, where
data X are behind the privacy wall, current sampled val-
ues of parameters and latent variables θ = [θ1, . . . , θD] are
publicly known, and a Gibbs update is a randomized algo-
rithm which queries our private data in order to randomly
select a new value θ′l for the current variable θl. The transi-
tion kernel for a Gibbs update of θl is

T (Gibbs,l)(θ, θ′) = Pr(θ′l
∣∣θ¬l,X) , (18)

where θ¬l refers to all entries of θ except l, which are held
fixed, i.e. θ′¬l = θ¬l. This update can be understood via the
exponential mechanism:

T (Gibbs,l,ε)(θ, θ′) ∝ Pr(θ′l, θ¬l,X)
ε

24 logPr(θ′
l
,θ¬l,X) ,

(19)
with utility function u(X, θ′l; θ¬l) = logPr(θ′l, θ¬l,X),
over the space of possible assignments to θl, holding θ¬l
fixed. A Gibbs update is therefore ε-differentially private,
with ε = 24 logPr(θ′l, θ¬l,X). This update corresponds
to Equation 6 except that the set of responses for the expo-
nential mechanism is restricted to those where θ′¬l = θ¬l.
Note that

4 logPr(θ′l, θ¬l,X) ≤ 4 logPr(θ,X) (20)

as the worst case is computed over a strictly smaller set of
outcomes. In many cases each parameter and latent vari-
able θl is associated with only the lth data point xl, in
which case the privacy cost of a Gibbs scan can be im-
proved over simple additive composition. In this case a
random sequence scan Gibbs pass, which updates all N
θl’s exactly once, is 24 logPr(θ,X)-differentially private
by parallel composition (Song et al., 2013). Alternatively,
a random scan Gibbs sampler, which updates a random Q
out of N θl’s, is 44 logPr(θ,X)QN -differentially private
from the privacy amplification benefit of subsampling data
(Li et al., 2012).

4.2 LAPLACE MECHANISM

Suppose that the conditional posterior distribution for a
Gibbs update is in the exponential family. Having pri-
vatized the sufficient statistics arising from the data for
the likelihoods involved in each update, via Equation 16,
and publicly released them with privacy cost ε, we may
now perform the update by drawing a sample from the ap-
proximate conditional posterior, i.e. Equation 11 but with
S(X) =

∑N
i=1(x(i)) replaced by Ŝ(X). Since the pri-

vatized statistics can be made public, we can also sub-
sequently draw from an approximate posterior based on
Ŝ(X) with any other prior (selected based on public infor-
mation only), without paying any further privacy cost. This
is especially valuable in a Gibbs sampling context, where
the “prior” for a Gibbs update often consists of factors from
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Figure 3: State assignments of privacy-preserving HMM
on Iraq (Laplace mechanism, ε = 5).

other variables and parameters to be sampled, which are
updated during the course of the algorithm.

In particular, consider a Bayesian model where a Gibbs
sampler interacts with data only via conditional posteri-
ors and their corresponding likelihoods that are exponen-
tial family distributions. We can privatize the sufficient
statistics of the likelihood just once at the beginning of the
MCMC algorithm via the Laplace mechanism with privacy
cost ε, and then approximately sample from the posterior
by running the entire MCMC algorithm based on these pri-
vatized statistics without paying any further privacy cost.
This is typically much cheaper in the privacy budget than
exponential mechanism MCMC which pays a privacy cost
for every Gibbs update, as we shall see in our case study
in Section 5. The MCMC algorithm does not need to con-
verge to obtain privacy guarantees, unlike the OPS method.
This approach applies to a very broad class of models,
including Bayesian parameter learning for fully-observed
MRF and Bayesian network models. Of course, for this
technique to be useful in practice, the aggregate sufficient
statistics for each Gibbs update must be large relative to
the Laplace noise. For latent variable models, this typically
corresponds to a setting with many data points per latent
variable, such as the HMM model with multiple emissions
per timestep which we study in the next section.

5 CASE STUDY: WIKILEAKS IRAQ &
AFGHANISTAN WAR LOGS

A primary goal of this work is to establish the practical fea-
sibility of privacy-preserving Bayesian data analysis using
complex models on real-world datasets. In this section we
investigate the performance of the methods studied in this
paper for the analysis of sensitive military data. In July and
October 2010, the Wikileaks organization disclosed collec-
tions of internal U.S. military field reports from the wars in
Afghanistan and Iraq, respectively. Both disclosures con-
tained data from between January 2004 to December 2009,
with ∼75,000 entries from the war in Afghanistan, and
∼390,000 entries from Iraq. Hillary Clinton, at that time
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Figure 4: State 1 for Iraq (type, category, casualties).
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Figure 5: State 2 for Iraq (type, category, casualties).

the U.S. Secretary of State, criticized the disclosure, stat-
ing that it “puts the lives of United States and its partners’
service members and civilians at risk.”1 These risks, and
the motivations for the leak, could potentially have been
mitigated by releasing a differentially private analysis of
the data, which protects the contents of each individual log
entry while revealing high-level trends. Note that since the
data are publicly available, although our models were dif-
ferentially private, other aspects of this manuscript such as
the evaluation may reveal certain information, as in other
works such as Wang et al. (2015a,b).

The disclosed war logs each correspond to an individual
event, and contain textual reports, as well as fields such
as coarse-grained types (friendly action, explosive hazard,
. . . ), fine-grained categories (mine found/cleared, show of
force, . . . ), and casualty counts (wounded/killed/detained)
for the different factions (Friendly, HostNation (i.e. Iraqi
and Afghani forces), Civilian, and Enemy, where the names
are relative to the U.S. military’s perspective). We use the
techniques discussed in this paper to privately infer a hid-
den Markov model on the log entries. The HMM was fit
to the non-textual fields listed above, with one timestep
per month, and one HMM chain per region code. A naive
Bayes conditional independence assumption was used in
the emission probabilities for simplicity and parameter-
count parsimony. Each field was modeled via a discrete
distribution per latent state, with casualty counts bina-

1Fallon, Amy (2010). “Iraq war logs: disclosure condemned
by Hillary Clinton and Nato.” The Guardian. Retrieved on
2/22/2016.

rized (0 versus > 0), and with wounded/killed/detained
and Friendly/HostNation features combined, respectively,
via disjunction of the binary values. This decreased the
number of features to privatize, while slightly increasing
the size of the counts per field to protect and simplifying
the model for visualization purposes. After preprocessing
to remove empty timesteps and near-empty region codes
(see the supplementary), the median number of log en-
tries per region/timestep pair was 972 for Iraq, and 58 for
Afghanistan. The number of log entries per timestep was
highly skewed for Afghanistan, due to an increase in den-
sity over time.

The models were trained via Gibbs sampling, with the tran-
sition probabilities collapsed out, following Goldwater and
Griffiths (2007). We did not collapse out the naive Bayes
parameters in order to keep the conditional likelihood in
the exponential family. The details of the model and infer-
ence algorithm are given in the supplementary material. We
trained the models for 200 Gibbs iterations, with the first
100 used for burn-in. Both privatization methods have the
same overall computational complexity as the non-private
sampler. The Laplace mechanism’s computational over-
head is paid once up-front, and did not greatly affect the
runtime, while OPS roughly doubled the runtime. For vi-
sualization purposes we recovered parameter estimates via
the posterior mean based on the latent variable assignments
of the final iteration, and we reported the most frequent la-
tent variable assignments over the non-burn-in iterations.
We trained a 2-state model on the Iraq data, and a 3-state
model for the Afghanistan data, using the Laplace approach
with total ε = 5 (ε = 1 for each of 5 features).

Interestingly, when given 10 states, the privacy-preserving
model only assigned substantial numbers of data points to
these 2-3 states, while a non-private HMM happily fit a
10-state model to the data. The Laplace noise therefore ap-
pears to play the role of a regularizer, consistent with the
noise being interpreted as a “random prior,” and along the
lines of noise-based regularization techniques such as (Sri-
vastava et al., 2014; van der Maaten et al., 2013), although
of course it may correspond to more regularization than we
would typically like. This phenomenon potentially merits
further study, beyond the scope of this paper.

We visualized the output of the Laplace HMM for Iraq
in Figures 3–5. State 1 shows the U.S. military perform-
ing well, with the most frequent outcomes for each fea-
ture being friendly action, cache found/cleared, and en-
emy casualties, while the U.S. military performed poorly
in State 2 (explosive hazard, IED explosion, civilian ca-
sualties). State 2 was prevalent in most regions until the
situation improved to State 1 after the troop surge strat-
egy of 2007. This transition typically occurred after troops
peaked in Sept.–Nov. 2007. The results for Afghanistan,
in the supplementary, provide a critical lens on the US mil-
itary’s performance, with enemy casualty rates (including
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Figure 6: Log-likelihood results. Left: Naive Bayes (Afghanistan). Middle: Afghanistan. Right: Iraq. For OPS, Dirichlets
were truncated at a0 = 1

MKd
, M = 10 or 100, where Kd = feature d’s dimensionality.
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Figure 7: State assignments for OPS privacy-preserving
HMM on Afghanistan. (ε = 5, truncation point a0 =

1
100Kd

). Top: Estimate from last 100 samples. Bottom:
Estimate from last one sample.

detainments) lower than friendly/host casualties for all la-
tent states, and lower than civilian casualties in 2 of 3 states.

We also evaluated the methods at prediction. A uniform
random 10% of the timestep/region pairs were held out for
10 train/test splits, and we reported average test likelihoods
over the splits. We estimated test log-likelihood for each
split by averaging the test likelihood over the burned-in
samples (Laplace mechanism), or using the final sample
(OPS). All methods were given 10 latent states, and ε was
varied between 0.1 and 10. We also considered a naive
Bayes model, equivalent to a 1-state HMM. The Laplace
mechanism was superior to OPS for the naive Bayes model,
for which the statistics are corpus-wide counts, corre-
sponding to a high-data regime in which our asymptotic

analysis was applicable. OPS was competitive with the
Laplace mechanism for the HMM on Afghanistan, where
the amount of data was relatively low. For the Iraq dataset,
where there was more data per timestep, the Laplace mech-
anism outperformed OPS, particularly in the high-privacy
regime. For OPS, privacy at ε is only guaranteed if MCMC
has converged. Otherwise, from Section 4.1, the worst case
is an impractical ε(Gibbs) ≤ 400ε (200 iterations of la-
tent variable and parameter updates with worst-case cost
ε). OPS only releases one sample, which harmed the co-
herency of the visualization for Afghanistan, as latent states
of the final sample were noisy relative to an estimate based
on all 100 post burn-in samples (Figure 7). Privatizing the
Gibbs chain at a privacy cost of ε(Gibbs) would avoid this.

6 CONCLUSION

This paper studied the practical limitations of using poste-
rior sampling to obtain privacy “for free.” We explored an
alternative based on the Laplace mechanism, and analyzed
it both theoretically and empirically. We illustrated the
benefits of the Laplace mechanism for privacy-preserving
Bayesian inference to analyze sensitive war records. The
study of privacy-preserving Bayesian inference is only just
beginning. We envision extensions of these techniques to
other approximate inference algorithms, as well as their
practical application to sensitive real-world data sets. Fi-
nally, we have argued that asymptotic efficiency is impor-
tant in a privacy context, leading to an open question: how
large is the class of private methods that are asymptotically
efficient?
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Abstract

Model-free reinforcement learning algorithms,
such as Q-learning, perform poorly in the early
stages of learning in noisy environments, because
much effort is spent unlearning biased estimates
of the state-action value function. The bias re-
sults from selecting, among several noisy esti-
mates, the apparent optimum, which may actu-
ally be suboptimal. We propose G-learning, a
new off-policy learning algorithm that regular-
izes the value estimates by penalizing determin-
istic policies in the beginning of the learning pro-
cess. We show that this method reduces the bias
of the value-function estimation, leading to faster
convergence to the optimal value and the optimal
policy. Moreover, G-learning enables the natural
incorporation of prior domain knowledge, when
available. The stochastic nature of G-learning
also makes it avoid some exploration costs, a
property usually attributed only to on-policy al-
gorithms. We illustrate these ideas in several ex-
amples, where G-learning results in significant
improvements of the convergence rate and the
cost of the learning process.

1 INTRODUCTION

The need to separate signals from noise stands at the cen-
ter of any learning task in a noisy environment. While a
rich set of tools to regularize learned parameters has been
developed for supervised and unsupervised learning prob-
lems, in areas such as reinforcement learning there still ex-
ists a vital need for techniques that tame the noise and avoid
overfitting and local minima.

One of the central algorithms in reinforcement learning is
Q-learning [1], a model-free off-policy algorithm, which
attempts to estimate the optimal value function Q, the

∗These authors contributed equally to this work.

cost-to-go of the optimal policy. To enable this estima-
tion, a stochastic exploration policy is used by the learn-
ing agent to interact with its environment and explore the
model. This approach is very successful and popular, and
despite several alternative approaches developed in recent
years [2, 3, 4], it is still being applied successfully in com-
plex domains for which explicit models are lacking [5].

However, in noisy domains, in early stages of the learn-
ing process, the min (or max) operator in Q-learning brings
about a bias in the estimates. This problem is akin to the
“winner’s curse” in auctions [6, 7, 8, 9]. With too little ev-
idence, the biased estimates may lead to wrong decisions,
which slow down the convergence of the learning process,
and require subsequent unlearning of these suboptimal be-
haviors.

In this paper we present G-learning, a new off-policy
information-theoretic approach to regularizing the state-
action value function learned by an agent interacting with
its environment in model-free settings.

This is achieved by adding to the cost-to-go a term that pe-
nalizes deterministic policies which diverge from a simple
stochastic prior policy [10]. With only a small sample to
go by, G-learning prefers a more randomized policy, and as
samples accumulate, it gradually shifts to a more determin-
istic and exploiting policy. This transition is managed by
appropriately scheduling the coefficient of the penalty term
as learning proceeds.

In Section 4 we discuss the theoretical and practical as-
pects of scheduling this coefficient, and suggest that a sim-
ple linear schedule can perform well. We show that G-
learning with this schedule reduces the value estimation
bias by avoiding overfitting in its selection of the update
policy. We further establish empirically the link between
bias reduction and learning performance, that has been the
underlying assumption in many approaches to reinforce-
ment learning [11, 12, 13, 14]. The examples in Section 6
demonstrate the significant improvement thus obtained.

Furthermore, in domains where exploration incurs signif-
icantly higher costs than exploitation, such as the classic
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cliff domain [2], G-learning with an ε-greedy exploration
policy is exploration-aware, and chooses a less costly ex-
ploration policy, thus reducing the costs incurred during
the learning process. Such awareness to the cost of explo-
ration is usually attributed to on-policy algorithms, such as
SARSA [2, 4] and Expected-SARSA [15, 16]. The remark-
able finding that G-learning exhibits on-policy-like proper-
ties is illustrated in the example of Section 6.2.

In Section 2 we discuss the problem of learning in noisy en-
vironments. In Section 3 we introduce the penalty term, de-
rive G-learning and prove its convergence. In Section 4 we
determine a schedule for the coefficient of the information
penalty term. In Section 5 we discuss related work. In Sec-
tion 6 we illustrate the strengths of the algorithm through
several examples.

2 LEARNING IN NOISY
ENVIRONMENTS

2.1 NOTATION AND BACKGROUND

We consider the usual setting of a Markov Decision Process
(MDP), in which an agent interacts with its environment
by repeatedly observing its state s ∈ S, taking an action
a ∈ A, with A and S finite, and incurring cost c ∈ R. This
induces a stochastic process s0, a0, c0, s1, . . ., where s0 is
fixed, and where for t ≥ 0 we have the Markov properties
indicated by the conditional distributions at ∼ πt(at|st),
ct ∼ θ(ct|st, at) and st+1 ∼ p(st+1|st, at).

The objective of the agent is to find a time-invariant pol-
icy π that minimizes the total discounted expected cost

V π(s) =
∑

t≥0

γt E[ct|s0 = s], (1)

simultaneously for any s ∈ S, for a given discount factor
0 ≤ γ < 1. For each t, the expectation above is over all
trajectories of length t starting at s0 = s. A related quantity
is the state-action value function

Qπ(s, a) =
∑

t≥0

γt E[ct|s0 = s, a0 = a]

= Eθ[c|s, a] + γ Ep[V
π(s′)|s, a], (2)

which equals the total discounted expected cost that follows
from choosing action a in state s, and then following the
policy π.

If we know the distributions p and θ (or at least Eθ[c|s, a]),
then it is easy to find the optimal state-action value function

Q∗(s, a) = min
π
Qπ(s, a) (3)

using standard techniques, such as Value Iteration [17].
Our interest is in model-free learning, where the model pa-
rameters are unknown. Instead, the agent obtains samples

from p(st+1|st, at) and θ(ct|st, at) through its interaction
with the environment. In this setting, the Q-learning algo-
rithm [1] provides a method for estimating Q∗. It starts
with an arbitrary Q, and in step t upon observing st, at, ct
and st+1, performs the update

Q(st, at)← (1− αt)Q(st, at) (4)

+ αt

(
ct + γ

∑

a′

π(a′|st+1)Q(st+1, a
′)

)
,

with some learning rate 0 ≤ αt ≤ 1, and the greedy policy
for Q having

π(a|s) = δa,a∗(s); a∗(s) = arg min
a

Q(s, a). (5)

Q(s, a) is unchanged for any (s, a) 6= (st, at). If the learn-
ing rate satisfies

∑

t

αt =∞;
∑

t

α2
t <∞, (6)

and the interaction itself uses an exploration policy that re-
turns to each state-action pair infinitely many times, thenQ
is a consistent estimator, converging to Q∗ with probabil-
ity 1 [1, 17]. Similarly, if the update rule (4) uses a fixed
update policy π = ρ, we call this algorithm Qρ-learning,
because Q converges to Qρ with probability 1.

2.2 BIAS AND EARLY COMMITMENT

Despite the success of Q-learning in many situations, learn-
ing can proceed extremely slowly when there is noise in the
distribution, given st and at, of either of the terms of (2),
namely the cost ct and the value of the next state st+1. The
source of this problem is a negative bias introduced by the
min operator in the estimator mina′ Q(st+1, a

′), when (5)
is plugged into (4).

To illustrate this bias, assume that Q(s, a) is an unbiased
but noisy estimate of the optimal Q∗(s, a). Then Jensen’s
inequality for the concave min operator implies that

E[min
a
Q(s, a)] ≤ min

a
Q∗(s, a), (7)

with equality only when Q already reveals the optimal pol-
icy by having arg minaQ(s, a) = arg minaQ

∗(s, a) with
probability 1, so that no further learning is needed. The
expectation in (7) is with respect to the learning process,
including any randomness in state transition, cost, explo-
ration and internal update, given the domain.

This is an optimistic bias, causing the cost-to-go to appear
lower than it is (or the reward-to-go higher). It is the well
known “winner’s curse” problem in economics and deci-
sion theory [6, 7, 8, 9], and in the context of Q-learning
it was studied before in [3, 11, 12, 13]. A similar prob-
lem occurs when a function approximation scheme is used
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for Q instead of a table, even in the absence of transition
or cost noise, because the approximation itself introduces
noise [18].

As the sample size increases, the variance in Q(s, a) de-
creases, which in turn reduces the bias in (7). This makes
the update policy (5) more optimal, and the update increas-
ingly similar to Value Iteration.

2.3 THE INTERPLAY OF VALUE BIAS AND
POLICY SUBOPTIMALITY

It is insightful to consider the effect of the bias not only on
the estimated value function, but also on the real value V π

of the greedy policy (5), since in many cases the latter is the
actual output of the learning process. The central quantity
of interest here is the gapQ∗(s, a′)−V ∗(s), in a given state
s, between the value of a non-optimal action a′ and that of
the optimal action.

Consider first the case in which the gap is large compared
to the noise in the estimation of the Q(s, a) values. In this
case, a′ indeed appears suboptimal with high probability, as
desired. Interestingly, when the gap is very small relative
to the noise, the learning agent should not worry, either.
Confusing such a′ for the optimal action has a limited effect
on the value of the greedy policy, since choosing a′ is near-
optimal.

We conclude that the real value V π of the greedy policy (5)
is suboptimal only in the intermediate regime, when the gap
is of the order of the noise, and neither is small. The effect
of the noise can be made even worse by the propagation of
bias between states, through updates. Such propagation can
cause large-gap suboptimal actions to nevertheless appear
optimal, if they lead to a region of state-space that is highly
biased.

2.4 A DYNAMIC OPTIMISM-UNCERTAINTY
LOOP

The above considerations were agnostic to the exploration
policy, but the bias reduction can be accelerated by an ex-
ploration policy that is close to being greedy. In this case,
high-variance estimation is self-correcting: an estimated
state value with optimistic bias draws exploration towards
that state, leading to a decrease in the variance, which in
turn reduces the optimistic bias. This is a dynamic form
of optimism under uncertainty. While in the usual case the
optimism is externally imposed as an initial condition [19],
here it is spontaneously generated by the noise and self-
corrected through exploration.

The approach we propose below to reduce the variance is
motivated by electing to represent the uncertainty explic-
itly, and not indirectly through an optimistic bias. We no-
tice that although in the end of the learning process one
obtains the deterministic greedy policy from Q(a, s) as

in (5), during the learning itself the bias in Q can be ame-
liorated by avoiding the hard min operator, and refraining
from committing to a deterministic greedy policy. This can
be achieved by adding to Q, at the early learning stage, a
term that penalizes deterministic policies, which we con-
sider next.

3 LEARNING WITH SOFT UPDATES

3.1 THE FREE-ENERGY FUNCTION G AND
G-LEARNING

Let us adopt, before any interaction with the environment,
a simple stochastic prior policy ρ(a|s). For example, we
can take the uniform distribution over the possible actions.
The information cost of a learned policy π(a|s) is defined
as

gπ(s, a) = log π(a|s)
ρ(a|s) , (8)

and its expectation over the policy π is the Kullback-
Leibler (KL) divergence of πs = π(·|s) from ρs = ρ(·|s),

Eπ[gπ(s, a)|s] = DKL[πs‖ρs]. (9)

The term (8) penalizes deviations from the prior policy and
serves to regularize the optimal policy away from a de-
terministic action. In the context of the MDP dynamics
p(st+1|st, at), similarly to (1), we consider the total dis-
counted expected information cost

Iπ(s) =
∑

t≥0

γt E[gπ(st, at)|s0 = s]. (10)

The discounting in (1) and (10) is justified by imagining a
horizon T ∼ Geom(1− γ), distributed geometrically with
parameter 1 − γ. Then the cost-to-go V π in (1) and the
information-to-go Iπ in (10) are the total (undiscounted)
expected T -step costs.

Adding the penalty term (10) to the cost function (1) gives

Fπ(s) = V π(s) + 1
β I

π(s), (11)

=
∑

t≥0

γt E[ 1
β g

π(st, at) + ct|s0 = s],

called the free-energy function by analogy with a similar
quantity in statistical mechanics [10].

Here β is a parameter that sets the relative weight between
the two costs. For the moment, we assume that β is fixed.
In following sections, we let β grow as the learning pro-
ceeds.

In analogy with the Qπ function (2), let us define the state-
action free-energy function Gπ(s, a) as

Gπ(s, a) = Eθ[c|s, a] + γ Ep[F
π(s′)|s, a] (12)

=
∑

t≥0

γt E[ct + γ
β g

π(st+1, at+1))|s0 = s, a0 = a],
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and note that it does not involve the information term at
time t = 0, since the action a0 = a is already known.
From the definitions (11) and (12) it follows that

Fπ(s) =
∑

a

π(a|s)
[

1
β log π(a|s)

ρ(a|s) +Gπ(s, a)
]
. (13)

It is easy to verify that, given the G function, the above
expression for Fπ has gradient 0 at

π(a|s) =
ρ(a|s)e−βG(s,a)

∑
a′ ρ(a′|s)e−βG(s,a′)

, (14)

which is therefore the optimal policy.

The policy (14) is the soft-min operator applied to G, with
inverse-temperature β. When β is small, the information
cost is dominant, and π approaches the prior ρ. When β
is large, we are willing to diverge much from the prior to
reduce the external cost, and π approaches the deterministic
greedy policy for G.

Evaluated at the soft-greedy policy (14), the free en-
ergy (13) is

Fπ(s) = − 1
β log

∑

a

ρ(a|s)e−βGπ(s,a), (15)

and plugging this expression into (12), we get that the op-
timal G∗ is a fixed point of the equation

G∗(s, a) = Eθ[c|s, a] (16)

− γ
β Ep

[
log
∑

a′

ρ(a′|s′)e−βG∗(s′,a′)
]

≡ B∗[G∗](s,a). (17)

Based on the above expression, we introduce G-learning
as an off-policy TD-learning algorithm [2], that learns the
optimal G∗ from the interaction with the environment by
applying the update rule

G(st, at)← (1− αt)G(st, at) (18)

+ αt

(
ct − γ

β log

(∑

a′

ρ(a′|st+1)e−βG(st+1,a
′)

))
.

3.2 THE ROLE OF THE PRIOR

Clearly the choice of the prior policy ρ is significant in the
performance of the algorithm. The prior policy can en-
code any prior knowledge that we have about the domain,
and this can improve the convergence if done correctly.
However an incorrect prior policy can hinder learning. We
should therefore choose a prior policy that represents all of
our prior knowledge, but nothing more. This prior policy
has maximal entropy given the prior knowledge [20].

In our examples in Section 6, we use the uniform prior pol-
icy, representing no prior knowledge. Both in Q-learning

and in G-learning, we could utilize the prior knowledge
that moving into a wall is never a good action, by elimi-
nating those actions. One advantage of G-learning is that
it can utilize softer prior knowledge. For example, a prior
policy that gives lower probability for moving into a wall
represent the prior knowledge that such an action is usually
(but not always) harmful, a type of knowledge that cannot
be utilized in Q-learning.

We have presented G-learning in a fully parameterized for-
mulation, where the function G is stored in a lookup table.
Practical applications of Q-learning often resort to approx-
imating the function Q through function approximations,
such as linear expansions or neural networks [2, 3, 4, 21, 5].
Such an approximation generates inductive bias, which
is another form of implicit prior knowledge. While G-
learning is introduced here in its table form, preliminary
results indicate that its benefits carry over to function ap-
proximations, despite the challenges posed by this exten-
sion.

3.3 CONVERGENCE

In this section we study the convergence ofG under the up-
date rule (18). Recall that the supremum norm is defined as
|x|∞ = maxi |xi|. We need the following Lemma, proved
in the Supplementary Material.

Lemma 1. The operator B∗[G](s,a) defined in (17) is a
contraction in the supremum norm,

∣∣B∗[G1]−B∗[G2]
∣∣
∞ ≤ γ

∣∣G1 −G2

∣∣
∞. (19)

The update equation (18) of the algorithm can be written as
a stochastic iteration equation

Gt+1(st, at) = (1− αt)Gt(st, at) (20)
+ αt(B

∗[Gt](st,at) + zt(ct, st+1))

where the random variable zt is

zt(ct, st+1) = −B∗[Gt](st,at) (21)

+ ct − γ
β log

∑

a′

ρ(a′|st+1)e−βGt(st+1,a
′).

Note that zt has expectation 0. Many results exist for iter-
ative equations of the type (20). In particular, given condi-
tions (6) for αt, the contractive nature of B∗, infinite visits
to each pair (st, at) and assuming that |zt| < ∞ , Gt is
guaranteed to converge to the optimal G∗ with probabil-
ity 1 [17, 22].

4 SCHEDULING β

In the previous section, we showed that running G-learning
with a fixed β converges, with probability 1, to the opti-
mal G∗ for that β, given by the recursion in (12)–(14).

205



When β = ∞, the equations for G∗ and F ∗ degenerate
into the equations for Q∗ and V ∗, and G-learning becomes
Q-learning. When β = 0, the update policy π in (14) is
equal to the prior ρ. This case, denoted Qρ-learning, con-
verges to Qρ.

In an early stage of learning, Qρ-learning has an advan-
tage over Q-learning, because it avoids committing to a de-
terministic policy based on a noisy Q function. In a later
stage of learning, whenQ is a more precise estimate ofQ∗,
Q-learning gains the advantage by updating with a better
policy than the prior. This is demonstrated in section 6.1.

We would therefore like to schedule β so that G-learning
makes a smooth transition from Qρ-learning to Q-learning,
just at the right pace to enjoy the early advantage of the
former and the late advantage of the latter. As we argue
below, such a β always exists.

4.1 ORACLE SCHEDULING

To consider the effect of the β scheduling on the correction
of the bias (7), suppose that during learning we reach some
G that is an unbiased estimate of G∗. G(st, at) would re-
main unbiased if we update it towards

ct + γG(st+1, a
∗) (22)

with

a∗ = arg min
a′

G∗(st+1, a
′), (23)

but we do not have access to this optimal action. If we
use the update rule (18) with β = 0, we update G(st, at)
towards

ct + γ
∑

a′

ρ(a′|st+1)G(st+1, a
′), (24)

which is always at least as large as (22), creating a positive
bias. If we use β =∞, we update G(st, at) towards

ct + γmin
a′

G(st+1, a
′), (25)

which creates a negative bias, as explained in Section 2.2.
Since the right-hand side of (18) is continuous and mono-
tonic in β, there must be some β for which this update rule
is unbiased.

This is a non-constructive proof for the existence of a β
schedule that keeps the value estimators unbiased (or at
least does not accumulate additional bias). We can imagine
a scheduling oracle, and a protocol for the agent by which
to consult the oracle and obtain the β for its soft updates.
At the very least, the oracle must be told the iteration index
t, but it can also be useful to let β depend on any other as-
pect of the learning process, particularly the current world
state st.

4.2 PRACTICAL SCHEDULING

A good schedule should increase β as learning proceeds,
because as more samples are gathered the variance of G
decreases, allowing more deterministic policies. In the ex-
amples of Section 6 we adopted the linear schedule

βt = kt, (26)

with some constant k > 0. Another possibility that we
explored was to make β inversely proportional to a running
average of the Bellman error, which decreases as learning
progresses. The results were similar to the linear schedule.

The optimal parameter k can be obtained by performing
initial runs with different values of k and picking the value
whose learned policy gives empirically the lower cost-to-
go. Although this exploration would seem costly com-
pared to other algorithms for which no parameter tuning
is needed, these initial runs do not need to be carried for
many iterations. Moreover, in many situations the agent is
confronted with a class of similar domains, and tuning k
in a few initial domains leads to an improved learning for
the whole class. This is the case in the domain-generator
example in Section 6.1.

5 RELATED WORK

The connection between domain noise or function ap-
proximation, and the statistical bias in the Q function,
was first discussed in [18, 3]. An interesting modifica-
tion of Q-learning to address this problem is Double-Q-
learning [11, 14], which uses two estimators for the Q
function to alleviate the bias. Other modifications of Q-
learning that attempt to reduce or correct the bias are sug-
gested in [12, 13].

An early approach to Q-learning in continuous noisy do-
mains was to learn, instead of the value function, the ad-
vantage functionA(s, a) = Q(s, a)−V (s) [23]. The algo-
rithm representsA and V separately, and the optimal action
is determined from A(s, a) as a∗(s) = arg minaA(s, a).
In noisy environments, learning A is shown in some exam-
ples to be faster than learning Q [23, 24].

More recently, it was shown that the advantage learning al-
gorithm is a gap-increasing operator [25]. As discussed in
Section 2.2, the action gap is a central factor in the genera-
tion of bias, and increasing the gap should also help reduce
the bias. In Section 6.1 we compare our algorithm to the
consistent Bellman operator TC , one of the gap-increasing
algorithms introduced in [25].

For other works that study the effect of noise in Q-learning,
although without identifying the bias (7), see [26, 27, 28].

Information considerations have received attention in re-
cent years in various machine learning settings, with the
free energy Fπ and similar quantities used as a design
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principle for policies in known MDPs [10, 29, 30]. Other
works have used related methods for reinforcement learn-
ing [31, 32, 33, 34, 35]. A KL penalty similar to ours is
used in [35], in settings with known reward and transition
functions, to encourage “curiosity”.

Soft-greedy policies have been used before for explo-
ration [2, 36], but to our knowledge G-learning is the first
TD-learning algorithm to explicitly use soft-greedy poli-
cies in its updates.

Particularly relevant to our work is the approach studied
in [32]. There the policy is iteratively improved by optimiz-
ing it in each iteration under the constraint that it only di-
verges slightly, in terms of KL-divergence, from the empir-
ical distribution generated by the previous policy. In con-
trast, in G-learning we measure the KL-divergence from a
fixed prior policy, and in each iteration allow the divergence
to grow larger by increasing β. Thus the two methods
follow different information-geodesics from the stochastic
prior policy to more and more deterministic policies.

This distinction is best demonstrated by considering the Ψ-
learning algorithm presented in [33, 34], based on the same
approach as [32]. It employs the update rule

Ψ(st, at)← Ψ(st, at) (27)
+ αt(ct + γΨ̄(st+1)− Ψ̄(st)),

with

Ψ̄(s) = − log
∑

a

ρ(a|s)e−Ψ(s,a), (28)

which is closely related to our update of G in (18).

Apart from lacking a β parameter, the most important
difference is that the update of Ψ involves subtracting
αtΨ̄(st), whereas the update of G involves subtracting
αtG(st, at). This seemingly minor modification has a large
impact on the behavior of the two algorithms. The up-
date of G is designed to pull it towards the optimal state-
action free energyG∗, for all state-action pairs. In contrast,
subtracting the log-partition Ψ̄(st), in the long run pulls
only Ψ(st, a

∗), with a∗ the optimal action, towards its true
value, while for the other actions the values grow to infinity.
In this sense, the Ψ-learning update (27) is an information-
theoretic gap-increasing Bellman operator [25].

The growth to infinity of suboptimal values separates them
from the optimal value, and drives the algorithm to conver-
gence. In G-learning, this parallels the increase in β with
the accumulation of samples. However, there is a major
benefit to keeping G reliable in all its parameters, and con-
trolling it with a separate β parameter. In Ψ-learning, the
Ψ function penalizes actions it deems suboptimal. If early
noise causes an error in this penalty, the algorithm needs
to unlearn it - a similar drawback to that of Q-learning. In
Section 6, we demonstrate the improvement offered by G-
learning.

Figure 1: Gridworld domain. The agent can choose an ad-
jacent square as the target to move to, and then may end up
stochastically in a square adjacent to that target. The color
scale indicates the optimal values V ∗ with a fixed cost of 1
per step.

6 EXAMPLES

This section illustrates how G-learning improves on exist-
ing model-free learning algorithms in several settings. The
domains we use are clean and simple, to demonstrate that
the advantages of G-learning are inherent to the algorithm
itself.

We schedule the learning rate αt as

αt = nt(st, at)
−ω , (29)

where nt(st, at) is the number of times the pair (st, at)
was visited. This scheme is widely used, and is consistent
with (6) for ω ∈ (1/2, 1]. We choose ω = 0.8, which is
within the range suggested in [37].

We schedule β linearly, as discussed in Section 4.2. In each
case, we start with 5 preliminary runs of G-learning with
various linear coefficients, and pick the coefficient with the
lowest empirical cost. This coefficient is used in the subse-
quent test runs, whose results are plotted in Figure 2.

In all cases, we use a uniform prior policy ρ, a discount
factor γ = 0.95, and 0 for the initial values (Q0 = 0
in Q-learning, and similarly in the other algorithms). Ex-
cept when mentioned otherwise, we employ random explo-
ration, where st and at are chosen uniformly at the begin-
ning of each time step, independently of any previous sam-
ple. This exploration technique is useful when comparing
update rules, while controlling for the exploration process.

6.1 GRIDWORLD

Our first set of examples occurs in a gridworld of 8 × 8
squares, with some unavailable squares occupied by walls
shown in black (Figure 1). The lightest square is the goal,
and reaching it ends the episode.

At each time step, the agent can choose to move one square
in any of the 8 directions (including diagonally), or stay in
place. If the move is blocked by a wall or the edge of the
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board, it effectively attempts to stay in place. With some
probability, the action performed by the agent is further fol-
lowed by an additional random slide: with probability 0.15
to each vertically or horizontally adjacent available posi-
tion, and with probability 0.05 to each diagonally adjacent
available position.

The noise associated with these random transitions can be
enhanced further by the possible variability in the costs in-
curred along the way. We consider three cases. In the first
case, the cost in each step is fixed at 1. In the second case,
the cost in each step is distributed normally i.i.d, with mean
1 and standard deviation 2. In the third case we define a
distribution over domains, such that at the time of domain-
generation the mean cost for each state-action is distributed
uniformly i.i.d over [1, 3]. Once the domain has been gen-
erated and interaction begins, the cost itself in each step is
again distributed normally i.i.d, with the generated mean
and standard deviation 4.

We attempt to learn these domains using various algo-
rithms. Figure 2 summarizes the results for Q-learning,
G-learning, Double-Q-learning [11], Ψ-learning [33, 34]
and the consistent Bellman operator TC of [25]. We also
include Qρ-learning, which performs updates as in (4) to-
wards the prior policy ρ. Comparison with Speedy-Q-
learning [12] is omitted, since it showed no improvement
over vanilla Q-learning in these settings. In our experi-
ments, these algorithms had comparable running times.

The β scheduling used in G-learning is linear, with the co-
efficient k equal to 10−3, 10−4, 5 · 10−5 and 10−6, respec-
tively for the fixed-cost, noisy-cost, domain-generator and
cliff domains (see Section 6.2).

For each case, Figure 2 shows the evolution over 250,000
algorithm iterations of the following three measures, aver-
aged over N = 100 runs:

1. Empirical bias, defined as

1
Nn

N∑

i=1

n∑

s=1

(Vi,t(s)− V ∗i (s)), (30)

where i indexes the N runs and s the n states. Here
Vi,t is the greedy value based on the estimate obtained
by each algorithm (Q, G, etc.), in iteration t of run i.
The optimal value V ∗i , computed via Value Iteration,
varies between runs in the domain-generator case.

2. Mean absolute error in V

1
Nn

N∑

i=1

n∑

s=1

|Vi,t(s)− V ∗i (s)|. (31)

A low bias could result from the cancellation of terms
with high positive and negative biases. A convergence
in the absolute error is more indicative of the actual
convergence of the value estimates.

3. Increase in cost-to-go, relative to the optimal policy

1
Nn

N∑

i=1

n∑

s=1

(V πi,t(s)− V ∗i (s)). (32)

This measures the quality of the learned policy. Here
πi,t is the greedy policy based on the state-action
value estimates, and V πi,t is its value in the model,
computed via Value Iteration.

An algorithm is better when these measures reach zero
faster. As is clear in Figure 2, in the domains with noisy
cost (Rows 2 and 3), G-learning dominates over all the
other competing algorithms by the three measures. The
results are statistically significant, but plotting confidence
intervals would clutter the figure.

An important and surprising point of Figure 2 is that Qρ-
learning always outperforms Q-learning initially, before
degrading. The reason is that the Q-learning updates ini-
tially rely on very few samples, so these harmful updates
need to be undone by later updates. Qρ-learning, on the
other hand, updates in the direction of a uniform prior. This
gives an early advantage in mapping out the local topology
of the problem, before long-range effects start pulling the
learning towards the suboptimal Qρ.

The power of G-learning is that it enjoys the early advan-
tage of Qρ-learning, and smoothly transitions to the conver-
gence advantage of Q-learning. When β is small, the infor-
mation cost gt (8) outweighs the external costs ct, and we
update towards ρ. As samples keep coming in, and our esti-
mates improve, β increases, and the updates gradually lean
more towards a cost-optimizing policy. Unlike early stages
in Q-learning, at this point Gt is already a good estimate,
and we avoid overfitting. As mentioned above, Figure 2
shows that this effect is more manifest in noisier scenarios.

Finally, Figure 3 shows running averages of the Bellman
error for the different algorithms considered. The Bellman
error in G-learning is the coefficient multiplying αt in (18),

∆Gt ≡ ct − γ
β log

(∑

a′

ρ(a′|st+1)e−βGt(st+1,a
′)

)

−Gt(st, a). (33)

When learning ends and G = G∗, the expectation of ∆Gt
is zero (see (16)). Similar definitions hold for the other
learning algorithms we compare with. As is clear from Fig-
ure 3, G-learning reaches zero average Bellman error faster
than the competing methods, even while β is still increas-
ing in order to make G∗ converge to Q∗.

6.2 CLIFF WALKING

Cliff walking is a standard example in reinforcement learn-
ing [2], that demonstrates an advantage of on-policy algo-
rithms such as SARSA [2, 4] and Expected-SARSA [15,
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Figure 2: Gridworld (Rows 1-3): Comparison of Q-, G-, Qρ-, Double-Q-, Ψ- and TC-learning. Row 1: The cost in each
step is fixed at 1. Row 2: The cost in each step is distributed as N (1, 22). Row 3: In each run, the domain is generated
by drawing each E[c|s, a] uniformly over [1, 3]. The cost in each step is distributed as N (E[c|s, a], 42). Note that in the
noisy domains (Rows 2 and 3), G-learning dominates over all the other algorithms by the three measures. Cliff (Row 4):
Comparison of Q- and G-learning, and Expected-SARSA. The cost in each step is 1, and falling off the cliff costs 5.
Left: Empirical bias of V , relative to V ∗ (30). Middle: Mean absolute error between V and V ∗ (31). Right: Value of
greedy policy, with the baseline V ∗ subtracted (32); except in Row 4, which shows the value of the exploration policy.

16] over off-policy learning approaches such as Q-learning.
We use it to show another interesting strength of G-
learning.

In this example, the agent can walk on the grid in Fig-
ure 4 horizontally or vertically, with deterministic transi-
tions. Each step costs 1, except when the agent walks off

the cliff (the bottom row), which costs 5, or reaches the
goal (lower right corner), which costs 0. In either of these
cases, the position resets to the lower left corner.

Exploration is now on-line, with st taken from the end of
the previous step. The exploration policy in our simulations
is ε-greedy with ε = 0.1, i.e. with probability ε the agent
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Figure 3: Running average of the Bellman error in the grid-
world domain-generator example for Q-, G-, Qρ-, Double-
Q-, Ψ- and TC-learning. The results for the other two grid-
worlds of Figure 2 are similar.

chooses a random action, and otherwise it takes determin-
istically the one that seems optimal. In practice, ε can be
decreased after the learning phase, however it is also com-
mon to keep ε fixed for continued exploration [2].

In this setting, as shown in the bottom row of Figure 2,
an off-policy algorithm like Q-learning performs poorly in
terms of the value of its exploration policy, and the empiri-
cal cost it incurs. It learns a rough estimate of Q∗ quickly,
and then tends to use it and walk on the edge of the cliff.
This leads to the agent occasionally exploring the possibil-
ity of falling off the cliff. In contrast, an on-policy algo-
rithm like Expected-SARSA [15, 16] learns the value of its
exploration policy, and quickly manages to avoid the cliff.

Figure 4 compares Q-learning, G-learning and Expected-
SARSA in this domain, and shows that G-learning learns
to avoid the cliff even better than an on-policy algorithm,
although for a different reason. As an off-policy algorithm,
G-learning does learn the value of the update policy, which
prefers trajectories far from the cliff in the early stages of
learning. This occurs because near the cliff, avoiding the
cost of falling requires ruling out downward moves, which
has a high information cost. On the other hand, trajecto-
ries far from the cliff, while paying a higher cost in overall
distance to the goal, enjoy lower information cost because
acting randomly is not costly for them.

As shown in the bottom row of Figure 2, by using a greedy
policy for G as the basis of the ε-greedy exploration, we
enjoy the benefits of being aware of the value of the ex-
ploration policy during the learning stage. At the same
time, G-learning converges faster than either Q-learning or
Expected-SARSA to the correct value function. In this case
the “noise” that G-learning mitigates is related to the vari-
ability associated with the exploration.

7 CONCLUSIONS

The algorithm we have introduced successfully mitigates
the slow learning problem of early stage Q-learning in

Figure 4: Cliff domain. The agent can choose a horizon-
tally or vertically adjacent square, and moves there deter-
ministically. The color scale and the arrow lengths indi-
cate, respectively, the frequency of visiting each state and
of making each transition, in the first 250,000 iterations of
Q-learning, Expected-SARSA and G-learning. The near-
greedy exploration policy of Q-learning has higher chance
of taking the shortest path near the edge of the cliff at the
bottom, than that of G-learning. As an off-policy algo-
rithm, Q-learning fails to optimize for the exploration pol-
icy, whereas G-learning succeeds.

noisy environments, that is caused by the bias generated
by the hard optimization of the policy.

Although we have focused on Q-learning as a baseline, we
believe that early-stage information penalties can also be
applied to advantage in more sophisticated model-free set-
tings, such as TD(λ), and combined with other incremental
learning techniques, such as function approximation, expe-
rience replay and actor-critic methods.

G-learning takes a Frequentist approach to estimating the
optimal Q function. This is in contrast to Bayesian
Q-learning [38], which explicitly models the uncertainty
about theQ function as a posterior distribution. It would be
interesting to study the bias that hard optimization causes
in the mean of this posterior, and to consider its reduction
using methods similar to G-learning.

An important next step is to apply G-learning to more chal-
lenging domains, where an approximation of the G func-
tion is necessary. The simplicity of our linear β sched-
ule (26) should facilitate such extensions, and allow G-
learning to be combined with other schemes and algo-
rithms. Further study should also address the optimal
schedule for β. We leave these important questions for fu-
ture work.
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Abstract

The Hamiltonian Monte Carlo (HMC) method
has become significantly popular in recent years.
It is the state-of-the-art MCMC sampler due to
its more efficient exploration to the parameter
space than the standard random-walk based pro-
posal. The key idea behind HMC is that it makes
use of first-order gradient information about the
target distribution. In this paper, we propose
a novel dynamics using second-order geometric
information about the desired distribution. The
second-order information is estimated by using a
quasi-Newton method (say, the BFGS method),
so it does not bring heavy computational bur-
den. Moreover, our theoretical analysis guaran-
tees that this dynamics remains the target distri-
bution invariant. As a result, the proposed quasi-
Newton Hamiltonian Monte Carlo (QNHMC) al-
gorithm traverses the parameter space more ef-
ficiently than the standard HMC and produces
a less correlated series of samples. Finally,
empirical evaluation on simulated data verifies
the effectiveness and efficiency of our approach.
We also conduct applications of QNHMC in
Bayesian logistic regression and online Bayesian
matrix factorization problems.

1 Introduction

Hamiltonian Monte Carlo (HMC) (Neal, 2011) is the state-
of-the-art MCMC sampling algorithm. It defines a Hamil-
tonian function in terms of a potential energy—the negative
logarithm of the target distribution and a kinetic energy pa-
rameterized by an auxiliary variable called momentum. By
simulating from such a dynamical system, the proposal of
distant states can be achieved. The attractive property of
HMC is its rapid exploration to the state space. The main
reason is that HMC makes use of the first-order gradient
about the target distribution so that random-walk behaviors

are suppressed to a great extent.

Along the idea of HMC, stochastic gradient MCMC al-
gorithms have received great attention (Welling and Teh,
2011; Ahn, Korattikara, and Welling, 2012; Patterson and
Teh, 2013; Chen, Fox, and Guestrin, 2014; Ding et al.,
2014). Recently, Ma, Chen, and Fox (2015) proposed
a general framework for this kind of stochastic gradient
MCMC algorithms, which is built on a skew-symmetry
structure. This structure represents determining traversing
effect in HMC procedure and becomes one motivation of
our new dynamics.

On the other hand, it is well established that the Newton
or quasi-Newton methods using second-order information
are more advanced than first-order gradient methods in the
numerical optimization community (Nocedal and Wright,
2006). Since the Newton method is deemed to be computa-
tionally intensive, the quasi-Newton method is widely used
in practice. In this paper, we explore the possibility of mar-
rying the second-order gradient with HMC. Intuitively, a
naive approach is to replace the first-order gradient in HMC
with the second-order gradient about the negative logarithm
of the target distribution using the quasi-Newton method.
However, we will see that the resulting dynamics leads to
an incorrect stationary distribution. Thus, it is challenging
to incorporate second-order gradient into HMC.

Motivated by the work of Ma, Chen, and Fox (2015), we
construct a skew-symmetry structure in our dynamics via
adding the approximation of the inverse Hessian matrix to
the standard Hamiltonian dynamics. We theoretically prove
that this new dynamics keeps the target distribution invari-
ant. Accordingly, we develop a quasi-Newton Hamiltonian
Monte Carlo (QNHMC) algorithm. In QNHMC, both mo-
mentum and position variables are rescaled into a better
condition using the geometric information estimated via a
quasi-Newton method. Such an algorithm would produce
a better proposal, take a large movement in the extended
Hamiltonian dynamical system and enable a faster conver-
gence rate to the desired distribution, which is verified by
empirical results.
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The remainder of the paper is organized as follows. Basic
quasi-Newton and HMC methods are introduced in Sec-
tion 2. We then describe our approach QNHMC in Sec-
tion 3. Related studies are briefly reviewed in Section 4
while empirical results are shown in Section 5. Finally, we
conclude our work in Section 6. All the proofs of theoreti-
cal results are given in Appendix.

2 Background

In this section we describe backgrounds on both quasi-
Newton Approximation and Hamiltonian Monte Carlo.

2.1 Quasi-Newton Approximation

It is well-known that the Hessian matrix describes second-
order curvature of the objective function f : Rd → R. The
time complexity and space complexity for exactly comput-
ing the Hessian matrix are both O(d2), which is compu-
tationally prohibitive for high-dimensional problems. Al-
ternatively, quasi-Newton methods, including the BFGS
method and its variant limited-memory BFGS(L-BFGS),
are widely used (Nocedal and Wright, 2006).

In particular, let θ ∈ Rd be the parameter that needs
to be estimated. Given the previous m estimates
{θk−m+1,θk−m+2, . . . ,θk} of θ and the k-th estimate Bk

of the inverse Hessian matrix, the BFGS updates Bk+1 in
the following way:

Bk+1 = (I− sky
T
k

yTk sk
)Bk(I− yks

T
k

yTk sk
) +

sks
T
k

sTk yk
, (1)

where I is the identity matrix, sk = θk+1 − θk, and
yk = ∇f(θk+1) − ∇f(θk). It is implemented by storing
the full d×dmatrix Bk. However, in the high-dimensional
scenario (i.e., d is very large), the limited-memory BFGS
is much more efficient. Specifically, in L-BFGS, Bk−m+1

is set as γI for some γ > 0, and {sk−m+1, . . . , sk−1}
and {yk−m+1, . . . ,yk−1} are stored. The involved matrix-
vector product can be computed in linear time O(md) by
using a specially-designed recursive algorithm (Nocedal
and Wright, 2006).

2.2 Hamiltonian Monte Carlo

We now briefly review the Hamiltonian Monte Carlo (Neal,
2011). HMC lies in Metropolis-Hastings (MH) framework.
It can traverse long distances in the parameter space dur-
ing a single transition. The proposals are generated from a
Hamiltonian system by extending the state space via adding
an auxiliary variable called momentum variable, and then
simulating Hamiltonian dynamics to move long distances
along the iso-probability contours in the extended parame-
ter space.

Formally, suppose that θ ∈ Rd is the parameter of interest
and π(θ) is the desired posterior distribution. Let p be the
auxiliary variable which is independent of θ. For simplicity
and generality, p ∈ Rd is always assumed to be a zero-
mean Gaussian with covariance M.

Then a Hamiltonian is defined as the negative log-
probability of the joint distribution p(θ,p) as follows:

H(θ,p) = − log p(θ,p)

= − log π(θ)− log p(p)

= U(θ) +
1

2
pTM−1p + const,

(2)

where U(θ) = − log π(θ) is called the potential function.
In the Hamiltonian system M is called a preconditioning
mass matrix, θ is regarded as a position variable, and p is
called a momentum variable.

Given an initial state (θ0,p0), the state (θ,p) is gener-
ated by deterministic simulation of Hamiltonian dynam-
ics based on the following ordinary differential equation
(ODE):

θ̇ = M−1p,

ṗ = −∇U(θ),
(3)

where the dots denote the derivatives in time. In this paper
we will also use z = (θ,p) ∈ R2d to denote the joint
variable of the position and momentum variables.

The trajectories of θ and p produce proposals to the
Metropolis-Hastings procedure. In particular, given the k-
th estimate of the position variable θk, the standard HMC
runs in the following steps: (i) draw pk ∼ N (0,M); (ii)
compute the proposal(θ?,p?) by simulation from Eq. (3)
using ε-discretization; (iii) compute the error caused by dis-
cretization∇H = H(θk,pk)−H(θ?,p?); (iv) accept new
proposal θ? with probability at min(exp(∇H), 1).

It is worth mentioning that the error is only caused from
the discretization and highly related to the step size ε. If
the discretization error vanishes, that is to say, Eq. (3) is
solved exactly, then Hamiltonian H(θ,p) is conserved ex-
actly and new proposal is always accepted. The details of
HMC can be found in Neal (2011).

In practice, the mainstream integrator is the well-known
leapfrog method in Algorithm 1, which is symplectic and
time-reversible. The error is second-order in the step size
ε, keeping acceptance rate a reasonable value. However,
when the ODE described in Eq. (2) is stiff, the step size
ε is required to be small to maintain a reasonable accep-
tance rate. This will cause the high-correlated series and
reduce the effective sample size. A main reason is that only
first-order gradient is not enough. That is, HMC fails to
make sufficient use of the local geometric information, as
shown by Girolami and Calderhead (2011); Zhang and Sut-
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Algorithm 1 Standard Hamiltonian Monte Carlo(HMC)

Input: target posterior distribution π(θ) and potential
function U(θ) = − log π(θ), step size ε, number of
leapfrog L, total number of sample N , burn-in sam-
ples K, start point θ0, mass matrix M

Output: {θK+1,θK+2, . . . ,θN}
1: Iteration counter t = 1.
2: while t < N do
3: Let q = θt.
4: Draw p ∼ N (0,M).
5: Compute the current energy E0 using Eq. (2).
6: First half step: p = p− ε∇U(q)/2
7: for i = 1 : L do
8: q = q + εM−1p
9: if i 6= L then

10: p = p− ε∇U(q)
11: end if
12: end for
13: Last half step: p = p− ε∇U(q)/2
14: Compute the proposed energy E1 using Eq. (2).
15: Draw u ∼ Uniform(0, 1)
16: if u < min{1, exp(E1 − E0)} then
17: Accept the proposal q, i.e., θt+1 = q.
18: else
19: Reject, θt+1 = θt.
20: end if
21: t = t+ 1.
22: end while

ton (2011). We also demonstrate this problem empirically
in Section 5.

3 Methodology

In this section, we first discuss the condition for variants
of Hamiltonian dynamics to reach the correct stationary
distribution and then propose a novel dynamics satisfying
the condition. Accordingly, we develop a quasi-Newton
Hamiltonian Monte Carlo (QNHMC) algorithm.

3.1 A Naive Replacement

Intuitively, the most straightforward approach to apply the
quasi-Newton method on Hamiltonian Monte Carlo is sim-
ply to replace ∇U(θ) in Algorithm 1 by B∇U(θ), where
B is the approximation to the inverse Hessian matrix.
The resulting discrete time system can be viewed as an ε-
discretization of the following continuous ODE:

θ̇ = M−1p,

ṗ = −B(t)∇U(θ),
(4)

where B(t) ∈ Rd×d is positive definite and varies with
time t. For simplicity, we always ignore the time t and as-

sume that B is not the identity matrix, i.e., B = B(t) 6=
I. Now we show that, as given by Corollary 1 below,
p(θ,p) ∝ exp(−H(θ,p)) is no longer the stationary dis-
tribution of the dynamics described in Eq. (4). The follow-
ing theorem shows a stronger result, a necessary condition
for the invariance property, i.e., the dynamics governed by
Eq. (4) can not conserve the entropy of pt with time.

Theorem 1. Let pt(θ,p) be the distribution of (θ,p) at
time t with dynamics described in Eq. (4). Define the
entropy of pt(θ,p) as h(pt) = −

∫
θ,p

f(pt(θ,p))dθdp,
where f(x) = x lnx is defined for measuring entropy. As-
sume pt is a distribution with density and gradient vanish-
ing at infinity and the gradient vanishes faster than 1

ln pt
.

Then, the entropy of pt varies over time.

Intuitively, Theorem 1 is true because the standard Hamil-
tonian dynamics strictly preserve the entropy (Qian, 2012).
The additional B can be seen as a noise, destroying the en-
tropy preservation. This hints the fact that the distribution
pt(z) tends toward far from the target distribution.

Based on Theorem 1, we conclude that the naive modifica-
tion to Hamiltonian dynamics can not keep the target dis-
tribution invariant. That is,

Corollary 1. The distribution of extended system
p(θ,p) ∝ exp(−H(θ,p)) is no longer invariant under
the dynamics described by Eq. (4).

This corollary claims the failure of dynamics governed by
Eq. (4). In what follows, we will consider a general frame-
work which builds the necessary and sufficient condition
for variants of Hamiltonian dynamics to satisfy the invari-
ance of the target distribution. Accordingly, this leads us to
a new dynamics.

3.2 Motivation: A general recipe

In this section, we introduce a general framework for
stochastic gradient MCMC algorithms proposed recently
by Ma, Chen, and Fox (2015). It provides the sufficient
and necessary condition for Hamiltonian systems to reach
the invariant distribution.

Consider the following Stochastic Differential Equation
(SDE) for continuous Markov processes for sampling:

dz = f(z)dt+
√

2D(z)dW (t), (5)

where f(·) : R2d −→ R2d denotes the deterministic drift
and is often related to the gradients of Hamiltonian∇H(z),
W (t) is a 2d-dimensional Wiener process, and D(z) ∈
R2d×2d is a positive semi-definite diffusion matrix. Ob-
viously, not all choices of f(z) and D(z) can yield the sta-
tionary distribution p(θ,q) = p(z) ∝ exp(−H(z)).

Ma, Chen, and Fox (2015) devised a recipe for construct-
ing SDEs with the correct stationary distributions. They
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defined f(z) directly in terms of the target distribution:

f(z) = −[D(z) +Q(z)]∇H(z) + Ξ(z),

Ξi(z) =

d∑

j=1

∂

∂zj
(Dij(z) +Qij(z)).

(6)

Here Ξi(·) is the i-th entry of the vector-valued func-
tion Ξ(·) : R2d −→ R2d, and Q(z) ∈ R2d×2d is a
skew-symmetric curl matrix representing the determin-
ing traversing effects seen in the HMC procedure. It
was proved that under certain conditions p(z) is the
unique stationary distribution of the dynamics governed by
Eq. (5) (Ma, Chen, and Fox, 2015).

Theorem 2. p(z) ∝ exp(−H(z)) is a stationary distribu-
tion of the dynamics described in Eq. (5) if f is restricted
to the form of Eq. (6), with D(z) positive semidefinite and
Q(z) skew-symmetric.

Since in this paper we restrict our attention to the determin-
istic dynamics, we can omit the term related to diffusion
partD(z). In this case, the SDE is reduced to an ODE. The
skew-symmetry of Q(z) inspires us to add B into update
of the position variable θ in the dynamics in Eq. (4).

In the next section we will consider skew-symmetric mod-
ification to the Hamiltonian dynamics that achieves the de-
sired p(θ,p) as the invariant distribution of the continuous
Hamiltonian dynamical system.

3.3 Novel Dynamics in skew-symmetric structure

In this section, inspired by the skew-symmetric structure,
we consider a variant on Hamiltonian dynamics as follows:

θ̇ = CM−1p,

ṗ = −C∇U(θ),
(7)

where C ∈ Rd×d is a symmetric positive definite matrix,
independent of θ and p.

Now we show that the new dynamics maintains the desired
distribution as the invariant distribution.

Theorem 3. p(θ,p) ∝ exp(−H(θ,p)) is the unique sta-
tionary distribution of the dynamics governed by Eq. (7).

Then it is easy to prove the entropy preservation of pro-
posed dynamics directly using the intermediate results in
Theorem 3.

Corollary 2. Let pt(θ,p) be the distribution of (θ,p) at
time t with dynamics described in Eq. (7). Under almost
the same condition with Theorem 1, i.e., the entropy of
pt(θ,p) is defined as h(pt) = −

∫
θ,p

f(pt(θ,p))dθdp,
where f(x) = x lnx. Assume pt is an arbitrary distribu-
tion with density and gradient vanishing at infinity. Then,
the entropy of pt is strictly conserved with time.

Algorithm 2 Quasi-Newton HMC (QNHMC)

Input: target distribution π(θ) and potential function
U(θ) = − log π(θ), step size ε, number of Leapfrog
L, total number of sample N , burn-in samples K, start
point θ0, mass matrix M, approximation of Hessian
Matrix B = I.

Output: θK+1,θK+2, · · · ,θN .
1: Iteration counter t = 1.
2: while t < N do
3: Let q = θt and C = B.
4: Draw p ∼ N (0,M).
5: Compute the current energy E0 using Eq. (2).
6: First half step: p = p− εC∇U(q)/2.
7: Update B using Eq. (1).
8: for i = 1 : L do
9: q = q + εCM−1p.

10: if i 6= L then
11: p = p− εC∇U(q).
12: Update B using Eq. (1).
13: end if
14: end for
15: Last half step: p = p− εC∇U(q)/2
16: Update B using Eq. (1).
17: Compute the proposed energy E1 using Eq. (2).
18: Draw u ∼ Uniform(0, 1).
19: if u < min{1, exp(E1 − E0)} then
20: Accept the proposal q, i.e., θt+1 = q.
21: else
22: Reject, θt+1 = θt. B = C.
23: end if
24: t = t+ 1.
25: end while

In summary, we have shown that the dynamics given by
Eq. (7) owns the invariance property. Furthermore, it is
concise. When C = I, it reduces to Hamiltonian dynamics.

3.4 Quasi-Newton Hamiltonian Monte Carlo

In the previous section we mainly focus on the invariance
property of the proposed dynamics given in Eq. (7), which
in essence is a continuous ODE. However, in practice, we
need a numerical solution to the continuous ODE in Eq. (7).
Here, the discretization step employ leapfrog methods, in-
heriting from the standard HMC (Neal, 2011). In particu-
lar, the resulting Quasi-Newton Hamiltonian Monte Carlo
(QNHMC) algorithm is shown in Algorithm 2.

It is worth noting that in Algorithm 2 the approximation
B varies with iteration counter. In contrast, to keep the
invariance property of the dynamics in Eq. (7), in each pro-
posal (Step 3-15), B is kept as a constant C. The update
to B is only done when the proposal procedure ends and
the proposal is accepted. The following theorem shows the
correctness of Algorithm 2.
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Theorem 4. π(θ) is maintained as an invariant distribu-
tion for the whole chain produced by Algorithm 2.

To gain some intuitions about the proposed QNHMC algo-
rithm in physical interpretation, consider the well-known
hockey puck instance widely used in the Hamiltonian dy-
namical system (Leimkuhler and Reich, 2004), where we
can imagine the puck on an uneven surface. Here, B repre-
sents the approximation to the local geometric information.
In HMC, when the local geometry is stiff, movements con-
trolled by momentum p are always useless. By multiply-
ing the matrix B (C), the momentum variable and position
variable are rescaled into the case where each dimension
has a similar scale. This makes the movement in the ex-
tended Hamiltonian system more efficient. Empirically, it
can traverse a large step in the state space. In the Bayesian
scenario, this new dynamics produces a better proposal and
less-autocorrelated series.

3.5 Computational Complexity

Two strategies (BFGS/L-BFGS) are used in estimating the
matrix B according to the dimension of the parameter.
When the dimension of the parameter d is high, the L-
BFGS is adopted. In this case, O(md) space complexity
is needed. Moreover, since only matrix-vector product is
required, the product Bv (Cv) can be computed in linear
time O(md). It is worth noting that unlike in Algorithm 2,
no need to update B in each leapfrog step when adopting L-
BFGS. Instead, we choose to store 2m d-dimensional vec-
tors as mentioned in Section 2. Only when the proposal is
accepted, it is required to update B.

On the other hand, when d is not high, BFGS is chosen.
A d × d matrix needs to be stored so the complexity is
O(d2). Each updating step requires O(d) time without
matrix-vector or matrix-matrix product.

In this paper, we mainly compare our QNHMC approach
with the standard HMC (Neal, 2011). The gradient com-
putation of the negative log-posterior ∇U(θ) has already
been done in the standard HMC in each leapfrog step. And,
in practice, the gradient computation always contains ex-
pensive computations such as matrix-matrix/matrix-vector
product. The size of matrix depends on both the dimension
of the parameter and the number of the training instances.
Our QNHMC algorithm can make use of the byproduct of
leapfrog step, e.g., sk and yk in Eq. (1). Thus, the gradi-
ent computation is always dominant in computational time,
which means that HMC and QNHMC cost the same order
of magnitude running time in each proposal. Considering
the larger step that QNHMC takes owing to more sufficient
use of geometric information, QNHMC converges to the
desired distribution faster than the standard HMC, which
will be further validated by our empirical results.

4 Related Studies

In recent years, many approaches have been pro-
posed to scale up Bayesian methods in machine learn-
ing community. As is well-known, gradient infor-
mation of log-posterior distribution is widely used in
Langevin/Hamiltonian dynamics. Among these methods,
one large category is stochastic gradient Markov Chain
Monte Carlo methods. The framework is to estimate
the gradient from small mini-batches of observations in-
stead of the whole dataset to cut the computational budget.
The landmark of this kind of approaches is proposed by
Welling and Teh (2011), which applied stochastic gradi-
ent on Langevin dynamics. Subsequently, a series of algo-
rithms are developed to complete this framework (Ahn, Ko-
rattikara, and Welling, 2012; Patterson and Teh, 2013; Ahn,
Shahbaba, and Welling, 2014; Chen, Fox, and Guestrin,
2014; Ding et al., 2014; Ma, Chen, and Fox, 2015). For
instance, Chen, Fox, and Guestrin (2014) adapted stochas-
tic gradient on Hamiltonian Monte Carlo (SGHMC) while
Ding et al. (2014) devised a SGNHT algorithm by intro-
ducing a thermostat variable to make SGHMC more robust.
Ma, Chen, and Fox (2015) developed a complete recipe for
all stochastic gradient based MCMC approaches. There
are some recent works (Bardenet, Doucet, and Holmes,
2014; Korattikara, Chen, and Welling, 2013; Maclaurin and
Adams, 2015), attempting to perform Metropolis-Hastings
rejection procedure using partial observations instead of
whole dataset. These approaches mainly accelerate sam-
pling procedure via a stochastic method applied on likeli-
hood of data observations.

Another class of methods aim at sampler itself (Girolami
and Calderhead, 2011; Zhang and Sutton, 2011; Calder-
head and Sustik, 2012; Patterson and Teh, 2013; Wang,
Mohamed, and Nando, 2013; Chao et al., 2015). Most of
them are closely related to geometry. Concretely, they aim
at finding the local geometric structure of posterior so that
the random-walk behaviour in proposal can be significantly
suppressed. Such algorithms allow a larger step size with-
out loss of acceptance rate and make the sampling efficient.
The representative work is Riemann Manifold Hamiltonian
Monte Carlo proposed by Girolami and Calderhead (2011),
which employed the high-order of geometric information
about the local point. Chao et al. (2015) proposed an expo-
nential integration to solve the high-oscillatory component
of posterior more accurately than the integration used in the
standard HMC method.

It is worth noting that Zhang and Sutton (2011) also pro-
posed a quasi-Newton based Hamiltonian Monte Carlo
method called HMC-BFGS. Different from our QNHMC,
HMC-BFGS uses the geometric information in covariance
of zero-mean proposal. In contrast, our QNHMC makes
use of second-order information in scaling both momentum
and position variables. Furthermore, HMC-BFGS devises
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an extended chain. The specially-designed structure may
sacrifice the convergence rate and leads to a poor estimate
of Hessian, validated by our empirical evaluations.

5 Empirical Evaluation

In this section, we empirically analyze the quasi-Newton
HMC. We mainly compare our quasi-Newton HMC
(QNHMC) with the standard HMC (Neal, 2011) and HMC-
BFGS (Zhang and Sutton, 2011) in both efficiency and ef-
fectiveness. In all cases, QNHMC outperforms HMC and
HMC-BFGS under the same settings of hyperparameters in
both burn-in time and effective sample size.

5.1 Simulated data

First, we evaluate the scalability of our model on a high-
dimensional zero-mean Gaussian distribution. The tar-
get distribution is high-dimensional Gaussian distribution
N (0,Σ). The covariance matrix is Σ = 11T + 4I ∈
Rd×d, where 1 and 0 are the all-1 and all-0 vectors of d-
dimension, respectively. This d-dimensional distribution is
highly correlated in one direction. Hence, it is a challeng-
ing task for random-walk based sampler, such as MCMC.

The main evaluating metrics are as follows:

• Autocorrelation. Since the desired distribution is
highly correlated, when computing the autocorrelation
of samples, the samples are projected onto the direc-
tion of its largest eigenvalue (x = 1). And the max
number of lag m is set to 500. ρk is the autocorrela-
tion at lag k.

• Effective sample size (ESS) is the common measure-
ment, which summaries the amount of autocorrelation
across different lags over all dimensions. ESS is for-
mally defined as follows

ESS =
n

1 + 2
m∑
k=1

ρk

,

where n is the original sample size, m is the maximal
number of lag and determined empirically. In this sce-
nario, m = 500. Notice that ESS per second is also a
metric to measure the efficiency of sampler.

• Convergence diagnostics. To compare the conver-
gence rate fairly, we choose the starting position far
away from the mode of the target distribution. Notice
that the starting positions are same for all the sam-
plers. Thus the chain should be run long enough to
“forget” the starting position. This is the so-called
burn-in period. Determining the length of burn-in
period is critical. In this paper, we choose to mon-
itor the probability of the samples, a mainstream

method in convergence diagnostics (Gilks, Richard-
son, and Spiegelhalter, 1996). In particular, by ob-
serving the negative log-probability of samples x (i.e.,
(x−µ)TΣ(x−µ), ignoring the normalizing constant),
we can easily find that how long steps the chain takes
to reach the highest posterior density (HPD) region
and ends the burn-in period.

In this experiment, for fair comparison among these three
methods, we adopt the same setting of the hyperparameters
involved. In particular, we use the step size ε = 0.01 and
the number of leaps L = 10, the dimension of the problem
d = 100. We draw 100K samples for each sampler. For
HMC-BFGS, we need to choose an ensemble of K chains.
If K is too large, there will be numerical unstability about
the BFGS methods and the performance will degrade dras-
tically. Here, K is chosen to be 5, following the setting of
Zhang and Sutton (2011). The starting positions for these
methods are the same, a randomly-generated point distant
from the HPD region.

As illustrated in Figure 1, the chain of QNHMC only re-
quires hundreds of samplings to end the burn-in period and
reach the HPD region while the rest two algorithms need far
more samplings. Hence, one advantage of QNHMC is that
it can converge to the HDP region quicker than the other
two algorithms.

Though QNHMC only requires hundreds of burn-in sam-
ples here, for fair comparison, when computing ESS and
autocorrelation, we only use the last 50K samples for all the
methods. The results are shown in Table 1. We observe that
QNHMC can not only produce more “independent” series
than the other methods, but also obtain the most effective
sample size among the three methods under the same set-
ting and draw samples from the desired distribution most
efficiently.
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Figure 1: Performance of different samplers on simulated
data: monitoring the convergence to HPD: negative log-
probability of samples ((x− µ)TΣ(x− µ)) v.s. iteration
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Table 1: Performance of different samplers on artificial data, as measured by sum of autocorrelation coefficient, burn-in
time, Effective Sampler Size(ESS) and ESS per second. For the first two metric, lower is better while for the other two
metric, higher is better.

Method
m∑
k=1

|ρk| burn-in time(second) ESS ESS per second

HMC 98.27 81 253 7.22
HMC-BFGS 49.74 47 497 9.65
QN-HMC 2.65 0.93 7936 93.36

Table 2: Performance of different methods on Bayesian Lo-
gistic Regression, as measured by sum of autocorrelation
coefficient, burn-in time(in seconds) for sampling based
methods, Effective Sampler Size(ESS) and ESS per sec-
ond. GD is the abbreviation for gradient descent.

Method burn-in time ESS per second Error
HMC 64 0.286 0.0493
HMC-BFGS 36 0.418 0.0501
QN-HMC 17 1.30 0.0496
GD − − 0.0578

5.2 Bayesian Logistic Regression

Next, we evaluate our method on a well-known handwrit-
ten digits classification task using the MNIST dataset1. In
this task, we aim at discriminate digits “7” and “9”. The
number of training instances are 6265 and 5949 for “7”
and “9”, respectively while the number of test instances are
1028 and 1009 for “7” and “9”, respectively.

We test four methods: gradient descent (GD), HMC, HM-
CBFGS and our QNHMC. For GD, we employ an `2 regu-
larizer trial several time to choose the near-optimal hyper-
parameter. And in each iteration, we use all the training
instances. For the sampling-based approaches, we take a
fully Bayesian approach and place a weakly informative
Gaussian prior on the weight, following Zhang and Sutton
(2011); Girolami and Calderhead (2011).

The results for the sampling methods are shown in Table
2. The result with GD is provided as a baseline. We set
the number of leapfrog L to 5 for all sampling based ap-
proaches. The step size ε is set to 0.1. Dimension d = 784
here, and L-BFGS method are used, where m is set to be
7. We can see that the Bayesian approaches are superior
to the optimization based methods. Among the Bayesian
approaches, QNHMC requires less burn-in time than the
others and converges to a low test error faster. This shows
its advantage over the other two HMC-related methods.

1http://yann.lecun.com/exdb/mnist/

5.3 Online Bayesian Matrix Factorization

Collaborative filtering is a popular theme. The target is to
predict users’ preference over a set of items, e.g., movies,
music and produce recommendation. Owing to the sparsity
in the ratings matrix (users versus items) in recommenda-
tion systems, over-fitting is a severe issue. Hence Bayesian
approaches provide a natural solution. The most famous
Bayesian algorithm for collaborative filtering is the online
probabilistic matrix factorization proposed in Salakhutdi-
nov and Mnih (2008).

In the experiment, the Root-Mean-Square Error (RMSE) is
used to evaluate the performance of the three algorithms. It
is defined as

RMSE = ‖PΩtest(X)− PΩtest(T)‖F , (8)

where Ωtest represents the index of all testing entries and
|Ωtest| is the cardinality of Ωtest, and X is the solution from
the algorithms and PΩtest(T) is corresponding partially ob-
served labels, ‖X‖F represents the Frobenius norm of the
matrix X. PΩ(X) represent the entry-wise projection of X
onto Ω, defined by:

{PΩ(X)}ij =

{
Xij , (i, j) ∈ Ω

0, otherwise.

We conduct the experiment in online Bayesian PMF on the
Movielens-1M datasets2. The dataset contains about 1 mil-
lion ratings of 3,952 movies by 6,040 users. The number of
latent dimensions is set to 10. Other settings follow from
the demo code given by Salakhutdinov and Mnih (2008).
For HMC-related methods, step size ε is set to 0.01, length
of leapfrog L = 10.

Performances of the different methods are shown in Table
3. The sampling-based methods (standard HMC, QNHMC
and HMC-BFGS) provide better prediction results than the
optimization-based methods (MAP), showing an advan-
tage of Bayesian inference in this scenario, thus validat-
ing the need for scalable and efficient Bayesian algorithm
such as QNHMC. In this experiment, prediction results for
QNHMC, HMC and HMCBFGS are comparable. This
experiment shows that QNHMC converges faster than the

2http://grouplens.org/datasets/movielens/
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Table 3: Performance of different methods on Online
Bayesian Matrix Factorization in terms of RMSE and run-
ning time. For RMSE, lower is better.

Method RMSE Running time(second)
MAP 0.8701 27.67
HMC 0.8607 202.5
QNHMC 0.8628 108.34
HMC-BFGS 0.8618 179.23

other two HMC-related approaches and can be seen as an
effective choice for online Bayesian PMF.

6 Conclusion

In this paper we have proposed a novel quasi-Newton
Hamiltonian Monte Carlo (QNHMC) algorithm to acceler-
ate the Hamiltonian Monte Carlo sampler. Our theoretical
analysis has guaranteed that the desired distribution is the
unique stationary distribution under the proposed dynam-
ics. The empirical results have verified the efficiency and
effectiveness of our QNHMC on both simulated and prac-
tical datasets. A natural next step is to explore marrying
stochastic gradient with QNHMC. More broadly, we be-
lieve that the unification of efficient optimization and sam-
pling techniques, such as those described herein, will en-
able a significant scaling of Bayesian approaches.
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Appendix

A: Proof of Theorem 1

Proof. Define

dz = d

(
θ
p

)
=

(
M−1p
−B∇U(θ)

)
dt = G(z)dt (9)

where G(·) : R2d −→ R2d is a function and the i-th compo-
nent of G(z) is denoted by Gi(z). According to the defi-
nition of FPE (Fokker-Planck Equation) (Kadanoff, 2000),
the corresponding FPE is given by

∂tpt(θ,p) = ∇T [G(z)pt(θ,p)] (10)

The entropy at time t is defined by integrating out the joint
variable z, as follows:

h(pt) = −
∫

z

f(pt(z))dz (11)

The evolution of the entropy is governed by

∂th(pt(z)) = −∂t
∫

z

f(pt(z))dz

= −
∫

z

f ′(pt(z))∂tpt(z)dz

= −
∫

z

f ′(pt(z))∇T [G(z)pt(z)]dz

= −
∫

z

f ′(pt(z))∇T [G(z)]pt(z)dz

−
∫

z

f ′(pt(z))(∇pt(z))T [G(z)]dz

(12)

where the last equality uses the fact that

∇T [G(z)pt(θ,p)]

= pt(θ,p)∇T [G(z)] + (∇pt(θ,p))T [G(z)]
(13)

The second term on the RHS of Equation 12 can be simpli-
fied into following form:

−
∫

z

f ′(pt(z))(∇pt(z))T [G(z)]dz

= −
∫

z

(∇f(pt(z)))T [G(z)]dz

=

∫

z

f(pt(z))∇T [G(z)]dz = 0

(14)

where the second equality is given by integrations by parts,
using the fact that

∫

z

∇T [f(pt(z))G(z)]dz = 0 (15)

which is based on the assumption that the probability den-
sity vanishes at infinity and f(x) −→ 0 as x −→ 0 such that
f(pt(z))[G(z)] −→ 0 as z −→∞.

Hence the entropy of pt varies with rate of

∂th(pt(z)) = −
∫

z

f
′
(pt(z))∇T [G(z)]pt(z)dz

= −
∫

z

f
′
(pt(z))(pTM−T (B− I)∇U(θ))pt(z)dz

(16)
This is not equal to zero for B obviously.

B: Proof of Theorem 3

Proof. Using FPE (Kadanoff, 2000), Eq. (7) can be written
in the following decomposed form:

dz = d

(
θ
p

)

=

(
0 −C
C 0

)(
∇U(θ)
M−1p

)
dt

=

(
−CM−1p
C∇U(θ)

)
dt

= F(z)dt.

(17)
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The distribution evolution under this dynamical system is
governed by a Fokker-Planck Equation as following:

∂tpt(z)

= −∇T [F (z)pt(z)]

=

2d∑

i=1

∂zi [Fi(z)pt(z)]

=
d∑

i=1

∂θi [fi(z)p(z)] +
d∑

j=1

∂pj
[gj(z)p(z)]

=

d∑

i=1

[∂θip(z)]fi(z) +

d∑

j=1

[∂pjp(z)]gj(z)

=
d∑

i=1

p(z)[−∇U(θ)]ifi(z) +
d∑

j=1

p(z)[M−1p]jgj(z)

= p(z)(∇U(θ))T (−CM−1p) + p(z)(M−1p)T (C∇U(θ))

= p(z)[(∇U(θ))T (−CM−1p) + (∇U(θ))TCT (M−1p)]

= 0
(18)

where f(·) and g(·) are functions defined as: f(·) : R2d −→
Rd, g(·) : R2d −→ Rd. f(z) = f(p,θ) = −CM−1p and
g(z) = g(p,θ) = C∇U(θ). It satisfy that

F (z) =

(
−CM−1p
C∇U(θ)

)
=

(
f(z)
g(z)

)
(19)

fi(z) and gj(z) are the i-th entry and j-th entry of f(z) and
g(z) respectively.

The fourth equality follows from the fact that function f(z)
only depend on p while function g(z) only depend on θ.
Hence, following happens.

∂θi
fi = 0

∂pi
gi = 0

(20)

Since p(z) = π(θ,p) = exp(−U(θ)− 1/2pTM−1p), we
expand the partial derivation as following:

∂θip(z) = p(z)[−∇U(θ)]i

∂pi
p(z) = p(z)[M−1p]i

(21)

Hence the fifth equality satisfies.

The last equality is given by the fact that C is symmet-
ric, i.e., CT = C. By calculating ∂tpt(z) = 0, we
show that the distribution pt does not vary with time, i.e.,
p(z) = π(θ,p) is invariant under the dynamics described
in Equation 7.

C: Proof of Corollary 2

Proof. With the entropy defined in Eq. (11) and compact
form of dynamics defined in Eq. (17), The evolution of the

entropy is governed by

∂th(pt(z)) = ∂t

∫

z

f(pt(z))dz

= −
∫

z

f
′
(pt(z))∂tpt(z)dz

= −
∫

z

f
′
(pt(z))∇T [F (z)pt(z)]dz

= 0,

(22)

where the first two equalities can be referred from part of
Eq. (12) and the last equality follows from the conclusion
in Eq. (18).

D: Proof of Theorem 4

The idea behind the correctness of Algorithm 2 is that The-
orem 3 guarantees the detailed balance condition for any
neighboring samples (e.g., θi−1 and θi) while Theorem 4
strengthen this results on the whole chain.

Proof. Firstly, we define {θi}ni=1, the chain generated by
Algorithm 2. At i-th iteration, B is denoted by Bi. For ev-
ery i, the approximation to inverse Hessian Bi is symmet-
ric positive definite (Nocedal and Wright, 2006). As seen
from Algorithm 2, in i-th proposal (Step 3-15), Bi is fixed.
Moreover, according to Theorem 3 and ε-discretization,
we obtain that the detailed balance condition hold for any
neighboring samples θi−1 and θi, i.e.,

π(θi−1)Ti(θi−1 −→ θi) = π(θi)Ti(θi −→ θi−1) (23)

where Ti(· −→ ·) is the transition kernel at i-th proposal.

Integrating out θi−1 on both sides, we obtain that

π(θi) =

∫
π(θi)Ti(θi −→ θi−1)dθi−1

=

∫
π(θi−1)Ti(θi−1 −→ θi)dθi−1

(24)

That is, distribution π is a stationary distribution with a sin-
gle transition kernel Ti, i.e.,

Ti(π) = π (25)

holds for every i.

Thus,
TnTn−1...T1(π) = π (26)

Proved.
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Abstract

A major goal in personalized medicine is the
ability to provide individualized predictions
about the future trajectory of a disease. More-
over, for many complex chronic diseases, pa-
tients simultaneously have additional comorbid
conditions. Accurate determination of the risk
of developing serious complications associated
with a disease or its comorbidities may be more
clinically useful than prediction of future disease
trajectory in such cases. We propose a novel
probabilistic generative model that can provide
individualized predictions of future disease pro-
gression while jointly modeling the pattern of re-
lated recurrent adverse events. We fit our model
using a scalable variational inference algorithm
and apply our method to a large dataset of lon-
gitudinal electronic patient health records. Our
model gives superior performance in terms of
both prediction of future disease trajectories and
of future serious events when compared to non-
joint models. Our predictions are currently being
utilized by our local accountable care organiza-
tion during chart reviews of high risk patients.

1 INTRODUCTION

With the dawn of precision medicine and accountable care,
it will become increasingly important for healthcare orga-
nizations to make accurate predictions about individual pa-
tients’ future health risks to improve quality and contain
costs. Accountable care organizations (ACOs) are organi-
zations that bear financial responsibility for the quality and
total cost of healthcare services provided to a defined pop-
ulation of patients. In order to deliver the right care at the
right time in the right setting, ACOs need personalized pre-
diction tools that identify individual patients in their pop-
ulations at greatest risk of having poor clinical outcomes
[Parikh et al., 2016, Bates et al., 2014]. Most ACOs cur-

rently lack these capabilities.1 With the widespread adop-
tion of electronic health records (EHRs), much of the data
necessary to build such tools are already being collected
during the course of routine medical care. In order to be
clinically useful, such tools should be flexible enough (1) to
accommodate the limitations inherent to operational EHR
data [Hersh et al., 2014]; (2) to update predictions dynam-
ically as new information becomes available; and (3) to
scale to the massive size of modern health records.

We collaborated with Duke Connected Care, the ACO affil-
iated with the Duke University Health System, to develop
predictive tools for chronic kidney disease (CKD). CKD
is characterized by a gradual and generally symptomless
loss of kidney function over time. CKD and its complica-
tions cause poor health, premature death, increased health
service utilization, and excess economic costs. CKD is de-
fined and staged by the degree to which a person’s esti-
mated glomerular filtration rate (eGFR) is impaired. eGFR
is an approximation of overall kidney function and is cal-
culated using a routinely obtained clinical laboratory test
(serum creatinine) and demographic information (age, sex
and race) [Levey et al., 2009; KDIGO, 2013]. Most clinical
laboratories report eGFR automatically with every serum
creatinine measurement.

Healthcare providers struggle at many levels to provide
optimal care for patients with CKD. First, the majority
of healthcare providers fail to recognize the presence of
CKD, despite the fact that CKD can be readily identified
using simple, eGFR-based laboratory criteria [Szcech et
al., 2013; Tuot et al., 2011; Allen et al., 2011]. Second,
among those patients with recognized CKD, both primary
care providers and kidney specialists struggle to predict
which patients will progress to kidney failure (requiring
dialysis or kidney transplantation to survive) or suffer from
other complications caused by CKD, such as early death
from heart attack or stroke [Mendehlsson et al., 2011].
Third, providers often fail to prescribe appropriate preven-
tive treatment to slow disease progression or address com-

1http://www.healthcare-informatics.com/article/survey-acos-
still-cite-lack-interoperability-biggest-barrier
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Figure 1: 15-year clinical course of an example patient who experienced both a rapid progression of CKD and a number
of other serious health events. Y-axis indicates estimated glomerular filtration rate (eGFR), an estimate of overall kidney
function (60-100 is normal, <60 indicates clinically significant kidney disease). X-axis indicates patient age in years.
Markers indicate health service use and adverse events. Our model allows us to jointly model progression of CKD, as well
as the association between the disease progression and risk for adverse events.

plications [Smart et al., 2014]. Medications such as RAAS
drugs can slow progression of CKD if used early enough,
while patient counseling and advanced planning can reduce
the physical and psychological trauma when kidney failure
is imminent.

From a population health management perspective, these
characteristics make CKD an ideal condition to model and
to develop high-impact care management programs. The
challenges surrounding CKD care are best articulated with
a representative clinical case, illustrated in Figure 1. A 47
year-old man makes first contact with our health system
for emergency treatment of a stroke. His kidney function at
this point is normal, although he possesses several risk fac-
tors for future CKD. Over the next 5 years, he receives suf-
ficient medical care to detect that his kidney function is de-
teriorating rapidly (the normal annual rate of kidney func-
tion loss at his age is only about 1-2%). His kidney disease
goes unnoticed by his healthcare providers, and he does not
receive any treatment aimed at slowing progression to total
kidney failure. At age 52, he is eventually referred to a kid-
ney specialist, more than a year after his kidney function
has fallen below the recommended threshold for such a re-
ferral. By this point, kidney failure is inevitable and there
is too little time to make advanced preparations for kidney
failure, such as pre-emptive kidney transplantation or at-
home dialysis. Within 90 days of that first kidney specialist
appointment, he develops symptoms of kidney failure and
requires hospitalization for emergency dialysis initiation,
which is both extremely traumatic and makes him among
the most expensive type of patient to treat [Johnson et al.,

2015]. He survives on dialysis for about a decade, suffering
multiple cardiovascular complications from kidney failure,
and ultimately dies at age 63. This patient’s story is one
of missed opportunities–opportunities that could have been
acted upon with accurate predictions using machine learn-
ing methods and care management programs.

Our goal is to develop statistical methods that model both
the risks of future loss of kidney function and the risks of
future complications or adverse health events. The predic-
tions from these models can then be used by healthcare or-
ganizations to connect high-risk patients to appropriately
targeted interventions. Since the broad aim is to predict
which patients will worsen in the near future, we need to
model associations between CKD and the multitude of var-
ious health outcomes that could occur. CKD frequently co-
exists with and contributes to cardiovascular disease. In
fact, most patients with advanced CKD pass away from car-
diovascular complications before the onset of kidney fail-
ure. In this article, we choose to focus on two common
types of adverse cardiovascular events: heart attacks (acute
myocardial infarctions [AMIs]) and strokes (cerebrovascu-
lar accidents [CVAs]).

To this end, we develop a joint model that flexibly captures
the eGFR trajectory of CKD progression, while simulta-
neously learning the association between disease trajectory
and cardiovascular events. We formulate our approach as
a hierarchical latent variable model. Each patient is repre-
sented by a set of latent variables characterizing both their
disease trajectory and risk of having events. This approach
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captures dependencies between the disease trajectory and
event risk.

Using our model, we study a large cohort of patients with
CKD from the Duke University Health System and make
predictions about the trajectory of their disease, as well as
their risk of cardiovascular events. Our inference algorithm
scales well to the large dataset, and makes accurate predic-
tions that outperform several baselines.

2 PROPOSED JOINT MODEL FOR
ELECTRONIC HEALTH RECORDS

In this section, we first describe the structure of electronic
health records before introducing our proposed joint model
for longitudinal and point process data.

Electronic Health Records

The Duke University Health System’s electronic health
record (Epic Systems, Madison, WI) stores nearly all avail-
able information captured about patients during their en-
counters within the health system. The EHR contains a
large quantity of longitudinal patient data. The vast major-
ity of the data are unstructured, contained within free-text
notes and reports. Structured data include demographics,
diagnosis and procedural codes, orders, laboratory results,
and objective clinical observations (such as vital signs and
various nursing assessments). Of particular interest to our
work in modeling CKD patients are structured diagnosis
codes and laboratory results.

The EHR stores granular information about medical di-
agnoses using structured, hierarchical codes conforming
to ICD-9 (International Classification of Disease, 9th re-
vision), a standardized taxonomy that is used principally
for medical billing. For each medical encounter (such as a
clinic or emergency department visit), a set of codes is as-
signed to document the primary problems or diseases that
were addressed. In total, there are about 9,000 unique ICD-
9 codes. Each clinical diagnosis may have multiple corre-
sponding ICD-9 diagnosis codes. The Agency for Health-
care Research and Quality publishes the Clinical Classifi-
cations Software2, a categorization tool that collapses the
thousands of original codes into a few hundred clinically
meaningful concepts. We use this mechanism to identify
and aggregate codes for CVAs and AMIs, where we use the
mean date among all relevant codes within monthly bins to
account for multiple codes in a short time period that refer
to the same clinical event.

In contrast to diagnosis codes, which capture clinicians’
subjective diagnostic impressions, laboratory tests provide
objective clinical data. A single medical encounter may in-
clude dozens, hundreds or (in the case of hospitalizations)

2http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

thousands of discrete laboratory test results. Identifying
and grouping relevant laboratory test results can be diffi-
cult due to lack of standardization and changing conven-
tions over time. For example, serum creatinine, which is
a lab test used to calculate eGFR, has more than 18 differ-
ent names in our EHR that refer to the same value (e.g.
“CREA”, “Creatinine”, “DUAP CREA”). Harmonizing
and grouping these lab results required an exhaustive re-
view of laboratory metadata by a subject matter expert.

There are numerous ongoing efforts to develop improved
algorithms to identify chronic medical conditions and in-
cident clinical events using a wide assortment of clinical
data. Our model is agnostic to the particular algorithm used
to identify clinical events. After cleaning and transforming
the raw EHR data, we obtained a longitudinal set of eGFRs
for each patient, and dates of CVA and AMI diagnoses.

Proposed Model

Our proposed hierarchical latent variable model jointly
models longitudinal and point process data by creating dif-
ferent submodels for each type of data, with shared latent
variables for each patient inducing dependencies between
their two data types. Assume there are N patients, let
~yi = {yij}Nij=1 denote the Ni observed readings of eGFR
for patient i at times ~ti = {tij}Nij=1, and let ~ui = {uik}Kik=1

denote the Ki cardiac events patient i experiences (note
that Ki may be 0). Let T−i be the time patient i is first
seen in our sample of their health record, and T+

i the fi-
nal time they are observed. Let zi, bi, fi and vi be a set
of shared hierarchical latent variables for each patient i, to
be defined subsequently. Conditioned on these latent vari-
ables, to be learned during inference, we make a common
conditional independence assumption that the conditional
likelihood for patient i factorizes:

p(~yi, ~ui|zi, bi, fi, vi;xi) = p(~yi|zi, bi, fi;xi)
p(~ui|zi, bi, fi, vi;xi).

(1)

Longitudinal Submodel

We use a recently proposed model for disease trajecto-
ries for our longitudinal submodel [Schulam and Saria,
2015], that was shown to be extremely flexible and accu-
rate at modeling continuous functions of disease progres-
sion. Given the set of latent variables for patient i, the
longitudinal variables are conditionally independent, i.e.
p(~yi|zi, bi, fi) =

∏Ni
j=1 p(yij |zi, bi, fi). The model as-

sumes each observed longitudinal value is a normally dis-
tributed random variable containing a population compo-
nent, a subpopulation component, an individual compo-
nent, and a structured noise component:

yi(t) = mi(t) + εi(t), εi(t)
iid∼ N(0, σ2

ε ) (2)

mi(t) = Φp(t)
>Λxip + Φz(t)

>βzi + Φl(t)
>bi + fi(t).

(3)
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The first term in (3) is the population component, where
Φp(t) ∈ Rdp is a fixed basis expansion of time, Λ ∈
Rdp×qp is a coefficient matrix, and xip ∈ Rqp is a vector of
baseline covariates.

The second term in (3) is the subpopulation component,
where it is assumed person i belongs to latent subpopu-
lation zi ∈ {1, . . . , G}. Each subpopulation is associ-
ated with a unique disease trajectory represented using B-
splines, in particular, Φz(t) ∈ Rdz is a fixed B-spline basis
expansion of time with βg ∈ Rdz the coefficient vector
for group g. We assign zi a multinomial logistic regres-
sion prior that depends on baseline covariates xiz ∈ Rqz :
p(zi = g) ∝ exp{w>g xiz}, where {wg}Gg=1 are regression
coefficients with w1 ≡ 0 for identifiability.

The third term is the individual component, allowing for
individual-specific long-term deviations in trajectory that
are learned dynamically as more data is available. Φl(t) ∈
Rdl is a fixed basis expansion of time, and bi ∈ Rdl is a
random effect for patient i, with prior bi ∼ N(0,Σb).

Finally, fi(t) is the structured noise process that captures
transient trends in disease trajectory. This is modeled using
a zero-mean Gaussian process with Ornstein-Uhlenbeck
covariance function KOU (t1, t2) = σ2

f exp{− |t1−t2|l }.
This kernel is well-suited for this task, as it is mean-
reverting and has no long-range dependence between de-
viations [Schulam and Saria, 2015].

Point Process Submodel

We choose to model the times ~ui = {uik}Kik=1 that a per-
son has an adverse event as a Poisson process. A common
choice for the rate function from related literature in sur-
vival analysis corresponds to the hazard function from the
Cox proportional hazards model. We make this choice in
this work, for reasons both of simplicity and also computa-
tional efficiency as we discuss later. The conditional like-
lihood for the Poisson process for patient i on the interval
[T−i , T

+
i ], with events at times {uik}Kik=1, is given by:

p(~ui|zi, bi, fi, vi) =

Ki∏

k=1

ri(uik) exp{−
∫ T+

i

T−i

ri(t)dt},

(4)
where we specify the rate function for patient i as:

ri(t) = r0(t) exp{γ>xir + αmi(t) + δm′i(t) + vi}. (5)

We assume that r0(t) is a piecewise constant function with
jumps at fixed quantiles of the event times, and heights
{al}Nrl=1. The parameter γ ∈ Rqr specifies the associa-
tion between baseline covariates xir ∈ Rqr and the risk
for an event, while parameters α and δ specify the as-
sociation between the risk for an event and the expected
mean and expected slope of the longitudinal variable at

that time, respectively.3 Finally, the latent variable vi, with
prior vi ∼ N(0, σ2

v), represents an additional random ef-
fect (called a frailty term in survival analysis), multiplica-
tively adjusting an individual’s overall risk for events. In
order to compute the likelihood, we must compute the def-
inite integral in (4) numerically. We find that the trapezoid
rule works fine, although other options such as Gaussian
quadrature are also possible.

3 RELATED WORK

There is a rich literature, mostly from biostatistics, on
joint models typically for longitudinal data and time-to-
event data with right censoring. See [Rizopoulos, 2012]
for a thorough introduction to these types of joint models.
A slightly different flavor of joint models is presented in
[Proust-Lima et al., 2014]. These models differ in that
instead of the longitudinal value directly influencing the
event rate, they consider latent subpopulations of individu-
als within which it is assumed there is a different average
profile of both the longitudinal value and risk of the event.

Most directly relevant to our work are several methods for
modeling longitudinal data and recurrent event data [Liu
and Huang, 2009; Kim et al., 2012; Han et al., 2007].
However, these methods share several notable weaknesses.
First, the form for their longitudinal models are simplistic,
all being mixed effects models. Such models are inflex-
ible and will fail to capture the types of trajectories that
our model can, through its mixture model and both long
and short-term individual-specific deviations. In addition,
these works as well as most of the literature on joint models
rely on computationally expensive inference algorithms,
thereby limiting their use to small datasets. Typically EM
or gradient methods are employed for Maximum Likeli-
hood Estimation, or MCMC in Bayesian settings. It is ex-
tremely uncommon to find a published joint model applied
to a dataset of over 1000 individuals. However, our scalable
variational inference algorithm, developed in the next sec-
tion, is much more efficient, facilitating use in large-scale
applications where there can be tens or even hundreds of
thousands of patients.

Within the medical literature, there have been numerous
studies on predicting adverse events such as kidney failure,
death, or cardiac events in patients with CKD; for instance,
[Tangri et al., 2011] is a common reference. In almost ev-
ery case, the models developed are Cox proportional haz-
ards models for time-to-event data, or logistic regression
models for occurrence of an event in a specified time win-
dow. As such, these models are all static and use only a
single snapshot of patient data to make predictions, which
precludes the ability to generate dynamic predictions.

3Since fi(t) with an OU kernel is not differentiable, we let
m′
i(t) be the sum of the slopes of the first three terms in (3).

225



In recent years there has been much interest in machine
learning in modeling electronic health records and other
forms of healthcare data. For instance, [Lian et al., 2015]
use hierarchical point processes to predict hospital admis-
sions, and [Ranganath et al., 2015] develop a dynamic fac-
tor model to learn relationships between diseases and pre-
dict future diagnosis codes. Closest to our work in the ap-
plication is [Perotte et al., 2015], who explore using time-
series models to predict a time-to-event (progression from
CKD stage 3 to stage 4) in CKD patients.

4 INFERENCE

As with most complex probabilistic generative models, the
computational problem associated with fitting the model is
estimation of the posterior distribution of latent variables
and model parameters given the observed data. Exact com-
putation of the posterior is intractable, and requires approx-
imation to compute. To this end, we develop a mean field
variational inference [Jordan et al., 1999] algorithm to ap-
proximate the posterior distribution of interest.

Variational methods transform the task of posterior infer-
ence into an optimization problem. The optimization prob-
lem posed by variational inference is to find a distribution q
in some approximating family of distributions that is close
in KL divergence to the true posterior. Equivalently, the
problem can be viewed as maximizing what is known as
the evidence lower bound (ELBO) [Bishop, 2006]:

L(q) = Eq[log p(y, u, z, b, f, v,Θ)− log q(z, b, f, v,Θ)],
(6)

which forms a lower bound on the marginal likelihood
p(y, u) of our model.

Variational Approximation

Recall for our model that the model parameters are Θ =
{Λ,W, β, a, γ, α, δ}, and the local latent variables specific
to each person are their subpopulation assignment zi, ran-
dom effects bi and vi, and structured noise function fi. The
joint distribution for our model can be expressed as:

p(y, u, z, b, f, v,Θ) = p(Θ)
N∏

i=1

Ni∏

j=i

p(yij |zi, bi, fi(tij),Θ)

p(~ui|zi, bi, fi, vi,Θ)p(zi)p(bi)p(fi)p(vi)

(7)

We make the mean field assumption for the variational dis-
tribution, which assumes that in the approximate posterior
q, all the latent variables are independent. This implies that
q(z, b, f, v,Θ) = q(Θ)

∏N
i=1 qi(zi, bi, fi, vi), where:

qi(zi, bi, fi, vi) = qi(zi|νzi)qi(bi|µbi ,Σbi)
qi(vi|µvi , σ2

vi)qi(fi).
(8)

The assumed variational distributions for zi, bi, and vi are
the same family as their prior distribution, i.e. multino-
mial, multivariate normal, and univariate normal. For the
variational form for fi, we adapt ideas from the variational
learning for sparse GPs literature [Lloyd et al., 2014; Tit-
sias, 2009] to approximate the true posterior over fi. In
order to evaluate the ELBO in (6), we will need to evaluate
Eqi [fi] at times ~ti for the longitudinal likelihood, as well
as at ~ui and at a grid of times tgrid

i for the point process
likelihood (the grid is for the numerical integration). We
choose to treat the observed observation times ~ti as pseudo-
inputs; this helps reduce overfitting and reduces the number
of variational parameters to learn. In particular:

qi(fi(~ti), fi(~ui), fi(t
grid
i )) = p(fi(~ui), fi(t

grid
i )|fi(~ti))

q(fi(~ti)|µfi ,Σfi).
(9)

We allow a free-form multivariate Gaussian distribution for
fi at the longitudinal observation times, and use a so-called
conditional Gaussian process for the distribution at ~ui, t

grid
i ,

i.e. the true conditional distribution of the joint multivariate
normal, fi|fi(~ti) ∼ GP(µ(t),Σ(t, t′)):

µ(t) = Kt,~ti
K−1
~ti,~ti

fi(~ti) (10)

Σ(t, t′) = Kt,t′ −Kt,~ti
K−1
~ti,~ti

K~ti,t′ (11)

whereKt,~ti
,K~ti,~ti

,Kt,t′ are matrices evaluated at t, t′, and
~ti using the OU covariance kernel from Section 2.

Although priors on the model parameters Θ may be im-
posed, i.e. log-normal on a and normal on the rest, in our
work we learn their maximum likelihood estimate (MLE)
instead, and let q(Θ) be a delta function. Thus, the goal of
our variational algorithm is to learn optimal variational pa-
rameters λi = {νzi , µbi ,Σbi , µvi , σ2

vi , µfi ,Σfi} for each
individual i, as well as a point estimate Θ̂ for the model
parameters. In practice, we optimize the Cholesky decom-
positions Lbi , Lfi for the covariance matrices Σbi ,Σfi .

Solving the Optimization Problem

In traditional settings for variational inference, the objec-
tive function is iteratively optimized by maximizing the
variational parameters associated with each latent variable
or parameter, holding the rest fixed. In models where the
log complete conditional distributions (log of the condi-
tional distribution of each latent variable given everything
else) have analytic expectations with respect to the vari-
ational approximation, closed form EM-style updates are
available for the variational parameters. This convenient
property is typically observed in conditionally conjugate
models, where each log complete conditional will be in the
exponential family [Ghahramani and Beal, 2001].

Recently there has been much interest in applying varia-
tional methods to more complex models that do not ex-
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hibit conjugacy. In many cases, it is intractable to even
evaluate the ELBO analytically, since one or both of the
expectations in (6) have no closed form. In these cases,
variational algorithms have been developed that rely on
sampling from the variational approximation [Ranganath
et al.,2014; Rezende et al., 2014]. However, because of the
form we chose for ri, it is possible to calculate a closed
form approximation to the ELBO for our model (approxi-
mate due to the numerical integration; see Appendix for de-
tails). As such, we use the automatic differentiation pack-
age autograd 4 in Python to compute analytic gradients in
order to optimize the bound. At each iteration of the al-
gorithm, we optimize the local variational parameters in
parallel using exact gradients. To optimize the global pa-
rameters, we turn to stochastic optimization.

Stochastic optimization has become a commonly used tool
in variational inference. Rather than using every single ob-
servation to compute the gradient of the ELBO with re-
spect to Θ, we can compute a noisy gradient based on a
sampled batch of observations [Hoffman et al., 2013]. As
long as the noisy gradient is unbiased and the learning rate
ρt at each iteration satisfies the Robbins Monro conditions
(
∑∞
t=1 ρt = ∞, ∑∞t=1 ρ

2
t < ∞), the stochastic optimiza-

tion procedure will converge to a local maximum. To set
the learning rate we use the AdaGrad algorithm, which
adaptively allows for a different learning rate for each pa-
rameter. The learning rate for each parameter is scaled by
the square root of a running sum of the squares of historical
gradients [Duchi et al., 2011].

Algorithm

Algorithm 1 summarizes the procedure to learn an approx-
imate posterior for the local latent variables and a point es-
timate for the model parameters.

Data: data y, u; hyperparameters.
Result: point estimate Θ̂, approximate posteriors qi.
Initialize global parameters Θ.
repeat

Randomly sample data for S patients, {ys, us}Ss=1.
for s = 1:S in parallel do

Optimize local variational parameters for qs via
gradient ascent.

end
Compute the noisy gradient for Θ.
Update Θ using AdaGrad.

until convergence of the ELBO;
Algorithm 1: Stochastic Variational Inference algorithm
for our Joint Model.

4https://github.com/HIPS/autograd

5 EMPIRICAL STUDY

In this section we describe our experimental setup and re-
sults on our real dataset.

Dataset

Our dataset comprises longitudinal and cardiac event data
from 23,450 patients with stage 3 CKD or higher within our
university health system. IRB approval (#Pro00066690)
was obtained for this work. We first created an initial cohort
of roughly 600,000 patients that had at least one encounter
in the health system in the year prior to Feb. 1, 2015. This
includes all types of encounters within the health system,
including inpatient, outpatient, and emergency department
visits. From this, we filtered to patients who had at least ten
recorded values for serum creatinine, the laboratory value
required to calculate eGFR. We next filtered to patients that
had Stage 3 CKD or higher, indicative of moderate to se-
vere kidney damage, defined as two eGFR measurements
less than 60 mL/min separated by at least 90 days. Finally,
since the recorded eGFR values are extremely noisy and
eGFR is only a valid estimate of kidney function at steady
state, we take the mean of eGFR readings in monthly time
bins for each patient. Rapid fluctuations in acute illness
are related to long term risk, but we have not yet explicitly
incorporated this into our modeling.

After this preprocessing, on average each patient has 22.9
eGFR readings (std dev 13.6; median 19.0). In order to
align the patients on a common time axis, for each patient
we fix t = 0 to be their first recorded eGFR reading be-
low 60 mL/min. The adverse events of interest in our ex-
periments are AMIs and CVAs, and these were identified
using ICD-9 codes as detailed in Section 2. 13.4% of pa-
tients had at least one code for AMI (among those with at
least one: mean 4.1, std dev 7.1, median 2.0), and likewise
17.4% of patients had at least one code for CVA (mean 6.4,
std dev 13.3, median 3.0). We use the same set of baseline
covariates for xip, xiz, xir: baseline age, race and gender,
and indicator variables for hypertension and diabetes. Note
that xip, xiz include an intercept while xir does not.

For the experiments, we used ten fold cross validation with
training sets of 21,105 patient records and test sets of 2,345
records. We fit separate joint models for CVA events and
AMI events.

Evaluation Metrics

After learning a point estimate for the global model param-
eters during training, they are held fixed. Then, an approx-
imate posterior is fit to each patient in the test set, where
we allow the learning algorithm to see the first 60% of a
patient’s eGFR trajectory (and any events before then) and
hold out the remaining 40% (and future events). Predic-
tions about future disease trajectory and adverse events are
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made by drawing samples from the approximate posterior
predictive distribution.

We evaluate our model on two tasks to asses predictive
performance of each submodel. For the longitudinal sub-
model, we compute the mean squared error (MSE) and
mean absolute error (MAE) for predictions about held-out
eGFR values. For the point process submodel, we view
the problem of predicting whether any event will occur in
a given future time window (in our experiments, 1-5 years)
as a binary classification problem. We report the area un-
der the ROC curve (AUROC) and area under the precision-
recall curve (AUPR) as evaluation metrics for each binary
classification task. Calculating the probability of an event
in a future time window [Ti, Ti + c] for person i is easily
computed as 1− exp{−

∫ Ti+c
Ti

ri(t)dt}.

Baselines

For the longitudinal submodel, we compare against the
model in [Schulam and Saria, 2015], since we use their
model as our longitudinal submodel. However, because
our model was trained jointly with the point process sub-
model we do not in general learn the same model param-
eters, since the parameters for the learned trajectories are
also influenced by the event data.

For the point process submodel, we compare against two
standard baselines. The first is a simple Cox propor-
tional hazards model from survival analysis, where we
use the same set of time independent covariates xir as in
our model. The likelihood is the same as (4), but now
ri(t) = r0(t) exp{γ>xir}. We also compare against a
Cox model with time-dependent covariates, where ri(t) =
r0(t) exp{γ>xir + αyi(t)}, with yi(t) a step function de-
noting the most recent observed eGFR up until time t.
Due to the lack of scalable inference algorithms for related
works from the joint modeling literature, we were unable
to compare against them on our large patient cohort.

Hyperparameters

We learn point estimates for hyperparameters
σε,Σb, σv, σf , l by maximizing the ELBO with re-
spect to them. Additional hyperparameters include G,
Nr, and the choice of basis expansions Φp,Φz,Φl in the
longitudinal submodels. We let Φp and Φl be linear basis
functions of time, thus allowing for population covariates
and individual heterogeneity to shift the intercept and slope
of eGFR trajectory. We let Φz be a B-spline expansion of
time with degree two and twelve knots at equally spaced
quantiles of eGFR observation times. We fix G = 15
and Nr = 9. Finally, we set the global scale parameter
for AdaGrad to 0.1, and subsample 250 observations at a
time. We experimented with other values for these fixed
hyperparameters without major changes in performance.

Results

Figure 2: Mean MSE and MAE from longitudinal submod-
els. Error bars are one standard error.

Figure 2 highlights the results from the longitudinal sub-
model, where we present the mean MSEs and MAEs across
the test sets. The longitudinal submodel from our joint
model performs slightly better than the method of [Schu-
lam and Saria, 2015] fit independently to the eGFR values.
Figure 3 highlight the results from the point process sub-
model. Our proposed joint model performs substantially
better than the two baselines at predicting future events, in
terms of both AUROC and AUPR.

Figure 3: Mean AUROC and AUPR for CVA and AMI
events. Blue is proposed Joint Model, red is Cox, green
is time-varying Cox. Error bars are one standard error.

In addition, in this dataset it appears that prediction of CVA
events is slightly easier than prediction of AMIs. For the
CVA joint model, we estimate that α = −0.063 and δ =
−0.061 while for the AMI joint model, α = −0.158 and
δ = −0.069 (standard errors for all four estimates < 0.01,
from the cross validation). The signs of these parameters
agree with clinical intuition that patients with lower overall
eGFR values and more rapid eGFR declines should be at
higher risk for adverse events. It appears there is a slightly
stronger association between eGFR trajectory and risk for
AMIs compared to CVAs.
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Figure 4: Dynamic predictions from our joint model. In each row, the parameters for this individual are refit as more data
is made available (information to the left of the light blue lines is used to refit parameters). Blue circles and x’s correspond
to observed eGFR readings and CVA events, while green correspond to yet-unseen data.

Figure 4 shows an example of dynamic predictions over
time for a test patient. In the three rows of the figure, we
make predictions about the test patient after observing the
first 25%, 50% and 75% of their disease trajectory and ad-
verse events (in this example, CVAs). For each row we re-
learn the patient’s parameters using information to the left
of the vertical light blue line. As we observe more data, the
longitudinal model updates its prediction about future dis-
ease trajectory and provides a reasonable forecast for the
steady decline of this patient’s eGFR. In the second row,
as the model sees that the patient’s trajectory is decreas-
ing faster than in the first row, it correspondingly increases
the probability of a future event. In the third row, after the
model sees the patient’s first CVA event, it further increases
the probability of a future event.

6 DISCUSSION

In this paper, we have proposed a new joint model for lon-
gitudinal and point process data, and applied it to disease
trajectory modeling and prediction of adverse events in pa-
tients with chronic kidney disease. We developed the first
variational inference algorithm for this class of models, al-
lowing us to fit our model to a large set of longitudinal
patient data that is over an order of magnitude the size of
datasets used by related methods. We find that our model
yields good performance on the tasks of predicting future
kidney function and predicting cardiovascular events.

Although our work is a promising first step for develop-
ing predictive models from EHR data and applying them
to real clinical tasks, there are numerous inherent limita-

tions to EHR data [Hersh et al., 2014]. Data quality is of-
ten poor, complicated by inaccurate, inconsistent or miss-
ing information. The EHR at a single organization may fail
to capture the full patient story and all relevant outcomes of
interest, as is the case when patients receive care from mul-
tiple, non-interoperable healthcare systems over time. Rel-
evant patient reported outcomes, such as perceived quality
of life, are rarely captured by EHRs. Events such as death
may not be registered, particularly when patients die out-
side of the hospital. Data may be biased; certain laboratory
tests may be performed only when a clinician suspects an
abnormality. Furthermore, many clinical data are collected
for billing purposes rather than patient care or research, dis-
torting the relative importance of certain elements.

There are many directions in which we plan to extend this
work. Future models will be multivariate in both longitudi-
nal markers and in event processes. Inclusion of additional
longitudinal variables such as blood pressure, albuminuria,
and hemoglobin A1c will be important, since these are
well known to be clinically important for monitoring car-
diovascular and kidney health. Jointly modeling multiple
event processes will allow us to learn correlations between
different types of events. More flexible models, particu-
larly for the event processes, should improve model per-
formance, for instance using Gaussian Process modulated
Poisson processes or Hawkes processes instead of employ-
ing the proportional hazards assumption as we do in this
work. By further refining and deploying a flexible, scalable
model such as ours, ACOs around the country can inter-
vene on high-risk patients and realize the potential benefits
of precision medicine.
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7 APPENDIX

We present the full derivation of the ELBO for our model.
We can rewrite the expression for the ELBO in (6) as:

L(q) =

N∑

i=1

L(qi), (12)

L(qi) = Eqi [log p(~yi|zi, bi, fi,Θ) + log p(~ui|zi, bi, fi, vi,Θ)]

−KL(qi(bi)||p(bi))−KL(qi(vi)||p(vi))
−KL(qi(zi)||p(zi))−KL(qi(fi(~ti))||p(fi(~ti))).

(13)

Computation of the KL divergence terms are standard. We
focus our attention on the first two terms in (13).

The first term in (13) is the variational expectation of the
log likelihood for the longitudinal submodel. To compute
this, we need to calculateEqi [(~yi−mi(~ti))

>(~yi−mi(~ti))].
It is straightforward to expand this product and calculate
the expectation of each term. The relevant expectations are:

Eqi(zi)[βzi ] =
G∑

g=1

νzi,gβg (14)

Eqi(bi)[bi] = µbi (15)

Eqi(fi)[fi(~ti)] = µfi (16)

Eqi(zi)[(Φz(~ti)βzi)
>(Φz(~ti)βzi)] =

G∑

g=1

νzi,g(Φz(~ti)βg)
>(Φz(~ti)βg) (17)

Eqi(bi)[(Φl(~ti)bi)
>(Φl(~ti)bi)] =

Tr(Φl(~ti)ΣbiΦl(~ti)
>) + µ>biΦl(~ti)

>Φl(~ti)µbi (18)

Eqi(fi(~ti))[fi(
~ti)
>fi(~ti)] = Tr(Σfi) + µ>fiµfi (19)

The second term in (13) is the variational expectation of the
log likelihood for the point process submodel:

Eqi [log p(~ui|zi, bi, fi, vi,Θ)] =

Eqi [

K∑

k=1

log ri(uik)−
∫ T+

i

T−i

ri(t)dt].
(20)

Each term in the summation in (20) is given by:

Eqi [log ri(uik)] = log r0(uik) + γ>xir + αEqi [mi(uik)]

+ δEqi [m
′
i(uik)] + Eqi [vi],

(21)

where Eqi [vi] = µvi and Eqi [mi(uik)], Eqi [m
′
i(uik)] are

simple to compute using (14) and (15), where we use the
time derivatives of the bases Φ′p,Φ

′
z,Φ

′
l in place of the

actual bases for the latter. The only nontrivial term in
Eqi [mi(uik)] is Eqi [fi(uik)]. However, due to conjugacy,
we have that for arbitrary t:

qi(fi(t)) =

∫
p(fi(t)|fi(~ti))qi(fi(~ti))

≡ GP(fi;µ(t),Σ(t, t′))

(22)

µ(t) = Kt,~ti
K−1
~ti,~ti

µfi (23)

Σ(t, t′) = Kt,t′ −Kt,~ti
K−1
~ti,~ti

K~ti,t′

+Kt,~ti
K−1
~ti,~ti

ΣfiK
−1
~ti,~ti

K~ti,t′ ,
(24)

so we can use (23) to computeEqi [fi(uik)]; theK matrices
are the OU kernel evaluated at the relevant times.

The final term to compute is the integral in (20). Since we
approximate it numerically, we need to evaluate Eqi [ri(t)]
for arbitrary times t:

Eqi [ri(t)] = r0(t)eγ
>xirEqi [e

αmi(t)+δm
′
i(t)+vi ]. (25)

Using the mean field assumption, this expectation of prod-
ucts factorizes into products of expectations. There are no
local latent variables corresponding to the population term
in mi(t), so that term can be brought outside the expecta-
tion. Since qi(vi) ∼ N(µvi , σ

2
vi) we have that evi is log-

normal, hence Eqi [e
vi ] = eµvi+

σ2
vi
2 . Expanding mi(t) and

m′i(t) in (25) leads to three final expectations to compute.
The first is:

Eqi(zi)[e
(αΦz(t)+δΦ′z(t))>βzi ] =

G∑

g=1

νzi,ge
(αΦz(t)+δΦ′z(t))>βg

(26)
The last two areEqi [e

(αΦl(t)
>+δΦ′l(t)

>)bi ] andEqi [e
αfi(t)].

Since the variational distributions for bi and fi(t) are multi-
variate normal (from (8) and (22)-(24)), the exponential of
an affine transformation of them will be multivariate log-
normal. We can use this with the fact that if X ∼ N(µ,Σ)
is multivariate normal, then Y = eX is multivariate log-
normal with mean E[Y ]i = eµi+

Σii
2 to compute the de-

sired variational expectations.

To compute noisy gradients of the ELBO with respect
to Θ, we randomly sample S observations {ys, us}Ss=1

at each iteration, and compute the gradient of L̂(q) ≡
N
S

∑S
s=1 L(qs), which equals L(q) in expectation.
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Abstract

In this paper, we explore degrees of freedom in
deep sigmoidal neural networks. We show that
the degrees of freedom in these models are re-
lated to the expected optimism, which is the ex-
pected difference between test error and train-
ing error. We provide an efficient Monte-Carlo
method to estimate the degrees of freedom for
multi-class classification methods. We show that
the degrees of freedom is less than the parame-
ter count in a simple XOR network. We extend
these results to neural nets trained on synthetic
and real data and investigate the impact of net-
work’s architecture and different regularization
choices. The degrees of freedom in deep net-
works is dramatically less than the number of pa-
rameters. In some real datasets, the number of
parameters is several orders of magnitude larger
than the degrees of freedom. Further, we observe
that for fixed number of parameters, deeper net-
works have less degrees of freedom exhibiting a
regularization-by-depth. Finally, we show that
the degrees of freedom of deep neural networks
can be used in a model selection criterion. This
criterion has comparable performance to cross-
validation with lower computational cost.

1 INTRODUCTION

Model selection is one of the key tasks in machine learn-
ing, as method’s performance on training data is an opti-
mistic estimate of its general performance. Efron [2004]
provided an estimate of optimism, difference of error on
test and training data, and related it to a measure of model’s
complexity deemed effective degrees of freedom. This re-
sult reflects Occam’s razor since models with higher de-
grees of freedom tends to have higher optimism. Degrees
of freedom, defined as parameter counts, have been fre-
quently used in model selection. However, even in linear

models, the number of parameters are not a good indicator
of model’s complexity. Straightforward examples of this
behavior are models fit using sparsity penalties. In that
context, degrees of freedom are related to the number of
non-zero parameters instead of total parameter count.

Ye [1998] introduced the concept of Generalized Degrees
of freedom (GDF) for complex modeling procedures with
Gaussian distributed outputs. GDF is defined based on the
sensitivity of the fitted values to the perturbations in ob-
served values. Efron [2004] provided a framework for es-
timating degrees of freedom for modeling procedures with
output in exponential family distribution. In order to esti-
mate degrees of freedom in deep neural networks for clas-
sification problems, where the outputs can be regarded as
a categorical distribution, we extend Efron’s results to the
context of multinomial logistic regression. Similar to Ye’s
GDF, the computation of the degrees of freedom involves
assessing network’s changes in output as a result of per-
turbation of the training data. The more sensitive the net-
work’s output to the perturbation, the more degrees of free-
dom it has.

We provide a straightforward algorithm for evaluating the
degrees of freedom for any modeling procedure with out-
puts in categorical distribution form. This algorithm re-
quires an additional run of the modeling procedure on the
perturbed data. In the worst case, this amounts to doubling
the running time of the procedure. Using this algorithm we
first analyze the complexity of XOR network. This sim-
ple example highlights the fact that the degrees of freedom
in a neural net is not simply equal to the total number of
parameters in the network.

In our experiments, we aim to answer following questions:

1. How does the network’s complexity (DoF) vary with
its architecture? Specifically, how do the degrees of
freedom grow with the depth of a neural network?

2. How does regularization affect network’s complexity?
Specifically, what is the impact of dropout, weight de-
cay, adding noise on the degrees of freedom?
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We answer these questions in the context of feed-forward
sigmoidal networks employed on classification tasks on
both synthetic and real datasets.

The prior work on the model complexity is rich, and we
briefly review some key contributions. Bayesian Informa-
tion Criterion (BIC) [Schwarz et al., 1978] and Akaike In-
formation Criterions (AIC) [Akaike, 1974] are most com-
monly used techniques for model selection. Both aim to
construct an estimate of the test log-likelihood by correct-
ing the training set log likelihood with terms dependent on
the number of parameters in the model in order to pro-
duce a score that is a less biased estimate of test log-
likelihood. The weighting of the parameter count is dif-
ferent, BIC depends on the sample size, and AIC uses a
constant. BIC applied to the family of models that con-
tain the true model is consistent in the limit of the data.
AIC, with some mild constraints, guarantees the selec-
tion of model with least square error, among models that
do not include the true model. Crucial to the practical
application of these methods is the correct count of pa-
rameters. Bayesian model selection elegantly avoids the
need to specify the complexity of the network by evaluat-
ing evidence, a marginal probability of the data given the
model. This approach marginalizes over all of the parame-
ters, making models of different parameterizations compa-
rable. The size of the parameter space directly impacts the
evidence through this integration, as the prior on parame-
ters gets spread thinly across high dimensional spaces. Un-
fortunately, the cost of computing such integrals is often
prohibitive, but the models selected using these techniques
have been shown to be very competitive. [MacKay, 2003,
Neal, 1996, Guyon et al., 2004]. Kolmogorov-Chaitin com-
plexity [Kolmogorov, 1965] describes dataset complexity
in terms of a program that recapitulates the data. Genera-
tion of task-specific neural networks using algorithmically
simple programs was explored by Schmidhuber [1997].
Networks whose parameters could not be captured by a
simple program were avoided. A related method of Mini-
mal Description Length reflects the desire for compact rep-
resentation of the data. Its application [Hinton and Zemel,
1994] shows how the trade-off between the data and pa-
rameter compression can lead to an objective for training
auto-encoders. Degrees of freedom of linear models fit
with Lasso-type penalties have been analyzed, e.g. Lasso
[Zou et al., 2007], Fused Lasso [Tibshirani et al., 2005] and
Group Lasso [Vaiter et al., 2012]. The number of predictors
and the number of degrees of freedom greatly differ due
to the imposed sparsity and weight tying. Recent results
on degrees of freedom for non-continuous procedures such
as best subset regression and forward stagewise regression
[Janson et al., 2015] highlight challenges in determining
the complexity of these procedures as the estimators can
be discontinuous. Research on Stein’s Unbiased Risk Esti-
mate has yielded model selection techniques [Stein, 1981]
as well as algorithms for their estimation [Ye, 1998, Ra-

mani et al., 2008]. Generalization of SURE to exponential
families has been proposed by Eldar [2009]. However, its
focus is on estimating parameter risk instead of prediction
error. In linear models, the two neatly coincide. But this
does not carry over to logistic regression and more broadly
sigmoidal neural networks.

2 DEGREES OF FREEDOM FOR
CATEGORICAL DISTRIBUTION

In this section, we derive the definition of degrees of free-
dom for categorical distribution from the optimism accord-
ing to Efron [2004]. Then, we introduce an efficient Monte-
Carlo sampling based method [Ramani et al., 2008] to esti-
mate degrees of freedom.

2.1 DEFINITIONS

We focus on models aimed at multi-class classification
task. The data is assumed to be composed of features
X ∈ Rn×p, and output labels y range over k categories.
We will denote categorical distribution with C(·). Cate-
gorical distribution over k categories can be parameterized
using a vector of non-negative values with a sum of 1.
We treat sample label yi as realization of categorical ran-
dom variables for a specific parameter vector µi. Hence
yi ∼ C(µi), where µi = [µi1, µi2, . . . , µik] is the true
probability of sample yi being in each class. µic ∈ [0, 1]

and
∑k
c=1 µic = 1. Members of exponential family follow

form:

f(pi|µi) = r(pi) exp{θ(µi)
Tpi −A(µi)}

where pi is the vector of sufficient statistics for sample i,
θ(µi) is the vector of natural parameters, r(pi) is the base
measure, A(µi) is the log-partition function.

For categorical distribution with parameter µi, we have
pi = h(yi) = [δ(yi−1), . . . , δ(yi−k−1)]T , where δ(·) is
the Kronecker delta function, δ(a) = 1 if a = 0, δ(a) = 0
if a 6= 0. In other words, pi is a vector of the observations
of sample i being in each class. Base measure is r(pi) = 1;
natural parameters are θc(µi) = lnµic−ln(1−∑k−1

l=1 µil),
and log partition function A(µi) = ln(1 +

∑k−1
c=1 e

θc(µi)).
Note that both µi and pi are of dimension k − 1. Let
P = [p1, . . . ,pn]T be the matrix of observations for all
sample labels y1, . . . , yn.

2.2 OPTIMISM IN MODELS WITH
CATEGORICAL DISTRIBUTION

Optimism is the difference between expected test log de-
viance error and training log deviance error for a model fit-
ting procedure. It is related to the complexity of the model
and degrees of freedom is derived from optimism. If the
optimism for a modeling procedure can be estimated, we
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can use it for model selection. Efron [2004] provides the
derivations of expected optimism for the single parameter
exponential family. We follow Efron’s approach to derive
the definition of degrees of freedom for modeling proce-
dure with output in categorical distribution form.

Given sample input xi, we assume that the output label
yi ∼ C(µi). Let µ̂i = L(pi) be the estimated proba-
bility for sample i from observations pi. The log deviance
error for µ̂i and pi is:

erri = −2 log f(pi|µ̂Ti )

= −2[θ(µ̂i)
Tpi −A(µ̂i)]

Suppose we have another sample y0i drawn from the same
distribution as yi, y0i ∼ C(µi). Let qi = h(y0i ) be the
vector of its observations. The expected log deviance error
of qi using µ̂i is:

Erri = Ey0i {−2 log f(qi|µ̂i)}
= −2[θ(µ̂i)

Tµi +A(µ̂i)]

The definition of optimism is:

Oi = Erri − erri
= 2θ(µ̂i)

T (pi − µi)

Hence, optimism is the difference between log deviance er-
ror on the training set and expected log deviance error with
respect to the true distribution.

The expected optimism over yi ∼ C(µi) for the estimated
probability µ̂i and true probability µi is:

Ωi = 2Eyi{θ(µ̂i)
T (pi − µi).}

As we do not know the true probability µi, we cannot com-
pute the expected optimism. However, we can get an ap-
proximate measurement using Taylor series expansion. We
can approximate θ(µ̂i) by taking the Taylor series expan-
sion at pi = µi to obtain:

θ(µ̂i) ≈ θ(L(µi)) + D(i)(pi − µi).

D(i) is the first derivative matrix where each entry D(i)
jc =

∂θj(L(v))
∂vc

|v=µi
.

Therefore, we can approximate expected optimism as:

Ω̃i = 2Eyi{[θ(L(µi)) + D(i)(pi − µi)]T (pi − µi)}

= 2Eyi{
k−1∑

j=1

k−1∑

l=1

(pij − µij)(pil − µil)D(i)
jl }

= 2
k−1∑

j=1

k−1∑

l=1

cov(pij , pil)
∂θj(L(v))

∂vl
|v=µi

We can estimate the expected optimism by assuming pi ∼
C(µ̂i), so:

Ω̂i = 2
k−1∑

j=1

k−1∑

l=1

cov(pij , pil)
∂θj(L(v))

∂vl
|v=µ̂i

. (1)

In categorical distribution, cov(pij , pil) = −µ̂ij µ̂il, if i 6=
j. var(pij) = µ̂ij(1− µ̂ij). Therefore, Equation (1) can be
reduced to:

Ω̂i = 2
k−1∑

j=1

∂Lj(v)

∂vj
|v=µ̂i

. (2)

The proof is given in the supplementary material.

Equation (2) for k = 2 is exactly the result for Bernoulli
distribution derived in [Efron, 2004]. Efron also showed
that Eqn (2) gives the correct degrees of freedom for maxi-
mum likelihood estimation [Efron, 1975]. In a p-parameter
curved exponential family, we have:

n∑

i=1

∂L(v)

∂vi
|v=µ̂i

= p.

Here, we define the degrees of freedom for a classification
model estimator µ̂i = Li(P) on all the data samples P to
be:

df =
n∑

i=1

k−1∑

c=1

∂Lic(P)

∂pic
. (3)

This definition tells that the degrees of freedom is the sum
of each sample’s sensitivity of its estimated probability to
the perturbations in its observation for all categories.

2.3 DEGREES OF FREEDOM FOR MODEL
SELECTION

As degrees of freedom is related to the expected optimism,
we can use degrees of freedom for model selection. Ac-
cording to Equation (2) and (3), the relationship between
expected test and training log deviance errors is:

n∑

i=1

Eyi{Erri} =

n∑

i=1

Eyi{erri}+ 2df. (4)

Euqation (4) is very similar to Akaike Information Criteri-
ons (AIC) Akaike [1974]:

AIC =
n∑

i=1

erri + 2k, (5)

where k is the number of parameters. We refer to 2df in
Equation (4) and 2k in Equation (5) as “complexity cor-
rection” for training log deviance error. In simple linear
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regression models, df = k, and the complexity corrections
are the same. However, in complex models such as deep
neural networks, simply counting number of parameters
can result in overestimate of the expected test log deviance
error. Therefore, we introduce DoFAIC for model selec-
tion:

DoFAIC =
n∑

i=1

erri + 2df. (6)

DoFAIC uses degrees of freedom instead of the number
of parameters for complexity correction. We assume that
DoFAIC can produce a better criterion for model selection
than Naı̈ve AIC.

2.4 MONTE-CARLO ESTIMATE FOR DEGREES
OF FREEDOM

For most practical estimators of the model’s predictions
with respect to the data derivatives, ∂Lic(P)

∂pic
are not avail-

able in closed form. For example, fitting multinomial logis-
tic regression using stochastic gradient descent with adap-
tive learning rates requires a fairly sophisticated deriva-
tion which accounts for changes in step-sizes as a result of
data perturbation. For deep neural networks, this difficulty
grows due to the use of back-propagation. In this paper, we
used a sampling based method to efficiently estimate

Monte-Carlo estimation A theoretical result for a
stochastic estimate of the degrees of freedom of nonlinear
estimators has been proposed by Ramani et al. [2008]. We
restate the key result from that paper here.

Theorem 1. Let b be a zero mean i.i.d. random vector (that
is independent of y) with unit variance and bounded higher
moments. Then

∑

i

∂f(y)

∂yi
= lim
ε→0

Eb

[
bT
(
f(y + εb)− f(y)

ε

)]

provided that f admits a well-defined second-order Taylor
expansion.

We sketch out a proof that the prediction in a neural net
via forward pass is a smooth function of the observations
of training labels. We will abbreviate “differentiable with
respect to observations” as d.w.r.t.o. Sigmoid and soft-max
are smooth functions of their inputs. The cross-entropy loss
is a multivariate function that depends on data and weights,
and all of its partial derivatives exist. For simplicity, we
assume that the network is trained using gradient descent.
Each update of the network’s parameters is a linear combi-
nation of previous weights and a gradient of the loss. As-
suming that the initial weights d.w.r.t.o. and loss is smooth
then the update yields weights that are d.w.r.t.o. Random
initialization and pre-training both yield initializations that
are independent of observations, hence the partial deriva-
tives of the initial weights with respect to observations are

Algorithm 1 Monte Carlo algorithm for computing degrees
of freedom of a multi-class classifier
Input: training data X ∈ Rn×p, y ∈ {1, 2, .., k}n

1: Compute observations matrix P = h(y)
2: Train model on X and P
3: Compute estimated probabilities for each sampleL(P)

4: Sample entries of B(t) ∈ Rp×k from zero-mean, unit
variance normal distribution

5: Train model on X and P(t) = P + εB(t)

6: Using trained model compute estimated probabilities
for each sample L(P(t));

7: Repeat 4-6 for T times;
8: Calculate df from Equation (7)

0. By induction, gradient descent, at any iteration, yields
weights that are d.w.r.t.o. Forward pass through sigmoidal
network yields estimated probabilities which are smooth
with respect to observations. Thus, the Taylor expansion
required by the above theorem exists.

Using this theorem, we can evaluate the derivative of a
function ∂f(x)

∂x by perturbing the inputs. We applied a mod-
ified version of the method [Ramani et al., 2008] for cate-
gorical distribution. We applied random perturbation to the
observations to estimate the degrees of freedom:

df =
∑n
i=1

∑k−1
c=1

∂Lic(P)
∂pic

= limε→0

{
EB

[∑
i

∑
c bic

(
Lic(P+εB)−Lic(P)

ε

)]}
,

where B is a zero-mean i.i.d. random matrix with unit vari-
ance and bounded higher order moments. Therefore, we
can approximate df with T independent samplings of B(t):

df ≈ 1

T

T∑

t=1

n∑

i=1

k−1∑

c=1

b
(t)
ic

(Lic(P + εB(t))− Lic(P)

ε

)
,

(7)
where ε is a small value. In our experiments, we choose
ε = 10−5. To better estimate the sensitivity, we can use
the average of multiple runs as the final estimation. The
algorithm for estimating degrees of freedom is summarized
in Algorithm 1.

Note that training on original and perturbed observations
matrix can be performed in parallel. Finally, we also de-
rived analytical derivatives for stochastic gradient descent
learning which yields the same degrees of freedom as the
algorithm presented above. However, this method requires
maintenance of partial derivatives of each parameter with
respect to each sample’s observations. Such storage re-
quirements make this method impractical for real world ap-
plications.

Variance reduction For deep neural networks, training
takes a considerable amount of time. In order to estimate
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degrees of freedom in a reasonable computational time,
we used a variance reduction technique – common random
numbers – during Monte-Carlo sampling. When compar-
ing the degrees of freedom on a specific data, fixed P, for
several different fitting procedures, we used the same per-
turbation matrix B for all the models. We used the same
random seed for all models throughout the training. For
example, in deep neural network training, we use the same
random seed to initialize weights and bias; during pre-
training with denoising-autoencoders, we use the same ran-
dom seed for drop-out and input corruptions. For stochas-
tic gradient descent methods, we use the same mini-batches
splittings during training. In our experiment, we found that
we can estimate degrees of freedom well enough using just
one perturbed copy of the data when using these variance
reduction techniques.

2.5 DEGREES OF FREEDOM IN MULTINOMIAL
LOGISTIC REGRESSION

In order to validate the above algorithm in a setting with
known degrees of freedom, we perform an empirical anal-
ysis of the degrees of freedom in different multinomial lo-
gistic regression models.

We generate an i.i.d. zero mean unit variance random de-
sign matrix X with n = 100 samples and p = 20 features.
We represent each sample with xi = [xi1, xi2, . . . , xip].
With k = 4 class, we generated a random weight matrix
W ∈ Rp×k, where each entry wic ∼ N (0, 1). We gener-
ate each label from yi = argmaxj µij , where µi = exiW.

We fit 5 models using multinomial logistic regression. In
ith model, we only use first 2i features in X to fit. There-
fore, ith model only contains 2(i + 1)(k − 1) parameters
and the degrees of freedom are equal to the number of pa-
rameters. We perform 5 Monte-Carlo degrees of freedom
estimates for each model.

We plot degrees of freedom in Figure 1(a). We observed
that degrees of freedom are very close to the number of
parameters we used in the model. The standard error for
Monte-Carlo estimate is small.

We also randomly generated 1000 samples for testing. Op-
timism is calculated by the difference between average test-
ing log deviance error and training log deviance error. We
plot the degrees of freedom and optimisms for all 5 mod-
els in Figure 1(b). It shows that the optimism has a linear
relationship with degrees of freedom, as expected.

2.6 DEGREES OF FREEDOM OF A XOR
NETWORK

We generated a small synthetic example using exclusive-
or (XOR) operator, where XOR(a, b) = 0 if a = b, and
XOR(a, b) = 1 if a 6= b. Given an input x1, x2 ∈ {0, 1},
the output y = XOR(x1, x2), we hope to learn a model of
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Figure 1: (a) Comparison between degrees of freedom esti-
mates in multinomial logsitic regression and the true num-
ber of parameters used in the model. (a) Comparison be-
tween degrees of freedom estimates in multinomial logsitic
regression and the optimism in log deviance error. In each
plot, blue line is the mean of the five Monte-Carlo esti-
mates. Error bar represents the standard error.

XOR operator. In general, we can build a neural network
with two hidden nodes as shown in Figure 2 and weights in
Table 1 to learn a perfect XOR classifier.

x1

x2

h1

h2

o

Figure 2: A Neural Network with 2 Hidden Nodes

Table 1: An XOR Network
x1 0 1 0 1
x2 0 0 1 1
h1 = σ(F (−0.5 + x1 − x2)) 0 1 0 0
h2 = σ(F (−0.5− x1 + x2)) 0 0 1 0
y = σ(K(−0.5 + h1 + h2)) 0 1 1 0

A network that trained properly should have weight matrix
with form in Table 1. If x contains no noise, F , a multi-
plier, can be infinitely large to achieve perfect estimation.
Therefore, we set y to be 0.9 instead of 1.

We train networks with different structures on XOR data
using back-propagation and estimate their degrees of free-
dom using Monte-Carlo method. Even though there are 9
parameters in the network, we found that the degrees of
freedom for all learned models is 4. We note that the sym-
metry in weights of the inputs to the two hidden nodes,
eliminates degrees of freedom, as does implicit tying of the
weights of inputs to the output node. To give an intuition
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why this tying occurs, we note that the predominantly cor-
rectly labeled data drives the network to keep the weights
close to each other. Hence, a small perturbation in the la-
bels can affect multiple weights simultaneously, but does
not disturb their balance. This observation encourages us
to investigate deeper models.

3 DEGREES OF FREEDOM IN DEEP
NEURAL NETWORKS

In this section, we investigate degrees of freedom in deep
neural network models. From the XOR example, we know
that the degrees of freedom in a network is not equal the
number of parameters in the model. The structure of the
network and different regularization techniques will impact
degrees of freedom.

3.1 TERMINOLOGIES AND SETTINGS

In the following experiments, we explore deep networks
trained to solve larger classification problems. Each of the
networks takes real value vector xi ∈ Rp×1 as input and
outputs the probability µ̂i for this sample being in one of k
categories. We use sigmoid activation function for all the
hidden nodes and a soft-max in the last layer. The number
of hidden layers is called “depth” of the network. We only
consider networks with an equal number of units in each
hidden layer, and we call this number “width” of the net-
work. Next, we investigate degrees of freedom in networks
with different width and depth.

Stacked-Auto-Encoder (SdA) pre-training We used
SdA [Vincent et al., 2010] to pre-train the neural network
with input dataset, as unsupervised pre-training helps the
network to achieve a better generalization from the train-
ing data on supervised tasks [Erhan et al., 2010]. In de-
noising auto-encoder, corruption is used in layer-wised
pre-training. The corruption is introduced by zeroing out
input to the auto-encoder with a certain probability. The
chosen probability of corruption is called corruption rate.
Dropout [Srivastava et al., 2014] is also used during the
pre-training of SdA, where output of hidden units are ran-
domly zeroed with probability, which is called dropout
rate. We assume that increasing in corruption rate or
dropout rate will reduce degrees of freedom as they pro-
vide more regularization to the network.

Weight-decay We used a weight decay penalty on the
sum of the squares of all the weights in the network dur-
ing both pre-training and fine-tuning stage. Adding this
penalty prevents the network from over-fitting. We refer to
the multiplier associated with the sum of squares as weight
decay rate. We expect to see that the degrees of freedom
drops with increasing weight decay rate.

Implementation All our code are based on Theano
[Bastien et al., 2012, Bergstra et al., 2010] and we ran
experiments on a cluster of machines with NVIDIA Tesla
compute cards.

3.2 DATA SETS

We prepared a synthetic dataset and two real datasets
MNIST and CIFAR-10 to estimate degrees of freedom.

Synthetic We build a synthetic dataset from a randomly
generated network with 30 input nodes, 2 hidden layers
with 30 hidden nodes in each, and 4 output nodes. We gen-
erated n = 5000 random zero-mean unit variance inputs
with 30 dimensions. Each layer was fully connected to the
previous layer, and we generated weights w ∼ N (0, 5).
We used sigmoid activation function for each layer and a
soft-max on top of the network. The output sample labels
y are then sampled according to the probabilities from the
soft-max layer. To get the optimism, we also generated an-
other 5000 samples for test.

MNIST 1 [LeCun et al., 1998] is a benchmark dataset
that contains handwritten digit images. Each sample is a
28 × 28 image from 10 classes. We used 50000 samples
for training.

CIFAR-10 2 [Krizhevsky and Hinton, 2009] is a dataset
contains 32 × 32 tiny color images from 10 classes. Each
sample has 3072 features. We used 50000 samples for
training.

3.3 DEGREES OF FREEDOM AND THE
STRUCTURE OF THE NETWORK

To investigate the degrees of freedom for networks with
different structures, we estimated the degrees of freedom
for networks with width [10, 20, . . . , 100] and depth with
1,2,3 and 4, where all the hidden layers have equal widths.
We used SdA to pre-train with 0.1 dropout rate and 0.1 cor-
ruption rate. We use weight decay penalty 1e − 5 for both
pre-training and fine-tuning. The estimated degrees of free-
dom is shown in Figure 3.

From the results, we found that networks with more width
have more degrees of freedom. This is reasonable as in-
creasing width leads to more independence between pa-
rameters. However, the degrees of freedom in deep net-
works is generally much less than the number of parameters
it used. We see that the ratio of the parameters to degrees
of freedom is on the order of 102. Loosely, one degree of
freedom is acquired for 100 parameters. Among the models
with the same number of parameters, deeper networks have

1http://yann.lecun.com/expdb/mnist/
2https://www.cs.toronto.edu/˜kriz/cifar.

html
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Figure 3: Degrees of freedom estimates for different mod-
els trained on synthetic data. Left: degrees of freedom vs
network width. Right: degrees of freedom vs number of
parameters in the network, which is linearly related to the
network depth and quadratically related to the number of
width. The line represent the degrees of freedom estimate
from 1 Monte-Carlo run, and the color of each indicates the
depth of the models.

less degrees of freedom. This observation indicates that the
depth of the network has regularization on the complexity.

To further validate our assumption that deeper networks
have less degrees of freedom, we also estimated degrees
of freedom on MNIST and CIFAR-10 dataset. We tested
networks with width [100, 300, 500, 700], all other settings
are the same as in the above synthetic experiment. The re-
sults are shown in Figure 4.

We observe that we can make the same conclusions hold
for MNIST and CIFAR-10 as we did for synthetic data.
The only difference is increasing depth results in more de-
grees of freedom than models trained with synthetic data.
We attribute this to the differences of input data size and
complexity between the real datasets, MNIST and CIFAR-
10, and the much simpler synthetic datasets.

3.4 DEGREES OF FREEDOM AND
REGULARIZATION TECHNIQUES

When training a deep neural network, many practical meth-
ods can be used for regularization. We investigate how the
different techniques affect the degrees of freedom in the
model.

We train networks using the same settings as in Section 3.3.
In this experiment, we separately trained networks with dif-
ferent settings of penalty rates: corruption rate, dropout
rate, and weight decay rate. We changed one rate at a time
while keeping rest fixed.

tested the corruption rate, dropout rate, and weight decay
penalty by keeping all others fixed and only changing one
at a time.

For all three datasets, we trained network using corrup-
tion rate and dropout rate from [0, 0.1, 0.2, . . . , 0.9], and
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Figure 4: Degrees of freedom estimates for different mod-
els trained on MNIST and CIFAR-10. Left: degrees of
freedom vs network width. Right: degrees of freedom vs
the number of parameters in the network, which is linearly
related to the network depth and quadratically related to
the number of widths. The lines represent the degrees of
freedom estimate from single Monte-Carlo sample and the
color of each indicates the depth of that model.

weight decay rate from 10−6 to 10−3. For each setting
of regularization parameters, we trained a 3 layer net-
work [30, 30, 30] for synthetic data and [300, 300, 300] on
MNIST and CIFAR-10 data. We used one Monte Carlo
sample to estimate degrees of freedom in each model. The
result is shown in Figure 5.

We found that neither corruption rate nor dropout rate af-
fected degrees of freedom drastically for synthetic data.
This is because the input of the synthetic data is generated
randomly. Hence, pre-training cannot learn higher level
features for synthetic data. For MNIST and CIFAR-10, we
found that both corruption rate and dropout rate have an
impact on degrees of freedom . In CIFAR-10, the regular-
ization effect is much larger. These results suggest that the
regularization strength from dropout and corruption can be
data-specific.

Weight decay penalty has a very strong effect on the de-
grees of freedom for all three datasets. Further, the weight
decay exhibited a highly non-linear impact on the degrees
of freedom, in dramatic contrast to its effect in ridge regres-
sion.3

3Ridge regression degrees of freedom scale with 1
1+λ

which
is non-linear but much tamer multiplier than in neural networks
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Figure 5: Degrees of freedom estimates for models trained
on Synthetic data, MNIST and CIFAR-10 under different
regularizations. The lines represent the degrees of freedom
estimate.

3.5 MODEL SELECTION USING DEGREES OF
FREEDOM

To validate that DoFAIC is a useful criterion for model se-
lection, we compare it against model selection based on
error estimates using cross validation. For brevity, we refer
to the cross validation estimate of error as cross validation
error. We performed a 5-fold cross-validation experiment
for Synthetic, MNIST and CIFAR data on models with dif-
ferent network structures learned in Section 3.3. We calcu-
lated DoFAICs for all the models we trained using Equa-
tion (6) with the estimated degrees of freedom. We also
calculated Naı̈ve AIC using Equation (5) with the number
of parameters in the network. We compared these estimates
against cross-validation errors. The result is shown in Fig-
ure 6.

Further, we calculate the Spearman rank correlation
between cross-validation log deviance errors and Do-
FAIC/Naı̈ve AIC estimates for each dataset. The result is
shown in Table 2.

We find that DoFAIC is very consistent with cross-
validation error. Naı̈ve AIC, on the other hand, exhibits
negative correlation with cross validation error due to
highly non-linear behavior. This is because Naı̈ve AIC
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Figure 6: Comparison between DoFAIC (first row) / Naı̈ve
AIC (second row) and 5-fold cross validation. Each cir-
cle in the plot represents a model with a specific structure.
The x-axis is the mean cross-validation log deviance error
across 5 folds.

Table 2: Spearman Rank Correlation between Cross-
validation error and DoFAIC/Naı̈ve AIC

Dataset DoFAIC ρ Naı̈ve AIC ρ
Synthetic 0.9865 -0.6711
MNIST 0.9853 -0.9471
CIFAR-10 0.9941 -0.7824

overestimates the complexity of the model by using the
large number of parameters in the network. The actual
complexity in deeper and larger networks are much less
than the number of parameters.

For all three datasets, both DoFAIC and cross-validation
chose the same model. This indicates that DoFAIC can
be used for model selection. We note that k-fold cross-
validation, which needs at most k rounds of training, while
DoFAIC only requires at most 2 rounds of training. This
makes DoFAIC an efficient model selection criterion.

4 DISCUSSION

In this paper, we investigated the degrees of freedom for
classification models and presented an efficient method to
estimate their degrees of freedom. We showed that for sim-
ple classification models, degrees of freedom is equal to the
number of parameters in the model. In deep networks, the
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degrees of freedom is generally much less than the num-
ber of parameters in the model, and deeper networks tend
to have less degrees of freedom. We also theoretically and
empirically showed we can use DoFAIC as an efficient cri-
terion for model selection, which has comparable perfor-
mance to cross-validation.

Future work It would be interesting to investigate de-
grees of freedom in other deep architectures, such as Con-
volution Neural Network (CNN), Recurrent Neural Net-
works (RNN), denoising auto-encoders and contractive
auto-encoders.
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Abstract

We propose a new method for aggregating
crowdsourced responses, based on a deep neural
network. Once trained, the aggregator network
gets as input the responses of multiple partici-
pants to the same set of questions, and outputs its
prediction for the correct response to each ques-
tion. We empirically evaluate our approach on a
dataset of responses to a standard IQ question-
naire, and show it outperforms existing state-of-
the-art methods.

1 INTRODUCTION

Crowdsourcing platforms such as Amazon’s Mechanical
Turk are marketplaces which bring together participants
who wish to take part in small micro-tasks in return for a fee
and businesses or individuals who want to employ people
for such tasks. A common use-case is data annotation and
labelling, such as determining whether a caption correctly
describes an image, or deciding whether the sentiment ex-
pressed in a text is positive, neutral or negative. Annotators
may not always produce the correct responses to the ques-
tions posed to them. This might happen for several rea-
sons: they may lack the sufficient knowledge to accurately
answer every question or they might not be exerting the re-
quired effort to do well on a task. As annotators are not
completely reliable in producing the correct responses to
the posed questions, the resulting set of annotations would
include errors, which results in an inherent uncertainty re-
garding which answers are correct. One instrument that
can reduce the number of such errors is using redundancy:
rather than asking a single participant to answer a ques-
tion, the same question is posed to multiple participants;
the multiple responses to the same question can then be ag-
gregated into a single response to the question.

A commonly used aggregator is “majority vote”, in which
the chosen answer to each question is the one given most

frequently by the participants. 1 This form of collective de-
cision making has been heavily investigated. A result from
the 18th century by the Marquis de Condorcet [5] states that
the probability of majority vote to reach the correct conclu-
sion to a question with two possible answers approaches
1 as the number of aggregated participants approaches in-
finity, assuming that participants are independent and each
has a probability p > 1

2 to provide the correct answer. 2

Using crowdsourcing marketplaces it is possible to gather
the responses of many participants to many questions in a
very short time frame. Thus, such services make it easy
to harness the collective intelligence of many participants.
Given a set of responses of multiple participants to the same
questions, one can use majority vote to get the aggregate re-
sponses to all the questions. However, this simple aggrega-
tor may be suboptimal, as some annotators produce higher
quality results than others. For instance, if we know that the
annotator Alice is more reliable than Bob, we might give
her responses more weight when computing the aggregate
solution. One way to determine the ability of annotators to
provide correct responses is to evaluate each participant on
a “gold-set” of questions, for which the correct answer is
known. Given information about the ability of annotators
evaluated on the gold-set, one can better aggregate the re-
sponses to a set of questions for which the correct answer is
not known. However, what can be done to better aggregate
responses in the absence of such a gold-set?

Earlier work has uncovered aggregation algorithms that
outperform the majority vote aggregator, and that do not
use external information such as a gold-set. Many such
techniques are based on Bayesian models, that jointly infer
information about the relative abilities and biases of par-
ticipants, the difficulty levels of questions and the correct
answer to each question [23, 2, 21]. As these techniques
are Bayesian, they rely on a statistical model of the process
through which the data was generated, reflecting model-

1The field of social choice refers to this aggregator as “plural-
ity voting”.

2The majority aggregator has also been shown to perform well
in practice in multiple domains [22, 1, 10].
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ing assumptions regarding the domain. Such assumptions
are captured as random variables and the relation between
them, consisting of the observed data and a set of assumed
latent (unobserved) variables, along with a joint probabil-
ity model tying the variables. While such techniques have
been shown to be powerful tools for aggregating crowd-
sourced responses, their performance can be hindered when
the modeling assumptions are incorrect or inaccurate – es-
pecially in the absence of large amounts of data.

Our contribution:

We propose a novel approach for aggregating crowd-
sourced responses. As opposed to existing Bayesian algo-
rithms, at the heart of our approach lies a deep neural net-
work, rather than a carefully engineered statistical model
encoding an assumed relation between observed variables
and possible latent factors. The network is trained by tak-
ing a small seed dataset of responses of participants to
questions to which the correct answers are known. How-
ever, as opposed to the gold-set approach, we only use the
seed dataset to train the aggregator network. Once the
network is trained, we evaluate its ability to aggregate re-
sponses on a completely separate dataset, of both partici-
pants and questions the aggregator has not encountered in
the past. Our training procedure involves using the small
seed dataset to synthetically create a large training dataset,
reflecting certain desiderata for aggregator functions.

We empirically evaluate our approach on a dataset of re-
sponses to a standard IQ questionnaire, and show it has a
superior performance over existing methods. We examine
the relation between the quantity of data available to our
aggregator and its performance. Finally, we explore ways
in which the network can infer not only the correct answers
but also who the strong annotators are.

2 RELATED WORK

Earlier work in machine learning and artificial intelligence
examined methods for merging the opinions of multiple
people or agents, covering various aspects such as predic-
tion markets [12] for predicting a future random event, ag-
gregation of information in semantic web platforms [9], hy-
brid probabilistic relational frameworks [7] which combine
logic based representations and probabilistic inference, and
information aggregation in peer assessment systems [13].

A domain of particular interest is collective decision mak-
ing and voting over candidate alternatives. Social choice
theory focused on a set of rational agents, each of which
has a preference order over the same set of candidates,
and examined voting schemes which aggregate these pref-
erences into a single aggregate decision [20] (such as who
is the chosen candidate who wins the elections). Social
choice theory shows how voting mechanisms allow reach-
ing good group decisions [11], but has also uncovered ways

in which voting rules are susceptible to manipulations by
voters, who may lie about their true preferences so that the
voting rule chooses an alternative their prefer [8]. We as-
sume that the participants’ responses reflect their true opin-
ion and focus on the inference problem.

Our work focuses on aggregating crowdsourced opinions.
A recent survey examines the implications of label noise in
classification [6], and discusses label noise cleaning meth-
ods. One approach proposed for this problem is using
EM [24], and another approach relies on modeling task dif-
ficulty [17]. Further, some algebraic bounds were provided
for the binary rating case [4]. Other aggregation methods
rely on probabilistic graphical models [23, 14, 18] includ-
ing the state-of-the-art method of Bachrach et al. [2] (our
empirical analysis shows we outperform this method).

3 PRELIMINARIES

We consider a set Q of |Q| = q multiple choice questions,
where each question has several possible answers. For sim-
plicity, we denote the possible answers for each question
as [a] = {1, 2, 3, . . . , a}. For each question j ∈ Q, there
is exactly one correct answer gj ∈ [a] and we denote the
set of correct answers to all the questions as the vector
g = (g1, g2, . . . , gq) ∈ [a]q . The questions are posed to
a set P of |P | = p participants. Each participant i ∈ P se-
lects a response to each question j, reflecting which of the a
possible answers they believe to be the correct one. We de-
note the response of participant i ∈ P to question j ∈ Q as
ri,j ∈ [a]. We collect the responses of all participants to all
questions in a response matrix M ∈ Mp×q (where Mp×q
denotes the set of all matrices with p rows and q columns)
as follows: the element in the i’th row and j’th column in
the matrix is the response of participant i ∈ P to question
j ∈ Q (i.e. Mi,j = ri,j ∈ [a]). Thus, each row in M repre-
sents a single participant’s responses to each question and
similarly, each column in M encodes the responses given
by all the participants to a particular question.

Our goal is to use the response matrix M to uncover the
correct answers g. This can be achieved if the responses
of the participants to a question are correlated with the cor-
rect answer, though we do not make any specific model
assumptions regarding the nature of this correlation. An
aggregator is a function f : Mp×q → [a]q that takes a re-
sponse matrix, produced by a set of participants for a set
of questions, and outputs a proposed vector of correct an-
swers – one for each of the considered questions. Given an
input matrix M ∈ Mp×q and the vector of correct answers
g = (g1, . . . , gq) ∈ [a]q for the considered q questions, we
can measure the performance of the aggregator as the pro-
portion of questions for which the inferred answers match
the correct answers: |Qc|

q whereQc denotes the set of ques-
tions for which the aggregator infers the correct responses
Qc = {j ∈ Q|f(M)j = gj}.
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3.1 Desiderata for Aggreators

We now describe several properties of aggregator functions
that intuitively characterize minimal requirements we ex-
pect fair aggregators to fulfill.

3.1.1 Participant ordering invariance

First, we have no a priori knowledge about the relative abil-
ity of the participants. In other words, the order of the par-
ticipants whose opinions we aggregate is arbitrary, thus we
expect a good aggregator to show no prejudice in favour or
against a participant based on their position in the response
matrix. We denote by Mr(x↔y) the matrix M where the
rows x and y are swapped,

M
r(x↔y)
i,j =





My,j , i = x

Mx,j , i = y

Mi,j , otherwise

(1)

We say an aggregator f : Mp×q → [a]q is participant lo-
cation indifferent if for any response matrix M and x, y we
have f(Mr(x↔y)) = f(M).

3.1.2 Question ordering invariance

Similarly, we may not attribute special meaning to the or-
der in which the questions were posed to the participants.
In other words, the choice of a specific column in the re-
sponse matrix, where a certain question is placed reflects
no knowledge we have regarding the question. We denote
by M c(x↔y)

i,j the matrix M with columns x and y swapped:

M
c(x↔y)
i,j =





Mi,y, j = x

Mi,x, j = y

Mi,j , otherwise

(2)

Given a vector g ∈ [a]q (representing either the true correct
answers or a suggestion made by an aggregator regarding
the correct answers), we denote by gx↔y the vector with
the coordinates x and y swapped. We say an aggregator
f : Mp×q → [a]q is question location indifferent if by
swapping the order of two questions x, y, we obtain the
same aggregated result, except the output differs in the or-
der of answers, for the swapped questions, i.e. the required
property is: ∀M,x, y : f(M c(x↔y)) = (f(M))x↔y .

3.1.3 Answer ordering invariance

Finally, we consider assigning meaning to the identities of
the possible answers. The identities of answers are the set
[a] = 1, 2, . . . , a. In some cases, these identities reflect no
knowledge we posses regarding the dataset. For instance,
in an IQ questionnaire such as the one our empirical evalu-
ation is based on. The unique correct answer has an equal
probability of being placed in any location in the answer

set. In contrast, in other datasets, the order in which the
answers are shown is not arbitrary. For instance, consider
the case of relevance judgement queries, where users are
shown the current results of a search engine for a given
query and are asked which is the most relevant. The search
engine ranks results from best to worst, so if it is function-
ing well, the best match should be placed in the first place
(or at least in one of the first few places). In this case, un-
less answers are deliberately shuffled, the correct response
is far more likely to be one of the first responses than one
of the last responses.

If we know the identities of answers are chosen arbitrar-
ily, we may want to reflect this invariance. We denote
by Πa the set of all possible permutations over the set [a]
(i.e. any π ∈ Πa is a bijection π : [a] → [a]). Con-
sider a given πj ∈ Πa, and the column vector rT:,j =

(r1,j , r2,j , . . . , rp,j)
T of given responses by p participants

to a certain question j. We denote by (rπ:,j)
T the col-

umn vector consisting of the answers by the p partici-
pants where the answer identities are shuffled through π,
so π(r:,j)

T = (π(r1,j), π(r2,j), . . . , π(rp,j))
T . Given a

response matrix M ∈ Mp×q , we consider the case of per-
muting the answer identities for each question. Given a set
of permutations h = (π1, π2, . . . , πq) (where πj ∈ Πa),
we consider shuffling the responses with these permuta-
tions for each of the questions. We denote by Mh the ma-
trix where the responses of the participants where shuffled
through the appropriate permutation, i.e. the j’th column
of Mh is πj(r:,j). Similarly, given a vector v ∈ [a]q and
a permutation sequence h = (π1, π2, . . . , πq), we denote
the vector where each element was shuffled by the respec-
tive permutation as h(v) = (π1(v1), π2(v2), . . . , πq(vq)).
We say an aggregator is answer identity indifferent if for
any response matrix M and h = (π1, π2, . . . , πp) we have
(f ◦ h)(M) = (h ◦ f)(M).

4 DeepAgg - TRAINING A NEURAL
NETWORK AS AN AGGREGATOR

Our goal is to train a neural network as an aggregator
fn : Mp×q → [a]q , following the desiderata of Section 3.1.
We thus aim to generate an aggragtor that is participant lo-
cation indifferent, question location indifferent and answer
identity indifferent. This is a supervised learning problem,
where the input is a response matrix M ∈ Mp×q and the
desired output is the set of correct answers.

4.1 Constructing a Synthetic Training Set

The desired aggregator function is a complex mapping,
so training a neural network requires a large training set.
Given an infinite supply of participants and questions
(along with their correct answers), we could repeatedly
source q questions and p participants from the infinite sup-
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ply source, pose the questions to the participants, collect
the answers and thus obtain a large training set. However,
in real-world settings we have a very limited supply of par-
ticipants and questions.

Our solution relies on synthetic data generation through
subsampling. We first take an original dataset, consisting
of the responses of p′ > p participants to a set of q′ > q
questions. We then select q questions at random from the
q′ available questions, and p participants of the p′ available
participants, and use only their responses. A single choice
of q questions, Iq ∈ C(q′, q) 3, and p participants, Ip ∈
C(p′, p), results in a subsampled input matrix MIp,Iq ∈
Mp×q . We repeat this process many times to generate a
training dataset D = {(MIp,Iq , gIq )}Iq∈C(q′,q),Ip∈C(p′,p)

where gIq denoted the correct responses for the subset of
questions Iq . In total we will have

(
q′

q

)
·
(
p′

p

)
choices of

training instances. This augmented dataset enables us to
transform a moderately small original dataset into one con-
taining enough sub-sampled training examples to success-
fully train a neural net.

4.2 Adhering to Desiderata

Training a neural network involves optimizing the net-
work’s weight parameters based on the training set. The
network could thus overfit the parameters to various prop-
erties of the training set that fail to generalize to the test set.
For instance, if one answer is more common then others in
the training set, a trained network might reflect this and se-
lect weights leading to this answer being chosen more of-
ten than others. When such trends are specific to the train-
ing data and do not occur on the test set, this overfitting is
likely to lead to reduced performance. The Desiderata in
Section 3.1 reflect assumptions regarding how the data was
generated and the expected behavior of a good aggregator.
Adhering to these properties avoids certain forms of over-
fitting. How should we design and train a neural network
so it would achieve these properties and avoid overfitting?

One possibility is relying on the synthetic data genera-
tion process, and applying various synthetic dataset per-
turbations. Note that out of the three invariance proper-
ties identified in Section 3.1, the constructed dataset D
encodes the first two. Thus in order to enforced the third
invariance, we can permute the answer identities for each
question in every subsampled data, by taking a set of ran-
dom answer identity permutations h = (π1, π2, . . . , πq)
(where πj ∈ Πa), and shuffling the responses with these
permutations for each of the questions. During the syn-
thetic dataset construction, we generate a subsampled ma-
trix (MIp,Iq , gIq ) ∈ D. Now we can expand this dataset by
shuffling the answer identities via a random permutation h:

3We denote by C(n, k) the set of k-combinations that can be
form using n elements

(h◦(MIp,Iq , gIq )) = (h◦(MIp,Iq ), h◦(gIq )). 4 As the an-
swers identities are randomly shuffled, even if one answer
identity is more frequently the correct answer in the origi-
nal dataset, in the synthetic dataset any answer has an equal
probability of being the correct answer. Hence, training on
the synthetic dataset should result in an answer identity in-
different aggregator. Thus we get a large training dataset
D = {(h ◦ (MIp,Iq , gIq ))|h ∼ Πq

a, (MIp,Iq , gIq ) ∈ D}.
An alternative approach to synthetic dataset perturbations
is relying on the chosen features to achieve the desider-
ata: we simply create features that abstract away the irrel-
evant information. Under this approach we first construct
the synthetic dataset D. We then take a training instance
(MIp,Iq , gIq ) ∈ D, construct features representing this in-
stance, denoted as φ(MIp,Iq ). Rather than training a neural
network on the “raw” input M ∈ D, we train it on the fea-
ture representation, φ(M). Although any neural network
must receive some representation of the training instance
in some form, we will construct the feature representation
in a way that eliminates information about participant lo-
cations, question locations or answer identities. More for-
mally, we say a feature representation φ is participant lo-
cation indifferent if changing the location of a participant
in the matrix has no influence on the generated representa-
tion, so φ(Mr(x↔y)) = φ(M) (for any M ∈ D;x, y ∈
Ip). Similarly, we say a feature representation is ques-
tion location indifferent if φ(M c(x↔y)) = φ(M),∀M ∈
D;x, y ∈ Iq , and say that it is answer identity indifferent
if φ(h ◦M) = φ(M),∀M ∈ D,h = (π1, π2, . . . , πp). 5

4.3 An Overview of Our Approach

Our approach is indeed based on choosing a feature repre-
sentation that adheres to our desiderata. Earlier work shows
that while stronger aggregators do exist, majority vote is al-
ready powerful in aggregating crowdsourced responses [2].
Our architecture thus begins by using the majority vote rule
to determine an initial answer sheet, and constructing fea-
tures that describe participants and questions based on this
initial chosen answer set; we then gradually refine this an-
swer sheet, using two building blocks.

The first block is a neural network that predicts the prob-
ability that a participant would respond correctly to a spe-
cific question. We refer to these probabilities as “success
probabilities”. The input to the block is a proposed an-
swer sheet, reflecting the “best guess” of the correct an-
swer for each question. Given this answer sheet, the block
constructs our feature representation of the participants and

4See the definitions of these operators in Section 3.1.
5These properties of a feature representation are similar to

those of an aggregator function, except in the case of a feature
representation we refer to an encoding of the important bits of
the input matrix that allow determining how to best aggregate the
data, rather than to the end result consisting of the chosen answer
for each question.
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questions, and applies the neural network to compute the
success probabilities.

The second building block focuses on a single question,
and receives as input these success probabilities of the
participants as well as the answer chosen by each par-
ticipant, and outputs the chosen answer for the question.
We propose two alternatives for constructing the second
block, which both work by computing the total support for
each possible answer, then outputting the answer with the
strongest support. One alternative is using a neural net-
work, and the other is a deterministic formula that weighs
the success probabilities using a simplistic probabilistic
model of the behavior of participants. 6

Combining the two building blocks, we obtain a method
for refining an answer sheet. The first block takes the cur-
rent answer sheet and the responses of the participants, and
computes the success probabilities; the second block uses
these success probabilities to output an improved answer
sheet. We call the application of the two building blocks
a refinement step. We initialize the system with an answer
sheet computed by majority vote, and perform multiple re-
finement steps to generate our final answer sheet. 7

We now describe the features used to represent the partici-
pants and questions, then describe the building blocks and
the overall network architecture in more detail.

4.4 Feature Representation of the Input

Consider an input matrix M ∈ Mp×q consisting of the
responses of p participants to a set of q questions, and a
proposed set of answers to these questions g′ ∈ [a]n. An
element g′i can be thought of as the current best guess for
the answer to question i (our algorithms initialize g′i as the
majority vote to question i in the subsampled matrix). We
refer to the vector g′ of proposed responses as an answer
sheet. A rough estimate for the success or ability of a par-
ticipant i is the proportion of questions to which they re-
sponded correctly, assuming that the answer sheet g′ is in-
deed correct: ai =

|{j∈[q]|Mi,j=g
′
j}|

q . Similarly, a rough
estimate for a difficulty of a question is the proportion of
students who failed to provide the correct response to it:
dj = 1 − |{i∈[s]|Mi,j=g

′
j}|

s . Clearly, the quality of the fea-
tures ai (for a participant i) and dj (for a question j) depend
on the answer sheet g′: the higher the quality of g′, the less
noisy these features are.

The above features allow predicting whether a participant is
likely to correctly answer a question, and can also be used

6In the empirical analysis in Section 5 we show both perform
well on our dataset (with no significant performance difference
between the two).

7If a refinement step does not change the answer sheet, we
have reached a fixed point of the refinement function, and can
terminate the process early.

to rank participants based on their ability or questions by
their difficulty. Consider sorting the questions by their es-
timated difficulty, dj , and partitioning this set into k parts,
D1, . . . , Dk by the estimated difficulty. For example, for
k = 2 we partition the questions into two parts by es-
timated difficulty:the easiest half of the questions are D1

(with the lower difficulty estimate dj), and the hardest half
of the questions areD2 (with the highest difficulty estimate
dj). We can estimate the ability of a participant using only
the questions in one part of the partition. For instance, for
k = 2 the performance of participant i on the easiest ques-
tions D1 is a1i =

|{j∈D1|Mi,j=g
′
j}|

|D1| , and their performance

on the hardest questions is a2i =
|{j∈D2|Mi,j=g

′
j}|

|D2| . More
generally, we choose a number of parts (the “width” k), and
denote ati =

|{j∈Dt|Mi,j=g
′
j}|

|Dt| (where t ∈ {1, 2, . . . , k},
and |Dt| = q

k , assuming that k divides q).

Consider partitioning the questions into two parts, the easy
questions D1 and hard questions D2 (with difficulty esti-
mated using the current answer sheet g′). We’d expect a
student i to do better on the easy questions than on the hard
questions, so a1i is higher and a2i is lower. If we have a
student where a1i is lower than a2i , we might infer that their
success on the harder questions is due to luck rather than
skill (and predict him to be less successful than a student v
of identical average skill but where a1v is higher than a2v).
Thus a1i , . . . , a

k
i can serve as additional features providing

further useful information, beyond just the average skill.

Similarly to partitioning the questions by their difficulty to
build a more fine-grained representation of students, we can
partition the students by ability to generate a better rep-
resentation for questions. We sort the students by their
estimated ability, ai, and partition this set into k′ parts,
E1, . . . , E

′
k. We estimate the difficulty of a question using

only the students in one part of the partition (e.g. the diffi-
culty of a question for the strong and weak students). We
denote dtj = 1− |{i∈Et|Mi,j=g

′
j}|

|Et| (where t ∈ {1, 2, . . . , k′},
and |Et| = s

k′ , assuming that k′ divides s).

The goal of our first building block is to take an in-
put subsampled matrix M and a proposed answer sheet
g′ and determine the probability of a student i to cor-
rectly answer question j. We represent the students
and questions using the above features: φi,j(M) =

(ai, a
1
i , . . . , a

k
i , dj , d

1
j , . . . , d

k′
j ) (where the features are

computed using g′ as the answer sheet). We note that the
representation φ is answer identity indifferent, participant
location indifferent and question location indifferent.

4.5 Predicting Whether a Participant Will Answer a
Question Correctly

We use a neural network which takes a representation of a
single user and a single questions, and predicts the prob-
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ability that the user would correctly answer the question.
The input to the network is φi,j(M) (where i ∈ [p] and
j ∈ [q]), as defined in Section 4.4. We have used the di-
mensions k = k′ = 3, so both a user and a question are
represented as 4 real numbers, meaning each input is a vec-
tor φi,j(M) ∈ R8. Our network consists of three fully con-
nected layers, each performing a linear transformation then
a tanh operation. The first linear transformation maps the
input to a hidden layer with a hidden state of size h = 10
neurons, and the following layers maintain this hidden state
size. Following these layers, our network linearly maps the
final layer into a single neuron.

Given a single subsampled matrix M and given the correct
answer sheet g (consisting of the known correct answers
to the subsampled questions), we use yi,j as an indicator
variable denoting whether the participant i answered ques-
tion j correctly, so yi,j = 1 if Mi,j = gj and yi,j = 0
otherwise. 8 Each subsampled matrix results in p · q rep-
resentations for participant-question pairs, φi,j(M), and in
p · q indicator variables yi,j . Applying the network on all
the representations of participant-question pairs, we obtain
p · q activations of the final layer, denoted as ŷi,j . We use
the cross entropy loss:

L =

p∑

i=1

q∑

j=1

[yi,j log ŷi,j + (1− ŷi,j) log(1− ŷi,j)]

We train the network by randomly subsampling n =
10, 000 matrices along with the correct responses to the
questions. Once the network is trained, it can receive a
representation φi,j of a participant i and a question j, and
its output ŷi,j can be interpreted as the probability that the
participant would answer the question correctly. Figure 1
illustrates the structure of this neural network.

4.6 Computing Support for a Given Answer

The second building block in our approach considers a sin-
gle question and the responses of p participants to that
question. The goal of the block is to provide a score for
each answer, such that the correct answer would receive
the highest score. We refer to this as computing the aggre-
gate support in favor of an answer. The output of the block
is thus a vector of scores s = (s1, s2, . . . , sa) where st is
the score of answer t. We propose two alternatives for the
construction of this building block.

The first alternative we propose is a neural network. Given
the probability of a participant i to correctly answer the

8Note that while training the network we use the ground truth
correct answers. However, once the neural network is trained, it
does not require this information, and can be used for any dataset.
In our empirical analysis we train the network using one dataset,
and use it on a completely separate dataset (both participants and
questions that were not shown during training).

𝑦𝑖,𝑗

𝑔𝑗
′ − 𝑎𝑛𝑠𝑤𝑒𝑟 𝑠ℎ𝑒𝑒𝑡

𝑀𝑖.𝑗

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

𝜙(𝑀, 𝑔)

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟𝑠

𝑦:,𝑗

Figure 1: Visualization of the first building block: pre-
dicting success probabilities yi.j , given a response matrix
M ∈ D and current answer sheet g′ = (g′1, · · · , g′q)

question, denoted bi for brevity 9 and the responses of each
participant to the question, denoted mi = ri,j for the ques-
tion j, we construct a a × p matrix U representing a prob-
ability distribution over the a possible answers.

Ui,k =

{
bi, k = mi (participant’s chosen answer)
1−bi
a−1 , otherwise

(3)
This is an alternative to a “one-hot” encoding of {bi}i=1:p,
reflecting the probability of a participant to choose each
answer, assuming that the correct answer is indeed the one
they chose, and that each incorrect answer is equally likely
(the remaining mass 1− bi spread evenly across them).

The input to the network are the rows in matrix U =
(uT1 , · · · , uTa ) – one for each possible answer. As the iden-
tity of each answer does not matter, we train a function
f that takes a answer probability vector u and produces a
score, s, for this answer vector. To learn the function we
use a network of 3 fully connected layers, each consisting
of a linear transformation followed by a tanh non-linearity,
and a hidden size of h = 15, followed by another linear
layer mapping the h neurons to a score s. We use the same
mapping f to produce scores for all a possible answers,
leading to (s1, . . . , sa) = (f(u1), . . . , f(ua)).

Each subsampled matrix used to train this network consists
of q questions, where each question has an encoding, U , of
size p·a representing the responses of the participants. Fur-
ther, each subsampled matrix is considered along the vector
of correct responses to each question (g1, . . . , gq). As we
wish to optimize the network parameters so that the correct
answer gj to question j would receive the highest score
sj , the final layer of our network is a softmax operator:

exp(si)∑a
i=1 exp(si)

, and we use the cross-entropy loss. Figure 2
illustrates the structure of this neural network.

The second alternative we propose is a deterministic scor-

9Replacing the notation ŷi,j as the question index is redundant
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Figure 2: Visualization of the second building block: pre-
dicting the answer for a particular question j. Given the
participants responses M:,j and the inferred probabilities
of participants to be right or wrong y:,j , we construct an
answer probability matrix U as described in Eq. 3. Then
for each possible answer k, we compute a score based on
the participants’ answer probabilities uk: sk = f(uk).
These scores go through a softmax operator and finally
we choose the answer with the highest probability.

ing function, based on a simple probabilistic model for the
way in which the responses are chosen by the participant.
Suppose that a priori each answer is equally likely to be
the correct answer (reflecting answer identity invariance).
Thus the correct answer is a random variableA, with a uni-
form distribution over the support {1, . . . , a}. Assume that
the probability of a participant i to choose the right answer
to the question is bi (given as the block’s input), and that if
i fails to choose the correct answer, they choose an answer
uniformly at random from the remaining a − 1 answers.
Finally, we assume that the participants are independent of
one another. The responses of the participants are thus an
observed random variable R over the support [a]p.

Consider the case where the correct answer to the question
as r ∈ [a]. Given the observed responses R, we can parti-
tion the participants into two sets: the participants who re-
sponded with the answer r as Xr (the correct participants),
and those who responded with some other answer Xo (the
incorrect participants). To obtain the observed responses
R, each of the correct participants must have chosen the
correct answer (with probability bi), and each of the incor-
rect participant must have failed to chose the correct answer
(with probability 1−bi), and then choose exactly the incor-
rect answer they chose (there are a− 1 incorrect responses
and each is equally probable). Thus, under our model, the
probability of obtaining the observed responses R is:

P (R|A = r) =
∏

f∈Xr

bf ·
∏

g∈Xo

1− bg
a− 1

(4)

The goal of the second building block is choosing the
best response for a question given the input parameters
b1, . . . , bp and the observed responses R. By Bayes’ the-

orem we have P (A|R) = P (R|A)·P (A)
P (R) . Given the ob-

served responses R and our assumed model, we seek
the most probable answer arg maxa P (A = a|R) =
P (R|A=a)·P (A=a)

P (R) . As P (R) is a normalizing constant and
as we assumed that for any a we have P (A = a) = 1

a , we
have arg maxa P (A = a|R) = arg maxa P (R|A = a).
We can thus simply apply Equation 4 to compute the score
P (R|A = r) for each possible response r ∈ [a], and return
the answer with the maximal score.

4.7 Iterative Refinement

Section 4.4 discusses how we take a subsampled ma-
trix M and a proposed answer sheet g′0, and output a
feature representation φ(M, g′) for each user and ques-
tion. Section 4.5 discusses how we take the feature rep-
resentation and apply a neural network to predict yi,j ,
the probability of each participant i to answer any ques-
tion j. We call this step cor(φ(M, g′)). Finally, sec-
tion 4.6 discusses how we take the success probabilities
y = (y1,1, y1,2, . . . , y1,q, y2,1, . . . , yp,q) and the subsam-
pled response matrix M and generate and refined answer
sheet g′ (either using a trained neural network, or through
the formula on equation 4). We call this step ref(y,M).

Our method, called DeepAgg, simply involves applying
multiple such iterations (the number of iterations is the pa-
rameter nIter). Algorithm 1 describes this process.

Data: Reponse matrix M ∈Mp×q
Result: Aggregated responses g′ ∈ [a]q

g′ ←Maj(M) // Majority vote initialization ;
for i← 1, nIter do

y ← cor(φ(M, g′)) ;
g′ ← ref(y,M) ;

end
return g’ ;

Algorithm 1: DeepAgg: Iterative Refinement

5 EMPIRICAL ANALYSIS

We empirically examine the DeepAgg method of Section 4,
and evaluate its performance against both the majority vote
aggregator and the DARE Bayesian aggregator of Bachrach
et al. [2], using the same dataset described in that paper.
This dataset consists of the responses of participants to the
Raven’s Standard Progressive Matrices (SPM) IQ test [15],
an intelligence screening test. This test is a multiple choice
questionnaire, consisting of q′ = 46 questions, each with
eight possible answers. 10 SPM is a popular intelligence

10The full test has 4 parts in increasing difficulty. We removed
the easiest questions to focus on the more interesting cases where
there is not a consensus between participants. Note that includ-
ing all questions does not alter the qualitative conclusions of this
paper.
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test, that has been used for research purposes, clinical as-
sessment and even military personnel screening [16]. The
dataset contains the responses of p′ = 746 participants,
who took the test in the 2006, in the process of establishing
the ability norms for the British market [15]. 11

To conduct our experiments, we partitioned the dataset’s
questions into two parts, Qa and Qb, each with half (23)
of the dataset’s questions (where Qa ∪ Qb = ∅). Simi-
larly, we partitioned the participants into two parts, Pa and
Pb, each with half (373) of the dataset’s participants (with
Qa∪Qb = ∅). We trained DeepAgg using subsampled data
from the responses of the participants in Pa to the ques-
tions in Qa, and evaluated the performance using subsam-
pled data from the responses of the participants in Pb to the
questions in Qb. This guarantees that the training and test-
ing are done on separate datasets: not only are the training
instances different from the test instances, effectively we
are testing the aggregator on a completely unseen dataset.

5.1 Aggregation Quality

DeepAgg aggregates the responses of multiple participants
and outputs the predicted correct answer for each ques-
tion, similarly to majority vote or the DARE aggregator
of Bachrach et al. [2]. We now compare the performance
of these approaches. Our quality metric for an aggrega-
tor is simple. Given a response matrix M i ∈ Mp×q , an
aggregator returns a vector g′i ∈ [a]q . Given the the
set of actual correct responses gi ∈ [a]q , we denote the
number of questions where the aggregator was correct as
c(g′) = |{j|g′ij = gij}|. We denote the proportion of ques-

tions that were aggregated successfully as si(g′) = ci(g′i)
q .

Figure 3 shows the quality of majority vote, DARE and our
DeepAgg, as a function of the available date. When an ag-
gregator has more available responses for each question,
we expect it to achieve a better performance as it has more
available data. The x-axis of Figure 3 shows the number
of responses per question (the number of participants in the
subsampled response matrix), and the y-axis shows the ag-
gregation quality 1

k

∑k
i=1 s

i(g′i), across k = 10, 000 runs
(each of which is a random subsampled response matrix).

Figure 3 shows that all methods achieve a better result as
more data is available, but that the returns diminish as the
number of participants increases (in agreement with the re-
sults reported in the work of Bachrach et al. [2]). For all
data regimes, DeepAgg outperforms DARE.

The plot in Figure 3 was created with DeepAgg using equa-
tion 4 as the second building block. We have also run
DeepAgg with the neural net implementation for the sec-
ond block, with an almost identical performance, indicat-
ing that both are reasonable choices for that block.

11We thank the Psychometrics Centre of the University of Cam-
bridge for making this dataset available for this research.
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Figure 3: The performance of DeepAgg and alternative ag-
gregators as a function of the size of the data

DeepAgg performs multiple iterations of improving the an-
swer sheet, as described in Algorithm 1. Figure 4 shows the
effect of the number of iterations on the quality of aggrega-
tion. The x-axis is the number of iterations (nIter in Algo-
rithm 1) and the y-axis is the average aggregation quality
1
k

∑k
i=1 s

i(g′i) across k = 10, 000 runs (with random sub-
sampled response matrices). We find that performing mul-
tiple iterations improves the quality of aggregation, but that
this improvement diminishes as the number of iterations in-
creases. One possible cause for these diminishing returns
is that if the answer sheet g′ does not change following an
iterations, we have reached a fixed point of this function,
so there is no point in performing additional iterations.
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Figure 4: The effect of the number of DeepAgg iterations
on aggregation quality

5.2 Evaluating the ability of participants

While the main stated goal of the DeepAgg aggregator is
inferring the set of correct answers g, a common use-case
in crowdsourcing settings is deciding which of the partici-
pants are good at the task and which are not.

One possible measure of the ability of a participant i given
a response matrix M and a set of correct answers g ∈ [a]q ,
is the proportion of questions which i answered correctly:
ai =

|{j∈[q]|Mi,j=gj}|
q . If we are not given the ground truth

249



set of responses, g, we could use an approximate answer
sheet g′, and use a′i =

|{j∈[q]|Mi,j=g
′
j}|

q as an approxima-
tion. Clearly, the quality of this estimator depends on how
well g′ approximates g. As DeepAgg allows inferring an
answer sheet g′ given the response matrix M , one could
thus use it as a tool for inferring the ability of participants.

Figure 5 investigates how well DeepAgg performs in infer-
ring the ability of participants. This is a density plot which
was generated by examining many data points, each de-
scribing a single random participant in a run of DeepAgg
on a random subsampled matrix. The x-axis of each point
represents the true ability of the participant, ai, and the y-
axis is the estimated ability of the participant, a′i (using an
answer sheet g′ inferred using DeepAgg). The figure shows
the density of the sampled points in each area on the chart.
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Figure 5: Using DeepAgg to infer the ability of participants

A perfect aggregator would result in a figure where points
rest on the y = x axis, and a Pearson correlation of 1. Fig-
ure 5 shows a very strong correlation between the inferred
and true ability of each participant, even with few itera-
tions. The Pearson correlation between the true ability of
a participant and the inferred ability of that participant is
r = 0.79, which is high considering the limited amount of
data available to DeepAgg. This indicates that DeepAgg is
a powerful tool not only in aggregating responses, but also
for identifying skilled and less-skilled participants.

5.3 The Need for Computing Features

A major advantage of deep learning is its ability to learn
feature representations without resorting to hand-crafted
features [3, 19]. One might ask why we have used a method
that relies on the features discussed in Section 4.4. A sim-
pler architecture could use a deep neural net which simply
operates on the input subsampled matrix M (for instance
using a “one-hot” encoding for the chosen response of each
participant on each question). We have indeed tested such
an architecture, showing the performance it achieves to
only match majority vote. A very deep network is theo-
retically capable of performing the overall computation we
have done using DeepAgg. However, as this requires a very

deep network, training the network using stochastic gradi-
ent descent (or similar variants) must search through an ex-
tremely large and complicated parameter space. The fact
that a direct architecture does not achieve the high perfor-
mance of DeepAgg indicates that the current optimization
methods are incapable of finding this solution.

The computation in DeepAgg is quite deep: we apply a 3
layer deep network twice for each iteration (each building
block is a network), so with even as few as 3 iterations this
is a 18 layer deep architecture. Further, our computation
relies on computing the desired features once in each iter-
ations. Our ability to successfully train the network stems
from the constant supervision we apply: a loss can be com-
puted after every building block using the ground truth. In
other words, once every basic building block, we apply a
loss using the ground truth answer sheet g, allowing us to
find excellent optimized parameters for each block.

6 LIMITATIONS AND CONCLUSIONS

We presented DeepAgg, an approach for aggregating
crowdsourced responses, based on a deep neural network.
Our empirical analysis shows that DeepAgg has a supe-
rior performance over the majority aggregator and a more
sophisticated Bayesian approach. Our approach has some
inherent limitations. Training the network requires taking
an initial dataset and repeatedly sub-sampling parts of it
to generate synthetic training examples. This training pro-
cedure is a computationally expensive calculation, which
yields an aggregator taking the responses of p participants
to q questions. Once the aggregator is trained, applying it
to a new training instance is has a relatively low runtime
complexity. However, if the input dimensions p or q are
changed, the training process needs to be repeated to create
a new aggregator. Further, we used a simple network archi-
tecture. A more elaborate structure could potentially im-
prove performance. Finally, our method is desigend for the
complete data case. It is difficult to adapting our method
to the case of incomplete data, where some of the partici-
pants have only answered some of the questions. 12

Several issues remain open for future research. How can
our procedure be modified to handle the case of missing
responses, where some participants may only provide re-
sponses to a subset of the questions? While it is easy to
encode this in the input to the network, this may have a
large impact of the quality of the aggregator. Second, is it
possible to extend our approach to an active learning sce-
nario, where we have control over the next question to ask
a participant? Finally, could we take an aggregator training
for certain input dimensions and convert it into an aggrega-
tor for other input sizes, without retraining a network?

12In contrast, Bayesian approaches are usually robust to miss-
ing data (for instance, in approaches based on graphical models,
these can simply be treated as unobserved random variables).
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Abstract

In reinforcement learning, policies are typically
evaluated according to the expectation of cumu-
lated rewards. Researchers in decision theory
have argued that more sophisticated decision cri-
teria can better model the preferences of a de-
cision maker. In particular, Skew-Symmetric
Bilinear (SSB) utility functions generalize von
Neumann and Morgenstern’s expected utility
(EU) theory to encompass rational decision be-
haviors that EU cannot accommodate. In this pa-
per, we adopt an SSB utility function to compare
policies in the reinforcement learning setting. We
provide a model-free SSB reinforcement learning
algorithm, SSB Q-learning, and prove its con-
vergence towards a policy that is ε-optimal ac-
cording to SSB. The proposed algorithm is an
adaptation of fictitious play [Brown, 1951] com-
bined with techniques from stochastic approxi-
mation [Borkar, 1997]. We also present some ex-
perimental results which evaluate our approach
in a variety of settings.

1 INTRODUCTION

In problems of sequential decision-making under uncer-
tainty (often represented as Markov Decision Problems—
MDPs [Puterman, 1994]), an agent has to repeatedly
choose according to her current state an action whose con-
sequences are uncertain, in order to maximize a certain cri-
terion in the long run. In most cases, the criterion chosen is
the expectation of cumulated rewards, but it is not risk sen-
sitive and fails to explain widely observed violations of ax-
ioms such as transitivity or von Neumann’s independence
axiom. One of the aims of decision theory is to provide
criteria able to account for such behaviors.

Interestingly, the Skew-Symmetric Bilinear (SSB) utility
theory [Fishburn, 1984] defines a family of decision crite-
ria able to represent risk-averse and risk-seeking behaviors,

intransitive choices and violations of the independence ax-
iom. In particular it encompasses the expected utility (EU)
model [von Neumann and Morgenstern, 1947], which is the
most popular risk sensitive criterion in decision theory. In
SSB theory a binary functional ϕ over probability distribu-
tions is given, where the sign of ϕ(p,q) gives the prefer-
ence between two distributions p and q. Furthermore, par-
ticular choices of ϕ allow decision criteria that only rely
on ordinal pieces of information such as “this trajectory is
preferred to this other trajectory” to be used. This prop-
erty is of interest for MDPs as the optimal policy can be
highly sensitive to the reward function, but specifying such
a reward function is often difficult even for an expert user.

Such preference-based approaches have received much
attention lately [Akrour et al., 2012, Furnkranz et al.,
2012, Busa-fekete et al., 2014, Wilson et al., 2012, Wirth
and Fürnkranz, 2013, Wirth and Neumann, 2015], and a
special case of SSB utility function which optimizes the
probability of yielding a preferred outcome has been inves-
tigated in various domains [Busa-fekete et al., 2014, Dudı́k
et al., 2015, Rivest and Shen, 2010]. In reinforcement
learning (RL), Busa-Fekete et al. [2014] provided a meta-
heuristic algorithm using evolutionary strategies to com-
pute a “good” policy. Designing a learning scheme for an
RL problem using an SSB utility function would therefore
enable RL problems to be solved for a large class of criteria
including “preference-based” criteria.

The possibility of intransitive preferences in SSB utility
theory could be seen as a significant barrier to its use in
automated decision making. However, the seminal work of
Gilbert et al. [2015a] shows that an SSB-optimal strategy
always exists as a mixture of policies, and furthermore, that
in a finite horizon MDP where the model is known, such
an SSB-optimal strategy can be computed using a double
oracle approach. Unfortunately, this approach suffers two
drawbacks: its time and space requirements might become
prohibitive if the optimal mixture of policies is composed
of too many policies, and it does not generalize to the case
where the model is unknown, and thus cannot be used to
derive a model-free RL algorithm.
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We remedy this by providing a new algorithm which be-
haves optimally in an MDP with an SSB utility function,
from which we derive a model-free RL algorithm in or-
der to learn an SSB-optimal policy when the model is un-
known. While the approach is still based on game-theoretic
arguments, the algorithm differs in spirit and resem-
bles an adaptation of a fictitious play algorithm [Brown,
1951] combined with Q-learning [Watkins and Dayan,
1992] using stochastic approximation techniques with two
timescales [Borkar, 2008]. Kalathil et al. [2014] recently
exploited a similar two-timescale technique in MDPs, but
in a different context; using the average expected reward
criterion with vector rewards, their goal is to learn a policy
whose vectorial value approaches a fixed set.

The paper is organized as follows. In Section 2, we give
the background elements and introduce our notations. In
Section 3, we give a game theoretic view of the resolution
of an RL problem with an SSB utility function and present
a fictitious play approach to solve it. Lastly, in Section 4,
we present some experimental results.

2 SSB MARKOV DECISION PROCESSES

We study in this paper episodic MDPs with finite state and
action spaces. An MDPM is formally defined by a tuple
(S,F ,A,P, s0) where: S is a finite collection of states;
F = {f1, f2, . . . , f|F|} ⊂ S is a finite set of final states;
A = {As|s ∈ S} is a collection of finite sets of possi-
ble actions, one for each state; P is the transition function
whereP(s′|s, a) is the probability that the state at time step
t+ 1 is s′, given that the state at time step t was s and that
the agent performed action a; s0 ∈ S \F is the initial state
in which all episodes start.1

Whereas preferences over state-action pairs are typically
modeled with numerical rewards, in our framework we as-
sume that the final states summarize the preference infor-
mation. More precisely, we assume that the decision maker
has a preference relation� over possible final states, where
f � f ′ means that ending in final state f is at least as good
as ending in f ′. Note that we do not assume � to be total
or even transitive, thus accommodating a wide variety of
preference behaviors, including those deviating from nor-
mative decision theory. A “standard” MDP (with rewards
obtained at each time step) could still be represented in our
setting with the notion of an augmented MDP [Gilbert et
al., 2015a] at the cost of introducing additional states.

We assume (as standard in RL) that S, A, s0 and F are
known, that P is unknown and that at each step the agent
knows exactly which state she occupies.

We call episode a succession of state-action pairs

1A probability distribution P0 over initial states can easily be
accommodated by using a dummy state s0 with one dummy ac-
tion whose transitions to all the other states are governed by P0.

Table 1: Probabilities for Each Gardner Die
1 2 3 4 5 6

pA 1/6 0 0 5/6 0 0
pB 0 0 5/6 0 0 1/6
pC 0 1/2 0 0 1/2 0

(s0,a0,s1,. . . ,st−1,at−1,st), starting in s0 and ending in a
final state st ∈ F . When the current episode ends, a new
episode starts in state s0. We further assume that the length
of an episode is upper-bounded by a constant Tmax ∈ N.

A policy π at horizon T indicates which action to perform
in each nonfinal state for each time step t < T . A policy is
Markovian if the action depends only on the current state
and timestep (otherwise it may depend on all state-action
pairs encoutered so far); deterministic if it prescribes ex-
actly one action, or randomized if it prescribes a probability
distribution over actions; stationary if the action prescribed
does not depend on the timestep. We write Πs for the set
of Markovian stationary deterministic policies.

Importantly, given a set Π = {π1, π2, . . .} of policies,
we define an enlarged set Π̃ of policies, that denotes the
set consisting of mixtures of policies, i.e., Π̃ = {π̃ =
(π1|α1, π

2|α2, . . .) :
∑
i αi = 1, αi ≥ 0}, where π̃ is the

mixed policy2 that randomly selects policy πi with proba-
bility αi at the beginning of each episode.

Example 1. As a running example, we consider a variant
of the classical “Gardner dice” two-player game. Each
player has three six-sided dice, written A,B,C and biased
as shown in Table 1. Players simultaneously choose a die
to throw, and whoever rolls the highest number wins.

It is easy to see that die A rolls higher than B most of the
time, so die A should be preferred to B, but B mostly beats
C, and C mostly beats A, hence the relation “more likely
to win” is cyclic. The optimal policy for this problem is to
play dice A, B and C with probabilities 3/13, 3/13 and
7/13, respectively [Gilbert et al., 2015a].

For illustrative purposes, we consider a variant where each
player makes sequential decisions: she must first choose
whether to throw die A (action aA) or not (aBC ). If she
chooses aBC , then she can choose to throw B (action aB)
or C (aC). Clearly, this does not change the probabilities
with which to throw each die in an optimal policy.

This problem can be represented as an MDP where Tmax is
2, with an initial state s0 where As0 = {aA, aBC}; a state
sBC (reached by choosing action aBC in s0); and six final
states {f1, . . . , f6} representing the numbers rolled. An ex-
ample transition probability is P(f3|sBC , aB) = 5/6, and
an example episode is (s0, aBC , sBC , aC , f5). An example
(Markovian stationary deterministic) policy is πB(s0) =
aBC , πB(sBC ) = aB .

Using similar notation for A and C, the optimal policy is

2Not to be confused with the notion of randomized policies.
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the mixed policy π̃∗=(πA|3/13,πB |3/13,πC |7/13), which
dictates that the player draws one of πA,πB ,πC at the start
of an episode, following it for the whole episode. 3

Our aim is to find an optimal (defined in the next subsec-
tion) policy. Recall that the decision maker has a preference
relation � over possible final states; we want to compare
policies by considering this preference relation. In other
words, we want to lift the preference relation � defined on
final states to a preference relation defined on policies.

2.1 COMPARING POLICIES WITH AN SSB
UTILITY FUNCTION

We assume throughout the paper that the agent’s prefer-
ences between probability distributions are described by
the SSB model as presented and axiomatized by Fish-
burn [1984]. In this model, an agent is endowed with a
binary functional ϕ over ordered pairs (f, f ′) ∈ F2 of final
states, indicating the intensity with which she prefers f to
f ′, with f � f ′ ⇔ ϕ(f, f ′) ≥ 0. Functional ϕ is assumed
to be skew-symmetric, i.e., ϕ(f, f ′) = −ϕ(f ′, f) and is
extended to the space of probability distributions over F
by bilinearity (wrt the mixture operation on distributions).
The SSB criterion for comparing p and q is then written:

ϕ(p,q) =
∑

f,f ′∈F
p(f)q(f ′)ϕ(f, f ′) (1)

where p(f) (resp. q(f ′)) denotes the probability of reach-
ing the final state f (resp. f ′) in distribution p (resp. q).
We have p � q if ϕ(p,q) > 0 (strict preference), and
p ∼ q if ϕ(p,q) = 0 (indifference).

Any policy π in an MDP induces a probability distribu-
tion pπ over final states (reached after at most Tmax time
steps); pπ is referred to as the final state distribution of π.
As comparing policies amounts to comparing their induced
distributions, we write ϕ(π, π′) for ϕ(pπ,pπ

′
) to simplify

notation and define the preference relation % over policies:

π % π′ ≡ ϕ(π, π′) ≥ 0 (2)

Example 2 (continued). The goal of beating the oppo-
nent’s roll can be expressed as ϕ(fm, fn) = 1 for m > n,
−1 for m < n, and 0 for m = n. The deterministic poli-
cies πA, πB , πC amount to rolling the corresponding die,
inducing the final state distributions pA,pB ,pC of Table 1

3Note the difference with the randomized (stationary) policy π
which draws aA with probability 3/13 in s0, and, independently
of this, draws aB (resp. aC ) with probability 3/10 (resp. 7/10) in
sBC . The expectation of reaching each final state is nonetheless
the same in π and π̃∗ (hence π is also optimal).

over final states. We have (zero entries are irrelevant):

ϕ(pA,pB)

= pA(f1)pB(f3)ϕ(f1, f3) + pA(f1)pB(f6)ϕ(f1, f6)

+ pA(f4)pB(f3)ϕ(f4, f3) + pA(f4)pB(f6)ϕ(f4, f6)

=
1

6
· 5

6
· (−1) +

1

6
· 1

6
· (−1) +

5

6
· 5

6
· 1 +

5

6
· 1

6
· (−1)

= 14/36 > 0,

showing that die A should be preferred to die B.

If we were to define ϕ by ϕ(fm, fn) = m− n, the strength
of a victory (or defeat) would be taken into account. The
policies in this case would be compared wrt the expectation
of the roll (as explained below).

The SSB model is very general, as it can take into account
choice intransitivity, which is widely observed in practice
[Fishburn, 1991]. Moreover, the SSB model can represent
different risk attitudes via an adequate choice of ϕ. For
example, it represents risk-averse behavior (in the weak
sense) if the certainty equivalent of a distribution p is less
than or equal to its expected value, where the certainty
equivalent of a distribution p is the element f such that
ϕ(p, f) = 0 (i.e., p ∼ f ). Nakamura [1989] shows how to
design risk averse and risk seeking SSB utility functions.

The SSB model also encompasses many decision criteria,
such as the expectation criterion ϕ(f, f ′) = c(f) − c(f ′)
(where c denotes a utility/cost function); the probability
threshold criterion [Yu et al., 1998] ϕ(f, f ′) = 1c(f)≥τ −
1c(f ′)≥τ , which states that p � q if

∑
c(f)≥τ p(f) >∑

c(f)≥τ q(f) for a threshold τ ∈ R; and the dominance
relation ϕ(f, f ′) = 1 (resp. 0,−1) if f � f ′ (resp. f ∼ f ′,
f ≺ f ′), which states that p � q if

∑
f�f ′ p(f)q(f ′) >∑

f ′�f p(f)q(f ′) (as in Example 2). In other words p is
preferred to q if a final state generated according to p is
more likely to be preferred to a final state generated ac-
cording to q than the converse. This is called probabilistic
dominance in the following.

Probabilistic Dominance (PD) is interesting as it only relies
on ordinal pieces of information. Its axiomatic characteri-
zation was given by Blavatskyy [2006] and it has been ex-
plored lately in various domains such as RL [Busa-fekete
et al., 2014], voting systems [Rivest and Shen, 2010] and
dueling bandits [Dudı́k et al., 2015]. In the latter work, the
authors adopt the name of von Neumann solution for the PD
optimal solution. Indeed, as will be discussed in the next
section, finding an SSB-optimal policy (and in particular,
finding an optimal policy according to PD) is equivalent to
finding a Nash equilibrium in a finite zero-sum two-player
game. Thus the existence of a von Neumann solution is
implied by von Neumann’s minimax theorem.

In standard MDPs, the optimal policy can be highly sen-
sitive to the reward function used, and yet designing a nu-
merical reward function is often cognitively difficult, even
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for an expert user. This issue is tackled in preference-
based approaches [Akrour et al., 2012, Weng and Zanut-
tini., 2013, Gilbert et al., 2015b, Weng et al., 2013, Busa-
fekete et al., 2014, Furnkranz et al., 2012, Wilson et al.,
2012, Wirth and Fürnkranz, 2013, Wirth and Neumann,
2015] by only considering ordinal pieces of information,
such as feedbacks of the type “this trajectory is prefer-
able to that one”. We can distinguish two types of ap-
proach. The first [Wirth and Fürnkranz, 2013, Wirth and
Neumann, 2015, Weng et al., 2013] aims to recover a nu-
merical reward function that explains most of the expressed
preferences of the user and can be used with classic crite-
ria. The second [Busa-fekete et al., 2014, Furnkranz et al.,
2012] deals with purely ordinal criteria, e.g., Busa-Fekete
et al. [2014] find a good policy (wrt to PD) using a meta-
heuristic algorithm based on evolutionary strategies in fi-
nite horizon continuous MDPs.
Example 3. Consider a car racing against the clock. The
driver aims to complete the race in the shortest time possi-
ble, but must find the right compromise between speed and
the risk of being eliminated; driving too fast can cause the
car to run off the track and be eliminated from the compe-
tition; the relation between the car’s speed and going off
track is stochastic (the faster, the more likely). This is eas-
ily modeled as an MDP where policies induce a distribution
over the race’s possible outcomes. The preference � over
final states is determined by two conditions: (i) race com-
pletion is always strictly preferred to an elimination, and
(ii) a trajectory completing the race in time t1 is strictly
preferred to completion in time t2 > t1.

In this model, adopting SSB with probabilistic dominance
finds the “best” policy for a driver who wants to maxi-
mize her chance of winning a race (against other drivers
facing the same MDP). In contrast, traditional approaches
would solve this problem by setting a (large) negative re-
ward relim for an elimination and a small negative reward
for each time step before completing the race, and then
maximize expectation of rewards using, for example, Q-
learning or any other classic algorithm. Different values
of relim would result in very different policies, and while it
might be possible to find a good compromise value allow-
ing for a competitive behavior, manually tuning the reward
function would be difficult in more complex scenarios.

Consequently, designing and implementing an algorithm
for solving MDPs in an RL setting with an SSB utility func-
tion also gives us a tool to compute optimal policies for a
large class of criteria, including “preference based” ones.
A first step towards the design of this algorithm is to give a
game-theoretic view of the problem.

2.2 A GAME ON POLICIES

When an MDP is fixed, Equations 1 and 2 induce a zero-
sum two-player symmetric game where the set of strate-
gies coincides with the set of possible policies. The players

i ∈ {1, 2} simultaneously choose a strategy π̃i (pure or
mixed). The resulting payoff is then given by ϕ(π̃1, π̃2).
As emphasized by Gilbert et al. [2015a], an SSB optimal
policy can be found by computing a Nash equilibrium of
this game. Indeed, Nash equilibria (π̃∗, π̃∗) are character-
ized by ∀π̃, ϕ(π̃∗, π̃) ≥ 0.

Gilbert et al. [2015a] also showed that in this game, a best
response to a strategy π̃ is given by a policy maximizing the
expectation of cumulated rewards with reward function:

Rpπ̃ (s) =

{
1>i Φpπ̃ if s = fi ∈ F
0 otherwise

where 1i is the ith canonical vector, > is the transpose op-
erator and Φ is the SSB matrix (i.e., Φi,j = ϕ(fi, fj)). Put
another way, the reward obtained when arriving in the ith

final state is given by the ith element of the vector Φpπ

(the reward is 0 for nonfinal states). Since this defines a
standard MDP, there is always a stationary, Markovian and
deterministic optimal policy (i.e., the best response to π̃).
Thus we can restrict ourselves to the finite game with Πs

as the set of pure strategies. To summarize, a Nash equilib-
rium of this game will give an SSB-optimal policy, in the
form of a mixed policy π̃∗ ∈ Π̃s.

Example 4 (continued). The game induced by our run-
ning example has pure strategies πA, πB , πC for both play-
ers, with payoff, e.g., ϕ(πA, πB) = 14/36 (Example 2).
Consider the mixed policy π̃AAB = (πA|2/3, πB |1/3);
Table 1 gives its final state distribution pπ̃AAB =
(2/18, 0, 5/18, 10/18, 0, 1/18). The value of response πA
to π̃AAB is given by

pπA · Φ · pπ̃AAB

=(
1

6
, 0, 0,

5

6
, 0, 0)>(−16

18
,−14

18
,− 9

18
,

6

18
,

16

18
,

17

18
)=

7

54

Similarly, the values of πB , πC are −7/27 and 1/18 re-
spectively, so a best response to π̃AAB is πA. The sec-
ond component of vector Φ · pπ̃AAB can be computed as
follows. We know that rolling 2 is worse than 16/18 and
better than 2/18 of the outcomes of pπ̃AAB , and ϕ(fi, fj)
is always 1 for i > j. Therefore this component is
−1 · 16/18 + 1 · 2/18 = −14/18.

In a finite zero-sum symmetric game, it is well-known that
there exists a symmetric Nash Equilibrium (NE). We aim to
compute this NE on policies characterized by payoff func-
tion ϕ (solving the game).

3 SOLVING THE GAME

Games in strategic forms can be solved by linear program-
ming [Chvátal, 1983], unfortunately, here, the game is too
large to be solved directly (we remind the reader that the
number of pure strategies of the game is equal to the num-
ber of deterministic stationary policies of the MDP, which
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is exponential in the number of states).4 If the model was
known, one could rely on the double oracle algorithm of
Gilbert et al. [2015a]. Unfortunately, that approach suffers
some drawbacks. Firstly, if the optimal mixture of policies
π̃∗ is composed of too many policies, its time and space re-
quirements might become prohibitive, as the double oracle
algorithm would have to compute and store all polices that
are in the support of π̃∗. Secondly, this approach does not
generalize to the case where the model is unknown. Thus
it can not be used to derive a model-free RL algorithm. We
therefore turn to a different approach, based on fictitious
play and on a double timescale technique.

3.1 LEARNING SETTING

In RL, one typically expects convergence to playing an
optimal policy at each step. Since in our case the op-
timal policy is mixed, this cannot be evaluated at each
time step independently. Rather, after any number n of
episodes, we consider the final state distribution, defined
as (f1|α1, . . . , f|F||α|F|), where for all i, αi is the fraction
of episodes so far in which the final state was fi.

We define the loss L(p) of a distribution over final states to
be the value of its best response against it:

L(p)
def
= ϕ(pBR,p)

where pBR is the vector of final state frequencies of a pol-
icy which maximizes the expectation of cumulated rewards
with respect to reward funtion Rp (hence a best response
to p). Since L(pπ̃

∗
) = 0 characterizes SSB-optimal poli-

cies π̃∗, it is natural to measure the quality of learning by
the decrease in loss of the final state distribution so far pn,
as n increases. Convergence to an SSB-optimal policy then
amounts to L(pn)→0 with n→∞.

Rephrasing, we expect that, considering the final states
reached from the beginning, in retrospect their frequencies
are approximately equivalent to those we would have ob-
tained had we played a mixed optimal policy from the start
(and more and more exactly as n increases). This corre-
sponds to the standard “on-line” setting of RL, in which
success is measured from the start.

3.2 FICTITIOUS PLAY

Fictitious Play is an algorithm that only needs a best re-
sponse procedure to solve a game. The algorithm main-
tains for each player her mixed policy so far π̃n, defined
as (π1|α1, . . . , π

k|αk), where for all i, αi is the fraction of
episodes so far in which the stationary, deterministic policy
πi has been played. At each time step, each player consid-
ers that π̃n perfectly represents the mixed strategy that is

4Our running example does not illustrate this combinatorial
explosion, but it clearly arises, e.g., in the “intransitive grid” and
the “race against the clock” (see Section 4).

Algorithm 1: Fictitious Play
Data: Game G, arbitrary pure strategy π0

1 while True do
2 Play πn
3 # update current mixed policy
4 π̃n+1 = (π1|α1, . . . , π

k|αk) with

5

{
αi = n · αi/(n+ 1) + 1/(n+ 1) for πi = πn
αi = n · αi/(n+ 1) for πi 6= πn

6 πn+1 = BestResponseTo(π̃n+1)

used by the adversary and plays a best response to it. The
algorithm converges to a Nash equilibrium of the game (in
the sense that L(pn) converges to 0) when the game is a
finite zero-sum game. Fictitious play is represented in Al-
gorithm 1 for a symmetric two-player zero-sum game. As
the game is symmetric, we only need to consider the mixed
policy so far, π̃n, of a player playing against herself.

Example 5 (continued). Assume the agent chooses initial
strategy π0 = πB , then after one episode/game we have
π̃1 = (πB |1). Now πA is a best response to π̃1 (Example 2),
hence π1 = πA. So the agent plays πA during the second
episode, and we get π̃2 = (πA|1/2, πB |1/2). Now it is
easy to see that πA is a best response to π̃2, so the agent
again plays πA and gets π̃3 = (πA|2/3, πB |1/3). From
Example 4 we get that πA is a best response to π̃3, and that
the loss of π̃3 is L(pπ̃3) = ϕ(πA, π̃3) = 7/54.

3.3 SSB Q-LEARNING

This subsection makes a first step towards the adaptation of
fictitious play to solve the game induced by an MDP and an
SSB utility function. Recall from Section 2.2 that the best
responses to the mixed strategy so far, π̃n, are exactly the
optimal policies in the (standard) MDP with reward func-
tionRpπ̃n . In other words, best responses can be computed
as a function of pπ̃n only. Accordingly, instead of record-
ing π̃n as such, which involves an exponential number k
of pure policies πi in the worst case, as in Algorithm 1, it
is enough to record the vector pn = pπ̃n . Then we can
rewrite Lines 4–6 of Algorithm 1 as:

pn+1 =n · pn/(n+ 1) + pπn/(n+ 1)

πn+1 =BestResponseTo(pn+1)

However, in practice, when policy πn is played, one ob-
serves only one drawing from pπn , and not the distribu-
tion itself. Hence our first adaptation of fictitious play is as
given in Algorithm 2. Note that we do not know the model
of the MDP, so we use BestResponseTo as an oracle. We
find a better solution later in this section.

Example 6 (continued). Let π0 = πB again. Hence the
agent plays πB during one complete episode. If the die rolls
3, we get p1 = (f3|1). Then the best response is computed
as one to a strategy which always yields f3, and we get
π1 = πA. The agent therefore plays πA during one episode,
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Algorithm 2: Approximate Fictitious Play
Data: MDPM, SSB function ϕ, arbitrary policy π0 ∈ Πs

1 while True do
2 Play πn for one episode
3 fi = final state reached
4 pn+1 = n · pn/(n+ 1) + 1i/(n+ 1)
5 πn+1 = BestResponseTo(pn+1)

and if the die rolls 4, we get p2 =(f3|1/2, f4|1/2), to which
a best response is π2 = πA. If the die then rolls 1, we
get p3 = (f1|1/3, f3|1/3, f4|1/3). In this case the best
response is πA, just as in Example 4, but note that it has
an estimated value pA · Φ · p3 = 5/6 · 2/3 − 1/6 · 2/3 =
4/9, instead of ϕ(πA, π̃AAB )=7/54 if pπ̃AAB were directly
observed.

The following theorem proves that observing only realiza-
tions of pπn does not prevent the convergence of (pn)n∈N
to the distribution of an SSB-optimal policy.

Theorem 1. In Algorithm 2, L(pn) tends to 0 as n→∞.

Proof. Assume an optimal policy πn with respect to Rpn

is played during the (n+1)-th episode. At the end of the
episode, a final state fi is reached and pn+1 is defined by:

pn+1 =
n · pn
n+ 1

+
1i

n+ 1
= pn +

1

n+ 1
(1i − pn)

We rewrite this equation in the following way :

pn+1 = pn +
1

n+ 1
(pπn − pn +Mn+1) (3)

where Mn+1 = 1i − pπn is a square integrable martin-
gale difference sequence. Equation 3 is a standard single
timescale process with continuous differential inclusion:

.
p(t) ∈ {pπ − p(t) : π ∈ Π(p(t))} (4)

where Π(p) denotes the set of optimal policies with respect
to reward Rp. A similar differential inclusion can be ob-
tained for the standard fictitious play. However, here, as pn
is a distribution over final states (not over strategies) and as
only a realization of pπ is observed, we need to invoke a
stochastic approximation argument.

Indeed, the best response correspondence is upper-
semicontinuous, with closed and convex values. Hence the
existence of at least one solution p(t) through each initial
value p(0), which is Lipschitz continuous and defined for
all positive times, is guaranteed [Hofbauer, 1995]. Let p(t)
be a solution of inclusion 4 and ζ(t)=p(t)+

.
p(t)=pπ for

a best response π ∈ Π(p(t)). By definition of L, we have
L(p(t))=ϕ(ζ(t),p(t)), and by the envelope theorem:

d

dt
L(p(t)) =

∂ϕ(ζ(t),p(t))

∂ζ

.

ζ(t) +
∂ϕ(ζ(t),p(t))

∂p

.
p(t)

As ζ(t) maximizes ϕ(.,p(t)), the first term is null [Mas-
Colell et al., 1995, pp. 964–965], and by linearity:

d

dt
L(p(t)) = ϕ(ζ(t),

.
p(t))

= ϕ(p(t),
.
p(t)) + ϕ(

.
p(t),

.
p(t))

=0

= ϕ(p(t),
.
p(t)) + ϕ(p(t),p(t))

=0

= ϕ(p(t), ζ(t)) = −ϕ(ζ(t),p(t))

as Φ is skew-symmetric (hence ϕ(p(t),p(t)) =
ϕ(

.
p(t),

.
p(t)) = 0, and ϕ(p(t), ζ(t)) = −ϕ(ζ(t),p(t))).

Thus, d
dtL(p(t)) = −L(p(t)), L(p(t)) = L(p(0))e−t,

and hence L(p(t)) tends to 0 with t → ∞. Thus, the set
of final state distributions of the optimal strategies is glob-
ally attracting for the best response dynamic, which implies
the convergence of the discrete stochastic approximation
(3) [Benaı̈m et al., 2006, Properties 1, 2].

If the model was known, one could use Algorithm 2.
At each iteration of the while loop, the corresponding
MDP would be solved using dynamic or linear program-
ming to find the best response policy πn+1. Unfortu-
nately, as the model is unknown, this policy can not be
computed directly and has to be learned. The “πn+1 =
BestResponseTo(pn+1)” line should therefore be re-
placed by, say, aQ-learning phase which converges asymp-
totically to the desired policy.

Recall that an agent using Q-learning (in a standard MDP)
maintains an estimate of Q-values Q(s, a) using:

Qn+1(sn, an) = Qn(sn, an)

+ αn(sn, an)(rn+1 + max
b
{Qn(sn+1, b)} −Qn(sn, an))

after taking action an in state sn, ending up in state sn+1,
and observing the (numerical) reward rn+1, and where
αn(sn, an) is the value of the learning rate for (sn, an)
at timestep n. Note that from now on, for simplicity, we
use n to denote the number of time steps (while previously
it denoted the number of episodes). Exploitation is real-
ized by choosing an = arg maxaQn(sn, a) at state sn. Q-
learning is known to converge to an optimal policy in the
limit, provided the reward function is stationary [Watkins
and Dayan, 1992].

Hence the idea is to adapt Algorithm 2 to run Q-learning
while keeping its target reward function fixed to Rpn as
when it started, and when it has converged (to an approx-
imate best response to pn), to update pn using what has
been observed in this phase and start a new Q-learning
phase. Unfortunately, the number of learning episodes re-
quired to learn an optimal or ε-optimal policy is unknown.
Therefore, we want to avoid alternating the Q-learning
phase and the reward update phase by using a technique
from Borkar [1997] which interleaves both phases success-
fully using a two-timescale approach. In this approach, the
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following iterative equations are used concurrently:

pn+1 = pn + βn(1i − pn) when fi ∈ F is reached (5)
Qn+1(sn, an) = Qn(sn, an) + αn(sn, an)∆n+1 (6)
∆n+1 = Rpn(sn+1) + max

b
{Qn(sn+1, b)} −Qn(sn, an)

∀s, a,





∞∑
n=0

αn(s, a) =∞ and
∞∑
n=0

βn =∞

βn/αn(s, a)→ 0

∞∑
n=0

αn(s, a)2 + β2
n <∞





(7)

The intuition is thatQn evolves more quickly than pn, giv-
ing time for Qn, and hence the best response, to adapt to
changes in the target rewardRpn .

Write ηp (resp. ηs,a) for the number of times vector pn
(resp. state action-pair (s, a)) has been updated (resp. ex-
perienced). In our case, βn is 1/(ηp + 1) since Equation 5
tracks the final state distribution so far, so we can set αn to
1/(ηs,a + 1)2/3 for instance. Note that this example works
because pn is updated after at most Tmax steps, bounding
the number of updates of αn (for any (s, a)) between two
consecutive updates of βn. With these conditions, the two
recursive equations on pn and Qn form a two-timescale
stochastic approximation iteration, where pn is on a slower
timescale than Qn. The following example gives the intu-
ition behind the two time-scale technique; the convergence
proof under Condition (7) is given in Theorem 2.

Example 7. Suppose that at some point the Q-values of
aA and aBC in s0 are 0.1 and 0.2, respectively, and
that those of aB ,aC in sBC are 0.3,−0.7. Assume more-
over pn=(1/5, 0, 1/5, 1/5, 1/5, 1/5), n = 80 (with 20
episodes of length 1 and 30 of length 2, hence ηp ' 0.02)
ηs0,aBC

= 30 (αn(s0, aBC ) ' 0.1) and ηsBC ,aB = 20
(αn(sBC , aB) ' 0.13).

Hence the agent will choose aBC in s0, reach sBC and
update Q(s0, aBC ) to ' 0.2 + 0.1 · (0 + 0.3 − 0.2) =
0.21. In sBC she will choose aB and, if she rolls 3, up-
date Q(sBC , aB) to ' 0.3 + 0.13 · (13 · Φ · pn + 0 −
0.3) = 0.3 + 0.13 · (−2/5 − 0.3) ' 0.2, and pn to
(10/51, 0, 11/51, 10/51, 10/51, 10/51).

Note that Q-values have evolved significantly more than pn
(and hence than the target numerical rewardRpn ).

3.4 HANDLING EXPLORATION

In order for Q-learning to converge, one needs to ensure
that all state-action pairs are performed infinitely often.
Usually, this exploration is guaranteed through some ran-
domization, using an ε-greedy strategy, for instance. We
present in this subsection an exploration strategy called
Episodic-ε-Greedy (EG for short) that guarantees that we
converge to an ε-optimal SSB strategy using the algo-
rithm described by Equations 5 and 6. During learning, an

Algorithm 3: SSB Q-learning
Data: MDPM, SSB function ϕ

1 while True do
2 Choose an using the EG exploration strategy
3 Play an, observe sn+1, and let rn+1 = Rpn(sn+1)
4 Qn+1(sn, an) = Qn(sn, an) + αn(sn, an)(rn+1 +

maxb{Qn(sn+1, b)} −Qn(sn, an))
5 if sn+1 = fi ∈ F and exploration is off then
6 pn+1 = pn + 1

ηp+1 (1i − pn)

episode will be generated using either the current best pol-
icy (defined by the Q-values), with probability (1 − ε), or
the uniformly random policy, which we denote by πU , with
probability ε. If an episode is generated using πU (i.e., the
agent is exploring), then the update of Equation 5 is not per-
formed at the end of the episode. This guarantees that the
convergence of pn is not biased by the exploration strategy.
The final proposed algorithm is presented in Algorithm 3.

We are now ready to prove the convergence of SSB Q-
learning to an ε-optimal policy through two theorems.
Theorem 2. Under Conditions (7) with βn = 1/(ηp + 1),
in Algorithm 3, L(pn) tends to 0 almost surely as n→∞.

Proof. The idea is that pn can be viewed as quasi-static
compared to Qn. Indeed, let πn be the greedy policy given
by Qn. We can rewrite the equations as:

pn+1 = pn + αn(εn + M′n) (8)
Qn+1(sn, an) = Qn(sn, an) + αn(sn, an)(T (Qn)(sn, an)

−Qn(sn, an) + M′′n+1)

where εn= βn
αn

(pπn − pn) and M′n = βn
αn

(1i − pπn)

T (Qn)(s, a)=
∑

s′

P(s′|s, a)(Rpn(s′)+max
b
{Qn(s′, b)})

M′′n+1 =Rpn(sn+1) + max
b
{Qn(sn+1, b)}

− T (Qn)(sn, an)

Clearly εn → 0 almost surely (||pπn || and ||pn|| are
bounded). Then (pn, Qn) will converge to the internally
chain transitive invariant set of the ODE [Borkar, 2008]:

.
p(t) = 0

.

Q(t) = T (Q(t))−Q(t)

LetQ∗(pn) denote the optimal Q-value function for reward
functionRpn . ThereforeQn−Q∗(pn)→ 0 almost surely,
which entails that (pn, πn) converges to the set (p, π∗(p))
with π∗(p) a best response to p. We then rewrite (5) to:

pn+1 =pn + βn(pπ
∗(pn) − pn

+ (pπn − pπ
∗(pn)) + (1i − pπn))

As pπn − pπ
∗(pn) → 0 almost surely, the asymptotic be-

havior is the same as in Theorem 1. Thus the loss of pn
converges to 0 with n→∞.
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The result of Theorem 2 uses the fact that with the EG ex-
ploration strategy, exploration has no impact on pn. The
drawback of this strategy is that pn does not truly repre-
sent the frequencies with which each final state has been
obtained. If we let prealn represent the vector of true fre-
quencies with which each final state has been obtained,
then following theorem proves that prealn converges to the
final state frequencies of an ε- optimal SSB-policy.

Theorem 3. Under Conditions (7) with βn = 1/(ηp + 1),
when Algorithm 3 is run, prealn converges to the final state
distribution of an ε-optimal SSB-policy almost surely.

Proof. Let ε′ denote the parameter of EG exploration and
let preal = limn→∞ prealn . Then asymptotically we have

preal = (1− ε′)p∗ + ε′pπU

where p∗ is the final state distribution of an optimal SSB-
policy. Thus for any policy π:

ϕ(preal,pπ) = (1− ε′)ϕ(p∗,pπ)
≥0

+ ε′ϕ(pπU ,pπ)
≥−ϕmax

≥ −ε′ϕmax

with ϕmax = maxf,f ′ ϕ(f, f ′). Hence, with ε′ = ε/ϕmax,
Algorithm 3 converges to an ε-optimal SSB strategy.

4 PROOF OF CONCEPT

Although SSB encompasses many different criteria, we fo-
cus here on the probabilistic dominance criterion as it is
an important case for which no model-free algorithm that
is provably correct has been proposed. We plot here the
results of four experiments: “sequential Gardner dice”,
“who wants to be a millionaire”, “intransitive grid” and
“race against the clock” using the probabilistic dominance
criterion (hence values are all in [−1, 1]). For all runs,
10, 000, 000 steps were performed in the MDP, ε was set
to 0.1, and αn was set to 1/(ηs,a + 1)11/20.

Gardner Dice. We first present the results on Gardner’s
dice problem as formalized in Example 1. Figure 1(a)
shows the evolution of the frequencies (fA, fB , fC) with
which each die has been played for a representative run.
The optimal frequency vector p∗ = (3/13, 3/13, 7/13) is
shown as a green dot and the same vector biased by ex-
ploration p∗ε = (1 − ε) ∗ p∗ + ε ∗ pπU by a red dot; the
vector (fA, fB , fC) tends towards p∗ε , drawing triangles of
decreasing surface around p∗ε . Figure 1(b) presents the evo-
lution of the Q-values of the three actions, aA, aB and aC .
One can see that the best die alternates between the three
dice and that max{QA, QB , QC} tends towards 0. (The
best response is always deterministic and so must be one of
πA, πB , πC . However at convergence its value has to be 0.)

Who wants to be a millionaire. In this popular television
game show, a contestant answers 15 multiple-choice ques-
tions (with four possible answers) of increasing difficulty,

for increasingly large sums, roughly doubling the pot each
question. At each time step, the contestant may decide to
walk away with the money currently won. If she answers
incorrectly, then all winnings are lost except what has been
earned at a “guarantee point” (questions 5 and 10). The
player is allowed 3 lifelines (50:50, removing two of the
choices, ask the audience and call a friend for suggestions);
each can only be used once. We used the first model of the
Spanish 2003 version of the game presented by Perea and
Puerto [2007]. The probability of answering correctly is
a function of the question’s number and increased by the
lifelines used (if any).

Intransitive grid. In this domain we study an episodic
grid MDP containing 9 states. The agent always starts an
episode in the bottom-right corner of the grid. Three termi-
nal states, f1, f2 and f3 can be attained at the three other
corners of the grid. The agent can only go left and up. With
a probability of 0.2, the agent makes a mistake and goes in
the wrong direction. The preference relation between the
final states is the following: f1 � f2 � f3 � f1.

Race against the clock. Lastly, we discuss the domain
discussed in Example 3.5 The racing circuit is represented
by 6 physical positions {p1, . . . , p6} plus one, pel, repre-
senting elimination. A state of the MDP is a triple (p, s, t)
giving the current position p ∈ {p1, . . . , p6, pel}, the cur-
rent speed of the car s ∈ {Slow,Medium,Fast} and the
current time t ∈ N. In each state the agent can decide be-
tween 3 actions: accelerating, decelerating or keeping the
same speed. At each time step t, the probability of running
off the track is a function of st, pt and at, taking into ac-
count both the speed of the car and the difficulty of the cur-
rent part of the circuit. Finally, the time spent between two
positions decreases stochastically with the current speed.

Results. Figure 1(c)-(f) shows the evolution of L(prealn )
and L(pn) (i.e., the values of the optimal policies regard-
ing reward functions defined by Φprealn , Φpn) for each do-
main. The results are averaged over 20 runs. As expected
the value of L(pn) tends towards 0 as the number of learn-
ing steps increase. The value of L(prealn ) decreases and is
much lower than ε (= 0.1 in the experiments) on all figures.

Finally, in Table 2, we compare the “race against the clock”
results obtained by our SSB Q-learning algorithm to the re-
sults obtained by a standard Q-learning algorithm launched
with three different reward functions R1, R2 and R3. For
each reward function, a penalty of value −t is received by
the agent each time the circuit is completed in time t. For
reward function Ri, an elimination results in a penalty of
value rielem ∈ {−10,−25,−40}. For each algorithm we
give the frequency of elimination felem and the average
time Tcc of circuit completion. The final columns show the
probabilities with which the SSB Q-learning agent would

5The complete description is given as supplementary material
at hugogilbert.pythonanywhere.com.
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(a) (b) (c)

(d) (e) (f)

Figure 1: For the Gardner dice domain, (a) convergence of the policy in the space of die frequencies, (b) evolution of Q-values, (c)
evolution of loss; For (d) Who wants to be a millionnaire, (e) Intransitive grid and (f) Race against the clock, evolution of loss.

beat (P�) and at least tie with (P�) each Q-learning agent.
As expected, felem decreases and Tcc increases with the
penalty value of an elimination. For a Q-learning agent,
this penalty would have to be tuned to give the best compro-
mise. The SSB Q-learning agent does not face this problem
and the last two columns show that this agent is more likely
to produce a preferred episode.

5 Conclusion

Skew-Symmetric Bilinear (SSB) utility is a useful general
decision model that encompasses many decision criteria
(e.g., EU, threshold probability, probabilistic dominance,
etc.). We designed a model-free reinforcement learning
algorithm to compute an epsilon SSB-optimal policy and
provided experimental results.

Table 2: Comparisons of SSB Q-Learning with Three Q-
Learning Algorithms (Results Averaged Over 20 Runs).

felem Tcc P� P�
SSB Q-learning 0.41 5.29 − −

Q-learning with R1 0.48 4.34 0.37 0.64
Q-learning with R2 0.31 7.14 0.48 0.66
Q-learning with R3 0.26 9.09 0.54 0.66

Our current work can be extended in several natural ways.
For instance, it would be interesting to tackle non-episodic
problems. Another direction is to use more elaborate RL
algorithms than Q-learning for computing best responses.

Our work is currently being applied in an industrial con-
text with good results. An automated information extrac-
tion (IE) treatment chain is modelled as an MDP, and im-
proved using a reward function balancing extraction quality
and treatment time. SSB utility theory is used to formalise
qualitative preferences expressed by human operators on
the output of the treatments.
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Abstract

Accounting for different feature types across
datasets is a relatively under-studied problem in
domain adaptation. We address this heteroge-
neous adaptation setting using principles from
parallel transport and hierarchical sparse coding.
By learning generative subspaces from each do-
main, we first perform label-independent cross-
domain feature mapping using parallel transport,
and obtain a collection of paths (bridges) that
could compensate domain shifts. We encode the
information contained in these bridges into an
expanded prior, and then integrate the prior into
a hierarchical sparse coding framework to learn
a selective subset of codes representing holistic
data properties that are robust to domain change
and feature type variations. We then utilize la-
bel information on the sparse codes to perform
classification, or in the absence of labels perform
clustering, and obtain improved results on sev-
eral previously studied heterogeneous adaptation
datasets. We highlight the flexibility of our ap-
proach by accounting for multiple heterogeneous
domains in training as well as in testing, and by
considering the zero-shot domain transfer sce-
nario where there are data categories in testing
which are not seen during training. In that pro-
cess we also empirically show how existing het-
erogeneous adaptation solutions can benefit from
the findings of our study.

1 INTRODUCTION

Domain adaptation, which addresses the problem of change
in data characteristics across training (source domain) and
testing (target domain) datasets, has received substantial
attention over the last few years [Daume III and Marcu,
2006, Gopalan et al., 2015]. Its utility for visual recognition
problems has been adequately demonstrated by several ef-

forts that have utilized principles from distance transforms
[Saenko et al., 2010], max-margin methods [Duan et al.,
2009], manifolds [Gong et al., 2012], dictionary learning
[Qiu et al., 2012] among others. Many of these approaches
have addressed settings where the source domain is labeled
and the target domain is unlabeled (unsupervised adapta-
tion), when the target domain also has partial labels (semi-
supervised adaptation) and when there is more than one
domain in the source and/or target (multiple domain adap-
tation). However they assume that data, across domains,
is represented by same type of features with same dimen-
sions. This is not always possible in practice, given the
prevalence of multi-modal sensors, and there have been rel-
atively few efforts in the literature addressing the heteroge-
neous domain adaptation (HDA) setting which allows dif-
ferent feature types across domains.

One of the earliest efforts is by [Dai et al., 2008] that
proposed a translated learning framework using risk min-
imization principles to bridge data across different fea-
ture types. [Prettenhofer and Stein, 2010] utilized struc-
tural correspondence learning by identifying pivot features
that share similarities across domains. While such mod-
els have restrictions on the type of applications where they
can be deployed, [Shi et al., 2010] proposed a more generic
heterogeneous spectral mapping framework that learns an
embedding to obtain a common domain-invariant feature
subspace that optimally represents data from each domain.
Along similar lines, [Wang and Mahadevan, 2011] pro-
posed a manifold alignment approach that bridges source
and target domain manifolds through a latent space that in
addition to preserving topology of each domain, maximizes
the intra-class similarities and inter-class dis-similarities
across domains. [Kulis et al., 2011] approached this prob-
lem by learning asymmetric kernel transformations that
perform cross-domain data mapping using semantic sim-
ilarity. More recently, [Li et al., 2014] proposed a fea-
ture augmentation strategy coupled with max-margin clas-
sifiers, whose formulation resembles multiple kernel learn-
ing that in turn guarantees global optimal solution, and
[Yeh et al., 2014] studied the utility of canonical correlation
subspaces to this problem. Most of these methods either
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address the HDA problem by learning projections for each
domain onto a common latent space where certain proper-
ties are satisfied, or by learning feature mapping from one
domain onto another directly.

We take a rather different approach which, instead of learn-
ing a few complex transformations to map domains, learns
several simpler transformations that explain how data from
different domains can be bridged. In learning such trans-
formations we bring the domains to a common dimension
using simpler generative information, instead of more com-
plex objectives tied to the domain structure and data simi-
larities. What we gain by doing so is a richer ‘expanded’ set
of prior information which could be harnessed by hierar-
chical learning methodologies to perform inference. More
specifically, givenN domains, with each domain represent-
ing the data with different feature type (thus having differ-
ent dimension), we group the data from each domain into
k clusters based on their feature similarity and obtain gen-
erative subspaces corresponding to each cluster by doing
principal component analysis (PCA). We fix all subspaces
to have the same dimension p using a heuristic tied to the
amount of energy preserved in doing the dimensionality
reduction. We then perform parallel transport [Edelman
et al., 1998] between subspaces in every domain pair and
obtain several intermediate representations that describe
how data across domains can be bridged. We subsequently
project the data from each domain onto all these interme-
diate representations to obtain an expanded prior, and in-
tegrate it with hierarchical sparse coding [Jenatton et al.,
2011] to obtain compact codes on which we use label in-
formation, if any, to perform cross-domain inference. More
details are provided in Section 2. The construction of our
approach has the following benefits.

Accommodating Unlabeled Data: In many practical situ-
ations, with the widespread availability of multi-modal data
on the web, we have very few (or at times no) labeled data
and lots of unlabeled data. Our approach can readily utilize
such big unlabeled data as we rely on generative modeling
in addressing the heterogeneous domain shift. By doing so,
when the source and target domains contain the same cate-
gories/classes, our final inference can range from the clas-
sification scenario where we have labels for all categories
in source domain and the target domain may or may not
have partial labels, to the clustering scenario where both the
source and target domains are unlabeled. The label infor-
mation is utilized while training a discriminative classifier
such as support vector machines (SVM) on the learnt sparse
codes, and if no labels are available we perform clustering
on the sparse codes using methods such as k-means.

Zero-Shot Domain Transfer: We can also address the
zero-shot scenario in which there are categories in the tar-
get domain that are not present in the source domain. This
is somewhat different from the scenarios discussed above
where we at least had unlabeled data in source domain for

all target categories to support inference models. We could
handle such a zero-shot scenario as our model is generative
and therefore the learned domain shift would have pertinent
information for reasoning out new categories.

Multiple Heterogeneous Domains: Finally we can eas-
ily accommodate multiple heterogeneous domains in the
source as well as in target since we obtain the expanded
prior by doing parallel transport between each domain pair.
This does not pose a computational bottleneck as we are
eventually learning sparse codes in a hierarchical learning
setting that could handle big data.

To the best of our knowledge, our proposed approach is the
first to handle these varied aspects of the HDA problem,
and while some existing methods could handle a subset of
these in principle, we make explicit discussions on these
practically relevant requirements. We tested our approach
on existing heterogeneous adaptation datasets and obtained
good performance improvement over previous results for
diverse tasks such as object recognition, event classifica-
tion, text categorization and sentiment analysis. Detailed
experimental analysis is provided in Section 3, and con-
cluding remarks are given in Section 4.

2 APPROACH

Problem Setting: We assume there are N heteroge-
neous domains D = {Di}Ni=1, where each domain
Di = {xji , yji }ni

j=1 contains ni data samples with xji ∈ Rdi

denoting the feature vector of dimension di and yji denot-
ing the corresponding label information (if any) belonging
to one of M different categories. These domains could be
partitioned into source and target domains depending on
the problem situation. With this information, the goal of
this work is to account for heterogeneous domain shift in
inferring the labels of the unlabeled target domain data.

2.1 PRELIMINARIES

Before we proceed, we will first review relevant details
about the tools we use in our approach.

Parallel Transport: We will be working on subspaces de-
rived from the data, and we will generally have multiple
subspaces extracted from each domain. In domain adap-
tation literature, the notion of geodesic on the Grassmann
manifold has been used as a bridge to connect a pair of
subspaces [Gopalan et al., 2011]. When we need to bridge
two ‘sets’ of subspaces instead, parallel transport [Edel-
man et al., 1998] provides a way by learning multiple paths
by which subspace sets can be bridged. More specifically,
let S1 = {Si1}i and S2 = {Si2}i denote two sets of p-
dimensional subspaces in Rd corresponding to domainsD1

and D2 respectively, where each subspace say S1
1 is a point
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on the Grassmannian Gd,p. Let gA(t) denote the geodesic
with the initial direction A ∈ R(d−p)×p connecting the
means of S1 and S2, and S̄1

1 denote the tangent space rep-
resentation of S1

1 obtained using inverse exponential map-
ping computed at the mean of S1. The parallel transport of
S̄1
1 is then given as

γS̄1
1(t) = QS1

1
exp

(
t

[
0 AT

−A 0

])[
0
B

]
(1)

where exp is the matrix exponential, QS1
1
∈ SO(d) is the

orthogonal completion of S1
1 , and B ∈ R(d−p)×p is the ini-

tial direction to reach from S1
1 to the exponential map of

S̄1
1 . Similar directions can be obtained for all subspaces

in the sets S1 and S2 using the above tangent space ap-
proximation. Please refer to [Edelman et al., 1998] for
more details. We will discuss how to utilize these direc-
tions (bridges) for HDA in Section 2.2.

Hierarchical Sparse Coding: In sparse coding [Yang
et al., 2009] the goal is to represent each input vector
x ∈ Rp as a sparse linear combination of basis vectors.
Given a stacked input data matrix X ∈ Rp×n, where n is
the number of data, it seeks to minimize:

arg min
Z∈Z,C

||X − ZC||22 + λΩ(C) (2)

where Z ∈ Rp×r is the dictionary of basis vectors, Z is
the set of matrices whose columns have small `2 norm and
C ∈ Rr×n is the code matrix, λ is a regularization hyper-
parameter, and Ω is the regularizer. In hierarchical sparse
coding, such a scheme is extended in a layered fashion us-
ing a combination of coding and pooling steps and we pur-
sue the schema presented in [Jenatton et al., 2011]. Our
modification comes in the way in which the dictionary is
initialized and we present the details in Section 2.2.

While there has been an attempt in using parallel transport
for unsupervised homogeneous domain adaptation [Shri-
vastava et al., 2014], our construction vastly differs from
that work as we handle multiple heterogeneous domains
without using label information to bridge the domain shift.
Moreover, ours is the first approach to integrate parallel
transport information with hierarchical sparse coding for
adaptation problems.

2.2 PROPOSED HETEROGENEOUS
ADAPTATION ALGORITHM

Step 1: We first bring data from all N domains, D =
{Di}Ni=1, onto a common dimension d by performing PCA
on each Di and choosing the resultant subspace dimension
as the largest dimension required among all N subspaces
such that 90% of the signal energy is preserved for that de-
composition. Then we project data from each domain onto
its corresponding subspace. We now have d-dimensional
data across all domains, say X̄ = {x̄ji}i,j , where i ranges
from 1 to N and j ranges from 1 to ni.

Step 2: From each domain Di, we then derive k generative
subspaces by partitioning {x̄ji}ni

j=1 into k clusters using the
k-means algorithm based on the similarity of the d dimen-
sional features, and performing PCA on each cluster. We
ensure all the subspaces are of dimension p, by choosing p
as the largest dimension required for a subspace, amongst
all subspaces obtained by doing k-means in each of the N
domains, such that 90% of the signal energy is preserved
by that decomposition1. Thus from every domain Di we
have a set of p-dimensional subspaces in Rd denoted by
Si = {Sji }kj=1. Each subspace in this set is a point on the

Grassmann manifold, Gd,p. Let X ∈ Rp×n, n =
N∑

i=1

ni

denote the matrix containing the projections of each data in
X̄ onto its appropriate subspace in S = {Si}Ni=1. This is
our input data matrix for sparse coding.

Step 3: We then perform parallel transport between Si’s
using the method described in Section 2.1, and obtain a col-
lection of directions between each pair of (Si, Sj), i=1,..N -
1, j = i+1,..,N . We uniformly sample points along these
directions using exponential mapping, which results in new
subspaces that have information on how domain shift infor-
mation flows between domains. We project each data in X̄
onto these subspaces to get the expanded prior P ∈ Rp×r,
which we in turn use to initialize the dictionary Z.

Step 4: Finally we perform hierarchical sparse coding [Je-
natton et al., 2011] with the input data matrix X from Step
2 and the initial dictionary Z obtained from Step 3. At the
output of each layer of hierarchical sparse coding, we apply
Steps 2 and 3 obtain another set of expanded prior which
is then used to complement the dictionary of the following
layer. Let the final output (from the last layer) of hierar-
chical sparse coding corresponding to the original data X
be denoted by X̂ = {x̂ji}i,j , and their corresponding label
information (if any) is denoted as before by Y = {yji }i,j .
Note that we have not used any label information thus far.

2.3 INFERENCE

We now perform cross-domain inference using the infor-
mation contained in W = (X̂, Y ). Note that W contains
data from both source and target domains, and depending
on the dataset we may have one or more domains in the
source and target.

Classification: For the classification scenarios widely
studied in HDA, source domain contains labeled data for
all M categories, and the target domain may or may not
have partial labels, and both the source and target domains

1While this is a simple heuristic in addressing variations in
feature dimensions, we show that it works well empirically. As
stated in the introduction, our main proposal for HDA is by gen-
erating an expanded prior on how these domains interact, rather
than addressing domain shift ‘during’ the process of bringing do-
mains to a common dimension as done by most existing methods.
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have the same M categories. So we consider labeled data
present in W to train a multi-class SVM [Crammer and
Singer, 2002] with default parameters for linear kernel, and
then use the SVM similarity score to classify the unlabeled
target domain data into one of M categories. Classification
accuracy is computed as the percentage of unlabeled target
data that were correctly assigned their category label (us-
ing ground truth). Note that while we could have used the
label information in any of the previous stages, be it during
parallel transport or in sparse coding, we did not because
we would like the learned cross-domain representations X̂
to be generic to support other inference scenarios discussed
next. Nevertheless, we make some observations regarding
this later in Section 3.6.

Clustering: We also address the clustering scenario where
both source and target domain data are unlabeled, and they
have the same M categories. In this case we cluster all
the data in X̂ into M groups using k-means, and compute
the clustering accuracy using a standard method of labeling
each of the resulting clusters with the majority class label
according to the ground truth, and measuring the number
of mis-classifications made by each cluster grouping.

Zero-shot Learning: We finally account for the zero-shot
learning scenario where the target domain has some cat-
egories that are not a part of the M source domain cate-
gories. For this case, we use labels for M categories in
the source domain and (if available) in the target domain to
train the SVM as discussed for the classification scenario.
We then threshold the SVM similiarity score for the unla-
beled target data, with the hope that if such data comes out-
side of the M source categories, the similarity score will
be less. We then cluster such data using k-means to obtain
groupings, with the number of clusters set to the number of
new target categories known apriori, and evaluate the accu-
racy as discussed above for the clustering scenario. If we
do not even know the number of new target categories, then
it becomes difficult to quantify clustering accuracy.

3 EXPERIMENTS

We first discuss the classification scenario and experiment
with the setup used by [Li et al., 2014] for the problems of
heterogeneous object recognition, text categorization and
sentiment analysis. These experiments have only one do-
main each in the source and target. We then consider the
event classification experiment designed by [Chen et al.,
2013] which consists of multiple source domains and a sin-
gle target domain. We then provide a detailed analysis of
the findings from our study.

3.1 OBJECT RECOGNITION

We work with the Office dataset [Saenko et al., 2010] that
contains a total of 4106 images from 31 categories col-
lected from three sources: amazon (object images down-

Methods Source Domain
amazon webcam

[Shi et al., 2010] 42.8±2.4 42.2±2.6
[Wang and Mahadevan, 2011] 53.3±2.3 53.2±3.2
[Kulis et al., 2011] 53.1±2.4 53.0±3.2
[Li et al., 2014] 55.4±2.9 54.3±3.6
Ours 62.1±1.7 61.5±2.1

Table 1: Mean and std. deviation of classification accuracy
(%) on Object Recognition Dataset with target domain dslr.

loaded from Amazon), dslr (high-resolution images taken
from a digital SLR camera) and webcam (low-resolution
images taken from a web camera). SURF features are ex-
tracted for all the images. The images from amazon and
webcam are clustered into 800 visual words by using k-
means. After vector quantization, each image is repre-
sented as a 800 dimensional histogram feature. Similarly,
we represent each image from dslr as a 600-dimensional
histogram feature. In the experiments, dslr is used as the
target domain, while amazon and webcam are considered
as two individual source domains. For training the SVM,
we randomly select 20 labeled images per category for the
source domain amazon, and 8 labeled images per category
for webcam as source domain. For the target domain dslr, 3
labeled images are randomly selected from each category.
The remaining target domain data is used for testing. We
present results of our HDA approach in Table 1 along with
other methods studied in [Li et al., 2014].

3.2 TEXT CATEGORIZATION

We use the Reuters multilingual dataset [Amini et al., 2009]
which contains about 11K newswire articles from 6 cate-
gories in 5 languages namely, English, French, German,
Italian and Spanish. All documents are represented by us-
ing the TF-IDF feature. We perform PCA based on the
TF-IDF features from each domain with 60% energy pre-
served and thus the features for each language have the fol-
lowing dimensions respectively, 1131, 1230, 1417, 1041
and 807. We consider Spanish as the target domain in the
experiments and use each of the other four languages as in-
dividual source domains. For each category, we randomly
sample 100 labeled documents from the source domain and
either 10 or 20 labeled documents from the target domain
to train the SVM. The remaining documents in the target
domain are used as the test data. We report classification
results of our HDA approach in Table 2 along with the re-
sults of the other approaches discussed in [Li et al., 2014].

3.3 SENTIMENT ANALYSIS

We use the Cross-Lingual Sentiment (CLS) dataset [Pret-
tenhofer and Stein, 2010], which is an extended version of
the Multi-Domain Sentiment Dataset [Blitzer et al., 2007]
widely used for domain adaptation. It is collected from
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Methods Source Domain
10 labels per target class 20 labels per target class

English French German Italian English French German Italian
[Shi et al., 2010] 54.7±7.4 55.0±9.4 58.0±7.9 59.4±3.7 65.7±3.1 64.2±4.2 64.6±3.6 65.8±2.3
[Wang and Mahadevan, 2011] 65.0±2.9 66.9±2.1 67.5±2.1 68.5±2.8 72.4±2.4 72.8±2.0 72.9±2.3 73.3±2.1
[Kulis et al., 2011] 65.7±2.7 66.9±1.7 68.7±2.9 67.9±2.8 72.9±2.0 73.5±1.8 74.7±1.6 74.0±2.0
[Li et al., 2014] 68.6±2.3 69.5±1.9 69.8±2.7 69.8±2.5 75.3±1.7 75.7±1.6 76.1±1.5 75.8±1.8
Ours 73.2±1.6 73.8±1.9 74.1±2.3 74.0±1.7 83.5±2.4 84.1±1.9 83.8±2.1 84.2±1.5

Table 2: Mean and std. deviation of classification accuracy (%) on Reuters Multilingual Dataset with target domain Spanish

Methods Target Domain
German French Japanese

[Shi et al., 2010] 50.4±0.6 49.8±0.6 51.3±1.0
[Wang and Mahadevan, 2011] 64.6±1.9 65.7±1.8 64.4±1.8
[Kulis et al., 2011] 58.3±3.0 59.4±4.3 57.5±1.9
[Li et al., 2014] 66.5±2.2 66.9±2.1 64.2±2.5
Ours 71.2±2.1 71.5±1.8 70.9±1.5

Table 3: Mean and std. deviation of classification accu-
racy (%) on Cross-lingual Sentiment Dataset with source
domain English.

Amazon and contains about 800,000 reviews of three prod-
uct categories: Books, DVDs and Music, and written in
four languages: English, German, French, and Japanese.
The English reviews were sampled from the Multi-Domain
Sentiment Dataset and reviews in other languages are
crawled from Amazon. For each category and each lan-
guage, the dataset is partitioned into a training set, a test set
consisting of 2,000 reviews each. We take English as the
source domain and each of the other three languages as an
individual target domain in the experiment. We randomly
sample 500 reviews from the training set of the source do-
main and 100 reviews from the training set of the target
domain as the labeled data to train the SVM. The test set
is the official test set for each category and each language.
As with text categorization experiment, we extracted the
TF-IDF features and performed PCA with 60% energy pre-
served to result in dimensions 715, 929, 964 and 874 re-
spectively for the four languages discussed above. Results
on this dataset are presented in Table 3.

3.4 EVENT CLASSIFICATION

We then worked on the event classification dataset of
[Chen et al., 2013] that accounts for multiple heteroge-
neous source domains and a single target domain. The
events pertain to six classes namely, birthday, picnic, pa-
rade, show, sports and wedding. Three source domains
correspond to Google and Bing image search, and Youtube
video search corresponding to these events. Kodak and
CCV dataset serve as the individual target domain. The
Google and Bing domains are represented by a 4000 di-
mensional bag-of-words codebooks learnt on SIFT fea-
tures, while YouTube, Kodak and CCV datasets are repre-
sented by 6000 dimensional spatio-temporal features cor-
responding to histogram of oriented gradient, histogram of
optical flow and motion boundary histogram. By consid-

Methods Target Domain
Kodak CCV

[Bruzzone and Marconcini, 2010] 43.49 41.55
[Duan et al., 2012b] 44.21 38.56
[Duan et al., 2012a] 46.21 43.44
[Chen et al., 2013] 49.61 44.52
Ours 54.56 51.24

Table 4: Mean average precision (%) on the Event clas-
sification dataset with multiple heterogeneous source do-
mains from Google image search, Bing image search and
YouTube video search.

ering the source domains to be labeled and target domain
completely unlabeled we trained the SVM on the source
domain samples to perform separate inference on CCV and
Kodak datasets as the target domain. The cross-domain
event classification results are presented in Table 4.

3.5 DISCUSSION

Clustering and Zero-shot Learning: We see that our
HDA approach outperforms existing methods on diverse
heterogeneous classification tasks. We also performed
these experiments for the clustering scenario by not consid-
ering any labeled data from the source and target domains
using the approach discussed in Section 2.3. The perfor-
mance decreased by around 15% on average from the clas-
sification results. While this is reasonable since label infor-
mation always helps in performing class-specific inference,
it also shows that our generative heterogeneous model out-
puts X̂ contain information agnostic to domain and feature
variations and thus is relevant in grouping data categories.
We verified this by performing a baseline using k-means
after Step 1 (i.e. without the adaptation procedure) and the
results dropped further by around 18% on average.

We then considered the zero-shot learning scenario, by
considering the classification experiments and holding out
10%, 20% and 30% of the categories as being exclusive to
the target which the source domain has not seen. As per
the discussion in Section 2.3, we first thresholded the SVM
similarity scores for data from these new categories. With
the similarity score ranging from 0 (low) to 1(high), we
tried three thresholds namely 0.3, 0.2 and 0.1. Ideally these
new categories should have lower similarities since they
are not part of the trained model. On average we obtained
a 95% filtering accuracy with these thresholds, across all
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datasets discussed before, and then we grouped the filtered
data to get an accuracy of 85% on average. Note that these
results are only for the new data categories, which are much
less in number than those considered for classification sce-
nario and hence can not be compared with those results. As
a sanity check we tested the unlabeled data from the tar-
get categories that are present in the source, and observed
that their SVM similarity scores were always greater than
0.3 for all datasets. These results convey that our model
outputs are quite useful in reasoning out never seen before
categories, which is very important in practice.

Parameter Tuning: For all the results discussed thus far,
we used k = 10 clusters within each domain, and uni-
formly sampled 10 points on the parallel transport direc-
tions. We tried other values 8 and 12 for both clusters and
sampling on directions, and PCA energy of 80% and 85%
in learning the generative subspaces from the domains, and
found the results decreased at the most by 2%. We used
default parameters for other tools we have employed in the
approach. This sheds light on the robustness of our ap-
proach. It takes about 5 to 10 seconds on a single 2GHz
machine to perform inference over the range of scenarios
discussed here.

Design Choice Analysis: We now analyze the rationale
behind some choices we made in the approach. Firstly,
we tested whether hierarchical sparse coding is necessary,
or will a single layer sparse coding be sufficient. We also
tested how many layers are necessary by experimenting up
to five layers. The results reported in the paper are with
three layers, and when we used four and five layers, the re-
sults reduced by 2.5% and 3% on average, using two layers
saw average performance reduction of around 8% and us-
ing one layer saw a reduction of 17%. This suggests that
hierarchical feature learning is useful, and the results reach
a plateau around three layers for our experiments.

Then we inspect whether learning multiple bridges across
domains using parallel transport is necessary, or just a sin-
gle bridge using the geodesic will suffice. Results using
only the geodesic was inferior by around 21% which high-
lights the utility of parallel transport to the HDA problem.
We also test whether we need to do parallel transport to ob-
tain expanded prior on the outputs of each layer of hierar-
chical sparse coding, by just initializing the first layer with
the prior and doing hierarchical feature learning on it. That
resulted in a performance drop of about 12% on average.

Multiple Source and Multiple Target Domains: Our ex-
periments so far contained single source and single target
domain, or multiple source domains and single target do-
main. We now pursue multiple source domains and multi-
ple target domains on these datasets, where possible. Given
N domains, we try all possible combinations across source
and target domains. For example, if we have four domains,
we consider 1 to 3 source domains that are accompanied

by 3 to 1 target domains respectively. Our results for such
a setting improves the results discussed in Sec 3.1 to 3.4 by
at least 3% and up to 12%. This explains the utility of our
method for HDA with increasing availability of domains.

3.6 EXTENSIONS

In this section we discuss some extensions of our approach,
by relaxing certain assumptions that were made to facilitate
its generalizability to different adaptation settings.

Using Label Information In Modeling Stage: Till now
the labels were used only in the classification stage (Sec
2.3) and not in the modeling stage (Sec 2.2) as we wanted
the model to handle classification, clustering and zero-shot
learning. But in cases where say, the goal is just classifi-
cation and there are labels available for training the model,
it makes sense to use them in the model building stage it-
self. To support such a scenario, we modify our approach
(in Step 4) by performing discriminative hierarchical sparse
coding. We use the method of [Ji et al., 2011] and feed it
with data labels contained in Y . Thus, we obtain the sparse
codes output X̂ which in addition to minimizing the recon-
struction error of the data samples, also separates samples
belonging to one class from other classes. Let us call this
Case A. With this modification, the performance for clas-
sification experiments reported in Section 3.1 to 3.4 im-
proved by at least 3% and up to 15% on average.

Another way to utilize label information is in forming the
clusters within each domain (Step 2). Instead of using the
similarity of the d dimensional features to group the data
into k clusters, we group the data using their labels into M
clusters and then perform the remaining steps as outlined in
Section 2.2. So in this case the parallel transport informa-
tion will have a notion of class discrimination in traversing
the domain shift. Let us call this Case B. This resulted in an
average performance improvement of at least 1.8% and up
to 9% for the classification experiments reported in Section
3.1 to 3.4. We then used Case A and Case B together, and
this improved the results by at least 5% and up to 20% on
average.

Integrating With Other Heterogeneous Adaptation
Strategies: As mentioned in the introduction, one of the
goals of our study was to see how a large number of simple
transformations would fare against few complex transfor-
mations to handle heterogeneous domain shift, which was
the reason to map all domains to a common dimension us-
ing simpler generative information (Step 1). This strategy
was shown to be successful through detailed experiments.
Now we study how to get the best of both approaches. For
this, instead of Step 1, we use outputs from existing hetero-
geneous adaptation techniques which map different dimen-
sions onto a common one using more involved objectives
related to domain structure. We tried two such techniques,
one based on spectral mapping [Shi et al., 2010] and the
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Domain Classification accuracy (in %), mean±std. deviation
Source Target No labeled target data Few labeled target data

[Mahsa et al., 2014] [Long et al., 2014] Ours [Ni et al., 2013] [Mahsa et al., 2013] Ours
Caltech Amazon 52.3±1.1 46.76 56.3±1.1 49.5±2.6 61.8±2.5 65.3±1.2
Caltech Dslr 53.0±2.3 44.59 55.2±1.8 76.7±3.9 65.8±3.5 79.8±1.2
Amazon Caltech 44.4±1.4 39.45 49.2±1.3 27.4±2.4 47.8±1.5 51.1±0.3
Amazon Webcam 48.5±2.6 42.03 51.6±2.1 72.0±4.8 72.5±3.1 75.5±1.1
Webcam Caltech 39.3±0.5 30.19 42.8±1.8 29.7±1.9 43.6±1.2 45.5±2.8
Webcam Amazon 44.3±0.9 29.96 45.2±2.5 49.4±2.1 53.4±1.9 55.5±1.7
Dslr Amazon 39.4±1.1 32.78 44.3±1.2 48.9±3.8 56.9±1.6 57.5±1.5
Dslr Webcam 88.8±1.0 85.42 91.2±1.7 72.6±2.1 89.1±1.6 92.3±2.6

Table 5: Comparison with homogeneous adaptation methods on the Office-Caltech dataset with 10 object categories.

other based on manifold alignment [Wang and Mahadevan,
2011]. The mapped output of these techniques, where the
data from all domains {Di}Ni=1 will have the transformed
to the same dimension d, signifies X̄ which is then fed into
Step 2, and the remaining steps from Sec 2.2 and 2.3 are
followed. This resulted in a performance improvement of
at least 5% and up to 18%, and at least 4.2% and up to
16.5% while using [Shi et al., 2010] and [Wang and Ma-
hadevan, 2011] respectively, for classification, clustering,
and zero-shot learning experiments reported in Section 3.1
to 3.5. These results hold promise on the utility of our ap-
proach to existing adaptation solutions.

Heterogeneous View Of Homogeneous Adaptation: En-
couraged by these observations, we considered homoge-
neous adaptation problems that have been extensively stud-
ied in the literature [Saenko et al., 2010], which assumes
the data is represented by same features (same dimensions)
in both source and target domains. The goal of our study
here is to represent such data with many different features,
with each feature forming a separate domain, and empiri-
cally investigate whether multiple features can make adap-
tation problems easier to handle. We experiment with dif-
ferent combinations of heterogeneous features in the source
and target and at the same time making sure that the same
feature type is not used for both source and target. The re-
sults presented below are averaged over such combinations.

We first consider the Office-Caltech dataset [Gong et al.,
2012] for adaptive object recognition that contains 10 ob-
jects with four domains namely, amazon, dslr, webcam, and
Caltech. The data is represented by bag-of-words code-
books learnt from SURF features. We additionally ex-
tracted histogram of oriented gradients, local binary pat-
terns, local phase quantization, and GIST descriptors. Thus
we have five domains each in the source and target domain.
We then followed the adaptation protocol of [Gong et al.,
2012] that first considered labeled data from source domain
and no labels from target domain, and then allows few la-
beled samples from target as well. Our results are provided
in Table 5.

We then worked on adaptive face recognition and consid-
ered the following facial features, image intensities in RGB

Method Mean classification accuracy (%)
Target domain pose

15◦ 30◦ 45◦ 60◦ 75◦

[Sharma and Jacobs, 2011] 92.1 89.7 88.0 86.1 83.0
[Sharma et al., 2012] 99.7 99.2 98.6 94.9 95.4
[Yang et al., 2011] 96.8 90.6 94.4 91.4 90.5
[Shekhar et al., 2013] 98.4 98.2 98.9 99.1 98.8
Ours 99.5 99.3 99.1 99.4 98.9

Table 6: Comparison with homogeneous adaptation meth-
ods on CMU Multi-PIE dataset for face recognition across
pose and lighting variations with few labeled target data.

and HSV color spaces, edge magnitudes and gradient direc-
tion, multi-scale block LBP, self-quotient image and Ga-
bor wavelets. We first followed the protocol of [Shekhar
et al., 2013] that used the Multi-PIE dataset [Gross et al.,
2010] with images of 129 subjects in frontal pose as the
source domain, and five other off-frontal poses as the target
domain. Images under five illumination conditions across
source and target domains were used for training with
which images from remaining 15 illumination conditions
in the target domain were recognized. Face recognition ac-
curacy for this experiment is given in Table 6. We also per-
formed an experiment on the PIE dataset [Sim et al., 2002]
using the protocol of [Ni et al., 2013], where the domain
change is caused by illumination and blur. Frontal pose
faces of 34 subjects under 11 different illumination condi-
tions formed the source domain, while the unlabeled target
domain consisted of frontal images of the same subjects
under 10 other lighting conditions that were also blurred
using four kernels, a Gaussian with standard deviation of 3
and 4 and motion blur with length 9, angle 135◦ and length
11, angle 45◦. The results are provided in Table 7.

Finally we performed adaptation experiments for ac-
tion recognition on the IXMAS multi-view action dataset
[Weinland et al., 2007] that contains eleven action cate-
gories including walk, kick and throw. Each action was
performed three times by twelve actors taken from five
different views, which include four side views and one
top view. From each action video we extracted the fol-
lowing features, histograms of oriented gradients and opti-
cal flow (HOG/HOF), 3DHOG that is based on 3D gradi-
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Method Mean classification accuracy (%)
σ = 3 σ = 4 len = 9 len = 11

[Ahonen et al., 2008] 66.5 32.9 73.8 62.1
[Gopalan et al., 2011] 70.9 60.3 72.4 67.9
[Gong et al., 2012] 78.5 77.7 82.4 77.7
[Ni et al., 2013] 80.3 77.9 85.9 81.2
Ours 86.3 85.2 87.9 87.2

Table 7: Comparing homogeneous adaptation methods on
CMU PIE dataset for face recognition across blur and light-
ing variations with no labeled target data. σ: std. deviation
of the Gaussian blur, and len: length of linear motion blur.

ent orientations, and extended SURF descriptor for videos.
The experiment was to recognize actions with the source
and target domain pertaining to different views, thereby
making 20 source-target combinations. The average cross-
view recognition accuracy results for all these view combi-
nations are given in Table 8. The correspondence mode
contains matched instances across source and target do-
mains, partial labels mode having fewer target labels and
the non-discriminative virtual views (NDVV) comprising
of partially-labeled and unlabeled target data, as studied in
[Li and Zickler, 2012].

All these results show our method outperforming other
homogeneous adaptation approaches, which suggests that
such approaches could, in some form, benefit by expanding
the type of features used to represent the data. The features
we have used are only somewhat representative of the vast
literature and more of them can be used with our approach.

4 CONCLUSION

We have approached the problem of bridging heteroge-
neous domains by learning a large set of intermediate repre-
sentations, born out of simpler generative information, and
integrated them with hierarchical feature learning mech-
anisms to perform inference pertaining to classification,
clustering and zero-shot learning. We demonstrated supe-
rior empirical performance over existing methods on a wide
range of problems involving different data modalities such
as images, videos and natural language. We also discussed
the utility of our design choices, and the robustness of the
approach in dealing with multiple domains, feature types,
unlabeled data and new unseen data categories. While our
approach offers an alternative to many existing heteroge-
neous solutions that address domain shift through a latent
space modeling, it also opens up opportunities for har-
nessing the benefits of the two strategies, which we high-
lighted through some initial studies. Such a mechanism
could eventually pave way for establishing error bounds on
the nature of heterogeneous shifts an approach can handle,
within a reasonable set of domain shift assumptions reflect-
ing practical data acquisition constraints.
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Abstract

Margin-based structured prediction commonly
uses a maximum loss over all possible structured
outputs (Altun & Hofmann, 2003; Collins, 2004;
Taskar et al., 2003). In natural language pro-
cessing, recent work (Zhang et al., 2014; Zhang
et al., 2015) has proposed the use of the maxi-
mum loss over random structured outputs sam-
pled independently from some proposal distribu-
tion. This method is linear-time in the number
of random structured outputs and trivially par-
allelizable. We study this family of loss func-
tions in the PAC-Bayes framework under Gaus-
sian perturbations (McAllester, 2007). Under
some technical conditions and up to statistical
accuracy, we show that this family of loss func-
tions produces a tighter upper bound of the Gibbs
decoder distortion than commonly used meth-
ods. Thus, using the maximum loss over random
structured outputs is a principled way of learn-
ing the parameter of structured prediction mod-
els. Besides explaining the experimental success
of (Zhang et al., 2014; Zhang et al., 2015), our
theoretical results show that more general tech-
niques are possible.

1 INTRODUCTION

Structured prediction has been shown to be useful in
many diverse domains. Application areas include natu-
ral language processing (e.g., named entity recognition,
part-of-speech tagging, dependency parsing), computer vi-
sion (e.g., image segmentation, multiple object tracking),
speech (e.g., text-to-speech mapping) and computational
biology (e.g., protein structure prediction).

In dependency parsing, for instance, the observed input is
a sentence and the desired structured output is a parse tree
for the given sentence.

In general, structured prediction can be viewed as a kind of
decoding. A decoder is a machine for predicting the struc-
tured output y given the observed input x. Such a decoder,
depends on a parameter w. Given a fixed w, the task per-
formed by the decoder is called inference. In this paper, we
focus on the problem of learning the parameter w. Next,
we introduce the problem and our main contributions.

We assume a distribution D on pairs (x, y) where x ∈ X is
the observed input and y ∈ Y is the latent structured output,
i.e., (x, y) ∼ D. We also assume that we have a training set
S of n i.i.d. samples drawn from the distribution D, i.e.,
S ∼ Dn, and thus |S| = n.

We let Y(x) �= ∅ denote the countable set of feasible de-
codings of x. In general, |Y(x)| is exponential with respect
to the input size.

We assume a fixed mapping φ from pairs to feature vec-
tors, i.e., for any pair (x, y) we have the feature vector
φ(x, y) ∈ Rk \ {0}. For a parameter w ∈ W ⊆ Rk \ {0},
we consider linear decoders of the form:

fw(x) ≡ arg max
y∈Y(x)

φ(x, y) · w (1)

In practice, very few cases of the above general inference
problem are tractable, while most are NP-hard and also
hard to approximate within a fixed factor. (We defer the
details in theory of computation to Section 6.)

We also introduce the distortion function
d : Y × Y → [0, 1]. The value d(y, y′) measures the
amount of difference between two structured outputs y and
y′. Disregarding the computational and statistical aspects,
the ultimate goal is to set the parameter w in order to
minimize the decoder distortion. That is:

min
w∈W

E
(x,y)∼D

[d(y, fw(x))] (2)

Computationally speaking, the above procedure is ineffi-
cient since d(y, fw(x)) is a discontinuous function with re-
spect to w and thus, it is in general an exponential-time op-
timization problem. Statistically speaking, the problem in
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eq.(2) requires access to the data distribution D and thus,
in general it would require an infinite amount of data. In
practice, we only have access to a small amount of training
data.

Additionally, eq.(2) would potentially favor parameters w
with low distortion, but that could be in a neighborhood
of parameters with high distortion. In order to avoid this
issue, we could optimize a more “robust” objective under
Gaussian perturbations. More formally, let α > 0 and let
Q(w) be a unit-variance Gaussian distribution centered at
wα of parameters w′ ∈ W . The Gibbs decoder distortion
of the perturbation distribution Q(w) and data distribution
D, is defined as:

L(Q(w), D) = E
(x,y)∼D

[
E

w′∼Q(w)
[d(y, fw′(x))]

]
(3)

The minimization of the Gibbs decoder distortion can be
expressed as:

min
w∈W

L(Q(w), D)

The focus of our analysis will be to propose upper bounds
of the Gibbs decoder distortion, with good computational
and statistical properties. That is, we will propose upper
bounds that can be computed in polynomial-time, and that
require a small amount of training data.

For our analysis, we follow the same set of assumptions as
in (McAllester, 2007). We define the margin m(x, y, y′, w)
as the amount by which y is preferable to y′ under the pa-
rameter w. More formally:

m(x, y, y′, w) ≡ φ(x, y) · w − φ(x, y′) · w
Let c(p, x, y) be a nonnegative integer that gives the num-
ber of times that the part p ∈ P appears in the pair (x, y).
For a part p ∈ P , we define the feature p as follows:

φp(x, y) ≡ c(p, x, y)

We letP(x) �= ∅ denote the set of p ∈ P such that there ex-
ists y ∈ Y(x) with c(p, x, y) > 0. We define the Hamming
distance H as follows:

H(x, y, y′) ≡
∑

p∈P(x)

|c(p, x, y)− c(p, x, y′)|

The commonly applied margin-based approach to learning
w uses the maximum loss over all possible structured out-
puts (Altun & Hofmann, 2003; Collins, 2004; Taskar et al.,
2003). That is:1

min
w∈W

1

n

∑

(x,y)∈S

max
ŷ∈Y(x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)

+ λ‖w‖22 (4)

1For computational convenience, the convex hinge loss
max (0, 1 + z) is used in practice instead of the discontinuous
0/1 loss 1 (z ≥ 0).

In Section 2, we reproduce the results in (McAllester, 2007)
and show that the above objective is related to an upper
bound of the Gibbs decoder distortion in eq.(3). Note that
evaluating the objective function in eq.(4) is as hard as the
inference problem in eq.(1), since both perform maximiza-
tion over the set Y(x).

Our main contributions are presented in Sections 3 and
4. Inspired by recent work in natural language process-
ing (Zhang et al., 2014; Zhang et al., 2015), we show
a tighter upper bound of the Gibbs decoder distortion in
eq.(3), which is related to the following objective:1

min
w∈W

1

n

∑

(x,y)∈S

max
ŷ∈T (w,x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)

+ λ‖w‖22 (5)

where T (w, x) is a set of random structured outputs sam-
pled i.i.d. from some proposal distribution with support on
Y(x). Note that evaluating the objective function in eq.(5)
is linear-time in the number of random structured outputs
in T (w, x).

2 FROM PAC-BAYES TO THE
MAXIMUM LOSS OVER ALL
POSSIBLE STRUCTURED OUTPUTS

In this section, we show the relationship between PAC-
Bayes bounds and the commonly used maximum loss over
all possible structured outputs.

As reported in (McAllester, 2007), by using the PAC-Bayes
framework under Gaussian perturbations, we show that the
commonly used maximum loss over all possible structured
outputs is an upper bound of the Gibbs decoder distortion
up to statistical accuracy (O(

√
log n/n) for n training sam-

ples).

Theorem 1 (McAllester, 2007). Assume that there exists
a finite integer value � such that | ∪(x,y)∈S P(x)| ≤ �. Fix
δ ∈ (0, 1). With probability at least 1− δ/2 over the choice
of n training samples, simultaneously for all parameters
w ∈ W and unit-variance Gaussian perturbation distribu-

tions Q(w) centered at w
√

2 log (2n�/‖w‖22), we have:

L(Q(w), D)

≤ 1

n

∑

(x,y)∈S

max
ŷ∈Y(x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)

+
‖w‖22

n
+

√
‖w‖22 log (2n�/‖w‖22) + log (2n/δ)

2(n− 1)

(See Appendix A for detailed proofs.)

The proof of the above is based on the PAC-Bayes theo-
rem and well-known Gaussian concentration inequalities.
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As it is customary in generalization results, a determinis-
tic expectation with respect to the data distribution D is
upper-bounded by a stochastic quantity with respect to the
training set S. This takes into account the statistical aspects
of the problem.

Note that the upper bound uses maximization with respect
to Y(x) and that in general, |Y(x)| is exponential with re-
spect to the input size. Thus, the computational aspects of
the problem have not been fully addressed yet. In the next
section, we solve this issue by introducing randomness.

3 FROM PAC-BAYES TO THE
MAXIMUM LOSS OVER RANDOM
STRUCTURED OUTPUTS

In this section, we analyze the relationship between PAC-
Bayes bounds and the maximum loss over random struc-
tured outputs sampled independently from some proposal
distribution.

First, we will focus on the computational aspects. Instead
of using maximization with respect to Y(x), we will per-
form maximization with respect to a set T (w, x) of random
structured outputs sampled i.i.d. from some proposal distri-
bution R(w, x) with support on Y(x). In order for this ap-
proach to be computationally appealing, |T (w, x)| should
be polynomial, even when |Y(x)| is exponential with re-
spect to the input size.

Assumptions A and B will allow us to attain
|T (w, x)| = O

(
max

(
1

log (1/β) , ‖w‖
2
2

))
. The con-

stant β ∈ [0, 1) is properly introduced on Assumption A.
It can be easily observed that β plays an important role
in the number of random structured outputs that we need
to draw from the proposal distribution R(w, x). Next, we
present our first assumption.

Assumption A (Maximal distortion). The proposal distri-
bution R(w, x) fulfills the following condition. There exists
a value β ∈ [0, 1) such that for all (x, y) ∈ S and w ∈ W:

P
y′∼R(w,x)

[d(y, y′) = 1] ≥ 1− β

In Section 4 we show examples that fulfill the above as-
sumption, which include a binary distortion function for
any type of structured output, as well as a distortion func-
tion that returns the number of different edges/elements
for directed spanning trees, directed acyclic graphs and
cardinality-constrained sets.

Next, we present our second assumption that allows obtain-
ing |T (w, x)| = O

(
max

(
1

log (1/β) , ‖w‖
2
2

))
. While As-

sumption A contributes with the term 1
log (1/β) in |T (w, x)|,

the following assumption contributes with the term ‖w‖22 in
|T (w, x)|.

Assumption B (Low norm). For any vector z ∈ Rk, de-
fine:

µ(z) =

{
z/‖z‖1 if z �= 0

0 if z = 0

The proposal distribution R(w, x) fulfills the following
condition for all (x, y) ∈ S and w ∈ W:2

∥∥∥∥ E
y′∼R(w,x)

[µ(φ(x, y)− φ(x, y′))]

∥∥∥∥
2

≤ 1

2
√

n
≤ 1

2‖w‖2

It is natural to ask whether there are instances that fulfill
the above assumption. In Section 4 we provide two ex-
treme cases: one example of a sparse mapping and a uni-
form proposal, and one example of a dense mapping and an
arbitrary proposal distribution.

We will now focus on the statistical aspects. Note that
randomness does not only stem from data, but also from
sampling structured outputs. That is, in Theorem 1, ran-
domness only stems from the training set S. We now need
to produce generalization results that hold for all the sets
T (w, x) of random structured outputs. In addition, the uni-
form convergence of Theorem 1 holds for all parameters
w. We now need to produce a generalization result that
also holds for all possible proposal distributions R(w, x).
Therefore, we need a method for upper-bounding the num-
ber of possible proposal distributions R(w, x). Assumption
C will allow us to upper-bound this number.

Assumption C (Linearly inducible ordering). The
proposal distribution R(w, x) depends solely on
the linear ordering induced by the parameter
w ∈ W and the mapping φ(x, ·). More formally, let
r(x) ≡ |Y(x)| and thus Y(x) ≡ {y1 . . . yr(x)}. Let
w, w′ ∈ W be any two arbitrary parameters. Let
π(x) = (π1 . . . πr(x)) be a permutation of {1 . . . r(x)}
such that φ(x, yπ1

) · w < · · · < φ(x, yπr(x)
) · w. Let

π′(x) = (π′
1 . . . π′

r(x)) be a permutation of {1 . . . r(x)}
such that φ(x, yπ′

1
) · w′ < · · · < φ(x, yπ′

r(x)
) · w′.

For all w, w′ ∈ W and x ∈ X , if π(x) = π′(x) then
KL(R(w, x)‖R(w′, x)) = 0. In this case, we say that the
proposal distribution fulfills R(π(x), x) ≡ R(w, x).

Assumption C states that two proposal distribu-
tions R(w, x) and R(w′, x) are the same pro-
vided that for the same permutation π(x) we
have φ(x, yπ1) · w < · · · < φ(x, yπr(x)

) · w and
φ(x, yπ1

) · w′ < · · · < φ(x, yπr(x)
) · w′. Geometri-

cally speaking, for a fixed x we first project the feature
vectors φ(x, y) of all the structured outputs y ∈ Y(x) onto

2The second inequality follows from an implicit assumption
made in Theorem 1, i.e., ‖w‖2

2/n ≤ 1. Note that if ‖w‖2
2/n > 1

then Theorem 1 provides an upper bound greater than 1, which is
meaningless since the distortion function d is at most 1.
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the lines w and w′. Let π(x) and π′(x) be the resulting or-
dering of the structured outputs after projecting them onto
w and w′ respectively. Two proposal distributions R(w, x)
and R(w′, x) are the same provided that π(x) = π′(x).
That is, the specific values of φ(x, y) · w and φ(x, y) · w′

are irrelevant, and only their ordering matters.

In Section 4 we show examples that fulfill the above as-
sumption, which include the algorithm proposed in (Zhang
et al., 2014; Zhang et al., 2015) for directed spanning trees,
and our proposed generalization to any type of data struc-
ture with computationally efficient local changes.

In what follows, by using the PAC-Bayes framework un-
der Gaussian perturbations, we show that the maximum
loss over random structured outputs sampled independently
from some proposal distribution provides an upper bound
of the Gibbs decoder distortion up to statistical accuracy
(O( log3/2 n/

√
n) for n training samples).

Theorem 2. Assume that there exist finite integer values
� and r such that | ∪(x,y)∈S P(x)| ≤ � and |Y(x)| ≤ r
for all (x, y) ∈ S. Assume that the proposal distribution
R(w, x) with support on Y(x) fulfills Assumption A with
value β, as well as Assumptions B and C. Fix δ ∈ (0, 1)
and an integer s such that 3 ≤ s ≤ 9

20

√
� + 1. With prob-

ability at least 1− δ over the choice of both n training
samples and n sets of random structured outputs, simul-
taneously for all parameters w ∈ W with ‖w‖0 ≤ s, unit-
variance Gaussian perturbation distributions Q(w) cen-

tered at w
√

2 log (2n�/‖w‖22), and for sets of random
structured outputs T (w, x) sampled i.i.d. from the proposal
distribution R(w, x) for each training sample (x, y) ∈ S,

such that |T (w, x)| =
⌈

1
2 max

(
1

log (1/β) , 32‖w‖22
)

log n
⌉

,
we have:

L(Q(w), D)

≤ 1

n

∑

(x,y)∈S

max
ŷ∈T (w,x)

d(y, ŷ) 1

(
H(x, y, ŷ)
−m(x, y, ŷ, w) ≥ 0

)

+
‖w‖22

n
+

√
‖w‖22 log (2n�/‖w‖22) + log (2n/δ)

2(n− 1)
+

√
1

n

+ max
(

1
log (1/β) , 32‖w‖22

)
√

s log (�+1) log3(n+1)

n

+ 3

√
s(log � + 2 log (nr)) + log (4/δ)

n

(See Appendix A for detailed proofs.)

The proof of the above is based on Theorem 1 as a starting
point. In order to account for the computational aspect of
requiring sets T (w, x) of polynomial size, we use Assump-
tions A and B for bounding a deterministic expectation. In
order to account for the statistical aspects, we use Assump-
tion C and Rademacher complexity arguments for bound-
ing a stochastic quantity for all sets T (w, x) of random

structured outputs and all possible proposal distributions
R(w, x). The assumption of sparsity (i.e., ‖w‖0 ≤ s) is
pivotal for obtaining terms of order O(

√
s log �/n)). With-

out sparsity, the terms would be of order O(
√

�/n) which
is not suited for high-dimensional settings.

3.1 Inference on Test Data

Note that the upper bound in Theorem 2 holds simultane-
ously for all parameters w ∈ W . Therefore, our result im-
plies that after learning the optimal parameter ŵ ∈ W in
eq.(5) from training data, we can bound the decoder distor-
tion when performing exact inference on test data. More
formally, Theorem 2 can be additionally invoked for a test
set S′, also with probability at least 1− δ. Thus, under the
same setting as of Theorem 2, the Gibbs decoder distortion
is upper-bounded with probability at least 1− 2δ over the
choice of S and S′. In this paper, we focus on learning the
parameter of structured prediction models. We leave the
analysis of approximate inference on test data for future
work.

4 EXAMPLES

In this section, we provide several examples that fulfill the
three main assumptions of our theoretical result.

4.1 Examples for the Maximal Distortion Assumption

In what follows, we present some examples that fulfill our
Assumption A. For a binary distortion function, we show
that any type of structured output fulfills the above assump-
tion. For a distortion function that returns the number of
different edges/elements, we show that directed spanning
trees, directed acyclic graphs and cardinality-constrained
sets, fulfill the assumption as well.

For simplicity of analysis, most proofs in this part will as-
sume a uniform proposal distribution R(w, x) = R(x) with
support on Y(x). In the following claim, we argue that we
can perform a change of measure between different pro-
posal distributions. Thus, allowing us to focus on uniform
proposals afterwards.
Claim i (Change of measure). Let R(w, x) and R′(w, x)
two proposal distributions, both with support on Y(x).
Assume that the proposal distribution R(w, x) fulfills As-
sumption A with value β1. Let rw,x(·) and r′

w,x(·) be the
probability mass functions of R(w, x) and R′(w, x) re-
spectively. Assume that the total variation distance be-
tween R(w, x) and R′(w, x) is bounded as follows for all
(x, y) ∈ S and w ∈ W:

TV (R(w, x)‖R′(w, x)) ≡ 1

2

∑

y∈Y(x)

|rw,x(y)− r′
w,x(y)|

≤ β2
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The proposal distribution R′(w, x) fulfills Assumption A
with β = β1 + β2 provided that β1 + β2 ∈ [0, 1).

Next, we provide a result for any type of structured output,
but for a binary distortion function.

Claim ii (Any type of structured output). Let Y(x) be an
arbitrary countable set of feasible decodings of x, such that
|Y(x)| ≥ 2 for all (x, y) ∈ S. Let d(y, y′) = 1 (y �= y′).
The uniform proposal distribution R(w, x) = R(x) with
support on Y(x) fulfills Assumption A with β = 1/2.

The following claim pertains to directed spanning trees and
for a distortion function that returns the number of different
edges.

Claim iii (Directed spanning trees). Let Y(x) be the
set of directed spanning trees of v nodes. Let
A(y) be the adjacency matrix of y ∈ Y(x). Let
d(y, y′) = 1

2(v−1)

∑
ij |A(y)ij −A(y′)ij |. The uniform

proposal distribution R(w, x) = R(x) with support on
Y(x) fulfills Assumption A with β = v−2

v−1 .

The next result is for directed acyclic graphs and for a dis-
tortion function that returns the number of different edges.

Claim iv (Directed acyclic graphs). Let Y(x) be
the set of directed acyclic graphs of v nodes and
b parents per node, such that 2 ≤ b ≤ v − 2. Let
A(y) be the adjacency matrix of y ∈ Y(x). Let
d(y, y′) = 1

b(2v−b−1)

∑
ij |A(y)ij −A(y′)ij |. The uni-

form proposal distribution R(w, x) = R(x) with support
on Y(x) fulfills Assumption A with β = b2+2b+2

b2+3b+2 .

The final example is for cardinality-constrained sets and for
a distortion function that returns the number of different
elements.

Claim v (Cardinality-constrained sets). Let Y(x) be the set
of sets of b elements chosen from v possible elements, such
that b ≤ v/2. Let d(y, y′) = 1

2b (|y − y′|+ |y′ − y|). The
uniform proposal distribution R(w, x) = R(x) with sup-
port on Y(x) fulfills Assumption A with β = 1/2.

4.2 Examples for the Low Norm Assumption

Next, we present some examples that fulfill our Assump-
tion B. We provide two extreme cases: one example for
sparse mappings, and one example for dense mappings.

Next, we provide a result for a particular instance of a
sparse mapping and a uniform proposal distribution.

Claim vi (Sparse mapping). Let b > 0 be an arbitrary in-
teger value. For all (x, y) ∈ S, let Y(x) = ∪p∈P(x)Yp(x),
where the partition Yp(x) is defined as follows:

(∀p ∈ P(x)) Yp(x) ≡ {y′ | |φp(x, y)− φp(x, y′)| = b ∧
(∀q �= p) φq(x, y) = φq(x, y′)}

If n ≤ |P(x)|/4 for all (x, y) ∈ S, then the uniform pro-
posal distribution R(w, x) = R(x) with support on Y(x)
fulfills Assumption B.

The following claim pertains to a particular instance of a
dense mapping and an arbitrary proposal distribution.

Claim vii (Dense mapping). Let b > 0 be an arbi-
trary integer value. Let |φp(x, y)− φp(x, y′)| = b for all
(x, y) ∈ S, y′ ∈ Y(x) and p ∈ P(x). If n ≤ |P(x)|/4 for
all (x, y) ∈ S, then any arbitrary proposal distribution
R(w, x) fulfills Assumption B.

4.3 Examples for the Linearly Inducible Ordering
Assumption

In what follows, we present some examples that fulfill our
Assumption C. We show that the algorithm proposed in
(Zhang et al., 2014; Zhang et al., 2015) for directed span-
ning trees, fulfills the above assumption. We also general-
ize the algorithm in (Zhang et al., 2014; Zhang et al., 2015)
to any type of data structure with computationally efficient
local changes, and show that this generalization fulfills the
assumption as well.

Next, we present the algorithm proposed in (Zhang et al.,
2014; Zhang et al., 2015) for dependency parsing in natural
language processing. Here, x is a sentence of v words and
Y(x) is the set of directed spanning trees of v nodes.

Algorithm 1 Procedure for sampling a directed spanning
tree y′ ∈ Y(x) from a greedy local proposal distribution
R(w, x)

Input: parameter w ∈ W , sentence x ∈ X
Draw uniformly at random a directed spanning tree
ŷ ∈ Y(x)
repeat

s ← post-order traversal of ŷ
for each node t in the list s do

for each node u before t in the list s do
y ← change the parent of node t to u in ŷ
if φ(x, y) · w > φ(x, ŷ) · w then

ŷ ← y
end if

end for
end for

until no refinement in last iteration
Output: directed spanning tree y′ ← ŷ

The above algorithm has the following property:

Claim viii (Sampling for directed spanning trees). Algo-
rithm 1 fulfills Assumption C.

Note that Algorithm 1 proposed in (Zhang et al., 2014;
Zhang et al., 2015) uses the fact that we can perform local
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changes to a directed spanning tree in a computationally ef-
ficient manner. That is, changing parents of nodes in a post-
order traversal will produce directed spanning trees. We
can extend the above algorithm to any type of data struc-
ture where we can perform computationally efficient local
changes. For instance, we can easily extend the method for
directed acyclic graphs (traversed in post-order as well) and
for sets with up to some prespecified number of elements.

Next, we generalize Algorithm 1 to any type of structured
output.

Algorithm 2 Procedure for sampling a structured out-
put y′ ∈ Y(x) from a greedy local proposal distribution
R(w, x)

Input: parameter w ∈ W , observed input x ∈ X
Draw uniformly at random a structured output ŷ ∈ Y(x)
repeat

Make a local change to ŷ in order to increase
φ(x, ŷ) · w

until no refinement in last iteration
Output: structured output y′ ← ŷ

The above algorithm has the following property:

Claim ix (Sampling for any type of structured output). Al-
gorithm 2 fulfills Assumption C.

5 EXPERIMENTAL RESULTS

In this section, we provide experimental evidence on syn-
thetic data. Note that the work of (Zhang et al., 2014;
Zhang et al., 2015) has provided extensive experimental
evidence on real-world datasets, for part-of-speech tagging
and dependency parsing in the context of natural language
processing. Our experimental results are not only for di-
rected spanning trees (Zhang et al., 2014; Zhang et al.,
2015) but also for directed acyclic graphs and cardinality-
constrained sets.

We performed 30 repetitions of the following procedure.
We generated a ground truth parameter w∗ with indepen-
dent zero-mean and unit-variance Gaussian entries. Then,
we generated a training set S of n = 100 samples. The
fixed mapping φ from pairs (x, y) to feature vectors φ(x, y)
is as follows. For every pair of possible edges/elements i
and j, we define φij(x, y) = 1 (xij = 1 ∧ i ∈ y ∧ j ∈ y).
For instance, for directed spanning trees of v nodes, we
have x ∈ {0, 1}(v

2) and φ(x, y) ∈ R(v
2). In order to gen-

erate each training sample (x, y) ∈ S, we generated a ran-
dom vector x with independent Bernoulli entries, each with
equal probability of being 1 or 0. After generating x, we
set y = fw∗(x). That is, we solved eq.(1) in order to pro-
duce the latent structured output y from the observed input
x and the parameter w∗.

We compared two training methods: the maximum loss
over all possible structured outputs as in eq.(4), and the
maximum loss over random structured outputs as in eq.(5).
For both minimization problems, we replaced the dis-
continuous 0/1 loss 1 (z ≥ 0) with the convex hinge loss
max (0, 1 + z), as it is customary. For both problems, we
used λ = 1/n as suggested by Theorems 1 and 2, and we
performed 20 iterations of the subgradient descent method
with a decaying step size 1/

√
t for iteration t. For sam-

pling random structured outputs in eq.(5), we implemented
Algorithm 2 for directed spanning trees, directed acyclic
graphs and cardinality-constrained sets. We considered di-
rected spanning trees of 6 nodes, directed acyclic graphs
of 5 nodes and 2 parents per node, and sets of 4 elements
chosen from 15 possible elements. We used β = 0.8 for di-
rected spanning trees, β = 0.85 for directed acyclic graphs,
and β = 0.5 for cardinality-constrained sets, as prescribed
by Claims iii, iv and v. After training, for inference on an
independent test set, we used eq.(1) for the maximum loss
over all possible structured outputs. For the maximum loss
over random structured outputs, we use the following ap-
proximate inference approach:

f̃w(x) ≡ arg max
y∈T (w,x)

φ(x, y) · w (6)

Table 1 shows the average over 30 repetitions, and the
standard error at 95% confidence level of the following
measurements. We report the runtime, the training dis-
tortion as well as the test distortion in an independently
generated set of 100 samples. We also report the nor-
malized distance of the learnt ŵ to the ground truth w∗,
i.e., ‖ŵ − w∗‖2/

√
�. Additionally, we report the an-

gle of the learnt ŵ with respect to the ground truth w∗,
i.e. arccos(ŵ · w∗/(‖ŵ‖2‖w∗‖2)). In the different study
cases (directed spanning trees, directed acyclic graphs and
cardinality-constrained sets), the maximum loss over ran-
dom structured outputs outperforms the maximum loss
over all possible structured outputs.

6 DISCUSSION

In this section, we provide more details regarding the com-
putational complexity of the inference problem. We also
present a brief review of the previous work and provide
ideas for extending our theoretical result.

6.1 Computational Complexity of the Inference
Problem

Very few cases of the general inference problem in eq.(1)
are tractable. For instance, if Y(x) is the set of directed
spanning trees, and w is a vector of edge weights (i.e., lin-
ear with respect to y), then eq.(1) is equivalent to the maxi-
mum directed spanning tree problem, which is polynomial-
time. In general, the inference problem in eq.(1) is not
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Table 1: Average over 30 repetitions, and standard error at 95% confidence level of several methods and measurements.
For the maximum loss over all possible structured outputs (All) we used eq.(4) for training, and eq.(1) for inference on
a test set. For the maximum loss over random structured outputs (Random and Random/All) we used eq.(5) for training.
For inference, Random used eq.(6) while Random/All used eq.(1). Random outperforms All in the different study cases
(directed spanning trees, directed acyclic graphs and cardinality-constrained sets). The difference between Random and
Random/All is not statistically significant.

Problem Method Training Training Test Test Distance to Angle with
runtime distortion runtime distortion ground truth ground truth

Directed All 1000 52% ± 1.1% 12.4 ± 0.4 61% ± 1.8% 0.56 ± 0.004 74◦ ± 0.3◦

spanning trees Random 104 ± 3 38% ± 2.1% 2.4 ± 0.1 56% ± 1.9% 0.51 ± 0.005 49◦ ± 0.6◦

Random/All 12.4 ± 0.3 56% ± 1.9%
Directed All 1000 41% ± 1.2% 10.8 ± 0.2 45% ± 1.5% 0.60 ± 0.020 61◦ ± 1.0◦

acyclic graphs Random 386 ± 21 30% ± 1.3% 8.5 ± 0.2 39% ± 1.6% 0.40 ± 0.008 37◦ ± 1.0◦

Random/All 10.8 ± 0.2 39% ± 1.6%
Cardinality All 1000 42% ± 1.4% 11.1 ± 0.4 45% ± 1.8% 0.58 ± 0.011 65◦ ± 0.6◦

constrained sets Random 272 ± 9 21% ± 1.2% 6.0 ± 0.2 30% ± 1.9% 0.44 ± 0.008 30◦ ± 0.8◦

Random/All 10.9 ± 0.3 29% ± 2.1%

only NP-hard but also hard to approximate. For instance,
if Y(x) is the set of directed acyclic graphs, and w is a
vector of edge weights (i.e., linear with respect to y), then
eq.(1) is equivalent to the maximum acyclic subgraph prob-
lem, which approximating within a factor better than 1/2
is unique-games hard (Guruswami et al., 2008). As an ad-
ditional example, consider the case where Y(x) is the set
of sets with up to some prespecified number of elements
(i.e., Y(x) is a cardinality constraint), and the objective
φ(x, y) · w is submodular with respect to y. In this case,
eq.(1) cannot be approximated within a factor better than
1− 1/e unless P=NP (Nemhauser et al., 1978).

These negative results made us to avoid interpreting the
maximum loss over random structured outputs in eq.(5) as
an approximate optimization algorithm for the maximum
loss over all possible structured outputs in eq.(4).

6.2 Previous Work

Approximate inference was proposed in (Kulesza &
Pereira, 2007), with an adaptation of the proof tech-
niques in (McAllester, 2007). More specifically, (Kulesza
& Pereira, 2007) performs maximization of the loss
over a superset of feasible decodings of x, i.e., over
y ∈ Y ′(x) ⊇ Y(x). Note that our upper bound of the
Gibbs decoder distortion dominates the maximum loss over
y ∈ Y(x), and the latter dominates the upper bound of
(Kulesza & Pereira, 2007). One could potentially use a
similar argument with respect to a subset of feasible de-
codings of x, i.e., with respect to y ∈ Y ′(x) ⊆ Y(x). Un-
fortunately, this approach does not obtain an upper bound
of the Gibbs decoder distortion.

Tangential to our work, previous analyses have exclusively
focused either on sample complexity or convergence. Sam-

ple complexity analyses include margin bounds (Taskar
et al., 2003), Rademacher complexity (London et al., 2013)
and PAC-Bayes bounds (McAllester, 2007; McAllester &
Keshet, 2011). Convergence have been analyzed for spe-
cific algorithms for the separable (Collins & Roark, 2004)
and nonseparable (Crammer et al., 2006) cases.

6.3 Concluding Remarks

The work of (Zhang et al., 2014; Zhang et al., 2015) has
shown extensive experimental evidence for part-of-speech
tagging and dependency parsing in the context of natural
language processing. In this paper, we present a theo-
retical analysis that explains the experimental success of
(Zhang et al., 2014; Zhang et al., 2015) for directed span-
ning trees. Our analysis was provided for a far more general
setup, which allowed proposing algorithms for other types
of structured outputs, such as directed acyclic graphs and
cardinality-constrained sets. We hope that our theoretical
work will motivate experimental validation on many other
real-world structured prediction problems.

There are several ways of extending this research. While
we focused on Gaussian perturbations, it would be interest-
ing to analyze other distributions from the computational as
well as statistical viewpoints. We analyzed a general class
of proposal distributions that depend on the induced linear
orderings. Algorithms that make greedy local changes, tra-
verse the set of feasible decodings in a constrained fash-
ion, by following allowed moves defined by some pre-
specified graph. The addition of these graph-theoretical
constraints would enable obtaining tighter upper bounds.
From a broader perspective, extensions of our work to la-
tent models (Ping et al., 2014; Yu & Joachims, 2009) as
well as maximum a-posteriori perturbation models (Gane
et al., 2014; Papandreou & Yuille, 2011) would be of great

277



interest. Finally, while we focused on learning the parame-
ter of structured prediction models, it would be interesting
to analyze approximate inference for prediction on an in-
dependent test set.
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Abstract

We consider anytime linear prediction in the
common machine learning setting, where fea-
tures are in groups that have costs. We achieve
anytime (or interruptible) predictions by se-
quencing the computation of feature groups and
reporting results using the computed features at
interruption. We extend Orthogonal Matching
Pursuit (OMP) and Forward Regression (FR) to
learn the sequencing greedily under this group
setting with costs. We theoretically guarantee
that our algorithms achieve near-optimal linear
predictions at each budget when a feature group
is chosen. With a novel analysis of OMP, we im-
prove its theoretical bound to the same strength
as that of FR. In addition, we develop a novel
algorithm that consumes cost 4B to approxi-
mate the optimal performance of any cost B, and
prove that with cost less than 4B, such an ap-
proximation is impossible. To our knowledge,
these are the first anytime bounds at all bud-
gets. We test our algorithms on two real-world
data-sets and evaluate them in terms of any-
time linear prediction performance against cost-
weighted Group Lasso and alternative greedy al-
gorithms.

1 INTRODUCTION AND BACKGROUND

First defined by Grass and Zilberstein [1996], anytime pre-
dictors output valid results even if they are interrupted at
any point in time. The results improve with resources spent.
In this work, we propose an anytime linear prediction algo-
rithm under the common machine learning setting, where
features are computed in groups with associated costs. We
further assume that the cost of prediction is dominated by
feature computation. Hence, we can achieve anytime pre-
dictions by computing feature groups in a specific order and
outputting linear predictions using only computed features

at interruption.

Formally, we are given n samples (xi, yi) from a feature
matrix X ∈ Rn×D and a response vector Y ∈ Rn. We also
have a partition of the D feature dimensions into J fea-
ture groups, G1,G2, ...,GJ , and an associated cost of each
group c(Gj). Our anytime prediction approach learns a
sequencing of the feature groups, G = g1, g2, ..., gJ . For
each budget limit B, the computed groups at cost B is a
prefix of the sequencing, G〈B〉 = g1, g2, .., gJ〈B〉 , where
J〈B〉 = max{j ≤ J |∑i≤j c(gi) ≤ B} indexes the last
group within the budget B. An ideal anytime algorithm
seeks a sequencing G to minimize risk at all budgets B:

R(G〈B〉) := min
w

1

2n
‖Y −XG〈B〉w‖22 +

λ

2
‖w‖22, (1)

whereXG〈B〉 contains features inG〈B〉, w is the associated
linear predictor coefficient, and λ is a regularizing constant.
Equivalently, if we assume that the yi’s have unit variance
and zero mean by normalization, we can maximize the ex-
plained variance, F (G〈B〉) := 1

2nY
TY −R(G〈B〉).

The above optimization problem is closest to the problem
of subset selection for regression [Das and Kempe, 2011],
which selects at most k features to optimize a linear regres-
sion. The problem is also similar to that of sparse model
recovery [Tibshirani, 1994], which recovers coefficients of
a true linear model. One common approach to these two
problems is to select the features greedily via Forward Re-
gression (FR) [Miller, 1984] or Orthogonal Matching Pur-
suit (OMP) [Pati et al., 1993]. Forward Regression greedily
selects features that maximize the marginal increase in ex-
plained variance at each step. Orthogonal Matching Pursuit
selects features as follows. The linear model coefficients of
the unselected features are set to zero. At each step, the
feature whose model coefficient has the largest gradient of
the risk is selected. In this work, we extend FR and OMP to
the setting where features are in groups that have costs. The
extension to FR is intuitive: we only need to select feature
groups using their marginal gain in objective per unit cost
instead of using just the marginal gain. However, we have
two notes about the extension to OMP. First, to incorporate
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feature costs, we need to evaluate a feature based on the
squared norm of the associated weight vector gradient per
unit cost instead of just the gradient norm. Second, when
we compute the gradient norm for a feature group, ∇g , we
have to use the norm ∇Tg (XT

g Xg)
−1∇g , which is ‖∇g‖22

if and only if each feature group g is whitened, which is
an assumption in group OMP analysis by Lozano et al.
[2009, 2011]. Our analysis sheds light on why this assump-
tion is important in a group setting. Like previous analyses
of greedy algorithms by Streeter and Golovin [2008], our
analysis guarantees that our methods produce near-optimal
linear predictions, measured by explained variance, at bud-
gets where feature groups are selected. Thus, they exhibit
the desired anytime behavior at those budgets. Finally, we
extend our algorithm to account for all budgets and show
a novel anytime result: for any budget B, if OPT is the
optimal explained variance of cost B, then our proposed
sequencing can approximate within a factor of OPT with
cost at most 4B. Furthermore, with a cost less than 4B,
a fixed sequence of predictors cannot approximate OPT in
general. To our knowledge, these are the first anytime per-
formance bounds at all budgets.

In previous works, both FR and OMP are theoretically an-
alyzed for both the problem of subset selection and model
recovery. Das and Kempe [2011] cast the subset selection
problem as a submodular maximization that selects a set S
with |S| ≤ k to maximize the explained variance and prove
that FR and OMP achieve (1 − e−λ

∗
) and (1 − e−λ

∗2
)

near-optimal explained variance, where λ∗ is the mini-
mum eigenvalue of the sample covariance, 1

nX
TX . We

can adopt these previous analyses to our extensions to FR
and OMP under the group setting with costs and produce
the same near-optimal results. We also present a novel
analysis of OMP that leads to the same near-optimal fac-
tor (1 − e−λ

∗
) as that of FR. Works on model recovery

have also analyzed FR and OMP. Zhang [2009] proves that
OMP discovers the true linear model coefficients, if they
exist. This result was then extended by [Lozano et al.,
2009, 2011] to the setting of feature groups using gener-
alized linear models. However, we note that these theoret-
ical analyses of model recovery assume that a true model
exists. They focus on recovering model coefficients rather
than directly analyzing prediction performance.

Besides greedy selection, another family of approaches to
find the optimal subset S that minimizes R(S) is to relax
the NP-hard selection problem as a convex optimization.
Lasso [Tibshirani, 1994], a well-known method, uses L1

regularization to force sparsity in the linear model. To get
an ordering of the features, compute the Lasso solution path
by varying the L1 regularization constant. Group Lasso
[Yuan and Lin, 2006] extends Lasso to the group setting,
replacing the L1 norm with the sum of L2 norms of feature
groups. Group Lasso can also incorporate feature costs by
scaling the L2 norms of feature groups. Lasso-based meth-

ods are generally analyzed for model recovery, not predic-
tion performance. We demonstrate experimentally that our
greedy methods achieve better prediction performance than
cost-weighted Group Lasso.

Various works have addressed anytime prediction previ-
ously. The most well-known family of approaches use
cascades [Viola and Jones, 2001], which achieve anytime
prediction by filtering out samples with a sequence of
classifiers of increasing complexity and feature costs. At
each stage, cascade methods [Sochman and Matas, 2005,
Brubaker et al., 2008, Lefakis and Fleuret, 2010, Xu et al.,
2014, Cai et al., 2015] typically achieve a target accuracy
and assign a portion of samples with their final predictions.
While this design frees up computation for the more dif-
ficult samples, it prevents recovery from early mistakes.
Most cascade methods select features of each stage be-
fore being trained. Although the more recent works start
to learn feature sequencing, the learned sequences are the
same as those of cost-weighted Group Lasso [Chen et al.,
2012] and greedy methods [Cai et al., 2015] when they are
restricted to linear prediction. Hence our study of anytime
linear prediction can help cascade methods choose features
and learn cascades. Another branch of anytime predic-
tion methods uses boosting. It outputs as results partial
sums of the ensemble [Grubb and Bagnell, 2012] or av-
erages of randomly sampled weak learners [Reyzin, 2011].
Our greedy methods can be viewed as a gradient boosting
scheme by treating each feature as a weak learner. Some
works approach anytime prediction with feature transfor-
mations [Xu et al., 2012, 2013] and learn cost-sensitive,
non-linear transformation of features for linear classifica-
tion. Similarly, Weinberger et al. [2009] hashes high di-
mensional features to low dimensional subspaces. These
approaches operate on readily-computed features, which is
orthogonal to our problem setting. Karayev et al. [2012]
models the anytime prediction as a Markov Decision Pro-
cess and learns a policy of applying intermediate learners
and computing features through reinforcement learning.

Contributions

• We cast the problem of anytime linear prediction as a
feature group sequencing problem and propose exten-
sions to FR and OMP under the setting where features
are in groups that have costs.

• We theoretically analyze our extensions to FR and OMP
and show that they both achieve (1−e−λ∗) near-optimal
explained variance with linear predictions at budgets
when they choose feature groups.

• We develop the first anytime algorithm that provably ap-
proximates the optimal performance of all budgets B
with cost of 4B; we also prove it impossible to achieve
a constant-factor approximation with cost less than 4B.
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2 COST-SENSITIVE GREEDY METHOD

This section formally introduces our extensions to FR and
OMP to the group setting with costs. We assume that all
feature dimensions and responses are normalized to have
zero mean and unit variance. We define the regularized fea-
ture covariance matrix as C := 1

nX
TX + λID. Let Cst be

the sub-matrix that selects rows from s and columns from t.
Let CS be short for CSS . Given a non-empty union of se-
lected feature groups S, the maximum explained variance
F (S) is achieved with the regularized optimal coefficient
w(S) = 1

n ( 1
nX

T
SXS + λI)−1(XT

S Y ) = 1
nC
−1
S XT

S Y .
When we take gradient of F (S) with respect to the
coefficient of a feature group g, if g ⊆ S then the gra-
dient is ∇gF (S) = 1

nX
T
g (Y −XSw(S))− λw(S)g; if

g ∩ S = ∅ then we can extend w(S) to dimensions of
g, setting w(S)g = 0, and then take the gradient to have
∇gF (S) = 1

nX
T
g (Y −XSw(S)). In both cases, we have

∇gF (S) = 1
nX

T
g Y − CgSw(S). We further shorten the

notations by defining bSg = ∇gF (S). If S is empty, we
assume that coefficient w(∅) has zero for all features so
that F (∅) = 0. When S = s1, s2, ..., is a sequence of
feature groups, we define Sj to be the prefix sequence
s1, s2, ..., sj . We overload notations of a sequence S so
that S also represents the union of its groups in notations
such as F (S), w(S), CS and bSS .

Algorithm 1: Cost Sensitive Group Orthogonal Match-
ing Pursuit (CS-G-OMP)

input : The normalized feature matrix X ∈ Rn×D.
The normalized response vector Y ∈ Rn,
which has a zero mean and unit variance.
Feature groups G1, ...GJ that partition
{1, .., D}, and group costs c(Gj).
Regularization constant λ.

output: A sequence G = g1, g2, ..., gJ of feature
groups. For each j ≤ J , a coefficient w(Gj)
for the prefix sequence Gj = g1, ..., gj .

1 G0 = ∅;
2 for j = 1, 2, ..., J do

// Learn linear model

3 compute w(Gj−1) = 1
nC
−1
Gj−1

XT
Gj−1

Y ;
// Selection step (*)

4 For each g /∈ Gj−1, compute
bg = ∇gF (Gj−1) = 1

nX
T
g (Y −XGj−1

w) ;

5 gj = argmax
g=G1,...,GJ ,g /∈Gj−1

bTg (XTg Xg)−1bg
c(g) ;

6 Gj = Gj−1 ⊕ gj ;
7 compute w(GJ);

In Algorithm 1, we present Cost-Sensitive Group Orthog-
onal Matching Pursuit (CS-G-OMP), which learns a near-
optimal sequencing of the feature groups for anytime lin-

ear predictions. The feature groups are selected greed-
ily. At the jth selection step (∗), we have chosen j − 1
groups, Gj−1 = g1, g2, ..., gj−1, and have computed the
best model using Gj−1, w(Gj−1). To evaluate a feature
group g, we first compute the gradient bg = ∇gF (Gj−1)
of the explained variance F with respect to the coeffi-
cients of g. Then, we evaluate it with the whitened gra-

dient L2-norm square per unit cost,
bTg (XTg Xg)−1bg

c(g) . We se-
lect the group g that maximizes this value as gj , and con-
tinue until all groups are depleted. At test time, our pro-
posed anytime prediction algorithm computes the feature
groups in the order of G = g1, g2, ..., gJ . After each fea-
ture group gj is available, we can compute and store pre-
diction ŷ = xTw(Gj) because we assumed that the costs
of feature generation dominate the computations of linear
predictions. At interruption, we can then report the latest
prediction ŷ.

The learning procedure extending from Forward Regres-
sion is similar to Algorithm 1: we compute the linear
models w(Gj−1 ⊕ g) at line 4 instead of the gradients bg
and replace the selection criterion

bTg (XTg Xg)−1bg
c(g) at line 5

with the marginal gain in explained variance per unit cost,
F (Gj−1⊕g)−F (Gj−1)

c(g) . We call this cost-sensitive FR exten-
sion as CS-G-FR.

Before we theoretically analyze our greedy methods in the
next section, we provide an argument why group whiten-
ing at line 5 of Algorithm 1 is natural. OMP greedily se-
lects features whose coefficients have the largest gradients
of the objective function. In linear regression, the gradient
for a feature g is the inner-product of Xg and the predic-
tion residual Y − Ŷ . Hence OMP selects features that best
reconstruct the residual. From this perspective, OMP un-
der group setting should seek the feature group whose span
contains the largest projection of the residual. Let the pro-
jection to feature group g be Pg = Xg(X

T
g Xg)

−1XT
g and

recall projection matrices are idempotent. We observe that
the criterion for CS-G-OMP selection step is ‖Pg(Y−Ŷ )‖22

c(g) ,
i.e, a cost-weighted norm square of the projection of the
residual onto a feature group. The name group whitening
is chosen because the criterion is ‖bg‖

2
2

c(g) if and only if fea-
ture groups are whitened. We assume feature groups are
whitened in our formal analysis to make the criterion eas-
ier to analyze.

Besides the above greedy criterion, one may suggest other
approaches to evaluate gradient vectors bg for group g. For
example, L2 norm and L∞ norm can be used to achieve
greedy criteria ‖bg‖

2
2

c(g) and ‖bg‖
2
∞

c(g) , respectively. The former
criterion forgoes group whitening, so we call it no-whiten.
Thus, it overestimates a feature group that has correlated
but effective features, an extreme example of which is a
feature group of identical but effective features. The lat-
ter criterion evaluates only the best feature of each feature
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group, so we call it single. Thus, it underestimates a fea-
ture group that has a descriptive feature span but no top-
performing individual feature dimensions. We will show in
experiments that no-whiten and single are indeed inferior
to our CS-G-OMP choice.

3 THEORETICAL ANALYSIS

This section proves that CS-G-FR and CS-G-OMP produce
near-optimal explained variance F at budgets where fea-
tures are selected. The main challenge of our analysis is
to prove Lemma 3.1, which is a common stepping stone
in submodular maximization analysis, e.g., Equation 8 in
[Krause and Golovin, 2012]. The main Theorem 3.2 fol-
lows from the lemma by standard techniques, which we
defer to the appendix.

Lemma 3.1 (main). Let Gj be the first j feature
groups selected by our greedy algorithm. There exists
a constant γ = λ∗+λ

1+λ > 0 such that for any se-
quence S, total cost K, and indices j = 1, 2, ..., J ,
F (S〈K〉)− F (Gj−1) ≤ K

γ [
F (Gj)−F (Gj−1)

c(gj)
].

Theorem 3.2. Let B =
∑L
i=1 c(gi) for some L. There

exists a constant γ = λ∗+λ
1+λ , such that for any sequence S

and total cost K, F (G〈B〉) > (1− e−γ BK )F (S〈K〉).

Before delving into the proof of Lemma 3.1, we first dis-
cuss some implications of Theorem 3.2, which argues that
the explained variance of greedily selected features of cost
B is within (1− eγ BK )-factor of that of any competing fea-
ture sequence of cost K. If we apply minimum regular-
ization (λ → 0), then the constant γ approaches λ∗. The
resulting bound factor (1 − e−λ

∗ B
K ) is the bound for FR

by Das and Kempe [2011]. However, we achieve the same
bound for OMP, improving theoretical guarantees of OMP.
We also note that less-correlated features lead to a higher
λ∗ and a stronger bound.

Lemma 3.1 for CS-G-FR is standard if we follow proofs in
[Streeter and Golovin, 2008] and [Das and Kempe, 2011]
because the objective F is γ-approximately submodular.
However, we present a proof of Lemma 3.1 for CS-G-
OMP without approximate submodularity to achieve the
same constant γ. This proof in turn uses Lemma 3.3 and
Lemma 3.4, whose proofs are based on the Taylor expan-
sions of the regularized risk R[fS ] = R(S), a M -strongly
smooth andm-strongly convex loss functional of predictors
f(x) = wTx. We defer these two proofs to the appendix
and note that M = m with our choice of R.

Lemma 3.3 (Using Smoothness). Let S
and G be some fixed sequences. Then
F (S)− F (G) ≤ 1

2m 〈bGG⊕S , C−1
G⊕Sb

G
G⊕S〉.

Lemma 3.4 (Using Convexity). For j = 1, 2, ..., J ,
F (Gj)− F (Gj−1) ≥ 1

2M 〈b
Gj−1
gj , C−1

gj b
Gj−1
gj 〉.

Note that in Lemma 3.4, since we assume feature
groups are whitened, then Cgj = (1 + λ)I . The
bound of the lemma becomes F (Gj) − F (Gj−1) ≥

1
2M(1+λ) 〈b

Gj−1
gj , b

Gj−1
gj 〉. If feature groups are not

whitened, the constant (1+λ) can be scaled up to (|Gj |+λ),
which detriments the strength of Theorem 3.2 especially
when feature groups are large.

Proof. (of Lemma 3.1, using Lemma 3.3 and Lemma 3.4)
Using Lemma 3.3, on S〈K〉 and Gj−1, we have:

F (S〈K〉)− F (Gj−1)

≤ 1

2m
〈bGj−1

Gj−1⊕S〈K〉 , C
G
Gj−1⊕S〈K〉b

Gj−1

Gj−1⊕S〈K〉〉 (2)

Note that the gradient bGj−1

Gj−1
equals 0, because F (Gj−1) is

achieved by the linear model w(Gj−1). Then, using block
matrix inverse formula, we have:

F (S〈K〉)− F (Gj−1) ≤ 1

2m
〈bGj−1

S〈K〉
, CGS〈K〉b

Gj−1

S〈K〉
〉 (3)

where CGS〈K〉 = CS〈K〉 − CS〈K〉GC
−1
S〈K〉

CGS〈K〉 . Using
spectral techniques in Lemmas 2.5 and 2.6 in [Das and
Kempe, 2011] and noting that the minimum eigenvalue of
C, λmin(C), is λ∗ + λ, we have

1

2m
〈bGj−1

S〈K〉
, CGS〈K〉b

Gj−1

S〈K〉
〉 ≤ 1

2m(λ∗ + λ)
〈bGj−1

S〈K〉
, b
Gj−1

S〈K〉
〉.
(4)

Expanding S〈K〉 into individual groups si, we continue:

=
1

2m(λ∗ + λ)

∑

si∈S〈K〉
〈bGj−1
si , bGj−1

si 〉 (5)

≤ 1

2m(λ∗ + λ)

∑

si∈S〈K〉
c(si) max

g

〈bGj−1
g , b

Gj−1
g 〉

c(g)
(6)

=
1

2m(λ∗ + λ)

∑

si∈S〈K〉
c(si)

〈bGj−1
gj , b

Gj−1
gj 〉

c(gj)
(7)

≤ M(1 + λ)

m(λ∗ + λ)

∑

si∈S〈K〉
c(si)

F (Gj)− F (Gj−1)

c(gj)
. (8)

The last equality follows from the greedy selection step of
Algorithm 1 when feature groups are whitened. The last in-
equality is given by Lemma 3.4. The theorem then follows
from γ = (mM )λ

∗+λ
1+λ = λ∗+λ

1+λ .

4 BI-CRITERIA APPROXIMATION AT
ALL BUDGETS

Our analysis so far only bounds algorithm performance at
budgets when new items are selected. However, an ideal
analysis should apply to all budgets. As illustrated in Fig-
ure 1a, previous methods may choose expensive features
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early; until they are computed, we have no bounds. Fig-
ure 1b illustrates our proposed fix: each new item gj+1

cannot be more costly than the current sequence Gj .

This section proves two theorems of anytime prediction at
any budget. Theorem 4.1 shows that to approximate the
optimal explained variance of cost B within a constant fac-
tor, an anytime algorithm must cost at least 4B. We then
motivate and formalize our fix in Algorithm 2, which is
shown in Theorem 4.3 to achieve this bi-criteria approxi-
mation bound for both budget and objective with the form:

F (G〈B〉) > (1− e− γ2

1+γ )F (S〈B4 〉), where γ is the approx-
imate submodular ratio, i.e., the maximum constant γ ≤ 1
such that for all sets A′ ⊆ A and all element x,

γ(F (A ∪ {x})− F (A)) ≤ F (A′ ∪ {x})− F (A′). (9)

We first illustrate the inherent difficulty in generating single
sequences that are competitive at arbitrary budgets B by
using the following budgeted maximization problem:

X = {1, 2, . . .}, c(x) = x, F (S) =
∑

x∈S
ex. (10)

The above problem originates from fitting the linear model
Y =

∑D
i=1 e

iXi, where Xi’s are i.i.d. and Xi costs i.

Theorem 4.1. Let A be any algorithm for selecting se-
quences A = (a1, . . .). The best bi-criteria approximation
that A can satisfy must be at least a 4-approximation in
cost for the sequence described in Equation (10). That is,
there does not exist a C < 4, and a c1 ∈ [0, 1), such that
for any budget B and any sequence S,

F (A〈B〉) > (1− c1)F (S〈BC 〉).

Proof. For any budget B, it is clear that the optimal selec-
tion contains a single item, B, whose value is eB . For any
budget B, let m(B) denote the item of the maximum cost
that is selected by the algorithm. If the bi-criteria bound
holds, then

∑m(B)
k=1 ek ≥ F (A〈B〉) > (1− c1)F (S〈BC 〉).

Taking the log of both sides and rearranging terms, we
have m(B) ≥ bBC c + ln(1 − c1) + ln(e − 1) − 2. Since
3− ln(1−c1)− ln(e−1) > 0, we have forB large enough:
C ≥ B

m(B) . Hence, we need to minimize B
m(B) for all B to

minimize C. We can assume aj to be increasing because
otherwise we could remove the violating aj from the se-
quence and decrease the ratio B

m(B) for all subsequent j.

Let bj := c(Aj) and αj :=
c(aj)
bj−1

. Then immediately before

aj is available, B
m(B) →

c(Aj)
c(aj−1) ≥

(1+αj)bj−1

bj−1
= 1+αj . If

we can bound B
m(B) ≤ C for all B, then there exists αmax

such that αj < αmax for all j large enough. Immediately
after a new aj is selected, B

m(B) =
c(Aj)
c(aj)

=
1+αj
αj

. For
B

m(B) to be bounded, there must exist some αmin > 0 such

(a) Before F is computed, we have no output or bounds.

(b) Our constraint c(gj+1) ≤ c(Gj) induces a smoother cost in-
crease.

(c) Illustration of Doubling Algorithm Cost Constraint

Figure 1: Doubling Algorithm (b) has better anytime be-
haviors than greedy algorithm with no cost constraints (a).

that αj > αmin for large enough j. Now we consider the
ratio B

m(B) right before aj+1 is selected:

c(Aj+1)

c(aj)
=
bj(1 + αj+1)

bj
αj

1+αj

= 1 +
αj+1

αj
+ αj+1 +

1

αj
. (11)

Assume for seek of contradiction that c(Aj+1)
c(aj)

is bounded
above by z for some z ∈ (1, 4). Let y :=

αj+1

αj
. Then we

have: z ≥ 1 + y+ yαj + 1
αj
≥ 1 + y+ 2

√
y = (

√
y+ 1)2.

Hence y ≤ (
√
z − 1)2 < 1. So aj+1 ≤ (

√
z − 1)2aj ,

which implies that aj converges to 0 and we have a contra-
diction. So C ≥ B

m(B) →
c(Aj+1)
c(aj)

≥ 4 for large j.

The above proof lower bounds the cost approximation ratio
C by Eq. 11, which is shown to be at least 4 forC <∞. We
note that Eq. 11 equals 4 if ∀j, αj = 1, which means the
sequence total cost is doubled at each selection step. This
observation leads to Doubling Algorithm (Alg. 2): we per-
form greedy selection in the same way as CS-G-FR, except
that the total cost can be at most doubled at each step (illus-
trated in Figure 1c). The advantage of Doubling Algorithm
over CS-G-FR is that the former prevents early computa-
tion of expensive features and induces a smoother increase
of total cost; in most real-world data-sets, the two are iden-
tical after few steps because feature costs are often in a nar-
row range. We will analyze Doubling Algorithm with the
following assumption, called doubling capable.

Definition 4.2. Let G = (g1, . . .) be the sequence selected
by the doubling algorithm. The set X and function F are
doubling capable if, at every iteration j, the following set
is non-empty: {x | x ∈ X \Gj−1, c(x) ≤ c(Gj−1)}
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Algorithm 2: Doubling Algorithm
input: objective function F , elements X , minimum

cost cmin
1 Let g1 = argmax

x∈X, c(x)≤cmin

F ({x})
c(x) ; Let G1 = g1 ;

2 for j = 2, . . . do
3 Let gj =

argmax
x∈X\Gj−1, c(x)≤c(Gj−1)

F (Gj−1⊕{x})−F (Gj−1)
c(x) ;

4 Let Gj = Gj−1 ⊕ {gj} ;

Theorem 4.3. Let G = (g1, . . .) be the sequence se-
lected by the doubling algorithm (Algorithm 2). Fix some
B > cmin. Let F be γ-approximately submodular as in
Definition 9. For any sequence S,

F (G〈B〉) >

(
1− e− γ2

1+γ

)
F (S〈B4 〉).

Proof. Doubling capable easily leads to the observation
that for all budgets B, there exists an index j such that
B
2 ≤ c(Gj) < B. Choose K and k to be the largest inte-
gers such that B2 ≤ c(GK) < B and B

8 ≤ c(Gk) < B
4 .

Since at each step we at most double the total cost and
4c(Gk) < B, we observe K ≥ k + 2. For each j, de-
fine sj =

F (Gj+1)−F (Gj)
c(gj+1) as the best rate of improvement

among the items Doubling Algorithm is allowed to con-
sider after choosing Gj . Consider the item x in sequence
S〈B4 〉 of the maximum cost.

(Case 1) If c(x) ≤ c(Gk), then every item in S〈B4 〉 was a
candidate for gj for all j = k+1, ...,K. So by approximate
submodularity from Equation 9, we have

F (S〈B4 〉) ≤ F (S〈B4 〉 ∪Gj) ≤ F (Gj) +
Bsj
4γ

. (12)

Then using the standard submodular maximization proof
technique, we define ∆j = F (S〈B4 〉)− F (Gj). Ap-

plying sj =
∆j−∆j+1

c(gj+1) in the above inequality,

we have ∆k+j ≤ ∆k

∏k+j
j=k+1(1− γ 4c(gj)

B ). Maximiz-
ing the inequality by setting c(gj) = B

K−k ≤
c(GK)−c(Gk)

4(K−k) , and using (1 − z/l)l < e−z , we have
F (GK) > (1− e−γ)F (S〈B4 〉).

From now on, we assume that c(x) > c(Gk) and consider
two cases by comparing c(gk+2) and c(Gk).

(Case 2.1) If c(gk+2) ≥ c(Gk), then c(GK)− c(Gk+1) ≥
c(gk+2) ≥ c(Gk). Since c(Gk+1) ≤ 2c(Gk) and c(x) >
c(Gk), we have c(GK) − c(Gk+1) ≥ B

2 − 2c(Gk).
So c(GK)− c(Gk+1) ≥ max(c(Gk), B2 − 2c(Gk)) ≥ B

6 .
Thus, using the same proof techniques as in case 1, we
can analyze the ratio between ∆k+1 and ∆K , and have:
F (GK) > (1− e− 2

3γ)F (S〈B4 〉).

(a) Training Time OMP vs. FR (AGRICULTURAL)

(b) Training Time OMP vs. FR (YAHOO! LTR)

Figure 2: The training time vs. the number of feature
groups selected with two algorithms: CS-G-FR and CS-G-
OMP. CS-G-OMP achieves a 8x and 20x overall training
time speed-up on AGRICULTURAL and YAHOO! LTR.

(Case 2.2) Finally, if c(gk+2) < c(Gk) < c(x) < c(Gk+1),
gk+2 was a candidate for gk+1, and x was a candidate
for gk+2. For an item y, let r(yj) =

F (Gj∪{y})−F (Gj)
c(y)

be the improvement rate of item y at Gj . Then we
have r(gkk+1) > r(gkk+2) and r(gk+1

k+2) > r(xk+1).
Since the objective function is increasing, we have
r(xk)c(x) ≤ r(xk+1)c(x) + r(gkk+1)c(gk+1), so that
r(xk) ≤ r(xk+1) + r(gkk+1) c(gk+1)

c(x) . Then by the defini-

tion of γ in Equation 9, we have γr(gk+1
k+2) ≤ r(gkk+2).

Hence we have γr(xk+1) ≤ r(gkk+1), which leads
to r(xk) ≤ r(gkk+1)( 1

γ + c(gk+1)
c(x) ) ≤ r(gkk+1)(1 + 1

γ ).
Then inequality (12) holds with a coefficient adjust-
ment and becomes F (S〈B4 〉) ≤ F (Gk) + Bsk(1+γ)

4γ2 .
Noting that the above inequality holds for all
j = k + 1, ...,K, we can replace the constant γ in
the proof of case 1 with γ2

1+γ and have the following

bound: F (GK) > (1− e− γ2

1+γ )F (S〈B4 〉).

5 EXPERIMENTS

5.1 DATA-SETS AND SET-UP

We experiment our methods for anytime linear prediction
on two real-world data-sets, each of which has a significant
number of feature groups with associated costs.
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Table 1: Test time 0.97-Timeliness measurement of different methods on AGRICULTURAL. We break the methods into
OMP, FR and Oracle family: e.g., “Single” in the G-CS-OMP family means G-CS-OMP-Single, and “FR” in the Oracle
family means the oracle curve derived from G-FR.

CS-G-OMP-Variants CS-G-FR Oracles Sparse
CS-G-OMP Single No-Whiten G-OMP FR Oracle OMP Oracle

0.4406 0.4086 0.4340 0.4073 0.4525 0.4551 0.4508 0.3997

Table 2: Test time 0.99-Timeliness measurement of different methods on YAHOO! LTR.

Group CS-G-OMP-Variants CS-G-FR Oracles Sparse
Size CS-G-OMP Single No-Whiten G-OMP FR OMP

5 0.3188 0.3039 0.3111 0.2985 0.3222 0.3225 0.3211 0.2934
10 0.3142 0.3117 0.3079 0.2909 0.3205 0.3207 0.3164 0.2858
15 0.3165 0.3159 0.3116 0.2892 0.3213 0.3213 0.3177 0.2952
20 0.3161 0.3124 0.3065 0.2875 0.3180 0.3180 0.3163 0.2895

• Yahoo! Learning to Rank Challenge [Chapelle and
Chang, 2011] contains 883k web documents, each of
which has a relevance score in {0, 1, 2, 3, 4}. Each of the
501 document features has an associated computational
cost in {1, 5, 20, 50, 100, 150, 200}; the total feature cost
is around 17K. The original data-set has no feature group
structures, so we generated random group structures by
grouping features of the same cost into groups of a given
size s.1

• Agriculture is a proprietary data-set that contains 510k
data samples, 328 features, and 57 feature groups. Each
sample has a binary label in {1, 2}. Each feature group
has an associated cost measured in its average computa-
tion time.2

5.2 EVALUATION METRIC, BASELINE AND
ORACLE

Following the practice of Karayev et al. [2012], we use the
area under the maximization objective F (explained vari-
ance) vs. cost curve normalized by the total area as the
timeliness measurement of the anytime performance of an
algorithm. In our data-sets, the performance of linear pre-
dictors plateaus much before all features are used, e.g., Fig-

1We experiment on group sizes s ∈ {5, 10, 15, 20}. We
choose regularizer λ = 10−5 based on validation. We use s = 10
for qualitative results such as plots and illustrations, but we report
quantitative results for all group size s. For our quantitative re-
sults, we report the average test performance. The initial risk is
R(∅) = 0.85.

2 There are 6 groups of size 32; the other groups have sizes
between 1 and 6. The cost of each group is its expected compu-
tation time in seconds, ranging between 0.0005 and 0.0088; the
total feature cost is 0.111. We choose regularizer λ = 10−7.
The data-set is split into five 100k sets, and the remaining 10k are
used for validation. We report the cross validation results on the
five 100K sets as the test results. The initial risk isR(∅) = 0.091.

2Karayev et al. [2012] define timeliness as the area under the
average precision vs. time curve

ure 3a demonstrates this effect in YAHOO! LTR, where the
last one percent of total improvement is bought by half of
the total feature cost. Hence the majority of the timeliness
measurement is from the plateau performance of linear pre-
dictors. The difference between timeliness of different any-
time algorithms diminishes due to the plateau effect. Fur-
thermore, the difference vanishes as we include additional
redundant high cost features. To account for this effect, we
stop the curve when it reaches the plateau. We define an α-
stopping cost for parameter α in [0, 1] as the cost at which
our CS-G-OMP achieves α of the final objective value in
training and ignore the objective vs. cost curve after the α-
stopping cost. We call the timeliness measure on the short-
ened curve as α-timeliness; 1-timeliness equals the normal-
ized area under the full curve and 0-timeliness is zero. If
a curve does not pick a group at α-stopping cost, we lin-
early interpolate the objective value at the stopping cost to
computr timeliness. We say an objective vs. cost curve
has reached its final plateau if at least 95% of the total ob-
jective has been achieved and the next 1% requires more
than 20% feature costs. (If the plateau does not exist, we
use α = 1.) Following this rule, we choose α = 0.97 for
AGRICULTURAL and α = 0.99 for YAHOO! LTR.

Since an exhaustive search for the best feature sequenc-
ing is intractable, we approximate with the Oracle any-
time performance following the approach of Karayev et al.
[2012]. Given an objective vs. cost curve of a sequencing,
we reorder the feature groups in descending order of their
marginal benefit per unit cost, assuming that the marginal
benefits stay the same after reordering. We specify which
sequencing is used for creating Oracle in Section 5.5. For
baseline performance, we use cost-weighted Group Lasso
[Yuan and Lin, 2006], which scales the regularization con-
stant of each group with the cost of the group. We note that
the cascade design by Chen et al. [2012] can be reduced to
this baseline if we enforce linear prediction. More specifi-
cally, the baseline solves the following minimization prob-
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(a) Plateau Effect and α-Stopping Costs

(b) Importance of Costs (CS-G-OMP vs. G-OMP)

Figure 3: (a) Explained Variance vs. Cost curve of CS-
G-OMP in YAHOO! LTR. Vertical lines mark different α-
stopping costs. (b) Explained Variance vs. Cost curve of
CS-G-OMP and G-OMP on YAHOO! LTR set 1 with indi-
vidual group size s = 10, stopped at 0.97-stop cost.

lem: minw∈RD ‖Y −Xw‖22 + λ
∑J
j=1 c(Gj)‖wGj‖2, and

we vary value of regularization constant λ to obtain lasso
paths. We call this baseline algorithm Sparse3.

5.3 FEATURE COST

Our proposed CS-G-OMP differs from Group Orthogonal
Matching Pursuit (G-OMP) [Lozano et al., 2009] in that
G-OMP does not consider feature costs when evaluating
features. We show that this difference is crucial for any-
time linear prediction. In Figure 3b, we compare the ob-
jective vs. costs curves of CS-G-OMP and G-OMP that
are stopped at 0.97-stopping cost on YAHOO! LTR. As ex-
pected, CS-G-OMP achieves a better overall prediction at
every budget, qualitatively demonstrating the importance
of incorporating feature costs. Table 1 and Table 2 quan-
tify this effect, showing that CS-G-OMP achieves a better
timeliness measure than regular G-OMP.

5.4 GROUP WHITENING

We provide experimental evidence that Group whitening,
i.e., XT

g Xg = IDg for each group g, is a key assump-
tion of both this work and previous feature group selec-

3We use an off-the-shelf software, SPAMS (SPArse Modeling
Software [Jenatton et al., 2010]), to solve the optimization.

(a) Group Whiten vs. No-Whiten (AGRICULTURAL)

(b) Group Whiten vs. No-Whiten (YAHOO! LTR)

Figure 4: Explained Variance vs. Feature Cost curves
on AGRICULTURAL (a) and YAHOO! LTR (b) comparing
group whitening with no group whitening. The curves stop
at 0.97-stopping cost.

tion literature by Lozano et al. [2009, 2011]. In Fig-
ure 4, we compare anytime prediction performances us-
ing group whitened data against those using the common
normalization scheme where each feature dimension is in-
dividually normalized to have zero mean and unit vari-
ance. The objective vs. cost curve qualitatively shows that
group whitening consistently results in the better predic-
tions. This behavior is expected from data-sets whose fea-
ture groups contain correlated features, e.g., group whiten-
ing effectively prevents selection step (∗) from overesti-
mating the predictive power of feature groups of repeated
good features. Table 1 and Table 2 demonstrate quantita-
tively the consistent better timeliness performance of CS-
G-OMP over that of CS-G-OMP-no-whiten.

5.5 SELECTION CRITERION VARIANTS

This section compares CS-G-OMP and CS-G-FR, along
with variants of these two methods and the baseline,
Sparse. We formulated the variant of CS-G-OMP, single,
in Section 2 and it intuitively chooses feature groups of the
best single feature dimension per group cost. Our experi-
ments show that this modification degrades prediction per-
formance of CS-G-OMP. Since FR directly optimizes the
objective at each step, we expect CS-G-FR to perform the
best and use its curve to compute the Oracle curve as an
approximate to the best achievable performance.
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In Figure 5, we evaluate CS-G-FR, CS-G-OMP and CS-
G-OMP-single based on the objective in Theorem 3.2, i.e.,
explained variance vs. feature cost curves. CS-G-FR, as
expected, outperforms all other methods. CS-G-OMP out-
performs the baseline method, Sparse, and the CS-G-OMP-
Single variant. The performance advantage of CS-G-OMP
over CS-G-OMP-Single is much clearer in the AGRICUL-
TURAL data-set than in the YAHOO! LTR data-set. AGRI-
CULTURAL has a natural group structure which may con-
tain correlated features in each group. YAHOO! LTR has
a randomly generated group structure whose features were
filtered by feature selection before the data-set was pub-
lished [Chapelle and Chang, 2011]. CS-G-FR and CS-G-
OMP outperform the baseline algorithm, Sparse. We spec-
ulate that linearly scaling group regularization constants
by group costs did not enforce Group-Lasso to choose the
most cost-efficient features early. The test-time timeliness
measures of each of the methods are recorded in Table 1
and Table 2, and quantitatively confirm the analysis above.
Since AGRICULTURAL and YAHOO! LTR are originally a
classification and a ranking data-set, respectively, we also
report in Figure 5 the performance using classification ac-
curacy and NDCG@5. This demonstrates the same quali-
tatively results as using explained variants.

As expected, when compared against CS-G-OMP, CS-G-
FR consistently chooses more cost-efficient features at the
cost of a longer training time. In the context of linear re-
gression, let us assume that the group sizes are bounded
by a constant when we are to select the number K feature
group. We can then compute a new model of K groups
in O(K2N) using Woodbury’s matrix inversion lemma,
evaluate it in O(KN), and compute the gradients with re-
spect to the weights of unselected groups inO(N(J−K)).
Thus, CS-G-OMP requires O(K2N + JN) at step K =
1, 2, 3, ..., J and CS-G-FR requires O((J − K)K2N), so
the total training complexities for CS-G-OMP and CS-G-
FR areO(J3N) andO(J4N), using

∑J
K=1K

2 = 1
6J(J+

1)(2J + 1) and
∑J
K=1K

3 = 1
4J

2(J + 1)2. We also show
this training complexity gap empirically in Figure 2, which
plots the curves of training time vs. number of feature
groups selected. When all feature groups are selected, CS-
G-OMP achieves a 8x speed-up in AGRICULTURAL over
CS-G-FR. In YAHOO! LTR, CS-G-OMP achieves a speed-
up factor between 10 and 20; the smaller the sizes of the
groups, the larger speed-up due to the increase in the num-
ber of groups. Both greedy methods are much faster than
the Lasso path computation using SPAMS, however.

This work was conducted in part through collaborative par-
ticipation in the Robotics Consortium sponsored by the U.S Army
Research Laboratory under the Collaborative Technology Al-
liance Program, Cooperative Agreement W911NF-10-2-0016.

(a) FR vs. OMP vs. Sparse (AGRICULTURAL)

(b) FR vs. OMP vs. Sparse (YAHOO! LTR)

(c) FR vs. OMP vs. Sparse (AGRICULTURAL)

(d) FR vs. OMP vs. Sparse (YAHOO! LTR)

Figure 5: (a),(b): Explained Variance vs. Feature Cost
curves on AGRICULTURAL and YAHOO! LTR(group-
size=10), using CS-G-OMP, CS-G-FR and their Single
variants. Curves stop at 0.97 and 0.98 stopping costs.
(c),(d): Same curve with the natural objectives of the data-
sets: accuracy and NDCG@5.
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Abstract

Multilevel clustering problems where the con-
tent and contextual information are jointly clus-
tered are ubiquitous in modern datasets. Exist-
ing works on this problem are limited to small
datasets due to the use of the Gibbs sampler.
We address the problem of scaling up multi-
level clustering under a Bayesian nonparamet-
ric setting, extending the MC2 model proposed
in (Nguyen et al., 2014). We ground our ap-
proach in structured mean-field and stochastic
variational inference (SVI) and develop a tree-
structured SVI algorithm that exploits the in-
terplay between content and context modeling.
Our new algorithm avoids the need to repeat-
edly go through the corpus as in Gibbs sam-
pler. More crucially, our method is immediately
amendable to parallelization, facilitating a scal-
able distributed implementation on the Apache
Spark platform. We conduct extensive exper-
iments in a variety of domains including text,
images, and real-world user application activi-
ties. Direct comparison with the Gibbs-sampler
demonstrates that our method is an order-of-
magnitude faster without loss of model qual-
ity. Our Spark-based implementation gains an-
other order-of-magnitude speedup and can scale
to large real-world datasets containing millions
of documents and groups.

1 INTRODUCTION

A prominent feature in numerous modern datasets tackled
in machine learning is how the data are naturally layered
into groups in a hierarchical representation: text corpus as
collection of documents, which are subdivided into words,
user’s activities are organized by users, whose sessions di-
vided into actions, electronic medical records (EMR) orga-

nized as sets of ICD1 codes diagnosed for the patient. Prob-
abilistic modeling techniques for grouped data have be-
come a standard tool in machine learning, including topic
modeling (Blei et al., 2003; Teh et al., 2006) and multi-
level data analysis (Hox, 2010; Diez-Roux, 2000). An-
other important feature in such datasets is the availability
of rich sources of additional information known as contexts
and group-specific meta-data (Phung et al., 2012; Nguyen
et al., 2014). These include information about authorships,
timestamps, various tags associated with texts and images,
user’s demographics, etc. For consistency, we shall refer
to the content groups (e.g., text documents, images, user’s
activity session) broadly as documents, and its associated
context as document-specific context.

The rich and interwoven nature of raw document contents
and their contextual information provides an excellent op-
portunity for joint modeling and, in particular, clustering
the content-units (e.g., forming topics from words) and
the content-groups (e.g., forming cluster of documents)
— a problem known as multilevel clustering with context
(Nguyen et al., 2014). There have been several attempts
of multilevel clustering in the probabilistic topic model-
ing literature. A simple approach is to subdivide this task
into two phases: first learn a topic model and then per-
form document clustering using the topic-induced repre-
sentation of the documents (Lu et al., 2011; Nguyen et al.,
2013; Phung et al., 2014). An elegant approach is to unify
these two steps into a single framework (Nguyen et al.,
2014; Xie & Xing, 2013; Rodriguez et al., 2008; Wulsin
et al., 2012). Among these work, the Bayesian nonpara-
metric approach to multilevel clustering with group-level
contexts (MC2) (Nguyen et al., 2014) offers a powerful
method capable of jointly modeling both content and con-
text in a flexible and nonparametric manner, generalizing
on several previous modeling techniques. The key idea of
the MC2 model is a special Dirichlet Process (DP) whose
base-measure is a product between a context-generating
measure and a content-generating DP. This construct en-
ables both clustering of documents associating with their

1Stands for International Classification of Disease.
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contexts and clustering of words into topics. Nguyen et al.
(2014) have shown that their MC2 integrates the nested DP
(Rodriguez et al., 2008) and DP mixture (DPM) (Antoniak,
1974) into one single unified model wherein marginalizing
out the documents’ contents results in a DP mixture, and
marginalizing out document-specific contexts results in a
nested DP mixture.

The need for jointly accounting for both context and con-
tent data in a flexible Bayesian nonparametric fashion also
underlies a formidable computational challenge for model
fitting. In fact, the MC2 model of Nguyen et al. (2014) was
originally equipped with a Gibbs sampler for inference;
hence the usefulness of the model could only be demon-
strated on relatively small datasets. This seriously hinders
the usefulness and applicability of MC2 in tackling big real
world datasets which can contain millions of documents or
more, along with it the millions of useful pieces of contex-
tual information.

Our goal in this work is to address the multilevel cluster-
ing with contexts problem at scale, by developing effec-
tive posterior inference algorithms for the MC2 using tech-
niques from stochastic variational inference. A challenging
aspect about inference for MC2 is the computational treat-
ment in the clustering of discrete distributions of contents
jointly with the context variables. Unlike either the Dirich-
let process or HDP mixtures, the context-content linkage
present in the MC2 model makes the model more expres-
sive, while necessitating the inference of the joint context
and content atoms. These are mathematically rich objects
— while the context atoms take on usual contextual values,
the content atoms represent probability distributions over
words. To maintain an accurate approximation of the joint
context and content atoms, we employ a tree-structured
mean-field decomposition that explicitly links the model
context and content atoms.

The result is a scalable stochastic variational inference
(SVI) algorithm for MC2 (SVI-MC2) that, unlike Gibbs
sampling, avoids the need to go through the corpus mul-
tiple times. Moreover, the SVI computation within each
mini-batch can be easily parallelizable. To fully exploit this
advantage of the SVI formulation, we further implement
our proposed SVI for the MC2 algorithm on the Apache
Spark platform. We demonstrate that even a sequential
implementation of SVI-MC2 is several times faster than
Nguyen et al. (2014)’s Gibbs sampler while yielding the
same model perplexity. A parallel implementation can gain
another order of magnitude improvement in speed; our
Spark implementation can simultaneously find topics and
clustering millions of documents and their context. Our
contributions then can be summarized as: (a) a new theoret-
ical development of stochastic variational inference for an
important family of models to address the problem of mul-
tilevel clustering with contexts. We note this class of mod-
els (MC2) include nested DP, DPM, and HDP as the special

cases; (b) a scalable implementation of the proposed SVI-
MC2 on Apache Spark; and (c) the demonstration that our
new algorithm can scale up to very large corpora.

2 RELATED WORK

Models for clustering documents

Two of the most well-known probabilistic models for learn-
ing from grouped data are Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and its nonparametric coun-
terpart, Hierarchical Dirichlet process (HDP) (Teh et al.,
2006). These models allow us to exploit the group structure
for word clustering but not to cluster the groups of data. To
clustering documents, some authors employed a two-step
process. In the first step, each document is represented by
the feature of its topic proportion using topic models, e.g.
LDA or HDP. Now each document is considered as an input
data point for some clustering algorithm. Elango & Jayara-
man (2005) used LDA combined with K-means to cluster
images while Nguyen et al. (2013) exploited features by
HDP and used Affinity Propagation for clustering human
activities.

Incorporating topic modeling and clustering in one unique
model is a more elegant approach. Nested DP (nDP) (Ro-
driguez et al., 2008) is the first attempt to handle this chal-
lenge in the context of Bayesian nonparametric. The model
by Rodriguez et al. (2008) has tried to group documents
into clusters each of which shares the same distribution
over the topics. However, in the original nDP, the doc-
uments do not share topics. An extension to nDP, the
MLC-HDP model with 3-level clustering, has been done
by Wulsin et al. (2012). This model can cluster words,
documents and document-corpora with shared topic atoms
throughout the group hierarchy with this model. Later,
Multi-Grain Clustering Topic Model which allows mix-
ing between global topics and document-cluster topics has
been introduced by Xie & Xing (2013). The most re-
cent work, the Bayesian nonparametric multilevel cluster-
ing with group-level contexts (MC2) (Nguyen et al., 2014),
offers a theoretically elegant joint model for both content
and context. To our best of knowledge, this model is the
current state-of-the-art for this problem.

However, authors in (Nguyen et al., 2014) only provide a
Gibbs sampling method for inference. This seriously hin-
der the usefulness and applicability of MC2 in tackling
modern datasets which can contain millions of documents.

Stochastic Variational Inference

Between two main inference approaches for graphical
model including MCMC and deterministic variational
methods, variational inference is usually preferred due
to its predictable convergence. In variational inference
scheme, the problem of computing intractable posterior
distribution is transformed into an optimization problem by
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introducing tractable variational distribution. One of the
most popular approximation is mean-field which assumes
that the variational distribution is fully factorized. The ob-
jective function called Evidence Lower BOund (ELBO) is
defined as KL divergence between approximated distri-
bution and the posterior distribution plus a constant. To
solve this optimization problem, coordinate descent can be
used. However, this optimization method is not suitable for
modern datasets with millions of documents since all docu-
ment are visited in each iteration. To circumvent this chal-
lenge, the earliest, but very recent, attempt can be traced
back to (Hoffman et al., 2010) where SVI framework for
Bayesian nonparametric inference was proposed by com-
bining mean-field approximation and stochastic optimiza-
tion. SVI for the hierarchical Dirichlet process (HDP) was
also presented in (Wang et al., 2011).

Instead of using coordinate descent, stochastic variational
inference (SVI) (Hoffman et al., 2013) using stochastic
gradient descent to optimize the ELBO. In order to keep op-
timization process converge faster, SVI uses the coordinate
descent for the local update which is related to each data
point and update global variables involving multiple data
points with stochastic gradient. Moreover, as suggested by
Amari (1998), learning with natural gradient may lead to
faster convergence. In the SVI framework with exponen-
tial family distributions, the natural gradient updates are
not only more likely to improve optimization speed but also
produces simpler update equations.

We ground our methodology on (Hoffman et al., 2013) and
develop the SVI updates for MC2. However, we note at the
outset that, unlike HDP, our model is not completely fac-
torized, hence our solution does not simply follow a naive
mean field, but rather a variant of structured mean field ap-
proximation of Bayesian nonparametric models.

3 MULTILEVEL CLUSTERING WITH
CONTEXTS (MC2)

We first describe the MC2 model of (Nguyen et al., 2014).
The generative process for MC2 model (see Fig. 1a) is as
follows

U ∼ DP (γ (H × DP (υQ0))) where Q0 ∼ DP (ηS) ,
(θj , Qj) ∼ U for each group j

xj ∼ F (· | θj) , ϕji ∼ Qj , wji ∼ Y (· | ϕji) .

In the above, U is a DP realization, hence a discrete mea-
sure with probability 1, and therefore enforces the cluster-
ing of documents. The sample pair (θj , Qj) ∼ U repre-
sents the context parameter and content-generating mea-
sures of the j-th document. Distinct measures Qj are ef-
fectively drawn from DP(υQ0) where Q0 ∼ DP (ηS), so
the samples ϕji share atoms just like in a hierarchical DP
(HDP). F (.|θj) and Y (.|ϕji) are the likelihoods for con-

text and content with parameters θj and ϕji. Their base-
measures H and S are assumed to be conjugate with the
respective likelihoods.

The stick-breaking representation for the MC2 model is
given Fig. 1b. When integrated out the random stick
length, the model has an intuitive Polya-Urn view known as
the Chinese Restaurant Franchise Bus (CRF-Bus) (Nguyen
et al., 2014). Each word in a document is viewed as a cus-
tomer in a bus. The buses deliver customers randomly to
a set of restaurants following a Chinese Restaurant Pro-
cess (CRP). After getting off the buses, the customers in
the restaurants behave as in the HDP - Chinese Restau-
rant Franchise (CRF). The MC2 model thus inherits the
metaphor of tables at restaurants and global dishes from
the CRF. The detailed stick-breaking representations are

• Stick length for content generation ε = {εm}∞m=1 and
content shared atoms {ψm}∞m=1

ε ∼ GEM (1, γ) , ψm ∼ S, Q0 =
∞∑
m=1

εmδψm .

• Stick length for context generation β = {βk}∞k=1 and
context shared atoms {φk}∞k=1

β ∼ GEM (1, η) , φk ∼ H, G =
∞∑
t=1

βkδφk
.

• Choosing document group (restaurant) for document
j = 1, . . . , J and generating context observation

zj ∼ Cat (β1:∞) , xj ∼ F (· | φzi) .

• Stick length for each document group k = 1, . . . ,∞,
{τkt}∞t=1, choosing tables t, dishes c and generating
content word, j = 1, . . . , J and i = 1, . . . , nj

τk ∼ GEM (1, υ) , tji ∼ Cat
(
τzj

)
,

ckt ∼ Cat (ε) , wji ∼ Y
(
· | ψczj tji

)
.

We consider general exponential family forms for the
likelihoods2 Y (w | ψ) = exp (〈T (w) , ψ〉 −A (ψ))
and F (x | φ) = exp (〈T (x) , ψ〉 −A (φ)). The
prior S (ψ | ·) and H (φ | ·) have the conjugate
forms p

(
ψ | λψ∗

)
∝ exp

(〈
λψ∗ , [ψ;−A (ψ)]

〉)
and

p
(
φ | λφ∗

)
∝ exp

(〈
λφ∗ , [φ;−A (φ)]

〉)
. The notation

[v; c] represents the stacking of two column vectors.

2Note that T (w) and T (x) may have different forms.
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(a) Generative view. (b) Stick-breaking view.

Figure 1: Graphical presentation for Multilevel clustering with contexts models.

4 SVI FOR MC2

4.1 TRUNCATED STICK-BREAKING
REPRESENTATIONS

The approximation of DP by truncated stick-breaking rep-
resentation has been introduced by (Ishwaran & James,
2001) and later used by (Blei & Jordan, 2006) for
variational inference in DP mixtures model. In this
work, we also use the truncated stick-breaking approx-
imation for all three stick-breaking length variables of
the model which are β, ε, and τ . As pointed by Ish-
waran & James (2001), the truncated stick-breaking is
equivalent to the generalized Dirichlet distribution (Con-
nor & Mosiman, 1969; Wong, 1998) which is a distribu-
tion on K − 1 simplex with 2 (K − 1)-parameter λ =(
λ11, . . . λ(K−1)1,, λ12, λ(K−1)2

)
. Each pair of parameters

(λk1, λk2) corresponds to the parameters for a Beta dis-
tribution in stick-breaking process. Generalized Dirichlet
(GD) distribution is a member of the exponential family
and is conjugate to Multinomial distributions (for more de-
tails, see the Appendix). For this reason, the mean-field up-
date of a GD-distributed stick length also has a GD form.
We used this conjugacy to compute the variational updates
for stick-breaking variables.

4.2 MEAN-FIELD VARIATIONAL
APPROXIMATION

The objective of inference problem with the model is to
estimate the posterior distribution p (Θ | x,w) where Θ is
the collection of parameter variable of the model, Θ ,
{β, ε, τ, c, z, t, ψ, φ}. In variational Bayes inference, this
intractable posterior will be approximated with a tractable
distribution called variational distribution, q (Θ). In order

to ensure that q (Θ) is tractable, one usually uses mean-
field assumption which assumes that all variational vari-
ables in Θ are independent. However, because of the na-
ture of the MC2 model, two group of variables zi (restau-
rant) and tj1, . . . , tjnj (tables) are highly correlated. We
will maintain the joint distribution of these variables in as
a collection of tree-structure graphical model. Thus, the
variational distribution q is factorized as

q (Θ) = q (β) q (ε) q (τ) q (c) q (z, t) q (ψ) q (φ) .

All the factorized q’s have exponential family form and for
convenience we shall use either the natural or mean param-
eterization when appropriate. We use the following con-
vention in naming the variational parameters: λ denotes a
natural parameter, µ denotes a mean parameter, superscript
denotes the collection of random variables of being param-
eterized and subscript denotes the index of variables. For
instance, under this convention, λφk is the natural parameter
for q(φk). The actual parameterization of q’s are

• For the group of stick-breaking variables q (β) =
GD

(
β | λβ

)
, q (ε) = GD (ε | λε), and q (τ) =∏K

k=1 GD (τk | λτk) where λβ , λε, and λτk are 2K−2,
2M − 2, and 2T − 2 dimension vector, respectively.
K, M and T are the truncated levels for restaurants,
dishes and tables in the CRF-Bus process respectively.

• For the group of content and context atoms q (ψ) =∏M
m=1 q

(
ψm | λψm

)
and q (φ) =

∏K
k=1 q

(
φk | λφk

)
.

• For the group of indicator variables q (c) =∏K
k=1

∏T
t=1 Mult (ckt | µckt) and q (z, t) =∏

j

[
Mult

(
zj | µzj

)∏nj

i=1 Mult
(
tji | µtjizj

)]
where

µzj , µckt, and µtjik are K, M , T -dimension vectors,
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correspondingly. Note that two groups of variables
z and t are not fully factorized but form a forest of
trees, with each tree rooted at zj .

Figure 2: Variational factorization and global vs. local vari-
ables for SVI.

4.3 MEAN-FIELD UPDATES

All the individual q’s in our model are in the exponential
family and are locally conjugate. Thus, standard naive
mean-field updates (Bishop et al., 2006; Blei & Jordan,
2006), can be derived for all the variational parameters in
a straight-forward manner. We provide more details on the
update for the variational parameters of z and t since these
are coupled and structured mean-field is needed (Wain-
wright & Jordan, 2008). At a high-level, for each tree
rooted at zj , exact inference needs to be done to convert
from natural to mean parameters. The actual updates equa-
tion for these parameters are

µtjikl ∝ µ̃tjikl, (1)

µzjk ∝ exp(E [ln βkp(xj | φk)] +
∑
i

ln(
T∑
l=1

µ̃tjikl)),

where µ̃tjikl is the unnormalized value of µtjikl and is

exp
(∑M

m=1 µ
c
klmE [ln p (wji | ψm)] + E [ln τkl]

)
.

The update for the rest of the parameters uses naive mean-
field.

Two groups of variables, stick-breaking and atoms, contain
similar variables. One variable in each group will be pre-
sented, the others have a similar forms and can be found in
the appendix. The following equations includes updates for
the content side of the stick-breaking and atom variables.

For the stick-breaking variational distribution q(ε)

λεm1 = 1 +
∑
k,t

µcktm λεm2 = γ +
∑
k,t

M∑
l=m+1

µcktl. (2)

For the content-atom variational distribution q(ψ)

λψm = λψ∗ +
J∑
j=1

nj∑
i=1

(
K∑
k=1

µzjk

T∑
l=1

µcktmµ
t
jikl

)
[T (wji) ; 1] .

4.4 STOCHASTIC VARIATIONAL INFERENCE

We follow the SVI framework (Hoffman et al., 2013) and
divide the set of variables Θ in the posterior into the set of
local variables {z, t} with the rest as global variables (see
Fig. 2). The variational Evidence Lower BOund (ELBO)
function is

where Θg , Θ\ {z, t} is the global parameters of the
model.

We will reuse the coordinate descent updates for local vari-
ational parameters µzj and µtjik given in section 4.2. To
derive the stochastic gradient descent update for the global
parameters, instead of taking the gradient ofLwhich would
result in messages being passed from all the documents,
we take the gradient of Lj which is sufficient to yield a
stochastic gradient of L. The gradients are multiplied with
the inverse Fisher information matrix to obtain the natural
gradients (denoted as ∂(ng)

∂ ). The gradient with respect to
the content atom and stick breaking variational parameters
λψm and λεm1,2 are

∂(ng)Lj
∂λψm

= −λ
ψ
m + λψ∗
J

+
nj∑
i=1

(
∑
k,l

µzjkµ
c
klmµ

t
jikl) [T 〈wji〉 ; 1] .

(3)

∂(ng)Lj
∂λεm1

= −λ
ε
m1 + 1
J

+
∑
k,t

µcktm, (4)

∂(ng)Lj
∂λεm2

= −λ
ε
m2 + γ

J
+
∑
k,t

M∑
r=m+1

µcktr

Computing the gradient w.r.t. q(ckt) is easier using the
minimal natural parameterization of the multinomial. Let
λckt be the minimal natural parameter corresponding to the
mean parameter µckt, the gradient w.r.t λckt is

∂(ng)Lj
∂λcktm

=
−λcktm + E

[
ln εm

εM

]
J

+ (aktm − aktM ) (5)

where aktm = µzjk
∑nj

i=1 µ
t
jiklE [ln p (wji | ψm)] for m =

1 . . .M . Conversion from natural to mean parameters for
the multinomials are standard

µcktm = exp (λcktm)
1 +

∑M−1
m=1 exp (λcktm)

,m = 1, . . . ,M − 1

and µcktM = 1−
∑M−1
m=1 µktm.

With above derivations, we can summarize the procedure
of stochastic variational inference for MC2 model in Algo-
rithm 1.

In the above, the stochastic gradient is obtained for each
document. In practice, mini-batch of documents are used
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Algorithm 1 Stochastic variational inference for MC2
Require: forgetting rate ι and delay %

Initialize λψ(0)
m , λ

φ(0)
k and set t = 1;

repeat
Choose uniformly document j from data
Compute µtjik and µzj with Eq. (1)
Set $t = (t+ %)−ι

Update stick-breaking variable hyperparameters λβ , λε, λτk
using corresponding gradient similar to Eq. (4) as follows

λ(t+1) = λ(t) + J$t
∂(ng)Lj

∂λ

Update content and context atom hyperparameters λψ, λφ

using corresponding gradient similar to Eq. (3) as follows

λ(t+1) = λ(t) + J$t
∂(ng)Lj

∂λ
Update “dish-table” indicator variable hyperparameters
µcktm using gradient in Eq. (5).

until convergence

in each update to reduce the variance (Hoffman et al., 2010,
2013). In this case, the gradients with a single document in
are replaced by the average gradients of all the documents
in a mini-batch.

5 EXPERIMENTS

We evaluate our inference algorithm on real datasets with
two different scale settings: small datasets with thousands
of documents which can also be run using Gibbs sampler;
large-scale data with millions of documents which can not
be practically run with sampling methods. For small-scale
settings, we illustrate competitive perplexity of our infer-
ence methods compare to Gibbs sampler but with much
less computation time. We also report the running time and
performance of our model for large-scale data sets.

5.1 DATASETS

As aforementioned, we use two groups of different scales
of datasets. For the small scale setting, in order to compare
with Gibbs sampler, we use the same datasets in (Nguyen
et al., 2014): a text dataset, NIPS, and image dataset, NUS-
WIDE.

• NIPS3 consists of 1740 document with the vocabulary
size 13,649. To evaluate predictive performance, we
randomly split into 90% training and 10% held-out for
computing perplexity.

• NUS-WIDE (Chua et al., 2009) contains a subset of
13 animal classes which totally include 3411 images.
Held-out data includes 1357 images and the rest is
used for training the model. For the image features,
we use bag-of-word SIFT vector with dimension 500.
For the context observations, we use the tags for each
image which are 1000-dimension spare vectors.

3http://www.cs.nyu.edu/~roweis/data.html

For the large-scale setting, we use three different datasets
including Wikipedia, Pubmed, and Application Usage Ac-
tivity (AUA).

• Wikipedia includes about 1.1 million documents
downloaded from wikipedia.com. We pre-process
data using a vocabulary list taken from the top 10,000
words in Project Gutenberg and remove all words less
than three characters (Hoffman et al., 2013). For the
context features we use the (first) writer of the articles
and the (top level) categories inferred from tagged cat-
egories in each article as described in (De Vries et al.,
2010).

• PubMed comprises 1.4 million abstracts acquired
from pubmed.gov. These documents are filtered with
the published year from 2000 onward. Similar to
Wikipedia, we also extracted the vocabulary from the
whole dataset and only kept words with more than
2 characters. A top list of 10.000 words is used as
vocabulary list for computing bag-of-word. We fur-
ther extract the Medical Subject Headings (MeSH)
and consider as the context.

• Application Usage Activity (AUA): This dataset con-
tains the usage behavior from more than one million
users of a popular software application. Each user
is treated as a document in which a word refers to
a specific functionality of the application and word
frequency refers to the number of times the user in-
teract with the corresponding functionality. The total
number of functionalities (vocabulary size) is roughly
10,000. In addition to the current application, each
user also uses a host of other related software prod-
ucts which can be used as the context of the user. Ap-
plying MC2 to this data effectively cluster the set of
users into different segments. To measure the cluster-
ing quality, we simply use a ground-truth of two clus-
ters of paid and free users. Note that this information
is not present in the context or the word content.

5.2 EXPERIMENT SETUPS

Since our observed data are discrete, we assume that
they are generated from either Categorical or Multinomial
distributions endowed with Dirichlet priors. The learn-
ing rate for stochastic learning at iteration t is $t =
(t+ %)−ιwhere % ≥ 0 is the delay parameter, and ι ∈
(.5, 1] is the forgetting rate which controls how quickly pre-
vious statistics is forgotten. In the experiment for comput-
ing perplexity, we fixed % = 1 and ι = 0.8. The hyperpa-
rameters for Dirichlet distributions are set to 0.01 and 0.1
for content and context, respectively.
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Small-scale setting

The experiments for NIPS and NUSWIDE datasets are car-
ried out on an Intel Xeon 2.6GHz machine with 16 cores,
16GB RAM using a C# implementation running on Win-
dows 7. SVI method can be parallelized when computing
local updates. We run the experiment using both datasets
in serial and parallel modes. The parallel implementation
is accomplished using the Task Parallel Library (TPL) in
.NET framework.

Large-scale setting

In order to handle big datasets, we implement our algo-
rithms on Apache Spark platform4. The experiments for
Wikipedia, Pubmed, AUA are run in two main settings with
no context observations, and with full context observations
for each corresponding context. Since HDP implementa-
tion is not available on Spark, we use the LDA implementa-
tion provided by Spark machine learning library (MLLIB)
to compare perplexity with our algorithm. We set the num-
ber of topics for LDA equal to the number of topic trun-
cated in the MC2 model.

5.3 EVALUATION METRICS

Perplexity. We use perplexity as the evaluation metric to
compare the modelling performance between inference al-
gorithms (Gibbs vs. SVI) or between model (our model
vs. LDA). The perplexity is defined as perplexity (wtest ) =

exp
{
−
∑

j
ln p(wj.|D)∑

j
nj

}
where wtest is the content words

in the test set and D is the training data. Since we wish
to compare our SVI algorithm with Gibbs sampler, we im-
plemented importance sampling (Wallach et al., 2009) to
computed ln p (wj. | D) in both cases. In Spark MLLIB,
there is no implementation for computing perplexity with
importance sampling, we instead used the code given by
Wallach et al. (2009).

Clustering performance. Since our model can carry out
clustering for documents, we wish to compare clustering
performance. However, documents usually do not have a
“strong” ground truth and most of them are with multiple-
cluster. For instance, with PubMed data, we use MeSH
for each article as ground truth cluster but each article
usually associates with several MeSH terms. Some popu-
lar clustering performance metrics including purity, Ran-
dom Index(RI), Normalized Mutual Information (NMI),
Fscore (Manning et al., 2008, Chap16) are designed for
single cluster ground truth. Whenever there is single clus-
ter ground truth, for example, in the AUA dataset, we use
the above four metrics. In other cases, we use the extended
Normalized Mutual Information (eNMI) which is defined
as follows. Let suppose that we have N objects each of

4http://spark.apache.org/

Running time (s)
Sequential Parallel

NIPS 11213 1431

NUSWIDE 8373 682

Table 1: Running time of two implementation version

which is belong to one of K clusters. A clustering algo-
rithm will assign this object to one of T clusters. With
N objects, we denote W as an N × K ground truth ma-
trix where each row of this matrix represent a (transposed)
one-hot vector encoding of the cluster it belongs. Sim-
ilarly, we have N × T matrix as a result matrix. The
joint probability when an object has the ground truth clus-
ter k and is assigned to cluster t is p(w, c) = WTC.
The mutual information between discovered clusters and
ground truth cluster is MI(W,C) =

∑
k,t p(w = k, c =

t) ln p(w=k,c=t)
p(c=t)p(w=k) . The normalized mutual information is

NMI(W,C) = 2MI(W,C)
H(C)H(W ) where H (·) is the entropy of

histogram of clusters. In the case of multiple clustering,
we have the matrix W and C where each row is not one-
hot vector but a vector with the sum as 1. We use some
equations above for computing extended NMI (eNMI).

5.4 EXPERIMENTAL RESULT

Results on small -scale setting

First, we demonstrate the performance of our proposed
methods (SVI) compared with Gibbs sampler of (Nguyen
et al., 2014). For Gibbs samplers, we ran 1500 iterations
and SVI with 50 documents in each mini-batch and com-
pute perplexity. The Fig. 3 showed the predictive perfor-
mance of them over running time. In both datasets, SVI
can approach the performance of Gibbs sampler within one
epoch5; after the first epoch, the perplexity only improved
a little. To obtain the competitive performance with Gibbs
sampler, our algorithm needs only one-fourth of the amount
of running time. Furthermore, SVI algorithm is paralleliz-
able. As shown in Table 1, running time with parallelized
version on a single machine with 16 cores is further re-
duced significantly, 8 and 12 times for NIPS and NUS-
WIDE, respectively. Note that our parallel SVI-MC2 only
parallelize the local updates, hence, the per-core speedup
also depends on the fraction of parallelizable local updates
and the global update. In the case of NIPS data set, the
dimension of the (global) content and context topic are
13,649 and 2037, respectively, while those of NUS-WIDE
are 500 and 1000 which could explain why parallelization
is more effective for NUS-WIDE.

5Each epoch is an iteration in which algorithm visited all data
points.
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Figure 3: Perplexity with respect to running time on two datasets: NIPS and NUS-WISE. The blue line denotes the change
of perplexity over running time with two epochs of data for SVI learning algorithm while the green line depicts perplexity
running with Gibbs samplers. The results for Gibbs sampler is shown for every 100 iteration from 100-th to 1400-th
iteration (excluding 100 burn-in iteration).

Context availability LDA
100% 0%

Wikipedia - writer 2,167 2,280 2,635

Pubmed - MeSH 2,294 2.448 3,178

AUA - other products 142.3 149.7 209.3

Table 2: Log perplexity of Wikipedia and PubMed data

Results on large-scale setting

In this setting, we validate the robustness of our algo-
rithm with large-scale datasets. We ran our inference al-
gorithm with Wikipedia, PubMed, and AUA datasets to-
gether with the LDA baseline on an 8-node Spark cluster.
We used writer, MeSH, and other products used as con-
texts for Wikipedia, PubMed, and AUA, respectively. For
each dataset, we ran data with full observations of context
and without context. Table 2 depict the perplexity for these
datasets with and without context compared with LDA. The
predictive performance of SVI-MC2 improved remarkably
compared to LDA.

For PubMed dataset, we used MeSH as the ground truth for
clustering evaluation. As each document contains several
MeSH terms, we use extended NMI (eNMI) for computing
clustering performance. For each mini-batch, we compute
eNMI of this mini-batch with its ground truth. The table 3
depict the average eNMI for all mini-batches in an epoch.
With a very little availability of the ground truth as context,
our algorithm can considerably improve clustering perfor-
mance.

Context availability

1% 0%

eNMI 0.084 0.065

Table 3: Extended Normalized mutual information (NMI)
for Pubmed data

For AUA dataset, three different levels of context availabil-
ity are used including no context, 1%, and full context.
Since the ground truth clusters do not overlap, we can use
the conventional metrics for clustering evaluation such as
NMI, RI, purity, and Fscore. We also compute the average
of the above indices for all mini-batches in an epoch. The
clustering results are are shown in table 4. All clustering
metrics showed the advantage of context observation (very
small percentage is needed) to improve the clustering per-
formance.

It is not possible to run the Gibbs sampler for these large
datasets; even the serial version of SVI took too much time,
hence we only reported running time for Spark SVI-MC2.
With the mini-batch size of 500, the best running times are
achieved using an 8-node cluster: Wikipedia: 17 hours;
Pubmed: 18.5 hours; AUA: 18 hours. However, using a
single-node (with 16-core) could also suffice with running
time roughly 1.5 times slower than on a full 8-node cluster.
We note that the size of the mini-batch (500) in this case
strongly affects the effectiveness of the distributed-cluster
setting. For example, with a mini-batch size of 1000, the
speed-up factor on an 8-node cluster (compared to single-
node) increases from 1.5 to 1.8.
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Context Avail. NMI Purity RI Fscore

Other
products
used

0% 0.027 0.14 0.284 0.12

1% 0.035 0.174 0.286 0.128

100% 0.033 0.179 0.287 0.131

Table 4: Clustering performance for AUA data

6 CONCLUSION

We have presented a scalable method for Bayesian non-
parametric multilevel clustering with contextual side infor-
mation. We proposed a tree-structured SVI approximation
for an efficient approximation of the model’s posterior. The
approach can be directly parallelizable, and we provide par-
allelized implementations that work both on a single ma-
chine and on a distributed Apache Spark cluster. The ex-
perimental results demonstrate that our method is several
orders of magnitude faster than existing the Gibb-sampler
while yield the same model quality. Most importantly, our
work enables the applicability of multilevel clustering to
modern real-world datasets which can contain millions of
documents.
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Abstract

The counting grid is a grid of microtopics, sparse
word/feature distributions. The generative model
associated with the grid does not use these mi-
crotopics individually, but in predefined groups
which can only be (ad)mixed as such. Each al-
lowed group corresponds to one of all possible
overlapping rectangular windows into the grid.
The capacity of the model is controlled by the
ratio of the grid size and the window size. This
paper builds upon the basic counting grid model
and it shows that hierarchical reasoning helps
avoid bad local minima, produces better classi-
fication accuracy and, most interestingly, allows
for extraction of large numbers of coherent mi-
crotopics even from small datasets. We evaluate
this in terms of consistency, diversity and clarity
of the indexed content, as well as in a user study
on word intrusion tasks. We demonstrate that
these models work well as a technique for em-
bedding raw images and discuss interesting par-
allels between hierarchical CG models and other
deep architectures.

1 INTRODUCTION

Recently, a new breed of topic models, dubbed counting
grids (CG) [1, 2], has been shown to have advantages in
unsupervised learning over previous topic models, while
at the same time providing a natural representation for vi-
sualization and user interface design [3]. CG models are
generative models based on a grid of word distributions,
which can best be thought of as the grounds for a mas-
sive Venn diagram of documents. The intersections among
multiple documents (bags of words) create little intersec-
tion units with a very small number of words in them (or
rather, a very sparse distribution of the words). The grid
arrangement of these sparse distributions, which we will
refer to here as microtopics, facilitates fast cumulative sum

based inference and learning algorithms that chop up the
documents into much smaller constitutive pieces than what
traditional topic models typically do. For example, Fig. 1
shows a small part of such a grid with a few representa-
tive words with greatest probability from each microtopic.
Each of the Science magazine abstracts used to train this
grid is assumed to have been generated from a group of mi-
crotopics found in a single 4 × 4 window with equal weight
given to all component microtopics. Thus, each microtopic
can be 16 times sparser than the set of documents grouped
into the window.

A document may share a window with another very sim-
ilar document, but it is also mapped so that it only par-
tially overlaps with a window that is the source for a set
of slightly less related documents. The varying window
overlap literally results in a varying overlap in document
themes. This modeling assumption results in a trained grid
where nearby microtopics tend to be related to each other as
they are often used together to generate a document. Con-
sider, e.g., the lower right 4×4 window in Fig. 1. The word
distributions in these 16 cells are such that a variety of Sci-
ence papers on evidence of ancient life on Earth could be
generated by sampling words from there. (Note that each
cell, though of very low entropy, contains a distribution
over the entire vocabulary.) In the posterior distribution,
this window is by far the most likely source for an article
on a bizarre microorganism that produced nitrogen in cre-
taceous oceans. In the 4×4 window two cells to the left of
this example we find mapped a variety of articles on even
more ancient events on Earth, e.g. on how sulfur isotopes
reveal a deep mantle storage of ancient crust. But there we
also start to see words which increase the fit for articles that
describe similar events on other planets. Further movement
to the left gets us away from the Earth and into astronomy.

To demonstrate the refinement of the microtopics compared
to topics from a typical topic model, the color labeling of
the grid was created so as to reflect the Kullback-Leibler
(KL) divergence of the individual microtopics to the top-
ics trained on the same data through latent Dirichlet allo-
cation (LDA). The LDA topics, hand-labeled after unsu-

299



pervised training, correspond to fairly broad topics, while
the CG represents the data as a group of slowly evolv-
ing microtopics. For example, all the yellow coded mi-
crotopics map to the ”Physics” LDA topic, but they oc-
cupy a contiguous area in which from left to right the
focus slowly shifts from electromagnetism and particle
physics to material science. Furthermore, it is interest-
ing to see the microtopics that occupy the boundaries be-
tween coarser topics that LDA model found, capturing the
links among astronomy, physics and biology. It is im-
mediately evident that the 2D CGs can have great use in
data visualization, though the model can be trained for ar-
bitrary dimensionality [1]. These models combine topic
modeling and data embedding ideas in a way that facili-
tates intuitive regularization controls and allows creation
of much larger sets of organized sparse topics. Further-
more, they lend them selves to elegant visualization and
browsing strategies, and we encourage the reader to see
the example http://research.microsoft.com/
en-us/um/people/jojic/CGbrowser.zip.

However, the existing EM algorithm for CG learning is
prone to local minima problems which occasionally lead
to under performance [4, 5]. In addition, no direct testing
of the microtopic coherence has been performed to date,
which makes it unclear if they are meaningful outside their
windowed grouping. After all, a variety of sophisticated
topic models have been developed and tested by the re-
search community, but LDA seems to still beat them of-
ten in practice. E.g., [16,17] raise doubts that various re-
ported perplexity improvements over the basic LDA model
are meaningful as they are sensitive to smoothing constants
in the model, and also fail to translate to improvements
in human judgement of topic quality. In fact, LDA usu-
ally outperforms more complex models on tasks that in-
volve human judgement, which may be the main reason
why practitioners of data science prefer this basic model
to others [6]. Here we develop hierarchical versions of
CG models, which in our experiments produced embed-
dings of considerably higher quality. We show that lay-
ering into deeper architectures primarily aids in avoiding
bad local minima, rather than increasing representational
capacity: The trained hierarchical model can be collapsed
into an original counting grid form but with a much higher
likelihood compared to the grids fit to the same data using
EM with random restarts. The better data fit then translates
into quantitatively better summaries of the data, as shown
in numerical experiments as well as human evaluations of
microtopics obtained through crowdsourcing.

2 HIERARCHICAL LEARNING OF
GRIDS OF MICROTOPICS

The (C)CG grids [1, 2]: The basic counting grid πk [1]
is a set of distributions on the d-dimensional toroidal dis-
crete grid E indexed by k. The grids in this paper are bi-
dimensional and typically from (Ex = 32)× (Ey = 32) to

a)

b) c)

d)

N N N N

Figure 2: a) The basic counting grid, b) the componen-
tial counting grid, c) the hierarchical counting grid model
(HCG) obtained by stacking a componential counting grid
and a counting grid, and d) the hierarchical componen-
tial counting grid model (HCCG). Dotted circles represent
the parameters of the models. Red links represents known
conditional distributions P (kn|ℓn) = UW

ℓ - Eq. 5. They
are distributions over the grid locations, uniformly equal to
1/|W| in the window of size Wℓ unequivocally identified
by ℓ.

(Ex = 64)× (Ey = 64) in size. The index z indexes a par-
ticular word in the vocabulary z = [1 . . . Z]. Thus, πi(z) is
the probability of the word z at the d-dimensional discrete
location i, and

∑
z πi(z) = 1 at every location on the grid.

The model generates bags of words, each represented by a
list of words w = {wn}N

n=1 with each word wn taking an
integer value between 1 and Z . The modeling assumption
in the basic CG model is that each bag is generated from
the distributions in a single window W of a preset size,
e.g., Wx = 5 × Wy = 5. A bag can be generated by first
picking a window at a d-dimensional location ℓ, denoted as
Wℓ, then generating each of the N words by sampling a lo-
cation kn for a particular microtopic πkn uniformly within
the window, and finally by sampling from that microtopic.
Because the conditional distribution p(kn|ℓ) is a preset uni-
form distribution over the grid locations inside the window
placed at location ℓ, the variable kn can be summed out[1],
and the generation can directly use the grouped histograms

hℓ(z) =
1

|W|
∑

j∈Wℓ

πj(z), (1)

where |W| is the area of the window, e.g. 25 when 5×5
windows are used. In other words, the position of the win-
dow ℓ in the grid is a latent variable given which we can
write the probability of the bag as

P (w|ℓ) =
∏

wn∈w

hℓ(wn) =
∏

wn∈w

( 1

|W| ·
∑

j∈Wℓ

πj(wn)
)

(2)

As the grid is toroidal, a window can start at any position
and there is as many h distributions as there are π distribu-
tions. The former will have a considerably higher entropy
as they are averages of many π distributions. Although the
basic CG model is essentially a simple mixture assuming
the existence of a single source (one window) for all the
features in one bag, it can have a very large number of
(highly related) choices h to choose from. Topic models
[7, 8], on the other hand, are admixtures that capture word
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Figure 1: Clash of topics: LDA topics are mapped onto a counting grid. As shown in the top left panel, LDA’s topics
cluster in contiguous areas on the grid. In the enlarged part of the grid, for each microtopic we show the most likely words
if they exceed a threshold.

co-occurrence statistics by using a much smaller number
of topics that can be more freely combined to explain a sin-
gle document. Componential Counting Grids (CCG) [2]
combine these ideas, allowing multiple groups of broader
topics h to be mixed to explain a single document. The en-
tropic h distributions are still made of sparse microtopics
π in the same way as in CG so that the CCG model can
have a much larger number of topics than an LDA model
without overtraining. More precisely, each word wn can
be generated from a different window, placed at location
ℓn, but the choice of the window follows the same prior
distributions θℓ for all words. Within the window at loca-
tion ℓn the word comes from a particular grid location kn,
and from that grid distribution the word is assumed to have
been generated. The probability of a bag is now

P (w|π) =
∏

wn∈w

∑

ℓ∈E

(
θℓ ·

( 1

|W|
∑

j∈Wℓ

·πj(wn)
))

(3)

In a well-fit CCG model, each data point has an inferred
θℓ distribution that usually hits multiple places in the grid,
while in a CG, each data point tends to have a rather peaky
posterior location distribution because the model is a mix-
ture. Both models can be learned efficiently using the EM
algorithm because the inference of the hidden variables, as
well as updates of π and h can be performed using summed
area tables [9], and are thus considerably faster than most
of the sophisticated sampling procedures used to train other
topic models. An intriguing property of these models is that
even on a 32 × 32 grid with 1024 microtopics π and just as

many grouped topics h, there is no room for too many in-
dependent groups. With a window size 8 × 8, for example,
we can place only 16 windows without overlap, and the
remaining windows are overlapping the pieces of these 16.
The ratio between grid and window size is referred to as the
capacity of the model, and the training set size necessary to
avoid overtraining the model only needs to be 1-2 orders of
magnitude above the capacity number. Thus a grid of 1024
microtopics may very well be trainable with thousands of
data points, rather than 100s of thousands that traditional
topic models usually require for that many topics.

Raw image embedding using (C)CGs: In previous ap-
plications of CG models to computer vision, images were
represented as spatially disordered bags of features. We
experimented with embedding raw images with full spatial
information preserved, and we present this here as we feel
that the image data helps in illuminating the benefits of hi-
erarchical learning. An image described by a full intensity
function I(x, y) could be considered as a set of words, each
word being an image location z = (x, y). For a N × M
image, we have a vocabulary of size M · N . The number
of repetitions of word (x, y) is then set to be proportional
to the intensity I(x,y). (In case of color images, the num-
ber of features is simply tripled with each color channel
treated in this way). In other words, an unwrapped image
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a) b) c) d)

Figure 3: Intersecting digits on a grid of strokes. Each digit image is represented by counts (intensity) associated with
image locations. a) π-distributions b) h-distributions c-d) Intersecting digits

is considered to be a word (location) histogram. π and h
distributions can then also be seen as images, as they pro-
vide weights for different image locations. If we tile the
image representations of these distributions we get addi-
tional insight into CGs as an embedding method. Fig. 3
shows a portion of a 48 × 48 grid trained on 2000 MNIST
digits assuming a 6 × 6 window averaging. To illustrate
the generative model, in c) we show the partial window
sums for two overlapping windows over π. The green and
blue areas form a window that generates a version of digit
3, which can be seen at the top left of this portion of the
h grid (panel b)). The blue and red, on the other hand,
combine into a window that represent a digit 2 at the posi-
tion (3,3) in panel b). Partial sums for green, blue and red
areas are shown in c) and these partial sums, color coded
and overlapped are also illustrated in d). Careful obser-
vation of b) or the full grid in the appendix, demonstrates
the slow deformation of digits from one to another in the h
distributions. The appendix has additional examples of im-
age dataset embedding, including rendered 3D head mod-
els and images of bold eagles retrieved by internet search.
The CG π distributions shown here look like little strokes,
while h distributions are full digits. The CCG model, on
the other hand, combines multiple h distributions to repre-
sent a single image, and so h looks like a grid of strokes
Fig. 4a, while π distributions are even sparser.

Hierarchical grids: By learning a model in which micro-
topics join forces with their neighbors to explain the data,
(C-)CG models tend to exhibit high degrees of relatedness
of nearby topics. As we slowly move away from one mi-
crotopic, the meaning of the topics we go over gradually
shifts to related narrowly defined topics as illustrated by
Fig. 1; this makes these grids attractive to HCI applica-
tions. But this also means that simple learning algorithms
can be prone to local minima, as random initializations
of the EM learning sometimes result in grouping certain
related topics into large chunks, and sometime breaking
these same chunks into multiple ones with more potential
for suboptimal microtopics along boundaries. To illustrate
this, in Fig. 4a we show a 48 × 48 grid of strokes h (Eq.
1) learned from 2000 MNIST digits using a CCG model
assuming a 5× 5 window averaging. Nearby features h are
highly related to each other as they are the result of adding

up features in overlapping windows over π (which is not
shown). CCG is an admixture model, and so each digit in-
dexed by t has a relatively rich posterior distribution θt over
the locations in the grid that point to different strokes h. In
Fig. 4, we show one of the main principal components of
variation in θ as an image of the size of the grid. For three
peaks there, we also show h-features at those locations.
The combination of these three sparse features creates a
longer contiguous stroke, which indicates that this longer
stroke is often found in the data. Thus, the separation of
these features across three distant parts of the map is likely
a result of a local minimum in basic EM training. To trans-
fer this reasoning to text models, consider the 5th cell in the
first row in Fig. 1 with words HIV, AIDS, and the blue cell
in the middle of the last column with words SELECTION,
ADAPTIVE. The separation of these two things in faraway
locations may very well be a result of a local minimum,
which could be detected if location posteriors exhibit cor-
relation. This illustration points to an idea on how to build
better models. The distribution over locations ℓ that a data
point t maps to (a posteriori) could be considered a new
representation of the data point (digit in this case), with the
mapped grid locations considered as features, and the pos-
terior probabilities for these locations considered as feature
counts. Thus another layer of a generative model can be
added to generate the locations in the grid below, Fig. 2c-
d. It is particularly useful to use another microtopic grid
model as this added layer, because of the inherent related-
ness of the nearby locations in the grid. The layer above
can thus be either another admixture grid model (Compo-
nential Counting Grid - CCG), or a mixture (CG), and this
layering can be continued to create a deep model. As CG
is a mixture model, it terminates the layering: Its posterior
distributions are peaky and thus uncorrelated. However, an
arbitrary number of CCGs can be stacked on top of each
other in this manner, terminating on top with a CG layer
to form a hierarchical CG (HCG) model, or terminating in
a CCG layer to form a hierarchical CCG (HCCG) model.
In each layer, the pointers to features below are grouped,
which should result in creating a contiguous longer stroke
as discussed above in a grid cell that contains a combina-
tion of pointers to the lower layers.

For the sake of brevity, we only derive the HCG learning
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Figure 4: The benefits of hierarchical learning: a) hCCG - a bigger higher resolution version in the appendix. b) Principal
components of θ and three peaks put together.

algorithm with a single intermediate CCG layer. The ex-
tension to HCCG and higher order hierarchies is reported
in the appendix. Variational inference and learning pro-
cedure for counting grid-based models utilizes cumulative
sums and is only slower than training an individual (C)CG
layer by a factor proportional to the number of layers. The
graphical model for HCG is shown in Fig. 2c, where loca-
tion variables pointing to grids in different layers have the
same name, ℓ but carry a disambiguating superscript. To
avoid superscripts in the equations below, we renamed the
CG’s location variable from ℓ(1) to m and dropped the su-
perscript “(2)’ in the layer above. The bottom CCG layer
follows

P (wn|kn, πCCG) = πCCG,kn (wn) (4)

P (kn|ℓn) = UW
ℓn

(kn) =

{
1

|W| if kn ∈ Wℓn

0 Otherwise
(5)

The latter is a pre-set distribution over the grid locations,
uniform inside Wℓn . Instead of the prior θℓ the locations
are generated from a top layer CG, indexed by m (ℓ(2) in
the figure),

P (ℓn|m, πCG) =
1

|W| ·
∑

k∈Wm

πCG,k(ℓn) (6)

This equation also shows that the lower-levels’ grid loca-
tions act as observations in the higher level. We use the
fully factorized variational posterior qt({kn}, {ℓn}, m) =
qt(m) · ∏

n

(
qt(kn) · qt(ℓn)

)
to write the negative free en-

ergy F bounding the non-constant part of the loglikelihood
of the data as

F =
∑

t,n,kn

qt(kn) log πCCG,kn (wt
n)

+
∑

t,n,kn,ℓn

qt(kn)qt(ℓn) log UW
ℓn

(kn)

+
∑

t,m,ℓn

qt(m)qt(ℓn) log πCG,m(ℓn)

− H
(
q(m, {kn}, {ℓn})

)

We maximize F with the EM algorithm which iterates E-
and M-steps until convergence. E:

qt(kn = i) ∝
(
e

∑
ℓn

qt(ℓn) log UW
ℓn

(i)
)

· πCCG,i(wn)

qt(ℓn = i) ∝
(
e

∑
kn

qt(kn) log UW
i (kn)

)

·
(
e

∑
m qt(m) log πCG,m(i)

)

qt(m = i) ∝ e
∑

n

∑
ℓn

qt(ℓn)·log hCG,i(ℓn)

The M step re-estimates the model parameters using these
updatedposteriors:

πCCG,i(z)∝
∑

t

∑

n

qt(kn = i) · [wt
n = z]

πCG,i(l)∝ π̂CG,i(l) ·
∑

t,n

qt(ℓn = l) ·
∑

k|i∈Wk

qt(kn = i)

ĥCG,i(l)

where the last (CG) update is performed analogous with
[1]. Interestingly, training these hierarchical models stage
by stage, reminiscent of deep models where such incremen-
tal learning was practically useful [10].
Although it has been shown that a deep neural network
can be compressed into a shallow broader one through
post training [11], the stacked ( C-)CG models can be col-
lapsed mathematically. In this sense we can view HCG
and HCCG as hierarchical learning algorithms for CG and
CCG, which are easier to visualize than deeper models. For
example, for HCG in Fig. 2c-d, it is straightforward to see
that the following grid defined over the original features
{wn},

πℓ(wn) =
∑

i

π
(1)
·,ℓ (i) · h

(2)
CCG,i(wn) (7)

can be used as a single layer grid that describes the same
data distribution as the two-layer model1. However, the
grids estimated from the hierarchical models should be
more compact as the scattered groups of features are pro-
gressively merged in each new layer. Learning in hierar-
chical models is thus more gradual and results in better

1hi are the grouped microtopics in the window Wi - Eq. 1
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local maxima, and we show below that the results are far
superior to regular EM learning of the collapsed CG or
CCG models.

3 EXPERIMENTS
In all the experiments we used models with two extra lay-
ers, although, in some experiments, we found that three
levels worked slightly better. In general, the optimal num-
ber of layers will depend on the particular application.

Likelihood comparison: In the first experiment we com-
pared the local maxima on models learned using the (full)
MNIST data set. The two layer HCG model was first pre-
trained stage-wise as, e.g., [10], by training the higher level
on the posterior distribution from the lower level as the in-
put. Then, the model was refined by further variational EM
training. The procedure is repeated 20 times with different
random initializations to produce twenty hierarchical mod-
els. As discussed above, these models can be collapsed to a
CG model by integrating out intermediate layers (7). These
models were then compared with twenty models learned by
directly learning CG models through previously published
standard EM learning algorithm starting from twenty ran-
dom initializations. Despite being collapsible to the same
mathematical form, the HCG models consistently produced
higher likelihood than the CG models directly learned us-
ing the standard method. In fact, each CG model created by
collapsing one of the learned HCG models had log likeli-
hood at least two standard deviations above the highest log
likelihood learned by basic EM (p-value < 10−20). Both
learning approaches used the computation time equivalent
to 1000 iterations of standard EM, which was more than
enough for convergence.

Document classification: Next we ran test to see if the
increased likelihood obtainable with a better learning al-
gorithm translates into increased quality of representation
when posterior distributions for individual text documents
are considered as features in classification tasks. We con-
sidered the 20-newsgroup dataset2 (20N) and the Master-
cook dataset3 (MC) composed by 4000 recipes divided in
15 classes. Previous work [12, 13] reduced 20-Newsgroup
dataset into subsets with varying similarities and we
considered the hardest subset composed by posts from
the very similar newsgroups comp.os.ms-windows,
comp.windows.x and comp.graphics. We consid-
ered the same complexities as in [2], using 10-fold cross
validation and classified test document using maximum
likelihood. Results for both datasets are shown in Tab. 1.

Evaluation of microtopic quality using quantitative
measures related to the use in visualization and index-

2http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-20/www/data/news20.html

3[2]

CG HCG CCG HCCG linSVM
20N 82,3% 83,5% 83,4% 85,0% 77.5%
MC 38,7% 38,9% 76,2% 78,9% 71.3%

Table 1: Document classification. When bold, hierarchical
grids outperformed the basic grids with statistical signifi-
cance (HCG p-value =2.01e-4, HCCG p-values < 1e-3).
“linSVM” stands for linear support vector machines which
we reported as baseline.

ing: We evaluated the coherence and the clarity of the
microtopics comparing the collapsed (2 layers) hierarchi-
cal grids - HCG and HCCG with regular grids [1, 2], latent
Dirichlet allocation (LDA) [7], the correlated topic model
(CTM) [8] which allows to learn a large set of correlated
topics and few non-parametric topic models [14, 15].
Generative models are often evaluated in terms of perplex-
ity. However different models, even different learning al-
gorithms applied to the same model, are very difficult to
compare [16] and better perplexity does not always indi-
cate better quality of topics as judged by human evalu-
ators [17]. On the other hand, the subjective evaluation
of topic quality is highly related to measures that have
to do with data indexing, e.g. quality of word combina-
tions when used for information retrieval. Thus we start
with a novel evaluation procedure for topic models which
is strongly related to information indexing and then show
that we obtain similar evaluation results when we use hu-
man judgement. In the following experiments, we consid-
ered a corpus D composed of Science Magazine reports
and scientific articles from the last 20 years. This is a
very diverse corpus similar to the one used in [8]. As pre-
processing step, we removed stop-words and applied the
Porters’ stemmer algorithm [18]. We considered grids of
size 16 × 16, 24 × 24, 32 × 32, 40 × 40 and 48 × 48 fix-
ing the window size to 5 × 5. (Previous literature showed
that counting grids are only sensitive to the ratio between
grid and window area, as long as windows are sufficiently
big.) We varied number of topics for LDA and CTM in
{10, 15, . . . , 100, 125, 150, . . . , 1000}. For each complex-
ity we trained 5 models starting with different random ini-
tializations and we averaged the results. In each repetition,
we considered a random third of this corpus, for total of
roughly |D| = 12K documents, Z = 20K different words
and more than 600K tokens.

To evaluate (micro)topics, we repetitively sampled k-tuples
of words and checked for consistency, diversity and clarity
of the indexed content. In the following, we describe the
procedure used for evaluating grids. An equivalent proce-
dure was used to evaluate other topic models for compari-
son.
To pick a tuple T of n words, we sampled a grid location ℓ̂.
Then, we repetitively sampled the microtopic πℓ̂ to obtain
the words in the tuple T = {w1, . . . wn}. We did not allow
repetitions of words in the tuple. We considered 5000 dif-
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Figure 5: Microtopic evaluations. We compared 32 × 32 grids with the best result obtained by LDA and CTM. To avoid
cluttering the graph, we did not report CCG results which were found inferior to the proposed hierarchical models. We
also reported the gradient of the diversity curves to show that new samples steadily continue to contribute new tuples.

ferent n = 2, 3, 4, 5-tuples, not allowing repeated tuples.
Then we checked for consistency, diversity and clarity of
content indexed by each tuple. The consistency is quanti-
fied in terms of the average number of documents from the
dataset that contained all words in T . The diversity of in-
dexed content is illustrated through the cumulative graph of
acquired unique documents as more and more n-tuples are
sampled and used to retrieve documents containing them.
As this last curve depends on the sample order, we further
repeated the process 5 times for a total of 25K different
samples. Finally the clarity [19], measures the ambiguity
of a query with respect to a collection of documents and
it has been used to identify ineffective queries, on average,
without relevance information.

Formally, the query clarity is measured as the entropy
between the n-tuple and the language model P (w) (un-
igram distributions) as

∑
w P (w|T ) · log2

P (w|T )
P (W ) where

P (w|T ) =
∑

d∈D P (w|D) · P (D|T ). We estimated the
likelihood of an individual document model generating the
tuple P (T |D) =

∏
wt∈T P (wt|D) and obtain P (D|T ) us-

ing uniform prior probabilities for documents that contains
a word in the tuple, and a zero prior for the rest. Finally, to
estimate P (w|T ) we employed MonteCarlo sampling.
Results are illustrated in Fig.5 and should be appreciated by
looking at all three measures together, as some can be over-
optimized at the expense of others. The diversity curve
that consistently grows as more tuples are sampled indi-
cates that the sampled tuples belong to different subsets of
the data, and are thus discriminative in segmenting the data
into different clusters. The average tuple consistency, on
the other hand, demonstrates that the sampled tuples do oc-
cur in large chunks of the data, demonstrating that the in-
duced clusters are of significant size. The clarity measure

shows that the clusters made of texts retrieved using dif-
ferent tuples have clear differentiation from the rest of the
dataset in usage of all the words in the dictionary. We re-
port results for the 32×32 grids and the best result of LDA
and CTM which peaked respectively at 80 and 60 topics.
Results for other grid sizes can be found in the additional
material; they are stable across complexities with slightly
better performances for larger grids.
All grid models show good consistency of words selected
as they are optimized so that documents’ words map into
overlapping windows. Through positioning and intersec-
tion of many related documents the words end up being
arranged in a fine-grained manner so as to reflect their
higher-order co-occurrence statistics. Hierarchical learn-
ing greatly improved the results despite the fact that HCCG
and HCG can be reduced to (C)CGs through marginaliza-
tion (7).
Overall HCCG strongly outperformed all the methods, es-
pecially with a total gain of 0.5 bits on clarity, which is
around third of the score for LDA/CTM. Despite allowing
for correlated topics that enable CTM to learn larger topic
models, CTM trails LDA in these graphs as topics were
over expanded. We also considered non-parametric topic
models such as “Dilan” [14] and the hierarchical Dirichlet
process [15] but their best results were poor and we did not
reported them in the figure. To get an idea, both models
only indexed 25% of the content after 5000 2-Tuples sam-
ples and had a clarity lower of 0.7-1.2 bits than other topic
models.

Human judgments of topic coherence: We next tested
the quality of the inferred topics. Topic coherence is of-
ten measured based on co-occurrence of the top k = 10
words per topic. While good as a quick sanity check of a
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Figure 6: Result of word intrusion task. Statistical significance is denoted by *. p-values and further details on the test
are reported in the appendix

single learned model, when this measure is used to com-
pare models, it will favor models that lock onto top themes
and distribute the rest of the words in the tails of the topic
distributions. The LDA models usually have a large drop
off in topic coherence when the number of topics is in-
creased to force the model to address more correlations in
the data. Indeed, using this measure, LDA topics outper-
form CG topics in case of small models. But as the number
of topics grows, the microtopics trained by HCG signifi-
cantly outperform both LDA and CG (see the appendix). A
more interesting measure of topic quality, which not only
depends on individual topic coherence but also on mean-
ingful separation of different topics, requires human evalu-
ation of word intrusions. In a word intrusion task [17], six
randomly ordered words are presented to a human subject
who then guesses which word is an outlier. In the original
procedure a target topic is randomly selected and then the
five words with highest probability are picked. Then, an
intruder is added to this set. It is selected at random from
the low probability words of the target topic that have high
probability in some other topic. Finally the six words are
shuffled and presented to the subject. If the target topic
shows a lack of coherence or distinction from the intrud-
ing topic, the subject will often fail to correctly identify
the intruder. This task is again geared towards only getting
the top words right in a topic model and ignoring the rest
of the distribution, which makes it unsuitable to compari-
son with microtopic models which attempt to extract much
more correlation from the data. Thus instead of picking
the top words from each topic, we sampled the words from
the target topic to create the in-group. After sampling the
location of a microtopic from the grid ℓ̂, we picked three
randomly chosen words from πℓ̂ or from the small groups
of microtopics in the window of size 2×2, and 3×3 around
ℓ̂ (The latter is equivalent to computing the window distri-
butions h using windows of smaller size than the ones used
in training and should give us the indication if the granu-
larity assumed in the window size was exaggerated: If it
is then averaging of nearby topics should significantly re-
duce the noise due to forced topic splitting). For each of
these groups we choose the intruder word using the stan-
dard procedure. If in this harder task humans can identify
intruders better for microtopic models than for LDA mod-
els, this would indicate that the microtopics are not sim-
ply random subsamples of broader topics captured in h and

similar in entropy to LDA topics. They would be a mean-
ingful breakup of broad topics into finer ones. We com-
pared LDA (known to performed better than CTM on in-
trusion tasks [17]), HCG, and HCCG, on randomly crawled
10K Wikipedia articles and used Amazon Mechanical Turk
(24000 completed tasks from 345 different people). The
trained grids were of size 32 × 32 and the windows 5 × 5.
The optimal LDA size was chosen using likelihood cross-
validation over the range of complexities as in the previous
experiments (The peak performance there was at 80 top-
ics). Results are shown in Fig.6 as a function of the Eu-
clidean distance on the grid of the intruder word from the
topic. HCCG outperformed LDA (p-values for the 3 tasks
1.20e-11, 1.88e-5, 2.97e-05) and HCG (p-values for the 3
tasks 3.97e-18, 1.01e-11, 3.14e-19) indicating that learn-
ing microtopics is possible with a good algorithm. Overall,
users were able to solve correctly 71% of HCCG problems
and only 58% of LDA problems. Interestingly, the perfor-
mance of HCCG and HCG does not seem to depend on the
distance of the intruder word: Even picking intruder word
from a very close location rather than from a far away one
lead to no additional confusion for the user. This shows
that HCCG chops up the data into meaningful microtopics
which are then combined into a large number of groups
h that do not over broaden the scope. HCCG and HCG
also outperformed respectively CG and CCG (see the ap-
pendix).

Learning to separate mixed digits. Finally, we show
that an HCCG model can be used to perform a task that
eludes most unsupervised and supervised models. We cre-
ated a set of 10000 28 × 28 images, each containing two
different MNIST digits overlapped, Fig. 7. We trained an
HCCG model consisting of five 32 × 32 layers on this data
stagewise by feeding Lt(ℓ) =

∑
n qt(ℓn = ℓ) from one

layer to the next. Windows of size 5 × 5 were used in all
layers. From layer to layer, the new representations of the
image consist of growing combinations of low level fea-
tures h from the bottom layer (sparseness of which is simi-
lar to Fig. 4a). The hierarchical grouping is further encour-
aged by simply smoothing Lt(ℓ) with a 5×5 Gaussian ker-
nel with deviation of 0.75, before feeding it to the next layer
(This is motivated by the fact that nearby features in h are
related and so if two distant locations should be grouped,
so should those locations’ neighbors). Once the model is
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Figure 7: Unsupervised learning on mixed digits

collapsed to a single HCCG grid the components no longer
look like short strokes but like whole digits, mostly free of
overlap: The model has learned to approximately separate
the images into constitutive digits. Reasoning on overlap-
ping digits even eludes deep neural networks trained in a
supervised manner, but here we did not use the information
about which two digits are present in each of the training
images.

4 CONCLUSIONS
We show that with new learning algorithms based on a hier-
archy of CCG models, possibly terminated on the top with
a CG, it is possible to learn large grids of sparse related
microtopics from relatively small datasets. These micro-
topics correspond to intersections of multiple documents,
and are considerably narrower than what traditional topic
models can achieve without overtraining on the same data.
Yet, these microtopics are well formed, as both the numer-
ical measures of consistency, diversity and clarity and the
user study on 345 mechanical turkers show. Another ap-
proach to capturing sparse intersections of broader topics is
through product of expert models, e.g. RBMs [20], which
consist of relatively broad topics but model the data through
intersections rather than admixing. RBMs are also often
stacked into deep structures. In future work it would be
interesting to compare these models, though the tasks we
used here would have to be somewhat changed to focus on

the intersection modeling, rather than the topic coherence
(as this is not what RBM topics are optimized for). HCCG
and HCG models have a clear advantage in that it is easy to
visualize how the data is represented, which is useful both
to end users in HCI applications, and to machine learning
experts during model development and debugging. An-
other parallel between the stacks of CCGs and other deep
models is that the uniform connectivity of units is directly
enforced through window constraints, rather than encour-
aged by dropout. Finally, in this specific context we illus-
trate a broader phenomenon that requires more methodical
and broader treatment by the machine learning community.
A more complex (deeper) model showed here large advan-
tages in terms of training likelihood, but these advantages
were not due to the expanded parameter space, because the
resulting model is equivalent to a collapsed single layer
model. Rather than being a reflection of increased repre-
sentational abilities of the model, better likelihoods were
thus the result of better fitting algorithm that consists of
training a deep model (and then collapsing it into a simpler
but equivalent parameterization). Similar phenomena are
likely regularly encountered elsewhere in machine learn-
ing, but not always recognized as such, as in the absence of
the full knowledge of the extrema of the fitting criterion, an
increase in performance is often inappropriately ascribed to
better modeling rather than better model fitting.
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Abstract

There is resurging interest, in statistics and ma-
chine learning, in solvers for ordinary differential
equations (ODEs) that return probability mea-
sures instead of point estimates. Recently, Con-
rad et al. introduced a sampling-based class of
methods that are ‘well-calibrated’ in a specific
sense. But the computational cost of these meth-
ods is significantly above that of classic meth-
ods. On the other hand, Schober et al. pointed
out a precise connection between classic Runge-
Kutta ODE solvers and Gaussian filters, which
gives only a rough probabilistic calibration, but
at negligible cost overhead. By formulating the
solution of ODEs as approximate inference in
linear Gaussian SDEs, we investigate a range of
probabilistic ODE solvers, that bridge the trade-
off between computational cost and probabilistic
calibration, and identify the inaccurate gradient
measurement as the crucial source of uncertainty.
We propose the novel filtering-based method
Bayesian Quadrature filtering (BQF) which uses
Bayesian quadrature to actively learn the impre-
cision in the gradient measurement by collecting
multiple gradient evaluations.

1 INTRODUCTION

The numerical solution of an initial value problem (IVP)
based on an ordinary differential equation (ODE)

u(n) = f(t, u(t), u′(t), . . . , u(n−1)(t)), u(0) = u0 ∈ RD
(1)

of order n ∈ N, with u : R → RD, f : [0, T ] × RnD →
RD, T > 0, is an essential topic of numerical mathematics,
because ODEs are the standard model for dynamical sys-
tems. Solving ODEs with initial values is an exceedingly
well-studied problem (see Hairer et al., 1987, for a com-
prehensive presentation) and modern solvers are designed

very efficiently. Usually, the original ODE (1) of order n is
reduced to a system of n ODEs of first order

u′(t) = f(t, u(t)), u(0) = u0 ∈ RD, (2)

which are solved individually. The most popular solvers
in practice are based on some form of Runge-Kutta (RK)
method (as first introduced in Runge (1895) and Kutta
(1901)) which employ a weighted sum of a fixed amount
of gradients in order to iteratively extrapolate a discretized
solution. That is, these methods iteratively collect ‘obser-
vations’ of approximate gradients of the solved ODE, by
evaluating the dynamics f at an estimated solution, which
is a linear combination of previously collected ‘observa-
tions’:

yi = f


ti, u0 +

∑

j<i

wijyj


 . (3)

The weights of s-stage RK methods of p-th order are care-
fully chosen so that the numerical approximation û and the
Taylor series of the true solution u coincide up to the p-th
term, thereby yielding a local truncation error of high or-
der, ‖u(t0 + h) − û(t0 + h)‖ = O(hp+1), for h → 0.
One can prove that s ≥ p in general, but for p ≤ 4 there
are RK methods with p = s. Hence, allowing for more
function evaluations can drastically improve the speed of
convergence to the true solution.

The polynomial convergence is impressive and helpful; but
it does not actually quantify the true epistemic uncertainty
about the accuracy of the approximate solution û for a con-
crete non-vanishing step-size h. One reason one may be
concerned about this in machine learning is that ODEs are
often one link of a chain of algorithms performing some
statistical analysis. When employing classic ODE solvers
and just plugging in the solution of the numerical meth-
ods in subsequent steps, the resulting uncertainty of the
whole computation is ill-founded, resulting in overconfi-
dence in a possibly wrong solution. It is thus desirable to
model the epistemic uncertainty. Probability theory pro-
vides the framework to do so. Meaningful probability
measures of the uncertainty about the result of determin-
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istic computations (such as ODE solvers) can then be com-
bined with probability measures modeling other sources
of uncertainty, including ‘real’ aleatoric randomness (from
e.g. sampling). Apart from quantifying our certainty over a
computation, pinning down the main sources of uncertainty
could furthermore improve the numerical solution and fa-
cilitate a more efficient allocation of the limited computa-
tional budget.

A closed framework to measure uncertainty over numer-
ical computations was proposed by Skilling (1991) who
pointed out that numerical methods can be recast as sta-
tistical inference of the latent true solution based on the
observable results of tractable computations. Applying this
idea to ordinary differential equations, Hennig & Hauberg
(2014) phrased this notion more formally, as Gaussian pro-
cess (GP) regression. Their algorithm class, however, could
not guarantee the high polynomial convergence orders of
Runge-Kutta methods. In parallel development, Chkrebtii
et al. (2013) also introduced a probabilistic ODE solver of
similar structure (i.e. based on a GP model), but using a
Monte Carlo updating scheme. These authors showed a
linear convergence rate of their solver, but again not the
high-order convergence of classic solvers.
Recently, Schober et al. (2014) solved this problem by
finding prior covariance functions which produce GP ODE
solvers whose posterior means exactly match those of the
optimal Runge-Kutta families of first, second and third or-
der. While producing only a slight computational over-
head compared to classic Runge-Kutta, this algorithm —
as any GP-based algorithm — only returns Gaussian mea-
sures over the solution space.
In contrast, Conrad et al. (2015) recently provided a novel
sampling-based class of ODE solvers which returns asymp-
totically non-parametric measures over the solution space,
but creates significant computational overhead by running
the whole classic ODE solvers multiple times over the
whole time interval [0, T ] in order to obtain meaningful ap-
proximations for the desired non-parametric measure.
For practitioners, there is a trade-off between the desire for
quantified uncertainty on the one hand, and low compu-
tational cost on the other. The currently available proba-
bilistic solvers for ODEs either provide only a roughly cal-
ibrated uncertainty (Schober et al., 2014) at negligible over-
head or a more fine-grained uncertainty supported by the-
oretical analysis (Conrad et al., 2015), at a computational
cost increase so high that it rules out most practical applica-
tions. In an attempt to remedy this problem, we propose an
algorithm enhancing the method of Schober et al. (2014) by
improving the gradient measurement using modern proba-
bilistic integration methods. By modeling the uncertainty
where it arises, i.e. the imprecise prediction of where to
evaluate f , we hope to gain better knowledge of the prop-
agated uncertainty and arrive at well-calibrated posterior
variances as uncertainty measures.

2 BACKGROUND

2.1 SAMPLING-BASED ODE SOLVERS

The probabilistic ODE solver by Conrad et al. (2015) mod-
ifies a classic deterministic one-step numerical integrator
Ψh (e.g. Runge-Kutta or Taylor methods, cf. Hairer
et al. (1987)) and models the discretization error of Ψh

by adding suitably scaled i.i.d. Gaussian random variables
{ξk}k=0,...,K after every step. Hence, it returns a discrete
solution {Uk}k=0,...,K on a mesh {tk = kh}k=0,...,K ac-
cording to the rule

Uk+1 = Ψh(Uk) + ξk. (4)

This discrete solution can be extended into a continuous
time approximation of the ODE, which is random by con-
struction and can therefore be interpreted as a draw from
a non-parametric probability measure Qh on the solution
space C ([0, T ],Rn), the Banach space of continuous func-
tions. This probability measure can then be interpreted as
a notion of epistemic uncertainty about the solution. This
is correct in so far as, under suitable assumptions, includ-
ing a bound on the variance of the Gaussian noise, the
method converges to the true solution, in the sense that
Qh contracts to the Dirac measure on the true solution δu
with the same convergence rate as the original numerical
integrator Ψh, for h → 0. This is a significant step to-
wards a well-founded notion of uncertainty calibration for
ODE solvers: It provides a probabilistic extension to clas-
sic method which does not break the convergence rate of
these methods.

In practice, however, the precise shape of Qh is not known
and Qh can only be interrogated by sampling, i.e. repeat-
edly running the entire probabilistic solver. After S sam-
ples, Qh can be approximated by an empirical measure
Qh(S). In particular, the estimated solution and uncer-
tainty can only be expressed in terms of statistics ofQh(S),
e.g. by the usual choices of the empirical mean and empir-
ical variance respectively or alternatively by confidence in-
tervals. For S → ∞, Qh(S) converges in distribution to
Qh which again converges in distribution to δu for h→ 0:

Qh(S)
S→∞→ Qh

h→0→ δu. (5)

The theoretical analysis in Conrad et al. (2015) only con-
cerns the convergence of the latent probability measures
{Qh}h>0. Only the empirical measures {Qh(S)}S∈N,
however, can be observed. Consequently, it remains un-
clear whether the empirical mean ofQh(S) for a fixed step-
size h > 0 converges to the true solution as S → ∞ and
whether the empirical variance ofQh(S) is directly related,
in an analytical sense, to the approximation error. In order
to extend the given convergence results to the practically
observable measures {Qh(S)}S∈N an analysis of the first
convergence in (5) remains missing. The deterministic al-
gorithm proposed below avoids this problem, by instead
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constructing a (locally parametric) measure from prior as-
sumptions.

The computational cost of this method also seems to mainly
depend on the rate of convergence of Qh(S) → Qh which
determines how many (possibly expensive) runs of the nu-
merical integrator Ψh over [0, T ] have to be computed and
how many samples have to be stored for a sufficient approx-
imation of Qh. Furthermore, we expect that in practice the
mean of Qh, as approximated by Qh(S) might not be the
best possible approximation, since in one step the random
perturbation of the predicted solution by Gaussian noise ξk
worsens our solution estimate with a probability of more
than 1/2, since - due to the full support of Gaussian dis-
tributions - the numerical sample solution is as likely to be
perturbed away from as towards the true solution and - due
to the tails of Gaussian distributions - it can also be per-
turbed way past the true solution with positive probability.

2.2 A FRAMEWORK FOR GAUSSIAN
FILTERING FOR ODES

Describing the solution of ODEs as inference in a joint
Gaussian model leverages state-space structure to achieve
efficient inference. Therefore, we employ a Gauss-Markov
prior on the state-space: A priori we model the solution
function and (q − 1) derivatives (u, u̇, u(2), . . . , u(q−1)) :
[0, T ] → RqD as a draw from a q-times integrated Wiener
process X = (Xt)t∈[0,T ] = (X

(1)
t , . . . , X

(q)
t )Tt∈[0,T ],

i.e. the dynamics ofXt are given by the linear Itô stochastic
differential equation (Karatzas & Shreve, 1991; Øksendal,
2003):

dXt = F ·Xtdt+Q · dWt, (6)
X0 = ξ, ξ ∼ N (m(0), P (0)), (7)

with constant drift F ∈ Rq×q and diffusion Q ∈ Rq given
by

F =




0 f1 0 . . . 0
0 0 f2 . . . 0
...

. . . . . .
...

0 . . . 0 fq−1
0 . . . 0 0



, Q =




0
0
...
0
σ2




(8)

for all t ∈ [0, T ] and some f1, . . . , fq−1 ∈ R, where Wt

denotes a q-dimensional Wiener process (q ≥ n). Hence,
we are a priori expecting that u(q) behaves like a Brown-
ian motion with variance σ2 and that u(i) is modeled by
(q − 1 − i)-times integrating this Brownian motion. The
fact that the (i+ 1)-th component is the derivative of the i-
th component in our state space is captured by a drift matrix
with non-zero entries only on the first off-diagonal. The en-
tries f1, . . . , fq−1 are damping factors. A standard choice
is e.g. fi = i. Without additional information, it seems
natural to put white noise on the q-th derivative as the first

derivative which is not captured in the state space. This
gives rise to Brownian noise on the (q − 1)-th derivative
which is encoded in the diffusion matrix scaled by vari-
ance σ2. Hence, we consider the integrated Wiener process
a natural prior. For notational simplicity, only the case of
scalar-valued functions, i.e. D = 1, is presented in the fol-
lowing. The framework can be extended to D ≥ 2 in a
straightforward way by modeling the output dimensions of
f as independent stochastic processes.

Since X is the strong solution of a linear equation (6) with
normally distributed initial value X0, it follows from the
theory of linear SDEs (Karatzas & Shreve, 1991) thatX is a
uniquely-determined Gauss-Markov process. This enables
Bayesian inference in a highly efficient way by Gaussian
filtering (Saatci, 2011)). For time invariant linear SDEs like
(6), the fixed matrices for Gaussian filtering can be precom-
puted analytically (Särkkä, 2006).

In addition, Schober et al. (2014) showed that for q ≤ 3
inference in this linear SDE yields Runge-Kutta steps.

Equipped with this advantageous prior we can perform
Bayesian inference. The linearity and time-invariance of
the underlying SDE permits to formulate the computation
of the posterior as a Kalman filter (KF) (cf. (Särkkä, 2013)
for a comprehensive introduction) with step size h > 0.
The prediction step of the KF is given by

m−t+h = A(h)mt, (9)

P−t+h = A(h)PtA(h)T +Q(h), (10)

with matrices A(h), Q(h) ∈ Rq×q with entries

A(h)i,j = exp(h · F )i,j = χj≥i
hj−i

(j − i)!

(
j−i−1∏

k=0

fi+k

)
,

(11)

Q(h)i,j =σ2 ·
(
q−1+i∏

k1=0

fi+k1

)
·
(
q−1+j∏

k2=0

fj+k2

)
· (12)

h2q+1−i−j

(q − i)!(q − j)!(2q + 1− i− j) , (13)

and followed by the update step

z = y −Hm−t+h, (14)

S = HP−t+hH
T +R, (15)

K = P−t+hH
TS−1, (16)

mt+h = m−t+h +Kz, (17)

Pt+h = P−t+h −KHP−t+h, (18)

where H = eTn ∈ R1×q is the n-th unit vector.

Between the prediction and update step the n-th derivative
of the true solution ∂nu

∂xn at time t + h as a measurement
for the n-th derivative and the noise of this measurement
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are estimated by the variable y and R. In order to derive
precise values of y and R from the Gaussian prediction
N (mt+h, Pt+h), we would have to compute the integrals

y =

∫
f(t+ h,m−t+h + x) · N (x; 0, P−t+h)dx (19)

and

R =

∫
f(t+ h,m−t+h + x) · f(t+ h,m−t+h + x)T ·

N (x; 0, P−t+h)dx− yyT , (20)

which are intractable for most choices of f . Below we in-
vestigate different ways to address the challenge of com-
puting these integrals precisely while not creating too much
computational overhead.

2.3 MEASUREMENT GENERATION OPTIONS
FOR GAUSSIAN FILTERING

Schober et al. (2014) as, to the best of our knowledge, the
first ones to point out the connection between Gaussian fil-
tering and probabilistic ODE solvers, presents an algorithm
which simply evaluates the gradient at the predicted mean,
which is equivalent to setting y to be equal to its maximum
likelihood estimator:

y = f(t+ h,m−t+h), R = 0. (21)

While ensuring maximum speed, this is clearly not an ideal
measurement. In our atomless predicted probability mea-
sure N (m−t+h, P

−
t+h) the mean predictor m−t+h is differ-

ent from its true value (u(0)(t + h), . . . , u(n)(t + h))T al-
most surely. Hence, for a non-constant f the estimate will
be inaccurate most of the times. In particular this method
deals poorly with ‘skewed’ gradient fields (a problem that
leads to a phenomenon known as ‘Lady Windermeres fan’
(Hairer et al., 1987)). To get a better estimate of the true
value of y, more evaluations of f seem necessary.

Therefore, we want to find numerical integration methods
which capture y and R with sufficient precision, while us-
ing a minimal number of evaluations of f . Possible choices
are:

(i) Monte Carlo integration by sampling:

y =
1

N

N∑

i=1

f(t+ h, xi), (22)

R =
1

N

N∑

i=1

f(t+ h, xi) · f(t+ h, xi)
T − y · yT ,

(23)

xi ∼ N (m−t+h, P
−
t+h), (24)

(which is not the same as the sampling over the whole
time axis in (Conrad et al., 2015)).

(ii) Approximation by a first-order Taylor series expan-
sion:

f(t+ h,m−t+h + x)

' f(t+ h,m−t+h) +∇f(t+ h,m−t+h + x) · x
(25)

and thereby deriving moments of the linear transform
of Gaussian distributions:

y = f(t+ h,m−t+h), (26)

R = ∇f(t+ h,m−t+h)P−t+h∇f(t+ h,m−t+h)T .

(27)

(iii) Integration by Bayesian quadrature with Gaussian
weight function:

y = αT ·K−1 ·
(
f(x1), . . . , f(xn)

)T
, (28)

R =

∫ ∫
k(x, x′)w(x)w(x′)dxdx′ − αTK−1α.

(29)

with w(x) = N (x;m−t+h, P
−
t+h), kernel ma-

trix K ∈ RN×N with Ki,j = k(xi, xj) and
α = (α(1), . . . , α(N))T ∈ RN with α(i) =∫
k(x, xi)w(x)dx for a predefined covariance func-

tion k and evaluation points (xi)i=1,...,N (cf. section
2.4).

Our experiments, presented in Section 3, suggest that BQ
is the most useful option.

Monte Carlo integration by sampling behaves poorly if the
trajectory of the numerical solution passes through domain
areas (as e.g. in the spikes of oscillators governed by non-
stiff ODEs) where f takes highly volatile values since the
random spread of samples from the domain are likely to
return a skewed spread of values resulting in bad predic-
tions of y with huge uncertainty R. Hence, the posterior
variance explodes and the mean drifts back to its zero prior
mean, i.e. mt → 0 and ‖Pt‖ → ∞, for t → ∞. Thus, we
consider this method practically useless.

One may consider it a serious downside of Taylor-
approximation based methods that the gradient only ap-
proximates the shape of f and thereby its mapping of the
error on an ‘infinitesimally small neighborhood’ of m−t+h.
Hence, it might ignore the true value of y completely, if
the mean prediction is far off. However, for a highly regu-
lar f (e.g. Lipschitz-continuous in the space variable) this
gradient approximation is very good.

Moreover, the approximation by a first-order Taylor series
expansion needs an approximation of the gradient, which
explicit ODE solvers usually do not receive as an input.
However, in many numerical algorithms (e.g. optimization)
the gradient is provided anyway. Therefore the gradient
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might already be known in real-world applications. While
we find this method promising when the gradient is known
or can be efficiently computed, we exclude it from our
experiments because the necessity of a gradient estimate
breaks the usual framework of ODE solvers.

In contrast, Bayesian quadrature avoids the risk of a skewed
distortion of the samples for Monte Carlo integration by
actively spreading a grid of deterministic sigma-points. It
does not need the gradient of f and still can encode prior
knowledge over f by the choice of the covariance func-
tion if more is known (Briol et al., 2015). The potential of
using Bayesian quadrature as a part of a filter was further
explored by Prüher & Simandl (2015), however in the less
structured setting of nonlinear filtering where additional in-
accuracy from the linear approximation in the prediction
step arises. Moreover, Särkkä et al. (2015) recently pointed
out that GPQ can be seen as sigma-point methods and gave
covariance functions and evaluation points which repro-
duce numerical integration methods known for their fa-
vorable behavior (for example Gauss-Hermite quadrature,
which is used for a Gaussian weight function).

Due to these advantages, we propose a new class of BQ-
based probabilistic ODE filters named BQ Filtering.

2.4 BAYESIAN QUADRATURE FILTERING (BQF)

The crucial source of error for filtering-based ODE solvers
is the calculation of the gradient measurement y and its
variance R (c.f. Section 2.2). We propose the novel ap-
proach to use BQ to account for the uncertainty of the in-
put and thereby estimate y and R. This gives rise a novel
class of filtering-based solvers named BQ Filter (BQF). As
a filtering-based method, one BQF-step consists of the KF
prediction step (9) – (10), the calculation of y andR by BQ
and the KF update step (14) – (18).

The KF prediction step outputs a Gaussian belief
N (m−t+h, P

−
t+h) over the true solution u(t + h). This in-

put value is propagated through f yielding a distribution
over the gradient at time t + h. In other words, our be-
lief over∇f(t+ h, u(t+ h)) is equal to the distribution of
Y := f(t,X), with uncertain input X ∼ N (m−t+h, P

−
t+h).

For general f the distribution of Y will be neither Gaus-
sian nor unimodal (as e.g. in Figure 1). But it is possible to
compute the moments of this distribution under Gaussian
assumptions on the input and the uncertainty over f (see
for example Deisenroth (2009)). The equivalent formula-
tion of prediction under uncertainty clarifies as numerical
integration clarifies the connection to sigma-point methods,
i.e. quadrature rules (Särkkä et al., 2015). Quadrature is
as extensively studied and well-understood as the solution
of ODEs. A basic overview can be found in Press et al.
(2007). Marginalizing overX yields an integral with Gaus-

sian weight function

E[Y ] =

∫
f(t+ h, x) · N (x;m−t+h, P

−
t+h)

︸ ︷︷ ︸
=:w(x)

dx, (30)

which is classically solved by quadrature, i.e. evaluating f
at a number of evaluation points (xi)i=1,...,N and calculat-
ing a weighted sum of these evaluations. BQ can be inter-
preted as a probabilistic extension of these quadrature rules
in the sense that their posterior mean estimate of the inte-
gral coincides with classic quadrature rules, while adding a
posterior variance estimate at low cost (Särkkä et al., 2015).

By choosing a kernel k over the input space of f and eval-
uation points (xi)i=1,...,N , the function f is approximated
by a GP regression (Rasmussen & Williams, 2006) with re-
spect to the function evaluations (f(xi))i=1,...,N , yielding
a GP posterior over f with mean mf and covariance kf
denoted by GP(f). The integral is then approximated by
integrating the GP approximation, yielding the predictive
distribution for I[f ]:

I[f ] ∼
∫
GP(f)(x) · N (x;m−t+h, P

−
t+h)dx. (31)

The uncertainty arising from the probability measure over
the input is now split up in two parts: the uncertainty over
the input value x ∼ N (0, I) and the uncertainty over the
precise value at this uncertain input, which can only be ap-
proximately inferred by its covariance with the evaluation
points (xi)i=1,...,N , i.e. by GP(f). These two kinds of un-
certainty are depicted in Figure 1. From the predictive dis-
tribution in (31), we can now compute a posterior mean
and variance of I[f ] which results in a weighted sum for
the mean

y := E[I[f ]|] = αTK−1
(
f(x1), . . . , f(xn)

)T
(32)

with

α(i) =

∫
k(x, xi)N (x; 0, I)dx (33)

and variance

R := Var[I(f)] (34)

=

∫ ∫
k(x, x′)w(x)w(x′)dxdx′ − αTK−1α, (35)

where K ∈ RN×N denotes the kernel matrix, i.e. Ki,j =
k(xi, xj).

The measurement generation in BQF is hence completely
defined by the two free choices of BQ: the kernel k and the
evaluation points (xi)i=1,...,n. By these choices, BQ and
thereby the measurement generation in BQF is completely
defined. For the squared exponential kernel (Rasmussen &
Williams, 2006)

k(x, x′) = θ2 exp

(
− 1

2λ2
‖x− x′‖2

)
, (36)
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Figure 1: Prediction of function f(x) = 8 sin(x) + x2

(red) under uncertain input x ∼ N (x; 1, 1) (density in
blue). GP(f) (black) derived from Gaussian grid evalua-
tion points withN = 3 (blue crosses) as mean± 2 standard
deviation. True distribution of prediction in blue. Gaussian
fit to true distribution in yellow and predicted distribution
by BQ in green with crosses at means.

with lengthscale λ > 0 and output variance θ2 > 0, it
turns out that y and R can be computed in closed form and
that many classic quadrature methods which are known for
their favorable properties can be computed in closed form
(Särkkä et al., 2015), significantly speeding up computa-
tions. For the scalar case nD = 1, we obtain for (33) by
straightforward computations:

α(i) =
λθ2√
λ2 + σ2

exp

(
− (xi − µ)2

2(λ2 + σ2)

)
, (37)

and
∫ ∫

k(x, x′)w(x)w(x′)dxdx′ =
θ2√

1 + 2σ2/λ2
(38)

Hence, our BQ estimate for y is given by the sigma-point
rule

y ≈
N∑

i=1

Wif(t+ h, xi) (39)

with easily computable weights

Wi = [α ·K]i. (40)

Also the variance R takes a convenient shape

R =
θ2√

1 + 2σ2/λ2
− αTK−1α. (41)

For nD > 1, we get slightly more complicated formulas
which are given in Deisenroth (2009).

The other free choice in BQ, the evaluation points
(xi)i=1,...,n, can also be chosen freely in every step of BQF.
Usually, the nodes of BQ chosen are chosen so that the vari-
ance of the integral estimate is minimized (cf. Briol et al.
(2015)). For this algorithm, the uncertainty has to be mea-
sured, not minimized though. Hence, we propose just to
take a uniform grid scaled by N (m−t+h, P

−
t+h) to measure

the uncertainty in a comprehensive way.

Another promising choice is given by the roots of the physi-
cists’ version of the Hermite polynomials, since they yield
Gauss-Hermite quadrature (GHQ), the standard numerical
quadrature against Gaussian measures, as a posterior mean
for a suitable covariance function (Särkkä et al., 2015). For
GHQ, efficient algorithms to compute the roots and the
weights are readily available (Press et al., 2007).

2.5 COMPUTATIONAL COST

All of the presented algorithms buy their probabilistic ex-
tension to classic ODE solvers by adding computational
cost, sometimes more sometimes less. In most cases, eval-
uation of the dynamic function f forms the computational
bottleneck, so we will focus on it here. Of course, the in-
ternal computations of the solver adds cost as well. Since
all the models discussed here have linear inference cost,
though, this additional overhead is manageable.
The ML-algorithm by Schober et al. (2014) is the fastest al-
gorithm. By simply recasting a Runge-Kutta step as Gaus-
sian filtering, rough probabilistic uncertainty is achieved
with negligible computational overhead.
For the sampling method, the calculation of one individ-
ual sample of Qh amounts to running the entire underlying
ODE solver once, hence the overall cost is S times the orig-
inal cost.
In contrast, the BQ-algorithm only has to run through [0, T ]
once, but has to invert a ND × ND covariance matrix
to perform Bayesian quadrature with N evaluation points.
Usually, N will be small, since BQ performs well for a rel-
atively small number of function evaluations (as e.g. illus-
trated by the experiments below). However, if the output
dimension D is very large, Bayesian quadrature—like all
quadrature methods—is not practical. BQ thus tends to be
faster for small D, while MC tends to be faster for large D.

When considering these computational overheads, there is
a nuanced point to be made about the value-to-cost trade-
off of constructing a posterior uncertainty measure. If a
classic numerical solver of order p is allotted a budget of
M times its original one, it can use it to reduce its step-size
by a factor of M , and thus reduce its approximation error
by an order Mp. It may thus seem pointless to invest even
such a linear cost increase into constructing an uncertainty
measure around the classic estimate. But, in some practical
settings, it may be more helpful to have a notion of uncer-
tainty on a slightly less precise estimate than to produce a
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more precise estimate without a notion of error. In addition,
classic solvers are by nature sequential algorithms, while
the probabilistic extensions (both the sampling-based and
Gaussian-filtering based ones) can be easily parallelized.
Where parallel hardware is available, the effective time cost
of probabilistic functionality may thus be quite limited (al-
though we do not investigate this possibility in our present
experiments).

With regards to memory requirements, the MC-method
needs significantly more storage, since it requires saving
all sample paths, in order to statistically approximate the
entire non-parametric measure Qh on C([0, T ],R). The
BQ-algorithm only has to save the posterior GP, i.e. a mean
and a covariance function, which is arguably the minimal
amount to provide a notion of uncertainty. If MC reduces
the approximation of Qh to its mean and variance, it only
requires this minimal storage as well.

3 EXPERIMENTS

This section explores applications of the probabilistic ODE
solvers discussed in Section 2. The sampling-based algo-
rithm by (Conrad et al., 2015) will be abbreviated as MC,
the maximum-likelihood Gaussian filter ((Schober et al.,
2014)) as ML and our novel BQ-based filter (BQF) as BQ.
In particular, we assess how the performance of the purely
deterministic class of Gaussian filtering based solvers com-
pares to the inherently random class of sampling-based
solvers.

We experiment on the Van der Pol oscillator (Hairer et al.,
1987), a non-conservative oscillator with non-linear damp-
ing, which is a standard example for a non-stiff dynamical
system. It is governed by the equation

∂2u

∂t2
= µ(1− u2)

∂u

∂t
− u, (42)

where the parameter µ ∈ R indicates the non-linearity and
the strength of the damping. We set µ = 5 on a time axis
[10, 60], with initial values (u(10), u̇(10)) = (2, 10).

All compared methods use a model of order q = 3, and a
step size h = 0.01. This induces a state-space model given
by a twice-integrated Wiener process prior (cf. (6)) which
yields a version of ML close to second-order Runge-Kutta
(Schober et al., 2014). The same solver is used as the un-
derlying numerical solver Ψh in MC. For the noise param-
eter, which scales the deviation of the evaluation point of
f from the numerical extrapolation (i.e. the variance of the
driving Wiener process for ML and BQ, and the variance of
ξk for MC), we choose σ2 = 0.1. The drift matrix F of the
underlying integrated Wiener process is set to the default
values fi = i for i = 1, . . . , q−1. The covariance function
used in BQ is the widely popular squared exponential (36),
with lengthscale λ = 1 and output variance θ2 = 1. (Since
all methods use the same model, this tuning does not favor

one algorithm over the other. In practice all these parame-
ters should of course be set by statistical estimation.).

For a fair comparison in all experiments, we allow MC and
BQ to make the same amount of function evaluations per
time step. If MC draws N samples, BQ uses N evaluation
points. The first experiment presents the solutions of the
presented algorithms on the van der Pol oscillator (42) on
the whole time axis in one plot, when we allow BQ and
MC to make five function evaluations. Then, we examine
more closely how the error of each methods changes as a
function of the number of evaluations of f in Figure 3 and
Figure 4.

3.1 SOLUTION MEASURES ON VAN DER POL
OSCILLATOR

Figure 3 shows the solution estimates constructed by the
three solvers across the time domain. In all cases, the
mean estimates roughly follow the true solution (which
e.g. Gaussian filtering with Monte Carlo integration by
sampling (22) – (24) does not achieve). A fundamental dif-
ference between the filtering-based methods (ML and BQ)
and the sampling-based MC algorithm is evident in both
the mean and the uncertainty estimate.

While the filtering-based methods output a trajectory quite
similar to the true solution with a small time lag, the MC
algorithm produces a trajectory of a more varying shape.
Characteristic points of the MC mean estimate (such as lo-
cal extrema) are placed further away from the true value
than for filtering-based methods.

The uncertainty estimation of MC appears more flexible as
well. ML and BQ produce an uncertainty estimate which
runs parallel to the mean estimate and appears to be strictly
increasing. It appears to increase slightly in every step, re-
sulting in an uncertainty estimate, which only changes very
slowly. The solver accordingly appears overconfident in
the spikes and underconfident in the valleys of the trajec-
tory. The uncertainty of MC varies more, scaling up at the
steep parts of the oscillator and decreasing again at the flat
parts, which is a desirable feature.

Among the class of filtering-based solvers, the more refined
BQ method outputs a better mean estimate with more con-
fidence than ML.

3.2 QUALITY OF ESTIMATE AS A FUNCTION
OF ALLOWED EVALUATIONS

Figure 3 and Figure 4 depict the value of the error of the
mean approximation as a function of the allowed function
evaluationsN (i.e.N evaluation points for BQ andN sam-
ples for MC) at time points t1 = 18 and t2 = 54. Since
the desired solution measure Qh for MC can only be statis-
tically approximated by the N samples, the mean estimate
of MC is random. For comparison, the average of five MC-

315



10 15 18 20 25 30 35 40 45 50 54 55
−4

−3

−2

−1

0

1

2

3

4

t

u
(t
)

true
ML
MC
BQ

Figure 2: Solution estimates constructed on the Van der Pol oscillator (42). True solution in red. Mean estimates of ML,
MC and BQ in black, green, blue, respectively. Uncertainty measures (drawn at two times standard deviation) as thin lines
of the same color.
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Figure 3: Plot of errors of the mean estimates at t = 18 of
the methods MC (green) and BQ (blue) as a function of the
allowed function evaluations. Maximum likelihood error in
black. Single runs of the probabilistic MC solver as green
crosses. Average over all runs as green line.

runs is computed.

At the early time point t1 = 18, all trajectories are still
close together and the methods perform roughly the same,
as we allow more evaluations. There is a slight improve-
ment for BQ with more evaluations, but the error remains
above the one of ML error.

At the later time t2 = 54, BQ improves drastically when
at least five evaluations are allowed, dropping much below
the ML error.
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Figure 4: Plot of errors of the mean estimates at t = 54 of
the methods MC (green) and BQ (blue) as a function of the
allowed function evaluations. Maximum likelihood error in
black. Single runs of the probabilistic MC solver as green
crosses. Average over all runs as green line.

The average error by MC appears to be not affected by the
number of samples. The ML error is constant, because it
always evaluates only once.

4 DISCUSSION

The conducted experiments provide an interesting basis
to discuss the differences between filtering-based methods
(ML and BQ) and the sampling-based MC algorithm. We
make the following observations:
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(i) Additional samples do not improve the random mean
estimate of MC in expectation:
Since the samples of MC are independent and identi-
cally distributed, the expectation of the random mean
estimate of MC is the same, regardless of the amounts
of samples. This property is reflected in Figure 3 and
Figure 4, by the constant green line (up to random
fluctuation). Additional samples are therefore only
useful to improve the uncertainty calibration.

(ii) The uncertainty calibration of MC appears more
adaptive than of ML and BQ:
Figure 3 suggests that MC captures the uncertainty
more flexibly: It appropriately scales up in the steep
parts of the oscillator, while expressing high confi-
dence in the flat parts of the oscillator. The true tra-
jectory is inside the interval between mean ± 2 stan-
dard deviations, which is not the case for BQ and
ML. Moreover, MC produces a more versatile mea-
sure. The filtering-based methods appear to produce
a strictly increasing uncertainty measure by adding to
the posterior uncertainty in every step. MC avoids
this problem by sampling multiple time over the
whole time interval. We deem the resulting flexi-
bility a highly desirable feature. BQ also outputs a
meaningful uncertainty measure and we expect that
adding Bayesian smoothing (Särkkä, 2013) would en-
able filtering-based methods to produce more adap-
tive measures as well.

(iii) The expected error of MC-samples (and their mean)
is higher than the error of ML:
In the experiments, MC produced a higher error for
the mean estimate, compared to both ML and BQ.
We expect that this happens on all dynamical systems
by construction: Given Uk, the next value Uk+1 of
a MC-sample is calculated by adding Gaussian noise
ψk to the ML-extrapolation starting in Uk (cf. equa-
tion (4)). Due to the symmetry and full support of
Gaussian distributions, the perturbed solution has a
higher error than the unperturbed prediction, which
coincides with the ML solution. Hence, every MC-
sample accumulates with every step a positive ex-
pected error increment compared to the ML estimate.
By the linearity of the average, the mean over all sam-
ples inherits the same higher error than the ML mean
(and thereby also than the error of the more refined
BQ mean).

Summing up, we argue that — at their current state —
filtering-based methods appear to produce a ‘better’ mean
estimate, while sampling-based methods produce in some
sense a ‘better’ uncertainty estimate. Many applications
might put emphasis on a good mean estimate, while need-
ing a still well-calibrated uncertainty quantification. Our
method BQF provides a way of combining a precise

mean estimate with a meaningful uncertainty calibration.
Sampling-based methods might not be able to provide this
due to their less accurate mean estimate. For future work
(which is beyond the scope of this paper), it could be pos-
sible to combine the advantages of both approaches in a
unified method.

5 CONCLUSION

We have presented theory and methods for the probabilis-
tic solution of ODEs which provide uncertainty measures
over the solution of the ODE, contrasting the classes of (de-
terministic) filtering-based and (random) sampling-based
solvers. We have provided a theoretical framework for
Gaussian filtering as state space inference in linear Gaus-
sian SDEs, highlighting the prediction of the gradient as
the primary source of uncertainty. Of all investigated ap-
proximations of the gradient, Bayesian Quadrature (BQ)
produces the best results, by actively learning the shape of
the dynamic function f through deterministic evaluations.
Hence, we propose a novel filtering-based method named
Bayesian Quadrature Filtering (BQF), which employs BQ
for the gradient measurement.

For the same amount of allowed gradient evaluations, the
mean estimate of BQF appears to outperform the mean esti-
mate of state-of-the-art sampling-based solvers on the Van
der Pol oscillator, while outputting a better calibrated un-
certainty than other filtering-based methods.
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Runge, C. Über die numerische Auflösung von Differen-
tialgleichungen. Mathematische Annalen, 46:167–178,
1895.

Saatci, Y. Scalable Inference for Structured Gaussian Pro-
cess Models. PhD thesis, University of Cambridge,
2011.

Särkkä, S. Recursive Bayesian Inference on Stochastic Dif-
ferential Equations. PhD thesis, Helsinki University of
Technology, 2006.
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Abstract

Several recent works have explored stochastic
gradient methods for variational inference that
exploit the geometry of the variational-parameter
space. However, the theoretical properties of
these methods are not well-understood and these
methods typically only apply to conditionally-
conjugate models. We present a new stochas-
tic method for variational inference which ex-
ploits the geometry of the variational-parameter
space and also yields simple closed-form updates
even for non-conjugate models. We also give
a convergence-rate analysis of our method and
many other previous methods which exploit the
geometry of the space. Our analysis general-
izes existing convergence results for stochastic
mirror-descent on non-convex objectives by us-
ing a more general class of divergence functions.
Beyond giving a theoretical justification for a va-
riety of recent methods, our experiments show
that new algorithms derived in this framework
lead to state of the art results on a variety of prob-
lems. Further, due to its generality, we expect
that our theoretical analysis could also apply to
other applications.

1 INTRODUCTION

Variational inference methods are one of the most widely-
used computational tools to deal with the intractability of
Bayesian inference, while stochastic gradient (SG) meth-
ods are one of the most widely-used tools for solving op-
timization problems on huge datasets. The last three years
have seen an explosion of work exploring SG methods for
variational inference (Hoffman et al., 2013; Salimans et al.,

2013; Ranganath et al., 2013; Titsias & Lázaro-Gredilla,
2014; Mnih & Gregor, 2014; Kucukelbir et al., 2014). In
many settings, these methods can yield simple updates and
scale to huge datasets.

A challenge that has been addressed in many of the recent
works on this topic is that the “black-box” SG method ig-
nores the geometry of the variational-parameter space. This
has lead to methods like the stochastic variational infer-
ence (SVI) method of Hoffman et al. (2013), that uses nat-
ural gradients to exploit the geometry. This leads to better
performance in practice, but this approach only applies to
conditionally-conjugate models. In addition, it is not clear
how using natural gradients for variational inference affects
the theoretical convergence rate of SG methods.

In this work we consider a general framework that (i) can
be stochastic to allow huge datasets, (ii) can exploit the ge-
ometry of the variational-parameter space to improve per-
formance, and (iii) can yield a closed-form update even for
non-conjugate models. The new framework can be viewed
as a stochastic generalization of the proximal-gradient
method of Khan et al. (2015), which splits the objective
into conjugate and non-conjugate terms. By linearizing the
non-conjugate terms, this previous method as well as our
new method yield simple closed-form proximal-gradient
updates even for non-conjugate models.

While proximal-gradient methods have been well-studied
in the optimization community (Beck & Teboulle, 2009),
like SVI there is nothing known about the convergence rate
of the method of Khan et al. (2015) because it uses “di-
vergence” functions which do not satisfy standard assump-
tions. Our second contribution is to analyze the conver-
gence rate of the proposed method. In particular, we gener-
alize an existing result on the convergence rate of stochas-
tic mirror descent in non-convex settings (Ghadimi et al.,
2014) to allow a general class of divergence functions that
includes the cases above (in both deterministic and stochas-
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tic settings). While it has been observed empirically that
including an appropriate divergence function enables larger
steps than basic SG methods, this work gives the first the-
oretical result justifying the use of these more-general di-
vergence functions. It in particular reveals how different
factors affect the convergence rate such as the Lipschitz-
continuity of the lower bound, the information geometry of
the divergence functions, and the variance of the stochas-
tic approximation. Our results also suggest conditions un-
der which the proximal-gradient steps of Khan et al. (2015)
can make more progress than (non-split) gradient steps, and
sheds light on the choice of step-size for these methods. A
notable aspect of our results is that, for the stochastic case
and a fixed accuracy, there is always a sufficiently-small
fixed step-size that leads to a solution with this accuracy
or higher. Our experimental results indicate that the new
method leads to improvements in performance on a vari-
ety of problems, and we note that the algorithm and theory
might be useful beyond the variational inference scenarios
we have considered in this work.

2 VARIATIONAL INFERENCE

Consider a general latent variable model where we have a
data vector y of length N and a latent vector z of length
D. In Bayesian inference, we are interested in comput-
ing the marginal likelihood p(y), which can be written as
the integral of the joint distribution p(y, z) over all val-
ues of z. This integral is often intractable, and in varia-
tional inference we typically approximate it with the ev-
idence lower-bound optimization (ELBO) approximation
L. This approximation introduces a distribution q(z|λ) and
chooses the variational parameters λ to maximize the fol-
lowing lower bound on the marginal likelihood:

log p(y) = log

∫
q(z|λ)

p(y, z)

q(z|λ)
dz,

≥ max
λ∈S
L(λ) := Eq(z|λ)

[
log

p(y, z)

q(z|λ)

]
.

(1)

The inequality follows from concavity of the logarithm
function. The set S is the set of valid parameters λ.

To optimize λ, one of the seemingly-simplest approaches
is gradient descent: λk+1 = λk + βk∇L(λk), which can
be viewed as optimizing a quadratic approximation of L,

λk+1 = argmin
λ∈S

[
−λT∇L(λk) +

1

2βk
‖λ− λk‖22

]
. (2)

While we can often choose the family q so that it has con-
venient computational properties, it might be impractical
to apply gradient descent in this context when we have a
very large dataset or when some terms in the lower bound
are intractable. Recently, SG methods have been proposed
to deal with these issues (Ranganath et al., 2013; Titsias

& Lázaro-Gredilla, 2014): they allow large datasets by us-
ing random subsets (mini-batches) and can approximate in-
tractable integrals using Monte Carlo methods that draw
samples from q(z|λ).

A second drawback of applying gradient descent to varia-
tional inference is that it uses the Euclidean distance and
thus ignores the geometry of the variational-parameter
space, which often results in slow convergence. Intuitively,
(2) implies that we should move in the direction of the gra-
dient, but not move λk+1 too far away from λk in terms
of the Euclidean distance. However, the Euclidean dis-
tance is not appropriate for variational inference because
λ is the parameter vector of a distribution; the Euclidean
distance is often a poor measure of dissimilarity between
distributions. The following example from Hoffman et al.
(2013) illustrates this point: the two normal distributions
N (0, 10000) and N (10, 10000) are almost indistinguish-
able, yet the Euclidean distance between their parameter
vectors is 10, whereas the distributions N (0, 0.01) and
N (0.1, 0.01) barely overlap, but their Euclidean distance
between parameters is only 0.1.

Natural-Gradient Methods: The canonical way to ad-
dress the problem above is by replacing the Euclidean dis-
tance in (2) with another divergence function. For example,
the natural gradient method defines the iteration by using
the symmetric Kullback-Leibler (KL) divergence (Hoff-
man et al., 2013; Pascanu & Bengio, 2013; Amari, 1998),

λk+1 =

argmin
λ∈S

[
−λT∇L(λk) +

1

βk
DsymKL [q(z|λ) ‖ q(z|λk)]

]
.

(3)
This leads to the update

λk+1 = λk + βk
[
∇2G(λk)

]−1∇L(λk), (4)

where G(λ) is the Fisher information-matrix,

G(λ) := Eq(z|λ)
{

[∇ log q(z|λ)] [∇ log q(z|λ)]
T
}
.

Hoffman et al. (2013) show that the natural-gradient up-
date can be computationally simpler than gradient descent
for conditionally-conjugate exponential family models. In
this family, we assume that the distribution of z factorizes
as
∏
i p(z

i|pai) where zi are disjoint subsets of z and pai

are the parents of the zi in a directed acyclic graph. This
family also assumes that each conditional distribution is in
the exponential family,

p(zi|pai) := hi(zi) exp
[
[ηi(pai)]TTi(zi)−Ai(ηi)

]
,

where ηi are the natural parameters, Ti(zi) are the suffi-
cient statistics, Ai(ηi) is the partition function, and hi(zi)
is the base measure. Hoffman et al. (2013) consider a
mean-field approximation q(z|λ) =

∏
i q
i(zi|λi) where
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each qi belongs to the same exponential-family distribution
as the joint distribution,

qi(zi) := hi(zi) exp
[
(λi)TTi(zi)−Ai(λi)

]
.

The parameters of this distribution are denoted by λi to dif-
ferentiate them from the joint-distribution parameters ηi.

As shown by Hoffman et al. (2013), the Fisher matrix for
this problem is equal to ∇2Ai(λi) and the gradient of the
lower bound with respect to λi is equal to∇2Ai(λi)(λi −
λi∗) where λi∗ are the mean-field parameters (see Paquet,
2014). Therefore, when computing the natural-gradient,
the ∇2Ai(λi) terms cancel out and the natural-gradient is
simply λi − λi∗ which is much easier to compute than the
actual gradient. Unfortunately, for non-conjugate models
this cancellation does not happen and the simplicity of the
update is lost. The Riemannian conjugate-gradient method
of Honkela et al. (2011) has similar issues, in that comput-
ing ∇2A(λ) is typically very costly.

KL-Divergence Based Methods: Rather than using the
symmetric-KL, Theis & Hoffman (2015) consider us-
ing the KL divergence DKL[q(z|λ) ‖ q(z|λk)] within a
stochastic proximal-point method:

λk+1 = argmin
λ∈S

[
−L(λ) +

1

βk
DKL[q(z|λ) ‖ q(z|λk)]

]
.

(5)
This method yields better convergence properties, but re-
quires numerical optimization to implement the update
even for conditionally-conjugate models. Khan et al.
(2015) considers a deterministic proximal-gradient variant
of this method by splitting the lower bound into −L :=
f + h, where f contains all the “easy” terms and h con-
tains all the “difficult” terms. By linearizing the “difficult”
terms, this leads to a closed-form update even for non-
conjugate models. The update is given by:

λk+1 = argmin
λ∈S

[
λT [∇f(λk)] + h(λ)

+
1

βk
DKL[q(z|λ) ‖ q(z|λk)]

]
.

(6)

However, this method requires the exact gradients which is
usually not feasible for large dataset and/or complex mod-
els.

Mirror Descent Methods: In the optimization litera-
ture, mirror descent (and stochastic mirror descent) al-
gorithms are a generalization of (2) where the squared-
Euclidean distance can be replaced by any Bregman diver-
gence DF (λ‖λk) generated from a strongly-convex func-
tion F (λ) (Beck & Teboulle, 2003),

λk+1 = argmin
λ∈S

{
−λT∇L(λk) +

1

βk
DF (λ‖λk)

}
. (7)

The convergence rate of mirror descent algorithm has been
analyzed in convex (Duchi et al., 2010) and more re-
cently in non-convex (Ghadimi et al., 2014) settings. How-
ever, mirror descent does not cover the cases described
above in (5) and (6) when a KL divergence between
two exponential-family distributions is used with λ as the
natural-parameter. For such cases, the Bregman divergence
corresponds to a KL divergence with swapped parame-
ters (see Nielsen & Garcia, 2009, Equation 29),

DA(λ‖λk) := A(λ)−A(λk)− [5A(λk)]T (λ− λk)

= DKL[q(z|λk) ‖ q(z|λ)]. (8)

where A(λ) is the partition function of q. Because (5) and
(6) both use a KL divergence where the second argument
is fixed to λk, instead of the first argument, they are not
covered under the mirror-descent framework. In addition,
even though mirror-descent has been used for variational
inference (Ravikumar et al., 2010), Bregman divergences
do not yield an efficient update in many scenarios.

3 PROXIMAL-GRADIENT SVI

Our proximal-gradient stochastic variational inference
(PG-SVI) method extends (6) to allow stochastic gradients
∇̂f(λk) and general divergence functions D(λ‖λk) by us-
ing the iteration

λk+1 = argmin
λ∈S

{
λT
[
5̂f(λk)

]
+ h(λ) +

1

βk
D(λ ‖λk)

}
.

(9)

This unifies a variety of existing approaches since it allows:

1. Splitting of L into a difficult term f and a simple term
h, similar to the method of Khan et al. (2015).

2. A stochastic approximation ∇̂f of the gradient of the
difficult term, similar to SG methods.

3. Divergence functions D that incorporate the geometry
of the parameter space, similar to methods discussed
in Section 2 (see (3), (5), (6), and (7)).

Below, we describe each feature in detail, along with the
precise assumptions used in our analysis.

3.1 SPLITTING

Following Khan et al. (2015), we split the lower bound into
a sum of a “difficult” term f and an “easy” term h, enabling
a closed-form solution for (9). Specifically, we split using
p(y, z)/q(z|λ) = c p̃d(z|λ)p̃e(z|λ), where p̃d contains all
factors that make the optimization difficult, and p̃e contains
the rest (while c is a constant). By substituting in (1), we
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get the following split of the lower bound:

L(λ) = Eq[log p̃d(z|λ)]︸ ︷︷ ︸
−f(λ)

+Eq[log p̃e(z|λ)]︸ ︷︷ ︸
−h(λ)

+ log c.

Note that p̃d and p̃e need not be probability distributions.

We make the following assumptions about f and h:

(A1) The function f is differentiable and its gradient is
L−Lipschitz-continuous, i.e. ∀λ and λ′ ∈ S we have

‖∇f(λ)−∇f(λ′)‖ ≤ L‖λ− λ′‖.

(A2) The function h can be a general convex function.

These assumptions are very weak. The function f can be
non-convex and the Lipschitz-continuity assumption is typ-
ically satisfied in practice (and indeed the analysis can be
generalized to only require this assumption on a smaller
set containing the iterations). The assumption that h is
convex seems strong, but note that we can always take
h = 0 in the split if the function has no “nice” convex
part. Below, we give several illustrative examples of such
splits for variational-Gaussian inference with q(z|λ) :=
N (z|m,V), so that λ = {m,V} with m being the mean
and V being the covariance matrix.

Gaussian Process (GP) Models: Consider GP mod-
els (Kuss & Rasmussen, 2005) for N input-output pairs
{yn,xn} indexed by n. Let zn := f(xn) be the latent
function drawn from a GP with mean 0 and covariance K.
We use a non-Gaussian likelihood p(yn|zn) to model the
output. We can then use the following split, where the non-
Gaussian terms are in p̃d and the Gaussian terms are in p̃e:

p(y, z)

q(z|λ)
=

N∏

n=1

p(yn|zn)

︸ ︷︷ ︸
p̃d(z|λ)

N (z|0,K)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

. (10)

The detailed derivation is in the appendix. By substituting
in (1), we obtain the lower bound L(λ) shown below along
with its split:
∑

n

Eq[log p(yn|zn)]

︸ ︷︷ ︸
−f(λ)

−DKL[N (z|m,V) ‖N (z|0,K)]︸ ︷︷ ︸
h(λ)

.

(11)

A1 is satisfied for common likelihoods, while it is easy to
establish that h is convex. We show in Section 6 that this
split leads to a closed-form update for iteration (9).

Generalized Linear Models (GLMs): A similar split can
be obtained for GLMs (Nelder & Baker, 1972), where the
non-conjugate terms are in p̃d and the rest are in p̃e. De-
noting the weights by z and assuming a standard Gaussian

prior over it, we can use the following split:

p(y, z)

q(z|λ)
=

N∏

n=1

p(yn|xTnz)

︸ ︷︷ ︸
p̃d(z|λ)

N (z|0, I)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

.

We give further details about the bound for this case in the
appendix.

Correlated Topic Model (CTM): Given a text document
with a vocabulary ofN words, denote its word-count vector
by y. Let K be the number of topics and z be the vector of
topic-proportions. We can then use the following split:

p(y, z)

q(z|λ)
=

N∏

n=1

[
K∑

k=1

βn,k
ezk∑
j e
zj

]yn

︸ ︷︷ ︸
p̃d(z|λ)

N (z|µ,Σ)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

,

where µ,Σ are parameters of the Gaussian prior and βn,k
are parameters of K multinomials. We give further details
about the bound in the appendix.

3.2 STOCHASTIC-APPROXIMATION

The approach of Khan et al. (2015) considers (9) in the spe-
cial case of (6) where we use the exact gradient∇f(λk) in
the first term. But in practice this gradient is often diffi-
cult to compute. In our framework, we allow a stochastic
approximation of ∇f(λ) which we denote by ∇̂f(λk).

As shown in the previous section, f might take a form
f(λ) := ΣNn=1Eq[f̃n(z)] for a set of functions f̃n as in
the GP model (11). In some situations, Eq[f̃n(z)] is com-
putationally expensive or intractable. For example, in GP
models the expectation is equal to Eq[log p(yn|zn)], which
is intractable for most non-Gaussian likelihoods. In such
cases, we can form a stochastic approximation by using a
few samples z(s) from q(z|λ), as shown below:

∇Eq[f̃n(z)] ≈ ĝ(λ, ξn) :=
1

S

S∑

s=1

f̃n(z(s))∇[log q(z(s)|λ)]

where ξn represents the noise in the stochastic ap-
proximation ĝ and we use the identity ∇q(z|λ) =
q(z|λ)∇[log q(z|λ)] to derive the expression (Ranganath
et al., 2013). We can then form a stochastic-gradient by
randomly selecting a mini-batch ofM functions f̃ni(z) and
employing the estimate

∇̂f(λ) =
N

M

M∑

i=1

ĝ(λ, ξni
). (12)

In our analysis we make the following two assumptions re-
garding the stochastic approximation of the gradient:

(A3) The estimate is unbiased: E[ĝ(λ, ξn)] = 5f(λ).
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(A4) Its variance is upper bounded: Var[ĝ(λ, ξn)] ≤ σ2.

In both the assumptions, the expectation is taken with re-
spect to the noise ξn. The first assumption is true for the
stochastic approximations of (12). The second assumption
is stronger, but only needs to hold for all λk so is almost
always satisfied in practice.

3.3 DIVERGENCE FUNCTIONS

To incorporate the geometry of q we incorporate a diver-
gence function D between λ and λk. The set of divergence
functions need to satisfy two assumptions:

(A5) D(λ ‖λ′) > 0, for all λ 6= λ′.

(A6) There exist an α > 0 such that for all λ,λ′ generated
by (9) we have:

(λ− λ′)T∇λD(λ ‖λ′) ≥ α‖λ− λ′‖2. (13)

The first assumption is reasonable and is satisfied by typical
divergence functions like the squared Euclidean distance
and variants of the KL divergence. In the next section we
show that, whenever the iteration (9) is defined and all λk
stay within a compact set, the second assumption is satis-
fied for all divergence functions considered in Section 2.

4 SPECIAL CASES

Most methods discussed in Section 2 are special cases of
the proposed iteration (9). We obtain gradient descent
if h = 0, f = −L , ∇̂f = ∇f , and D(λ‖λk) =
(1/2)‖λ − λk‖2 (in this case A6 is satisfied with α = 1).
From here, there are three standard generalizations in the
optimization literature: SG methods do not require that
∇̂f = ∇f , proximal-gradient methods do not require that
h = 0, and mirror descent allows D to be a different Breg-
man divergence generated by a strongly-convex function.
Our analysis applies to all these variations on existing op-
timization algorithms because A1 to A5 are standard as-
sumptions (Ghadimi et al., 2014) and, as we now show, A6
is satisfied for this class of Bregman divergences. In par-
ticular, consider the generic Bregman divergence shown in
the left side of (8) for some strongly-convex functionA(λ).
By taking the gradient with respect to λ and substituting in
(13), we obtain that A6 is equivalent to

(λ− λk)T [5A(λ)−5A(λk)] ≥ α‖λ− λk‖2,

which is equivalent to strong-convexity of the function
A(λ) (Nesterov, 2004, Theorem 2.1.9).

The method of Theis & Hoffman (2015) corresponds
to choosing h = −L, f = 0, and D(λ||λk) :=
DKL[q(z|λ) ‖ q(z|λk)] where q is an exponential family

distribution with natural parameters λ. Since we assume
h to be convex, only limited cases of their approach are
covered under our framework. The method of Khan et al.
(2015) also uses the KL divergence and focuses on the de-
terministic case where ∇̂f(λ) = ∇f(λ), but uses the split
−L = f + h to allow for non-conjugate models. In both
of these models, A6 is satisfied when the Fisher matrix
52A(λ) is positive-definite. This can be shown by using
the definition of the KL divergence for exponential families
(Nielsen & Garcia, 2009):

DKL[q(z|λ) ‖ q(z|λk)]

:= A(λk)−A(λ)− [5A(λ)]T (λk − λ).
(14)

Taking the derivative with respect to λ and substituting in
(13) with λ′ = λk, we get the condition

(λ− λk)T [52A(λ)](λ− λk) ≥ α‖λ− λk‖2,

which is satisfied when52A(λ) is positive-definite over a
compact set for α equal to its lowest eigenvalue on the set.

Methods based on natural-gradient using iteration (3) (like
SVI) correspond to using h = 0, f = −L, and the sym-
metric KL divergence. Assumption A1 to A5 are usually
assumed for these methods and, as we show next, A6 is
also satisfied. In particular, when q is an exponential fam-
ily distribution the symmetric KL divergence can be written
as the sum of the Bregman divergence shown in (8) and the
KL divergence shown in (14),

DsymKL [q(z|λ) ‖ q(z|λk)]

:= DKL[q(z|λk) ‖ q(z|λ)] + DKL[q(z|λ) ‖ q(z|λk)]

= DA(λ‖λk) + DKL[q(z|λ) ‖ q(z|λk)]

where the first equality follows from the definition of the
symmetric KL divergence and the second one follows from
(8). Since the two divergences in the sum satisfy A6, the
symmetric KL divergence also satisfies the assumption.

5 CONVERGENCE OF PG-SVI

We first analyze the convergence rate of deterministic
methods where the gradient is exact, ∇̂f(λ) = ∇f(λ).
This yields a simplified result that applies to a wide variety
of existing variational methods. Subsequently, we consider
the more general case where a stochastic approximation of
the gradient is used.

5.1 DETERMINISTIC METHODS

The following theorem establishes the convergence under
a fixed step-size. We use C0 = L∗ − L(λ0) as the initial
(constant) sub-optimality, and express our result in terms
of the quantity ‖λk+1 − λk‖.
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Proposition 1. Let A1, A2, A5, and A6 be satisfied. If we
run t iterations of (9) with a fixed step-size βk = α/L for
all k and an exact gradient ∇f(λ), then we have

min
k∈{0,1,...,t−1}

‖λk+1 − λk‖2 ≤
2C0

αt
(15)

We give a proof in the appendix. Roughly, the theorem
states that the minimum distance moved across all itera-
tions must be in O(1/t). If the objective is bounded be-
low (C0 is finite), then this result implies that the algorithm
converges to a stationary point and also gives a rate of con-
vergence.

Stating the result in terms of ‖λk+1 − λk‖ may appear to
be unconventional, but this quantity is useful since it char-
acterizes a fixed point of the algorithm. For example, con-
sider the special case of gradient descent where h = 0 and
D(λ,λk) = 1

2‖λ − λk‖2. In this case, α = 1 and βk =
1/L, therefore we have ‖λk+1−λk‖ = ‖∇f(λk)‖2/L and
Proposition 1 implies that mink ‖∇f(λk)‖2 has a conver-
gence rate of O(1/t). This in turn shows that the method
converges at a sublinear rate to an approximate stationary
point, which would be a global minimum in the special case
where f is convex.

If we use a divergence with α > 1 then we can use a step-
size larger than 1/L and the error will decrease faster than
gradient-descent. To our knowledge, this is the first re-
sult that formally shows that natural-gradient methods can
achieve faster convergence rates. The splitting of the ob-
jective into f and h functions is also likely to improve the
step-size. Since L only depends on f , sometimes it might
be possible to reduce the Lipschitz constant by choosing an
appropriate split.

We next give a more general result that allows a per-
iteration step size.

Proposition 2. If we choose the step-sizes βk to be such
that 0 < βk ≤ 2α/L with βk < 2α/L for at least one k,
then,

min
k∈{0,1...t−1}

1

βk
‖λk+1 − λk‖2 ≤

C0∑t−1
k=0 (αβk − Lβ2

k/2)
(16)

We give a proof in the appendix. For gradient-descent, the
above result implies that we can use any step-size less than
2/L, which agrees with the classical step-size choices for
gradient and proximal-gradient methods.

5.2 STOCHASTIC METHODS

We now give a bound for the more general case where we
use a stochastic approximation of the gradient.

Proposition 3. Let A1-A6 be satisfied. If we run t iterations
of (9) for a fixed step-size βk = γα∗/L (where 0 < γ < 2

is a scalar) and fixed batch-size Mk = M for all k with a
stochastic gradient ∇̂f(λ), then we have

ER,ξ(‖λR+1 − λR‖2) ≤ 1

2− γ

[
2C0

α∗t
+
γcσ2

ML

]
.

where c is a constant such that c > 1/(2α) and α∗ :=
α − 1/(2c). The expectation is taken with respect to the
noise ξ := {ξ0, ξ1, . . . , ξt−1}, and a random variable R
which follows the uniform distribution Prob(R = k) =
1/t,∀k ∈ {0, 1, 2, . . . , t− 1}.

Unlike the bound of Proposition 1, this bound depends
on the noise variance σ2 as well the mini-batch size M .
In particular, as we would expect, the bound gets tighter
as the variance gets smaller and as the size of our mini-
batch grows. Notice that we can also make the second
term smaller by decreasing the value of γ and the first
term smaller by increasing the number of iterations. There-
fore, this bound indicates that a small enough constant step-
size γ (or a sufficiently-large batch-size M ) can be used to
reach any target level of accuracy. In the appendix, we give
a more general result that allows a per-iteration step-size
which can used to give an “anytime” algorithm that is able
to converge to an arbitrary level of accuracy by using a de-
creasing sequence of step sizes (but we found that constant
step-sizes work better empirically). Note that while stating
the result in terms of a randomized iteration might seem
strange, in practice we typically just take the last iteration
as the minimizer.

6 CLOSED-FORM UPDATES FOR
NON-CONJUGATE MODELS

We now give an example where iteration (9) attains a
closed-form solution. We expect such closed-form solu-
tion to exist for a large class of problems, including models
where q is an exponential-family distribution, but here we
focus on the GP model discussed in Section 3.1.

For the GP model, we rewrite the lower bound (11) as

−L(m,V) :=
N∑

n=1

fn(mn, vn)

︸ ︷︷ ︸
f(m,V )

+DKL[q ‖ p]︸ ︷︷ ︸
h(m,V )

(17)

where we’ve used q := N (z|m,V), p := N (z|0,K), and
fn(mn, vn) := −Eq[log p(yn|zn)] with mn being the en-
try n of m and vn being the diagonal entry n of V. We
can compute a stochastic approximation of f using (12) by
randomly selecting an example nk (choosing M = 1) and
using a Monte Carlo gradient approximation of fnk

. Us-
ing this approximation, the linearized term in (9) can be
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simplified to the following:

λT
[
5̂f(λk)

]
= mnN [∇mnfnk

(mnk,k, vnk,k)]︸ ︷︷ ︸
:=αnk,k

+ vnN [∇vnfnk
(mnk,k, vnk,k)]︸ ︷︷ ︸

:=2 γnk,k

= mnαnk,k + 1
2vnγnk,k (18)

where mnk,k and vnk,k denote the value of mn and vn in
the k’th iteration for n = nk. By using the KL divergence
as our divergence function in iteration (9), and by denoting
N (z|mk,Vk) by qk, we can express the two last two terms
in (9) as a single KL divergence function as shown below:

λT
[
5̂f(λk)

]
+ h(λ) +

1

βk
D(λ‖λk),

= (mnαn,k + 1
2vnγn,k) + DKL[q ‖ p] +

1

βk
DKL[q ‖ qk],

= (mnαn,k + 1
2vnγn,k) +

1

1− rk
DKL[q ‖ p1−rkqrkk ],

where rk := 1/(1 + βk). Comparing this to (17), we see
that this objective is similar to that of a GP model with a
Gaussian prior1 p1−rkqrkk and a linear Gaussian-like log-
likelihood. Therefore, we can obtain closed-form updates
for its minimization.

The updates are shown below and a detailed derivation is
given in the appendix.

γ̃k = rkγ̃k−1 + (1− rk)γnk,k1nk
,

mk+1 = mk − (1− rk)(I−KA−1k )(mk + αnk,kκnk
),

vnk+1,k+1 = κnk+1,nk+1
− κTnk+1

A−1k κnk+1
, (19)

where γ̃0 is initialized to a small positive constant to avoid
numerical issues, 1nk

is a vector with all zero entries ex-
cept nk’th entry which is equal to 1, κk is nk’th column
of K, and Ak := K + [diag(γ̃k)]−1. For iteration k + 1,
we use mnk+1,k+1 and vnk+1,k+1 to compute the gradients
αnk+1,k+1 and γnk+1,k+1, and run the above updates again.
We continue until a convergence criteria is reached.

There are numerous advantages of these updates. First, We
do not need to store the full covariance matrix V. The up-
dates avoid forming the matrix and only update m. This
works because we only need one diagonal element in each
iteration to compute the stochastic gradient γnk,k. For large
N this is a clear advantage since the memory cost is O(N)
rather than O(N2). Second, computation of the mean vec-
tor m and a diagonal entry of V only require solving two
linear equations, as shown in the second and third line of
(19). In general, for a mini-batch of size M , we need a
total of 2M linear equations, which is a lot cheaper than
an explicit inversion. Finally, the linear equations at iter-
ation k + 1 are very similar to those at iteration k, since

1Since p and q are Gaussian, the product is a Gaussian.

Figure 1: We show the number of examples required for
convergence versus fixed step-sizes for binary GP classifi-
cation. Methods based on proximal-gradient require fewer
number of examples compared to gradient descent (GD).
Step-size is upper bounded for all methods (upper bound
shown with vertical lines). PG-SVI surprisingly converges
at the same rate as PG.

Ak differ only at one entry from Ak+1. Therefore, we can
reuse computations from the previous iteration to improve
the computational efficiency of the updates.

7 EXPERIMENTAL RESULTS

In this section, we compare our method to many exist-
ing approaches such as SGD and four adaptive gradient-
methods (ADAGRAD, ADADELTA, RMSprop, ADAM),
as well as two variational inference methods for non-
conjugate models (the Delta method and Laplace method).
We show results on Gaussian process classification (Kuss
& Rasmussen, 2005) and correlated topic models (Blei &
Lafferty, 2007). The code to reproduce these experiments
can be found at this link2.

7.1 GAUSSIAN PROCESS CLASSIFICATION

We consider binary classification by using a GP model with
Bernoulli-logit likelihood on three datasets: Sonar, Iono-
sphere, and USPS-3vs5. These datasets can be found at
the UCI data repository3 and their details are discussed
in Kuss & Rasmussen (2005). For the GP prior, we use
the zero mean-function, and a squared-exponential covari-
ance function with hyperparameters σ and l as defined in
Kuss & Rasmussen (2005) (see Eq. 33). We set the val-
ues of the hyperparameters using cross-validation. For the
three datasets, the hyperparameters (log l, log σ) are set to
(−1, 6), (1, 2.5), and (2.5, 5), respectively.

2https://github.com/emtiyaz/prox-grad-svi
3https://archive.ics.uci.edu/ml/datasets.

html

325



10 0 10 2 10 4

# Passes

10 2

10 3

10 4

N
e
g
a
t
i
v
e
 
L
o
w
e
r
 
B
o
u
n
d sonar

SGD
ADADELTA
RMSPROP
ADAGRAD
ADAM
PG-SVI

10 0 10 1 10 2 10 3

# Passes

10 2

10 3

N
e
g
a
t
i
v
e
 
L
o
w
e
r
 
B
o
u
n
d ionosphere

SGD
ADADELTA
RMSPROP
ADAGRAD
ADAM
PG-SVI

10 0 10 1 10 2 10 3

# Passes

10 2

10 3

10 4

10 5

N
e
g
a
t
i
v
e
 
L
o
w
e
r
 
B
o
u
n
d usps3v5

SGD
ADADELTA
RMSPROP
ADAGRAD
ADAM
PG-SVI

10 0 10 2 10 4

# Passes

0.64

0.65

0.66

0.67

0.68

0.69

0.7

T
e
s
t
 
L
o
g
-
L
o
s
s

sonar

SGD
ADADELTA
RMSPROP
ADAGRAD
ADAM
PG-SVI

10 0 10 1 10 2 10 3

# Passes

0.2

0.3

0.4

0.5

0.6

0.7

T
e
s
t
 
L
o
g
-
L
o
s
s

ionosphere

SGD
ADADELTA
RMSPROP
ADAGRAD
ADAM
PG-SVI

10 0 10 1 10 2 10 3

# Passes

0

0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t
 
L
o
g
-
L
o
s
s

usps3v5

SGD
ADADELTA
RMSPROP
ADAGRAD
ADAM
PG-SVI

Figure 2: Comparison with adaptive gradient methods for binary classification using GP. We compare PG-SVI to SGD,
ADADELTA, RMSprop, ADAGRAD, and ADAM on three datasets. Each column shows results for a dataset. Top row
shows the negative of the lower bound, while the bottom row shows the test log-loss. In each plot, the X-axis shows the
number of passes made through the data. Markers are shown at 0, 1, 2, 4, 7, and 9 passes through the data. Our method
always converges within 10 passes through the data, while other methods more than 100 passes.

7.1.1 Performance Under a Fixed Step-Size

In our first experiment, we compare the performance un-
der a fixed step-size. These results demonstrate that the
step-size required for convergence is upper-bounded, as
shown in our convergence analysis. The results also
demonstrate the faster convergence of our method com-
pared to gradient-descent methods. We compare the fol-
lowing four algorithms on the Ionosphere dataset: (1) batch
gradient-descent (referred to as ‘GD’), (2) batch proximal-
gradient algorithm (referred to as ‘PG’), (3) batch ver-
sion of proximal-gradient algorithm with gradients approx-
imated by using Monte-Carlo (referred to as ‘PG-MC’),
and (4) proposed proximal-gradient stochastic variational-
inference (referred to as ‘PG-SVI’) where stochastic gradi-
ents are obtained using (12) with M = 5. For Monte Carlo
approximation, we use S = 500 samples.

Figure 1 shows the number of examples required for con-
vergence versus the step-size. A lower number implies
faster convergence. The vertical lines show the step-size
above which a method diverges. Convergence is assessed
by monitoring the lower bound, and when the change in
consecutive iterations do not exceed a certain threshold, we
stop the algorithm.

We clearly see that GD requires many more passes through

the data, and methods based on proximal-gradient method
converge faster than GD. In addition, the upper bound on
the step-size for PG is much larger than GD. This im-
plies that PG can potentially take larger steps than the GD
method. PG-SVI is surprisingly as fast as PG which shows
the advantage of our approach over the approach of Khan
et al. (2015).

7.1.2 Comparison with Adaptive Gradient Methods

We also compare PG-SVI to SGD and four adaptive meth-
ods, namely ADADELTA (Zeiler, 2012), RMSprop (Tiele-
man & Hinton, 2012), ADAGRAD (Duchi et al., 2011),
and ADAM (Kingma & Ba, 2014). The implementation
details of these algorithms are given in the appendix. We
compare the value of the lower bound versus number of
passes through the data. We also compare the average
log-loss on the test data: −∑n log p̂n/N∗ where p̂n =
p(yn|σ, l,Dt) is the predictive probabilities of the test point
yn given training dataDt andN∗ is the total number of test-
pairs. A lower value is better for the log-loss, and a value
of 1 is equal to the performance of random coin-flipping.

Figure 2 summarizes the results. Each column shows re-
sults for a dataset. The top row shows the negative of the
lower bound, while the bottom row shows the test log-loss.
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Lower values are better for both. In all plots, the X-axis
shows the number of passes made through the data. Mark-
ers are shown at 0, 1, 2, 4, 7, and 9 passes through the data
(one pass means the number of randomly selected exam-
ples is equal to the total number of examples). Our method
is much faster to converge than other methods, and it al-
ways converges within 10 passes through the data, while
other methods requires more than 100 passes.

7.2 CORRELATED TOPIC MODEL

We now show results for correlated topic model on two col-
lections of documents, namely NIPS dataset and Associ-
ated Press (AP) dataset. The NIPS4 dataset contains 1500
documents from the NIPS conferences held between 1987
and 1999 (a vocabulary-size of 12,419 words and a total of
around 1.9M words). The AP5 collection contains 2,246
documents from the Associated Press (a vocabulary-size of
10,473 words and a total of 436K observed words). We use
50% of the documents for training and 50% for testing.

We compare to the Delta method and the Laplace method
discussed in Wang & Blei (2013), and also to the original
mean-field (MF) method of Blei & Lafferty (2007). For
these methods, we use the implementation available at this
link6. All of these methods approximate the lower bound
by using approximations to the expectation of log-sum-exp
functions (see Appendix for details). We compare these
methods to the two versions of our algorithm which do not
use such approximations, rather use a stochastic gradient as
explain in Section 3.2. Specifically, we use the following
two versions: one with full covariance (referred to as PG-
SVI), and the other with diagonal covariance (referred to as
PG-SVI-MF). For both of these algorithms, we use a fixed
step-size of 0.001, and a mini-batch size of 2 documents.

Following Wang & Blei (2013), we compare the held-out
log-likelihood, which is computed as follows: a new test
document y is split into two halves (y1,y2), then we com-
pute the approximate posterior q(z) to the posterior p(z|y1)
using which we compute the held-out log-likelihood for
each yn ∈ y2 as follows:

log p(yn) ≈ log

∫

z

[
K∑

k=1

βn,k
ezk∑
j e
zj

]yn
q(z)dz (20)

We use Monte Carlo to approximate this quantity by using
a large number of samples from q (unlike Wang & Blei
(2013) who approximate it by using the Delta method). We
report the average of this quantity over all words in y2.

Figure 3 shows the negative of the average held-out log-
likelihood versus time for 10 topics. Lower values are bet-

4https://archive.ics.uci.edu/
5http://www.cs.columbia.edu/˜blei/lda-c/

index.html
6https://www.cs.princeton.edu/˜chongw/

resource.html
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Figure 3: Results on NIPS (left) and AP (right) datasets
using correlated topic model with 10 topics. We plot the
negative of the average held-out log-likelihood versus time.
Lower values are better. Methods based on proximal-
gradient algorithm perform better.

ter. Markers are shown at iterations after second and fifth
passes through the data. We see that methods based on
proximal-gradient algorithm converge a little bit faster than
the existing methods. More importantly, they achieves bet-
ter performance. This could be due to the fact that we do
not approximate the expectation of the log-sum-exp func-
tion, unlike the Delta and Laplace method. We obtained
similar results for different number of topics.

8 DISCUSSION

This work has made two contributions. First, we proposed
a new variational inference method that combines variable
splitting, stochastic gradients, and general divergence func-
tions. This method is well-suited for a huge variety of the
variational inference problems that arise in practice, and we
anticipate that it may improve over state of the art meth-
ods in a variety of settings. Our second contribution is a
theoretical analysis of the convergence rate of this general
method. Our analysis generalizes existing results for the
mirror descent algorithm in optimization, and resolves the
convergences of a variety of existing variational inference
methods. Due to its generality we expect that this anal-
ysis could be useful to establish convergence of other al-
gorithms that we have not thought of, perhaps beyond the
variational inference settings we consider in this work.

One issue that we have not satisfactorily resolved is giv-
ing a theoretically-justified way to set the step-size in prac-
tice; our analysis only indicates that it must be sufficiently
small. However, this problem is common in many meth-
ods in the literature and our analysis at least suggests the
factors that should be taken into account. Another open
issue is the applicability our method to many other latent
variable models; in this paper we have shown applications
to variational-Gaussian inference, but we expect that our
method should result in simple updates for a larger class
of latent variable models such as non-conjugate exponen-
tial family distribution models. Additional work on these
issues will improve usability of our method.
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Abstract

Microclustering refers to clustering models that
produce small clusters or, equivalently, to mod-
els where the size of the clusters grows sublin-
early with the number of samples. We formulate
probabilistic microclustering models by assign-
ing a prior distribution on the size of the clus-
ters, and in particular consider microclustering
models with explicit bounds on the size of the
clusters. The combinatorial constraints make full
Bayesian inference complicated, but we manage
to develop a Gibbs sampling algorithm that can
efficiently sample from the joint cluster alloca-
tion of all data points. We empirically demon-
strate the computational efficiency of the algo-
rithm for problem instances of varying difficulty.

1 INTRODUCTION

Clustering is classically identified as the task of group-
ing similar objects into a number of clusters. Typical
probabilistic formulations are based on mixture models
[McLachlan and Peel, 2004], following the intuitive idea
that each data point independently chooses a cluster by con-
sidering the product of some mixture weights and the like-
lihood of that cluster producing the data point. Because of
these independent decisions, these models have very lim-
ited means for controlling the sizes of the clusters. Para-
metric mixture models are effectively agnostic of the clus-
ter size; they can be tuned to a degree with the prior dis-
tribution of the weights, but in the end the likelihood over-
rides even the strongest priors for large sample sizes. Non-
parametric mixture models such as Dirichlet process (DP)
mixtures [Antoniak, 1974], Pitman-Yor mixtures [Dubey
et al., 2014], and uniform process mixtures [Wallach et al.,
2010] in turn induce some characteristic behavior for the
size distribution. For example, DP mixtures assume that
the number of clusters for a sample size of N grows pro-
portionally to log(N) and the biggest clusters hold a large

proportion of the data points due to the rich-get-richer prop-
erty, which is not always consistent with reasonable cluster-
ing assumptions [Miller and Harrison, 2013]. The uniform
process by Wallach et al. [2010] eliminates the rich-get-
richer property, but in expectation produces clusters of all
sizes with equal probability, resulting in total number of
clusters proportional to

√
N .

Both being agnostic about the sizes of the clusters and ex-
plicitly assuming the rich-get-richer property are reason-
able assumptions for a wide range of clustering tasks, as
clearly demonstrated by the wide-spread usage of mixture
models. For some clustering tasks, however, it would be
useful to have finer control over the possible sizes of the
clusters. For example, if the clustering model is used for
creating teams of similar individuals [Kim et al., 2015] we
would want to find clusters that are approximately of the
same size, even as small as two to create working pairs.
Another practical example is to use clustering to split a col-
lection of items for further processing for distributed set of
workers with limited capacity. We can expect the worker
to perform the task more accurately and faster if the items
are similar, and the clusters should contain at most a certain
pre-given number of instances.

In this work, we consider probabilistic clustering models
with explicit constraints on the sizes to address the illus-
trative scenarios above. Our model that assumes constant
maximum size is a specific instance of the more general
concept of microclustering, defined as clustering models
for which the size of the clusters grows sublinearly with
respect to the sample size [Miller et al., 2015] – here the
size is explicitly forced to be constant, to guarantee small
clusters even for extremely large data collections. Our mi-
croclustering model builds on standard parametric mixture
models, but replaces the independent cluster assignments
of individual data points with a joint assignment of all
points that needs to satisfy the constraints.

Specifying the model for size-constrained microclustering
is straightforward, requiring only a simple change in the
prior distribution, and in fact similar models have ear-
lier been discussed outside the probabilistic framework.
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Banerjee [2006] considered distance-based clustering mod-
els that produce clusters of approximatively the same size,
and Zhu et al. [2010] added explicit constraints to K-means
to utilize prior knowledge on the cluster sizes. Their solu-
tions correspond effectively to maximum likelihood esti-
mation, which is easy given access to standard constrained
optimization tools, whereas the core challenge in our case
is in conducting full Bayesian inference over the model.

In this work we discuss the challenge of jointly sampling
the cluster assignments of all data points in our micro-
clustering model and present two alternative algorithms for
that purpose, a dynamic programming algorithm based on
depth-first branch-and-bound, and a simple rejection sam-
pler. We empirically demonstrate that these two alterna-
tives dominate in different conditions, the former being ef-
ficient for highly constrained cases and the latter being op-
timal for loose constraints. We then construct a final sam-
pling algorithm that utilizes both parts to produce a Gibbs
sampler that is a direct generalization of the correspond-
ing algorithm for regular mixture models: In the absence
of constraints it draws the samples independently with no
computational overhead, whereas with increasingly tight
constraints it starts using the dynamic programming algo-
rithm for improved efficiency.

Besides introducing the size-constrained clustering model,
the main message of this article is to highlight that full
Bayesian inference is also feasible for models with com-
binatorial constraints, encouraging people to explore the
opportunities outside independent samples. Even though
probabilistic reasoning under combinatorial constraints is
generally hard [Roth, 1996], many practical probabilistic
models result in sufficiently small problem instances that
can today be solved efficiently. Explicit constraints can
hence be effective in constraining the model and often the
computational overhead needed for finding the solution is
small compared to the gain in overall performance. We are
currently aware of only limited existing literature in this
direction; Chen et al. [2005] and Dobra et al. [2006] pre-
sented MCMC algorithms for sampling contingency tables
with constrained marginals, Klami [2012, 2013] consid-
ered posterior inference over permutations to solve cross-
domain object matching problems, and Wang et al. [2015]
presented an MCMC algorithm for combinatorial problems
related to phylogenetic trees.

2 MICROCLUSTERING

Miller et al. [2015] define microclustering as any clustering
model where the size of the clusters grow sublinearly with
the total number of data points. Even though their formu-
lation considers non-parametric models, the concept itself
is useful also for parametric models where the number or
size of the clusters is chosen via other means during the
modeling process.

The core requirement for building probabilistic microclus-
tering models is to have control over the sizes of the clus-
ters. Regular mixture models have no control over the size
distribution besides the prior weights (that can be dom-
inated by the likelihood) because their independent data
point assignment prior

p({zn}Nn=1|θ) =

N∏

n=1

p(zn|θ) (1)

implies that the conditional posterior p(zn|{zn}−n, θ) =
p(zn|θ) is independent of the other assignments. Hence
the sizes of the clusters cannot influence the decision of
the individual sample. Marginalizing the parameters θ out
introduces such a dependency, but its nature is completely
determined by the prior used on θ and cannot be controlled
easily. See Wallach et al. [2010] for both theoretical and
empirical analysis of the resulting cluster size distributions
for various non-parametric prior processes.

Explicit control over the cluster sizes is conceptually easy
to obtain, by replacing the prior in (1) with one that factor-
izes over the clusters and not the samples:

p({zn}Nn=1|θ) =

K∏

k=1

p(sk|θ),

where sk is the number of data points assigned to the
kth cluster. It is linked to the assignments as sk =∑N
n=1 I(zn = k) where I(·) evaluates to one if its argu-

ment is true and otherwise to zero. In other words, we as-
sume that all joint assignments that result in cluster sizes
{sk}Kk=1 are equally probable, and their number does not
directly influence the probability.

This general formulation leaves open the specific prior
given for the sizes. Miller et al. [2015] introduced a non-
parametric microclustering model that assumes the clus-
ter sizes follow a negative binomial distribution, whereas
we will be using constant priors over a set of legal cluster
sizes. One might also imagine other practical choices, such
as constant probability for some favoured cluster size with
exponential decay for violations from that size. In general,
this choice will be application-specific and hence the priors
should be subjective, rather unconventionally for mixture
modeling in general.

2.1 SIZE-CONSTRAINED MICROCLUSTERING

In this work, we consider microclustering models with ex-
plicit hard constraints on the cluster sizes, applicable for
scenarios where the (typically maximum) size of a clusters
is determined by external channel constraints. These clus-
tering models clearly belong to the family of microcluster-
ing models, since the size of the clusters is constant with
respect to the total number of data points and hence sub-
linear. The explicit constraints are easy to formulate but
require constrained optimization techniques for inference.
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Our model that restricts the sizes between L and U is

p({xn}|φ, {zn}) =

N∏

n=1

p(xn|φ, zn) =

N∏

n=1

g(xn, φzn),

p({zn}) =
K∏

k=1

p(sk), (2)

p(sk) =
1

U − L+ 1
δ(L ≤ sk ≤ U),

where g(xn, φzn) is some likelihood function and the
model is coupled with a suitable prior p(φ) on its param-
eters. In our experiments, we will use the Gaussian like-
lihood log g(xn, φk) = C − 1

2 (xn − µk)T τ(xn − µk)
with diagonal precision τ and priors µ ∼ N(µ0,Σ0) and
τd ∼ Gamma(α0, β0), but the core inference algorithms
for {z} works identically for any likelihood that factorizes
over the samples. Here the constraintsU andL are constant
over the clusters, but all of the inference details apply also
for cluster-specific constraints if such prior information is
available.

3 INFERENCE

We now discuss the full Bayesian inference for the pro-
posed model. The practical algorithmic details are given
for a Gibbs sampler that samples the parameters φ of the
clusters given the assignments and the assignments {zn}
given the cluster parameters. The sampling equations for
the cluster parameters are exactly as in any standard mix-
ture model, and are not discussed here in any more detail.

The challenging part is sampling the assignments, which
needs to be done jointly for all data points due to the prior
distribution and constraints (2) defined for the whole col-
lection instead of individual points. We will first briefly ex-
plain how the maximum likelihood solution is easy to find,
and then proceed to present two alternatives algorithms for
producing samples from the posterior distribution.

As a side remark, the microclustering model of Miller et al.
[2015] sidesteps the issue of joint sampling by sampling
the allocations of individual samples conditional on all oth-
ers allocations, from p(zn|z−n). This is feasible in their
model that does not have hard constraints, but results in
long auto-correlation time due to aggressive conditioning.
For our model such a sampler would be catastrophic if the
constraints are tight; in the extreme case where the cluster
sizes are forced to exact values it could never change the
allocation since all clusters except the one where this data
point was previously allocated at would be full.

3.1 THE MOST LIKELY ASSIGNMENT(S)

An important initial observation is that we can efficiently
find the most likely assignment by solving the integer pro-

gramming problem

max
N∑

n=1

K∑

k=1

log g(xn, zk)πk,n, (3)

sk =
∑

n

πk,n ≥ L ∀k,

sk =
∑

n

πk,n ≤ U ∀k,
∑

k

πk,n = 1 ∀n,

where π is a binary matrix whose element πk,n indicates
whether the nth sample is assigned to the kth cluster. Any
off-the-shelf linear programming solver will find the op-
timal solution in reasonable time for problems of practi-
cal size. By alternating between assignments obtained by
solving (3) and maximum a posteriori choice for the cluster
parameters φk, we would get a probabilistic variant of the
size-constrained K-means model by Zhu et al. [2010].

Typical branch-and-bound algorithms used for solving (3)
retain a list of solution candidates that are pruned away
by comparing upper bounds for their value against a lower
bound for the best candidate. They can be easily modified
to retain a list of all possible solutions that are close enough
to the optimal, to explicitly enumerate all solutions that are
sufficiently likely. Given such a list of solutions {πi} and
their associated log-probabilities {ci}we could easily sam-
ple a solution from p(π = πi) = exp(ci)∑

i exp(c
i) .

Unfortunately, explicitly enumerating all of the good so-
lutions is infeasible for all but the smallest problems be-
cause their number becomes inordinately large. In the un-
constrained case there are NK possible allocations, all of
which would need to be enumerated if the probabilities fall
off of too slowly. We do not discuss this approach further
since the cases for which it would be efficient are easy to
solve by other means as well, but the optimization problem
(3) is still important; we will use it for quickly creating an
upper bound in our actual sampler, as well as for initializ-
ing the sampling chain.

3.2 CLUSTER SIZE ASSIGNMENT SAMPLER

3.2.1 Motivation

A more practical solution to the problem is a dynamic pro-
gramming algorithm that operates in the space of possible
cluster sizes, enumerating only the possible cluster size al-
location vectors r ∈ [L,U ]K instead of the sample alloca-
tion vectors z ∈ [1,K]N . Even in the unconstrained case
the maximum number of solutions to be enumerated in the
end goes down from NK to

(
N+K−1
K−1

)
, and for the con-

strained case with uniform maximum size U we have at
most

∑min(K,bN/(U+1)c)
q=0 (−1)q

(
K
q

)(
N−q∗(U+1)+K−1

K−1
)

so-
lutions. As a case in point, already for N = 20, K = 8 and
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U = 4 these three numbers would be 2.6 × 1010, 888.030
and 23.940. With minimum size L = 2 the number of
possible solutions would further decrease to just 266. Enu-
merating 2.6 × 1010 solutions would be clearly infeasible,
whereas the result set of at most 266 solutions would cause
no trouble.

Operating in the space of cluster size allocations does come
with a drawback as well, in the form of more difficult
bounding of the solution candidates. Furthermore, the
number of solution candidates in the intermediate stages is
typically considerably higher than the size of the final set,
but still orders of magnitude smaller than the number of
individual solutions. We will next show how a reasonably
efficient dynamic programming algorithm operating in the
space of the cluster sizes can be designed.

3.2.2 Basic Concept

The algorithm operates on solution sets Aa = (Ra, qa),
where each set contains a collection of solution candi-
dates Ra = {ria, pia} and the total probability of the set
qa =

∑
i p
i
a. Each solution i is characterized by a vector

of cluster sizes ria ∈ NK and the associated probability pia
of that particular solution. Throughout the description of
the algorithm, subscripts refer to the sets and superscripts
to the individual solution candidates within the set, so that
pia means the probability of the ith solution candidate in set
Aa.1

We build a forward-backward sampling algorithm based on
dynamic programming reminiscent of the algorithm used
for sampling the state sequence of Bayesian hidden Markov
models [Scott, 2002]. Similar to that algorithm we make a
forward pass to accumulate total probabilities of solutions
and a backward pass to sample given the accumulated prob-
abilities after each sample. For HMMs this algorithm can
cover all possibilities since it only needs to keep track ofK
probabilities at each stage, but since we are keeping track
of all possible cluster size allocations we also need to prune
out solution candidates that will have negligible probability
in the final set.

The overall algorithm is illustrated in Figure 1, which
also demonstrates how the practical computations are per-
formed.

3.2.3 Forward Pass

The forward pass starts by constructing N initial sets An,
each storing theK possible cluster allocations for one sam-
ple. The probability of each solution is given by pkn =
g(xn, zk), and the total probability is qn =

∑
k p

k
n.

1In practice we naturally store the values in the logarithmic
domain for numerical stability, but the presentation below uses
actual probabilities to avoid needing to write log

∑
exp(·) for all

cases where we sum up probabilities.

The first iteration of the forward pass picks two of these
sets (denoted by i and j) and joins them to create a solu-
tion set Ai,j , containing all possible allocations of the two
samples, stored still as the possible cluster size allocation
vectors rii,j and their probabilities pii,j . This join is per-
formed by a collection of four basic operations described
soon and illustrated in Figure 1.

After joining the two sets we proceed to join the resulting
set with another of the initial N sets, denoted by l, this
time producing the setAi,j,l that stores the joint allocations
of all three samples. The process continues this way for
N − 1 iterations, until all samples have been joined to the
final set A1:N . It stores the probabilities of all possible
cluster size allocations that satisfy the constraints. Together
with all of the intermediate sets it enables drawing a sample
from the posterior using the backward pass described in
Section 3.2.5.

3.2.4 Set operations

For manipulating the sets the algorithm requires four basic
operations:

1. MERGE(Aa,Ab): Takes as input two sets and com-
bines them, to produce a new set that contains all pos-
sible combinations of the solutions in the two sets:
each solution in Aa is paired with each solution in
Ab, so that the cluster size vectors are summed up and
the probabilities are multiplied together. Note that this
typically results in duplicate solution candidates, since
the same sum ria+rjb can be reached in multiple ways.

2. COLLAPSE(Aa): Takes as input a solution setAa with
possible duplicates for the cluster size vectors ria and
returns the set so that each unique vector is repre-
sented only once. The probability of that set is ob-
tained by summing over the probabilities associated
with each duplicate: pia =

∑
j p

j
a ∀rja = ria.

3. CHECKCONSTRAINTS(Aa, Ua, La): Takes as input
a solution set and returns a set that excludes all so-
lutions that violate the constraints. That is, we keep
only solutions for which La ≤ ria ≤ Ua holds for all
K elements.

4. BOUND(Aa, b): Takes as input a solution set and re-
turns a set that excludes all solutions for which the
probability is below the bound, pia < b.

A single iteration of the forward pass is simply a concate-
nation of all of the above operations: The initial sets are
passed to MERGE, the result of that to COLLAPSE, and
then to CHECKCONSTRAINTS and BOUND in either order.
Without bounding or checking for the constraints the al-
gorithm would simply proceed to enumerate all possible
cluster size allocations, so the efficiency of the algorithm
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Figure 1: Top: Schematic overview of the dynamic programming algorithm. The forward pass computes the probabilities
of possible cluster size allocation vectors by joining one sample at a time to the current overall solution set marked in
yellow, producing the next overall solution set marked in orange. The backwards step then draws a sample by considering
the probabilities in the intermediate sets created during the forward pass. Bottom: Example of an individual join. Each
set stores all possible cluster size vectors ri for the samples in that set with the associated probabilities pi, as well as the
total probability q that is their sum. The MERGE operation produces all possible combinations of the cluster size vectors
of the two sets, here ordered so that the solutions above the dashed line correspond to r12 , and multiplies the probabilities.
The COLLAPSE operation then sums up the probabilities for each unique solution, and CHECKCONSTRAINTS cuts out
solutions that exceed the constraints; here solutions with cluster sizes above U = 2 were pruned out. Note that the total
probability in the intermediate stage is simply the product of the probabilities for the incoming sets, but the probability
of the final result is often considerably smaller. This allows pruning the other sets again since their upper bounds have
decreased, here by 0.56− 0.3 = 0.26, resulting in A5 now having only two valid solutions instead of three.

depends on how well we can cut out solution candidates
based on the constraints and the bound on probabilities.

To efficiently bound the solutions in Aa we need to know
an upper bound for the probability of still unprocessed sam-
ples, denoted by βia, and a global lower bound for the
probability of the most likely final solution, denoted by
G = maxi p

i
1:N . We can then prune out all solution candi-

dates i in set Aa for which

pia + βia ≤ G/∆,

where ∆ is a threshold chosen sufficiently large; we use
∆ = exp(12) in our experiment, to indicate that we only
prune out solutions that are guaranteed to be at least five

orders of magnitude less likely than the optimal one. The
bound βia is obtained by inspecting the other sets Am.
Since we store with each set the total probability of all
possible allocations as qm, we obtain the bound βia =∑
m 6=a qm that is independent of the solution candidate it-

self. Note that the quantityG is in general unknown but we
can use any lower bound for that instead and retain the va-
lidity (at the expense of longer computation time); we will
return to the choice of G in Section 3.2.6.

The constraints used for CHECKCONSTRAINTS are not
the original constraints, but instead we need to here look
at what the remaining feasible solutions for this set are.
For each set we can compute the minimum and maxi-
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mum sizes of the clusters, denoted by rla = mini r
i
a and

rua = maxi r
i
a, where the minimum and maximum are

taken separately for each dimension. Then the constraints
for the set Aa are given by

Ua = U −
∑

m6=a
rlm,

La = max


L−

∑

m6=a
rum, 0


 .

In other words, we can subtract from the global bound all
the counts that we know for sure will be allocated in some
future set, and we need to allocate in this set the counts that
cannot be anymore allocated in the future sets.

3.2.5 Backward pass

The actual sample is produced by traversing the partial so-
lution sets backwards, starting from the final set A1:N . We
normalize the probabilities of the possible solutions in that
set and randomly sample one of those, denoting it by rl1:N .
We then find all possible combinations of the last joined set
m and its counterpart A−m, that stores the solutions for all
other samples, for which

rim + rj−m = rl1:N .

That is, we find the possible solutions in each set that could
have been paired up to create the final solution. For each
of these we compute the probability pim × pj−m and draw
a categorical sample to indicate the cluster assignment for
sample m. We then proceed backwards in the table repeat-
ing this same procedure, now using rj−m for the chosen
allocation as the target vector, until at the very end we sim-
ply pick the only possible allocation for the first sample.
This is guaranteed to produce a valid sample, the only er-
ror source coming from partial solution sets pruned away
because of the upper bound being smaller than G/∆.

3.2.6 Implementation Remarks

The efficiency of the algorithm depends on the order of the
samples being merged into the final set. We use a simple
heuristic that attempts to keep the size of the intermediate
sets minimal, which proved efficient in our preliminary ex-
periments: we keep track of the expected cluster size vector
(obtained by summing simple matrix products for all re-
maining sets), and always join the sample that is expected
to violate the maximum constraints most. If no such sam-
ples exist, we merge with the set having the smallest num-
ber of remaining solutions.

Another key element is keeping the total probabilities qa
associated with the unprocessed sets updated. Right af-
ter the initialization, we can typically exclude considerable
number of solution candidates in the singleton sets because

already that single assignment would make the full solution
too unlikely. Since the bounding is based on the sum over
all other sets, including the one that has already accumu-
lated more samples, we should apply BOUND and CHECK-
CONSTRAINTS again for all sets after each join.

Finally, we stated earlier that for bounding the candidates
we need to know the probability G of the best final so-
lution, so that we can prune out solutions for which the
bounded probability is sufficiently smaller than that. Since
we are operating in a depth-first manner we do not obtain
such a bound with the algorithm itself. Instead, we find a
lower bound for it by the following procedure: we first find
the most likely individual solution by solving (3) and com-
pute the cluster sizes r̂ of that solution. We then solve the
forward pass with constraints Lk = Uk = r̂k and global
bound G0 corresponding to the total probability of all pos-
sible assignments without any constraints. This either pro-
duces a lower bound for the probability of the solution can-
didate corresponding to cluster sizes r̂ or, ifG0 is too large,
fails by producing an empty set. If the process failed we
repeat the procedure using smaller G0, until a valid lower
bound is obtained. While this procedure is somewhat in-
efficient it generally still takes only a fraction of the total
computation time, especially for hard instances. In our ex-
periments, the resulting lower bound for G was also typ-
ically very close to the actual true maximum probability
(seen after running the full forward pass).

Finally, for well-separated clusters it is typically not nec-
essary to solve the whole problem in one go. Instead, we
can partition the data set into disjoint subsets of data points
that do not compete for the same clusters, using a simple
greedy procedure. Then we can apply the algorithm for
each subset separately, while still guaranteeing to produce
an independent sample. In the empirical experiments we
skip this step to keep the results as clear as possible (how
often the problem splits into disjoint sets depends heavily
on the data), but in practice it should be done since finding
the disjoint sets is very light operation.

3.3 REJECTION SAMPLER

A considerably simpler algorithm for solving the same
problem can be obtained by a rejection principle. Despite
the simplicity, the rejection sampler presented next will still
be a practical solution for some problem instances.

Given N samples to be allocated to K clusters, the rejec-
tion sampler simply allocates all samples independently,
drawing the assignment for each from the normalized like-
lihoods p(zn = k) = g(xn,zk)

Z , where Z sums over the
probabilities for the different clusters k. Afterwards, the
sampler checks whether the constraints on the cluster sizes
are violated. If there are no violations we keep the sample.
Otherwise we create another sample and check for the con-
straints again, continuing until a valid sample is produced.
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This sampler is obviously inefficient for cases where the
constraints rule out the most likely solutions, but for cases
with loose constraints it is a practical tool. Often the very
first sample will be accepted and the sampler is so fast that
we can typically afford to re-sample quite many times.

4 EVALUATING THE ASSIGNMENT
SAMPLERS

In the following we demonstrate the samplers on artificial
problems. At this stage we do not consider the sampler
as part of a full clustering model, but instead merely look
at the process of sampling the cluster assignments given
some log-probabilities for the individual assignments. In
other words, we simply consider the constrained optimiza-
tion task of finding all possible solutions to the maximiza-
tion problem (3) that exceed a certain threshold and draw-
ing a sample from that set.

4.1 PROBLEM INSTANCES

The difficulty of a problem instance can be described
crudely along two axes: the optimality gap indicating how
close the best individual solution is to the unconstrained op-
timal allocation, and how quickly the probabilities decay
when forced to pick sub-optimal allocations. The former
is tightly connected with the tightness of the constraints,
whereas the latter related to the tightness and separation of
the clusters.

Intuitively, the instances with small (or zero) optimality gap
are good for the rejection sampler: Almost all samples pro-
duced are within the constraints and hence the sampler is
almost as efficient as an unconstrained sampler would be.
For the dynamic programming algorithm these instances
are the worst possible ones, especially if the probabilities
decay slowly; we need to enumerate an excessively large
set of solutions. The other extreme of problems with tight
constraints and large optimality gap is difficult for the re-
jection sampler, but easy for the dynamic programming
variant as long as the probabilities decay quickly enough.

To study the behavior of the samplers under these charac-
teristics we create random problem instances by sampling
the log-probabilities from standard distributions and by
controlling the tightness of the constraints. We do this in-
stead of considering actual cluster assignment setups since
it allows finer control over the characteristics; for real clus-
tering instances the optimality gap and rate of decay are
often correlated in a complicated manner. We return to ac-
tual clustering problems in Section 6.

4.2 RESULTS

We created random solution instances with K ∈ [6, 15]
and N ∈ [36, 225], drawing the entries from normal distri-

bution with zero mean and standard deviation σ ∈ [4, 40].
We then solved the problems with varying degree of con-
straints, so that each cluster size was allowed to differ from
the mean by [0, 3] samples. For each problem, we ran both
of the above algorithms and stored the running time until
a valid solution was found, terminating the samplers if it
took more than 20 seconds.

We summarize the results in Figure 2, where we present
the computation times as a function of the problem instance
characteristics discussed above. The optimality gap is de-
termined by simply comparing the solution of (3) to the
unconstrained optimum, and for measuring the probability
decay we use a simple proxy: we count for each sample the
number of cluster assignments that have probability above
1/∆ of the highest probability, excluding the top candidate
itself, and sum them up. This approximates the number
of free variables to be considered outside the best alloca-
tion, but need not correlate with the original problem size.
For producing these plots we always grouped all problem
instances satisfying specific conditions into one pool, re-
porting the quantiles of the computation time for that pool.
For studying the effect of the optimality gap we only used
instances for which the number of free variables is below
50, and for studying the effect of the free variables we con-
sidered cases with logarithmic optimality gap below 7.

The experiment confirms the intuitive expectations of the
previous section: for small optimality gap the rejection
sampler is optimal but it quickly becomes infeasible when
the gap grows. The rejection sampler, meanwhile, is effi-
cient for fast enough probability decay (or, equivalently,
small enough effective problem size), but becomes ex-
tremely slow if the probabilities do not decay quickly
enough. A notable observation is that the running time
curves of both algorithms have a sharp curve with respect to
one of the measures: The running time is reasonably con-
stant and always manageable until some threshold in gap or
probability decay, and after that the running time becomes
quickly excessive. In other words, the instances with large
optimality gap and small decay of probabilities are prob-
lematic for both samplers.

5 HYBRID SAMPLER

In light of the above experiments, we propose as the final
sampling solution a hybrid algorithm that uses both the re-
jection sampler and the dynamic programming algorithm
while avoiding the cases that are too slow for both of them.

For a given task of assigning N samples, we first try out
with the rejection sampler for some number of tries; if we
produce a valid sample we keep it and the process termi-
nates. If we fail to produce a valid sample we proceed to
evaluate the difficulty of the problem. If the problem is con-
sidered easy enough, we apply the dynamic programming
algorithm to produce the sample.
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Figure 2: Comparison of running times of the two alterna-
tive sampling algorithms in producing a sample from pos-
terior distributions p({zn}|{xn}, φ) of varying difficulty.
For both figures the dark shaded area indicates times be-
tween the 35% and 65% quantiles and the light shaded
area between the 20% and 80% quantiles, and the times
refer to single-core implementations. Top: The rejection
sampler breaks down for logarithmic optimality gaps of
roughly 7, meaning that the optimal allocation is roughly
1000 times more likely than the best feasible solution, but
before that has effectively constant running time. The dy-
namic programming algorithm is largely insensitive to the
optimality gap, but slightly slows down for the harder prob-
lems and occasionally takes longer time. Bottom: The dy-
namic programming sampler breaks down when the prob-
abilities decay off too slowly. Here the horizontal axis de-
notes the count of non-optimal sample allocations with log-
probabilities within 6 points of the most likely allocation
for that sampler, and we see the algorithm becomes exces-
sively slow around count 60.

If the problem is considered too challenging for the dy-
namic programming algorithm we split the problem into
smaller chunks. We randomly divide the data point into
two sets of N/2 instances each, and draw the assignments
for each half conditional on the current assignments for the
other half. For each half we again first try the rejection sam-
pler and then consider the dynamic programming sampler
or proceed to further subdivide the problem recursively.
Assigning only a subset of the data points at a time nat-
urally introduces auto-correlation in the overall sampling
chain, but the time saved in not attempting to solve an

overly difficult instance at once allows repeating the pro-
cess enough times to produce an independent sample.

The exact criteria for when to split the problem into two
halves should depend on the cost of sampling the cluster
parameters φ given the assignments. For models where
this stage is efficient, like our Gaussian likelihoods, the in-
creased auto-correlation in sampling the assignments is not
an issue and we can sample fairly small sets at once. In the
other extreme, such as mixture models where approxima-
tive Bayesian computation [Csillery et al., 2010] is needed
for sampling the cluster parameters, it pays off to solve the
whole problem at once even if it takes a long time.

A full-blown analysis stage should inspect the rate of de-
cline for the probabilities, the optimality gap, the number of
solutions within the constraints, and possibly other statis-
tics. In practice, however, we resort to a simpler heuris-
tic to avoid the computation needed for the analysis (find-
ing the optimality gap requires solving (3)); we simply use
the same measure of effective problem size used in Sec-
tion 4.2 and use the dynamic programming algorithm for
cases where this number is small enough.

6 EVALUATING THE
MICROCLUSTERING MODEL

Next we evaluate the final hybrid algorithm as part of a
whole microclustering model to illustrate the balance be-
tween the two alternative solutions. As explained above,
the algorithm has two parameters: The number of times
the rejection sampler is tried before giving up, and the
maximum complexity of the problem instance solved with
the dynamic programming solver. Both parameters control
how many samples can be jointly allocated; bigger values
make it more likely that the sampler can allocate large num-
ber of data points at once, but at the same time increases the
computational time per posterior sample. The relative ratio
of these two parameters, in turn, controls how often each of
the algorithms is in practice used; high number of tries and
small complexity threshold imply that the rejection sampler
allocates most samples, and vice versa.

Figure 3 illustrates the effect of the two parameters for an
example clustering problem where the input data is uni-
formly distributed in a two-dimensional rectangle; the data
has no natural cluster structure and hence the constraints
are crucial in guaranteeing balanced cluster sizes. We show
results for both 64 data points being clustered into K = 8
clusters and 256 data points being clustered into K = 16
clusters, constraining the clusters to be exactly identical in
size. For both cases the results are similar: The rejection
sampler takes care of the assignments of majority of the
samples unless the maximum number of trials is very low,
but using the dynamic sampler to solve harder problem in-
stances helps assign more data points at a time. Both indi-
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Figure 3: Illustration of the hybrid algorithm on two clus-
tering problems. The top row corresponds to clustering
N = 64 data points into K = 8 clusters and bottom row
to clustering N = 256 samples into K = 16 clusters.
For both cases the data points are uniformly distributed
on a two-dimensional space, the clusters are forced to be
of equal size, and the results are averaged over five ran-
domly created data sets. The left plots show how many
data points are on average assigned by the rejection sam-
pler; the ratio naturally goes up if we try several times be-
fore giving up and down if we solve harder problems us-
ing the dynamic programming algorithm. The colored lines
corresponding to different maximum difficulty scores, cor-
responding to the number of free variables in the problem
instance as defined in Section 4.2. The right plots char-
acterize the overall efficiency of the algorithm, plotting the
average number of data points assigned jointly (by either
algorithm) versus the computational time required for pro-
ducing the whole posterior sample. Points closer to the top
left corner are here the best, quickly allocating several data
points at once, and we see that comparable results are ob-
tained with several combinations for the two parameters as
long as the extreme values are avoided. The color-codes in
the right plot match the left one; for example, the red line
shows how the behavior of the sampler evolves for maxi-
mum problem difficulty of 16 when the number of allowed
rejections grows from 2 to 512.

vidual algorithms are hence useful for the overall solution.
Importantly, a wide range of parameter values gives satis-
factory results, suggesting that the overall algorithm is not
very sensitive to the choice of the thresholds.

7 DISCUSSION

In this work we introduced a new microclustering model
[Miller et al., 2015] for solving clustering tasks with pre-
defined constraints on the sizes of the clusters, motivated
by scenarios where the clusters are used, for example, in
creating teams of fixed sizes [Kim et al., 2015] or for al-
locating items for further processing of (manual or auto-
mated) workers with limited capacity. To control the sizes
we introduced a cluster assignment prior that does not fac-
torize over the samples but instead over the clusters; this
formulation is more general and can be used also for mod-
els without hard constraints. One straightforward extension
would consider priors where the log-probability of the clus-
ter decays linearly when moving away from some preferred
size; for such a prior we can still find the most likely assign-
ment easily and hence can generalize the whole sampler.

The model requires the cluster assignments to be drawn
jointly for all data points, which increases the computa-
tional cost compared to standard mixture models. We dis-
cussed two alternative samplers and showed that each is
efficient for a subclass of problems, and then proceeded
to present a practical algorithm that can draw samples
also for large data collections with the possible expense
of increased auto-correlation for overly complex problem
instances. The algorithm attempts to assign all samples
jointly, but in case the problem instance is too difficult it
recursively splits the problem into two parts and assigns
the samples conditional on the assignments for the other
part. Probabilistic treatment of clustering is most useful for
fairly small cluster sizes that necessitate explicitly treating
the full posterior, and we showed that for such setups we
can draw posterior samples in a fraction of a second.

Finally, we want to encourage Bayesian practitioners to
consider combinatorial constraints in their models. Even
though the problem of finding all solutions that exceed a
certain threshold is considerably harder than finding the
best one, it is still feasible for problems of moderate size.
Sampling-based probabilistic inference also comes with
natural solution for splitting the problem into easier and
smaller sub-problems, in form of conditioning based on a
subset of the assignments. Consequently, we believe that
several types of combinatorial constraints can be incorpo-
rated into typical latent-variable models and other proba-
bilistic models with fairly low additional overhead. The
auto-correlation of the sampling chain increases and the in-
dividual sampler steps typically take longer time, but one
should not shy away from introducing the constraints if
they are important for the model itself.
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Abstract

We consider adversarial multi-armed bandit
problems where the learner is allowed to ob-
serve losses of a number of arms beside the arm
that it actually chose. We study the case where
all non-chosen arms reveal their loss with an
unknown probability rt, independently of each
other and the action of the learner. Moreover,
we allow rt to change in every round t, which
rules out the possibility of estimating rt by a
well-concentrated sample average. We propose
an algorithm which operates under the assump-
tion that rt is large enough to warrant at least one
side observation with high probability. We show
that after T rounds in a bandit problem with N
arms, the expected regret of our algorithm is

of order O
(√∑T

t=1(1/rt) logN
)

, given that
rt ≥ log T/(2N − 2) for all t. All our bounds
are within logarithmic factors of the best achiev-
able performance of any algorithm that is even
allowed to know exact values of rt.

1 INTRODUCTION

In sequential learning, a learner is repeatedly asked to
choose an action for which it obtains a loss and receives
a feedback from the environment (Cesa-Bianchi and Lu-
gosi, 2006). We typically study two feedback settings: the
learner either observes the losses for all the potential ac-
tions (full information) or it observes only the loss of the
action it chose. This latter feedback scheme is known as
the bandit setting (cf. Auer et al., 2002a). In this paper,
instead of considering these two limit cases, we study a
more refined feedback model, known as bandit with side
observations (Mannor and Shamir, 2011; Alon et al., 2013;
Kocák et al., 2014, 2016), that generalizes both of them.
Typical examples for learning with full information and
bandit feedback are sequential trading on a stock market

(where all stock prices are fully observable after each trad-
ing period), and electronic advertising (where the learner
can only observe the clicks on actually shown ads), re-
spectively. However, advertising in a social network of-
fers a more intricate user feedback than captured by the
basic bandit model: when proposing an item to a user in
a social network, the advertiser can often learn about the
preferences of the user’s connections as well. Naturally,
the advertiser would want to improve its recommendation
strategy by incorporating these side observations.

Besides advertising and recommender systems, side obser-
vations can also arise in sensor networks, where the action
of the learner amounts to probing a particular sensor. In
this setting, each sensor can reveal readings of some other
sensors that are in its range. When our goal is to sequen-
tially select a sensor maximizing a property of interest, a
good learning strategy should be able to leverage these side
readings.

In this paper, we follow the formalism of Mannor and
Shamir (2011) who model side observations with a graph
structure over the actions: two actions mutually reveal their
losses if they are connected by an edge in the graph in ques-
tion. In a realistic scenario this graph is time dependent and
unknown to the learner (e.g., the advertiser or the algorithm
scheduling sensor readings). All previous algorithms for
the studied setting (Mannor and Shamir, 2011; Alon et al.,
2013; Kocák et al., 2014, 2016) require the environment to
reveal a substantial part of a graph, at least after the side
observations have been revealed. Specifically, these algo-
rithms require the knowledge of the second neighborhood
(the set of neighbors of the neighbors) of the chosen ac-
tion in order to update their internal loss estimates. On the
other hand, they are able to handle arbitrary graph struc-
tures, potentially chosen by an adversary and prove perfor-
mance guarantees using graph properties based on cliques
or independence sets.

The main contribution of our work is a learning algorithm
that, unlike previous solutions, does not require the knowl-
edge of the exact graph underlying the observations, be-
yond knowing from which nodes the side observations
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came from. Relaxing this assumption, however, has to
come with a price: As the very recent results of Cohen et al.
(2016) show, achieving nontrivial advantages from side
observations may be impossible without perfectly known
side-observation graphs when an adversary is allowed to
pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms
achieving strong improvements over the standard regret
guarantees under the assumption that the losses are gen-
erated in an i.i.d. fashion and the graphs may be gener-
ated adversarially. Complementing these results, we con-
sider the case of adversarial losses and make the assump-
tion that the side-observation graph in round t is gener-
ated from an Erdős–Rényi model with an unknown and
time-dependent parameter rt. The main challenge for the
learner is then the necessity to exploit the side observa-
tions despite not knowing the sequence (rt). It is easy to
see that this model can be equivalently understood as each
non-chosen arm revealing its loss with probability rt, in-
dependently of all other observations. That said, we still
find it useful to think of the side observations as being
generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particu-
lar, the case of learning with Erdős–Rényi side-observation
graphs was considered before by Alon et al. (2013): Given
full access to the underlying graph structure, their algo-
rithm Exp3-SET can be shown to guarantee a regret bound
of O

(√∑
t(1/rt)(1− (1− rt)N ) logN

)
. While the as-

sumption of having full access to the graph be dropped rel-
atively easily in this particular case, exact knowledge of rt
seems to be crucial for constructing reliable loss estimates
and use them to guide the choice of action in each round.

It turns out that the problem of estimating rt while striv-
ing to perform efficiently is in fact a major difficulty in our
setting. Indeed, as we allow rt to change arbitrarily be-
tween each round, we cannot rely on any past observations
to construct well-concentrated estimates of these parame-
ters. That is, the main challenge is estimating rt from only
a handful of samples. The core technical tool underlying
our approach is a direct estimation procedure for the losses
that does not estimate rt explicitly.

Armed with this estimation procedure, we propose a learn-
ing algorithm called Exp3-Res that guarantees a regret of
O(
√∑

t(1/rt) logN), provided that rt ≥ log T/(2N−2)
holds for all rounds t. This assumption essentially corre-
sponds to requiring that, with high probability, at least 1
side observation is produced in every round, or, in other
words, the side-observation graphs encountered are all non-
empty. Notice that for the assumed range of rt’s, our regret
bound improves upon the standard regret bound of Exp3,
which is of O(

√
NT logN). It is easy to see that when rt

becomes smaller than 1/N , side observations become un-
reliable and the bound of Exp3 cannot be improved. That
is, if our assumption cannot be verified a priori, then ignor-

ing all side observations and using the Exp3 algorithm of
Auer et al. (2002a) instead can yield a better performance.
On the other hand, given that our assumption holds, our
bounds cannot be significantly improved as suggested by
the lower-bound of Ω(

√
T/r) proved for a static r by Alon

et al. 2013.

Many other partial-information settings have been studied
in previous work. One of the simplest of these settings
is the label-efficient prediction game considered by Cesa-
Bianchi et al. (2005), where the learner can observe either
losses of all the actions or none of them, not even the loss
of the chosen action. This observation can be queried by
the learner at most an ε < 1 fraction of the total number of
rounds, which means no losses are observed in the remain-
ing rounds. An even more restricted information setting,
label efficient bandit feedback was considered by Allen-
berg et al. (2006), where the learner can only query the loss
of the chosen action, instead of all losses (see also Audibert
and Bubeck, 2010). Algorithms for these two settings have
regret of Õ(

√
T/ε) and Õ(

√
NT/ε), respectively. While

these bounds may appear very similar to ours, notice that
our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be
much more challenging to exploit. In another related set-
ting, Seldin et al. (2014) consider M side observations that
the learner can proactively choose in each round without
limitations. Seldin et al. deliver an algorithm with regret
of Õ(

√
(N/M)T ), also proving that choosing M observa-

tions uniformly at random is minimax optimal; given this
sampling scheme, it is not even necessary to observe the
loss of the chosen action. Their result is comparable to
ours and the result by Alon et al. (2013) for Erdős–Rényi
observation graphs with parameter r = M/N . However,
Seldin et al. also assume that M is known, which obviates
the need for estimating r. We provide a more technical dis-
cussion on the related work in Section 6.

In our paper, we assume that, just like the observation prob-
abilities, the losses are adversarial, that is, they can change
at each time step without restrictions. Learning with side
observations and stochastic losses was studied by Caron
et al. (2012) and Buccapatnam et al. (2014). While this
is an easier setting that the adversarial one, the authors as-
sumed, in both cases, that the graphs have to be known
in advance. Recently, Carpentier and Valko (2016) stud-
ied another stochastic setting where the graph is also not
known in advance, however their setting considers differ-
ent feedback and loss structure (influence maximization)
which differs from the side-observation setting.

Furthermore, Alon et al. (2015) considered a strictly more
difficult setting than ours, where the loss of the chosen ac-
tion may not be a part of the received feedback.
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2 PROBLEM DEFINITION

We now formalize our learning problem. We consider a
sequential interaction scheme between a learner and an en-
vironment, where the following steps are repeated in every
round t = 1, 2, . . . , T :

1. The environment chooses rt ∈ [0, 1] and a loss func-
tion over the arms, with `t,i being the loss associated

with arm i ∈ [N ]
def= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some
randomness), the learner draws an arm It ∈ [N ].

3. The learner suffers loss `t,It .

4. For all i 6= It, Ot,i is independently drawn from
a Bernoulli distribution with mean rt. Furthermore,
Ot,It is set as 1.

5. For all i ∈ [N ] such thatOt,i = 1, the learner observes
the loss `t,i.

The goal of the learner is to minimize its total expected
losses, or, equivalently, to minimize the total expected re-
gret (or, in short, regret) defined as

RT = max
i∈[N ]

E

[
T∑

t=1

(`t,It − `t,i)
]
.

We will denote the interaction history between the learner
and the environment up to the beginning of round t
by Ft−1. We also define pt,i = P [It = i| Ft−1].

The main challenge in our setting is leveraging side obser-
vations without knowing rt. Had we had access to the exact
value of rt, we would be able to define the following esti-
mate of `t,i:

̂̀?
t,i =

Ot,i`t,i
pt,i + (1− pt,i)rt

(1)

It is easy to see that the loss estimates defined this way
are unbiased in the sense that E

[
̂̀
t,i

∣∣∣Ft−1
]

= `t,i for
all t and i. It is also straightforward to show that an ap-
propriately tuned instance of the Exp3 algorithm of Auer
et al. (2002a) fed with these loss estimates is guaranteed to
achieve a regret of O(

√∑
t(1/rt) logN) (see also Seldin

et al. 2014).

Then, one might consider a simple algorithm that devotes
a number of observations to obtain an estimate r̂t of rt and
plug this estimate into (1). However, notice that since rt is
allowed to change arbitrarily over time, we can only work
with a severely limited sample budget for estimating rt:
only N −1 independent observations! Thus, we can obtain
only very loose confidence intervals around rt which trans-
late to even more useless confidence intervals around ̂̀?t,i.

Below, we describe a simple trick for obtaining loss esti-
mates that have similar properties to the ones defined in (1)
without requiring exact knowledge or even explicit estima-
tion of rt. Our procedure is based on the geometric resam-
pling method of Neu and Bartók (2013). To get an intuition
of the method, let us assume that we have access to the in-
dependent geometrically distributed random variable G?t,i
with parameter ot,i = pt,i + (1 − pt,i)rt. Then, replac-
ing 1/ot,i by G?t,i in the definition of ̂̀?t and ensuring that
G?t,i is independent of Ot,i, we can obtain an unbiased loss
estimate essentially equivalent to ̂̀?t .

The challenge posed by this approach is that in our set-
ting, we do not have exact sample access to the geometric
random variable G?t,i. In the next section, we describe our
algorithm that is based on replacing G?t,i in the above defi-
nition by an appropriate surrogate.

3 ALGORITHM

Our algorithm is called Exp3-Res and displayed as Algo-
rithm 1. It is based on the Exp3 algorithm of Auer et al.
(2002a) and crucially relies on the construction of a surro-
gate Gt,i of G?t,i. Throughout this section, we will assume
that rt ≥ log T

2N−2 , which implies that the probability of hav-
ing no side observations in round t is of order 1/

√
T .

The algorithm is initialized by setting w1,i = 1/N for all
i ∈ [N ], and then performing the updates

wt+1,i =
1

N
exp

(
−ηt+1L̂t,i

)
(2)

after each round t, where ηt+1 > 0 is a parameter of the
algorithm called the learning rate in round t and L̂t,i is cu-
mulative sum of the loss estimates ̂̀s,i up to (and including)
time t. In round t, the learner draws its action It such that
It = i holds with probability pt,i ∝ wt,i. To simplify some
of the notation below, we introduce the shorthand notations
Pt [·] = P [ ·| Ft−1] and Et [·] = E [ ·| Ft−1].

For any fixed t, i, we now describe an efficiently com-
putable surrogateGt,i for the geometrically distributed ran-
dom variable G?t,i with parameter ot,i that will be used for
constructing our loss estimates. In particular, our strategy
will be to construct several independent copies

{
O′t,i(k)

}

of Ot,i and choosing Gt,i as the index k of the first copy
with O′t,i(k) = 1. It is easy to see that with infinitely many
copies, we could exactly recover G?t,i; our actual surrogate
is going to be weaker thanks to the smaller sample size. For
clarity of notation, we will omit most explicit references to
t and i, with the understanding that all calculations need to
be independently executed for all pairs t, i.

Let us now describe our mechanism for constructing the
copies {O′(k)}. Since we need independence of Gt,i and
Ot,i for our estimates, we use only side observations from
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actions [N ] \ {It, i}. First, let’s define σ as a uniform ran-
dom permutation of [N ] \ {It, i}. For all k ∈ [N − 2],
we define R(k) = Ot,σ(k). Note that due to the construc-
tion, {R(k)}N−2k=1 are pairwise independent Bernoulli ran-
dom variables with parameter rt, independent of Ot,i. Fur-
thermore, knowing pt,i we can define P (1), . . . , P (N−2)
as pairwise independent Bernoulli random variables with
parameter pt,i. Using P (k) and R(k) we define the ran-
dom variable O′(k) as

O′(k) = P (k) + (1− P (k))R(k)

for all k ∈ [N − 2]. Using independence of all previously
defined random variables, it is easy to check that the vari-
ables {O′(k)}N−2k=1 are pairwise independent Bernoulli ran-
dom variables with expectation ot,i = pt,i + (1 − pt,i)rt.
Now we are ready to define Gt,i as

Gt,i = min {k ∈ [N − 2] : O(k)′ = 1} ∪ {N − 1} . (3)

The following lemma states some properties of Gt,i.

Lemma 1. For any value of g we have

E [Gt,i] =
1

ot,i
− 1

ot,i
(1− ot,i)N−1

E
[
G2
t,i

]
=

2− ot,i
o2t,i

+
1

o2t,i
(1− ot,i)N−2×

×
(
o2t,i + ot,i − 2 + 2ot,i(N − 2)(ot,i − 1)

)

Proof. The proof follows directly from using the definition
of Gt,i and simplifying the sums

E [Gt,i] =

N−2∑

k=1

[
kot,i(1− ot,i)k−1

]
+

+ (N − 1) (1− ot,i)N−2,

E
[
G2
t,i

]
=

N−2∑

k=1

[
k2ot,i(1− ot,i)k−1

]
+

+ (N − 1)
2

(1− ot,i)N−2.

Using Lemma 1, it is easy to see that Gt,i follows a trun-
cated geometric law in the sense that

P [Gt,i = m] = P
[
min

{
G?t,i, N − 1

}
= m

]

holds for all m ∈ [N − 1]. Using all this notation, we
construct an estimate of `t,i as

̂̀
t,i = Gt,iOt,i`t,i. (4)

The rationale underlying this definition of Gt,i is rather
delicate. First, note that pt,i is deterministic given the his-
tory Ft−1 and therefore, does not depend on Ot,i. Second,

Algorithm 1 Exp3-Res

1: Input:
2: Set of actions [N ].
3: Initialization:
4: L̂0,i ← 0 for i ∈ [N ].
5: Run:
6: for t = 1 to T do

7: ηt ←
√

logN
/(

N2 +
∑t−1
s=1

∑N
i=1 ps,i(

̂̀
s,i)2

)
.

8: wt,i ← (1/N) exp(−ηtL̂t−1,i) for i ∈ [N ].
9: Wt ←

∑N
i=1 wt,i.

10: pt,i ← wt,i/Wt.
11: Choose It ∼ pt = (pt,1, . . . , pt,N ).
12: Receive the observation set Ot.
13: Receive the pairs {i, `t,i} for all i s.t. Ot,i = 1.
14: Compute Gt,i for all i ∈ [N ] using (3).
15: ̂̀

t,i ← `t,iOt,iGt,i for all i ∈ [N ].
16: L̂t,i = L̂t−1,i + ̂̀t,i for all i ∈ [N ].
17: end for

Ot,i is also independent of Ot,j for j 6∈ {i, It}. As a result,
Gt,i is independent of Ot,i, and we can use the identity
Et [Gt,iOt,i] = Et [Gt,i]Et [Ot,i]. The next lemma relates
the loss estimates (4) to the true losses, relying on the ob-
servations above and the assumption rt ≥ log T

2N−2 .

Lemma 2. Assume rt ≥ log T
2N−2 . Then, for all t and i,

0 ≤ `t,i − Et
[
̂̀
t,i

]
≤ 1√

T
.

Proof. Fix an arbitrary t and i. Using Lemma 1 along with
Et [Ot,i] = ot,i and the independence of Gt,i and Ot,i, we
get

Et
[
̂̀
t,i

]
= Et [Gt,iOt,i`t,i] = `t,i − `t,i(1− ot,i)N−1,

which immediately implies the lower bound on `t,i −
Et
[
̂̀
t,i

]
. For proving the upper bound, observe that

`t,i(1− ot,i)N−1 ≤ (1− rt)N−1 ≤ e−rt(N−1) ≤
1√
T

holds by our assumption on rt, where we used the elemen-
tary inequality 1− x ≤ ex that holds for all x ∈ R.

The next theorem states our main result concerning
Exp3-Res with an adaptive learning rate.

Theorem 1. Assume that rt ≥ log T
2N−2 holds for all t and

set

ηt =

√
logN

N2 +
∑t−1
s=1

∑N
i=1 ps,i(

̂̀
s,i)2

.
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Then, the expected regret of Exp3-Res satisfies

RT ≤ 2

√√√√
(
N2 +

T∑

t=1

1

rt

)
logN +

√
T .

4 PROOF OF THEOREM 1

In this section, we present details of the proof of Theorem 1
but first, we state an auxiliary lemma.

Lemma 3 (Lemma 3.5 of Auer et al., 2002b). Let b1, b2,
. . . , bT be non-negative real numbers. Then

T∑

t=1

bt√∑t
s=1 bt

≤ 2

√∑T
t=1 bt.

Proof. The proof is based on the inequality x/2 ≤ 1 −√
1− x for x ≤ 1. Setting x = bt/

∑t
s=1 bs and multiply-

ing both sides of the inequality by
√∑t

s=1 bs we get

bt√∑t
s=1 bt

≤
√∑t

s=1 bs −
√∑t

s=1 bs − bt.

The proof is concluded by summing over t.

The first part of the analysis follows the proof of Lemma 1
by Györfi and Ottucsák (2007). Defining W ′t =
1
N

∑N
i=1 e

−ηt−1L̂t−1,i , we get

1

ηt
log

W ′t+1

Wt
=

1

ηt
log

N∑

i=1

1
N e
−ηtL̂t−1,ie−ηt

̂̀
t,i

Wt

=
1

ηt
log

N∑

i=1

pt,ie
−ηt ̂̀t,i

≤ 1

ηt
log

N∑

i=1

pt,i

(
1− ηt ̂̀t,i + (ηt ̂̀t,i)2

)
(5)

=
1

ηt
log

(
1− ηt

N∑

i=1

pt,i ̂̀t,i + η2t

N∑

i=1

pt,i(̂̀t,i)2
)
,

where in (5), we used the inequality exp(−x) ≤ 1−x+x2

that holds for x ≥ −1. Further, we used the inequality
log(1 − x) ≤ −x, which holds for all x ≤ 1, to upper
bound last term.

Using ηt+1 ≤ ηt and Jensen’s inequality, we get

Wt+1 =

N∑

i=1

1

N
e−ηt+1L̂t,i =

N∑

i=1

1

N

(
e−ηtL̂t,i

) ηt+1
ηt

≤
(

N∑

i=1

1

N
e−ηtL̂t,i

) ηt+1
ηt

= (W ′t+1)
ηt+1
ηt ,

which, together with the last inequality, gives us

N∑

i=1

pt,i ̂̀t,i ≤
ηt
2

N∑

i=1

pt,i

(
̂̀
t,i

)2
+

[
logWt

ηt
− logWt+1

ηt+1

]

for every t ∈ [T ]. Taking expectations and summing over
time, we get

E

[
T∑

t=1

N∑

i=1

pt,i ̂̀t,i
]
≤ E

[
T∑

t=1

ηt
2

N∑

i=1

pt,i

(
̂̀
t,i

)2
]

+ E

[
T∑

t=1

(
logWt

ηt
− logWt+1

ηt+1

)]
.

The goal of the second part of the analysis is to construct
bounds for each of the three expectations in the previous
inequality. For the term on the left-hand side, we use
Lemma 2 to get the lower-bound

E

[
T∑

t=1

N∑

i=1

pt,i ̂̀t,i
]
≥

T∑

t=1

N∑

i=1

pt,i`t,i +
√
T .

Note that is the only step in the analysis where the actual
magnitude (and not just the sign) of the bias of the loss esti-
mates shows up. Anything bigger than

√
T would degrade

our final regret bound.

We are left with bounding the two terms on the right-hand
side. To simplify some notation below, let us define bt =∑N
i=1 pt,i(

̂̀
t,i)

2. By our definition of ηt and the help of
Lemma 3, we can bound the first term on the right hand
side as

E

[
T∑

t=1

ηtbt
2

]
= E




T∑

t=1

bt
√

logN

2
√
N2 +

∑t−1
s=1 bs




≤ E

[√(
N2 +

∑T
t=1 bt

)
logN

]

≤
√(

N2 +
∑T
t=1 E [bt]

)
logN,

where we also used the fact that N2 ≥ bt and Jensen’s
inequality in the last line. We continue by bounding E [bt]:

Et

[
N∑

i=1

pt,i(̂̀t,i)2
]

=
N∑

i=1

pt,i`
2
t,iEt

[
Ot,iG

2
t,i

]

≤
N∑

i=1

pt,iot,i
2− ot,i
o2t,i

≤ 2

rt
,

(6)

where we used ot,i ≥ rt together with the second part of
Lemma 1 which gives us

343



Et
[
G2
t,i

]
=

2− ot,i
o2t,i

+
1

o2t,i
(1− ot,i)N−2×

×
(
o2t,i + ot,i − 2 + 2ot,i(N − 2)(o− 1)

)

≤ 2− ot,i
o2t,i

,

since both o2t,i + ot,i − 2 and 2ot,i(N − 2)(o− 1) are non-
positive. Thus, we obtain

E

[
T∑

t=1

ηtbt
2

]
≤

√√√√
(

T∑

t=1

1

rt
+N2

)
logN. (7)

Finally, using W1 = 1, the sum in the last expectation tele-
scopes to

E

[
T∑

t=1

(
logWt

ηt
− logWt+1

ηt+1

)]
= E

[
− logWT+1

ηT+1

]
.

Using the definition of Wt, we get that

E
[
− logWT+1

ηT+1

]
≤ E

[
− logwT+1,j

ηT+1

]

≤ E
[

logN

ηT+1

]
+ E

[
L̂T,j

]

holds for any arm j ∈ [N ]. Now note that the first term can
be bounded by using the defintion of ηT+1 with the help
of (6) and Jensen’s inequality. Using Et

[
̂̀
t,i

]
≤ `t,i from

Lemma 2 and combining everything together, we obtain the
regret bound

RT = E

[
T∑

t=1

pt,i`t,i

]
− min
j∈[N ]

E

[∑

t∈Tk
`t,j

]

≤ 2

√√√√
(
N2 +

T∑

t=1

1

rt

)
logN +

√
T .

5 EXPERIMENTS

In this section, we study the empirical performance of
Exp3-Res compared to three other algorithms:

• Exp3 – a basic adversarial multi-armed bandit algo-
rithm which uses only loss observations of chosen
arms and discards all side observations.

• Oracle – full-information algorithm with access to
losses of every action in every time step, regardless
of the value of rt. Our particular choice is Hedge
(Littlestone and Warmuth, 1994; Freund and Schapire,
1997).

• Exp3-R – a variant of the Exp3-Res algorithm with
access to the sequence (rt)

T
t , using (1) to construct

unbiased loss estimate instead of using geometric re-
sampling.

The most interesting parameter of our experiment is the se-
quence (rt), since it controls amount of side observation
presented to the learner. In order to show that Exp3-Res
can effectively make use of the additional information pro-
vided by the environment, we designed several sequences
(rt) with different amounts of side observation provided to
the learner. In the case of small rt-s, the problem is al-
most as difficult as the multi-armed bandit problem. On
the other hand, in the case of large rt-s, the problem is al-
most as easy as the full-information problem. Therefore,
we expect that the performance of Exp3-Res will interpo-
late between the performance of the Exp3-R and Oracle
algorithms depending on the values of the rt-s. In the next
section, we validate this claim empirically.

5.1 EXPERIMENT DETAILS

To ensure sufficient challenge for the algorithms, we have
generated a sequence of losses as a random walk for each
arm with independent increments uniformly distributed on
[−0.1, 0.1] while enforcing the random walks to stay within
[0, 1] by setting the value of a random walk to 0 or 1, re-
spectively, if the random walk gets outside the boundaries.
The loss sequence is fixed through all of the experiments
to demonstrate the impact of the sequence (rt)

T
t on the re-

gret of algorithms. We have observed qualitatively similar
behavior for other loss sequences.

We fix the number of arms in all of the experiments as 50,
and the time horizon as 500. Every curve represents an
average of 100 runs.

5.2 RESULT OF THE EXPERIMENTS

We performed experiments on many different loss se-
quences and sequences of rt-s. Since the results are es-
sentially the same for all the different sequences, we in-
cluded in the present paper just the results for one loss
sequence with different sequences of rt-s. In the case of
rt ≥ log(T )/(2N − 2), the case of high probability of
having some side observation, the performance of the al-
gorithm Exp3-Res proposed in the present paper is com-
parable to the performance of the idealistic Exp3-R which
knows exact value of rt in every time step. Moreover, if the
average rt is close to 1, the performance of the proposed
algorithm is close to the performance of Oracle which ob-
serves all the losses. If the average rt is close to zero, the
performance of the algorithm is a little bit worse that the
performance of basic Exp3. This is also supported by the
theory, since our algorithm is not able to construct reliable
estimates in the case of small rt-s.
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(a) Static sequence (rt)
T
t , rt = 0
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(b) Static sequence (rt)
T
t , rt = 0.06 ≈

log(T )/(2N − 2)
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(c) Changing sequence (rt)
T
t with uni-

formly distributed rt on [0, 0.2]
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(d) Sequence (rt)
T
t generated as a random

walk on [0, 0.1]
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(e) Sequence (rt)
T
t generated as a random

walk on [0, 1]
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Figure 1: Comparison of algorithm for different amount of side information sequences (different sequences (rt)
T
t )

6 CONCLUSION & FUTURE WORK

In this paper, we considered multi-armed bandit prob-
lems with stochastic side observations modeled by Erdős–
Rényi graphs. Our contribution is a computationally effi-
cient algorithm that operates under the assumption rt ≥
log T/(2N − 2), which essentially guarantees that at least
one piece of side observation is generated in every round,
with high probability. In this case, our algorithm guar-

antees a regret bound of O
(√

logN
∑T
t=1

1
rt

)
(Theo-

rem 1). In this section, we discuss several open questions
regarding this result.

The most obvious question is whether it is possible to re-
move our assumptions on the values of rt. We can only
give a definite answer in the simple case when all rt’s are
identical: In this case, one can think of simply computing
the empirical frequency r̂t of all previous side observations
in round t to estimate the constant r, plug the result into (1),
and then use the resulting loss estimates in an exponential-
weighting scheme. It is relatively straightforward (but also
rather tedious) to show that the resulting algorithm satisfies
a regret bound of Õ

(√
T/r

)
for all possible values of r,

thanks to the fact that r̂t quickly concentrates around the

true value of r. Notice however that this approach clearly
breaks down if the rt’s change over time.

In the case of changing rt’s, the number of observations
we can use to estimate rt is severely limited, so much that
we cannot expect any direct estimate of rt to concentrate
around the true value. Our algorithm proposed in Section 3
gets around this problem by directly estimating the impor-
tance weights 1/ot,i instead of rt, which enables us to con-
struct reliable loss estimates, although only at the price of
our assumption on the range of rt. While we acknowledge
that this assumption can be difficult to confirm a priori in
practice, we remark that we find it quite surprising that any
algorithm whatsoever can take advantage of such limited
observations, even under such a restriction. We also point
out that for values of rt that are consistently below our
bound, it is not possible to substantially improve the regret
bounds of Exp3 which are of Õ

(√
TN

)
, as shown by the

lower bounds of Alon et al. (2013). We expect that in sev-
eral practical applications, one can verify whether the rt’s
satisfy our assumption or not, and decide to use Exp3-Res
or Exp3 accordingly. In fact, our experiments suggest that
our algorithm performs well even if neither of these two
assumptions are verified: we have seen that the empirical
performance of Exp3-Res is only slightly worse than that
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of Exp3 even when the values of rt are very small (Section
5). Still, finding out whether our restriction on rt can be re-
laxed in general is a very important and interesting question
left for future study.

An important corollary of our results is that, under some as-
sumptions, it is possible to leverage side observations in a
non-trivial way without having access to the second neigh-
borhoods in the side-observation graphs as defined by Man-
nor and Shamir (2011). This complements the recent re-
sults of Cohen et al. (2016), who show that non-stochastic
side-observations may provide non-trivial advantage over
bandit feedback when the losses are stochastic even when
the side-observation graphs are unobserved, but learning
with unobserved feedback graphs can be as hard as learning
with bandit feedback when both the losses and the graphs
are generated by an adversary. A natural question that our
work leads to is whether it is possible to efficiently leverage
side-observations under significantly weaker assumptions
on the observation model.
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Abstract

Binary classification (rain or shine, disease or
not, increase or decrease) is a fundamental prob-
lem in machine learning. We present an algo-
rithm that can take any standard online binary
classification algorithm and provably improve
its performance under very weak assumptions,
given the right to refuse to make predictions in
certain cases. The extent of improvement will de-
pend on the data size, stability of the algorithm,
and room for improvement in the algorithms per-
formance. Our experiments on standard ma-
chine learning data sets and standard algorithms
(k-nearest neighbors and random forests) show
the effectiveness of our approach, even beyond
what is possible using previous work on confor-
mal predictors upon which our approach is based.
Though we focus on binary classification, our
theory could be extended to multiway classifica-
tion. Our code and data are available upon re-
quest.

1 INTRODUCTION

Reacting intelligently to incoming data lies at the heart of
forecasting, trading, and many other applications. The sim-
plest decision one has to make is binary (go/stop, buy/sell).
However, in many cases one needs to assess the risk of a
decision and refuse to make a decision at all if one is not
confident enough. One of the well known methodologies
for this task is using confidence predictors and declining
to make a decision on ambiguous data points (Vovk, Gam-
merman, & Shafer, 2005). Intuitively, conformal predictors
look at how previous predictions worked out for similar in-
put data and let those results shape first whether to make a
prediction at all and if so, which one to make. We extend
existing conformal prediction approaches by permitting the
use of multidimensional test statistics to provide more flex-
ibility while keeping the theoretical guarantees of the orig-

inal predictors. We apply this extended framework to the
binary classification problem and show that our methods
improve the performance of previous conformal predictors.

1.1 Related Work

Forecasting the upcoming data point in a data stream has
been studied in econometrics, meteorology, finance, com-
puter science, and many other disciplines (Box, Jenkins,
Reinsel, & Ljung, 2015). In confidence predictors, the goal
is to create a set of possible candidate outcomes such that
the probability that the real outcome is not one of these
candidates is less than a predetermined tolerance level.
Some examples for the uses of confidence predictions in-
clude signal denoising (Ryabko & Ryabko, 2013), growth
estimation for planning (Meade & Islam, 1995), among
many similar forecast problems that requires bounds for
the predicted values (Chatfield, 1993). Though most of the
confidence prediction literature considers either parametric
models or asymptotic results, Vovk, Gammerman and Shaf-
fer (Vovk et al., 2005) introduced the conformal prediction
framework, which provides exact finite-sample guarantees
for exchangeable data sequences.

Binary classification problems where the classifier is al-
lowed to decline making a decision has been studied both
in online and offline settings. Optimal error-rejection trade-
offs are investigated under the names selective classifi-
cation (El-Yaniv & Wiener, 2010, 2012), (Chaudhuri &
Zhang, 2013) and classification with reject option (Denis &
Hebiri, 2015), (Chow, 1970), (Herbei & Wegkamp, 2006).

Following this work, we focus on the conformal prediction
approach to the online binary classification with reject op-
tion, and propose an extended framework to decrease the
number of rejects while guaranteeing a small probability of
error on the classified points.

1.2 Outline & Contributions

In Section 2, we describe our problem formally and pro-
vide some background information on online confidence
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prediction and conformal prediction. In Section 3, we ex-
tend the conformal prediction framework to multiple di-
mensions and then show how to preserve the theoretical er-
ror guarantees provided by the conformal framework, while
rejecting less often.

The flexibility provided by this multidimensional frame-
work is demonstrated in Section 4, where we introduce the
notion of conjugate conformal prediction. Formally, a con-
jugate conformal predictor is a two dimensional conformal
predictor derived from any given traditional conformal pre-
dictor. Intuitively, conjugate predictors not only compare
the test point with the previous ones, but also compare the
test point with its conjugate, i.e. the same point with its la-
bel flipped, to be able to make more aggressive predictions
- not only when we have high confidence to accept the test
point but also when we have high confidence to reject the
conjugate point.

In Section 4.1, we define conjugate conformal predictors
formally and prove their efficiency under mild stability as-
sumptions on the set statistics used in the original predictor.
Lastly, in Section 4.2. we present experimental results for
classical conformal and conjugate conformal predictors on
standard machine learning data sets from UCI ML Reposi-
tory (Lichman, 2013) and standard machine learning algo-
rithms (k nearest neighbors and random forests).

Finally, in Section 5 we conclude with a brief discussion of
our results and planned future work.

2 PROBLEM SETUP & CONFORMAL
PREDICTION

2.1 Data Model & Notation

In this work, we assume data points are revealed to the al-
gorithm, one data point at a time. A data point generated at
time t, consists of a feature vector xt, which takes values
from a feature space X , and a label yt, which takes values
from a label space Y . For the sake of brevity, we represent
a data point with zt = (xt, yt) ∈ X × Y . We refer to the
space Z = X × Y as the data space.

The only statistical assumption about the data generating
process is the exchangeability of the data points, that is: for
any positive integer N , the probability of observing a data
sequence z1, . . . , zN is invariant under any permutation of
the data points, π, i.e.

Pr (z1, . . . , zN ) = Pr
(
zπ(1), . . . , zπ(N)

)
.

Many processes (or variants of these processes) satisfy this
assumption. For example, stock price histories are not ex-
changeable, but stock price returns (percentage up or down
over a given time period) are. Echangeability can be con-
sidered as a generalization of the more common i.i.d as-
sumption. We refer the reader to (Schervish, 2012) and

(Kallenberg, 2006) for a thorough discussion of this as-
sumption.

In addition, we also make use of a source of randomness:
uniform random variables τ1, τ2, . . . on the unit interval,
which are independent of the data. This will be used to
randomize the prediction algorithms in such a way as to
achieve validity guarantees.

Lastly, we use multi-sets throughout the paper. In other
words, each set may contain the same element multiple
times, in particular, we denote the (multi-)set of the first
t data points as σt = {z1, . . . , zt} and we don’t require the
data points to be distinct. In addition, we use the following
variations of σt for the sake of brevity of exposition:

• σ(i)
t = {z1, . . . , zi−1, zi+1, . . . , zt} stands for the set

of first t data points except the ith one for any i =
1, . . . , t.
• σt/y = {z1, . . . , zt−1, (xt, y)} represents the set of

first t data points assuming the tth label is equal to y,
for any y ∈ Y .
• σ(i)

t/y is the set of data points in σt/y with the exception
of the ith one, for i = 1, . . . , t and y ∈ Y .

2.2 Online Prediction of Confidence

For the confidence prediction task, we assume the feature
vector xt is revealed at time t, but the corresponding label
yt is revealed only after the prediction is made and before
the next feature vector xt+1 is revealed.

The task of the predictor is to predict a subset of the label
space that contains the unseen label yt with probability at
least 1 − ε, for a given error tolerance level ε ∈ (0, 1). We
denote the prediction set generated at time t as Γεt . Because
Γεt is a set, we may be making a prediction of the form “the
answer may be 1, 4, or 5”. Formally:

Workflow for Online Confidence Prediction The fewer
the errors, the more valid; the smaller the prediction set, the
more efficient.

1: for t = 1, 2, . . . and given ε ∈ (0, 1) do
2: Nature reveals xt.
3: Predictor calculates a prediction set Γεt ⊆ Y .
4: Nature reveals yt and declares an error if yt /∈ Γεt .

There are two main properties one expects from a good
confidence predictor. The first is that the predictor should
be valid (intuitively, the label value falls within the predic-
tion set Γεt , fraction 1 − ε of the time) and the other is that
it is efficient (intuitively, |Γεt| is at least one but small).

The literature contains various ways of defining efficiency
and validity measures, see (Vovk et al., 2014) for a detailed
list. We use the following definitions:
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• We call a confidence predictor exactly valid if the er-
ror events associated with its predictions occurs inde-
pendently with probability ε. Additionally, we say a
predictor is conservatively valid or simply valid, if it
makes errors only on the data points on which some
other exactly valid predictor makes errors. For further
implications of this definition, see (Vovk et al., 2005).

• Since our results in Section 4 are focused on binary
predictions, we use the cardinality of the predicted set,
|Γεt|, as a measure of efficiency. Particularly, we say
the prediction at time t is efficient if |Γεt| = 1. In bi-
nary classification setup, as in Section 4, an inefficient
prediction at time t implies that the predictor chooses
both possible values or none, effectively refusing to
make a decision at t.

Furthermore, we say a first predictor is more efficient
than a second predictor at time t, if the first refuses
to make a decision only if the second also refuses to
make a decision at time t. Note that, such a compari-
son makes sense when both of the predictors are valid
and have the same tolerance parameter, ε.

For continuous label spaces, one can refer to the vol-
ume or size of the the prediction sets as a measure of
efficiency (Lei, Robbins, & Wasserman, 2011).

2.3 Conformal Prediction

The main idea behind conformal predictors is to define a
nonconformity score at time t between a candidate point
z = (xt, y) for a candidate label y ∈ Y and the rest of the
data z1, . . . , zt−1, and to use it as a test statistic to decide
whether a particular candidate label y will be included in
the prediction set (candidate outcomes) or not. Intuitively,
if data points similar to xt have often mapped to y in the
past, then y should belong to the prediction set for xt.

The test statistic should take on smaller values the more
probable the y is. One can create a non-conformity score
based on a machine learning algorithm. Say that we em-
ploy the given algorithm, f , train it on the set σt−1 and
predict ŷt = fσt−1

(xt) as an estimate of yt. Then we can
derive a non-conformity score (also called the test statis-
tic) to use at time t as At(σt−1, zt) = φ

(
fσt−1 (xt) , yt

)
,

where φ is any properly chosen loss function.

Because of the exchangeability assumption on the data, the
conformity scores should be invariant to the order of data
points in the training set σt−1. Therefore, the set of first t
data points, σt, constitutes a complete sufficient statistic on
the test statistic At (σt−1, zt). In our context, this means
we can compute the exact probability distribution of the
test statistic conditioned on σt. For a more detailed anal-
ysis of test statistics and how to compute their distribution
under exchangeability, see Chapters 3.2 and 6.2 of (Cox &
Hinkley, 1974).

Exploiting this idea leads to the following algorithm: cal-
culate the non-conformity scores for each data point zi that
precedes t, based on the rest of the data preceding t plus the
assumption that yt = y (the algorithm will do this one at a
time for each label y for time t). We then calculate a confi-
dence value, pyt , for the candidate label y as the fraction of
the data points with greater non-conformity scores than the
score of the last one (xt, y). We will accept y into the con-
fidence set provided this confidence value is greater than or
equal to ε. Vovk (2005) has shown that, after some smooth-
ing (using the additional source of randomness mentioned
in section 2.1, the uniform random variable τt), this confi-
dence value has a uniform distribution on [0, 1] if the label
yt is really equal to y. The uniformity implies therefore
that refusing to include y as a candidate point if its confi-
dence value is less than ε would cause an error only with
probability ε. The pseudocode is given in Algorithm 1, and
further details are given in (Vovk et al., 2005).

Algorithm 1 (Smoothed) Conformal Prediction: The goal
is to create a set of predicted values Γεt which covers the
true label with probability 1 − ε, based on a confidence
value pyt calculated from a given non-conformity measure
At. In particular, pyt computes the fraction of data points
with a larger non-conformity score than αyt , where τt is
used to break the ties. The detailed definitions are in the
text.

1: for t = 1, 2, . . . do
2: Γεt ← ∅
3: for y ∈ Y do
4: yt ← y
5: for i = 1, . . . , t do
6: αyi ← At

(
σ

(i)
t/y, zi

)

7: pyt = (|{i : αyi > αyt , }|+ τt|{i : αyi = αyt }|) /t
8: if pyt ≥ ε then
9: Γεt ← Γεt

⋃ {y}.

To appreciate the strength of the conformal predictors one
can refer to the following results (Schafer & Vovk, 2008):

i. All (smoothed) conformal predictors are exactly valid
(i.e. the error event at any time point is independent
from others and occurs with probability ε) under the
exchangeability assumption.

ii. If the data space is a Borel space, any given valid con-
fidence predictor which is invariant to the order of the
previous data points, there exists a conformal predic-
tor that generates prediction sets not larger than the
prediction sets generated by the given confidence pre-
dictor.
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3 MULTIDIMENSIONAL CONFORMAL
PREDICTION

In this section we will generalize the conformal predic-
tion framework to multidimensional statistics and propose
a principled extension to the algorithm presented above.
This generalization is both simple and improves the effi-
ciency of the formal prediction framework thus achieving
practical improvements to standard algorithms.

The idea of the extension is to use non-conformity scores
that take vector values instead of scalar ones, i.e. the range
of At is Rd for some positive integer d. Such an approach
may be helpful when we have several possible sets of data
that may bear on a prediction. In such a scenario, one can
use the non-conformity score of the candidate point to each
of the several sets as components of a non-conformity vec-
tor.

The approach also helps in the application described in the
next section, in which we focus on the case where the label
space is binary, i.e. Y = {0, 1}. In that setting, a one-
dimensional non-conformity score At (σt−1, (xt, y)) and
its conjugateAt (σt−1, (xt, 1− y)) together provide a sub-
stantial improvement to the performance of the prediction
compared to using just one score.

Just as in the one dimensional case, we assume that data
points come from an exchangeable process and each com-
ponent of the conformity vectors is invariant to the order of
the points in the history, thus making the multi-dimensional
conformity vectors exchangeable. Therefore, we can build
a test statistic from them. However, in contrast to the scalar
case, we don’t have a linear order on these vectors, which
complicates the decision of whether to include or exclude
a label in the prediction set.

Instead of calculating a confidence value py for each y ∈ Y
as before, we propose to select some subset of the d dimen-
sional Euclidean space, which we call the acceptance set
and denote it with Syt , for each y. We add the label y to
the prediction set Γεt only if the corresponding nonconfor-
mity vector falls into the acceptance set, i.e. y ∈ Syt . Also,
just as in the calculation of the one dimensional confor-
mal prediction, we apply random smoothing on the bound-
ary points of the acceptance set to guarantee exact validity.
Specifically, we add y into the prediction set if the corre-
sponding non-conformity vector is an interior point of the
acceptance set, but if it is a boundary point of the set we
include y iff τt is less than a specific value that is calibrated
to the targeted error level. In Theorem 3.1 and the follow-
ing Corollary 3.1.1, we provide some sufficient conditions
on the acceptance sets to guarantee the validity of the asso-
ciated predictor.

As an example, for the binary case, we propose to construct
acceptance sets that include the points with smaller non-
conformity scores than their conjugate scores in addition to

some points with small non-conformity scores. This will
satisfy the conditions given in Corollary 3.1.1 (See Figure
1). Such proposed acceptance sets will be investigated in
detail in the next section.

The pseudocode for the described algorithm is given in Al-
gorithm 2 below for generic acceptance sets. The following
notation is used in the presentation of the algorithm to de-
note the acceptance sets:

• Syt : The acceptance set at time t for the prospective
label y.

• int (Syt ): Interior points of the acceptance set.

• int (Syt ): The set of points in the acceptance set, but
not in the interior of it, i.e. Syt /int (Syt ).

• vyi : The non-conformity vector for data point zi, as-
suming yt = y.

• ∆y
t : Set of first t non-conformity vectors for yt = y,

i.e. {vy1 , . . . ,vyt }.

Algorithm 2 Multidimensional Conformal Prediction: The
goal is create a set of predicted outcomes Γεt based on d-
dimensional statistics. See the definitions just above.

1: for t = 1, 2, . . . do
2: Γεt ← ∅
3: for y ∈ Y do
4: yt ← y
5: for i = 1, . . . , t do
6: vyi ← At

(
σ

(i)
t/y, zi

)

7: Calculate Syt ⊆ Rd from σt/y
8: if vyt ∈ int (Syt ) then
9: Γεt ← Γεt

⋃ {y}.
10: if vyt ∈ int (Syt ) & τt ≥ |S

y
t ∩∆y

t |−(1−ε)t
|int(Sy

t )∩∆y
t |

then
11: Γεt ← Γεt

⋃ {y}.

The following theorem provides sufficient conditions for a
sequence of acceptance sets using the above algorithm to
guarantee that they lead to valid predictions. These con-
ditions have the following intuitive interpretations: (i) Syt
should not depend on the order of data points to preserve
the exchangeability of the non-conformity vectors, and (ii)
fraction 1−ε of the non-conformity vectors should fall into
the acceptance set, i.e |Syt ∩∆y

t | ' (1− ε) t, to make sure
the probability of error is kept at ε. These requirements
provide a guideline to design acceptance sets. In the next
section, we will see that each conformal predictor can be
represented in terms of acceptance sets satisfying this con-
ditions. Also we will see an example of acceptance sets
tailored for the binary classification problem.

Theorem 3.1 For a given sequence of d dimensional con-
formity scores At, acceptance sets Syt , and smoothing pa-
rameters τt; if for all t = 1, 2, . . . and y ∈ Y:
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i. Syt is measurable conditioned on σt/y ,

ii. |int (Syt ) ∩∆y
t | ≤ (1− ε) t ≤ |Syt ∩∆y

t |,

then the multidimensional conformal predictor associated
with these as described in Algorithm 2 is exactly valid.

The proof is based on the fact that any smoothed conformal
predictor is exactly valid (Appendix of (Shafer & Vovk,
2008)). We simply construct a classical non-conformity
score based on a given multidimensional predictor that sat-
isfies the conditions of the theorem, and show that the asso-
ciated predictors generate exactly the same prediction sets.

Proof: First, consider the acceptance set for label y and
time t, Syt , and assume it satisfies both of the conditions
given in the theorem statement. Then, define the non-
conformity score

Bt

(
σ

(i)
t/y, zi

)
=





2 if vyi /∈ Syt
1 if vyi ∈ int (Syt )
i/ (t+ 1) if vyi ∈ int (Syt ) .

Next, we consider three exclusive and exhaustive scenarios
to demonstrate the equivalence of the conformal predictor
associated with Bt and the multidimensional one. Assum-
ing, zt = (xt, y), we calculate the pyt values for the confor-
mal predictor associated with Bt in each scenario:

• If vyt ∈ int (Syt ), then y is included in the prediction
set for the multidimensional predictor. Also note that
the first inequality of the second condition of the the-
orem implies:

pyt =
τt + t− |int (Syt ) ∩∆y

t |
t

≥ ε.

Thus y is included for both of the predictors.

• If vyt /∈ Syt , the multidimensional predictor will reject
y at time t, and also if we calculate the confidence
value of y for the conformal predictor, by the second
half of condition ii:

pyt =
τt (t− |Syt ∩∆y

t |)
t

<
t− |Syt ∩∆y

t |
t

≤ ε.

• Lastly, if vyt ∈ boun (Syt ), the corresponding confi-
dence value becomes:

pyt =
t− |Syt ∩∆y

t |+ τt|int (Syt ) ∩∆y
t |

t
,

and this value is greater or equal to ε if and only if the
second condition on the Line 10 of the Algorithm 2
holds.

Since both predictors behave exactly the same for all of
these scenarios, we can declare they are equivalent and

since the conformal predictor is valid, the multidimensional
one also has to be valid.

In addition, we can omit the first half of the second assumed
condition, i.e. |int (Syt ) ∩ ∆y

t | ≤ (1− ε) t, at the cost of
achieving conservative validity instead of exact validity.

This follows from the fact that the inequality |int (Syt ) ∩
∆y
t | ≤ (1− ε) t is used only in the first scenario of the

proof. In that scenario, the multi-dimensional predictor
does not cause an error since the label y is included in the
predicted set. However, the conformal predictor may cause
an error if the inequality is violated. Thus the multidimen-
sional predictor preserves its (conservative) validity. This
argument is summarized in Corollary 3.1.1.

Corollary 3.1.1 The multidimensional conformal predic-
tor described in Algorithm 2 is valid, if Syt is σt-
measurable and |Syt ∩∆y

t | ≥ (1− ε) t.

This section has extended the conformal prediction frame-
work to multiple dimensional non-conformity scores and
has provided some sufficient conditions to achieve the va-
lidity guarantees. However, we haven’t touched the issue
of “How one should choose acceptance sets to obtain ef-
ficient predictions?”. The answer to this question depends
on the choice of the non-conformity scores which will en-
tail a specific design of acceptance sets. In the next sec-
tion, we will present a simple choice of acceptance sets for
2-dimensional non-conformity vectors in the binary classi-
fication setup that achieves more efficient predictions than
the traditional one dimensional conformal predictors under
some stability assumptions.

4 CONJUGATE PREDICTION FOR
BINARY CLASSIFICATION WITH
REJECT OPTION

In this section, we focus on a special case of the confidence
prediction problem, where the label space consists of only
two elements Y = {0, 1}. We propose a simple and effec-
tive way of choosing acceptance sets for two dimensional
conformal predictors based on any given classical confor-
mal predictor.

As mentioned in the introduction, this problem is equiva-
lent to the scenario of binary classification with reject op-
tion (Denis & Hebiri, 2015), where at each time point t
the predictor either makes a point prediction, i.e. 0 or 1,
for yt or refuses (rejects) to make one, i.e. Γεt = {0, 1}.In
this interpretation, validity implies the probability of error
for each prediction is equal to or less than ε and efficiency
implies the reject option is not used frequently. An asymp-
totic analysis of error and reject options for this scenario
when the traditional conformal prediction is employed can
be found at Chapter 3 of (Vovk et al., 2005).
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The intuitive idea behind conformal prediction is that a
prediction y should be taken if its non-conformity score
(monotonic with the probability of error) takes on small
values with respect to the non-conformity scores of the
other data points. The proposed scheme, which we call
conjugate prediction, says to make a prediction y if its
non-conformity score takes a smaller value than the non-
conformity score of the alternative prediction, namely 1−y.

This approach in some sense tries to find a compromise be-
tween the maximum likelihood and conformal prediction.
Specifically, it will usually choose the most conforming la-
bel, thus enhancing efficiency, while preserving validity by
requiring the acceptance set to be large enough to cover at
least 1 − ε fraction of the data points. In the next section,
we define conjugate predictors rigorously and show their
efficiency. In Section 4.2. we will present the comparison
of conjugate and conformal predictors on standard machine
learning data sets.

4.1 Conjugate Conformal Prediction

Formally, a conjugate predictor associated with a given one
dimensional non-conformity scoreAt is a two-dimensional
conformal predictor with the non-conformity vectors

vyi =

(
αyi
βyi

)
=


 At

(
σ

(i)
t/y, (xi, yi)

)

At

(
σ

(i)
t/y, (xi, 1− yi)

)

 ,

and the acceptance sets

Syt = {(α, β) : α < β or α ≤ supLyt },

where Lyt = {γ : |{i : αyi ≤ γ or αi < βyi }| ≤ (1− ε) t}
and sup ∅ = −∞.

For a more intuitive interpretation of the acceptance sets
Syt , one can imagine to start with the set of points above the
α = β line (see Figure 1) and combine it with the region
α ≤ γ where γ starts from −∞ and increase the accep-
tance set until the total number of points in the set equals
(1− ε) t, i.e. α ≤ supLyt , to make sure it satisfies the
conditions given in Corollary 3.1.1.

Similarly, the traditional conformal predictor associated
with At can also be represented as a two dimensional con-
formal predictor with the same non-conformity vectors vyi
and acceptance sets:

S̃yt = {α : α ≤ sup Eyt }

where, Eyt = {γ : |{i : αyi ≤ γ}| ≤ (1− ε) t}.
As you can see in Figure 1, the traditional conformal pre-
dictor satisfies the same intuition as the conjugate predic-
tor: start from γ = −∞ and include points in the accep-
tance set until the number of non-conformity vectors that
satisfy α ≤ γ inequality become equal to (1− ε) t. Note
that this final γ value becomes equal to sup Eyt .

Figure 1: (A Pictorial View of Conjugate Prediction) In
the figure α-β plane is sketched to illustrate the difference
between the conformal and confidence prediction frame-
works. For representative purposes, we choose t = 40 and
ε = 0.2. Each non-conformity vector is presented by a
blue point assuming yt = y, the acceptance set for conju-
gate prediction is on the right side of the red line, and the
acceptance set for the conformal predictor is on the left of
the green line. Assuming the green and red lines are ap-
proximately stable (i.e. they do not change based on an
individual label value y), the conformal predictor declines
to make a prediction if the test point, (xt, y), falls into ei-
ther green or red regions, however the conjugate predictor
declines only on the red region.

In the following theorem, we argue that a conjugate confor-
mal predictor is more efficient than the conformal predictor
associated with the same non-conformity score, if the scor-
ing functions are stable in the following sense. We say a
scoring function At is stable if it changes little when any
single label in the training set flips, i.e. At

(
σ

(i)
t/y, zi

)
'

At

(
σ

(i)
t/1−y, zi

)
for any i < t. The notion of stability

is studied thoroughly in statistical learning theory in the
context of necessary conditions for learnability (Shalev-
Shwartz, Shamir, Srebro, & Sridharan, 2010) (Bousquet &
Elisseeff, 2002). In fact, many of the well-known learning
algorithms, as well as the non-conformity scores derived
from them, are stable to differing degrees, especially as the
number of data points in the training sets increases, i.e. as
t increases (Shave-Taylor & Cristianini, 2004), (Bousquet
& Elisseeff, 2002), (Shalev-Shwartz & Ben-David, 2002).

In the following theorem, we first present a set of condi-
tions in terms of the auxilary sets Lyt and Eyt for relative ef-
ficiency of the conjugate predictors and then intuitively dis-
cuss why the stability of the scoring functions imply these
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conditions.

Theorem 4.1 Let scoring functions At and tolerance level
ε ∈ [0, 1] be given. Also assume the auxilary sets Lyt and
Eyt are defined as:

Eyt = {γ : |{i : αyi ≤ γ}| ≤ (1− ε) t} and

Lyt = {γ : |{i : αyi ≤ γ or αyi < βyi }| ≤ (1− ε) t}.

If supLyt ≤ sup E1−y
t for both y ∈ {0, 1}, then the

conjugate predictor associated with At is more efficient
than the conformal predictor associated with the same non-
conformity score at time t.

Proof: In the proof, we ignore the tie-breaking issues for
the sake of brevity, but one can show, with a similar analy-
sis, that the result holds as long as both the conjugate and
conformal predictors use the same smoothing value, τt.

We start by assuming that the conjugate predictor declines
to make a decision at time t, i.e. |Γεt| = 2, which im-
plies the non-conformity vector corresponding to the tth

data point is included in the acceptance set regardless of
the value of y, i.e. vyt ∈ Syt for both y ∈ {0, 1}.
The definition of the non-conformity vector vyt = (αyt , β

y
t ),

implies the equality αyt = β1−y
t for all y ∈ {0, 1}. Hence,

the conditions for the rejection at time t can be written for
any y as:

vyt ∈ {(α, β) : (α < β or α ≤ supLyt )

and (α < β or α ≤ supL1−y
t )}

⊆ {(α, β) : max{α, β} ≤ max
y∈{0,1}

supLyt }.

To simplify this last statement further, note supLyt ≤
sup Eyt from the definitions of the auxiliary sets Lyt and
Eyt . Combining this inequality with the hypothesis of the
theorem, i.e. supLyt ≤ sup E1−y

t , we obtain:

max
y∈{0,1}

supLyt ≤ min
y∈{0,1}

sup Eyt .

Plugging this inequality in the previous statement:

vyt ∈ {(α, β) : max{α, β} ≤ min
y∈{0,1}

sup Eyt },

which implies vyt ∈ S̃yt and vyt ∈ S̃1−y
t . Therefore, the

conformal predictor associated with At also declines to
make a prediction.

Because the conformal predictor will decline to predict
whenever the conjugate predictor will, the conjugate pre-
dictor is at least as efficient as the conformal predictor. Fur-
ther, there are many cases where the conjugate predictor
might predict even though the conformal predictor doesn’t,
for example if the test point fall into the green region in
Figure 1.

Intuitively, the conditions given in the theorem hold for sta-
ble enough non-conformity scores, since stability implies
sup Eyt ' sup E1−y

t , and as mentioned before supLyt ≤
sup Eyt follows directly from the definition of these sets.

The theorem says the conjugate predictor performs at least
as efficiently as the original conformal predictor under
these stability conditions. The validity of the conjugate pre-
dictors follows from Corollary 3.1.1.

In the next subsection, we investigate the relative perfor-
mance of the conformal and conjugate predictors by com-
paring the error and rejection rates for different choices of
non-conformity scores and datasets. Our main observation
is that the conjugate predictors provide two type of gains.
First, it reduces the rejection rate due to the extra informa-
tion provided by the conjugate scores. Second, even if the
conjugate score does not provide any extra information (i.e.
the βyt can be calculated as a function of αyt ), it reduces the
error rate for a given rejection rate, by being more decisive
about its choices on easy samples.

4.2 Empirical Results

In this section, we show the results of applying our algo-
rithm and corresponding conformal predictor on some real
data-sets from UCI Machine Learning Repository (Lich-
man, 2013). The details of the used non-conformity scores
and the datasets are given in the following two subsections
and the numerical results are given at the last subsection.

4.2.1 Experiments

Our experiments use two different non-conformity scores:
one based on random forests and the other is based on near-
est neighbor classifiers. The reason to choose these two ex-
ample scores is to illustrate the effect of the conjugate pre-
dictor when the conjugate score providing new information
about the data (as in the nearest neighbor case), or not (as
in the random forests).

1. Out-of-bag Score in Random Forests: At each time t,
we train a random forest consist of 100 randomized
decision trees on σt/y . Randomization entails taking
a bootstrap of the samples for training and restricting
the optimization at the decision nodes to random sub-
sets of the features as described in (Breiman, 2001).
We used the Statistics and Machine Learning Tool-
box’s (MATLAB, 2013) under the default settings,
which are the settings suggested by Breiman origi-
nally.

The non-conformity score αyi of point zi is calcu-
lated as the fraction of trees (using a training set that
doesn’t include zi) that miss-classify the sample xi,
i.e. give the output 1 − yi. Note that this choice of
non-conformity score implies βyi = 1 − αyi , and thus
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the conjugate score does not provide any new informa-
tion about the data. Nevertheless, conjugate prediction
will still be useful for larger error tolerances.

2. In-Class Distance in k-Nearest-Neighbor: As the sec-
ond scoring function, we built a non-conformity score
based on the well-known k nearest neighbor algo-
rithm. For each point zi, we calculated the closest
k data points with the same label yi from the set σ(i)

t/y

and used the arithmetic average of these k distances as
the non-conformity score of αyi .

In the implementation, we tried k values in the range 3
to 10, and we report the results for k = 5, which per-
formed the best in all five data sets. Note that while
larger values imply better stability, choosing k too
large weakens the classifier’s predictive power. We
used Euclidean distance to measure the closeness of
the data points after centering and scaling each fea-
ture to unit variance.

Note that, in contrast to the non-conformity score used
with random forests, this non-conformity score pro-
vides new information about the data, and as we see
in Section 4.2.3, the advantage of using conjugate pre-
dictors is greater in this case.

4.2.2 Data Sets

We used the following data sets from UCI ML Repository
(Lichman, 2013):

• Breast Cancer Wisconsin (Original) Data Set (Man-
gasarian & Wolberg, 1990): This data set consists of
699 data points, where each data point is collected
from a patient that contains 10 integer valued features
of a breast tumor and a binary label for its type (be-
nign/malignant).

• Haberman’s Survival Data Set: This data set contains
5 year survival information 306 patients after surgery
for breast cancer. The data contain 3 integer features
and 1 binary label (survived/died in 5 year.)

• Parkinson’s Data Set (Little, McSharry, Hunter, &
Ramig, 2008): This dataset contains data about 195
vocal recordings, where each record is represented by
a 23 dimensional real vector and the goal is to predict
if the subject has Parkinson’s disease or not.

• Musk (v1) Data Set: This data set contains 476 data
points on 92 types of molecules, each of which is rep-
resented by 166 features classifying them as musks
and non-musks. The goal is to determine whether a
new molecule will be a musk or not.

• Statlog (Australian Credit Approval) Data Set: This
data set contains 690 data points on anonymized credit
card applications described by 14 features, and classi-
fying them as approved or rejected.

4.2.3 Results

In this part, we tested the above five data sets with both of
the described non-conformity scores using error tolerance
values of 0.03, 0.10, and 0.18. Because we assume ex-
changeability, we randomly permute the data before each
experiment. Each experiment is repeated 10 times. The
means are reported in Table 1,2,3, and 4.

In Tables 1 and 2, we report the cumulative error rate, i.e.
fraction of mis-classified samples, for both conjugate and
conformal predictors for each score, data, tolerance level
combinations. Tables 3 and 4 give the cumulative rejection
rates, i.e. the ratio of samples where the classifier declined
to predict/classify.

Table 1: Conjugate Conformal Predictors: Mean Cumula-
tive Error Rates. KNN means k nearest neighbor, and RF
means random forest. B.C. means the breast cancer data
set, Surv means survival, and Park. means Parkinson’s.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.0284 0.0329 0.0335

KNN/Surv. 0.0363 0.1007 0.1699

KNN/Park. 0.0313 0.0836 0.1000

KNN/Musk 0.0336 0.1057 0.1473

KNN/Statlog 0.0358 0.1070 0.1574

RF/B.C. 0.0271 0.0334 0.0334

RF/Surv. 0.0366 0.1000 0.1788

RF/Park. 0.0313 00944. 0.1246

RF/Musk. 0.0372 0.1092 0.1571

RF/Statlog 0.0371 0.1035 0.1380

Table 2: Classical Conformal Predictors: Mean Cumula-
tive Error Rates. Labels have the same meaning as in the
previous table. Conjugate predictors (previous table) are
more accurate or comparable in nearly all cases.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.0343 0.1048 0.1827

KNN/Surv. 0.0330 0.0971 0.1683

KNN/Park. 0.0354 0.0979 0.1692

KNN/Musk 0.0368 0.1038 0.1815

KNN/Statlog 0.0371 0.1133 0.1917

RF/B.C. 0.0307 0.1034 0.1892

RF/Surv. 0.0366 0.1000 0.1794

RF/Park. 0.0313 0.0985 0.1697

RF/Musk. 0.0372 0.1092 0.1824

RF/Statlog 0.0371 0.1045 0.1832

Additionally, in Table 5 the cumulative error rates for the
native random forest and k nearest neighbor algorithms are
presented. For the native implementation, at each time
point t, the algorithm is trained on the first t−1 data points
and used to predict the tth one. In the for each combination,
we report the error rates of the native algorithms over the
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Table 3: Conjugate Conformal Predictors: Mean Cumula-
tive Rejection Rates. Labels have the same meanings as in
the previous tables.

ε = 0.03 ε = 0.10 ε = 0.18
KNN/B.C. 0.0570 0.0110 0.0098

KNN/Surv. 0.9255 0.7258 0.4507

KNN/Park. 0.4359 0.1410 0.0728

KNN/Musk 0.6149 0.2603 0.0981

KNN/Statlog 0.7581 0.2423 0.0174

RF/B.C. 0.0271 0.0146 0.0143

RF/Surv. 0.7461 0.5020 0.3010

RF/Park. 0.3503 0.1323 0.0805

RF/Musk. 0.4779 0.2088 0.1084

RF/Statlog 0.3964 0.0936 0.0293

Table 4: Classical Conformal Predictors: Mean Cumula-
tive Rejection Rates. Labels have the same meanings as
in the previous tables. Note that conjugate predictors (pre-
vious table) enjoy consistently lower rejection rates for k
nearest neighbor algorithm and equivalent rejection rates to
the conformal ones upto statistical fluctuations while keep-
ing error rate at a lower level.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.6611 0.4246 0.2212

KNN/Surv. 0.9510 0.8013 0.6775

KNN/Park. 0.8195 0.6108 0.4615

KNN/Musk 0.8828 0.6903 0.5221

KNN/Statlog 0.9112 0.6878 0.4467

RF/B.C. 0.0255 0.0102 0.0095

RF/Surv. 0.7461 0.5020 0.3010

RF/Park. 0.3503 0.1297 0.0662

RF/Musk. 0.4779 0.2088 0.0962

RF/Statlog 0.3962 0.0929 0.0148

samples that corresponding conjugate predictors refused to
make a prediction or not.

We observe that conjugate predictors always preserve va-
lidity (see Table 1), since they reach an error rate equal or
less than the target tolerance level (up to statistical fluctua-
tions). However, when the data is relatively easy to classify
as in the breast cancer data (see Table 5), conjugate predic-
tors are more decisive while also reducing the error rate by
preserving the original validity guarantees.

Furthermore, the decisiveness of conjugate predictors re-
duces the rejection rates in our simulations (see Table 3 and
4). The gain is more pronounced when the data is relatively
less noisy, i.e. easy to classify as in the breast cancer data,
and the conjugate score of the base algorithm provides ex-
tra information about the data, as when using the k nearest
neighbor algorithm.

Table 5: Baseline: Depending on the error tolerance ε,
the conjugate algorithm refuses to predict on certain data
points. For each box having format x/y, the table shows
the error rate (x) of the underlying algorithm on the refused
data points and the error rate (y) on the data points upon
which the conjugate algorithm makes prediction. Note that,
the error rate is significantly higher on the refused data
points whenever the target error level ε is low, i.e. refusals
are inevitable to preserve the validity.

ε = 0.03 ε = 0.10 ε = 0.18
KNN/B.C. 0.10/0.03 0.05/0.03 0.00/0.03

KNN/Surv. 0.26/0.54 0.24/0.37 0.23/0.31

KNN/Park. 0.19/0.05 0.21/0.10 0.14/0.11

KNN/Musk 0.23/0.09 0.27/0.14 0.29/0.16

KNN/Statlog 0.16/0.15 0.22/0.14 0.11/0.16

RF/B.C. 0.17/0.03 0.01/0.03 0.00/0.03

RF/Surv. 0.36/0.14 0.41/0.20 0.41/0.26

RF/Park. 0.29/0.05 0.22/0.12 0.06/0.14

RF/Musk. 0.33/0.08 0.37/0.15 0.30/0.19

RF/Statlog 0.26/0.06 0.33/0.12 0.08/0.14

5 DISCUSSION & CONCLUSION

Extending conformal predictors to multiple dimensions is
both technically reasonable and practically beneficial. This
paper has shown that the extension almost always increases
the efficiency and always preserves the validity of ma-
chine learning algorithms compared with standard confor-
mal predictors.

Other applications of this extension include scenarios
where one may want to combine a set of conformal predic-
tions to make better predictions even when there are breaks
in exchangeability. For example, consider the problem of
prediction under seasonal changes or other sources of con-
cept drift.

Our conjugate prediction framework is an iterative method
for finding hybrid non-conformity scores. As noted in the
proof of Theorem 3.1, each multidimensional predictor can
be equivalently represented as a conformal predictor. Thus,
if one starts with a conformal predictor and can improve
upon it by extending it to higher dimensions, as in the case
of conjugate predictors, one will obtain a more effective
conformal predictor.

The next steps in this work are to demonstrate the benefits
of this extension to these other applications, to incorporate
the resulting methods into standard machine learning soft-
ware, and to explore further generalizations of conformal
(and multi-dimensional/conjugate conformal) predictors.
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Abstract

Online density estimation is the problem of
predicting a sequence of outcomes, revealed one
at a time, almost as well as the best expert chosen
from a reference class of probabilistic models. The
performance of each expert is measured with the
log-likelihood loss. The class of experts examined in
this paper is the family of discrete, acyclic graphical
models, also known as Markov forests. By coupling
Bayesian mixtures with symmetric Dirichlet priors
for parameter learning, and a variant of “Follow the
Perturbed Leader” strategy for structure learning, we
derive an online forest density estimation algorithm
that achieves a regret of Õ(

√
T), with a per-round

time complexity that is quasi-quadratic in the input
dimension. Using simple and flexible update rules,
this algorithm can be easily adapted to predict with
Markov trees or mixtures of Markov forests. Em-
pirical results indicate that our online algorithm is a
practical alternative to the state-of-the-art batch algo-
rithms for learning tree-structured graphical models.

1 INTRODUCTION

Graphical models have attracted considerable interest in AI,
computational statistics, and machine learning (Wainwright
and Jordan, 2008; Koller and Friedman, 2009). One of the
key virtues of these models is to allow a separation between
qualitative, structural aspects of uncertain knowledge, and
quantitative, parametric aspects of uncertainty. As such, graph-
ical models are able to represent, in a compact and intelligible
way, high-dimensional probability distributions, using local in-
teractions between variables. For undirected graphical models,
also known as Markov networks, the structure is an undirected
graphG, and the parameters are grouped into a set θ of factors
associated with the cliques of G. The probability PM(x)
assigned to an outcome x by a model M = (G,θ) is given
by the product of factors in θ which are activated by x, divided
by a normalization constant, known as the partition function.

A fundamental problem in graphical models is to extract from
a series of observed outcomes, the structure and the parameters
of a model that accurately predicts future, unseen, outcomes.
This learning problem, which can be generalized to arbitrary
probabilistic models, is often referred to as density estimation
in the literature (Grünwald, 2007; Rissanen, 2012). In the batch
density estimation setting, it is assumed that outcomes are
sampled independently from a fixed (but unknown) target distri-
bution. The data samples, available ahead of time, are separated
into a training set for learning the model, and a test set for
evaluating its performance. Contrastingly, in the online density
estimation setting, there are no statistical assumptions about
the series of outcomes (Merhav and Feder, 1998; Cesa-Bianchi
and Lugosi, 2006). The learner receives inputs sequentially,
and its performance is measured over all the observed sequence.
The absence of statistical assumption makes online algorithms
applicable in adaptive or “dynamic” environments, where the
target distribution is allowed to arbitrarily change in response
to various events, including the learner’s decisions. Even
in “static” environments, online algorithms can provide a
practical alternative to batch algorithms, by processing only one
outcome at a time. They are indeed particularly suited to handle
streaming applications, where all the data is not available in
advance, or large-scale domains with massive amounts of data.

Conceptually, online density estimation with graphical models
can be viewed as a repeated game between the learner and its
environment. The parameters of the game are an outcome space
X and a classM of graphical models over X , called experts.
During each trial t of the game, the learner selects (possibly
at random) a model Mt ∈ M, the environment responds by
an outcome xt ∈ X , and the learner incurs the log-likelihood
loss (or log-loss, for short) `(Mt,xt) = − lnPMt(xt). The
quality of an online learning algorithm is measured according
to two standard metrics. The first, called regret, measures the
difference in cumulative loss between the algorithm and the
best expert inM. Borrowing the terminology of game theory,
an online learning algorithm is called Hannan-consistent if
its regret over any possible sequence of T outcomes is only
sublinear in T . The second metric is computational complexity,
i.e. the amount of resources required to compute Mt at each
round t, given the sequence of outcomes observed so far.

357



In this paper, we examine the problem of online density
estimation for the class of (discrete) Markov forests, which
represent discrete multivariate probability distributions where
interdependencies are restricted to an acyclic graph. Markov
forests are endowed with two remarkable properties, namely, (i)
they can be factorized into a closed form which does not involve
a partition function, and (ii) the space of all acyclic graphs
upon which a Markov forest can be constructed is a matroid.
As observed in (Pearl, 1988; Lauritzen, 1996), the closed-form
expression of the probability distribution PM associated with
an n-dimensional Markov forestM = (F,θ) is given by

PM(x) =

n∏

i=1

θi(xi)
∏

(i,j)∈F

θij(xi, xj)

θi(xi)θj(xj)
(1)

where θi(xi) and θij(xi, xj) are the marginal densities of the
node i and the edge (i, j), respectively. Based on (1), proba-
bilistic inference in Markov forests can be performed in linear
time. Moreover, the matroid associated with the structure space
of Markov forests allows linear optimization to be performed
in low-polynomial time, using the greedy matroid algorithm.

Based on these properties, the “batch” forest density estimation
problem can be solved in quasi-quadratic time (in the input
dimension n), by finding a maximum weight spanning tree
in the complete graph of order n, whose edges are weighted
according to the empirical bivariate marginals measured on the
training set. This simple and elegant strategy, due to Chow and
Liu (1968), is the blueprint of more sophisticated algorithms
for learning other tree-structured graphical models, such as
constrained Markov forests (Liu et al., 2011; Tan et al., 2011),
and mixtures of Markov trees (Meila and Jordan, 2000; Kumar
and Koller, 2009). Beyond Markov forests and their variants,
the problem of finding the structure and the parameters of a
maximum likelihood graphical model is, in general, NP-hard
(Chickering, 1995), even for the restricted classes of Bayesian
polytrees (Dasgupta, 1999) and Markov networks of bounded
treewidth (Srebro, 2003).

Our Results. The challenge of the “online” forest density
estimation problem lies in the fact that outcomes are revealed
only one at a time, thus forcing the learner to iteratively update
both the structure and the parameters of a Markov forest, so
as to minimize the cumulative log-loss over the sequence
of outcomes observed so far. This difficulty naturally raises
the question of whether there exist Hannan-consistent forest
density estimation algorithms with a total runtime complexity
comparable to that of batch learning algorithms. By exploiting
the closed form of Markov forests and the matroid of their
structure space, we answer this question in the affirmative
using easily implementable update strategies.

The key point of our online learning algorithm and its regret
analysis lies in the fact that the parameters and the structure
of a forest can be updated in an independent way. Indeed, in
light of the closed-form expression (1), the log-likelihood loss
of a Markov forest can be additively decomposed to the nodes

and the edges of a forest, in such a way that the contribution
of the local components are independent of the forest structure.
Thus, the regret of any algorithm producing the sequence
M1, · · · ,MT of Markov forests can be decomposed into a
telescopic sum of two regret expressions, namely, a “parametric”
part defined over the forest parameters θ1, · · · ,θT , and a
“structural” part defined over the forest structures F1, · · · , FT .

By exploiting the additive decomposition of the log-loss, the
parametric part can, in turn, be decomposed into a sum of
“local” regrets defined over node and edge parameters. This
observation naturally suggests the use of Bayesian mixtures
under Dirichlet priors for estimating univariate marginals
and bivariate marginals. Such mixtures, which have been
extensively studied in the literature of density estimation (see
e.g. Cesa-Bianchi and Lugosi (2006); Grünwald (2007)), can
be implemented using very simple update rules. Namely, by
selecting Jeffreys mixtures for univariate and bivariate marginal
estimators, our strategy achieves a regret that is logarithmic
in the number T of rounds, with a per-round time complexity
that is quadratic in the input dimension n.

Concerning the structural part of the regret, the log-loss is an
affine function of the forest structure. This, together with the
matroid property of forest structures, opens up the possibility
of using various online combinatorial optimization algorithms
(see e.g. Koolen et al. (2010); Audibert et al. (2011)). Here, our
structure-update strategy is based on the well-known Follow the
Perturbed Leader (FPL) algorithm (Hannan, 1957; Kalai and
Vempala, 2005), which essentially adds a random perturbation
to the total loss observed so far, and selects the forest structure
that minimizes the resulting cost function. In order to attenuate
the possibly unstable effects of perturbations, our strategy
uses a convex combination of forest structures, coupled with a
swap-rounding method (Chekuri et al., 2010) for generating, at
each iteration, a forest that is consistent with the current convex
mixture. By ignoring logarithmic factors, this strategy achieves
a regret of Õ(

√
T), with a quadratic per-round time complexity.

In a nutshell, our online forest density estimation algorithm
achieves Hannan-consistency with a cumulative runtime com-
plexity that is comparable to that of the Chow-Liu algorithm.
Furthermore, our algorithm can be easily adapted to predict
with Markov trees, and mixtures of Markov forests (with shared
parameters). Experiments conducted on several real-world
datasets support our theoretical approach. Notably, our online
learning algorithm rapidly converges to the estimations of the
state-of-the-art batch algorithms for Markov trees (Chow and
Liu, 1968), and thresholded Markov forests (Tan et al., 2011).

Paper Structure. After introducing the necessary back-
ground in forest polytopes (Section 2) and Markov forests
(Section 3), we present our online forest density estimation
algorithm in Section 4. Its regret analysis is detailed in Section
5, and its experimental validation is presented in Section 6.
Finally, Section 7 concludes with some related work in online
learning, together with several perspectives of further research.
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2 FOREST POLYTOPES

We start with some notations and definitions which will be
used throughout the paper. Let [n] denote the set {1, · · · , n},
and

(
[n]
2

)
denote the set {(i, j) ∈ [n] × [n], i < j}. To

simplify notation, we use the abbreviation x1:t to designate
any sequence of vectors x1, · · · ,xt. For x,y ∈ Rn and
p ∈ [1,∞], we use ‖x‖p to denote the Lp norm of x, and we
use〈x,y〉 to denote the scalar product of x and y. For a subset
X ⊆ Rn, we denote by convX the convex hull ofX.

In what follows, we shall adopt set and vector notations
interchangeably for describing graphs over the node set [n];
in the set notation, G is a subset of

(
[n]
2

)
, and in the vector

notation g is a vector in {0,1}(n2), such that gij = 1 if and
only if (i, j) ∈ G. As usual, a forest is an acyclic graph, and
a spanning tree is an acyclic, connected graph that spans [n].
The spaces of all forests and all spanning trees of order n are
denoted Fn and Tn, respectively. It is well-known that the set
of all forests of order n defines a matroid over the ground set(
[n]
2

)
, where Fn is the collection of independent sets, and Tn

is the collection of bases. The rank of this matroid is n− 1,
which corresponds to the size of any spanning tree over [n].

The convex hull of Fn, where elements are viewed in vector
notation, is called the forest polytope. This polyhedron of
dimension n− 1 is characterized by the system of inequalities:

conv Fn=

{
p ∈ R(n2)

+ :〈p,g〉 ≤ n−1, for all g ∈ {0,1}(n2)
}

Such inequalities are often referred to as acyclicity constraints
in the literature (Shrijver, 2003). The convex hull of Tn, called
the spanning tree polytope, is the subset of conv Fn formed
by the points p satisfying the equality 〈p,1〉 = n− 1, where
1 is the all-ones vector in Rn. By Carathéodory’s theorem, any
point p ∈ conv Fn (resp. p ∈ conv Tn) can be represented
as a convex combination of t ≤ n− 1 forests (resp. spanning
trees), i.e. p =

∑t
τ=1 ατ f

τ , whereα ∈ Rt+ and ‖α‖1 = 1.

Although the forest polytope and the spanning tree polytope
are characterized by an exponential number N of acyclicity
constraints, linear optimization under these combinatorial struc-
tures can be performed in low polynomial time. Indeed, by Ed-
mond’s theorem (1970), both conv Fn and conv Tn are totally
dual-integral, and hence, any minimizer p∗ of a linear objective
〈w,p〉 subject to p ∈ conv Fn (resp. p ∈ conv Tn) is an
extreme point in Fn (resp. Tn). This point p∗ can be found in
O(n2 logn) time, using the greedy matroid algorithm. Specifi-
cally, for the forest polytope, the greedy algorithm first sorts the(
n
2

)
edges in decreasing order according to the linear objective

w, next keeps the firstm edges with non-positive weight, and
then iteratively finds a minimum cost forest F over these m
ordered edges. For the spanning tree polytope, the greedy al-
gorithm coincides with Kruskal’s method, which also sorts the
edges according tow, but uses (in the worst case) all the

(
n
2

)

ordered edges for generating a minimum cost spanning tree.

Finally, in order to round fractional points in matroid poly-
topes, we shall focus on SWAP method proposed by Chekuri
et al. (2010). This algorithm takes as input a fractional point
p ∈ conv Fn (resp. p ∈ conv Tn), given as a convex combi-
nation p =

∑t
τ=1 ατf

τ of forests (resp. spanning trees), and
iteratively generates the sequence of points p1, · · · ,pt, such
that p1 = p, pt is an extreme point in Fn (resp. Tn), and
E[pτ ] = p for all τ ∈ [t]. Each point pτ+1 is obtained from
pτ by arbitrarily choosing two components αif i and αjfj in
pτ , and by replacing them with a new component (αi +αj)f

′.
Here, f ′ is generated in O(n2) time using random base ex-
changes. So, p can be rounded using t− 1 quadratic-time oper-
ations. Importantly, SWAP can be interrupted at any iteration τ
to give a convex combinationpτ of t+1−τ graphical structures.
In what follows, we use SWAPk(p) to denote the application of
at most τ = t+ 1− k iterations of the SWAP algorithm, which
returns a convex combination including at most k components.

3 MARKOV FORESTS

The graphical models examined in this paper are defined over
a set {X1, · · · ,Xn} of multinomial random variables, each
taking values over a finite alphabet {1, · · · ,m}, withm ≥ 2.

A probability table for a random variable Xi, is a vector θi
in them-dimensional probability simplex, where θi(u) denotes
the probability that Xi = u. Similarly, a probability table
for a pair of random variables (Xi,Xj) is a vector θij in the
m2-dimensional probability simplex, where θij(u, v) indicates
the probability thatXi = u andXj = v. By Θm,n, we denote
the set of all mappings θ that assign a probability table θi to
each i ∈ [n], and a probability table θij to each (i, j) ∈

(
[n]
2

)
,

while satisfying the marginalization constraints:

m∑

u=1

θij(u, v) = θj(v) and
m∑

v=1

θij(u, v) = θi(u) (2)

Note that the dimension of θ is d = mn + m2
(
n
2

)
. The

class of m-ary n-dimensional Markov forests is defined as
Fm,n = Fn ×Θm,n, and the class of m-ary n-dimensional
Markov trees is given by Tm,n = Tn×Θm,n. For a classM∈
{Fm,n,Tm,n}, we denote byP (M) the matroid polytope as-
sociated with the structure space ofM, i.e. P (M) = conv Fn
ifM = Fm,n, andP (M) = conv Tn ifM = Tm,n.

By taking into account the acyclicity constraints of Fn and
the marginalization constraints of Θm,n, the probability
distribution PM over X = [m]n represented by a Markov
forestM = (f ,θ) is given by the closed-form expression (1).
More generally, if (p,θ) is a pair of vectors inP (M)×Θm,n,
then the corresponding distribution is given by

Pp,θ(x) =
∏

i∈[n]
θi(xi)

∏

(i,j)∈([n]
2 )

(
θij(xi, xj)

θi(xi)θj(xj)

)pij
(3)
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Figure 1: A binary Markov forest.

When p is described as a convex combination of forests (resp.
trees), the pair (p,θ) can be viewed as a mixture of Markov
forests (resp. Markov trees) sharing the same parameters.

4 ONLINE MARKOV FORESTS

Recall that online learning can be viewed as a repeated
game between a learning algorithm A and its environment.
During each trial t ∈ [T ], the learner A starts by choosing
(possibly at random) a model Mt ∈ M, whereM is a class
of graphical models. Next, the environment responds by
supplying an outcome xt ∈ X , and then,A incurs the log-loss
`(Mt,xt) = − lnPMt(xt). The (expected) regret of the
learning algorithmA with respect to the sequence of outcomes
x1:T = (x1, · · · ,xT ) is given by

Rx1:T (A) =
T∑

t=1

E
[
`(Mt,xt)

]
− min
M∈M

T∑

t=1

`(M,xt) (4)

where the expectation is taken with respect to the learner’s
internal randomization. By extension, the minimax regret ofA
at horizon T , denoted RT (A), is the maximum of Rx1:T (A)
over any sequence x1:T in XT . A is called Hannan-consistent
if its minimax regret is sublinear in T , or equivalently, if its
average minimax regretRT (A)/T vanishes as T →∞.

The classes of experts investigated in this study are Markov
forests and Markov trees, that is,M ∈ {Fm,n,Tm,n}. The
log-loss can be extended toP (M)×Θm,n ×X → R, using
`(p,θ,x) = − lnPp,θ(x), where Pp,θ is defined according to
the closed-form expression (3). Interestingly, we can observe
that ` is an affine function of p, given by

`(p,θ,x) = ψ(x) + 〈p,φ(x)〉 (5)

where

ψ(x) =
∑

i∈[n]
ln

1

θi(xi)
and φij(xi, xj) = ln

(
θi(xi)θj(xj)

θij(xi, xj)

)

It is important to keep in mind that the sign of the components
in the vector φ(x) ∈ R(n2) can be positive or negative. A
negative weight φij(xi, xj) can be interpreted as a positive
contribution (or gain) in favor of using the edge (i, j) in the
graphical structure. Contrarily, a positive weight φij(xi, xj)
provides a negative contribution to the candidate edge (i, j).

With these notions in hand, we are now in position to exam-
ine the online forest density estimation (OFDE) algorithm. As
specified in Algorithm 1, OFDE takes as input a class of experts
M∈ {Fm,n,Tm,n}, and an upper bound k on the number of
candidate structures maintained by its mixture. During each
trial t, the learner maintains a pair (pt,θt) ∈ P (M)×Θm,n,
where pt is a convex combination of at most k structures. The
model Mt = (ft,θt) used to predict the outcome xt is ob-
tained by generating ft at random according to pt (Line 4). Af-
ter observingxt (Line 5), the learner updates its parameters and
its structure according to Lines 6-7 and Lines 8-12, respectively.

The vector of parameters θt is updated by applying the Jeffreys
(1946) rule to the probability table of each node i ∈ [n] and
each candidate edge (i, j) ∈

(
[n]
2

)
. Here, tu (resp. tv) is the

number of u’s (resp. v’s) in the sequence x1i , · · · , xti, and tuv is
the number of occurrences of (u, v) in (xi, xj)

1, · · · , (xi, xj)t.
The mixture pt is updated using the following operations: first,
apply the FPL strategy to produce an intermediate structure
ft+

1
2 (Lines 9-10); next, combine this structure with pt to

yield a new intermediate mixture pt+
1
2 (Line 11), and then

use SWAPk to build a new mixture with at most k components
(Line 12). The values of the hyperparameters αt and βt, used
to generate mixtures and perturbations, will be derived from
regret analysis. Note that the same algorithmic scheme is
used to learn with Markov forests and Markov trees. The
key difference lies in the behavior of the greedy matroid
algorithm; as mentioned above, the greedy algorithm uses
only non-positive weights in φt(xt) to find an optimal point in
conv Fn for the linear objectivewt, while it uses all weights
in φt(xt) to produce an optimal point in conv Tn forwt.

Theorem 1. The per-round time complexity of the OFDE
algorithm is inO

(
n2m2 + n2 logn+ kn2

)
.

Proof. Based on the Jeffreys rule, the parameters θt+1 are
computed in O(d) time, where d = mn+m2

(
n
2

)
. Further-

more, ft+
1
2 is obtained in O(n2 logn) time by applying the

greedy matroid algorithm, and by exploiting the fact that the
objectivewt can be maintained in O(n2) time per trial using
w0 = 0 and wt = wt−1 + φt(xt). Since pt+

1
2 includes at

most k + 1 components, the updated mixture pt+1 and the
updated forest ft+1 are obtained using SWAP in O(n2) time
andO(kn2) time, respectively.

Note that the time complexity of the Chow-Liu algorithm for a
training set of sizeT is inO(Tm2n2+n2 logn). So, if k is con-
stant or logarithmic in n, then the overall complexity of OFDE
at horizon T is comparable to that of the Chow-Liu algorithm.
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Algorithm 1: Online Forest Density Estimation (OFDE)

Input:
a class of expertsM∈ {Fm,n,Tm,n}, and mixture size k

Initialization step
1 θ1i (u)← 1

m for all i ∈ [n], u ∈ [m]

2 θ1ij(u, v)← 1
m2 for all (i, j) ∈

(
[n]
2

)
, u, v ∈ [m]

3 p1 ← 0

Trials
foreach t← 1, . . . do

4 PlayMt ← (ft,θt) where ft = SWAP1(p
t)

5 Receive xt

Parameter update

6 θt+1
i (u)← tu + 1

2

t+ m
2

for all i ∈ [n], u ∈ [m]

7 θt+1
ij (u, v)← tuv + 1

2

t+ m2

2

for all (i, j) ∈
(
[n]
2

)
, u, v ∈ [m]

Structure update
8 Choose αt and βt in (0,1)

9 Draw rt in
[
0, 1
βt

](n2)
uniformly at random

10 ft+
1
2 ← argminp∈P (wt) where
wt ← rt +

∑t
τ=1 φ

τ(xτ)

11 pt+
1
2 ← αtp

t + (1− αt)ft+
1
2

12 pt+1 ← SWAPk(p
t+1

2 )

5 REGRET ANALYSIS

Based on the decomposable form of the log-loss (5), the regret
of the OFDE algorithm can be expressed as a telescopic sum
of two separate components, namely, a “parametric” regret
with fixed structure and varying parameters, and a “structural”
regret, with fixed parameters and varying structure. Formally,
let (p,θ)1:T = ((p1,θ1), · · · , (pT ,θT )) be the sequence
generated by the algorithm during T rounds. Then,

Rx1:T [(p,θ)1:T ] = Rx1:T (θ1:T ) +Rx1:T (p1:T )

where

Rx1:T (p1:T ) =
T∑

t=1

`(pt,θt,xt)− `(p∗,θt,xt), (6)

Rx1:T (θ1:T ) =

T∑

t=1

`(p∗,θt,xt)− `(p∗,θ∗,xt) (7)

and where (p∗,θ∗) is any minimizer inP (M)×Θm,n of the
cumulative log-loss

∑T
t=1 `(p,θ,x

t). The rest of this section
is devoted to the analysis of each separate part (7) and (6), and
the unification of our results.

5.1 PARAMETRIC REGRET

For the analysis of the parametric regretRx1:T (θ1:T ), we con-
sider the problem of online density estimation problem with the
class of experts ({p},Θm,n), wherep is an arbitrary point inP .
As mentioned above, p can be viewed as a convex combination
p = E[f ] of graphical structures f ∈M. Using the additive
decomposition (5) and the linearity of expectations, we have

Rx1:T (θ1:T ) = E

[
T∑

t=1

`(f ,θt,xt)− `(f ,θ∗,xt)
]

= E

[
ln

T∏

t=1

Pf,θ∗(xt)
Pf,θt(xt)

]
(8)

In light of the closed-form expression (1), the logarithmic term
inside the expectation in (8) can be reformulated as

ln
T∏

t=1

Pf,θ∗(xt)
Pf,θt(xt)

=
n∑

i=1

ln
θ∗i (x

1:T
i )

θ1:Ti (x1:Ti )
+

∑

(i,j)∈F
ln

θ∗ij(x
1:T
ij )

θ1:Tij (x1:Tij )
+
∑

(i,j)∈F
ln
θ1:Ti (x1:Ti )

θ∗i (x
1:T
i )

θ1:Tj (x1:Tj )

θ∗j (x
1:T
j )

(9)

where

θ∗i (x
1:t
i ) =

t∏

τ=1

θ∗i (x
τ
i ), θ1:ti (x1:ti ) =

t∏

τ=1

θτi (xτi )

θ∗ij(x
1:t
ij ) =

t∏

τ=1

θ∗ij(x
τ
i , x

τ
j ), θ1:tij (x1:tij ) =

t∏

τ=1

θτij(x
τ
i , x

τ
j )

We may observe that (9) is essentially a composition of local
regrets defined over univariate density estimators θ1:Ti (x1:Ti )
and bivariate density estimators θ1:Tij (x1:Tij ). Notably, for each
edge (i, j) ∈ F , the regret of the bivariate estimator θ1:Tij (x1:Tij )
is compensated by the relative gains of the univariate estimators
θ1:Ti (x1:Ti ) and θ1:Tj (x1:Tj ). Such a decomposition motivates
the use of well-known Bayesian mixtures with Dirichlet priors
for specifying the estimators. We focus here on symmetric
Dirichlet priors, given by

pµ(λ) =
Γ(mµ)

Γ(µ)m

m∏

v=1

(λ(v))µ−1

where λ is a vector in them-dimensional probability simplex,
Γ(z) =

∫∞
0
tz−1e−tdt is the gamma function, and µ ∈ [0,1]

is a hyperparameter. The corresponding Bayesian mixture
λ(x1:t) for the sequence x1:t = (x1, · · · , xt) is given by

∫ t∏

τ=1

Pλ(xτ)pµ(λ)dλ =
Γ(mµ)

Γ(µ)m

∏m
v=1 Γ(tv + µ)

Γ(t+mµ)
(10)

where tv is the number of v’s in x1:t. Thus, by applying (10)
withµ = 1/2 to the estimators θti(x

1:t
i ) and θ1:tij (x1:tij ), we derive

the update rules specified by Lines 6-7 of the OFDE algorithm.
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Before deriving a bound for the parametric regret (7), we
present two useful double inequalities for log-gamma functions,
summarized in the next lemma.

Lemma 1. Letm be a positive integer. Then for any t > 0,

− ln
√

2 ≤ ln Γ

(
t+

1

2

)
− t ln t+ t− ln

√
2π ≤ 0 (11)

0 ≤ ln Γ
(
t+

m

2

)
− ln Γ

(
t+

1

2

)
− m−1

2
ln t ≤ o(1) (12)

Proof. (11) is a reformulation of Lemma 1 in (Watanabe and
Roos, 2015), and the right-hand inequality of (12) follows from
the classical asymptotic relation (see e.g. Qi and Luo (2013)):

lim
t→∞

[
tb−a

Γ(t+ a)

Γ(t+ b)

]
= 1

using a = m/2 and b = 1/2. For the left-hand inequality of
(12), we can observe that

ln
Γ
(
t+ m

2

)

Γ
(
t+ 1

2

) = ln
Γ
(
z + m−1

2

)

Γ (z + k)
+ ln

Γ (z + k)

Γ (z)
(13)

where z = t + 1/2 and k = bm−12 c. Based on the identity
ln Γ(z + k) = ln Γ(z) +

∑k−1
i=0 ln(z + i), the second term in

the right-hand side of (13) is lower bounded by k ln z. So, if
m is odd, then k = m−1

2 , and hence, (13) is lower bounded by
m−1
2 ln t, as desired. Now, ifm is even, then using z′ = t+ k,

we can observe that the first term in the right-hand side of (13)
can be rewritten as the log-ratio of Γ(z′ + 1) to Γ(z′ + 1

2).
Thus, by Wendel’s inequality (1948), we have

1

2
ln z′ ≤ ln

Γ(z′ + 1)

Γ(z′ + 1
2)
≤ 1

2
ln

(
z′ +

1

2

)

By combining the lower bounds k ln z and 1
2 ln z′, it follows

that (13) is lower bounded by (k+ 1
2) ln t = m−1

2 ln t, which
again yields the desired result.

With these inequalities in hand, we can derive “sandwiching”
bounds for the regret of the Jeffreys mixture. Specifically, using
the Bayes mixture (10) with µ = 1/2, the regret expression
ln θ∗(x1:T )− ln θ1:T (x1:T ) is equal to

ln

[
m∏

u=1

(
tu
T

)tu]
+ ln

Γ
(
T + m

2

)
∏m
u=1 Γ

(
tu + 1

2

) +Cm (14)

where Cm = m ln Γ(12)− ln Γ(m2 ). By coupling the double
inequalities (11) and (12), we can deduce that

− ln
√

2 ≤ ln Γ
(
T +

m

2

)
+ T − T lnT

− m− 1

2
lnT − ln

√
2π ≤ o(1)

Similarly, using the double inequality (11) and summing over
m values, we can infer that

−m ln
√

2 ≤ ln

m∏

u=1

Γ

(
tu +

1

2

)
−

m∑

u=1

tu ln tu

+ T −m ln
√

2π ≤ 0

Now, using the fact that the first term in (14) is equal to∑m
u=1 tu ln tu − T lnT , we can combine the above two

double inequalities to derive the sandwiching bounds:

− ln
√

2 ≤ ln
θ∗(x1:T )

θ1:T (x1:T )
− m− 1

2
ln
T

2π
−Cm

≤m ln
√

2 + o(1) (15)

Unsurprisingly, the right-hand inequality of (15) coincides with
the regret bound of the Jeffreys mixture established by Xie and
Barron (2000). As shown below, the left-hand inequality of (15)
will also prove useful for bounding the regret expression (9).

Lemma 2. The parametric regret Rx1:T(θ1:T ) of the OFDE
algorithm is upper bounded by

n(m−1) + (n−1)(m−1)2

2
ln
T

2π
+Cm,n + o(m2n)

where Cm,n = nCm + (n− 1)(Cm2 − 2Cm).

Proof. As specified by Equality (8), any upper bound on
the minimax regret of (9) is an upper bound on Rx1:T(θ1:T ).
Based on this observation, consider the first term of (9),
given by

∑n
i=1 ln[θ∗i (x

1:T
i )/θ1:Ti (x1:Ti )]. Using the right-hand

inequality of (15) and summing over n nodes, this term is
upper bounded by

n(m− 1)

2
ln
T

2π
+ nCm +mn ln

√
2 + o(n)

Clearly, a similar strategy can be applied to the second term∑
(i,j)∈F ln[θ∗ij(x

1:T
ij )/θ1:Tij (x1:Tij )] of (9). Since |F | ≤ n− 1,

this term is upper bounded by

(n−1)(m2−1)

2
ln
T

2π
+ (n−1)Cm2 + (n−1)m2ln

√
2 + o(n)

Finally, the third term of (9) can be reformulated as a sum over
each (i, j) ∈ F of two components: ln[θ1:Ti (x1:Ti )/θ∗i (x

1:T
i )]

and ln[θ1:Tj (x1:Tj )/θ∗j (x
1:T
j )]. By applying the left-hand side

inequality of (15) to each component, and summing over at
most n− 1 edges, this term is upper bounded by

−(n−1)(m−1) ln
T

2π
−2(n−1)Cm+2(n−1) ln

√
2

By combining the above three bounds, rearranging terms, and
taking into account the fact that [(n−1)(m2 +2)+mn] ln

√
2

is in o(m2n) (form ≥ 2), we get the desired result.
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In the binomial case (m = 2), it is easy to check that C2,n =
n lnπ. By reporting this result into Lemma 2, we may derive
for binary Markov forests a parametric regret bound of the form:

Rx1:T(θ1:T ) ≤
(
n− 1

2

)
lnT + o(n) (16)

5.2 STRUCTURAL REGRET

Before deriving a bound for the structural part of the regret, we
first examine some analytic properties of the loss function (5),
specified as an affine function of the predicted structure.

Lemma 3. Given a class of modelsM ∈ {Fm,n,Tm,n}, let
θ1:T be the sequence of parameters in Θm,n generated by the
OFDE algorithm on the sequence of outcomes x1:T . Then, for
any t ∈ [T ], any p,q ∈ P (M), and any x ∈ X ,

∥∥φt(x)
∥∥
∞ ≤ ln

(
T

2
+
m2

4

)

‖p− q‖1 ≤ 2(n− 1)

Proof. For the first property, consider two values u, v ∈ [m].
We may observe that φ1ij(u, v) = 0 < ln(T/2 + m2

/4), for
m ≥ 2. Furthermore, using the Jeffreys update rule, we have

φt+1
ij (u, v) = ln

(tu + 1/2)(tv + 1/2)

(t+m/2)2
+ ln

t+m2
/2

tuv + 1/2

≤ ln
1

4
+ ln

t+m2
/2

tuv + 1/2
≤ ln

(
T

2
+
m2

4

)

where the first inequality follows from the fact that the
maximizer of (tu + 1/2)(tv + 1/2) subject to the constraint
tu + tv ≤ t is given by tu = tv = t

2 . Concerning the second
property, recall that the dimension ofP (M) is n−1, which im-
plies that ‖p‖1 ≤ n−1 for all p ∈ P (M). This, together with
the fact that ‖p− q‖1 ≤ ‖p‖1 + ‖q‖1, implies the result.

Based on these properties, we derive a regret bound for
the structural part of the OFDE algorithm by analyzing the
update rules in Lines 10-12. Specifically, the expression (6)
is decomposed into the telescopic sum:

Rx1:T (p1:T ) ≤
T∑

t=1

〈pt,`t〉 − 〈pt+1
2 ,`t〉 (17)

+
T∑

t=1

〈pt+1
2 ,`t〉 − 〈ft+1

2 ,`t〉 (18)

+

T∑

t=1

〈ft+1
2 ,`t〉 − 〈p∗,`t〉 (19)

where `t is used here as a shorthand of φt(xt). Recall
that each point pt in the sequence p1:T includes at most k
forests. So, the difference (17) captures the regret of the OFDE
algorithm with respect to its unbounded version, where the
swap rounding step at Line 12 is omitted.

Lemma 4. The OFDE algorithm has no regret with respect to
its unbounded version:

∑T
t=1〈pt,`t〉 − 〈pt+

1
2 ,`t〉 = 0.

Proof. Let p̃1:T be the sequence of points given by the un-
bounded version of OFDE, that is, p̃1 = p1 and p̃t+1 = αtp̃

t+
(1− αt)ft+

1
2 for each t ∈ [T ]. We prove that E[pt] = pt+

1
2

by induction on t ∈ [T ]. The case t = 1 follows from
p1 = p̃1. Suppose by induction hypothesis that E[pt] = p̃t.
Using the SWAP algorithm, E[pt+1] = αtp

t + (1− αt)ft+
1
2 .

Furthermore, by induction hypothesis, we also know that
E[αtp

t+ (1−αt)ft+
1
2 ] = αtE[pt] + (1−αt)ft+

1
2 = p̃t+1.

Since E[E[pt+1]] = E[pt+1], it follows that E[pt+1] = p̃t+1,
as desired. Based on this invariant, the result follows from
the linearity of expectations:

∑T
t=1〈E[pt],`t〉 − 〈pt+1

2 ,`t〉
=
∑T
t=1E〈pt+

1
2 − pt+1

2 ,`t〉 = 0.

With this result in hand, the structural regret of the OFDE
algorithm is reduced to the sum of (18) and (19). Using appro-
priate choices for the hyperparameters αt and βt we can derive
sublinear regret bounds in both the horizon-dependent setting
(where T is known) and the horizon-independent setting.

Lemma 5. Let γ = ln(T/2 + m2
/4). The structural regret

Rx1:T (p1:T ) of the OFDE algorithm is bounded by

• n2γ
√

2T in the horizon-dependent case, using
0 < αt ≤ 1

2
√
2t

and βt = 1
γn

√
2/t;

• n2(γ+1)2
√

2T in the horizon-independent case, using
0 < αt ≤ 1

4
√
2t

and βt = 1
n

√
2/t.

Proof. Consider the regret expression (18), and letαt = α′/
√
t.

Using the specification of pt+
1
2 given at Line 11, we get

T∑

t=1

〈pt+1
2−ft+1

2 ,`t〉 =
T∑

t=1

αt〈pt−ft+
1
2 ,`t〉

≤ 2(n−1)γ

T∑

t=1

αt ≤ 4(n−1)γα′
√
T

where the first inequality follows from Hölder’s inequality
〈pt−ft+1

2 ,`t〉 ≤ ‖pt−ft+1
2‖1‖`t‖∞, and the application of

Lemma 3. The last inequality follows from
∑T
t=1

1/
√
t ≤ 2

√
T .

Now, observe that (19) is the regret of the FPL strategy. Let
βt = β′/

√
t. By applying Theorem 3.3 in (Kalai and Vempala,

2005), we can derive that

T∑

t=1

〈ft+1
2−p∗,`t〉 ≤ 2β′RA

√
T + D

β′

√
T

≤ (n− 1)n2γ2β′
√
T + 2(n−1)

β′

√
T

using the facts that R = maxt∈[T ]〈ft+
1
2 ,`t〉 ≤ 2(n − 1)γ

from Hölder inequality, A = maxt∈[T ] ‖`t‖1 ≤ γn2/2, and
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D = maxt∈[T ] ‖ft+
1
2 −ft−1

2‖1 ≤ 2(n− 1). Combining the
derived bounds for (18) and (19), and rearranging, yields

Rx1:T (p1:T ) ≤ (n− 1)
√
T

(
4γα′ + n2γ2β′ +

2

β′

)

In the horizon-dependent case, we can take β′ =
√
2/γn to

derive thatRx1:T (p1:T ) ≤ γ(n− 1)(4α′ + n
√

2)
√
T , which

is bounded by n2γ
√

2T for α′ ≤ 1/2
√
2. In the horizon-

independent case, γ is unknown. So, using β′ =
√
2/n, we

get that Rx1:T (p1:T ) ≤ (n− 1)[4γα′ + (n/
√
2)(γ2 + 1)]

√
T ,

which is bounded by n2(γ + 1)2
√

2T for α′ ≤ 1/4
√
2.

5.3 MAIN RESULTS

We have now all ingredients in hand to prove the Hannan-
consistency of our online learning algorithm. The next theorem
is obtained by coupling Lemma 2 with Lemma 5. The corollary
is simply derived by replacing the bound in Lemma 2 with (16).

Theorem 2. For the classes of Markov forests Fm,n
and Markov trees Tm,n, there exists an online density
estimation algorithm achieving a minimax regret in
O(m2n lnT+n2 lnT

√
T) in the horizon-dependent case, and

O(m2n lnT +n2(lnT)2
√
T) in the horizon-independent case.

Corollary 1. For the classes of binary Markov forests F2,n

and Markov trees T2,n, there exists an online density estimation
algorithm that attains (in the horizon-dependent case) a
minimax regret of n2 ln(T2 + 1)

√
2T + (n− 1

2) lnT + o(n).

To conclude the theoretical part of this study, recall that
the competitor used in both parts (6) and (7) of the regret
analysis is an expert in (P (M),Θm,n). As mentioned
above, such experts are tree-structured mixtures sharing the
same parameters, which predict according to the probability
distribution (3). As stated in Lemma 2, the parametric
regret Rx1:T (θ1:T ) of the OFDE algorithm with respect to
these experts is in O(m2n lnT). Since the regret bounds in
Lemma 5 also hold for these competitors, it follows that OFDE
is Hannan-consistent with respect to tree-structured mixtures.

6 EXPERIMENTS

In order to empirically evaluate our algorithm, we performed
simulations on 4 publicly available datasets1, listed in Table 1.
Though all these datasets are binary-valued, they differ in the
number of variables and the number of instances.

Our experimental objective was to compare the OFDE algorithm
with respect to batch learning algorithms which have the benefit
of hindsight for the train set. To this end, we used the Chow-Liu
(CL) algorithm (Chow and Liu, 1968) that learns a Markov
tree, and the Chow-Liu with Thresholding (CLT) algorithm
(Tan et al., 2011), that learns a Markov forest by pruning the

1alchemy.cs.washington.edu/papers/davis10a/

Dataset Train set Tune set Test set Vars (n)
Abalone 3,134 417 626 31
Covertype 30,000 4,000 6,000 84
KDDCup 2000 180,092 19,907 34,955 64
MSNBC 291,326 38,843 58,265 17

Table 1: Dataset Characteristics.

Chow-Liu tree. The CL and OFDE algorithms were trained
without using the tune set. As CLT relies on a user-supplied
threshold parameter ε ∈ (0,1), we performed experiments
using several values {1/4, 1/2, 3/4} for this parameter and kept in
our results the best choice of εmeasured on the tune set. In our
implementation of CLT, we used a slight refinement of the origi-
nal pruning rule: any edge (i, j) for which the empirical mutual
information is lower than n−ε is removed from the tree. Our
OFDE algorithm was trained with both reference classes F2,n

and T2,n. Here, we denote by OFDEF (resp. OFDET ) the instan-
tiation of OFDE with Markov forests (resp. Markov trees). Both
instances of OFDE were trained under the horizon-independent
setting, using k = lnn, αt = 1

4
√
2t

, and βt = 1
n

√
2/t.

The batch algorithms CL and CLT were trained on the whole
train set, and their generalization performance was measured
using the average log-loss evaluated on the test set. For
the online learners OFDEF and OFDET , the instances were
revealed only one at a time and, at the end of each iteration, the
performance was measured by evaluating the average log-loss
on the test set. The sequence of observations was generated
by simply listing the instances of the train set.

The results, averaged over 10 experiments per dataset, are re-
ported in Figure 2. Unsurprisingly, the performance of OFDET
is generally better than OFDEF , since the batch tree learner
CL outperforms its forest variant CLT. Yet, it is apparent that
OFDET and OFDEF respectively converge to the estimations of
CL and CLT. The convergence rates are particularly remarkable
for the datasets Covertype, KDDCup 2000, and MSNBC,
where a logarithmic scale is used for the number of iterations.

Concerning runtimes, the three algorithms were implemented
in C++ and tested on a Quad-core Intel XEON X5550. For all
datasets, the per-round runtime of OFDE (using forests or trees)
is less than 3 ms. This indicates that OFDE can be used as prac-
tical alternative to CL(T) for handling streaming applications.

7 DISCUSSION

As a fundamental result in universal prediction, it is known that
the optimal solution achieving minimax regret for any classM
of discrete probabilistic models is obtained by the normalized
maximum likelihood strategy (Shtarkov, 1987). Unfortunately,
for this optimal strategy, the time horizon T must be known
in advance, and the computation of the log-loss at each round
t ∈ [T ] requires the evaluation of exponentially many marginal-
ization terms. Thus, one of the key challenges in online density
estimation is to devise horizon-independent strategies that pro-
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Figure 2: Comparison of OFDET and OFDEF with CL and CLT on the four datasets.

vide a good compromise between minimax optimality and
computational complexity. Several easily implementable nearly
optimal strategies have been proposed for unidimensional prob-
abilistic models, including binomial and multinomial families
(Freund, 1996; Xie and Barron, 2000; Watanabe and Roos,
2015), and, more generally, univariate exponential families
(Takimoto and Warmuth, 2000; Azoury and Warmuth, 2001;
Kotłowski and Grünwald, 2011). Much less is known, how-
ever, about multidimensional families, especially the classes of
graphical models characterized by multiple interdependencies
between variables. A notable exception is the work by Bauer
et al. (1997) for sequentially predicting the parameters of a
Bayesian network. Yet, the target network structure is known in
advance. To our knowledge, the present paper is one of the first
studies that investigates both structural and parametric aspects
of graphical models in online density estimation.

By considering classes of experts defined over varying
structures, our study has intimate connections with online
combinatorial optimization, a topic of online learning where
the reference classes are combinatorial spaces. Several Hannan-
consistent algorithms have been proposed in this setting,
including the Follow the Perturbed Leader (FPL) strategy (Han-
nan, 1957; Kalai and Vempala, 2005), and the Online Mirror
Descent (OMD) strategy (Koolen et al., 2010; Audibert et al.,

2011; Rajkumar and Agarwal, 2014). Though OMD is known
to achieve better regret bounds than FPL, it relies on a projection
step performed at each iteration, in order to maintain the current
estimate in the convex hull of the combinatorial space. The com-
putational complexity of this projection step is typically much
worse than the cost of linear optimization, especially when the
combinatorial space is a matroid. The FPL strategy, advocated
in this study, provides a reasonable compromise between opti-
mality and computational complexity. Yet, alternative strategies
can be devised in our setting such as, for example, online
Franck-Wolfe optimization methods (Hazan and Kale, 2012).

A natural perspective of research that emerges from our study
is to devise lower bounds for the minimax regret of forest
density estimators. In a related setting, Kveton et al. (2014)
have recently shown that such lower bounds are essentially
logarithmic in T for the reference class of partition matroids.
We conjecture that similar bounds holds for graphical matroids,
and more generally for the classes Fm,n and Tm,n. Finally,
our work is also related to mixtures of trees (Meila and Jordan,
2000; Kumar and Koller, 2009). To this point, we have shown
that OFDE is Hannan-consistent with mixtures of forests
(or trees) sharing the same parameters. An interesting open
question is to determine whether arbitrary mixtures of trees
are learnable in the online density estimation setting.
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Abstract

Collective matrix factorization (CMF) is a pop-
ular technique to improve the overall factoriza-
tion quality of multiple matrices presuming they
share the same latent factor. However, it suf-
fers from performance degeneration when this
assumption fails, an effect called negative trans-
fer (n.t.). Although the effect is widely admitted,
its theoretical nature remains a mystery to date.

This paper presents a first theoretical understand-
ing of n.t. in theory. Under the statistical mini-
max framework, we derive lower bounds for the
CMF estimator and gain two insights. First, the
n.t. effect can be explained as the rise of a bias
term in the standard lower bound, which depends
only on the structure of factor space but neither
the estimator nor samples. Second, the n.t. ef-
fect can be explained as the rise of an dth-root
function on the learning rate, where d is the di-
mension of a Grassmannian containing the sub-
spaces spanned by latent factors. These discover-
ies are also supported in simulation, and suggest
n.t.may be more effectively addressed via model
construction other than model selection.

1 INTRODUCTION

Collective matrix factorization (CMF) is a popular tech-
nique to factorize multiple matrices in hope of improving
their overall factorization quality (e.g. [7, 23, 17, 11, 16,
2, 12, 3, 21, 26]). The key assumption of CMF is that all
matrices share the same low-rank factor, under which its es-
timator proves to be consistent [5]. However, when this as-
sumption fails, CMF is known to suffer from performance
degeneration – an effect called negative transfer. Several
algorithmic solutions have been proposed, which alterna-
tively assume different matrix factors are drawn from the
same distribution [24, 1] or partially shared [10].

Although negative transfer has been long accused for caus-
ing the performance degeneration, the theoretical under-
standing on its nature appears surprisingly scarce, i.e. no
study was done to justify its existence or how it may hurt
CMF. What can we say about negative transfer in theory?
This is the question we aim to address in the paper.

Our investigation is performed under the mini-max frame-
work in statistical decision theory. We first cast CMF into
this framework and design a collective hypothesis testing
problem that captures the negative transfer effect. By re-
ducing the CMF estimation problem to this testing prob-
lem, we manage to derive a lower bound of the CMF es-
timator, through which a new bias term is discovered that
worsens the standard bound. In particular, the bias only
depends on the structure of the factor space, but neither
the choice of estimator nor training samples. This suggests
negative transfer is an intrinsic difficulty of learning, which
may only be resolved at the model construction phase but
neither model selection nor data collection. This is also
supported from another observation that negative transfer
down-weights the contribution of estimation accuracy in
the lower bound.

For better interpretability, we further refine the lower bound
by capturing more problem characteristics. In particular,
we derive a learning rate of Ω(1/|ω| 1d ), where ~ω is the in-
dex set of all matrix observations and d is the dimension of
a Grassmannian containing the subspaces spanned by latent
factors. Pessimistically, this rate is dth-root slower than the
standard rate Ω(1/|ω|) where negative transfer does not ex-
ist. This discovery is also supported in our simulation.

The rest of this paper is organized as follows: the notations
are introduced in section two; our primary lower bound is
presented in section three, and the refined bound is pre-
sented in section four; proofs and remarks are given in sec-
tion five, followed by simulation in section six and conclu-
sions in section seven.
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2 PRELIMINARIES

In this section we introduce the major notations, concepts
and assumptions used in analysis. For the ease of presen-
tation, we focus on two matrix factorization, but all discus-
sions are readily generalizable.

Matrix Notations. For a matrix M , let Mij be its entry at
row i and column j, let [M ] be its column space, ||M || be
its Frobenius norm 1 and MT be its transpose. Given two
matricesM,M ′ of the same column size, let ~M = [M,M ′]
be their column concatenation. Let I be an identify matrix
properly sized by the context.

Sets. Let Mn·
k be a set of rank-k matrices with row dimen-

sion n and arbitrary column dimension, and Mn,p
k ⊆ Mn·

k

be its subset with column dimension p. Let Gnk be the
Grassmannian defined as the set of k-dimensional sub-
spaces in Rn (a metric will be equipped later). Note each
element in Gnk is a subspace. Let Snk be the set of orthonor-
mal matrices in Rk×n.

Metrics. Let d be the metric on Mn,p
k such that

d(M,M ′) = ||M −M ′||, (1)

for all M,M ′ ∈ Mn,p
k . It will be used for any choice of p.

Let ρ be the metric on Gnk such that for any G,G′ ∈ Gnk ,

ρ(G,G′) = ||PG − PG′ ||, (2)

where PG is the orthogonal projection matrix onto G. It is
defined as PG = DDT for any basis D ∈ Snk of G. See [4,
Section 2.5] for more explanations.

Factorization Model. We focus on full-rank matrix factor-
ization, which is typically assumed in CMF (e.g. [17, 5]).
The factorization model is generally denoted as M = DA,
where D is called the factor and A is called the loading.
For the ease of presentation, we assume D ∈ Snk but all
discussions are generalizable. (See Remark 11 for a jus-
tification.) In general the loading will not be specified in
analysis, as long as it is a properly sized full rank matrix.
All matrices are assumed bounded.

The Shared-Factor Assumption of CMF. The CMF as-
sumption can be stated as: any input M,M ′ ∈ Mn·

k ad-
mit factorization M = DA and M ′ = D′A′ such that
[D] = [D′]. Note although CMF assumes D = D′, in
essence it only requires [D] = [D′]. Also note [D] ∈ Gnk .

Probability Notations. We mainly use two styles of prob-
ability notations with different focuses: 1) notation Pr{·}
focuses on the uncertainty over random samples, e.g. in
section 3 where we prove the mini-max bound randomized
over samples; 2) notation P focuses on treating the prob-
ability as a subject of interest, e.g. in section 4 where we

1This notation should not cause confusion since we only con-
sider Frobenius norm in this paper.

pick a finite set of probabilities for testing which one gen-
erates the random sample.

Sampling Model. In many applications M is not fully ob-
served (e.g. matrix completion [17]). Let ω be the index set
of observed entries and Mω be the input matrix. Assume ω
is randomly sampled. Given a concatenated matrix ~M , we
use ~ω to denote its index set of observations (induced from
the observations of each matrix).

Generative Model. The matrix generative model is needed
for refining the mini-max bound, but not for modeling neg-
ative transfer. In our analysis, only one generative model
needs to be defined on the concatenated matrix ~M .

Suppose ~M ∈Mn,~p
k . Let P be a set of probabilities defined

on Mn,~p
k such that each P ∈ P is a matrix-variate normal

distribution (e.g. [6, Chapter 2]),

PM̄ ( ~M) = N (M̄, σ2I, σ2I′), (3)

with mean matrix M̄ and covariance matrices σ2I (among
rows) and σ2I′ (among columns). It follows

PM̄ ( ~M) =
∏

(i,j)
P̃M̄ ( ~Mij), (4)

where P̃M̄ ( ~Mij) = Ñ (M̄ij , σ
2) is a univariate normal dis-

tribution and the product is taken over all indices of ~M .
We note in passing PM̄ is similar to the probabilistic matrix
factorization model assumed in [15, Equation 1]. Define

PM̄ ( ~M~ω) =
∏

(i,j)∈~ω
P̃M̄ ( ~Mij). (5)

Mapping. Since each M admits a unique [D] in factoriza-
tion M=DA (Remark 12), we have a mapping θ : Mn·

k →
Gnk such that θ(M) = [D]. This is the mapping from a
rank-k matrix with n rows to its column space in Rn. Note
θ applies to any column dimension.

CMF Estimator. Recall ~M~ω is the random observation of
two matrices. Define CMF estimator as θ̂ : { ~M~ω} → Gnk .
Note it realizes the shared-factor assumption by mapping
two matrix observations into a single subspace. Write θ̂~ω
for θ̂( ~M~ω). The quality of θ̂ is evaluated by

`~ω(θ̂| ~M) =
1

2

[
ρ(θ̂~ω, θ(M)) + ρ(θ̂~ω, θ(M

′))
]
. (6)

Define the maximum risk of any CMF estimator as

M(θ̂) = sup ~ME~ω`~ω(θ̂| ~M), (7)

where expectation Eω is taken over the randomness of ~M~ω.

It was noted when the shared-factor assumption is satisfied,
CMF is equivalent to factorizing on a single matrix ~M [10].

Packing. This notion is used to define the following hy-
pothesis testing problem and widely used in proof. For any
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set X equipped with a metric ρX , let {xv}v∈V be an arbi-
trary subset of X indexed by a set V . For any δ > 0, we
say this subset is a δ-packing of X with respect to ρX if
ρX (xv, xv′) ≥ δ whenever v 6= v′.

Collective Hypothesis Testing. To lower bound M(θ̂), we
employ the classic estimation-to-testing reduction method
(e.g. [22]). To capture the negative transfer effect, we ad-
ditionally design a collective hypothesis testing problem.

Let {Gv}v∈V be a 2δ-packing of Gnk indexed by a finite set
V , and V, V ′ be two random variables taking values v, v′ ∈
V respectively. Our testing problem is stated as follows:

Step 1: choose V, V ′ (with replacement) from V indepen-
dently and uniformly at random.

Step 2: conditioned on (V = v, V ′ = v′), randomly choose
(D,D′) ∈ Snk × Snk satisfying ([D], [D′]) = (Gv,Gv′).

Step 3: generate (M,M ′) = (DA,D′A′) with some ran-
dom A,A′; then generate observation ~M~ω from ~M .

Step 4: apply a collective testing function V̂ : { ~M~ω} → V
defined as 2

V̂ ( ~M~ω) := arg minv∈Vρ(θ̂( ~M~ω),Gv). (8)

To our knowledge, the collective hypothesis testing prob-
lem, albeit simple, is the first attempt to theoretically model
the negative transfer effect in CMF. It also allows incorpo-
ration of richer information such as prior distribution, and
can be applied to other problems besides CMF, as will be
exemplified in later discussions.

3 A PRIMARY LOWER BOUND

The following proposition presents a primary lower bound,
which reveals our main idea and insights.

Proposition 1. Suppose Gnk admits a 2δ-packing indexed
by a finite set V , and V is a uniform random variable on V .
Then, any CMF estimator θ̂ satisfies

M(θ̂) ≥ δ

2
·
(
Cδ +

1

|V|Pr{V̂ ( ~M~ω) 6= V }
)
, (9)

where Cδ = 1 − |V|−1 and the probability is defined over
the random choice of V and ~M~ω

3.

Our main idea of proving the proposition is to first reduce
the estimation problem into the collective hypothesis test-
ing problem. Then, if two matrices are generated from dif-
ferent subspaces (i.e. θ(M) 6= θ(M ′)), V̂ is guaranteed to
make mistake on at least one matrix by a geometrical ar-
gument in Figure 1. This inevitable mistake gives rise to
bias Cδ in the lower bound, which does not depend on the

2Note ~M~ω depends on v, v′ in Steps 3 and 4.
3Both V and V̂ ( ~M~ω) are random variables on V .
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Figure 1: When two matrices are generated from different
subspaces, no CMF estimator θ̂ can simultaneously fall into
the two δ-balls centered at θ(M2) and θ(M2) respectively.
As a result, the testing function V̂ is guaranteed to make a
mistake on at least one matrix.

choice of estimator nor observations. On the other hand,
the testing error Pr{V̂ ( ~M~ω) 6= V } is obtained by standard
arguments, conditioned on the case when two matrices are
indeed generated from the same subspace.

Next, we discuss the implications of Proposition 1. For
comparison, consider the case when negative transfer does
not exist (i.e. V = V ′). In this case, by Remark 13 we have

M(θ̂) ≥ δ · Pr{V̂ ( ~M~ω) 6= V }. (10)

Comparing the lower bounds in (9) and (10), we see neg-
ative transfer has caused two changes: 1) introduce a bias
term Cδ; 2) down-weight the testing error by 1/(2|V|). In
particular, the bias term depends merely on the structure of
Gnk , pessimistically suggesting that CMF may never suc-
ceed in a mini-max sense, disregarding the choice of es-
timator θ̂ or observation ~M~ω . Combining both aspects, it
seems finding a good factor space may be more important
than finding a good estimator or sample for mitigating the
negative transfer effect.

When negative transfer does not exist, we may obtain an-
other indirect implication by comparing CMF with inde-
pendent matrix factorization (IMF) 4. To elaborate the lat-
ter, let θ̂s : {Mω} → Gnk be an IMF estimator and define
its maximum risk as

Ms(θ̂s) = supME ρ(θ̂s(Mω), θ(M)), (11)

where the expectation is taken over the randomness of ω.
Let V̂s : {Mω} → V be any testing function on a single
matrix, which possibly induces V̂ . By standard mini-max
arguments it is easy to verify that

Ms(θ̂s) ≥ δ · Pr{V̂s(Mω) 6= V }. (12)

A comparison between the lower bounds in (10) and (12)
suggests CMF estimator performs no worse than IMF esti-
mator on at least one matrix. The reason is V̂ ( ~M~ω) 6= V
implies inclusively either V̂s(Mω) 6= V or V̂s(M ′ω′) 6= V .

4This is the technique that separately factorizes each matrix
based on its own observations.
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(Otherwise, V̂ would not make the mistake if, say, it is sim-
ply defined as the random choice of one V̂s.) Taking Mw

for instance, we thus have

Pr{V̂ ( ~M~ω) 6= V } ≤ Pr{V̂s(Mω) 6= V }. (13)

Further detailing (13) is beyond the scope of this paper.
Nevertheless, it is not difficult to conjecture the inequality
holds typically when M has insufficient observation (thus
CMF improves over IMF on at least one matrix) and the
equality holds otherwise. It should be noted even without
negative transfer, our lower bound does not suggest CMF
always improves over IMF. We note this is neither con-
cluded from the upper bound analysis of CMF assuming
no negative transfer [5].

Next we present two extensions of the proposition.

3.1 A BOUND WITH PRIOR

In [16], authors assumed a prior distribution over the fac-
tor space. A natural question for us is how such intrinsic
prior may affect the negative transfer effect. For simplicity
assume all sets are measurable.

Let ν be a probability measure defined on the factor space
Snk , as assumed in [16]. It naturally induces a probability
measure µ over Gnk such that for any G ∈ Gnk ,

µ(G) :=

∫

[D]=G
1 dν(D). (14)

Define µ̃ := µ/N as a normalized probability measure with
proper choice of N . We can replace Step 1 in the collective
hypothesis testing problem with

Step 1∗: choose both V, V ′ (with replacement) by µ̃(GV ).

By the same arguments for Proposition 1, and now

Pr{V = V ′} =
∑

v∈V
µ̃2(Gv), (15)

it is easy to verify the following result.

Corollary 2. Suppose Gnk admits a 2δ-packing indexed by
a finite set V . Let V be a uniform random variable on V .
Replace Step 1 in collective hypothesis testing with Step 1∗.
Then, any CMF estimator θ̂ satisfies

M(θ̂) ≥ δ

2
·
(
C̃δ + ÑδPr{V̂ ( ~M~ω) 6= V }

)
, (16)

where Ñδ =
∑
v∈V µ̃

2(Gv), C̃δ = 1 − Ñδ , and the proba-
bility is defined over the random choice of ~M~ω and V .

The implication of Corollary 2 is clear: since Ñδ reaches
its minimum when µ̃(GV ) is the same for all choices of
V (by Chebyshev’s sum inequality), resulting in the max-
imum bias C̃δ , we see CMF suffers most negative transfer
when nature chooses V uniformly.

1.5 2 2.5 3 3.5 4 4.5
1.5
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1

Figure 2: A packing of three points, each indexing a gray
square in the figure with its prior µi := µ(Gi), i = 1, 2, 3.
The total area of three squares equals to Ñδ . Clearly, this
area reaches its maximum value 1 when µi = 1 for any i.
This corresponds to the most concentrated prior µ.

On the other hand, a simple geometric argument in Figure
2 shows the more concentrated µ̃ nature uses, the less neg-
ative transfer CMF suffers.

3.2 A BOUND FOR MATRIX RECOVERY

A major use of CMF is for recovering the missing values
of incomplete matrices (e.g. [17]). This section presents
a technique to extend Proposition 1 for the recovery task
under mild conditions. The main strategy is to convert the
recovery error back to ρ(Ĝ,G) using the following variant
of [18, Theorem 2.3].

Lemma 3. Let G,G′ respectively be the column spaces of
any M,M ′ ∈ Mn,p

k . Let sk(M) be the smallest non-zero
singular value of M . Then

ρ(G,G′) ≤
√

2||M −M ′||/sk(M). (17)

For simplicity, we focus on a set M̃n·
k ⊆ Mn·

k whose ma-
trices have their smallest non-zero singular values bounded
away from zero. A similar assumption was made for matrix
recovery in [9, Theorem I.2.].

Let G̃nk ⊆ Gnk be the set induced from M̃n·
k such that for

every G ∈ G̃nk there is an M ∈ M̃n·
k satisfying θ(M) = G.

For a matrix M and a factor D̂ estimated from its observa-
tion Mω , define the recovery error as

erM (D̂) = minA||M − D̂A||2. (18)

This is similar to the reconstructive error in [13, page 1].
Define the recovery loss as

`r|~ω(θ̂| ~M) =
1

2

[
erM (θ̂( ~M~ω)) + erM ′(θ̂( ~M~ω))

]
, (19)

and the maximum risk of any CMF estimator as

M̃r(θ̂) = sup ~M∈M̃n·
k ×M̃n·

k
E~ω`r|~ω(θ̂| ~M). (20)

Our recovery bound is stated as follows.
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Corollary 4. Given a M̃n·
k and its induced G̃nk that admits

a 2δ-packing indexed by a finite set V . Let V be a uniform
random variable on V . Then, there is a c > 0 (depend-
ing on M̃n·

k ) bounded away from zero such that every CMF
estimator θ̂ satisfies

M̃r(θ̂) ≥
δ · c
2
√

2

(
Cδ +

1

|V|Pr{V̂ ( ~M~ω) 6= V }
)
, (21)

where Cδ = 1 − |V|−1 and the probability is defined over
the random choice of ~M~ω and V .

Corollary 4 shows a recovery error bound that maintains
the same order as the estimation error bound.

4 A FINER LOWER BOUND

In this section, we first introduce a few more machinery
used to refine the lower bound in Proposition 1, and then
present the refined bound.

Generalized Fano Method for CMF. The first piece of in-
formation is related to the generalized Fano method in [22,
Lemma 3], which will be the starting point of our proof.

Let I(; ) denote the mutual information between two vari-
ables. The following lemma is our extension of the gener-
alized Fano method for the CMF problem.

Lemma 5. Let {Mv ∈ Mn·
k }v∈V ⊆ P be a collection of

matrices indexed by V such that for any v 6= v′,

ρ(θ(Mv), θ(Mv′)) ≥ 2δ. (22)

Further, suppose

I(V ; ~M~ω) ≤ β, (23)

where V is a uniform random variable on V . Then

max
v,v′∈V

Eω
1

2

(
d(θ̂, θ(Mv)) + d(θ̂, θ(Mv′))

)

≥ δ

2

(
1− β + log 2

|V| log |V|

)
.

(24)

Comparing (24) with the standard bound [22, Lemma 3] 5

δ

2

(
1− β + log 2

log |V|

)
, (25)

our generalization introduces an additional |V| in the de-
nominator, which significantly speeds up the growth of the
lower bound as |V| increases. This coincides with with our
discovery in Proposition 1, and provides a finer implication

5While [22] focused on probability set, we focus on matrix set
to facilitate later application. Nevertheless, our extension is also
applicable on probability set and will give result similar to (24).

of the negative transfer effect. In result we retain the mu-
tual information (instead of relaxing it to KL divergence)
to facilitate later application.

A few things should be clarified about the lemma. First,
it does not require Mv’s to have the same column dimen-
sion. Second, I(V ; ~M~ω) is derived from Pr{v̂( ~M~ω) 6= V }
in Proposition 1 and thus inherits the condition that two
matrices share the same latent factor.

Packing Number. The second piece of information is re-
lated to the packing number on Grassmannian Gnk , which
will be used to bound |V| in Lemma 5.

LetM(Gnk , ρ, δ) be the packing number on Gnk with respect
to metric ρ and radius δ. It is the largest size of V that
indexes an admitted δ-packing on Gnk . Let τ(Gnk ) and d
be the diameter and dimension of Gnk , respectively. The
following result is a variant of [19, Proposition 8].
Lemma 6. There exist universal constants c1, c2 > 0 such
that for any δ ∈ (0, τ(Gnk )],

(c1τ(Gnk )/δ)
d ≤M(Gnk , ρ, δ) ≤ (c2τ(Gnk )/δ)

d
. (26)

Mutual Information. The third piece of information is
related to the mutual information I(V ; ~M~ω) appeared in
Lemma 5, which will be used for deriving its upper bound.

Let Dk` denote KL divergence. Recall the probability no-
tation P introduced in section 2. A classic approach (e.g.
[22, page 428]) to bound I(V ; ~M~ω) is by

I(V ; ~M~ω) ≤ 1

|V|2
∑

v,v′

Dk`(Pv||Pv′). (27)

However, this does not directly apply to our setting since
Pv is not easy to specify. The following technique is from
[8, Equation 110], which addresses the problem.
Lemma 7. Let T ( ~M~ω) be any side information. Then

I(V ; ~M~ω) ≤ I(V ; ~M~ω|T ( ~M~ω)). (28)

Write ~T for T ( ~M~ω). We notice

I(V ; ~M~ω|~T ) ≤
∑
v,v′ EDk`(Pv(·|~T )||Pv′(·|~T ))

|V|2 , (29)

where expectation E is taken over the randomness of ~T .

KL Divergence. The last piece of information is related to
KL divergence, which is used to specify the bound in (29).

Recall the generative model introduced in section 2. For a
matrix ~M and its observation index ~ω, let Wω be a matrix
of the same size as ~M such thatWij|~ω = 1 if (i, j) ∈ ~ω and
Wij|~ω = 0 otherwise. Let ◦ denote the Hadamard product
between matrices. We remark the following result.

Lemma 8. For any M̄, M̄ ′ ∈Mn,~p
k and ~ω,

Dk`(PM̄ |~ω||PM̄ ′|~ω) =
1

2σ4
||W~ω ◦ (M̄ − M̄ ′)||2. (30)
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4.1 THE FINER BOUND

Recall the factorization model M = DA and A is ran-
domly generated. Let ΣA = E||A||2. Our finer bound is
based on the setting of Proposition 1 and stated as follows.

Theorem 9. Every CMF estimator θ̂ satisfies

M(θ̂) ≥ c · τ(Gnk )1−1/d(|~ω|ΣA/σ4)−1/d, (31)

where c > 0 depends on the nature of Gnk and absorbs
lower order terms.

The new lower bound can be interpreted as follows.

• |~ω| : larger observation number |~ω| leads to smaller
lower bound. This makes sense, as more observations
improve the accuracy of testing. However, we see its
impact is significantly restricted by d, resulting in a
learning rate Ω(|~ω|−1/d). Based on (25) and our argu-
ments for the theorem, one can easily derive a learning
rate without negative transfer as Ω(|~ω|−1). Thus we
see negative transfer significantly slows down learn-
ing. This shall not be too surprising, however, since
in Lemma 5 the lower bound has already become lin-
early dependent on |V| (instead of logarithmically)
due to the negative transfer effect.

• d: for simplicity, assume τ(Gnk )|~ω|ΣA/σ4 ≥ 1. Then,
larger d leads to larger lower bound. In particular, a
very large d significantly weakens the impact of other
parameters (except τ(Gnk )) on the lower bound. This
coincides with our discovery in Proposition 1, where
the impact of estimation quality (and now its related
parameters) is down-weighted.

We notice the dimension d = k(n− k) is quadratic to
matrix rank k and reaches its maximum at k = n/2
(and thus the worst bound). It is unclear how to ex-
plain such role of k, but we have another consistent
observation based mainly on combinatoric arguments:
Assume Mn·

k is defined on a finite field of order q
(which is common in problems such as recommenda-
tion system). Then the number of its column spaces
(thus factor spaces) is the q-binomial coefficient

(
n
k

)
q

based on [14]. Clearly, the more subspaces Mn·
k in-

duces, the more difficult estimation/testing will be.
In particular, we notice

(
n
k

)
q

is also a quadratic-style
function of k and reaches its maximum at k = n/2.

• τ(Gnk ) : larger diameter of Gnk leads to larger lower
bound. This makes sense, since a larger hypothesis
set admits a larger packing (see Lemma 6), resulting
in a more challenging testing problem. In addition,
we see the impact of diameter is slightly restricted by
the dimension d of Gnk . Specifically, a large diameter
hurts more when the dimension is high.

• ΣA and σ: we are not particularly interested in these
two terms, but note in passing that larger ΣA or
smaller σ leads to smaller lower bound.

• c : this coefficient arises from the universal constants
in Lemma 6 that depend on the nature of Gnk . Then it
absorbs lower order terms through derivation, but this
shall not affect the order of interested parameters.

5 PROOFS AND REMARKS

Proof of Proposition 1.

Write θ̂ for θ̂( ~M~ω), ~V for (V, V ′) and ~v for (v, v′). Let no-
tation ∨ denote the logical disjunction. Following standard
mini-max arguments, we first have

sup ~ME~ω
[
ρ(θ̂, θ(M)) + ρ(θ̂, θ(M ′))

]

≥ sup ~ME
[
δ 1{ρ(θ̂, θ(M)) ≥ δ ∨ ρ(θ̂, θ(M ′)) ≥ δ}

]

= δ · sup ~MPr{ρ(θ̂, θ(M)) ≥ δ ∨ ρ(θ̂, θ(M ′)) ≥ δ},
(32)

where the inequality is based on the fact that total distance
is greater than δ if any one distance is greater than δ.

Reducing the above estimation problem into the collective
hypothesis testing problem (with a 2δ-packing {θv}v∈V ),
we have

sup ~MPr{ρ(θ̂, θ(M)) ≥ δ ∨ ρ(θ̂, θ(M ′)) ≥ δ}

≥ 1

|V|2
∑

~v

Pr{ρ(θ̂, θv) ≥ δ ∨ ρ(θ̂, θv′) ≥ δ | ~V = ~v},

(33)

where the coefficient is based on the uniform sampling as-
sumption on V so that Pr{~V = ~v} = 1/|V|2.

Now we introduce the negative transfer effect. Consider
two cases v = v′ and v 6= v′. Clearly the second one cap-
tures the violation of the shared-factor assumption. Then

Pr{ρ(θ̂, θv) ≥ δ ∨ ρ(θ̂, θv′) ≥ δ | ~V = ~v}
= Pr{ρ(θ̂, θv) ≥ δ ∨ ρ(θ̂, θv′) ≥ δ | v 6= v′, ~V = ~v}
· Pr{v 6= v′ | ~V = ~v}
+ Pr{ρ(θ̂, θv) ≥ δ ∨ ρ(θ̂, θv′) ≥ δ | v = v′, ~V = ~v}
· Pr{v = v′ | ~V = ~v}

= 1 · Pr{v 6= v′ | ~V = ~v}
+ Pr{ρ(θ̂, θv) ≥ δ ∨ ρ(θ̂, θv′) ≥ δ | v = v′, ~V = ~v}
· Pr{v = v′ | ~V = ~v},

(34)

where the second equality is based on the geometric argu-
ment illustrated in Figure 1, i.e. if v 6= v′, then no θ̂ can be
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simultaneously δ-close to both θv and θv′ , which implies
Pr{ρ(θ̂, θv) ≥ δ ∨ ρ(θ̂, θv′) ≥ δ} = 1.

Putting all above arguments together and in addition: 1)
ρ(θ̂, θvt) ≥ δ as implied by V̂ ( ~M~ω) 6= vt (by the definition
of V̂ ); 2) average over all possible ~v, we have

sup ~ME
[
ρ(θ̂, θ(M)) + ρ(θ̂, θ(M ′))

]

≥ δ
(

Pr{V 6= V ′}+
1

|V|Pr{V̂ ( ~M~ω) 6= V |V = V ′}
)
.

(35)

It remains to simplify the above lower bound. First,
by uniform sampling Pr{V 6=V ′}=1 − |V|−1. Second,
Pr{V̂ 6=V |V=V ′}=Pr{v̂ 6= V }, where the left side prob-
ability is over the randomness of both V, V ′, while the
right side probability is merely over the randomness of V .
Putting all together proves the proposition.

Proof of Corollary 4.

Recall sk(M) is the smallest non-zero singular value of
matrix M . By our assumption c = infM∈M̃n·

k
sk(M) is

positive and bounded away from zero. Combining with
Lemma 3, this implies any M,M ′ ∈ M̃n·

k satisfy

ρ(G,G′) ≤
√

2||M −M ′||/c. (36)

Writing θ̂ := θ̂( ~Mω), this further implies

erM (θ̂) ≥ c · ρ(θ̂, θ(M))/
√

2. (37)

Hence over all ~M ∈ M̃n·
k × M̃n·

k , we have

sup ~ME~ω
[
erM (θ̂) + erM ′(θ̂)

]

≥ c√
2

sup ~ME~ω
[
ρ(θ̂, θ(M)) + ρ(θ̂, θ(M ′))

]
.

(38)

Applying Proposition 1 yields the corollary.

Proof of Lemma 5.

The proof is similar to [22, Lemma 3], with the main dif-
ference that we study a joint estimation problem (instead of
a single one) and apply our own reduction technique.

By assumption {φ(Pv)}v∈V is a 2δ-packing on Gnk . Ap-
plying the arguments in Proposition 1 gives a lower bound

δ

2

(
Cα +

1

|V|Pr{V̂ ( ~M~ω) 6= V }
)
, (39)

where Cα = 1− |V|−1.

Further, following the same arguments in the generalized
Fano method [22, Lemma 3] (in particular, the Fano’s in-
equality and data processing inequality), we have

Pr{V̂ ( ~M~ω) 6= V } ≥ 1− I(V ; ~M~ω) + log 2

log |V| . (40)

Combining both with I(V ; ~M~ω) ≤ β proves the lemma.

Proof of Lemma 6.

LetN(Gnk , ρ, δ) be the covering number of Gnk with respect
to metric ρ and covering radius δ. It is defined as

min{|V| : Gnk admits a δ-cover indexed by V}, (41)

where a δ-cover is a set of points in Gnk such that the union
of their δ-balls contains Gnk . It is stated [19, Proposition 8]
there are universal constants s1, s2 > 0 such that

(s1 ·Dg/δ)
d ≤ N(Gnk , ρ, δ) ≤ (s2 ·Dg/δ)

d. (42)

In addition, it is well-known that (e.g. [25, Equation 1.5]).

N(Gnk , ρ, δ) ≤M(Gnk , ρ, δ) ≤ N(Gnk , ρ, δ/2). (43)

Putting two together we have

(s1 ·Dg/δ)
d ≤M(Gnk , ρ, δ) ≤ (2s2 ·Dg/δ)

d. (44)

Setting c1 = s1 and c2 = 2s2 proves the lemma.

Proof of Lemma 8.

Recall the generative model in section 2, where P = {P}
is a set of probabilities defined on Mn,~p

k . For clarity we first
derive the case when ~M is complete, and its generalization
for ~M~ω naturally follows. Remark the following result.

Remark 10. For any M̄, M̄ ′ ∈Mn,~p
k ,

Dk`(PM̄ (M)||PM̄ ′(M)) =
1

2σ4
||M̄ − M̄ ′||2. (45)

Proof. By the definition of KL divergence,

Dk`(PM̄ ||PM̄ ′) = EPM̄
log (PM̄/PM̄ ′) , (46)

where expectation EPM̄
is taken over PM̄ . Further, by the

definition of matrix-variate normal distribution (e.g. [6]),

PM̄ ( ~M) = exp
(
−||( ~M − M̄ ||2/2σ4

)
/
√

(2π)np. (47)

This implies

log
PM̄
PM̄ ′

= − 1

2σ4
(|| ~M − M̄ ||2 − || ~M − M̄ ′||2). (48)

In addition,

EPM
|| ~M − M̄ ||2 − || ~M − M̄ ′||2

= E
∑

i,j

( ~Mij − M̄ij)
2 − ( ~Mij − M̄ ′ij)2

= E
∑

i,j

2 ~Mij(M̄
′
ij − M̄ij) + M̄2

ij − (M̄ ′ij)
2

=
∑

i,j

2M̄ij(M̄
′
ij − M̄ij) + M̄2

ij − (M̄ ′ij)
2

=
∑

i,j

(M̄ ′ij − M̄ij)
2 = ||M̄ ′ − M̄ ||2.

(49)

Putting all together completes the proof.
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The arguments for Lemma 8 is almost the same as those for
Remark 10, except now we have

PM̄ |~ω( ~M) =
∏

(i,j)∈~ω
P̃M̄ ( ~Mij), (50)

which admits a matrix form (can be easily verified)

PM̄ |~ω( ~M) =
exp

(
− 1

2σ4 ||W~ω ◦ ( ~M − M̄)||2
)

√
(2π)|~ω|

. (51)

Keeping W~ω through the derivation proves the lemma.

Proof of Theorem 9.

The first step is to apply the extended generalized Fano
method (Lemma 5) to derive a lower bound. To do so, we
need to fulfill its two conditions (22) and (23) respectively.

Let { ~Mv ∈ Mn,~p
k }v∈V be a set inducing a 2δ-packing on

Gnk , i.e. ρ(θ( ~Mv), θ( ~Mv′)) ≥ 2δ for any v 6= v′. This
set fulfills (22). Note we have chosen all matrices from
Mn,~p
k , which does not weaken the analysis since this set

can induce the entire Gnk through θ.

It takes more effort to fulfill (23). Recall I(V ; ~M~ω) is based
on the condition that input matrices share the same factor.
Then our problem is equivalent to testing V using a single
matrix ~M randomly drawn from Mn,~p

k . This allows us to
apply the generative model on Mn,~p

k in section 2.

For any ~M ∈ Mn,~p
k , let ~A ∈ Rk×~p be a loading in its

factorization and ~W ∈ Rn×~p be its mask such that ~Wij = 1

if ~Mij is observed and ~Wij = 0 otherwise. We have

I(V ; ~M~ω)

≤ I(V ; ~M~ω| ~A)

≤ E ~A

1

|V|2
∑

v,v′∈V
Dk`(Pv( ~M | ~A)||Pv′( ~M | ~A))

≤ 1

|V|2
∑

v,v′

EDk`(Pv( ~M | ~A)||Pv′( ~M | ~A))

=
1

|V|2
∑

v,v′

E
1

2σ4
|| ~W ◦ (DGv −DGv′ ) ~A||2

≤ 1

|V|2
∑

v,v′

|| ~W ||2
2σ4

||DGv −DGv′ ||2 · E|| ~A||2

≤ 1

|V|2
∑

v,v′

|~ω|
2σ4
· ρ(Gv,Gv′) · Σ ~A

≤ 1

2σ4
|~ω| · τ(Gnk ) · Σ ~A,

(52)

where the first inequality is based on Lemma 7 where we
condition both probabilities on a loading A; the second in-
equality is based on (29); the third inequality is due to the
convexity of E ~A; the first equality is based on Lemma 8;

the fourth inequality is based on simple algebra argument
(see Remark 14), and the fifth inequality is based on an ex-
tended argument of [20, Lemma A.1.2.] (see Remark 15);
the last inequality is by the fact that ρ(Gv,Gv′) ≤ τ(Gnk ).

Till now we have fulfilled both conditions in the general-
ized Fano method described in Lemma 5. Together with
Lemma 6 that bounds |V|, this implies a lower bound

δ

2

(
1− |~ω|τ(Gnk )ΣA/2σ

4 + log 2

d (τ(Gnk )c/δ)
d

log (τ(Gnk )c/δ)

)
. (53)

As a standard strategy, it remains to choose a proper δ so
that the ‘big’ fraction in (53) is upper bounded by 1/2.

We are mainly interested in the order of parameters. First
relax the lower order term log (τ(Gnk )c/δ) ≥ log(2c)
since τ(Gnk ) ≥ 2δ and the constant log 2≥log 1=0. Re-
arranging terms, we wish to choose a δ satisfying

δ ≥
(
cd · d · log 2c · τ(Gnk )d · 2σ4

2|~ω|τ(Gnk )ΣA

)1/d

. (54)

Further, since d = k(n−k) is a positive integer, it is easy to
verify d1/d ≤ 1.45 and (log(2c))1/d ≤ log(2c). Plugging
both in the above lower bound and merging constants and
terms depending on c into c′, we have

δ ≥ c′ · τ(Gnk )1−1/d ·
(
|~ω|ΣA/σ4

)−1/d
. (55)

Plugging this back to the lower bound (53) and merging
constants again proves the theorem.

5.1 REMARKS

Remark 11. Any M,M ′ ∈ Mn·
k admit a joint full-rank

factorization M = QA and M ′ = QA′ for some Q ∈
Rn×k if and only if they admit a joint factorization M =
DB and M ′ = DB′ for some D ∈ Snk .

Proof. A well known fact is that that every subspace of Rn
admits an orthonormal basis (by Gram-Schmidt process).
Thus for one direction, anyQ induces a subspace span(Q),
which admits an orthonormal basis D ∈ Snk . This means
Q = DL for some expressive coefficient matrix L and thus
M = QA = D(LA). The other direction is trivial.

Remark 12. Every M ∈ Mn·
k admits exactly one S ∈ Gnk

such that S = [D] for any D ∈ Snk satisfying M = DA.

Proof. Given any two factorizations M = DA = D′A′

with D,D′ ∈ Snk , to justify the remark it suffices to show
span(D) ⊆ span(D′) and span(D) ⊇ span(D′).

For the first direction, it suffices to find a W ∈ Rk×k such
thatD′W = D. This is easy as (D′)TD′ is invertible since
D′ ∈ Snk . (In fact, we only need D′ to have full column
rank.) Thus one can set W = ((D′)TD′)−1(D′)TD. Sim-
ilar arguments apply for the other direction.
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Remark 13. In Proposition 1, if one always has θ(M) =

θ(M ′), then M(θ̂) ≥ δ · Pr{V̂ ( ~M~ω) 6= V }.

Proof. Condition θ(M) = θ(M ′) implies we can fix V =
V ′ while designing the collective hypothesis testing prob-
lem. This means Pr{V 6= V ′} = 0 and Pr{V = V ′} = 1.
Plugging both into the proof of Proposition 1 (last inequal-
ity) justifies the remark.

Remark 14. For any same sized matrices A and B, we
have ||A ◦B||2 ≤ ||A||2 · ||B||2.

Proof. For all sums taken over all matrix indices, it fol-
lows ||A ◦ B||2 =

∑
(AijBij)

2 =
∑

(Aij)
2(Bij)

2 ≤∑
(Aij)

2
∑

(Bi′j′)
2 = ||A||2||B||2, where the inequality

is by the fact that (Bij)
2 ≤∑(Bi′j′)

2 for any (i, j).

Remark 15. For any D,D′ ∈ Snk ,

||D −D′||2 ≤ ||DDT −D′(D′)T ||2. (56)

Proof. This remark is a matrix extension of [20, Lemma
A.1.2]. Let D:j denote the column j of D. We have

||DDT −D′(D′)T ||2

=
∑

j

||D:jD
T
:j −D′:j(D′:j)T ||2

≤
∑

j

||D:j −D′:j ||2 = ||D −D′||2,
(57)

where the inequality is based on [20, Lemma A.1.2] and
the fact that ||D:j −D′:j || ≤

√
2 since D,D′ ∈ Snk .

6 SIMULATION

In this section we empirically evaluate the learning rate of
CMF under two settings, one without negative transfer and
the other with negative transfer (NT):

NT-Free: in this case, we randomly generate a factor
D ∈ Snk and two loadings A ∈ Rn×p and A′ ∈ Rn×p′

to construct matrices M = DA and M ′ = D′A′. By this
means, M,M ′ are guaranteed to share the same factor and
negative transfer does not exist.

NT-Likely: in this case, we randomly and independently
generate two factors D,D′ ∈ Snk and two loadings A,A′

same sized as in the NT-Free case. The two matrices are
constructed by M = DA and M ′ = D′A′. By this means,
it is likely [D] 6= [D′] and thus negative transfer exists.

In evaluation we simply set n, p, p′ to 50 and set k to 10.
To examine the learning rate, the ratio of observations, de-
noted by r, is varied from 0.1, 0.3, 0.5, 0.7 to 0.9. At each
choice of r, we randomly select r · np number of entries in
each matrix to form the observation ~M~ω. The CMF algo-
rithm in [17] is implemented with no use of prediction link

0.1 0.3 0.5 0.7 0.9
0
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2

3

4
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L
o

ss
Ω
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Figure 3: Performance simulation.

function. After performing CMF on ~M , the loss function
in the proposition is evaluated. Rewrite its notation as

Lossω(θ̂) =
1

2

[
ρ(θ̂, θ(M)) + ρ(θ̂, θ(M ′))

]
. (58)

In addition, fpr each r we repeat the random choice of ~M~ω

for 10 times and report the averaged loss in Figure 3.

From Figure 3 it is clear that CMF converges much slower
when negative transfer exists, as compared with the case
when negative transfer does not exist. The bias is also quite
obvious. These coincide with our theoretical discoveries.

7 CONCLUSION AND DISCUSSION

This paper presents a first theoretical explanation of nega-
tive transfer in collective matrix factorization. We present
a min-max lower bound of the CMF estimator and show
negative transfer gives rise to an additional bias term that
depends only on the structure of the factor space. We fur-
ther present a finer lower bound and show negative trans-
fer slows the learning rate from Ω(|~ω|−1) to Ω(|~ω|−1/d),
where d is the dimension of Grassmannian containing the
subspaces spanned by matrix factors.

A limitation of this study is we assumed full-rank factor-
ization. As suggested by the theory, increasing k may mit-
igate negative transfer, but clearly at the cost of increas-
ing estimation variance. How these two aspects trade with
each other remains unclear, even though our analysis may
be naively extended for a larger k′ (by simply basing ev-
erything on Gnk′ ). In addition, in reality two matrices may
have different ranks and their induced subspaces may partly
overlap [10]. This partial overlapping is merely implic-
itly captured in our analysis (thorough the choice of δ) and
stronger results may be obtained by explicitly modeling it.
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Abstract

Due to the prevalence of unlabeled data, semi-
supervised learning has drawn significant atten-
tion and has been found applicable in many real-
world applications. In this paper, we present
the so-called Budgeted Semi-supervised Sup-
port Vector Machine (BS3VM), a method that
leverages the excellent generalization capacity of
kernel-based method with the adjacent and dis-
tributive information carried in a spectral graph
for semi-supervised learning purpose. The fact
that the optimization problem of BS3VM can be
solved directly in the primal form makes it fast
and efficient in memory usage. We validate the
proposed method on several benchmark datasets
to demonstrate its accuracy and efficiency. The
experimental results show that BS3VM can scale
up efficiently to the large-scale datasets where it
yields a comparable classification accuracy while
simultaneously achieving a significant computa-
tional speed-up compared with the baselines.

1 Introduction

Supervised learning constitutes one of the most fundamen-
tal problems in machine learning. While in no doubt this
theory has been applied successfully to many real-world
applications, a key limitation of this theory lies in the re-
quirement of annotated labels during training. However,
manual labeling process for large-scale data is labor inten-
sive and error-prone. Consequently, the collected datasets
frequently consist of a collection of labeled data jointly
with a larger collection of unlabeled data. Semi-supervised
learning (SSL) involves utilizing the intrinsic information
carried in unlabeled data to enhance the generalization ca-
pacity of the learning algorithms. During the past decade,

∗This work was carried out when the first author was sup-
ported and visiting the Centre for Pattern Recognition and Data
Analytics, Deakin University, Australia in 2015.

SSL has attracted significant attention and has been found
applicable in a variety of problems including text cate-
gorization [Joachims, 1999], and bioinformatics [Kasabov
et al., 2005] to name a few.

A notable approach to semi-supervised learning paradigm
is to employ a spectral graph for representing the adjacent
and distributive information in data. Several existing works
have leveraged on the expressiveness of spectral graphs for
SSL, including mincut [Blum et al., 2004], graph random
walk [Azran, 2007], manifold regularization [Belkin et al.,
2006], and spectral graph [Duong et al., 2015].

Inspired from the seminal work of [Joachims, 1999], a large
body of works has attempted to advance kernel methods
such as Support Vector Machine (SVM) [Cortes and Vap-
nik, 1995] within the semi-supervised learning paradigm.
The underlying idea is to solve standard SVM problem
while treating the unknown labels as optimization vari-
ables [Chapelle et al., 2008]. This leads to a non-convex
optimization problem with a combinatorial explosion of
label assignments. A wide spectrum of techniques have
been proposed to solve this optimization problem includ-
ing local combination search [Joachims, 1999], gradient
descent [Chapelle and Zien, 2005], convex-concave pro-
cedures [Collobert et al., 2006], and deterministic anneal-
ing [Sindhwani et al., 2006, Le et al., 2013, Nguyen et al.,
2014]. Although these approaches can somehow deal with
the combinatorial intractability, their requirement of re-
peated retraining the model renders them impractical for
many real-world problems.

At the intersection between kernel method and the spec-
tral graph theory, several existing works have attempted
to incorporate information carried in a spectral graph to
build a better kernel function [Smola and Kondor, 2003,
Zhu et al., 2004]. These works basically employed the
Laplacian matrix induced from the spectral graph to con-
struct the kernel function which can capture the features of
ambient space. Manifold regularization framework [Belkin
et al., 2006] exploited the geometry property of the proba-
bility distribution that generates data and incorporated it as
an additional regularization term. Two regularization terms
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were introduced to control the complexity of the classifier
in the ambient space and to control the complexity mea-
sured by the geometry property of the data distribution.
However, the computational complexity for manifold reg-
ularization approach is cubical in the training size. Hence,
other approaches have been proposed to scale it up [Tsang
and Kwok, 2006, Melacci and Belkin, 2011]. In particu-
lar, the work of [Melacci and Belkin, 2011] (the Laplacian
Support Vector Machine or LapSVM) made use of precon-
ditioned conjugate gradient to solve the optimization prob-
lem of manifold regularization approach in the primal form.
This allows the computational complexity to be scaled up
to quadratic. However, this approach was to solve the cor-
responding optimization problem in the first dual layer in-
stead of in the primal form, hence renders the solution in-
feasible for online setting. Furthermore, LapSVM requires
storing a full Hessian matrix of the training size in the
memory, resulting in a quadratic memory complexity.

Recently, stochastic gradient descent (SGD) method
[Shalev-Shwartz and Singer, 2007, Kakade and Shalev-
Shwartz, 2008, Lacoste-Julien et al., 2012, Rakhlin et al.,
2012, Hazan and Kale, 2014] has emerged as a promising
framework to scale up fast and online learning algorithms.
SGD possesses three key advantages: i) very fast; ii) ca-
pacity to run in online mode; and iii) economic memory
usage. However, SGD-based methods are vulnerable to
the curse of kernelization [Wang et al., 2012], that is, the
model size linearly grows up with the training size accu-
mulated over time. To bound the model size, budget-based
algorithms limit the model size to a predefined budget B.
When the model size exceeds the budget, a budget main-
tenance procedure is invoked to decrease the model size
by one. Three widely-used budget maintenance strategies
are removal, projection, and merging. In the removal strat-
egy, the most redundant support vector is simply discarded
[Crammer et al., 2004, Cavallanti et al., 2007, Wang and
Vucetic, 2010, Le et al., 2016]. In the projection strat-
egy, the information of the most redundant support vector is
partly preserved through its projection onto the linear span
of the remaining support vectors [Wang and Vucetic, 2010,
Wang et al., 2012, Le et al., 2016]. The merging strategy
first selects two vectors, and then merges them into one be-
fore discarding them [Wang et al., 2012].

Leveraging on the advantages of kernel method, spectral
graph theory and stochastic gradient descent, we propose
in this paper a novel approach to semi-supervised learning,
termed as Budgeted Semi-supervised Support Vector Ma-
chine (BS3VM). To devise BS3VM, we first conjoin the
theory of kernel method with the framework of spectral-
graph-based semi-supervised learning. This allows us to
form a specific optimization problem which involves the
core optimization problem of kernel method and simulta-
neously enables the label propagation. We then apply SGD
method to solve the incurred optimization problem directly

in the primal form. To avoid the curse of kernelization, we
employ two budgets Bl and Bu for the labeled and unlabeled
portions. When either the labeled or unlabeled portion in
the model exceeds its budget, the corresponding budget
maintenance strategy will be invoked accordingly. We also
establish a rigorous convergence analysis for BS3VM. The
theoretical result shows that there exists a gap between the
proposed and optimal solutions. This gap can be explic-
itly quantified and crucially depends on the budget mainte-
nance rates and the coefficients accompanied with the re-
moved vectors. We further establish the extensive exper-
iments on several real-world datasets. The experimental
results show that our proposed BS3VM can offer a compa-
rable predictive performance while simultaneously achiev-
ing a significant computational speed-up comparing with
the state-of-the-art baselines.

2 Spectral-graph-based Semi-supervised
Learning

2.1 Spectral Graph

Spectral graph is a useful tool to capture the geometrical
and distributive information carried in data. It is usually an
undirected graph whose vertices are data instances. In the
context of semi-supervised learning, we are given a train-
ing set X = Xl ∪Xu where Xl = {(xi,yi)}l

i=1 specifies la-
beled data and Xu = {xi}l+u

i=l+1 identifies unlabeled data.
We can start constructing the spectral graph G = (V ,E )
with the vertex set V including all labeled and unlabeled
instances (i.e., V = {xi}l+u

i=1). An edge ei j = xix j ∈ E be-
tween two vertices xi, x j represents the similarity of these
two instances. Let µi j be the weight of this edge. The prin-
ciple is that if µi j is sufficiently large then two labels yi, y j
are expected to be the same. The set of edges G and its
weighs can be established using the following ways:

• Fully connected graph: every pair of vertices xi, x j
is connected by an edge. The edge weight decreases
when the distance

∥∥xi− x j
∥∥ increases. The Gaussian

kernel weight function widely used is given by

µi j = e−‖xi−x j‖2
/(2σ2)

where σ is known as the bandwidth parameter and
controls how quickly the weight decreases.

• k-NN: each vertex xi defines its k nearest neighbors
(k-NN) and makes an edge with one of its k-NN. The
Gaussian kernel weight function can be used for the
edge weight. Empirically, k-NN graphs with small k
tend to perform well.

• ε-NN: we connect xi and x j if
∥∥xi− x j

∥∥ ≤ ε . Again
the Gaussian kernel weight function can be used to
weight the connected edges. In practice, ε-NN graphs
are easier to construct than k-NN graphs.
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It is noteworthy that when constructing the spectral graph,
we avoid connecting the edge of two labeled instances
since we do not need to propagate the label between them.

2.2 Label Propagation

After constructing the spectral graph, a semi-supervised
learning problem is cast to assign labels to the unlabeled
vertices. To this end, we need a mechanism to rationally
propagate labels from the labeled vertices to the unlabeled
ones. The key idea is that if µi j is large, then the two labels
yi, y j are expected to be the same.

To assign labels to the unlabeled instances, it is desirable to
learn a map f : X −→ Y where X and Y are domains
of data and label, respectively such that

• f (xi) is as closest to its label yi as possible for all la-
beled instances xi (1≤ i≤ l).

• f should be smooth on the whole graph G , i.e., if xi
is very close to x j (i.e., xi, x j are very similar or µi j
is large), the discrepancy between fi and f j (i.e., | fi−
f j|) is small.

Therefore, the following optimization problem is proposed
to solve

min
f

(
∞.

l

∑
i=1

( fi− yi)
2 + ∑

(i, j)∈E
µi j
∣∣ fi− f j

∣∣
)

(1)

where by convention we define ∞.0 = 0 and fi = f (xi).

The optimization problem in Eq. (1) peaks its minimum as
the first term is exactly 0 and the second term is as smallest
as possible. It is therefore rewritten as follows

min
f

(
∑

(i, j)∈E
µi j
∣∣ fi− f j

∣∣
)

(2)

s.t. : ∀l
i=1 : fi = yi

To extend the representation ability of the prediction func-
tion f , we relax the discrete function f to be a real-valued.
The drawback of the relaxation is that in the solution, f (x)
is now real-valued, hence does not directly correspond to
a label. This can however be addressed by thresholding
f (x) at zero to produce discrete label predictions, i.e., if
f (x)≥ 0, predict y = 1, and if f (x)< 0, predict y =−1.

3 Budgeted Semi-supervised Support Vector
Machine

In this section, we present our proposed Budgeted Semi-
supervised Support Vector Machine (BS3VM). We start

this section with the introduction of the optimization prob-
lem of BS3VM. We then propose SGD-based solution for
BS3VM with two budgets for the labeled and unlabeled
portions, followed by the convergence analysis.

3.1 BS3VM Optimization Problem

Let Φ : X −→H be a transformation from the input space
X to a Reproducing Hilbert Kernel Space (RHKS) H . We
use the function f (x)=wTΦ(x)−ρ =∑l+u

i=1 αiK (xi,x)−ρ ,
where w = ∑l+u

i=1 αiΦ(xi) and K (., .) is kernel function, to
predict label. Inspired from the optimization problem in
Eq. (2), the following optimization problem is proposed

min
w

(
1
2
‖w‖ 2 +

C
l

l

∑
i=1

ξi +
C′

|E | ∑
(i, j)∈E

µi j
∣∣ fi− f j

∣∣
)

(3)

s.t. : ∀l
i=1 : yi

(
wTΦ(xi)−ρ

)
≥ 1−ξi

∀l
i=1 : ξi ≥ 0

where fi = wTΦ(xi)−ρ .

In the optimization formulation of Eq. (3), we mini-
mize 1

2 ‖w‖
2 to maximize the margin for motivating the

generalization capacity. At the same time, we mini-
mize ∑(i, j)∈E µi j

∣∣ fi− f j
∣∣ to make the prediction function

smoother on the spectral graph.

We rewrite the optimization problem in Eq. (3) in the pri-
mal form as follows1

min
w

(
1
2
‖w‖ 2 +

C
l

l

∑
i=1

l (w;zi)+
C′

|E | ∑
(i, j)∈E

µi jl1
(
wTΦi j

)
)

(4)

where zi = (xi,yi), l (w;x,y) = max
{

0,1− ywTΦ(x)
}

,
Φi j = Φ(xi)−Φ(x j), lp (t) = |t|p with t ∈ R, and p≥ 1.

3.2 Budgeted SGD-based Solution for BS3VM

We now present the SGD-based solution for the optimiza-
tion problem in Eq. (4). To resolve the curse of kerneliza-
tion, we employ two budgets for the labeled and unlabeled
portions whose budget sizes are Bl and Bu, respectively.
When either the size of labeled or unlabeled portion in the
current model exceeds its budget, the corresponding budget
maintenance strategy is executed to maintain the model.

Let us denote the objective function in Eq. (4) by J (w).
At the iteration t, we construct the instantaneous objective
function Jt (w) which is defined as

Jt (w) =
1
2
‖w‖2 +Cl (w;xit ,yit )+C′µut vt l1

(
wTΦut vt

)

where it is uniformly sampled from {1, ..., l} = [l] and the
edge (ut ,vt) connected xut and xvt is uniformly sampled
from the set of edges E .

1We can eliminate the bias ρ by simply adjusting the kernel.
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Inspired from the SGD method, we update wt as

wt+1 = wt −ηtgt = wt −
1
t

J
′
(wt) =

t−1
t

wt

+
Cαtyit Φ(xit )

t
+C′

µut vt βt (Φ(xut )−Φ(xvt ))

t
(5)

where αt = −l
′
o (wt ;xit ,yit ), βt = −sign

(
wT

t Φut vt

)
, the

learning rate ηt =
1
t , and gt = J

′
(wt).

It is noteworthy that we denote o = wTΦ(x) which im-
plies l (w;x,y) is now a function of o, and l

′
o (w;x,y) is the

derivative of the loss function w.r.t the variable o.

The update formula shown in Eq. (5) is vulnerable to the
curse of kernelization, that is, the model size linearly grows
with the data size accumulated over time. To address this
issue, we propose to use two budgets for the labeled and
unlabeled portions whose sizes are Bl and Bu, respectively.

Algorithm 1 Algorithm for training BS3VM.

Input: Bl , Bu, K (., .) ,C,C
′
, σ

1: w1 = 0
2: bl = 0
3: bu = 0
4: for t = 1 to T do
5: Uniformly sample it from [l]
6: Uniformly sample the edge (ut ,vt) from E
7: Update

wt+1 =
t−1

t
wt +

C
t

αtyit Φ(xit )

+
C′

t
µut vt βt (Φ(xut )−Φ(xvt ))

8: bl = bl +1+ Iut≤l + Ivt≤l
9: bu = bu + Iut>l + Ivt>l

10: if bl > Bl then
11: BM(wt+1,

′ l′) // labeled portion
12: bl = Bl
13: end if
14: if bu > Bu then
15: BM(wt+1,

′ u′) // unlabeled portion
16: bu = Bu
17: end if
18: end for
Output: wT = 1

T ∑T
t=1 wt or wT+1

Algorithm 1 presents the pseudocode of BS3VM. The
model of BS3VM is represented through the labeled and
unlabeled portions whose current sizes are bl and bu, re-
spectively. When either bl or bu exceeds its budget, a
budget maintenance procedure is triggered to maintain the
model size (cf. lines 11 and 15 in Algorithm 1). We have
two kinds of budget maintenance (BM) which involve the
labeled and unlabeled portions, respectively. To differen-
tiate these two kinds of BM, we employ the second argu-

ment in BM procedure wherein ′l′ involves BM for the la-
beled portion and ′u′ involves BM for the unlabeled por-
tion. In addition, two options (i.e., ′l′ or ′u′) involve the
same functional activity. The only difference is that they
refer to either labeled or unlabeled portions. In addition,
we utilize the fully connected spectral graph wherein the
edge weights are computed on the fly as necessary.

3.3 Budget Maintenance Strategy

In this section, we present the BM strategies used in this
paper which are removal and projection. The original pro-
jection strategy can partly preserve the information of the
removed vectors and hence, usually offers better predictive
performance than removal strategy. However, it requires a
costly computation of the inverse of a matrix whose dimen-
sion is either Bl or Bu. To resolve this computational bur-
den, we propose two special projection strategies which are
nearest-neighbor projection (NNP) and random-neighbor
projection (RNP). At the outset of this section, we define
the index sets of the labeled and unlabeled portions at the
iteration t as Il

t ⊂ [l]2 and Iu
t ⊂ [l +1 : l +u]3, respectively.

Hence, the current model wt can be written as

wt = ∑
i∈Il

t

δiΦ(xi)+ ∑
i∈Iu

t

δiΦ(xi)

Both the removal and projection strategies involve the vec-
tors whose coefficients have smallest absolute values in the
labeled and unlabeled portions. We now define

lt = argmin
i∈Il

t

|δi| and ut = argmin
i∈Iu

t

|δi|

3.3.1 Removal

In the removal strategy, we simply remove Φ(xlt ) or
Φ(xut ). This strategy is efficient, but the information of
the removed vectors are completely vanished.

3.3.2 Projection

To keep the information of the removed vector, the origi-
nal projection strategy performs a projection of this vector
onto the linear span of the remaining vectors. Although this
full projection can efficiently preserve the information of
the removed vector, it requires a costly computation of the
inverse of Bl (or Bu) by Bl (or Bu) matrix which costs cu-
bically over the budget sizes. Furthermore, decreasing the
budget sizes to reduce the computational cost may signifi-
cantly compromise the learning performance. To speed up
the computation and omit the computational dependence
of the projection on the budget sizes, we propose two vari-
ations of the projection which are nearest-neighbor projec-

2We denote [l] = {1,2, . . . , l}.
3We denote [l +1 : l +u] = {l +1, l +2, . . . , l +u}.
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tion (NNP) and random-neighbor projection (RNP) strate-
gies. For brevity in presentation, we denote

xrt =

{
xlt for the option ’l’ of BM
xut for the option ’u’ of BM

Nearest-Neighbor Projection (NNP). To efficiently pre-
serve the information of xrt , before removing it, we find k-
NN of xrt and do projection of xrt onto the linear span of
this set. Our intuition is that if the vector x falls into the
k-NN of xrt then x is close to xrt ; consequently the induced
dot product K (x,xrt ) = Φ(x)T Φ(xrt ) is high and hence,
Φ(x) can largely keep the information of Φ(xrt ).

Random-Neighbor Projection (RNP). To further speed
up the NNP strategy, we propose random-neighbor pro-
jection (NNP) wherein we first randomly choose k vectors
from the support set and then project Φ(xrt ) onto the linear
span of these vectors to preserve its information.

3.4 Convergence Analysis

In what follows we present the convergence analysis for
BS3VM. Given an instance x, in a BM procedure, we re-
place this instance by its approximation A(x) which incurs
the difference vector D(x) = Φ(x)−A(x). In particular,
with the removal strategy, A(x) = 0, ∀x, with the full pro-
jection strategy, A(x) = PL (x) , ∀x where PL (x) specifies
the linear span of the remaining vectors in the support set,
and with NNP or RNP strategy, A(x) = PL (x) , ∀x where
PL (x) specifies the linear span of k corresponding vectors.
We further define w∗ = argmin

w
J (w). For simplification,

we assume that ‖Φ(x)‖= K (x,x)1/2 = 1, ∀x.

Let us denote two Bernoulli random variables which indi-
cate whether the budget maintenances for the labeled por-
tion (i.e., the option ’l’) and for the unlabeled portion (i.e.,
the option ’u’) are performed by Zl

t , Zu
t . The update rule is

wt+1 = wt −ηtgt −Zl
t δlt D(xlt )−Zu

t δut D(xut ) (6)

It is noteworthy that the update rule in Eq. (6) covers all
BM strategies. In addition, our convergence analysis can
be applied to all aforementioned BM strategies but for com-
prehensibility, we present the theoretical results for the re-
moval strategy.

Lemma 1 establishes an upper bound on ‖wt‖, followed by
Lemma 2 which establishes an upper bound on ‖gt‖.
Lemma 1. The following statement holds

‖wt‖ ≤C+2C
′
, ∀t

Lemma 2. The following statement holds

‖gt‖ ≤ G = 2
(

C+2C
′)
, ∀t

In Algorithm 1, the labeled-vertex sampling (cf. line 5) up-
dates the coefficient of one labeled support vector while the
edge sampling (cf. line 6) updates two coefficients of two
support vectors. To proceed the convergence analysis, we
assume that before removed, the coefficient of the labeled
vector Φ(xlt ) is updated at most m times via the labeled-
vertex sampling and n times via the edge sampling and
the coefficient of the unlabeled vector Φ(xut ) is updated
at most p times via the edge sampling. Particularly, in the
context of online learning, the labeled vector Φ(xlt ) might
be sampled from a continuous distribution and so might be
the edge. It follows that m = n = p = 1 and the assumption
is naturally valid.
Lemma 3. Given two positive integer numbers m,n, as-
sume that before removed, the coefficient of Φ(xlt ) is up-
dated at most m times via the labeled-vertex sampling and
n times via the edge sampling. We then have

|δlt | ≤
(

mC+nC
′)
/t, ∀t

Lemma 4. Given a positive integer number p, assume that
before removed, the coefficient of Φ(xut ) is updated at most
p times via the edge sampling. We then have

|δut | ≤ pC
′
/t, ∀t

Lemma 5 establishes an upper bound on ‖ht‖ , fol-
lowed by Lemma 6 establishing an upper bound on

E
[
‖wt −w∗‖2

]1/2
.

Lemma 5. We define ρi =
δi
ηt

= tδi and ht = Zl
t ρlt D(xlt )+

Zu
t ρut D(xut ). Then we have

‖ht‖ ≤ H = mC+(n+ p)C
′
, ∀t

Lemma 6. The following statement holds

E
[
‖wt −w∗‖2

]1/2
≤W = H +

√
H2 +(G+H)2, ∀t

We can now state Theorem 7 which establishes an upper
bound on the regret. This theorem also reveals that there
exists a gap between the rendered and optimal solutions.
This gap crucially depends on the budget maintenance rates
for the labeled and unlabeled portions.
Theorem 7. Let us consider the running of Algorithm 1.
The following statement holds

E [J (wt)]− J (w∗)≤ 1
T

T

∑
t=1

E [J (wt)]− J (w∗)

≤ (G+H)2 (log T +1)
2T

+
W
T

T

∑
t=1

P
(

Zl
t = 1

)
E
[
ρ2

lt

]1/2

+
W
T

T

∑
t=1

P(Zu
t = 1)E

[
ρ2

ut

]1/2
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where ρlt = δlt/ηt and ρut = δut/ηt .

Remark 8. The theoretical result gained in Theorem 7
also encompasses the standard analysis. In particular,
if the BM procedures never happen (i.e., P

(
Zl

t = 1
)
=

P(Zu
t = 1) = 0, ∀t), we achieve the logarithm regret bound

(G+H)2(log T+1)
T . Furthermore, to minimize the gap, we

should choose to remove the vectors with the smallest ab-
solute coefficients (since ρlt =

δlt
ηt

and ρut =
δut
ηt

).

4 Experiments

We establish quantitative experiments to investigate the in-
fluence of the budget sizes (i.e., Bl and Bu) to the accuracy
and training time, and to prove the accuracy and efficiency
of our proposed BS3VM on several benchmark datasets.
The data statistics is given in Table 1. To simulate the semi-
supervised learning context, we randomly remove 80% and
90% data labels in each dataset. We create three versions of
our approach: BS3VM with the removal strategy (BS3VM-
R), BS3VM with the nearest-neighbor projection strategy
(BS3VM-NNP), and BS3VM with the random-neighbor
projection strategy (BS3VM-RNP).

Baselines. In order to investigate the efficiency and accu-
racy of BS3VM, we compare with the following baselines:

• LapSVM [Melacci and Belkin, 2011]: Laplacian Sup-
port Vector Machine is a state-of-the-art method in
semi-supervised classification based on manifold reg-
ularization framework. It can reduce the computa-
tional complexity from O

(
n3
)

to O
(
n2
)

where n is
the training size using the preconditioned conjugate
gradient and an early stopping strategy.

• CCCP-TSVM [Collobert et al., 2006]: A kernel-based
semi-supervised method was proposed to solve the op-
timization problem using convex-concave procedures.

All codes of the baselines are achieved from the corre-
sponding authors. All compared methods run on a Win-
dows machine with the configuration of 24-vcore CPU
Xeon 3.47 GHz and 96GB RAM.

Hyperparameter Setting. The standard RBF kernel,

given by K
(

x,x
′
)

= e−γ
∥∥∥x−x

′∥∥∥
2

, is used in the ex-
periments. For LapSVM, we use the parameter set-
tings proposed in [Melacci and Belkin, 2011], wherein
the parameters γA and γI are searched in the range{

10−6, 10−4, 10−2, 10−1, 1, 10, 100
}

. In all experiments
with LapSVM, we utilize the preconditioned conjugate gra-
dient version, which is more suitable for the LapSVM
optimization problem [Melacci and Belkin, 2011]. For
CCCP-TSVM, we use the setting CCCP-TSVM|s=0

UC∗=LC.
The trade-off parameter C is tuned in the range{

2−5,2−3, . . . ,23,25
}

and the width of kernel δ is varied in

the range
{

2−5,2−3, . . . ,23,25
}

. Regarding our proposed
BS3VM, the bandwidth σ of Gaussian kernel weight func-
tion is set as to 1

2σ2 = γ , and the second trade-off parameter
C
′

is set to be equal the first trade-off parameter C. We em-
ploy the standard training-testing split with 90% of data for
training and 10% of data for testing. We run 5-fold cross-
validation, and then select the parameter set that yields the
highest classification accuracy. We set the number of iter-
ations T in BS3VM to d0.01× (l +u)e for the large-scale
datasets such as MUSHROOMS, W5A, W8A, COD-RNA,
and COVTYPE, and to d0.1× (l +u)e for the remaining
datasets. Each experiment is carried out five times to com-
pute the average of the reported measures.

Dataset Dimension Size
G50C 50 551

COIL20 1,014 145
USPST 256 601

AUSTRALIAN 14 690
A1A 123 1,605

MUSHROOM 112 8,124
SVMGUIDE3 21 1,243
SVMGUIDE2 20 391

W5A 300 9,888
W8A 300 49,749

COR-RNA 8 59,535
COVTYPE 54 100,945

Table 1: The statistics of the experimental datasets.

Experimental Results. The experimental results are re-
ported in Tables 2 and 3. For readability, we emphasize
in boldface the highest accuracy and in italics the short-
est training time. Regarding the classification accuracy,
our proposed BS3VMs are comparable with other base-
lines and CCCP-TSVM is slightly better than others. How-
ever, our BS3VMs scale impressively with the large-scale
datasets whilst CCCP-TSVM scale unsatisfactorily. The
version BS3VM-R wins the shortest training time over
all experimental datasets, except for the dataset W5A un-
der 80%-unlabeled setting. Besides, two other versions
BS3VM-NNP and BS3VM-RNP also scale efficiently with
the training size, and their training times only slightly ex-
ceed those of BS3VM-R on all datasets. This implies that
the simplified projection strategies (i.e., NNP and RNP) do
not incur a significant computational burden. Interestingly,
BS3VM-R always offers comparable accuracies comparing
with BS3VM-NNP and BS3VM-RNP, which indicates that
the information loss occurring in the removal of vector in
BS3VM-R is tolerant. It is noteworthy that although we
only set small budgets for all datasets (i.e., 50 or 100), the
classification accuracies attained by three versions on all
datasets are still remarkable. This fact confirms the effec-
tiveness of our proposed budget maintenance strategies in
eliminating the redundant vectors and in keeping the core
vectors which sufficiently characterize the training set.
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Datasets [B] BS3VM-R BS3VM-NNP BS3VM-RNP LapSVM CCCP
Acc Time Acc Time Acc Time Acc Time Acc Time

G50C [50] 95.45 0.131 95.45 0.14 95.45 0.133 96.2 0.29 98.18 0.141
COIL20 [50] 100 0.083 100 0.094 100 0.088 100 0.39 98.1 1.078
USPST [50] 99.17 0.091 99.17 0.217 99.17 0.134 99.2 0.28 99.58 0.61

AUSTRALIAN [50] 88.41 0.041 87.68 0.098 86.96 0.085 85.9 0.94 81.88 0.002
A1A [50] 80.1 0.146 78.19 0.192 79.44 0.167 80.1 0.21 79.75 0.953

MUSHROOM [50] 96.12 0.506 96.86 0.874 97.05 0.566 98.8 5.25 100 28.078
SVMGUIDE3 [50] 78.23 0.056 77.02 0.289 78.23 0.116 75.8 0.33 81.45 1.421
SVMGUIDE2 [50] 76.12 0.02 79.1 0.03 86.57 0.024 85.1 0.41 90.27 0.078

W5A [50] 96.46 1.732 96.97 2.471 97.27 2.348 97 1.18 98.33 146.28
W8A [100] 97.02 18 97.02 18.15 96.8 18.1 97.4 26.15 97.1 1,380.16

COR-RNA [100] 85.53 0.545 85.95 0.937 86.53 0.836 85.7 13.14 88.47 3,900.43
COVTYPE [100] 87.07 8.273 84.56 8.931 84.12 8.51 81.8 19.75 85.91 5,958.07

Table 2: Cross-validation accuracies (in %) and training times (in second) on the experimental datasets when 80% of data
labels are removed. We set the same value for Bl and Bu which is the notation [B] next to the dataset name.

Datasets [B] BS3VM-R BS3VM-NNP BS3VM-RNP LapSVM CCCP
Acc Time Acc Time Acc Time Acc Time Acc Time

G50C [50] 95.45 0.129 94.55 0.128 95.45 0.131 94.5 0.29 94.55 0.509
COIL20 [50] 92.86 0.011 96.43 0.025 100 0.015 100 0.16 100 0.366
USPST [50] 100 0.012 100 0.032 100 0.017 99.6 0.38 100 2.17

AUSTRALIAN [50] 86.23 0.004 85.51 0.013 85.51 0.009 86.2 0.32 89.85 0.031
A1A [50] 82.24 0.018 81.26 0.035 81.62 0.024 81.6 0.24 82.37 0.047

MUSHROOM [50] 91.38 0.09 91.02 0.141 94.29 0.105 97.5 0.334 99.96 8.82
SVMGUIDE3 [50] 77.82 0.005 77.42 0.017 77.02 0.005 77.9 0.28 83.37 0.054
SVMGUIDE2 [50] 82.09 0.004 79.1 0.007 79.1 0.005 80.6 0.38 85.12 0.02

W5A [50] 97.17 0.329 97.27 0.412 91.17 0.323 97.5 0.521 97.39 7.41
W8A [100] 97.03 3.215 96.93 3.982 97.01 3.79 97.32 9.15 97.18 379.06

COR-RNA [100] 83.33 0.519 82.73 0.82 92.92 0.682 86.1 11.42 89.74 326.72
COVTYPE [100] 80.98 4.628 86.89 5.142 86.38 4.897 80.2 34.02 85.75 1,275.22

Table 3: Cross-validation accuracies (in %) and training times (in second) on the experimental datasets when 90% of data
labels are removed. We set the same value for Bl and Bu which is the notation [B] next to the dataset name.

(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 1: The variations of the classification accuracy and training time on the dataset AUSTRALIAN when two budget
sizes Bl and Bu are varied.
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(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 2: The variations of the classification accuracy and training time on the dataset COIL20 when two budget sizes Bl
and Bu are varied.

(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 3: The variations of the classification accuracy and training time on the dataset G50C when two budget sizes Bl and
Bu are varied.

(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 4: The variations of the classification accuracy and training time on the dataset SVMGUIDE3 when two budget
sizes Bl and Bu are varied.
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Influence of Budget Sizes to Learning Performance.
We investigate the influence of the budget sizes (i.e., Bl
and Bu) to the learning performance. We choose to conduct
a simulation study on 4 datasets AUSTRALIAN, COIL20,
G50C, and SVMGUIDE3. For each dataset, we simulta-
neously vary the labeled budget size Bl and the unlabeled
budget size Bu to measure the classification accuracy and
the training time. We visualize the classification accuracies
and the training times using heat maps shown in Figures 1,
2, 3, and 4. It can be observed that when increasing the bud-
get sizes (i.e., Bl and Bu), the classification accuracy tends
to increase and the training time tends to decrease or fluctu-
ate. The reason is that large budget sizes enrich the expres-
siveness of the model, and hence boost the accuracy. In the
meanwhile, when increasing the budget sizes, there appears
a trade-off between the computational cost in each iteration
and the budget maintenance rate which fluctuates the train-
ing time depending on which factor dominates. In prac-
tice, using these heat maps, one can conveniently find the
optimal pair (Bl ,Bu) that balances the classification accu-
racy and the training time for example (50,300) for AUS-
TRALIAN, (50,50) for COIL20, (40,320) for G50C, and
(60,300) for SVMGUIDE3. Another observation is that
the increases of Bl and Bu fairly equally affect the classifi-
cation accuracy while increasing Bu strongly affects to the
training time than increasing Bl . Finally, the training time
becomes worst if we set one budget size to a small value
and gradually increase another.

5 Conclusion

In this paper, we have proposed Budgeted Semi-supervised
Support Vector Machine (BS3VM) for semi-supervised
learning purpose. We first leverage the theory of kernel
method with the framework of spectral-graph-based semi-
supervised learning to form a specific optimization prob-
lem, which involves the core optimization problem of ker-
nel method for learning on labeled data and simultane-
ously allows the label propagation. We then apply the
SGD method to directly solve such optimization problem
in the primal form. To resolve the curse of kernelization,
we employ two budgets for the labeled and unlabeled por-
tions in the model. We further establish a rigorous conver-
gence analysis for BS3VM. The theoretical results reveal
that there exists a gap between the rendered and optimal
solutions. This gap crucially depends on the budget main-
tenance rates and the coefficients accompanied with the re-
moved vectors. Finally, we conduct extensive experiments
on several benchmark datasets. The experimental results
show that BS3VM yields a comparable classification accu-
racy while simultaneously achieving a significant compu-
tational speed-up comparing with the state-of-the-art base-
lines.
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Abstract

Relational Causal Models (RCM) generalize
Causal Bayesian Networks so as to extend causal
discovery to relational domains. We provide a
novel and elegant characterization of the Markov
equivalence of RCMs under path semantics. We
introduce a novel representation of unshielded
triples that allows us to efficiently determine
whether an RCM is Markov equivalent to an-
other. Under path semantics, we provide a sound
and complete algorithm for recovering the struc-
ture of an RCM from conditional independence
queries. Our analysis also suggests ways to im-
prove the orientation recall of algorithms for
learning the structure of RCM under bridge burn-
ing semantics as well.

1 INTRODUCTION

The discovery of causal relationships from observational
and, when available, experimental data is a central prob-
lem in artificial intelligence. Of particular interest is causal
discovery in real-world settings consist of inherently inter-
related entities and the resulting data exhibit a rich re-
lational (Chen, 1976) structure. The past three decades
have seen major advances in causal discovery (Pearl, 2000;
Spirtes et al., 2000). However, the vast majority of this
work has focused on Causal Bayesian Networks (CBN),
directed graphical models that model causal relationships
between a set of random variables of interest. Such models
lack the expressive power to model causal relationships in
relational domains.

Maier et al. (2010) showed that the Directed Acyclic Prob-
abilistic Entity-Relationship model (DAPER) (Heckerman
et al., 2007) which generalizes both Probabilistic Rela-
tional Models (PRM) (Friedman et al., 1999) and plate
models (Buntine, 1994) is sufficient to represent causal-
ity in relational domains. Maier et al. (2010) proposed Re-

lational PC (RPC), a relational extension of the PC algo-
rithm (Spirtes et al., 2000) for learning the structure of Re-
lational Causal Model (RCM), which is a particular class
of DAPER, under bridge burning semantics (BBS). How-
ever, RPC is not complete, and is prone to erroneous ori-
entation of edges (Maier et al., 2013a). To overcome the
limitations of RPC, Maier et al. (2013a) introduced the Re-
lational Causal Discovery (RCD) algorithm which reduces
learning the structure of an RCM to learning the structure
of Abstract Ground Graph (AGG, Maier et al., 2013b), a
directed acyclic graph that is intended to correctly abstract
the ground instances of the RCM, and Lee and Honavar
(2016) proposed RCD-Light, a more efficient alternative
to RCD. However, all of existing algorithms for learning
RCM are provably not complete (Lee and Honavar, 2016).

Against this background, we characterize the Markov
equivalence of RCMs, an essential step in specifying a
provably complete constraint-based algorithms for learning
the structure of RCM under path semantics, a more elegant
alternative to BBS. The key idea is to show that two RCMs
are Markov equivalent if and only if their corresponding
sets of ground instances are Markov equivalent. We intro-
duce canonical unshielded triples, a novel graphical con-
struct that can be used to test the Markov equivalence of
two RCMs. We provide an efficient algorithm to enumer-
ate a subset of canonical unshielded triples of an RCM that
suffice for testing whether an RCM is Markov equivalent
to another. Finally, we provide an algorithm to construct a
completed partially-directed RCM, a unique compact rep-
resentation of the Markov equivalence class of an RCM.

The main contributions of this paper are: (i) a novel charac-
terization of Markov equivalence of RCMs, using a novel
representation of the relational counterparts of unshielded
triples and efficient identification thereof; (ii) revelation of
problematic behaviors of BBS (Maier et al., 2013a,b; Lee
and Honavar, 2015, 2016), and proposal of a viable alter-
native, namely, path semantics, which is more intuitive and
retains the desirable properties of BBS while avoiding its
drawbacks; and (iii) the first sound and complete algorithm
for learning the structure of an RCM under path semantics.
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(d) CDG GMA

Figure 1: An example of an RCM drawn over its underlying relational schema together with a relational skeleton, ground
graph, and class dependency graph (both bridge burning and path semantics yield the same ground graph.)

2 PRELIMINARIES

We follow the notational conventions for Causal Bayesian
Networks (Pearl, 2000; Spirtes et al., 2000) and the litera-
ture on RCM (Maier et al., 2013a; Lee and Honavar, 2015).
A graph is specified by a set of vertices and the edges
that connect them. An edge may be directed (→) or undi-
rected (−), but not both. A partially directed acyclic graph
(PDAG) includes undirected as well as directed edges but
no directed cycles. A directed acyclic graph (DAG) is a
PDAG with no undirected edges. Let G be a PDAG and
X be a vertex in G, i.e., X ∈ V (G). Then, parents of X ,
pa (G, X), are vertices that have a direct edge towards X .
Children (ch) are analogously defined. Neighbors (ne) of
X are vertices connected toX via an undirected edge while
adjacencies (adj) of X are those connected to X via an
edge either directed or undirected. A walk on a graph is an
ordered sequence of vertices where consecutive vertices in
the sequence are adjacent to each other in the graph, and a
path is a walk in which every vertex is distinct.

Relational Domain A relational domain comprises of
entities that are interdependent through relationships. The
specification of such relational domain is called a relational
schema (schema for short). A schema, denoted by S , is a tu-
ple of entity classes, relationship classes, attribute classes,
and cardinality constraints, denoted by E , R, A, and card,
respectively. For example, Employee and Product are entity
classes in a business domain (Figure 1). Develops is a re-
lationship class between them. Employee has Salary as an
attribute class. Each employee may develop multiple prod-
ucts; and each product may be developed by multiple em-
ployees. We collectively call E and R item classes. Every
item class is associated with a set of attribute classes. We
denoteA (I) a set of attribute classes associate with an item
class I . A relationship class consists of participating entity
classes. We denote E∈R if E is a participating entity class
of a relationship class R. For simplicity, we drop role indi-
cators (as in other literature on RCM), which allow partic-
ipation of an entity class in a relationship class in multiple
ways. A cardinality constraint defines how many relation-
ships an entity can participate in. Following RCM litera-
ture, card is a partial function fromR×E to {one,many}.

A relational skeleton (skeleton for short) is a particular re-
alization of a schema, which is an undirected graph where
vertices are items (i.e., instances of item classes). An edge
is defined between a relationship and an entity if the entity
participates in the relationship. We denote a skeleton by σ,
a member of all possible skeletons ΣS . We denote by σ (I)
the set of items of item class I .

2.1 RELATIONAL CAUSAL MODEL

A relational causal model (RCM) (Maier et al., 2010,
2013a) consists of a set of cause-effect relationships and
parameters where the cause and the effect are related in
the given relational schema. For example, “the success of
a product depends on the skills of employees who develop
the product” is encoded as a relational dependency, “[Prod-
uct, Develops, Employee].Skill→[Product].Success”. We
elaborate on each component of an RCM more precisely
in what follows.

A relational path is an alternating sequence of entity and
relationship classes. The relational path corresponds to a
walk (with some restrictions) in the given schema where
item classes are vertices and the participation of an en-
tity class to a relationship class is an undirected edge be-
tween them. A relational path is similar to a slot chain in
PRM (Friedman et al., 1999) and a first-order constraint
in DAPER (Heckerman et al., 2007). The first and the last
item class of a relational path is called base and terminal
item class, respectively. The path explains the relation of
the terminal item class from the perspective of the base
item class. Hence the base item class is also called the per-
spective. A relational path is canonical if it is of unit length.
A relational variable is a pair of a relational path and an at-
tribute class, which belongs to the terminal item class of
the path. For example, a relational variable P.X consists of
a path P and an attribute class X where X is an attribute
class associated with the terminal item class of P . Then, an
RCMM = (S,D,Θ) is a set of relational dependencies
D along with parameters Θ given a schema S. A relational
dependency P.Y → Q.X consists of two relational vari-
ables as an effect and its cause where the effect relational
variable is canonical, Q = [I] where X ∈ A(I), and the
base of P is I . To emphasize the use of canonical relational
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Figure 2: Schematic showing a relational schema, an RCM,
and their respective instantiations, i.e., relational skeleton,
and ground graphs and the independence relations of the
RCM entailed from the independence relations admitted by
the ground graphs.

variable, we denote a canonical relational variable with an
attribute class X by VX .

An RCM is said to be acyclic if its class dependency graph
GMA , (A, {Y →X | P.Y →VX ∈ D}) is a DAG (see
Figure 1(d)). Hence, A is a partially-ordered set where we
denote Z ≺A X if there exists a directed path from Z to
X in GMA . This implies that dependencies of the same pair
of attribute classes must have the same orientation (i.e., it
is impossible to have both P.Y → VX and Q.X → VY ).

An RCM (or its partially directed variant) is not a tradi-
tional graphical model defined over relational variables:
edges (i.e., relational dependencies) are only well-defined
between a pair of relational variables where one of them is
canonical. Hence, graphical relation (i.e., adj, ch, pa, and
ne) is well-defined only if its argument is a canonical re-
lational variable. For example, if P.Y → VX ∈ M, then
pa(M,VX) = {P.Y } but ch(M, P.Y ) is undefined if P
is not canonical.

Relational d-separation An RCM defines a set of de-
pendencies at the schema level. Given a skeleton σ, the
RCM M is realized as a ground graph GMσ (see Figure
1(c)), which is a DAG where vertices are attributes of
items in the skeleton (e.g., i.X for X ∈ A(I) of an item
i ∈ σ(I)) and each directed edge is interpreted as a direct
cause (e.g., j.Y → i.X). If the RCM is an actual model of
given relational data, then the ground graph will correspond
to the underlying causal process that governs the attribute
values of the items in the skeleton (i.e., relational data).
An edge j.Y → i.X exists if there exists a dependency
P.Y → VX ∈ D such that j is reachable (which we will
formally define in Section 3) from i along P in the skeleton.
We denote by P |σi a terminal set, a set of reachable items
from i along P in σ, which is determined according to the
chosen semantics, e.g., BBS (Maier et al., 2013a; Maier,
2014). For simplicity, we drop σ if it is either unnecessary
or can be inferred without ambiguity.

In RCM, we are especially interested in conditional inde-
pendence between relational variables. We might ask, for
example, is the success of a product independent of its de-

velopers’ salaries given their skills? This conditional inde-
pendence query can be represented as [Product].Success⊥⊥
[Product, Develops, Employee].Salary | [Product, Devel-
ops, Employee].Skill. If true, this implies that each prod-
uct’s success is independent of its developers’ salary given
their skills (in every company). Formally, an independence
query is of the form U ⊥⊥ V | W where {U, V } ∪W
is a set of relational variables of the same perspective, say
B ∈ E ∪ R. Then, the query is equivalent to checking

∀σ∈ΣS∀i∈σ(B) U |σi ⊥⊥ V |σi |W|σi , (1)

in all of the instantiations of the RCM (Maier et al., 2013b)
(see Figure 2). In other words, the existence of a relational
skeleton σ ∈ ΣS and a base item i ∈ σ(B) such that
U |σi 6⊥⊥V |σi | W|σi in a ground graph GMσ is the necessary
and sufficient condition for U 6⊥⊥ V |W.

3 RCM SEMANTICS

We proceed to describe two alternative semantics for in-
terpreting relational paths, and hence translating relational
dependencies of an RCM into causal relationships on at-
tributes of items of a skeleton. Let P be a relational path
of n item classes. We denote the length of P by |P |, the
reverse of the path P by P̃ , the `th item class of P by P `,
and the subpath of P from ` to m (inclusive) by P `:m. We
might omit the beginning or ending index if the subpath is
from the beginning (i.e., prefix) or to the end of the path
(i.e., suffix). i.e., P :m = P 1:m and P `: = P `:n.

We first introduce path semantics, where the term path ex-

actly means what path is defined in graph theory. Let i
P,σ j

denote the fact that items i and j are connected by a path
of items p from i to j in the given skeleton σ, where the
item class of `th item of p is the `th item class of P for
1 ≤ ` ≤ |P |. Then, under path semantics, the terminal set
P |σi is simply defined as,

P |σi , {j | i
P,σ j}.

Bridge burning semantics (BBS) (Maier et al., 2013b;
Maier, 2014) computes P |σi as the set of leaves of the tree
obtained by traversing the given skeleton σ along P in
breadth-first order starting at i. Formally, BBS defines P |σi
iteratively as P :1|σi , {i} and

P :m|σi , {k∈σ(Pm) ∩ ne(σ, j) | j∈P :m−1|σi } \
⋃

`<m

P :`|σi

The choice of BBS has following implications, which are
not fully considered in the existing RCM literature. First,
given a more complex relational skeleton, BBS may yield,
counterintuitively, a sparser ground graph because, as we
can clearly see in the definition, if P ′ is a proper prefix
of P and j ∈ P ′|i, then j /∈ P |i even though there ex-
ists a path of items from i to j along P . Compare Fig-
ure 3(f) with 3(c). The addition of two edges e1–r′1–e′2
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e1.X
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e2.Y e′2.Y

(f) G(S,{D̃})σ′ BBS

e1.X

e2.Y e′2.Y

(g) G(S,{D̃})σ′ PS

Figure 3: Comparison of ground graphs under bridge burning semantics and path semantics. Let S be a schema with
E = {E1, E2, E3}, X ∈ A(E1), Y ∈ A(E2), and R = {R1, R2} where E1, E2 ∈ R1 and E2, E3 ∈ R2 with cardinality
greater than 1. D = [E2, R2, E3, R2, E2, R1, E1].X → [E2].Y. Both semantics yield the same ground graphs (b), (c), and
(e) for the relational skeleton σ. However, the two semantics yield different ground graphs (f,), (g) forM = (S, {D̃}) for
relational skeleton σ′.

in σ′ compared to σ make e′2 ∈ [E1, R1, E2]|σ′
e1 and,

hence, e′2 /∈ [E1, R1, E2, R2, E3, R2, E2]|σ′
e1 . Second, the

two RCMs that differ only with respect to the directionality
of their dependencies may have different (undirected) adja-
cencies in their ground graphs (compare Figure 3(f) with
3(e)). This is because j ∈P |i does not entail i∈ P̃ |j under
BBS since the fact that Q is a prefix of P does not neces-
sarily imply that Q̃ is a prefix of P̃ .

In this paper, we consider RCMs under path semantics,
which is an elegant and more intuitive alternative to BBS.
Further, path semantics shares the desirable properties of
BBS (Maier, 2014): both semantics do not permit revisit-
ing the base item. However, path semantics does not suffer
from the counter-intuitive consequences of BBS and easier
to analyze as we will see in the rest of paper.

4 MARKOV EQUIVALENCE OF RCMS
UNDER PATH SEMANTICS

Recall that, in general, there can be Markov equivalent
CBNs that represent a given set of independence rela-
tions (Pearl, 2000). Because RCMs are essentially rela-
tional counterparts of CBNs, it follows that there can be
multiple RCMs that encode a given set of independence re-
lations in relational domains.

Definition 1 (Markov Equivalence of RCMs). Two RCMs
are Markov equivalent if they entail the same set of rela-
tional d-separation conditions.

The previous attempts to characterize the Markov equiv-
alence of RCMs under BBS (Maier et al., 2013a; Mara-
zopoulou et al., 2015) had relied on analyses of the Ab-
stract Ground Graph (AGG) representation of an RCM.
However, Lee and Honavar (2015) have shown that AGGs
cannot faithfully represent the independence relations en-
coded by RCMs under BBS. Consequently, the RCD algo-
rithm (Maier et al., 2013a), which relies on AGGs to learn
the structure of an RCM under BBS is not complete Lee
and Honavar (2016). Hence, we proceed to characterize the
Markov equivalence of RCMs under path semantics.

X

YW

V Z

(a)

X

YW

V Z

(b)

X

YW

V Z

(c)

Figure 4: An example of a DAG, its pattern, and its CPDAG
where (W,X, Y ) is an unshielded collider and (V,W,X)
and (W,X,Z) are unshielded non-colliders.

Recall that the relational d-separation U ⊥⊥ V | W in an
RCM is equivalent to U |i ⊥⊥ V |i | W|i for every base
item i in every ground graph of the RCM. Hence, a suffi-
cient condition for two RCMs to be Markov equivalent is
that, for every relational skeleton, the corresponding sets of
ground graphs of the two RCMs be Markov equivalent:

∀σ∈ΣS [GMσ ]=[GM′
σ ] ⇒ [M]=[M′] (2)

where [M] and [G] denote the Markov equivalence class
of an RCM and a DAG G, respectively. In Section 4.1, we
will demonstrate that the converse of Equation 2 holds as
well, thereby establishing a necessary and sufficient condi-
tion for two RCMs to be Markov equivalent.

Markov equivalence of DAG First, we recall the char-
acterization of Markov equivalence of DAG (see Figure 4,
Verma and Pearl, 1990; Andersson et al., 1997). Let G be a
DAG with random variables V as vertices. LetX , Y , andZ
be in V. A triple (X,Y, Z) is an unshielded triple if bothX
and Z are adjacent to Y but X and Z are not adjacent. It is
an unshielded collider if they are oriented as X→Y ← Z
in the given DAG. Let G′ be a DAG that share the same
vertices of G. Then, G and G′ are said to be Markov equiv-
alent if they entail identical independence relations among
V. Two DAGs are Markov equivalent if and only if their
patterns are the same (Verma and Pearl, 1990). The pattern
of a DAG is a PDAG where all unshielded colliders are ori-
ented and the only oriented edges are unshielded colliders.
A Markov equivalence class is represented by a completed
PDAG (CPDAG or essential graph), a PDAG in which a
directed edge X → Y implies that every DAG in the class
shares the edge X → Y (compelled edge) while an undi-
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Y Z
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WX

Y Z

(d) R4

Figure 5: Orientation rules to construct a CPDAG from a
pattern and background knowledge where the orientation
of a thick edge is determined by the other given edges. The
edge between X and Z in R4 might be undirected or di-
rected in any direction.

rected edge X − Y implies that there exist two DAGs in
the class where one has X → Y and the other has X ← Y
(reversible edge).

There are at least two systematic methods to discover the
CPDAG from a pattern: The first method uses orientation
rules (Meek, 1995) (Figure 5). The three rules (R1–R3) are
sufficient to discover CPDAG from a pattern, and an addi-
tional rule R4 can deal with background knowledge (i.e.,
known orientations other than those implied by the pat-
tern), if available. The second method exploits an algorithm
for extensibility of a PDAG (Dor and Tarsi, 1992), which
examines whether there exists a DAG which is a consis-
tent extension of the PDAG, that is, the DAG shares the
same sets of adjacencies, unshielded colliders, and oriented
edges (if any) of the PDAG. We proceed to characterize
Markov equivalence of RCM by generalizing the notions
of unshielded triples, pattern, and CPDAG from the setting
of CBNs to the (relational) setting of RCMs.

4.1 THE PATTERN OF AN RCM

We consider unshielded triples in ground graphs of an
RCM and relate them to the RCM under path semantics.
Let i.X , j.Y , and k.Z be three different vertices in the
ground graph GMσ of an RCMM for an arbitrary skeleton
σ ∈ ΣS . Then, (i.X, j.Y, k.Z) is an unshielded triple in
GMσ only if P.Y ∈ adj (M,VX) and Q.Z ∈ adj (M,VY )
where j∈P |σi and k∈Q|σj for i.X and k.Z to be connected
to j.Y . Furthermore, R.Z must not be in adj (M,VX) for
every path R such that k ∈R|σi for i.X and k.Z to be dis-
connected in GMσ . Then, we define a canonical unshielded
triple as follows:

Definition 2 (Canonical Unshielded Triple). Let M be
an RCM defined on a relational schema S. Suppose
(i.X, j.Y, k.Z) is an unshielded triple (UT) in the ground
graph GMσ for some σ ∈ ΣS . There must be two (not nec-
essarily distinct) dependencies P.Y − VX and Q.Z − VY
ofM (ignoring directions) such that j ∈ P |σi and k ∈ Q|σj .
Then, we say that (VX , P.Y, R.Z) is a canonical un-
shielded triple (CUT) ofM for every R ∈ {T | k ∈ T |σi }
where P = {T | j ∈ T |σi }.

Since whenever (i.X, j.Y, k.Z) is a UT in GMσ , so is

(k.Z, j.Y, i.X), it follows that whenever (VX ,P.Y, R.Z)
is a CUT of M, there exists a CUT (VZ ,Q.Y, R̃.X) for
some relational paths Q.

Theorem 3. Two RCMs defined over the same relational
schema are Markov equivalent if and only if their ground
graphs are Markov equivalent for every relational skeleton
of the relational schema:

[M]=[M′] ⇔ ∀σ∈ΣS [GMσ ]=[GM′
σ ].

Proof. (If part) By the definition of relational d-separation.
(Only if part) Let [GMσ ] 6= [GM′

σ ] for some σ ∈ ΣS . Then,
the two ground graphs GMσ and GM′

σ differ either in their (i)
adjacencies or in their (ii) unshielded colliders.
Case (i): There must exist a relational dependency P.Y →
VX in M while both P.Y → VX and P̃ .X → VY are
not in M′ (or vice versa). Then, either P.Y ⊥⊥ VX |
pa(M′,VX) or P̃ .X ⊥⊥ VY | pa(M′,VY ) hold in M′
by causal Markov condition. However, both tests will be
false inM since there exists a relational skeleton σ yield-
ing i.X → j.Y in GMσ where {P} = {T | i ∈ T |σj } while
P.Y /∈ pa(M′,VX) and P̃ .X /∈ pa(M′,VY ).
Case (ii): There must exist a CUT (VX , P.Y, R.Z) corre-
sponding to an unshielded triple (i.X, j.Y, k.Z), which is
an unshielded collider in GMσ and unshielded non-collider
in GM′

σ (or vice versa). Because R.Z /∈ adj (M,VX) for
every R ∈ {T | k∈T |σi }, there must exist a separating set
S ⊆ adj(M,VX) such that VX ⊥⊥ R.Z | S in M as-
suming X 6≺A Z without loss of generality.1 By the def-
inition of relational d-separation, S must be disjoint with
P.Y . However, inM′, VX 6⊥⊥ R.Z | S since S is disjoint
from P.Y , and i.X and k.Z are d-connected with j.Y un-
blocked.

We derive the definition of the pattern of an RCM taking
into account the fact that acyclicity of an RCM is defined
at an attribute class level.

Definition 4 (Pattern of RCM). Let M = (S,D) be an
RCM and CM be all canonical unshielded colliders ofM.
We define the set of attribute class level colliders as

CMA , {(X,Y, Z) | (VX , P.Y, R.Z) ∈ CM}.

Then, the pattern of M, pattern (M), is a partially-
directed RCM (S,D′ ∪D′′) where D′ = {Q.X → VY ∈
D | (X,Y, Z) ∈ CMA } and D′′ = {P.Y −VX | P.Y →
VX ∈ D \D′}.
Lemma 5. [M]=[M′]⇔ pattern(M)=pattern(M′).

Proof. The proof follows from Theorem 3.

1Otherwise, the proof can be obtained using
(VZ , Q̃.Y, R̃.X).
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Figure 6: Illustration of key concepts used to characterize CUTs for a hypothetical RCMM with P.Y ∈ adj (M,VX)
and Q.Z ∈ adj (M,VY ) yielding a UT (i.X, j.Y, k.Z) in GMσ where P and Q correspond to item classes of p and q,
respectively.

Unlike in the case of DAGs, it is not immediately obvious
how to identify all CUTs of an RCM. Fortunately, to dis-
cover the pattern of an RCM, it suffices to identify only
one CUT from the set of CUTs for each triple of attribute
classes if exists.

4.1.1 Characterization of Canonical Unshielded
Triples for Pattern of RCM

How can we identify a subset of CUTs of an RCM that
is sufficient to identify the pattern of the RCM? One ap-
proach is to enumerate all relational skeletons, identify the
UTs in the corresponding ground graphs, and the corre-
sponding CUTs. Because such an approach is not compu-
tationally tractable, we consider the following alternative:
enumerate the skeletons that are just large enough to in-
clude a UT in the corresponding ground graph, and the
corresponding CUT. We first investigate conditions under
which a relational skeleton includes a UT in the corre-
sponding ground graph, and then provide a characteriza-
tion of CUTs in terms of such UTs, which leads to an ef-
ficient CUT enumeration algorithm whose time complex-
ity is polynomial in the number of dependencies, |D|, and
max{|P | | P.X → VY ∈ D} (the maximum length of
dependencies, which is typically bounded by a small con-
stant).

Relational Skeleton of an Unshielded Triple Each
shielded or unshielded triple of item-attributes associates
with two dependencies non-exclusively. Consider a triple
(i.X, j.Y, k.Z) in some skeleton σ ∈ ΣS . Let P.Y ∈
adj (M,VX) and Q.Z ∈ adj (M,VY ) (the two are the
same if Q.Z = P̃ .X) that admit the triple, that is, j ∈ P |σi
and k ∈ Q|σj . Let p = [i, . . . , j] and q = [j, . . . , k] be
paths of items from i to j along P and j to k along Q, re-
spectively. Since p and q must share at least one item j,
there must be a non-empty set of items shared by p and q.
We define anchors, denoted by Jp,q, to be the set of pairs
of indices of items shared by p and q:

Jp,q , {(a, b) | pa = qb}.

For example, Jp,q = {(2, 4) , (4, 8) , (6, 2) , (7, 1)} in Fig-
ure 6. Anchors permit us to construct a small relational
skeleton made of items for P and Q. Thus, we can enu-
merate the candidate anchors and verify if they are indeed
anchors by constructing a relational skeleton that conforms
to the equalities implied by Jp,q.

Characteristic Anchors We consider anchors that allow
us to efficiently enumerate a subset of CUTs that suffice
to identify the pattern of an RCM M. We identify three
special anchors (ar, br), (as, bs), and (at, bt) among the
anchors in Jp,q, and derive three relational paths Rr, Rs,
and Rt from the special anchors.

Consider the item j that is the last shared item of p and the
first shared item of qsuch that (|P | , 1) ∈ Jp,q. Since Jp,q

is not empty, there must be a last shared item for q at the
following anchor:

(ar, br) , arg max(a,b)∈Jp,q
b.

No item in p:ar and qbr: is shared other than the item at the
anchor (ar, br) and, hence, there exists a path of items from
i to k. We define Rr , P :ar on Qbr: where the symbol
“on” is a path concatenation operator (e.g., [E1, R1, E2] on
[E2, R2] = [E1, R1, E2, R2]). We can infer that Rr.Z /∈
adj (M,VX) since i.X and k.Z are disconnected. Next,
we define an anchor for the first shared item of p:

(as, bs) , arg min(a,b)∈Jp,q
a.

We characterize the given unshielded triple by considering
following two cases where (as, bs) is identical to (ar, br)
and where it is not.

Case (ar, br) = (as, bs): A path of items corresponding to
Rr is the only path from i to k that consists of items only
in p and q, and {Rr}⊆{T | k∈T |σi }.
Case (ar, br) 6= (as, bs): In a similar manner we define Rr
with (ar, br), we define Rs , P :as on Qbs:, which satis-
fies k ∈ Rs|σi . Note that Rr = Rs if P as:ar = Qbs:br .
Observing that as < ar ≤ |P | and 1 ≤ bs < br,
we infer that (|P | , 1) can be neither (ar, br) nor (as, bs).
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Hence, there must exist at least three distinct anchors in
Jp,q: {(|P | , 1) , (ar, br) , (as, bs)} ⊆ Jp,q. The existence
of characteristic anchors further implies that there must be
an anchor (a, b) such that ar < a ≤ |P | and 1 ≤ b < bs.
Among such anchors, if par:a:−1 and qb:bs:−1 do not share
any items except the item at (a, b), then there exists a path
of items from i to k, p:as on qb:bs:−1 on par:a:−1 on qbr:,
where the subpath with “: −1” represents the reverse of the
subpath. There do exist such anchors:

(at, bt) , arg max(a,b)∈Jp,q,ar<a,b<bs b,

and we likewise define Rt , P :as on Qbt:bs:−1 on
P ar:at:−1 on Qbr:. We call such a set of anchors,
characteristic anchors. Given the characteristic anchors
{(ar, br) , (as, bs) , (at, bt)} ⊆ Jp,q, we retrieve three re-
lational paths, Rr, Rs, and Rt, such that {Rr, Rs, Rt} ⊆
{T | k∈T |σi }. See Figure 6(d) for characteristic anchors
(as, bs) = (2, 4), (ar, br) = (4, 8), and (at, bt) = (6, 2),
and for paths of items corresponding to Rr, Rs, and Rt.

Construction of CUTs with Characteristic Anchors
The characteristic anchors permit the construction of a
relational skeleton σ such that the corresponding ground
graph GMσ includes a UT. First, since all triples charac-
terized by a given characteristic anchor share common re-
lational path(s) from i to k, the existence of a depen-
dency Rr.Z − VX (ignoring its direction) makes the triple
“shielded” if (ar, br) = (as, bs). Similarly, we can test
“shieldedness” in the case of (ar, br) 6= (as, bs) by check-
ing adj (M,VX)∩{Rr, Rs, Rt} .Z is non-empty. Second,
we can devise an efficient and complete procedure that (vir-
tually) constructs a relational skeleton σ that includes an
unshielded triple in GMσ . Hence, characteristic anchors can
be used to identify the CUTs of an RCM without enumer-
ating the entire set of anchors Jp,q.

We proceed to outline an algorithm (see supplementary
material for details) that, given a pair of dependencies of
an RCM, constructs a CUT. The algorithm initialize can-
didate anchors Jp,q by checking pairs of indices (a, b)
where P a = Qb. Then, the algorithm picks an anchor
as (ar, br), checks whether (ar, br) can be (as, bs) and
yields a UT. Then, it outputs a CUT (VX , {P.Y, (P :ar on
Q:br:−1).Y }, Rr.Z) where the (virtually constructed) re-
lational skeleton σ′ satisfies {Rr} = {T | k ∈ T |σ′

i } and
{P, P :ar on Q:br:−1} = {T | j ∈ T |σ′

i }. If (ar, br) must
differ from (as, bs), then the algorithm explores valid can-
didates for (as, bs) and (at, bt). If all necessary conditions
are passed, then it yields a CUT from among the following:
(VX ,P.Y, Rr.Z), (VX ,P.Y, Rs.Z), and (VX ,P.Y, Rt.Z)
where σ′ satisfies {Rr, Rs, Rt} = {T | k ∈ T |σ′

i } and
P = {T | j ∈ T |σ′

i }, which consists of at most six re-
lational paths2. For example, paths of items in Figure 6(e)
correspond to three distinct relational paths of P.

2P , P :aw on Q:bw :−1, P :as on Q:bs:−1, P :as on Qbt:bs:−1 on

4.2 COMPLETED PARTIALLY-DIRECTED RCM

The pattern of an RCM is a partially-directed RCM
(PRCM) wherein each directed dependency is covered by
some CUT of the RCM. Completed PRCM (CPRCM) is a
PRCM where a dependency is directed if and only if all
valid RCMs with the same pattern have the dependency
oriented in the same direction as in the CPRCM. Since
acyclicity of RCM is defined at the attribute class level,
we orient edges on a partially-directed class dependency
graph GA (initialized with Gpattern(M)

A ) with a set of at-
tribute class level non-colliders, denoted by NMA (N for
short), derived from canonical unshielded non-colliders ob-
tained as a byproduct of discovering the pattern of an RCM.
Then, orientations from completed partially-directed CDG
are used to orient undirected dependencies in the pattern of
RCM resulting the CPRCM.

Given a canonical unshielded non-collider
(VX ,P.Y, R.Z), corresponding attribute class level
non-collider is (X,Y, Z). It is the case that X = Z, that
is, (X,Y,X) ∈ N. Then, we can orient as Y → X , which
corresponds to Relational Bivariate Orientation (RBO,
Maier et al., 2013a). For simplicity, we assume that all
edges of GA that can be oriented using RBO have been
oriented, and we exclude them (e.g., (X,Y,X)) from N.
Otherwise if X 6= Z, then X and Z may be connected
making (X,Y, Z) shielded. This is why the term “un-
shielded” is dropped in attribute class level non-colliders.
To obtain the CPRCM given the pattern of an RCM, we
provide a sound set of rules and a sound and complete
extensibility-based method. The former can be used even
when the set of non-colliders is not complete whereas the
latter requires a complete set of non-colliders. Before we
proceed, we characterize Gpattern(M)

A and NMA :

Proposition 6. Let (X,Y, Z) be an unshielded collider in
GMA , then X → Y ← Z in Gpattern(M)

A .

Proof. This follows from Lemma 4.4.1 in (Maier, 2014)
for the existence of a triple. Since there is no dependency
between X and Z, the triple must be unshielded.

Corollary 7. For every unshielded non-collider
(X,Y, Z) ∈ GMA , (X,Y, Z) ∈ NMA .

Hence, N is simply a set of non-colliders that includes all
unshielded non-colliders.

Sound Rules The four rules in Figure 5 can be used to
correctly orient the edges in a partially-directed CDG GA
(Corollary 7). We provide three additional rules that make
use of N. First, if (X,Y, Z) ∈ N and X → Y , then
Y → Z. This can be viewed as a generalization of R1 that

P at:, P :as on Qbs:br on P ar :, and P :as on Qbs:br on P ar :aw on
Q:bw :−1 with aw , at − γ + 1 and bw , bt − γ + 1 where
γ = LLRSP (P ar :at:−1, Q:bt:−1) (see Lee and Honavar, 2015).
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Algorithm 1 Completing a PDAG given non-colliders.
1: procedure completes(PDAG G, non-colliders N)
2: U := {X→Y, Y →X}X−Y ∈G
3: for X→Y in U do
4: G′ := (G \ {X − Y }) ∪ {X → Y }
5: if ∀V ∈pa(G,Y )(X,Y, V ) 6∈ N and ext (G′,N) then
6: remove edges of G′ from U
7: else orient Y →X in G, remove Y →X from U

8: procedure ext(G, N)
9: H := copy (G)

10: repeat
11: for X in V (H) such that ch(H, X)=∅ do
12: if (V1, X, V2) /∈N for every V1, V2 ∈ adj (H, X)
13: orient Y →X in G for every Y ∈ne (H, X)
14: H := H \ {X}
15: break
16: else return False
17: untilH is empty
18: return True

avoids checking unshieldedness. Second, if (X,Y, Z) ∈ N
and X → Z, then Y → Z. This is similar to R4 in the
sense that Y → Z is a common orientation among possible
orientations of a non-collider that does not create a directed
cycle. Finally, we can identify a shielded collider from the
fact that there must be a sink in any undirected cycle. If
there exists an undirected cycle of length n ≥ 3 where ev-
ery subsequent triple in the cycle except one is non-collider,
then the triple that is not a non-collider must be a collider.
The preceding rules are clearly sound. However, without
further characterization of non-colliders N in a partially-
directed CDG, we cannot prove that they are complete for
learning the structure of an RCM.

Extensibility with Shielded Non-Colliders We general-
ize the algorithm for determining whether a PDAG admits
an oriented extension (PDAG extensibility) (Dor and Tarsi,
1992) to work with a set of non-colliders that may be, but
not necessarily, shielded. The original PDAG extensibility
algorithm finds a vertex without outgoing edges where all
undirected edges on the vertex can be oriented towards the
vertex (i.e., sinkable) without creating new unshielded col-
liders. If such a vertex is found, the undirected edges be-
tween it and its neighbors are oriented towards it. The pre-
ceding steps are repeated after removing the vertex from
the PDAG. The algorithm returns failure if some edges re-
main undirected in the PDAG and no sinkable vertex can
be found. The original algorithm exploits the observation
that a sinkable vertex cannot be “the middle of unshielded
non-colliders”, which we generalize to “the middle of non-
colliders N”. Because the unshieldedness of non-colliders
plays no role in the proof of correctness of the original al-
gorithm, the proof holds for the modified algorithm (Algo-
rithm 1).

Theorem 8. Let G be a PDAG. Let N be a set of non-
colliders which includes all unshielded non-colliders in G.

Then, algorithm ext correctly decides whether there exists
a DAG that is a consistent extension of G satisfying con-
straints imposed by N.

Proof. Let ce (G,N) be a set of DAGs that consistently ex-
tend G for a given set of attribute level non-colliders N.
Let N (G) = {(X,Y, Z) ∈ N | {X,Y, Z} ⊆ V(G)} be a
set of induced non-colliders. Whenever there exists a DAG
G′ ∈ ce (G,N), there must exist X , a sink of G, such that
ce (G −X, N (G −X)) is non-empty since G′ − X satis-
fies N (G −X). Thus the algorithm 1 will maximally ori-
ent the PDAG and return True.

Let G′′ be a DAG in ce (G −X, N (G −X)) and G′′′ be a
reconstructed graph G′′∪{X}∪{Y →X | Y ∈ne (G, X)}.
Then, G′′′ is in ce (G,N): (i) G′′′ is a DAG since adding
a vertex as a sink to a DAG results a DAG; and (ii)
G′′′ satisfies N (G) \ N (G −X) since, for every recon-
structed (shielded or unshielded) collider Y → X ← Z,
(Y,X,Z) /∈ N (by the definition of sinkable vertex).
Therefore, ext finds a DAG in ce (G,N) and returns True
whenever G is extensible; and returns False otherwise.

5 CAUSAL DISCOVERY ALGORITHM

We proceed to present RpCD, a sound and complete causal
discovery algorithm for RCM under path semantics under
the usual assumptions namely, causal Markov condition,
sufficiency, and faithfulness (Spirtes et al., 2000), that al-
low us to interpret every ground graph of RCM as a CBN.
We also assume access to an independence oracle that cor-
rectly answers independence queries with respect to the
RCM. We further assume, as in (Maier et al., 2013a), that
the maximum hop length of dependencies is known a pri-
ori which ensures that only a finite number of candidate
dependencies need to be considered.

RpCD (see Algorithm 2) extends the key ideas of the PC
algorithm (Spirtes et al., 2000) to the relational domain.
Phase I of RpCD identifies adjacencies (Lines 1–11) and
phase II orients the dependencies (Lines 12–23). The phase
I is nearly identical to that of RCD (Maier et al., 2013a).
Given a maximum hop threshold h, all candidate depen-
dencies are enumerated. Then, spurious dependencies are
removed through conditional independence tests. In Lines
12–23, it orients undirected dependencies through condi-
tional independence tests on CUTs. Redundant tests are
avoided by skipping (i) already known non-colliders (Line
15), (ii) already oriented edges (Line 16), and (iii) inactive
non-colliders (Line 17). At an attribute class level, edges
are oriented if forming a collider (Line 19) or forming a
non-collider having the same attribute classes on its flank-
ing elements (Line 20, RBO). All orientations that can be
inferred from the sound orientation rules (see Section 4.2)
are enforced (Line 22). Finally, Line 23 maximally-orients
partially-directed class dependency graph with a complete
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Algorithm 2 RpCD
Input: S schema, O independence tester, h hop threshold
1: initialize D with candidate dependencies up to h hops.
2: initialize an undirected graph G with undirected D.
3: ` := 0
4: repeat
5: for every ordered pair (P.Y, VX) s.t. P.Y −VX ∈G do
6: for every S ⊆ ne(G,VX) \ {P.Y } s.t. |S| = ` do
7: if VX ⊥⊥ P.Y | S then
8: remove {P.Y −VX , P̃ .X−VY } from G.
9: break

10: ` := `+ 1
11: until |ne(G,VX)| − 1 < ` for every X ∈ A
12: initialize U with canonical unshielded triples from G.
13: N := ∅,H := 〈A, {X − Y | P.Y − VX ∈ G}〉
14: for every (VX ,P.Y,R.Z) ∈ U do
15: continue if (X,Y, Z)∈N or
16: {X,Z} ∩ ne(H, Y ) = ∅ or
17: {X,Z} ∩ ch(H, Y ) 6= ∅
18: if exists S⊆adj(G,VX) s.t. R.Z⊥⊥VX | S then
19: if S ∩P.Y = ∅ then orient X→Y ←Z inH
20: else if X=Z then orient Y →X inH
21: else add (X,Y, Z) to N

22: orient edges inH with sound rules with N.
23: completes (H,N)

24: return
⋃
P.Y−VX∈G

{
P.Y →VX Y → X ∈ H
P.Y −VX Y −X ∈ H

set of attribute class level non-colliders N (except the inac-
tive ones that play no role in the orientation of the edges).
RpCD outputs undirected and directed dependencies re-
flecting orientations recovered from Phase II (Line 24).

Theorem 9 (Soundness and Completeness). LetM be an
RCM whose maximum hop length of dependencies is less
than or equal to h. Given access to an independence or-
acle and h, RpCD is sound and complete for learning the
structure of the RCM under path semantics.

Proof. The proof follows from (Maier et al., 2013a) for
Phase I and, for Phase II, from the Markov equivalence
of RCMs (Theorem 3) with the completeness of (i) CUTs
for UTs, (ii) the CUT-enumerating algorithm for (non-
)colliders (CMA and NMA ), and (iii) generalized extensibility
(Theorem 8).

Causal Discovery of RCM under BBS It is easy to see
that a modification of RCD (Maier et al., 2013a) to take ad-
vantage of valid CUTs under BBS will improve the orien-
tation recall of RCD. Given the implications of BBS (Sec-
tion 3), one can check whether a CUT of an RCM under
path semantics correspond to a UT in some ground graph
of the RCM under BBS. The “valid” CUTs under BBS can
then replace UTs of AGG (Maier et al., 2013b; Lee and
Honavar, 2016) used by RCD for orientating the edges.
Note that each UT of AGG is a special case of CUT where
(ar, br) = (as, bs) with P ar: = Q:br:−1.

6 SUMMARY AND DISCUSSION

Relational causal models (RCM) offer an attractive ap-
proach to modeling causality in real world settings that are
modeled by relational domains. Previous studies of RCM
have assumed bridge burning semantics (BBS). A care-
ful examination of RCM under BBS reveals its counter-
intuitive behavior. We consider RCM under path seman-
tics which offers a viable alternative to BBS while preserv-
ing its desirable properties while avoiding its counterin-
tuitive consequences. We introduced canonical unshielded
triples, a novel graphical construct that we use to charac-
terize Markov equivalence of RCM under path semantics.
We described RpCD, a sound and complete algorithm for
recovering the structure of an RCM under path semantics
from conditional independence queries. We also suggested
ways to improve the orientation recall of algorithms for
learning the structure of RCM under BBS.

We conclude by listing some promising directions for fur-
ther research: (i) Our analysis is based on perfect in-
dependence tests. In practice, the reliability of indepen-
dence tests depends on the accuracy of parametric as-
sumption for the underlying distribution, and the quan-
tity of available data. Many methods have been devel-
oped to make the structure learning algorithm for causal
Bayesian networks (CBNs) robust to such errors including
adjacency-conservative (Lemeire et al., 2012), orientation-
conservative (Ramsey et al., 2006) and order-independent
(Colombo and Maathuis, 2014) PC algorithms. It would
be interesting to consider variants of RpCD that incorpo-
rate such approaches in the relational setting. (ii) There are
variants of CBN that relax some of its restrictive assump-
tions (Richardson and Spirtes, 2002). Similar extensions of
RCMs would be interesting to consider. (iii) It would be in-
teresting to consider methods for estimating a spillover ef-
fect in the presence of interference (Tchetgen Tchetgen and
VanderWeele, 2012) due to violation of stable unit treat-
ment variable assumption. (iv) RCM currently does not al-
low class dependency graph level cycles even if such cy-
cles are guaranteed to not introduce a cycle in any of the
ground graphs of the model. For example, a person’s traits
are inherited from those of his/her biological parents. We
can consider relaxing the acyclicity assumptions underly-
ing RCM to permit such cycles.
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Abstract

Random sampling in compressive sensing (CS)
enables the compression of large amounts of in-
put signals in an efficient manner, which is use-
ful for many applications. CS reconstructs the
compressed signals exactly with overwhelming
probability when incoming data can be sparsely
represented with a few components. However,
the theory of CS framework including random
sampling has been focused on exact recovery of
signal; impreciseness in signal recovery has been
neglected. This can be problematic when there is
uncertainty in the number of sparse components
such as signal sparsity in dynamic systems that
can change over time. We present a new theoret-
ical framework that handles uncertainty in signal
recovery from the perspective of recovery suc-
cess and quality. We show that the signal recov-
ery success in our model is more accurate than
the success probability analysis in the CS frame-
work. Our model is then extended to the case
where the success or failure of signal recovery
can be relaxed. We represent the number of com-
ponents included in signal recovery with a right-
tailed distribution and focus on recovery quality.
Experimental results confirm the accuracy of our
model in dynamic systems.

1 INTRODUCTION

Continuous flows of big data are generated by many
sources nowadays. Among these, resource limited devices
occupy a significant portion. For these devices, sensing and
transmitting massive data are important challenges, as they
are concerned with saving resources.

Compressive sensing (CS) (Seeger & Nickisch, 2008; Hsu
et al., 2009; Lopes, 2013; Malioutov & Varshney, 2013;
Zhu & Gu, 2015) is a well suited choice for resource

limited devices because it enables the sensing and com-
pression of massive data without the complexity burden
imposed by conventional schemes. Recent advances in
CS reduce the complexity burden even further with ran-
dom sampling, by which CS schemes have been success-
fully applied to broader application areas such as sampling
of spatio-temporal data (Foucart & Rauhut, 2013; Lee &
Choi, 2014).

CS reconstructs the exact signals from the compressed
measurements with overwhelming probability when in-
coming data can be sparsely represented (i.e., small num-
bers of components). Therefore, most CS frameworks
are built based on the assumption that incoming data with
sparse representation can be exactly recovered when an
enough number of measurements is given.

Unfortunately, this assumption does not hold in practice
when there is no guarantee of enough measurements for
varying signal sparsity. This uncertainty occurs especially
with many dynamic systems where the numbers of compo-
nents change over time. The assumption also implies that
the reconstruction would fail when input signals have more
components (denser) than a predefined threshold. This pre-
vents deriving a tight probabilistic model which takes ac-
count of the numbers of components and measurements
in signal recovery. In this regard, recently introduced dy-
namic CS frameworks (Malioutov et al., 2010; Sejdinovic
et al., 2010; Shahrasbi et al., 2011; Vaswani & Lu, 2010;
Ziniel & Schniter, 2013) provide the way of reducing the
number of necessary measurements exploiting temporal
correlation between measurements. Nevertheless, a recov-
ery success/quality analysis with uncertainty in signal spar-
sity has not been provided by existing CS frameworks yet.

This paper presents a new theoretical framework for the
random sampling in CS that handles impreciseness in sig-
nal recovery when the number of measurements lacks for
varying signal sparsity. Our framework incorporates the
beta distribution to present the signal recovery success
more accurately than the success probability analysis in the
CS framework. Furthermore, we relax the concept of sig-
nal recovery success and present the number of components
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included in the signal recovery as a varying quantity, for
which we propose right-tailed distribution modeling. We
believe our new framework will bridge the gap between
success and failure of signal recovery in CS frameworks.

2 COMPRESSIVE SENSING AND
RANDOM SAMPLING

Compressive sensing, or compressed sampling (CS), is an
efficient signal processing framework which incorporates
signal acquisition and compression simultaneously (Bara-
niuk, 2007; Candès & Wakin, 2008). CS enables a signal
to be acquired with a number of samples that is far fewer
than an original signal dimension and of the same order as
the number of (significant) components.

2.1 COMPRESSING WHILE SENSING

In CS, a signal is projected onto random vectors whose car-
dinality is far below the dimension of the signal. Consider
a signal x ∈ RN is compactly represented with a sparsi-
fying basis Ψ having just a few components: x = Ψs,
where s ∈ RN is the vector of transformed coefficients
with a few significant coefficients. Here, Ψ could be a ba-
sis that makes x sparse in a transform domain such as the
DCT, wavelet transform domains, or even the canonical ba-
sis, i.e., the identity matrix I, if x is sparse itself without the
help of a transform.

Definition (K-sparse Signal). A signal x is called K-
sparse if it is a linear combination of only K�N basis
vectors such that

∑K
i=1 sni

ψni
, where {n1, . . ., nK} ⊂

{1, . . ., N}; sni
is a coefficient in s; and ψni

is a column
of Ψ.

In practice, some signals may not be exactly K-sparse.
Rather, they can be closely approximated withK basis vec-
tors by ignoring many small coefficients close to zero. This
type of signal is called compressible (Baraniuk, 2007; Fou-
cart & Rauhut, 2013).

CS projects x onto a random sensing basis Φ ∈ RM×N as
follows (M<N ):

y = Φx = ΦΨs, (1)

where Φ should have the restricted isometry property
(RIP).1 A conventional approach for Φ to satisfy RIP is
sampling its independent identically distributed (i.i.d.) ele-
ments from the Gaussian distribution or other sub-Gaussian
distributions (e.g., Rademacher/Bernoulli distribution).

The system shown in (1) is underdetermined, as the num-
ber of equations M is smaller than the number of variables

1The random sensing basis Φ have RIP if (1 − δ)‖s‖22 ≤
‖ΦΨs‖22 ≤ (1 + δ)‖s‖22 for small δ ≥ 0, and this condition
applies to all K-sparse s.

N , i.e., there are infinitely many x’s that satisfy y = Φx.
Nevertheless, this system can be solved with overwhelm-
ing probability exploiting the fact that s is K-sparse. Here
M = O(K log(N/K)) in the case of Gaussian and sub-
Gaussian sensing matrices (Candès & Wakin, 2008).

2.2 RANDOM SAMPLING

Random sampling is a variant of CS which can further re-
duce the computational complexity to a constant time (Fou-
cart & Rauhut, 2013; Lee & Choi, 2014). The random sam-
pling scheme is based on the fact that it is possible to con-
struct Φ in (1) from a random selection of rows from the
identity matrix I, which is equivalent to the random sam-
pling of coefficients in x.

Note that the sparsifying basis Ψ should be incoherent2

with I, such as the DCT and wavelet transform bases, for
the successful recovery of the original signal (Candès &
Wakin, 2008; Foucart & Rauhut, 2013). Unless they are
incoherent, the measurement vector y ∈ RM in (1) would
contain zero entries. Here, the number of required mea-
surements M is larger than in the cases of Gaussian and
sub-Gaussian matrices, that is, M = O(K logN).

2.3 RECOVERY OF SIGNAL

A signal recovery algorithm takes measurements y, a ran-
dom sensing matrix Φ, and the sparsifying basis Ψ. The
sensing matrix Φ and sparsifying basis Ψ are assumed to
be known to a decoder. The signal recovery algorithm then
recovers s knowing that s is sparse. Once we recover s, the
original signal x can be recovered through x = Ψs. The
recovery algorithm reconstructs s by the following linear
program:

argmin ‖s̃‖1 subject to ΦΨs̃ = y. (2)

The optimization problem in (2) is solved by a `1-
minimization method (basis pursuit) (Boyd & Vanden-
berghe, 2004), greedy methods such as orthogonal match-
ing pursuit (Pati et al., 1993), or thresholding-based meth-
ods such as iterative hard thresholding (Blumensath &
Davies, 2008). Choosing a specific algorithm depends on
Φ, M , N , and K: recovery success rates and speed can
only be determined by numerical tests (Foucart & Rauhut,
2013).3 In this paper, we reconstruct signals by the basis
pursuit.

Specifically in the case of random sampling, the solution
s? to (2) obeys

‖s? − s‖2 ≤ C1 · ‖s− sK‖1 (3)

2The two bases Φ and Ψ are incoherent when the rows of Φ
cannot sparsely represent the columns of Ψ and vice versa.

3Note that greedy methods are not always fast.
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Figure 1: Recovery error of audio data for different num-
bers of measurements M over time. Each frame has a sig-
nal length N = 512. Colors close to blue represent smaller
errors, whereas colors close to red represent larger errors.

for some constant C1 > 0, where sK is the vector s
with all but the largest K components set to 0. When
an original signal is exactly K-sparse, then s = sK with
M = O(K logN) measurements, which implies that the
recovery is exact, i.e., s? = s.

3 A NEW PERSPECTIVE ON
RECOVERY SUCCESS

The success of signal reconstruction in compressive sens-
ing (CS) is not deterministic. For instance, when we say an
exact recovery of aK-sparse signal is achievable with over-
whelming probability, it implies there is also the chance of
recovery not being exact.

Most CS literature assumes a sufficient number of mea-
surements M such that an exact recovery is almost always
achievable (Candès & Wakin, 2008; Foucart & Rauhut,
2013), which is based on an assumption that sparsity K
is already known or does not exceed a certain bound. How-
ever, the signal sparsity in dynamic systems may change
over time and an excessive number of measurements may
waste resources such as network bandwidth and storage
space. For example, Figure 1 shows recovery error over
time for audio data (a 7 second recording of a trumpet
solo) (Ziniel et al., 2012), where varying signal sparsity in-
curs different recovery error with a fixed number of mea-
surements over time. Here we cannot simply increase the
number of measurements to eliminate error, as it is unrea-
sonable in terms of compression. Therefore, we propose a
new theoretical framework for the random sampling of CS
and provide a new perspective on signal recovery.

3.1 COMPRESSIVE SENSING FRAMEWORK

In the random sampling of CS, the number of required
measurements M = O(K logN) can be detailed as fol-
lows (Foucart & Rauhut, 2013):

M ≥ C ·K ln(N) ln(ε−1) (4)

for some constant C > 0, where ε ∈ (0, 1) denotes the
probability of an inexact recovery of the K-sparse signal.
In particular, the signal recovery succeeds with a probabil-
ity of at least 1− ε if (4) holds.4

We can then express (4) with regard to the probability of
failure ε, which is given by

IP(s? 6= s |M,N,K) := ε ≤ exp

(
− M

C · ln(N)K

)
.

(5)
Thus, the probability of failure (inexact recovery) IP(s? 6=
s | M,N,K) is conditional upon M , N , and K. Since we
are interested in the dynamic signal sparsity K, we model
K as a random variable with M and N as fixed quantities.

If we denote an arbitrary probability density function (pdf)
of K as fK(k), we can marginalize over k and find the
upper bound of failure probability as follows:

IP(s? 6= s |M,N) =

∫

k

IP(s? 6= s |M,N,K) · fK(k) dk

≤
∫

k

exp

(
− M

C · ln(N)K

)
fK(k) dk.

(6)

Therefore, we can state that a signal recovery succeeds
with a probability of at least 1 −

∫
k

exp(−M/(C ·
ln(N)K))fK(k)dk, given the distribution of signal spar-
sity fK(k).

The upper bound in (6) may have an analytic solution when
K follows certain distributions such as the inverse Gaus-
sian distribution and the gamma distribution.5

Remark Assuming fK(k) = IG(µ, λ), the upper bound
of (6) is
√
λ exp(λ/µ−

√
2λ/µ2

√
M/(C · ln(N)) + λ/2)√

2M/(C · ln(N)) + λ
, (7)

where µ and λ are the mean and the shape parameter of the
inverse Gaussian distribution, respectively.

Remark Assuming fK(k) = Gamma(κ, θ), the upper
bound of (6) is

2

Γ(κ)

(
M

C · ln(N)θ

)κ/2
K−κ

(
2

√
M

C · ln(N)θ

)
, (8)

4See Theorem 12.20 (Foucart & Rauhut, 2013).
5Since K ≥ 0, probability distributions supported on semi-

infinite intervals, i.e., (0,∞), are rational choices.
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where κ and θ are the shape parameter and the scale pa-
rameter of the gamma distribution, respectively; Γ(·) is the
gamma function; and K−κ(·) is the modified Bessel func-
tion of the second kind.

3.2 MODELING SUCCESS AND FAILURE

Unfortunately, the probability of signal recovery failure ε
given in (5) does not hold in practice because there is a dis-
crepancy between the failure probabilities in the CS frame-
work and actual random sampling, as will be further ex-
plained in Section 5.1. Thus we have to model the success
or failure probability of signal recovery from a new per-
spective.

We can model the new pdf of signal recovery success us-
ing the mixture of the Dirac delta function and the beta
distribution, which incorporates both stochastic and deter-
ministic cases. We introduce Kmin and Kmax to denote the
minimum and the maximum signal sparsities which yield
stochastic probability, as opposed to a deterministic result
where signal recovery always succeeds or always fails.

Definition (Recovery Success Model). Let
IP(s?=s|M,N) := Π. The pdf of Π given K is given by6

fΠ|K(π | k):=




δ(π − 1) k < Kmin

Beta(αK , βK) Kmin ≤ k ≤ Kmax

δ(π) Kmax < k
. (9)

Combining this definition with an arbitrary pdf fK(k) of
the dynamic signal sparsity K, we can find the success
probability distribution marginalized over k as follows:

fΠ(π) =

∫

k

fΠ|K(π | k)fK(k) dk

=

∫ Kmin

0

δ(π − 1)fK(k) dk

+

∫ Kmax

Kmin

Beta(αK , βK) · fK(k) dk

+

∫ ∞

Kmax

δ(π)fK(k) dk

= δ(π − 1)FK(Kmin) + δ(π)(1− FK(Kmax))

+

∫ Kmax

Kmin

Beta(αK , βK) · fK(k) dk, (10)

where FK(·) is the cumulative distribution function (CDF)
of K.

The two Dirac delta function terms in (10) can be inter-
preted as probability masses. Since

∫Kmax

Kmin
Beta(αK , βK) ·

fK(k) dk does not have an analytic solution, we compute
this value numerically.

6Beta(αK , βK) here is used to denote the pdf of the beta dis-
tribution.
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Figure 2: Histograms of success probability for various
K’s. Success probability distribution for each K was ob-
tained with 300 different random signed spike vectors for
N = 512 and M = 100. A single success probability for
each signed spike vector was calculated with 300 experi-
ments.

As an illustrative example, suppose that we examine the
success probability by generating many different signed
spike (±1) vectors for each signal sparsity and then per-
forming experiments for each signed spike vector.7 Fig-
ure 2 shows histograms of success probability for various
signal sparsities, where Kmin = 20 and Kmax = 30.

The success probability shown in Figure 2 naturally fol-
lows the beta distribution with its parameters α and β de-
pending on signal sparsity, i.e., IP(s?=s | M,N,K) ∼
Beta(αK , βK).8 The beta distribution is well known as the
conjugate prior for the Bernoulli and the binomial distribu-
tions which are ideal for modeling success/failure.

3.3 MODELING ACCURACY

Here, we present the main theoretical contribution: the
recovery success model defined in (9) is tighter than the
lower bound of that in the existing CS framework explained
in Section 3.1, when the number of measurements is not
enough. We show the failure probability in the CS frame-
work (5) is incapable of reflecting the actual failure prob-
ability of signal recovery. Not only can’t the inequality
IP(s? 6= s | M,N,K) ≤ exp(−M/(C · ln(N)K)) pro-
vide tight probability of failure, but the inequality itself is
inaccurate.

This inaccuracy results from the slowly decaying lower
bound of success probability, that is, 1 − exp(−M/(C ·
ln(N)K)). In fact, we can show this lower bound decays
slower than a power-law decay by the following lemma.

7Detailed settings are explained in Section 5.1.
8If more than 300 experiments had been performed, each

success probability distribution would have been more sharply
peaked due to a smaller variance.
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Lemma 1 (Slackness of Recovery Success Probability).
There exists K0 > 0 such that for all K > K0, the lower
bound of recovery success probability in the CS framework
(Section 3.1) is greater than the value of a power-law-
decay function.

Proof. We need to show the following inequality

1− exp

(
− M

C · ln(N)K

)
> K−α (11)

holds if K > K0 for some K0 > 0, where α > 0. Adding,
subtracting, and taking the power K on both sides yields

(1−K−α)K > exp

(
− M

C · ln(N)

)
. (12)

We now use the binomial approximation on the left-hand
side: (1−K−α)K ≥ 1−K ·K−α. Thus we instead prove
the following inequality

1−K1−α > exp

(
− M

C · ln(N)

)
(13)

holds if K > K0 for some K0 > 0.

If we assume α > 1, then adding, subtracting, and taking
the power 1/(1− α) on both sides of (13) yields

(
1− exp

(
− M

C · ln(N)

))1/(1−α)

< K. (14)

SettingK0 = (1−exp(−M/(C · ln(N))))1/(1−α), we can
argue that for all K > K0, the lower bound of recovery
success probability is greater than the value of a power-
law-decay function.

Corollary 2. In the CS framework (Section 3.1), there is
always a chance of succeeding at signal recovery however
large K is.

Proof. The power-law-decay function K−α in (11) slowly
converges to zero as K → ∞: its value is noticeably
greater than zero even with a large K. As the lower bound
of recovery success probability is greater than the value of
the power-law-decay function for all K > K0, there is al-
ways a chance of recovery success however largeK is.

The claim of the CS framework in Corollary 2 is in fact im-
plausible because it says we can even setK > M and there
is still a chance of success. We cannot expect signal recov-
ery with a number of measurements M less than K. We
now show that our recovery success model provides more
accurate success probability by the following theorem.

Theorem 3. The recovery success model in (9) is tighter
than the lower bound of recovery success probability given
by the CS framework (Section 3.1) with a limited number
of measurements.

Proof. In contrast to Corollary 2, our recovery success
model can yield IP(s? = s |M,N,K) = 0 with a bounded
Kmax. In particular, we can let the mean of Beta(αK , βK),
αK/(αK + βK), converge to zero with αKmax

→ 0.

Similarly, we show this mean converges to one (IP(s? = s |
M,N,K) = 1) with Kmin which is not so close to zero,
whereas the lower bound of the recovery success probabil-
ity given by the CS framework converges to one only if K
is very close to zero.

We can let αK/(αK + βK) converge to one with βKmin
→

0. In contrast, 1 − exp(−M/(C · ln(N)K)) → 1 if, and
only if, K → 0. Since 0 < Kmin < Kmax < ∞, we can
argue that our recovery success model can provide tighter
recovery success probability.

3.4 PARAMETER LEARNING IN DYNAMIC
SYSTEMS

When the signal sparsity K changes in dynamic systems,
it does not change in an abrupt manner; rather, it tends to
smoothly change over time (Vaswani & Lu, 2010; Ziniel
& Schniter, 2013). One simple way to model this correla-
tion between K’s is to utilize the Markov model (Ziniel &
Schniter, 2013). In this setup, each K makes up a state and
each state is associated with the recovery success probabil-
ity. This can be best modeled by the hidden Markov model,
where each state K generates success/failure according to
the emission probability.

In our scenario, signal recovery success is observed in an
environment where the signal sparsity varies over time. We
want to estimate parameters of the hidden Markov model,
especially the emission probabilities. Since our recovery
success model employs the beta distribution as conjugate
distributions (prior and posterior), we can learn its parame-
ters αK and βK for each state K.

Specifically, the decoder can observe signal recovery suc-
cess/failure and corresponding signal sparsity K at each
decoding step. Then using these emission and state se-
quences, it can sequentially update the parameters αK and
βK for each state K (Durbin et al., 1998), by simply incre-
menting the value of αK by 1 for each success or the value
of βK by 1 for each failure.

In order to prevent over-fitting with insufficient observa-
tions, it is preferable to have hyperparameters of the prior
beta distribution set according to K’s. In Figure 2, we can
clearly see the trend of αK and βK for different K’s: αK
decreases, whereas βK increases as K grows.9 Therefore,
these hyperparameters can act as the effective numbers
of observations of recovery success/failure, reflecting our
prior belief on signal recovery success for different K’s.

9Also, see the proof of Theorem 3.
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4 FURTHER ANALYSIS ON RECOVERY
QUALITY

When a signal of interest is not exactly K-sparse but com-
pressible, as discussed in Section 2.1, the signal recovery in
Section 2.3 can be treated from a different perspective (Lee
& Choi, 2015). In particular, the inequality (3) is consid-
ered differently.

If an original signal is compressible, then the quality of a
recovered signal is proportional to that of the K most sig-
nificant pieces of information. We get progressively bet-
ter results as we compute more measurements M , since
M = O(K logN) (Candès & Wakin, 2008). Therefore,
Ψs? ∈ RN also makes progress on its quality as M in-
creases.10

From this viewpoint, the success or failure of signal recov-
ery no longer exists. Rather, we can view the number of
components included in the signal recovery as a varying
quantity. Specifically, if a signal recovery is about to fail
with a given K, then K can be lowered to make the re-
covery eventually succeed. Here the number of included
components K varies for different recoveries and signals,
as analogous to the success probability in Section 3.2 that
can be calculated with different recoveries and varies for
different signals.

In this regard, (3) can be utilized to infer varying K’s over
different recoveries and signals. Here our assumption is
that the upper bound in (3) is tight such that we solve the
following optimization problem:

maxK subject to ‖s? − s‖2 ≤ C1 · ‖s− sK‖1.
(15)

In (15), C1 has to be determined, where the maximum sig-
nal sparsity Kmax introduced in Section 3.2 plays a key
role to set the upper limit on how large K can be, since
K > Kmax is not reasonable.

In particular, we can generate a compressible signal si ∈ S
such that ‖si‖1 = C`1 and ‖si‖2 = C`2 for all i, where
S is the set containing many different signals; C`1 > 0
and C`2 > 0 are constants. For each si, we have a set S?i
which contains many different recoveries s?ij . Then C1 can
be found as follows:

C1 =
min ‖s?ij − si‖2
‖si − sKmax

i ‖1
, (16)

where sKmax
i denotes the compressible signal si with all but

the largest Kmax components set to 0.

Varying K’s obtained through (15) can be represented by
a pdf, which has been empirically shown to follow the
gamma distribution (Lee & Choi, 2015). We are interested

10The error bound follows (3) as well if Ψ is an orthogonal
matrix, which is usually the case.

in the shape of this pdf, which is shown by the following
proposition.
Proposition 1. The pdf of K, the number of components
included in the signal recovery of a compressible signal, is
skewed to the right, i.e., right tailed.

Proof. Since ‖si‖1 = C`1 and ‖si‖2 = C`2 for all i, we
can conceive the same sequence {sn} of elements (absolute
values) in si for all i. Then we have

‖si − sKi ‖1 =
N−K∑

n=1

sn. (17)

Without loss of generality, we consider the partial sum∑N−K
n=1 sn in (17) to be an arithmetic series which can be

represented by a quadratic function in terms of K. We also
assume the inequality constraint in (15) is the equality con-
straint such that ‖s? − s‖2 = C1 · ‖s− sK‖1.

If we take the (partial) inverse function of the
quadratic function, we have K ∼ Kmax −√
‖s? − s‖2 − (min ‖s?ij − si‖2). Assuming the dis-

tribution of ‖s? − s‖2 is symmetric (zero skewness), this
asymptotic relation says ‖s? − s‖2 will be compressed as
it becomes large, which in turn makes the pdf of K right
tailed.

A similar claim can be made if we consider the partial
sum

∑N−K
n=1 sn to be a geometric series, where K ∼

N − log(‖s? − s‖2). In this case, the pdf of K is skewed
to the right as well.

4.1 ERROR ANALYSIS IN DYNAMIC SYSTEMS

Since the success or failure of signal recovery does not exist
in this framework, we instead investigate the amount of er-
ror occurring during the recovery procedure in an expected
value sense. In particular, the best K-term approximation
‖s− sK‖1 in (3) is known to be bounded as follows (Bara-
niuk et al., 2010):

‖s− sK‖1 ≤
2G

K
, (18)

where the constant G can be learned by the power-law de-
cay such that each magnitude of components in s, sorted in
decreasing order, is upper bounded byG/i2. (i = 1, . . . , N
is the sorted index.)

Then we can analyze the `2 error E of signal recovery as-
suming fK(k) = Gamma(κ, θ), which is given by

E =

∫

k

C1 ·
2G

k
fK(k) dk =

2C1G

θ
B(κ− 1, 1), (19)

where B(·, ·) is the beta function (Lee & Choi, 2015). Here
the pdf fK(k) is employed to represent varying K’s.11

11Note that this pdf is different from the one introduced in Sec-
tion 3.
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In this framework, there is no longer such an indicator as
the timely varying signal sparsity K in Section 3, because
signals are compressible and their coefficients are already
populated with small, but non-zero, coefficients. Thus, we
may assume the same gamma distribution over time, whose
parameters κ and θ can then be estimated.

In order to prevent over-fitting to insufficient observations,
we introduce the conjugate prior for the gamma distribu-
tion. It is known that the conjugate prior of the gamma dis-
tribution has the following form (Miller, 1980; Fink, 1997).

IP(κ, θ | p, q, r, s) =
1

Z
· p

κ−1 exp(−q/θ)
Γ(κ)rθsκ

, (20)

where p, q, r, s > 0 are hyperparameters that are sequen-
tially updated with p′ = pk, q′ = q + k, r′ = r + 1, and
s′ = s+ 1;12 and the normalizing constant Z is

Z =

∫ ∞

0

pκ−1Γ(sκ+ 1)

Γ(κ)rqsκ+1
dκ. (21)

Using (19) and (20), we can marginalize over κ and θ to
estimate error Ê as follows:

Ê =

∫

κ

∫

θ

E · IP(κ, θ | p, q, r, s) dθ dκ

=
2C1G

Z

∫ ∞

0

pκ−1

(κ− 1)Γ(κ)r

∫ ∞

0

exp(−q/θ)
θsκ+1

dθ dκ

=
2C1G

Z

∫ ∞

0

pκ−1Γ(sκ)

(κ− 1)Γ(κ)rqsκ
dκ, (22)

which can be computed numerically.

5 EXPERIMENTAL RESULTS

5.1 RECOVERY SUCCESS

In Section 3, we discussed the discrepancy between the
failure probabilities in the CS framework and actual ran-
dom sampling. In order to show this discrepancy, we arti-
ficially generated signed spikes ±1 at random locations in
proportion to desired sparsities and densified these spikes
using Ψ13 to perform the random sampling.

For each signal sparsity K, the actual failure probability
can be calculated for different recovery experiments. To
this end, we adopted a standard optimization method (ba-
sis pursuit) to solve the optimization problem in (2) (Chen
et al., 1998). Specifically, the primal-dual algorithm
based on the interior point method was employed to solve
(2) (Boyd & Vandenberghe, 2004).

12Here, p′, q′, r′, and s′ are updated posterior hyperparameters;
and k is a single observation.

13We used DCT as the sparsifying basis Ψ throughout experi-
ments.
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Figure 3: Comparison between actual failure probability
and failure probabilities given in (5) with varying C’s. Ac-
tual failure probability of each signal sparsity K was ob-
tained with 300 experiments for N = 512 and M = 100.

Figure 3 shows that the actual failure probability of signal
recovery with varying signal sparsity does not follow the
failure probability given in the CS framework. The failure
probability in (5) cannot model the actual failure proba-
bility of signal recovery, regardless of the value chosen for
constant C. This result confirms Lemma 1 and Corollary 2.

Moreover, in Section 3.2 we modeled the new pdf of sig-
nal recovery success fΠ(π) in (10). We compared this new
pdf with the upper bound of failure in (6), given a dynamic
signal sparsity K. Specifically, we employed the inverse
Gaussian distribution such that fK(k) = IG(30, 200). Fig-
ure 4 exhibits the efficacy of our recovery success model,
where the lower bounds of success probability given in the
CS framework fail to capture actual success probability in
random sampling case. This result confirms Theorem 3.

Note that our recovery success model provides the base-
line of recovery success for any CS frameworks that are
specifically designed to handle varying signal sparsity. For
instance, Figure 5 shows histograms of success probability
for various signal sparsities using Modified-CS (Vaswani
& Lu, 2010).14 Compared with Figure 2, the success prob-
ability shown in Figure 5 also follows the beta distribution;
but success probability is higher than that of basis pursuit
for a given sparsity K (Kmin = 21 and Kmax = 31),
thanks to the ability of Modified-CS to handle dynamic
signal sparsity. The recovery success model in (9) is still
effective here as a theoretical framework, or the recovery
success model using the basis pursuit may promise a mini-
mum guarantee for the recovery success of other CS frame-
works.

We also employed real-world environmental data sets ob-

14Results were obtained with two frames where the second
frame has one more spike than the first frame so that Modified-
CS could exploit smoothly varying signal sparsity. Histograms in
Figure 5 are the success probabilities of the second frame.
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Figure 4: Comparison between our new success probabil-
ity distribution in (10) and the lower bounds of success
probability obtained by (6) with varying C’s. The inverse
Gaussian distribution was used for fK(k). Two probability
masses are shown by vertical arrows, where solid boxes
atop the arrows denote their probabilities. Three verti-
cal dashed/dotted lines represent the lower bounds by (6):
C = 0.5 at 0.6781; C = 1 at 0.4450; and C = 2 at 0.2596.
Here, Kmin = 20 and Kmax = 30.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

Success probability

D
en

si
ty

 

 
K=21 K=22 K=23 K=24 K=25 K=26 K=27 K=28 K=29 K=30 K=31

Figure 5: Histograms of success probability for various
K’s using Modified-CS (Vaswani & Lu, 2010). Success
probability distribution for each K was obtained with 100
different random signed spike vectors for N = 512 and
M = 100. A single success probability for each signed
spike vector was calculated with 100 experiments. Com-
pared with the results with basis pursuit in Figure 2, suc-
cess probability is higher for a given sparsity K. Note also
that 100 experiments resulted in a larger variance for each
K.

tained from wireless sensor network deployments (Quer
et al., 2012): humidity and temperature. In addition, au-
dio data shown in Figure 1 was used for comparison as
well. Random numbers representing the dynamic signal
sparsity K were drawn from the inverse Gaussian distri-
bution (fK(k) = IG(30, 200)) and we used this K to ran-
domly choose components sorted in decreasing order; other

components were set to zero. Figure 6 shows the success
probability of signal recovery follows the shape of Figure 4.

5.2 RECOVERY QUALITY

When a signal is compressible and not exactly K-sparse,
this signal is basically dense. In Section 4, we regarded the
number of components included in the signal recovery as
a varying quantity. We are interested in the general shape
of this quantity in distribution. In order to verify Propo-
sition 1, we performed experiments using real data sets as
well as artificially generated random signed spikes.

We first provide results with real-world data sets to verify
Proposition 1. Figure 7 displays the histograms of K, the
number of components included in each signal recovery,
which was obtained using the method explained in Sec-
tion 4. We can identify that Proposition 1 actually holds
here, as all distributions are skewed to the right. Fur-
thermore, the distributions follow the gamma distribution,
which is also natural since the gamma distribution has pos-
itive skewness, i.e., right tailed.

In addition, random signed spikes were artificially gen-
erated in different magnitudes at random locations and
densified to perform random sampling. In particu-
lar, we considered an arithmetic sequence of length 50
(2, 4, 6, . . ., 98, 100), whose elements were placed at ran-
dom locations in each vector. These signals are dense
enough to be used for experiments because signal recovery
always fails when K > 30 in our case, as shown in Fig-
ure 3. Figure 8 displays the histogram ofK and the gamma
distribution fitting, where we can again see that Proposi-
tion 1 holds.

Furthermore, we analyze the `2 error E of signal recov-
ery assuming fK(k) = Gamma(κ, θ) using (19). In or-
der to show its efficacy, we compared the solutions of (19)
with real data sets. For humidity data, E = 94.3533 while
the average `2 norm of data is 564.8585; for temperature
data, E = 75.5441 while the average `2 norm of data is
627.8038; and for audio data, E = 5.0979 while the aver-
age `2 norm of data is 1.5866. Apart from the case of audio
data, (19) provides useful estimators for the upper bound
of amount of error during recovery. It should be noted that
this bound is rather loose due to a large constant G in (18),
which could be improved with a less conservative G.

6 CONCLUSION

We have presented a new theoretical CS framework in ran-
dom sampling which handles uncertainty in signal recovery
from a new perspective. The success probability of signal
recovery in random sampling was investigated when signal
sparsity can vary with an insufficient number of measure-
ments. The success probability analysis in the existing CS
framework was shown to be incapable of reflecting actual

404



0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

700

Success probability

D
en

si
ty

(a) humidity

0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

700

Success probability

D
en

si
ty

(b) temperature

0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

700

Success probability

D
en

si
ty

(c) audio

Figure 6: Histograms of success probability for (a) humidity data, (b) temperature data, and (c) audio data. Histogram was
obtained with 1,500 random number generations (the inverse Gaussian distribution) to choose different signals and 100
different experiments for each signal with N = 512 and M = 100. All histograms closely follow the shape of Figure 4.
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(b) temperature

5 10 15 20 25 300

0.01

0.02

0.03

0.04

0.05

0.06

0.07

K
D

en
si

ty

 

 

Actual distribution
Gamma fitting

(c) audio

Figure 7: Distributions of K fitted with gamma distributions for (a) humidity data (Gamma(5.69, 2.45)), (b) temperature
data (Gamma(5.56, 2.54)), and (c) audio data (Gamma(6.92, 2.21)). Histograms were obtained with 34 different signals
and 1,000 different experiments for each signal (a and b); with 153 different signals and 500 different experiments for each
signal (c), with N = 512 and M = 100.
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Figure 8: Distribution of K fitted with a gamma distri-
bution Gamma(242.81, 0.09), using the maximum likeli-
hood estimation. Histogram was obtained with 300 differ-
ent signals and 300 different experiments for each signal,
with N = 512 and M = 100.

success probability by both theoretical analysis and exper-
iments. On the contrary, our recovery success model could
closely reflect actual success probability.

We also considered signals which cannot be exactly repre-
sented with sparse representations, where we could alter-
natively view the number of components included in the
signal recovery as a varying quantity. This quantity was
shown by both theoretical analysis and experiments to fol-
low a right-tailed distribution such as the gamma distribu-
tion. We provided error analysis for these signals.
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Abstract

Bounded rational decision-makers transform
sensory input into motor output under limited
computational resources. Mathematically, such
decision-makers can be modeled as information-
theoretic channels with limited transmission rate.
Here, we apply this formalism for the first time to
multilayer feedforward neural networks. We de-
rive synaptic weight update rules for two scenar-
ios, where either each neuron is considered as a
bounded rational decision-maker or the network
as a whole. In the update rules, bounded rational-
ity translates into information-theoretically moti-
vated types of regularization in weight space. In
experiments on the MNIST benchmark classifi-
cation task for handwritten digits, we show that
such information-theoretic regularization suc-
cessfully prevents overfitting across different ar-
chitectures and attains results that are compet-
itive with other recent techniques like dropout,
dropconnect and Bayes by backprop, for both or-
dinary and convolutional neural networks.

1 INTRODUCTION

Intelligent systems in biology excel through their ability to
flexibly adapt their behavior to changing environments so
as to maximize their (expected) benefit. In order to under-
stand such biological intelligence and to design artificial
intelligent systems, a central goal is to analyze adaptive be-
havior from a theoretical point of view. A formal frame-
work to achieve this goal is decision theory. An important
idea, originating from the foundations of decision theory,
is the principle of maximum expected utility [1]. Accord-
ing to the principle of maximum expected utility, an intel-
ligent agent is formalized as a decision-maker that chooses
optimal actions that maximize the expected benefit of an
outcome, where the agent’s benefit is quantified by a utility
function.

A fundamental problem of the maximum expected utility
principle is that it does not take into account computational
resources that are necessary to identify optimal actions—
it is for example computationally prohibitive to compute
an optimal chess move because of the vast amount of po-
tential board configurations. One way of taking computa-
tional resources into account is to study optimal decision-
making under information-processing constraints [2, 3].
In this study, we use an information-theoretic model of
bounded rational decision-making [4, 5, 6] that has pre-
cursors in the economic literature [7, 8, 9] and that is
closely related to recent advances harnessing information
theory for machine learning and perception-action systems
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Previously, this information-theoretic bounded rationality
model was applied to derive a synaptic weight update rule
for a single reward-maximizing spiking neuron [21]. It was
shown that such a neuron tries to keep its firing rate close to
its average firing rate, which ultimately leads to economiz-
ing of synaptic weights. Mathematically, such economiz-
ing is equivalent to a regularization that prevents synaptic
weights from growing without bounds. The bounded ratio-
nal weight update rule furthermore generalizes the synap-
tic weight update rule for an ordinary reward-maximizing
spiking neuron as presented for example in [22]. In our
current work, we extend the framework of information-
theoretic bounded rationality to networks of neurons, but
restrict ourselves for a start to deterministic settings. In
particular, we investigate two scenarios, where either each
single neuron is considered as a bounded rational decision-
maker or the network as a whole.

The remainder of this manuscript is organized as follows.
In Section 2, we explain the information-theoretic bounded
rationality model that we use. In Section 3, we apply
this model to derive bounded rational synaptic weight up-
date rules for single neurons and networks of neurons. In
Section 4, we demonstrate the regularizing effect of these
bounded rational weight update rules on the MNIST bench-
mark classification task. In Section 5, we conclude.
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2 BACKGROUND ON BOUNDED
RATIONAL DECISION-MAKING

2.1 A FREE ENERGY PRINCIPLE FOR
BOUNDED RATIONALITY

A decision-maker is faced with the task to choose an op-
timal action out of a set of actions. Each action y is
associated with a given task-specific utility value U(y).
A fully rational decision-maker picks the action y∗ that
globally maximizes the utility function, where y∗ =
arg maxy U(y), assuming for notational simplicity that the
global maximum is unique. Under limited computational
resources however, the decision-maker may not be able to
identify the globally optimal action y∗ which leads to the
question of how limited computational resources should
be quantified. In general, the decision-maker’s behavior
can be expressed as a probability distribution over actions
p(y). The basic idea of information-theoretic bounded ra-
tionality is that changes in such probability distributions
are costly and necessitate computational resources. More
precisely, computational resources are quantified as in-
formational cost evoked by changing from a prior prob-
abilistic strategy p0(y) to a posterior probabilistic strat-
egy p(y) during the deliberation process preceding the
choice. Mathematically, this informational cost is given
by the Kullback-Leibler divergence DKL(p(y)||p0(y)) ≤
B between prior and posterior strategy, where computa-
tional resources are modeled as an upper bound B ≥ 0
[10, 5, 6, 13, 14, 15, 17, 18, 19, 20, 8, 9]. Accordingly,
bounded rational decision-making can be formalized by the
following free energy objective

p∗(y)

= arg max
p(y)

(1− β) 〈U(y)〉p(y) − βDKL(p(y)||p0(y))

= arg max
p(y)

〈
(1− β)U(y)− β ln

p(y)

p0(y)

〉

p(y)

,

(1)

where β ∈ (0; 1) controls the trade-off between expected
utility and informational cost. Note that the upper bound
B imposed on the Kullback-Leibler divergence determines
the value of β. Choosing the value ofB is hence equivalent
to choosing the value of β.

The free energy objective in Equation (1) is concave with
respect to p(y) and the optimal solution p∗(y) can be ex-
pressed in closed analytic form:

p∗(y) =
p0(y) exp( 1−β

β U(y))
∑
y′ p0(y′) exp( 1−β

β U(y′))
. (2)

In the limit cases of none (β → 1) and infinite (β → 0)

resources, the optimal strategy from Equation (2) becomes

lim
β→1

p∗(y) = p0(y), (3)

lim
β→0

p∗(y) = δyy∗ , (4)

respectively, where y∗ = arg maxy U(y) represents an
action that globally maximizes the utility function. A
decision-maker without any computational resources (β →
1) sticks to its prior strategy p0(y), whereas a decision-
maker that can access an arbitrarily large amount of re-
sources (β → 0) always picks a globally optimal action
and recovers thus the fully rational decision-maker.

2.2 A RATE DISTORTION PRINCIPLE FOR
CONTEXT-DEPENDENT DECISION-MAKING

In the face of multiple contexts, fully rational decision-
making requires to find an optimal action y for each en-
vironment x, where optimality is defined through a util-
ity function U(x, y). Bounded rational decision-making
in multiple contexts means to compute multiple strategies,
expressed as conditional probability distributions p(y|x),
under limited computational resources. Limited compu-
tational resources are modeled through an upper bound
B ≥ 0 on the expected Kullback-Leibler divergence
〈DKL(p(y|x)||p0(y))〉p(x) ≤ B between the strategies
p(y|x) and a common prior p0(y), averaged over all possi-
ble environments described by the distribution p(x) [4, 15].
The resulting optimization problem may be formalized as

p∗(y|x) = arg max
p(y|x)

(1− β) 〈U(x, y)〉p(x,y)

− β 〈DKL (p(y|x)||p0(y))〉p(x) ,
(5)

where β ∈ (0; 1) governs the trade-off between expected
utility and informational cost. It can be shown that the
most economic prior p0(y) is given by the marginal dis-
tribution p0(y) = p(y) =

∑
x p(y|x)p(x), because the

marginal distribution minimizes the expected Kullback-
Leibler divergence for a given set of conditional distribu-
tions p(y|x)—see [23]. In this case, the expected Kullback-
Leibler divergence becomes identical to the mutual infor-
mation I(x, y) between the environment x and the action
y [4, 21, 11, 12, 7, 16]. Accordingly, bounded rational
decision-making can be formalized through the following
objective

p∗(y|x)

= arg max
p(y|x)

(1− β) 〈U(x, y)〉p(x,y) − βI(x, y)

= arg max
p(y|x)

〈
(1− β)U(x, y)− β ln

p(y|x)

p(y)

〉

p(x,y)

,

(6)

which is mathematically equivalent to the rate distortion
problem from information theory [24].
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The rate distortion objective in Equation (6) is concave with
respect to p(y|x) but there is unfortunately no closed ana-
lytic form solution. It is however possible to express the
optimal solution as a set of self-consistent equations:

p∗(y|x) =
p(y) exp( 1−β

β U(x, y))
∑
y′ p(y

′) exp( 1−β
β U(x, y′))

, (7)

p(y) =
∑

x

p∗(y|x)p(x). (8)

These self-consistent equations are solved by replacing
p(y) with an initial arbitrary distribution q(y) and iterat-
ing through Equations (7) and (8) in an alternating fash-
ion. This procedure is known as Blahut-Arimoto algorithm
[25, 26] and is guaranteed to converge to a global optimum
[27] presupposed that q(y) does not assign zero probability
mass to any y.

In the limit cases of none (β → 1) and infinite (β → 0)
resources, the optimal strategy from Equations (7) and (8)
may be expressed in closed analytic form

lim
β→1

p∗(y|x) = p(y) = δyy∗ , (9)

lim
β→0

p∗(y|x) = δyy∗x , (10)

where y∗ = arg maxy 〈U(x, y)〉p(x) refers to an action that
globally maximizes the expected utility averaged over all
possible environments, and y∗x refers to an action that glob-
ally maximizes the utility for one particular environment
x—assuming for notational simplicity that global maxima
are unique in both cases. In the absence of any compu-
tational resources (β → 1), the decision-maker chooses
the same strategy no matter which environment is encoun-
tered in order to minimize the deviation between the condi-
tional strategies p(y|x) and the average strategy p(y). The
decision-maker chooses however a strategy that maximizes
the average expected utility. In case of access to an arbitrar-
ily large amount of computational resources (β → 0), the
decision-maker picks the best action for each environment
and recovers thus the fully rational decision-maker.

3 THEORETICAL RESULTS: SYNAPTIC
WEIGHT UPDATE RULES

3.1 PARAMETERIZED STRATEGIES AND
ONLINE RULES

Computing the optimal solution to the rate distortion prob-
lem in Equation (6) with help of Equations (7) and (8)
through the Blahut-Arimoto algorithm has two severe
drawbacks. First, it requires to compute and store the con-
ditional strategies p(y|x) and the marginal strategy p(y)
explicitly, which is prohibitive for large environment and
action spaces. And second, it requires that the decision-
maker is able to evaluate the utility function for arbitrary

environment-action pairs (x, y), which is a plausible as-
sumption in planning, but not in reinforcement learning
where samples from the utility function can only be ob-
tained from interactions with the environment.

We therefore assume a parameterized form of the strategy
pw(y|x), from which the decision-maker can draw samples
y for a given sample of the environment x, and optimize
the rate distortion objective from Equation (6) with help
of gradient ascent [21]—also referred to as policy gradi-
ent in the reinforcement learning literature [22]. Gradi-
ent ascent requires to compute the derivative of the ob-
jective function L(w) with respect to the strategy param-
eters w and to update the parameters according to the rule
w ← w + α · ∂

∂wL(w) in each time step, where α > 0

denotes the learning rate and ∂
∂wL(w) is defined as

∂

∂w
L(w) =

〈(
∂

∂w
ln pw(y|x)

)
(1− β)U(x, y)

〉

pw(x,y)

−
〈(

∂

∂w
ln pw(y|x)

)
β ln

pw(y|x)

pw(y)

〉

pw(x,y)

.

(11)

Note that the update rule from Equation (11) requires the
computation of an expected value over pw(x, y). This ex-
pected value can be approximated through environment-
action samples (x, y) in either a batch or an online man-
ner. For the rest of this paper, we assume an online update
rule where the agent adapts its behavior instantaneously af-
ter each interaction with the environment in response to an
immediate reward signal U(x, y) as is typical for reinforce-
ment learning.

Informally, the rate distortion model for bounded rational
decision-making translates into a specific form of regular-
ization that penalizes deviations of the decision-maker’s
instantaneous strategy pw(y|x), given the current environ-
ment x, from the decision-maker’s mean strategy pw(y) =∑
x pw(y|x)p(x), averaged over all possible environments.

Previously, Equation (11) was applied to a single spiking
neuron that was stochastic [21]. Here, we generalize this
approach to deterministic networks of neurons that have
neural input (environmental context x), neural output (ac-
tion y) and a reward signal (utility U ). We derive parameter
update rules in the style of Equation (11) that allow to ad-
just synaptic weights in an online fashion. In particular, we
investigate two scenarios where either each single neuron
is considered as a bounded rational decision-maker or the
network as a whole.

3.2 A STOCHASTIC NEURON AS A BOUNDED
RATIONAL DECISION-MAKER

A stochastic neuron may be considered as a bounded ratio-
nal decision-maker [21]: the neuron’s presynaptic input is
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interpreted as environmental context and the neuron’s out-
put is interpreted as action variable. The neuron’s param-
eterized strategy corresponds to its firing behavior and is
given by

pw(y|x) = y · ρ(w>x) + (1− y) · (1− ρ(w>x)), (12)

where y ∈ {0, 1} is a binary variable reflecting the neu-
ron’s current firing state, x is a binary column vector rep-
resenting the neuron’s current presynaptic input and w is
a real-valued column vector representing the strength of
presynaptic weights. ρ ∈ (0; 1) is a monotonically increas-
ing function denoting the neuron’s current firing probabil-
ity. In a similar way, the neuron’s mean firing behavior can
be expressed as:

pw(y) = y · ρ̄(w) + (1− y) · (1− ρ̄(w)), (13)

where ρ̄(w) =
∑

x ρ(w>x)p(x) denotes the neuron’s
mean firing probability averaged over all possible inputs x.
The mean firing probability ρ̄(w) can be easily estimated
with help of an exponential window in an online manner
according to

ρ̄(w)← (1− 1

τ
)ρ̄(w) +

1

τ
ρ(w>x), (14)

where τ is a constant defining the time horizon [21].

Assuming a task-specific utility function U(x, y) determin-
ing the neuron’s instantaneous reward and assuming fur-
thermore that the neuron’s output y does not impact the
presynaptic input x of the next time step, the bounded ra-
tional neuron may be thought of as optimizing a rate distor-
tion objective according to Equation (6) with gradient as-
cent as outlined in Section 3.1 [21]. Equation (11) is then
applicable by using the quantities

∂

∂wi
ln pw(y|x) =

xiρ
′(w>x)

(
y

ρ(w>x)
− 1− y

1− ρ(w>x)

)
,

(15)

and

ln
pw(y|x)

pw(y)
=

y ln
ρ(w>x)

ρ̄(w)
+ (1− y) ln

1− ρ(w>x)

1− ρ̄(w)
.

(16)

By averaging over the binary quantity y, a more concise
weight update rule is derived [21]:

∂

∂wi
L(w) =

〈
xiρ
′(w>x)(1− β)∆U(x)

〉
p(x)

−
〈
xiρ
′(w>x)β ln

ρ(w>x)(1− ρ̄(w))

ρ̄(w)(1− ρ(w>x))

〉

p(x)

,

(17)

where ∆U(x) = U(x, y = 1) − U(x, y = 0) denotes the
difference in utility between firing (y = 1) and not firing
(y = 0) for a given x. If the conditional and marginal
strategies are initialized to be roughly equal pw0

(y) ≈
pw0

(y|x), where w0 ≈ 0 refers to the initial value of
w, the hyperparameter β determines how fast the decision-
maker’s strategy converges. A high value of β implies little
computational resources and quick convergence due to the
fact that conditional and marginal strategies are initially al-
most equal. On the opposite, a low value of β indicating
vast computational resources allows the decision-maker to
find an optimal strategy for each environment where con-
ditional and marginal strategies may deviate substantially.

3.3 A DETERMINISTIC NEURON AS A
BOUNDED RATIONAL DECISION-MAKER

In a deterministic setup, the neuron’s parameterized firing
behavior in a small time window ∆t may be expressed
through its firing rate φ(w>ξ) as:

pw(y|ξ) = y·φ(w>ξ)∆t+(1−y)·(1−φ(w>ξ)∆t), (18)

where ξ is a real-valued column vector indicating the presy-
naptic firing rates and φ > 0 is a monotonically increasing
function. In a similar fashion, the neuron’s mean firing be-
havior is given by

pw(y) = y · φ̄(w)∆t+ (1− y) · (1− φ̄(w)∆t), (19)

where φ̄(w) =
∑

ξ φ(w>ξ)p(ξ) refers to the neuron’s
mean firing rate averaged over all possible presynaptic fir-
ing rates ξ. In accordance with the previous section, the
mean firing rate φ̄(w) can be conveniently approximated
in an online manner through an exponential window with a
time constant τ as:

φ̄(w)← (1− 1

τ
)φ̄(w) +

1

τ
φ(w>ξ). (20)

Using the quantities introduced above, we can define a mu-
tual information rate between the presynaptic firing rates ξ
and the instantaneous firing state of the neuron y ∈ {0; 1}:

lim
∆t→0

1

∆t
I(ξ, y)

= lim
∆t→0

1

∆t

〈∑

y

pw(y|ξ) ln
pw(y|ξ)

pw(y)

〉

p(ξ)

=

〈
φ(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉

p(ξ)

.

(21)

A derivation of Equation (21) can be found in Section A.1.
Assuming a rate-dependent utility function U(ξ, φ(w>ξ)),
a deterministic neuron can be interpreted as a bounded ra-
tional decision-maker similar to Equation (6) with the fol-
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lowing rate distortion objective

w∗ = arg max
w

(1− β)
〈
U(ξ, φ(w>ξ))

〉
p(ξ)

− β lim
∆t→0

1

∆t
I(ξ, y)

= arg max
w

〈
(1− β)U(ξ, φ(w>ξ))

〉
p(ξ)

−
〈
βφ(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉

p(ξ)

.

(22)

Optimizing the neuron’s weights with gradient ascent, a
similar weight update rule as in Equation (17) is derived
for the deterministic case:

∂

∂wi
L(w) =

〈
ξiφ
′(w>ξ)(1− β)

∂

∂φ
U(ξ, φ(w>ξ))

〉

p(ξ)

−
〈
ξiφ
′(w>ξ)β ln

φ(w>ξ)

φ̄(w)

〉

p(ξ)

,

(23)

where ∂
∂φU(ξ, φ(w>ξ)) denotes the derivative of the

utility function with respect to the neuron’s firing rate.
The solution in Equation (23) requires the derivative of
two terms with respect to wi. The derivative of the
expected utility

〈
U(ξ, φ(w>ξ))

〉
p(ξ)

is straightforward,
whereas the derivative of the mutual information rate
lim∆t→0

1
∆tI(ξ, y) is not so trivial and explained in more

detail in Section A.2.

3.4 A NEURAL NETWORK OF BOUNDED
RATIONAL DETERMINISTIC NEURONS

Here, we consider a feedforward multilayer perceptron that
can be imagined to consist of individual bounded rational
deterministic neurons as described in the previous section.
Assuming that all neurons aim at maximizing a global util-
ity function while at the same time minimizing their local
mutual information rate, each neuron n may be interpreted
as solving a deterministic rate distortion objective where
the utility function is shared among all neurons but the mu-
tual information cost is neuron-specific:

wn∗ = arg max
wn

(1− β)
〈
U(ξin, f(W, ξin))

〉
p(ξin)

− β lim
∆t→0

1

∆t
I(ξn, yn),

(24)

where wn, ξn and yn refer to the presynaptic weight vec-
tor, the presynaptic firing rates and the current firing state
of neuron n respectively and whereW denotes the entirety
of all weights in the whole neural network. The global
utility U(ξin, f(W, ξin)) is expressed as a function of the
network’s input rates ξin and the network’s output rates
f(W, ξin).

The corresponding synaptic weight update rule for gradient
ascent is similar to Equation (23) and given by

∂

∂wni
Ln(W) =

〈
(1− β)

∂

∂wni
U(ξin, f(W, ξin))

〉

p(ξin)

−
〈
βξni φ

′(wn>ξn) ln
φ(wn>ξn)

φ̄(wn)

〉

p(ξin)

,

(25)

where Ln(W) refers to the rate distortion objective of neu-
ron n. The derivative of the utility function with respect to
the weight ∂

∂wn
i
U(ξin, f(W, ξin)) can be straightforwardly

derived via ordinary backpropagation [28].

3.5 A DETERMINISTIC NEURAL NETWORK AS
A BOUNDED RATIONAL DECISION-MAKER

While focusing on individual neurons as bounded rational
decision-makers in the previous section, it is also possi-
ble to interpret an entire feedforward multilayer perceptron
as one bounded rational decision-maker. To allow for this
interpretation, we consider in the following the network’s
output rates fj(W, ξ) ∈ (0; 1) as the event probabilities
of a categorical distribution (for example, by using a soft-
max activation function in the last layer). Importantly, the
categorical distribution is considered as a bounded rational
strategy

pW(y|ξ) =
∑

j

yjfj(W, ξ), (26)

that generates a binary unit output vector y given the input
rates ξ and the set of all weights in the entire network de-
noted byW . The average bounded rational strategy is then
given by

pW(y) =
∑

j

yj f̄j(W), (27)

where f̄j(W) is the mean rate of output unit j that can
again be approximated in an online manner according to

f̄j(W)← (1− 1

τ
)f̄j(W) +

1

τ
fj(W, ξ), (28)

by use of an exponential window with a time constant τ in
line with previous sections.

Accordingly, the informational cost can be quantified by
the mutual information between ξ and y:

I(ξ,y) =

〈∑

y

pW(y|ξ) ln
pW(y|ξ)

pW(y)

〉

p(ξ)

=

〈∑

j

fj(W, ξ) ln
fj(W, ξ)

f̄j(W)

〉

p(ξ)

.

(29)
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Presupposing again a rate dependent utility function
U(ξ, f(W, ξ)), the entire deterministic network may be in-
terpreted to solve the subsequent rate distortion objective

W∗ = arg max
W

(1− β) 〈U(ξ, f(W, ξ))〉p(ξ)

− βI(ξ,y)

= arg max
W

〈(1− β)U(ξ, f(W, ξ))〉p(ξ)

−
〈
β
∑

j

fj(W, ξ) ln
fj(W, ξ)

f̄j(W)

〉

p(ξ)

,

(30)

Assuming that synaptic weights are updated via gradient
ascent, the following weight update rule can be derived

∂

∂wni
L(W) =

〈
(1− β)

∑

j

(
∂

∂wni
fj(W, ξ)

)(
∂

∂fj
U(ξ, f(W, ξ))

)〉

p(ξ)

−
〈
β
∑

j

(
∂

∂wni
fj(W, ξ)

)
ln
fj(W, ξ)

f̄j(W)

〉

p(ξ)

,

(31)

where ∂
∂wn

i
denotes the derivative with respect to the ith

weight of neuron n, and ∂
∂fj

U(ξ, f(W, ξ)) denotes the
derivative of the utility function with respect to the firing
rate of the jth output neuron. Equation (31) requires to dif-
ferentiate two terms with respect to wni . The derivative of
the expected utility is straightforward while the derivative
of the mutual information is explained in Section A.3.

Note that the derivative of the rate distortion objective
∂

∂wn
i
L(W) takes a convenient form which can be easily

computed by extending ordinary backpropagation [28]. In
ordinary backpropagation, the quantity ∂

∂fj
U(ξ, f(W, ξ))

is propagated backwards through the network. The core al-
gorithm of ordinary backpropagation can be employed for
computing ∂

∂wn
i
L(W) by simply replacing the derivative of

the utility function ∂
∂fj

U(ξ, f(W, ξ)) with the more gen-

eral quantity (1− β) ∂
∂fj

U(ξ, f(W, ξ))− β ln
fj(W,ξ)

f̄j(W)
.

4 EXPERIMENTAL RESULTS: MNIST
CLASSIFICATION

In our simulations, we applied both types of rate distor-
tion regularization (the local type from Section 3.4 and the
global type from Section 3.5) on the MNIST benchmark
classification task. In particular, we investigated in how far
this information-theoretically motivated regularization sub-
serves generalization. To this end, we trained classification
on the MNIST training set, consisting of 60, 000 grayscale
images of handwritten digits, and tested generalization on

the MNIST test set, consisting of 10, 000 examples. For all
our simulations, we used a network with two hidden layers
of rectified linear units [29] and a top layer of 10 softmax
units implemented in Lua with Torch [30]. We chose as op-
timization criterion the negative cross entropy between the
class labels and the network output [31]

U(ξ, f(W, ξ)) =
∑

j

δjl(ξ) ln fj(W, ξ), (32)

where δ denotes the Kronecker delta and ξ the vectorized
input image—note that pixels were normalized to lie in the
range [0; 1]. The variable j ∈ {1, 10} is an index over
the network’s output units and l(ξ) ∈ {1, 10} denotes the
label of image ξ.

In order to assess the robustness of our regularizers, we
performed our experiments with networks of different ar-
chitectures. In particular, we used network architectures
with two hidden layers and varied the number of neu-
rons #neu ∈ {529, 1024, 2025, 4096} per hidden layer.
We performed gradient ascent with a learning rate α =
0.01 updating weights online after each training exam-
ple. We trained the networks for 70 epochs where one
epoch corresponded to one sweep through the entire train-
ing set. After each epoch, the learning rate decayed ac-
cording to α ← α

1+t·η where t denotes the current epoch
and η = 0.002 is a decay parameter. Weights were
updated by use of a momentum γ = 0.9 according to
∆wni ← γ∆wni +(1−γ) ∂

∂wn
i
L(W) and were randomly ini-

tialized in the range (−(#in(n))−0.5; (#in(n))−0.5) with
help of a uniform distribution at the beginning of the
simulation where #in(n) denotes the number of inputs
to neuron n. Each non-input neuron had an additional
bias weight that was initialized in the same way as the
presynaptic weights of that neuron. Rate distortion reg-
ularization required furthermore to compute the mean fir-
ing rate φ̄(wn) of individual neurons n through an ex-
ponential window in an online fashion with a time con-
stant τ = 1000. In order to ensure numerical stability
when using rate distortion regularization, terms of the form
ln φ(wn>ξn)

φ̄(wn)
in the weight update rules were computed

according to ln max{φ(wn>ξn), ε} − ln max{φ̄(wn), ε}
with ε = 2.22 · 10−16.

To find optimal values for the rate distortion trade-off pa-
rameter β, we conducted pilot studies with small networks
comprising 529 neurons per hidden layer that were trained
for only 50 epochs on the MNIST training set according
to the aforementioned training scheme and subsequently
evaluated on the MNIST test set. While this might induce
overfitting of β on the test set in the small networks, we
used the same β-values as a heuristic for all larger archi-
tectures and did not tune the hyperparameter any further.
In global rate distortion regularization (Grdi), the best test
error was achieved around β = 0.2 although Grdi seems to
behave rather robust in the range β ∈ [0; 0.8]—see middle
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left panel in Figure 1. In local rate distortion regularization
(Lrdi), the best test error was achieved for β = 0 with ordi-
nary utility maximization without regularization—see mid-
dle right panel. However, when measuring the performance
in terms of expected utility on the test set, Lrdi achieved a
significant performance increase compared to ordinary util-
ity maximization in the range β ∈ [10−5, 5·10−4]—see up-
per right panel. In our final studies, we could furthermore
ascertain that Lrdi performs reasonably well on larger ar-
chitectures as it achieved a test error of 1.26% compared
to 1.43% in ordinary utility maximization when increasing
the number of units per hidden layer to 4096.

Table 1: Classification Errors on the MNIST Test Set in the
Permutation Invariant Setup

Method #neu Error [%]
Bayes by backprop [10] 1200 1.32

Dropout [32] 800 1.28
Dropconnect [32] 800 1.20

Dropout [33] 4096 1.01
529 1.36

Local rate distortion (Lrdi) 1024 1.34
β = 10−5 2025 1.28

4096 1.26
529 1.23

Global rate distortion (Grdi) 1024 1.17
β = 0.2 2025 1.14

4096 1.11

The results of our final studies where we trained networks
for 70 epochs are illustrated in Table 1 which compares rate
distortion regularization to other techniques from the lit-
erature for different network architectures comprising two
hidden layers. It can be seen that both local and global rate
distortion regularization (Lrdi and Grdi respectively) attain
results in the permutation invariant setting (Lrdi: 1,26%,
Grdi: 1.11%) that are competitive with other recent tech-
niques like dropout (1.01% [33] and 1.28% [32]), dropcon-
nect (1.20% [32]) and Bayes by backprop (1.32% [10]).
It is furthermore shown that both rate distortion regulariz-
ers lead to a decreasing generalization error when increas-
ing the number of neurons in hidden layers which demon-
strates successful prevention of overfitting. Successful pre-
vention of overfitting is additionally demonstrated by ap-
plying global rate distortion regularization (Grid, β = 0.2)
to a convolutional neural network with an architecture ac-
cording to [32]—see Section B.2 in [32]—attaining an
error of 0.61% without tuning any hyperparameters (see
Table 2). This result is also competitive with other re-
cent techniques in the permutation non-invariant setting—
compare to dropout (0.59% [32]) and dropconnect (0.63%
[32]). In line with [33], we preprocessed the input with
ZCA whitening and added a max-norm regularizer to limit
the size of presynaptic weight vectors to at most 3.5.

Table 2: Classification Errors on the MNIST Test Set in the
Permutation Non-Invariant Setup

Method Error [%]
Conv net + Dropconnect [32] 0.63

Conv net + Grdi (β = 0.2) 0.61
Conv net + Dropout [32] 0.59

The lower panels of Figure 1 show the development of the
test set error over epochs for both rate distortion regulariz-
ers (red) compared to ordinary utility maximization with-
out regularization (Umax, black) for the different network
architectures that we used in the permutation invariant set-
ting. It can be seen that the global variant of our regularizer
(Grdi with β = 0.2, see lower left panel in Figure 1) leads
to a significant increase in performance across different ar-
chitectures as demonstrated by the two separate clusters of
trajectories. In addition, Grdi also leads to faster learning
as the red trajectories in the lower left panel of Figure 1 de-
crease significantly faster then the black trajectories during
the first ten epochs of training. For the local variant of our
regularizer (Lrdi with β = 10−5, see lower right panel in
Figure 1), the performance improvements are less promi-
nent when compared to the global variant.

5 CONCLUSION

Previously, a synaptic weight update rule for a single
reward-maximizing spiking neuron was devised, where the
neuron was interpreted as a bounded rational decision-
maker under limited computational resources with help
of rate distortion theory [21]. It was shown that such a
bounded rational weight update rule leads to an efficient
regularization by preventing synaptic weights from grow-
ing without bounds. In our current work, we extend these
results to deterministic neurons and neural networks. On
the MNIST benchmark classification task, we have demon-
strated the regularizing effect of our approach as networks
were successfully prevented from overfitting. These results
are robust as we conducted experiments with different net-
work architectures achieving performance competitive with
other recent techniques like dropout [33], dropconnect [32]
and Bayes by backprop [10] for both ordinary and convolu-
tional networks. The strength of rate distortion regulariza-
tion is that it is a more principled approach than for exam-
ple dropout and dropconnect as it may be applied to general
artificial agents with parameterized policies and not only to
neural networks. Parameterized policies that optimize the
rate distortion objective have been previously applied to un-
supervised density estimation tasks with autoencoder net-
works [12]. Our current work extends this kind of approach
to the theory of reinforcement and supervised learning with
feedforward neural networks, and also provides evidence
that this approach scales well on large data sets.
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Figure 1: Performance on MNIST in the Permutation Invariant Setup. The left column refers to analyses with global rate
distortion regularization (Grdi) and the right column to analyses with local rate distortion regularization (Lrdi). The upper
and middle panels show the results of the pilot studies on the smallest network architecture. Trajectories in the upper
panels illustrate the expected utility (the negative cross entropy) after 50 epochs of training for different values of β—black
solid lines reflect the expected utility on the training set, red solid lines reflect the expected utility on the test set and red
dashed horizontal lines reflect the expected utility on the test set in ordinary utility maximization (Umax, β = 0). The
middle panels show classification errors instead of utility values. In the Grdi case, the negative cross entropy drops sharply
for larger betas, because the regularization drives the output rates towards a flatter distribution, even though the mode
of the distribution is maintained, which allows for robust performance in terms of classification error. The lower panels
show the results of our final simulations with four different network architectures and fixed β-values. The plots compare
the development of the test set error over epochs between ordinary utility maximization (black trajectories, Umax) and
rate distortion regularization (red trajectories, Grdi with β = 0.2 and Lrdi with β = 10−5 respectively). Each trajectory
corresponds to one of the four different network architectures.
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A APPENDIX

A.1 MUTUAL INFORMATION RATE OF A
DETERMINISTIC NEURON

lim
∆t→0

1

∆t
I(ξ, y)

= lim
∆t→0

1

∆t

〈∑

y

pw(y|ξ) ln
pw(y|ξ)

pw(y)

〉

p(ξ)

= lim
∆t→0

1

∆t

〈
φ(w>ξ)∆t ln

φ(w>ξ)

φ̄(w)

〉

p(ξ)

+ lim
∆t→0

1

∆t

〈
(1− φ(w>ξ)∆t) ln

1− φ(w>ξ)∆t

1− φ̄(w)∆t︸ ︷︷ ︸
→0

〉

p(ξ)

=

〈
φ(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉

p(ξ)

.

(33)

A.2 DERIVATIVE OF THE MUTUAL
INFORMATION RATE

∂

∂wi
lim

∆t→0

1

∆t
I(ξ, y)

= lim
∆t→0

1

∆t

∂

∂wi

〈∑

y

pw(y|ξ) ln
pw(y|ξ)

pw(y)

〉

p(ξ)

= lim
∆t→0

1

∆t

〈∑

y

(
∂

∂wi
pw(y|ξ)

)
ln
pw(y|ξ)

pw(y)

〉

p(ξ)

+ lim
∆t→0

1

∆t

〈∑

y

pw(y|ξ)

(
∂

∂wi
ln pw(y|ξ)

)〉

p(ξ)︸ ︷︷ ︸
=
〈∑

y
∂

∂wi
pw(y|ξ)

〉
p(ξ)

= ∂
∂wi

1=0

− lim
∆t→0

1

∆t

〈∑

y

pw(y|ξ)

(
∂

∂wi
ln pw(y)

)〉

p(ξ)︸ ︷︷ ︸
=
∑

y
∂

∂wi
pw(y)= ∂

∂wi
1=0

= lim
∆t→0

1

∆t

〈
ξiφ
′(w>ξ)∆t ln

φ(w>ξ)

φ̄(w)

〉

p(ξ)

− lim
∆t→0

1

∆t

〈
ξiφ
′(w>ξ)∆t ln

1− φ(w>ξ)∆t

1− φ̄(w)∆t︸ ︷︷ ︸
→0

〉

p(ξ)

=

〈
ξiφ
′(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉

p(ξ)

.

(34)

A.3 DERIVATIVE OF THE GLOBAL MUTUAL
INFORMATION

∂

∂wni
I(ξ,y)

=
∂

∂wni

〈∑

y

pW(y|ξ) ln
pW(y|ξ)

pW(y)

〉

p(ξ)

=

〈∑

y

(
∂

∂wni
pW(y|ξ)

)
ln
pW(y|ξ)

pW(y)

〉

p(ξ)

+

〈∑

y

pW(y|ξ)

(
∂

∂wni
ln pW(y|ξ)

)〉

p(ξ)︸ ︷︷ ︸
=
〈∑

y
∂

∂wn
i
pW(y|ξ)

〉
p(ξ)

= ∂
∂wn

i
1=0

−
〈∑

y

pW(y|ξ)

(
∂

∂wni
ln pW(y)

)〉

p(ξ)︸ ︷︷ ︸
=
∑

y
∂

∂wn
i
pW(y)= ∂

∂wn
i

1=0

=

〈∑

j

(
∂

∂wni
fj(W, ξ)

)
ln
fj(W, ξ)

f̄j(W)

〉

p(ξ)

.

(35)

Acknowledgements

This study was supported by the DFG, Emmy Noether
grant BR4164/1-1.

References

[1] J von Neumann and O Morgenstern. Theory of Games
and Economic Behavior. Princeton University Press,
1944.

[2] S J Gershman, E J Horvitz, and J B Tenenbaum. Com-
putational rationality: a converging paradigm for in-
telligence in brains, minds, and machines. Science,
349(6245):273–278, 2015.

[3] H A Simon. Theories of bounded rationality. Deci-
sion and Organization, 1:161–176, 1972.

[4] T Genewein, F Leibfried, J Grau-Moya, and D A
Braun. Bounded rationality, abstraction and hier-
archical decision-making: an information-theoretic
optimality principle. Frontiers in Robotics and AI,
2(27), 2015.

[5] P A Ortega, D A Braun, J Dyer, K-E Kim, and
N Tishby. Information-theoretic bounded rationality.
arXiv preprint arXiv:1512.06789, 2015.

[6] P A Ortega and D A Braun. Thermodynamics
as a theory of decision-making with information-
processing costs. Proceedings of the Royal Society
A, 469(2153):1–26, 2013.

415



[7] C A Sims. Rational inattention and monetary eco-
nomics. In Handbook of Monetary Economics, vol-
ume 3, chapter 4. Elsevier, 2011.

[8] D H Wolpert. Information theory - the bridge con-
necting bounded rational game theory and statistical
physics. In Complex Engineered Systems, chapter 12.
Springer, 2004.

[9] L G Mattsson and J W Weibull. Probabilistic choice
and procedurally bounded rationality. Games and
Economic Behavior, 41(1):61–78, 2002.

[10] C Blundell, J Cornebise, K Kavukcuoglu, and
D Wierstra. Weight uncertainty in neural networks.
In Proceedings of the 32nd International Conference
on Machine Learning, 2015.

[11] S Still. Lossy is lazy. In Workshop on Information
Theoretic Methods in Science and Engineering, pages
17–21, 2014.

[12] L G Sanchez Giraldo and J C Principe. Rate-
distortion auto-encoders. arXiv preprint
arXiv:1312.7381, 2013.
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Abstract

We discuss a variant of Thompson sampling for
nonparametric reinforcement learning in count-
able classes of general stochastic environments.
These environments can be non-Markov, non-
ergodic, and partially observable. We show that
Thompson sampling learns the environment class
in the sense that (1) asymptotically its value con-
verges to the optimal value in mean and (2) given
a recoverability assumption regret is sublinear.

Keywords. General reinforcement learning, Thompson
sampling, asymptotic optimality, regret, discounting, re-
coverability, AIXI.

1 INTRODUCTION

In reinforcement learning (RL) an agent interacts with an
unknown environment with the goal of maximizing re-
wards. Recently reinforcement learning has received a
surge of interest, triggered by its success in applications
such as simple video games [MKS+15]. However, theory
is lagging behind application and most theoretical analy-
ses has been done in the bandit framework and for Markov
decision processes (MDPs). These restricted environment
classes fall short of the full reinforcement learning problem
and theoretical results usually assume ergocity and visiting
every state infinitely often. Needless to say, these assump-
tions are not satisfied for any but the simplest applications.

Our goal is to lift these restrictions; we consider general re-
inforcement learning, a top-down approach to RL with the
aim to understand the fundamental underlying problems in
their generality. Our approach to general RL is nonpara-
metric: we only assume that the true environment belongs
to a given countable environment class.

We are interested in agents that maximize rewards opti-
mally. Since the agent does not know the true environment
in advance, it is not obvious what optimality should mean.

We discuss two different notions of optimality: asymptotic
optimality and worst-case regret.

Asymptotic optimality requires that asymptotically the
agent learns to act optimally, i.e., that the discounted
value of the agent’s policy π converges to the optimal dis-
counted value, V ∗µ − V πµ → 0 for all environments µ
from the environment class. This convergence is impos-
sible for deterministic policies since the agent has to ex-
plore infinitely often and for long stretches of time, but
there are policies that converge almost surely in Cesàro
average [LH11]. Bayes-optimal agents are generally not
asymptotically optimal [Ors13]. However, asymptotic op-
timality can be achieved through an exploration component
on top of a Bayes-optimal agent [Lat13, Ch. 5] or through
optimism [SH15].

Asymptotic optimality in mean is essentially a weaker vari-
ant of probably approximately correct (PAC) that comes
without a concrete convergence rate: for all ε > 0 and
δ > 0 the probability that our policy is ε-suboptimal con-
verges to zero (at an unknown rate). Eventually this prob-
ability will be less than δ. Since our environment class can
be very large and non-compact, concrete PAC/convergence
rates are likely impossible.

Regret is how many expected rewards the agent forfeits by
not following the best informed policy. Different prob-
lem classes have different regret rates, depending on the
structure and the difficulty of the problem class. Multi-
armed bandits provide a (problem-independent) worst-case
regret bound of Ω(

√
KT ) where K is the number of

arms [BB12]. In Markov decision processes (MDPs) the
lower bound is Ω(

√
DSAT ) where S is the number of

states, A the number of actions, and D the diameter of
the MDP [AJO10]. For a countable class of environments
given by state representation functions that map histories
to MDP states, a regret of Õ(T 2/3) is achievable assuming
the resulting MDP is weakly communicating [NMRO13].
A problem class is considered learnable if there is an algo-
rithm that has a sublinear regret guarantee.

This paper continues a narrative that started with definition
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of the Bayesian agent AIXI [Hut00] and the proof that it
satisfies various optimality guarantees [Hut02]. Recently it
was revealed that these optimality notions are trivial or sub-
jective [LH15]: a Bayesian agent does not explore enough
to lose the prior’s bias, and a particularly bad prior can
make the agent conform to any arbitrarily bad policy as
long as this policy yields some rewards. These negative re-
sults put the Bayesian approach to (general) RL into ques-
tion. In this paper we remedy the situation by showing that
using Bayesian techniques an agent can indeed be optimal
in an objective sense.

The agent we consider is known as Thompson sampling,
posterior sampling, or the Bayesian control rule [Tho33].
It samples an environment ρ from the posterior, follows
the ρ-optimal policy for one effective horizon (a lookahead
long enough to encompass most of the discount function’s
mass), and then repeats. We show that this agent’s policy is
asymptotically optimal in mean (and, equivalently, in prob-
ability). Furthermore, using a recoverability assumption on
the environment, and some (minor) assumptions on the dis-
count function, we prove that the worst-case regret is sub-
linear. This is the first time convergence and regret bounds
of Thompson sampling have been shown under such gen-
eral conditions.

Thompson sampling was originally proposed by Thomp-
son as a bandit algorithm [Tho33]. It is easy to im-
plement and often achieves quite good results [CL11].
In multi-armed bandits it attains optimal regret [AG11,
KKM12]. Thompson sampling has also been considered
for MDPs: as model-free method relying on distributions
over Q-functions with convergence guarantee [DFR98],
and as a model-based algorithm without theoretical anal-
ysis [Str00]. Bayesian and frequentist regret bounds have
also been established [ORvR13, OR14, GM15]. PAC guar-
antees have been established for an optimistic variant of
Thompson sampling for MDPs [ALL+09].

For general RL Thompson sampling was first suggested in
[OB10] with resampling at every time step. The authors
prove that the action probabilities of Thompson sampling
converge to the action probability of the optimal policy al-
most surely, but require a finite environment class and two
(arguably quite strong) technical assumptions on the behav-
ior of the posterior distribution (akin to ergodicity) and the
similarity of environments in the class. Our convergence
results do not require these assumptions, but we rely on
an (unavoidable) recoverability assumption for our regret
bound.

Appendix A contains a list of notation and Appendix B
contains omitted proofs.

2 PRELIMINARIES

The set X ∗ :=
⋃∞
n=0 Xn is the set of all finite strings over

the alphabet X and the set X∞ is the set of all infinite
strings over the alphabet X . The empty string is denoted
by ε, not to be confused with the small positive real num-
ber ε. Given a string x ∈ X ∗, we denote its length by |x|.
For a (finite or infinite) string x of length ≥ k, we denote
with x1:k the first k characters of x, and with x<k the first
k − 1 characters of x.

The notation ∆Y denotes the set of probability distribu-
tions over Y .

In reinforcement learning, an agent interacts with an en-
vironment in cycles: at time step t the agent chooses an
action at ∈ A and receives a percept et = (ot, rt) ∈ E
consisting of an observation ot ∈ O and a real-valued re-
ward rt; the cycle then repeats for t + 1. We assume that
rewards are bounded between 0 and 1 and that the set of
actions A and the set of percepts E are finite.

We fix a discount function γ : N → R with γt ≥ 0 and∑∞
t=1 γt < ∞. Our goal is to maximize discounted re-

wards
∑∞
t=1 γtrt. The discount normalization factor is de-

fined as Γt :=
∑∞
k=t γk. The effective horizon Ht(ε) is a

horizon that is long enough to encompass all but an ε of the
discount function’s mass:

Ht(ε) := min{k | Γt+k/Γt ≤ ε} (1)

A history is an element of (A × E)∗. We use æ ∈ A × E
to denote one interaction cycle, and æ<t to denote a his-
tory of length t− 1. We treat action, percepts, and histories
both as outcomes and as random variables. A policy is a
function π : (A× E)∗ → ∆A mapping a history æ<t to a
distribution over the actions taken after seeing this history;
the probability of action a is denoted π(a | æ<t). An envi-
ronment is a function ν : (A× E)∗ ×A → ∆E mapping a
history æ<t and an action at to a distribution over the per-
cepts generated after this history; the probability of percept
e is denoted ν(e | æ<tat).

A policy π and an environment ν generate a probability
measure νπ over infinite histories (A×E)∞, defined by its
values on the cylinder sets {h ∈ (A× E)∞ | h<t = æ<t}:

νπ(æ<t) :=
t−1∏

k=1

π(ak | æ<k)ν(ek | æ<kak)

When we take an expectation Eπν of a random variable
Xt(æ<t) this is to be understood as the expectation of the
history æ<t for a fixed time step t drawn from νπ , i.e.,

Eπν [Xt(æ<t)] :=
∑

æ<t

νπ(æ<t)Xt(æ<t).

We often do not explicitly add the subscript t to time-
dependent random variables.
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Definition 1 (Value Function). The value of a policy π in
an environment ν given history æ<t is defined as

V πν (æ<t) :=
1

Γt
Eπν

[ ∞∑

k=t

γkrk

∣∣∣∣∣æ<t

]
,

if Γt > 0 and V πν (æ<t) := 0 if Γt = 0. The optimal value
is defined as V ∗ν (h) := supπ V

π
ν (h).

The normalization constant 1/Γt ensures that values are
bounded between 0 and 1. We also use the truncated value
function

V π,mν (æ<t) :=
1

Γt
Eπν

[
m∑

k=t

γkrk

∣∣∣∣∣æ<t

]
.

For each environment µ there is an optimal policy π∗µ that
takes an optimal action for each history [LH14, Thm. 10]:

π∗µ(at | æ<t) > 0 =⇒ at ∈ arg max
a

V ∗µ (æ<ta)

Let M denote a countable class of environments. We as-
sume that M is large enough to contain the true environ-
ment (e.g. the class of all computable environments). Let
w ∈ ∆M be a prior probability distribution onM and let

ξ :=
∑

ν∈M
w(ν)ν

denote the corresponding Bayesian mixture over the class
M. After observing the history æ<t the prior w is updated
to the posterior

w(ν | æ<t) := w(ν)
ν(æ<t)

ξ(æ<t)
.

We also use the notation w(M′ | æ<t) :=
∑
ν∈M′ w(ν |

æ<t) for a set of environments M′ ⊆ M. Likewise we
define ν(A | æ<t) :=

∑
h∈A ν(h | æ<t) for a prefix-free

set of histories A ⊆ (A× E)∗.

Let ν, ρ ∈ M be two environments, let π1, π2 be two poli-
cies, and let m ∈ N be a lookahead time step. The total
variation distance is defined as

Dm(νπ1 , ρπ2 | æ<t) :=

sup
A⊆(A×E)m

∣∣∣νπ1(A | æ<t)− ρπ2(A | æ<t)
∣∣∣.

with D∞(νπ1 , ρπ2 | æ<t) := limm→∞Dm(νπ1 , ρπ2 |
æ<t).

Lemma 2 (Bounds on Value Difference). For any policies
π1, π2, any environments ρ and ν, and any horizon t ≤
m ≤ ∞,

|V π1,m
ν (æ<t)− V π2,m

ρ (æ<t)| ≤ Dm(νπ1 , ρπ2 | æ<t)

Proof. See Appendix B.

3 THOMPSON SAMPLING IS
ASYMPTOTICALLY OPTIMAL

Strens proposes following the optimal policy for one
episode or “related to the number of state transitions the
agent is likely to need to plan ahead” [Str00]. We follow
Strens’ suggestion and resample at the effective horizon.

Let εt be a monotone decreasing sequence of positive reals
such that εt → 0 as t → ∞. We define our Thompson-
sampling policy πT in Algorithm 1.

Algorithm 1 Thompson sampling policy πT
1: while true do
2: sample ρ ∼ w( · | æ<t)
3: follow π∗ρ for Ht(εt) steps

Note that πT is a stochastic policy since we occasionally
sample from a distribution. We assume that this sampling
is independent of everything else.

Definition 3 (Asymptotic Optimality). A policy π is
asymptotically optimal in an environment class M iff for
all µ ∈M

V ∗µ (æ<t)− V πµ (æ<t)→ 0 as t→∞ (2)

on histories drawn from µπ .

There are different types of asymptotic optimalities based
on the type of stochastic convergence in (2). If this con-
vergence occurs almost surely, it is called strong asymp-
totic optimality [LH11, Def. 7]; if this convergence occurs
in mean, it is called asymptotic optimality in mean; if this
convergence occurs in probability, it is called asymptotic
optimality in probability; and if the Cesàro averages con-
verge almost surely, it is called weak asymptotic optimal-
ity [LH11, Def. 7].

3.1 ASYMPTOTIC OPTIMALITY IN MEAN

This subsection is dedicated to proving the following theo-
rem.

Theorem 4 (Thompson Sampling is Asymptotically Opti-
mal in Mean). For all environments µ ∈M,

EπTµ
[
V ∗µ (æ<t)− V πTµ (æ<t)

]
→ 0 as t→∞.

This theorem immediately implies that Thompson sam-
pling is also asymptotically optimal in probability: The
convergence in mean of the random variables Xt :=
V ∗µ (æ<t) − V πTµ (æ<t) stated in Theorem 4 is equivalent
to convergence in probability in the sense that µπT [Xt >
ε] → 0 as t → ∞ for all ε > 0 because the random vari-
ables Xt are nonnegative and bounded. However, this does
not imply almost sure convergence (see Section 3.3).
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Define the Bayes-expected total variation distance

Fπm(æ<t) :=
∑

ρ∈M
w(ρ | æ<t)Dm(ρπ, ξπ | æ<t)

for m ≤ ∞.

If we replace the distance measure Dm by cross-entropy,
then the quantity Fπm(æ<t) becomes the Bayes-expected
information gain [Lat13, Eq. 3.5].

For the proof of Theorem 4 we need the following lemma.

Lemma 5 (F Vanishes On-Policy). For any policy π and
any environment µ,

Eπµ[Fπ∞(æ<t)]→ 0 as t→∞.

Proof. See Appendix B.

Proof of Theorem 4. Let β, δ > 0 and let εt > 0 denote
the sequence used to define πT in Algorithm 1. We assume
that t is large enough such that εk ≤ β for all k ≥ t and
that δ is small enough such that w(µ | æ<t) > 4δ for all
t, which holds since w(µ | æ<t) 6→ 0 µπ-almost surely for
any policy π [Hut09, Lem. 3i].

The stochastic process w(ν | æ<t) is a ξπT -martingale
since

EπTξ [w(ν | æ1:t) | æ<t]

=
∑

atet

ξπT (æt | æ<t)w(ν)
νπT (æ1:t)

ξπT (æ1:t)

=
∑

atet

ξπT (æt | æ<t)w(ν | æ<t)
νπT (æt | æ<t)

ξπT (æt | æ<t)

= w(ν | æ<t)
∑

atet

νπT (æt | æ<t)

= w(ν | æ<t).

By the martingale convergence theorem [Dur10,
Thm. 5.2.8] w(ν | æ<t) converges ξπT -almost surely and
because ξπT ≥ w(µ)µπT it also converges µπT -almost
surely.

We argue that we can choose t0 to be one of πT ’s resam-
pling time steps large enough such that for all t ≥ t0
the following three events hold simultaneously with µπT -
probability at least 1− δ.

(i) There is a finite setM′ ⊂ M with w(M′ | æ<t) >
1−δ andw(ν | æ<k) 6→ 0 as k →∞ for all ν ∈M′.

(ii) |w(M′′ | æ<t)− w(M′′ | æ<t0)| ≤ δ for allM′′ ⊆
M′.

(iii) FπT∞ (æ<t) < δβw2
min.

where wmin := inf{w(ν | æ<k) | k ∈ N, ν ∈ M′}, which
is positive by (i).

(i) and (ii) are satisfied eventually because the posterior
w( · | æ<t) converges µπT -almost surely. Note that the
setM′ is random: the limit of w(ν | æ<t) as t → ∞ de-
pends on the history æ1:∞. Without loss of generality, we
assume the true environment µ is contained in M′ since
w(µ | æ<t) 6→ 0 µπT -almost surely. (iii) follows from
Lemma 5 since convergence in mean implies convergence
in probability.

Moreover, we define the horizon m := t + Ht(εt) as the
time step of the effective horizon at time step t. Let æ<t be
a fixed history for which (i-iii) is satisfied. Then we have

δβw2
min > FπT∞ (æ<t)

=
∑

ν∈M
w(ν | æ<t)D∞(νπT , ξπT | æ<t)

= Eν∼w( ·|æ<t) [D∞(νπT , ξπT | æ<t)]

≥ Eν∼w( ·|æ<t) [Dm(νπT , ξπT | æ<t)]

≥ βw2
minw(M\M′′ | æ<t)

by Markov’s inequality where

M′′ :=
{
ν ∈M

∣∣ Dm(νπT , ξπT | æ<t) < βw2
min

}
.

For our fixed history æ<t we have

1− δ < w(M′′ | æ<t)

(i)

≤ w(M′′ ∩M′ | æ<t) + δ

(ii)

≤ w(M′′ ∩M′ | æ<t0) + 2δ

(i)

≤ w(M′′ | æ<t0) + 3δ

and thus we get

1− 4δ < w
[
Dm(νπT , ξπT | æ<t) < βw2

min

∣∣ æ<t0

]
.
(3)

In particular, this bound holds for ν = µ since w(µ |
æ<t0) > 4δ by assumption.

It remains to show that with high probability the value V
π∗ρ
µ

of the sample ρ’s optimal policy π∗ρ is sufficiently close to
the µ-optimal value V ∗µ . The worst case is that we draw
the worst sample from M′ ∩ M′′ twice in a row. From
now on, let ρ denote the sample environment we draw at
time step t0, and let t denote some time step between t0
and t1 := t0 +Ht0(εt0) (before the next resampling). With
probability w(ν′ | æ<t0)w(ν′ | æ<t1) we sample ν′ both
at t0 and t1 when following πT . Therefore we have for all
æt:m and all ν ∈M

νπT (æ1:m | æ<t)

≥ w(ν′ | æ<t0)w(ν′ | æ<t1)νπ
∗
ν′ (æ1:m | æ<t).
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Thus we get for all ν ∈M′ (in particular ρ and µ)

Dm(µπT , ρπT | æ<t)

≥ sup
ν′∈M

sup
A⊆(A×E)m

∣∣∣w(ν′ | æ<t0)w(ν′ | æ<t1)

(µπ
∗
ν′ (A | æ<t)− ρπ

∗
ν′ (A | æ<t))

∣∣∣
≥ w(ν | æ<t0)w(ν | æ<t1)

sup
A⊆(A×E)m

∣∣∣µπ∗ν (A | æ<t)− ρπ
∗
ν (A | æ<t)

∣∣∣

≥ w2
minDm(µπ

∗
ν , ρπ

∗
ν | æ<t).

For ρ ∈M′′ we get

Dm(µπT , ρπT | æ<t)

≤ Dm(µπT , ξπT | æ<t) +Dm(ρπT , ξπT | æ<t)

(3)
< βw2

min + βw2
min = 2βw2

min,

which implies together with Lemma 2 and the fact that re-
wards in [0, 1]

∣∣∣V π
∗
ν

µ (æ<t)− V π
∗
ν

ρ (æ<t)
∣∣∣

≤ Γt+Ht(εt)

Γt
+
∣∣∣V π

∗
ν ,m

µ (æ<t)− V π
∗
ν ,m

ρ (æ<t)
∣∣∣

≤ εt +Dm(µπ
∗
ν , ρπ

∗
ν | æ<t)

≤ εt + 1
w2

min
Dm(µπT , ρπT | æ<t)

< β + 2β = 3β.

Hence we get (omitting history arguments æ<t for simplic-
ity)

V ∗µ = V
π∗µ
µ < V

π∗µ
ρ + 3β ≤ V ∗ρ + 3β

= V
π∗ρ
ρ + 3β < V

π∗ρ
µ + 3β + 3β = V

π∗ρ
µ + 6β.

(4)

With µπT -probability at least 1−δ (i), (ii), and (iii) are true,
with µπT -probability at least 1−δ our sample ρ happens to
be inM′ by (i), and with w( · | æ<t0)-probability at least
1− 4δ the sample is inM′′ by (3). All of these events are
true simultaneously with probability at least 1 − (δ + δ +
4δ) = 1 − 6δ. Hence the bound (4) transfers for πT such
that with µπT -probability ≥ 1− 6δ we have

V ∗µ (æ<t)− V πTµ (æ<t) < 6β.

Therefore µπT [V ∗µ (æ<t) − V πTµ (æ<t) ≥ 6β] < 6δ and
with δ → 0 we get that V ∗µ (æ<t) − V πTµ (æ<t) → 0 as
t→∞ in probability. The value function is bounded, thus
it also converges in mean by the dominated convergence
theorem.

3.2 WEAK ASYMPTOTIC OPTIMALITY

It might appear that convergence in mean is more natural
than the convergence of Cesàro averages of weak asymp-

totic optimality. However, both notions are not so funda-
mentally different because they both allow an infinite num-
ber of bad mistakes (actions that lead to V ∗µ − V πµ being
large). Asymptotic optimality in mean allows bad mistakes
as long as their probability converges to zero; weak asymp-
totic optimality allows bad mistakes as long as the total
time spent on bad mistakes grows sublinearly.

Lattimore and Hutter show that weak asymptotic optimal-
ity is possible in a countable class of deterministic envi-
ronments using an MDL-agent that explores through bursts
of random walks [LH11, Def. 10]. For classes of stochas-
tic environments, BayesExp is weakly asymptotically op-
timal [Lat13, Ch. 5]. However, this requires the addi-
tional condition that the effective horizon grows sublin-
early, Ht(εt) ∈ o(t), while Theorem 4 does not require
this condition.

Generally, weak asymptotic optimality and asymptotic op-
timality in mean are incomparable because the notions of
convergence are incomparable for (bounded) random vari-
ables. First, for deterministic sequences (i.e. determin-
istic policies in deterministic environments), convergence
in mean is equivalent to (regular) convergence, which im-
plies convergence in Cesàro average, but not vice versa.
Second, convergence in probability (and hence conver-
gence in mean for bounded random variables) does not
imply almost sure convergence of Cesàro averages [Sto13,
Sec. 14.18]. We leave open the question whether the policy
πT is weakly asymptotically optimal.

3.3 STRONG ASYMPTOTIC OPTIMALITY

Strong asymptotic optimality is known to be impossible
for deterministic policies [LH11, Thm. 8.1], but whether
it is possible for stochastic policies is an open question.
However, we show that Thompson sampling is not strongly
asymptotically optimal.
Example 6 (Thompson Sampling is not Strongly Asymp-
totically Optimal). Define A := {α, β}, E := {0, 1/2, 1},
and assume geometric discounting, γt := γt for γ ∈
(0, 1). Consider the following class of environmentsM :=
{ν∞, ν1, ν2, . . .} (transitions are labeled with action, re-
ward):

s0

s1

s2

β, 1
2

α, 0

β, 0

α, 0

∗, 0

s0

s1

s2

s3

s4

β, 1
2

t < k : α, 0

β, 0

α, 0

∗, 0

t ≥ k : α, 0

α, 0
β, 0

α, 1

β, 0

ν∞ νk

Environment νk works just like environment ν∞ except
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that after time step k, the path to state s3 gets unlocked
and the optimal policy is to take action α twice from state
s0. The classM is a class of deterministic weakly commu-
nicating MDPs (but as an MDP νk has more than 5 states).
The optimal policy in environment ν∞ is to always take
action β, the optimal policy for environment νk is to take
action β for t < k and then take action β in state s1 and
action α otherwise.

Suppose the policy πT is acting in environment ν∞. Since
it is asymptotically optimal in the class M, it has to take
actions αα from s0 infinitely often: for t < k environment
νk is indistinguishable from ν∞, so the posterior for νk is
larger or equal to the prior. Hence there is always a constant
chance of sampling νk until taking actions αα, at which
point all environments νk for k ≤ t become falsified.

If the policy πT decides to explore and take the first action
α, it will be in state s1. Let æ<t denote the current history.
Then the ν∞-optimal action is β and

V ∗ν∞(æ<t) = (1− γ)

(
0 + γ

1

2
+ γ2

1

2
+ . . .

)
=
γ

2
.

The next action taken by πT is α since any optimal policy
for any sampled environment that takes actionα once, takes
that action again (and we are following that policy for an
εt-effective horizon). Hence

V πTν∞ (æ<t) ≤ (1−γ)

(
0 + 0 + γ2

1

2
+ γ3

1

2
+ . . .

)
=
γ2

2
.

Therefore V ∗ν∞ − V πTν∞ ≥ (γ − γ2)/2 > 0. This happens
infinitely often with probability one and thus we cannot get
almost sure convergence. ♦

We expect that strong asymptotic optimality can be
achieved with Thompson sampling by resampling at every
time step (with strong assumptions on the discount func-
tion).

4 REGRET

4.1 SETUP

In general environments classes worst-case regret is linear
because the agent can get caught in a trap and be unable
to recover [Hut05, Sec. 5.3.2]. To achieve sublinear regret
we need to ensure that the agent can recover from mistakes.
Formally, we make the following assumption.

Definition 7 (Recoverability). An environment ν satisfies
the recoverability assumption iff

sup
π

∣∣∣Eπ
∗
ν
ν [V ∗ν (æ<t)]− Eπν [V ∗ν (æ<t)]

∣∣∣→ 0 as t→∞.

Recoverability compares following the worst policy π for
t−1 time steps and then switching to the optimal policy π∗ν

to having followed π∗ν from the beginning. The recoverabil-
ity assumption states that switching to the optimal policy at
any time step enables the recovery of most of the value.

Note that Definition 7 demands that it becomes less costly
to recover from mistakes as time progresses. This should be
regarded as an effect of the discount function: if the (effec-
tive) horizon grows, recovery becomes easier because the
optimal policy has more time to perform a recovery. More-
over, recoverability is on the optimal policy, in contrast to
the notion of ergodicity in MDPs which demands returning
to a starting state regardless of the policy.

Remark 8 (Weakly Communicating POMDPs are Recov-
erable). If the effective horizon is growing, Ht(ε)→∞ as
t → ∞, then any weakly communicating finite state par-
tially observable MDP satisfies the recoverability assump-
tion.

Definition 9 (Regret). The regret of a policy π in environ-
ment µ is

Rm(π, µ) := sup
π′

Eπ
′
µ

[
m∑

t=1

rt

]
− Eπµ

[
m∑

t=1

rt

]
.

Note that regret is undiscounted and always nonnegative.
Moreover, the supremum is always attained by some pol-
icy (not necessarily the (Vµ-)optimal policy π∗µ because that
policy uses discounting), since the space of possible differ-
ent policies for the firstm actions is finite since we assumed
the set of actions A and the set of percepts E to be finite.

Assumption 10 (Discount Function). Let the discount
function γ be such that

(a) γt > 0 for all t,

(b) γt is monotone decreasing in t, and

(c) Ht(ε) ∈ o(t) for all ε > 0.

This assumption demands that the discount function is
somewhat well-behaved: the function has no oscillations,
does not become 0, and the horizon is not growing too fast.

Assumption 10 is satisfied by geometric discounting: γt :=
γt > 0 (a) for some fixed constant γ ∈ (0, 1) is monotone
decreasing (b), Γt = γt/(1 − γ), and Ht(ε) = dlogγ εe ∈
o(t) (c).

The problem with geometric discounting is that it makes
the recoverability assumption very strong: since the hori-
zon is not growing, the environment has to enable faster
recovery as time progresses; in this case weakly communi-
cating partially observable MDPs are not recoverable.

A choice with Ht(ε) → ∞ that satisfies Assumption 10
is γt := e−

√
t/
√
t [Lat13, Sec. 2.3.1]. For this discount

function Γt ≈ 2e−
√
t, Ht(ε) ≈ −

√
t log ε + (log ε)2 ∈

o(t), and thus Ht(ε)→∞ as t→∞.
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4.2 SUBLINEAR REGRET

This subsection is dedicated to the following theorem.

Theorem 11 (Sublinear Regret). If the discount function
γ satisfies Assumption 10, the environment µ ∈ M satis-
fies the recoverability assumption, and π is asymptotically
optimal in mean, i.e.,

Eπµ
[
V ∗µ (æ<t)− V πµ (æ<t)

]
→ 0 as t→∞,

then Rm(π, µ) ∈ o(m).

If the items in Assumption 10 are violated, Theorem 11 can
fail:

• If γt = 0 for some time steps t, our policy does not
care about those time steps and might take actions that
have large regret.

• Similarly if γ oscillates between high values and very
low values: our policy might take high-regret actions
in time steps with comparatively lower γ-weight.

• If the horizon grows linearly, infinitely often our pol-
icy might spend some constant fraction of the current
effective horizon exploring, which incurs a cost that is
a constant fraction of the total regret so far.

To prove Theorem 11, we apply the following technical
lemma.

Lemma 12 (Value and Regret). Let ε > 0 and assume the
discount function γ satisfies Assumption 10. Let (dt)t∈N be
a sequence of numbers with |dt| ≤ 1 for all t. If there is a
time step t0 with

1

Γt

∞∑

k=t

γkdk < ε ∀t ≥ t0 (5)

then

m∑

t=1

dt ≤ t0 + ε(m− t0 + 1) +
1 + ε

1− εHm(ε)

Proof. This proof essentially follows the proof of [Hut06,
Thm. 17]; see Appendix B.

Proof of Theorem 11. Let (πm)m∈N denote any sequence
of policies, such as a sequence of policies that attain the
supremum in the definition of regret. We want to show that

Eπmµ

[
m∑

t=1

rt

]
− Eπµ

[
m∑

t=1

rt

]
∈ o(m).

For
d
(m)
k := Eπmµ [rk]− Eπµ[rk] (6)

we have −1 ≤ d
(m)
k ≤ 1 since we assumed rewards to

be bounded between 0 and 1. Because the environment µ
satisfies the recoverability assumption we have
∣∣∣Eπ

∗
µ
µ [V ∗µ (æ<t)]− Eπµ[V ∗µ (æ<t)]

∣∣∣→ 0 as t→∞, and

sup
m

∣∣∣Eπ
∗
µ
µ [V ∗µ (æ<t)]− Eπmµ [V ∗µ (æ<t)]

∣∣∣→ 0 as t→∞,

so we conclude that

sup
m

∣∣Eπµ[V ∗µ (æ<t)]− Eπmµ [V ∗µ (æ<t)]
∣∣→ 0

by the triangle inequality and thus

sup
m

Eπmµ [V ∗µ (æ<t)]− Eπµ[V ∗µ (æ<t)]→ 0 as t→∞. (7)

By assumption the policy π is asymptotically optimal in
mean, so we have

Eπµ[V ∗µ (æ<t)]− Eπµ[V πµ (æ<t)]→ 0 as t→∞,

and with (7) this combines to

sup
m

Eπmµ [V ∗µ (æ<t)]− Eπµ[V πµ (æ<t)]→ 0 as t→∞.

From V ∗µ (æ<t) ≥ V πmµ (æ<t) we get

lim sup
t→∞

(
sup
m

Eπmµ [V πmµ (æ<t)]− Eπµ[V πµ (æ<t)]

)
≤ 0.

(8)
For π′ ∈ {π, π1, π2, . . .} we have

Eπ
′
µ [V π

′
µ (æ<t)] = Eπ

′
µ

[
1

Γt
Eπ
′
µ

[ ∞∑

k=t

γkrk

∣∣∣∣∣æ<t

]]

= Eπ
′
µ

[
1

Γt

∞∑

k=t

γkrk

]

=
1

Γt

∞∑

k=t

γkEπ
′
µ [rk],

so from (6) and (8) we get

lim sup
t→∞

sup
m

1

Γt

∞∑

k=t

γkd
(m)
k ≤ 0.

Let ε > 0 and choose t0 independent of m and large
enough such that supm

∑∞
k=t γkd

(m)
k /Γt < ε for all t ≥

t0. Now we let m ∈ N be given and apply Lemma 12 to
get

Rm(π, µ)

m
=

∑m
k=1 d

(m)
k

m

≤
t0 + ε(m− t0 + 1) + 1+ε

1−εHm(ε)

m
.

Since Ht(ε) ∈ o(t) according to Assumption 10c we get
lim supm→∞Rm(π, µ)/m ≤ 0.
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Example 13 (Converse of Theorem 11 is False). Let µ
be a two-armed Bernoulli bandit with means 0 and 1 and
suppose we are using geometric discounting with discount
factor γ ∈ [0, 1). This environment is recoverable. If our
policy π pulls the suboptimal arm exactly on time steps
1, 2, 4, 8, 16, . . ., regret will be logarithmic. However, on
time steps t = 2n for n ∈ N the value difference V ∗µ − V πµ
is deterministically at least 1− γ > 0. ♦

4.3 IMPLICATIONS

We get the following immediate consequence.

Corollary 14 (Sublinear Regret for the Optimal Dis-
counted Policy). If the discount function γ satisfies As-
sumption 10 and the environment µ satisfies the recover-
ability assumption, then Rm(π∗µ, µ) ∈ o(m).

Proof. From Theorem 11 since the policy π∗µ is (trivially)
asymptotically optimal in µ.

If the environment does not satisfy the recoverability as-
sumption, regret may be linear even on the optimal policy:
the optimal policy maximizes discounted rewards and this
short-sightedness might incur a tradeoff that leads to linear
regret later on if the environment does not allow recovery.

Corollary 15 (Sublinear Regret for Thompson Sampling).
If the discount function γ satisfies Assumption 10 and the
environment µ ∈ M satisfies the recoverability assump-
tion, then Rm(πT , µ) ∈ o(m) for the Thompson sampling
policy πT .

Proof. From Theorem 4 and Theorem 11.

5 DISCUSSION

In this paper we introduced a reinforcement learning pol-
icy πT based on Thompson sampling for general countable
environment classes (Algorithm 1). We proved two asymp-
totic statements about this policy. Theorem 4 states that πT
is asymptotically optimal in mean: the value of πT in the
true environment converges to the optimal value. Corol-
lary 15 states that the regret of πT is sublinear: the differ-
ence of the expected average rewards between πT and the
best informed policy converges to 0. Both statements come
without a concrete convergence rate because of the weak
assumptions we made on the environment class.

Asymptotic optimality has to be taken with a grain of salt.
It provides no incentive to the agent to avoid traps in the en-
vironment. Once the agent gets caught in a trap, all actions
are equally bad and thus optimal: asymptotic optimality
has been achieved. Even worse, an asymptotically optimal
agent has to explore all the traps because they might con-
tain hidden treasure. Overall, there is a dichotomy between
the asymptotic nature of asymptotic optimality and the use

of discounting to prioritize the present over the future. Ide-
ally, we would want to give finite guarantees instead, but
without additional assumptions this is likely impossible in
this general setting. Our regret bound could be a step in the
right direction, even though itself asymptotic in nature.

For Bayesians asymptotic optimality means that the pos-
terior distribution w( · | æ<t) concentrates on environ-
ments that are indistinguishable from the true environment
(but generally not on the true environment). This is why
Thompson sampling works: any optimal policy of the en-
vironment we draw from the posterior will, with higher and
higher probability, also be (almost) optimal in the true en-
vironment.

If the Bayesian mixture ξ is inside the classM (as it is the
case for the class of lower semicomputable chronological
semimeasures [Hut05]), then we can assign ξ a prior prob-
ability that is arbitrarily close to 1. Since the posterior of
ξ is the same as the prior, Thompson sampling will act ac-
cording to the Bayes-optimal policy most of the time. This
means the Bayes-value of Thompson sampling can be very
good; formally, V ∗ξ (ε) − V πTξ (ε) can be made arbitrarily
small, and thus Thompson sampling can have near-optimal
Legg-Hutter intelligence [LH07].

In contrast, the Bayes-value of Thompson sampling can
also be very bad: Suppose you have a class of (n+1)-armed
bandits indexed 1, . . . , n where bandit i gives reward 1− ε
on arm 1, reward 1 on arm i+ 1, and reward 0 on all other
arms. For geometric discounting and ε < (1− γ)/(2− γ),
it is Bayes-optimal to pull arm 1 while Thompson sam-
pling will explore on average n/2 arms until it finds the
optimal arm. The Bayes-value of Thompson sampling is
1/(n−γn−1) in contract to (1−ε) achieved by Bayes. For
a horizon of n, the Bayes-optimal policy suffers a regret of
εn and Thompson sampling a regret of n/2, which is much
larger for small ε.

The exploration performed by Thompson sampling
is qualitatively different from the exploration by
BayesExp [Lat13, Ch. 5]. BayesExp performs phases
of exploration in which it maximizes the expected in-
formation gain. This explores the environment class
completely, even achieving off-policy prediction [OLH13,
Thm. 7]. In contrast, Thompson sampling only explores
on the optimal policies, and in some environment classes
this will not yield off-policy prediction. So in this sense
the exploration mechanism of Thompson sampling is more
reward-oriented than maximizing information gain.

Possible avenues of future research are providing concrete
convergence rates for specific environment classes and re-
sults for uncountable (parameterized) environment classes.
For the latter, we have to use different analysis techniques
because the true environment µ is typically assigned a prior
probability of 0 (only a positive density) but the proofs
of Lemma 5 and Theorem 4 rely on dividing by or tak-
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ing a minimum over prior probabilities. We also left open
whether Thompson sampling is weakly asymptotically op-
timal.
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Abstract

A Bayesian agent acting in a multi-agent envi-
ronment learns to predict the other agents’ poli-
cies if its prior assigns positive probability to
them (in other words, its prior contains a grain of
truth). Finding a reasonably large class of poli-
cies that contains the Bayes-optimal policies with
respect to this class is known as the grain of truth
problem. Only small classes are known to have
a grain of truth and the literature contains sev-
eral related impossibility results. In this paper
we present a formal and general solution to the
full grain of truth problem: we construct a class
of policies that contains all computable policies
as well as Bayes-optimal policies for every lower
semicomputable prior over the class. When the
environment is unknown, Bayes-optimal agents
may fail to act optimally even asymptotically.
However, agents based on Thompson sampling
converge to play ε-Nash equilibria in arbitrary
unknown computable multi-agent environments.
While these results are purely theoretical, we
show that they can be computationally approxi-
mated arbitrarily closely.

Keywords. General reinforcement learning, multi-agent
systems, game theory, self-reflection, asymptotic optimal-
ity, Nash equilibrium, Thompson sampling, AIXI.

1 INTRODUCTION

Consider the general setup of multiple reinforcement learn-
ing agents interacting sequentially in a known environment
with the goal to maximize discounted reward.1 Each agent
knows how the environment behaves, but does not know the
other agents’ behavior. The natural (Bayesian) approach
would be to define a class of possible policies that the other

1We mostly use the terminology of reinforcement learning.
For readers from game theory we provide a dictionary in Table 1.

Reinforcement learning Game theory

stochastic policy mixed strategy
deterministic policy pure strategy
agent player
multi-agent environment infinite extensive-form

game
reward payoff/utility
(finite) history history
infinite history path of play

Table 1: Terminology dictionary between reinforcement
learning and game theory.

agents could adopt and take a prior over this class. During
the interaction, this prior gets updated to the posterior as
our agent learns the others’ behavior. Our agent then acts
optimally with respect to this posterior belief.

A famous result for infinitely repeated games states that as
long as each agent assigns positive prior probability to the
other agents’ policies (a grain of truth) and each agent acts
Bayes-optimal, then the agents converge to playing an ε-
Nash equilibrium [KL93].

As an example, consider an infinitely repeated prisoners
dilemma between two agents. In every time step the pay-
off matrix is as follows, where C means cooperate and D
means defect.

C D
C 3/4, 3/4 0, 1
D 1, 0 1/4, 1/4

Define the set of policies Π := {π∞, π0, π1, . . .} where
policy πt cooperates until time step t or the opponent de-
fects (whatever happens first) and defects thereafter. The
Bayes-optimal behavior is to cooperate until the posterior
belief that the other agent defects in the time step after
the next is greater than some constant (depending on the
discount function) and then defect afterwards. Therefore
Bayes-optimal behavior leads to a policy from the set Π
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(regardless of the prior). If both agents are Bayes-optimal
with respect to some prior, they both have a grain of truth
and therefore they converge to a Nash equilibrium: either
they both cooperate forever or after some finite time they
both defect forever. Alternating strategies like TitForTat
(cooperate first, then play the opponent’s last action) are
not part of the policy class Π, and adding them to the class
breaks the grain of truth property: the Bayes-optimal be-
havior is no longer in the class. This is rather typical; a
Bayesian agent usually needs to be more powerful than its
environment [LH15b].

Until now, classes that admit a grain of truth were known
only for small toy examples such as the iterated prisoner’s
dilemma above [SLB09, Ch. 7.3]. The quest to find a
large class admitting a grain of truth is known as the grain
of truth problem [Hut09, Q. 5j]. The literature contains
several impossibility results on the grain of truth prob-
lem [FY01, Nac97, Nac05] that identify properties that
cannot be simultaneously satisfied for classes that allow a
grain of truth.

In this paper we present a formal solution to multi-agent
reinforcement learning and the grain of truth problem in
the general setting (Section 3). We assume that our multi-
agent environment is computable, but it does not need to
be stationary/Markov, ergodic, or finite-state [Hut05]. Our
class of policies is large enough to contain all computable
(stochastic) policies, as well as all relevant Bayes-optimal
policies. At the same time, our class is small enough to be
limit computable. This is important because it allows our
result to be computationally approximated.

In Section 4 we consider the setting where the multi-agent
environment is unknown to the agents and has to be learned
in addition to the other agents’ behavior. A Bayes-optimal
agent may not learn to act optimally in unknown multi-
agent environments even though it has a grain of truth.
This effect occurs in non-recoverable environments where
taking one wrong action can mean a permanent loss of fu-
ture value. In this case, a Bayes-optimal agent avoids tak-
ing these dangerous actions and therefore will not explore
enough to wash out the prior’s bias [LH15a]. Therefore,
Bayesian agents are not asymptotically optimal, i.e., they
do not always learn to act optimally [Ors13].

However, asymptotic optimality is achieved by Thompson
sampling because the inherent randomness of Thompson
sampling leads to enough exploration to learn the entire
environment class [LLOH16]. This leads to our main re-
sult: if all agents use Thompson sampling over our class of
multi-agent environments, then for every ε > 0 they con-
verge to an ε-Nash equilibrium asymptotically.

The central idea to our construction is based on reflec-
tive oracles [FST15, FTC15b]. Reflective oracles are
probabilistic oracles similar to halting oracles that answer
whether the probability that a given probabilistic Turing

machine T outputs 1 is higher than a given rational num-
ber p. The oracles are reflective in the sense that the ma-
chine T may itself query the oracle, so the oracle has to
answer queries about itself. This invites issues caused by
self-referential liar paradoxes of the form “if the oracle says
that I return 1 with probability > 1/2, then return 0, else
return 1.” Reflective oracles avoid these issues by being
allowed to randomize if the machines do not halt or the ra-
tional number is exactly the probability to output 1. We
introduce reflective oracles formally in Section 2 and prove
that there is a limit computable reflective oracle.

2 REFLECTIVE ORACLES

2.1 PRELIMINARIES

Let X denote a finite set called alphabet. The set X ∗ :=⋃∞
n=0 Xn is the set of all finite strings over the alphabet X ,

the set X∞ is the set of all infinite strings over the alphabet
X , and the set X ] := X ∗ ∪ X∞ is their union. The empty
string is denoted by ε, not to be confused with the small
positive real number ε. Given a string x ∈ X ], we denote
its length by |x|. For a (finite or infinite) string x of length
≥ k, we denote with x1:k the first k characters of x, and
with x<k the first k− 1 characters of x. The notation x1:∞
stresses that x is an infinite string.

A function f : X ∗ → R is lower semicomputable iff the
set {(x, p) ∈ X ∗ × Q | f(x) > p} is recursively enu-
merable. The function f is computable iff both f and −f
are lower semicomputable. Finally, the function f is limit
computable iff there is a computable function φ such that

lim
k→∞

φ(x, k) = f(x).

The program φ that limit computes f can be thought of as
an anytime algorithm for f : we can stop φ at any time k
and get a preliminary answer. If the program φ ran long
enough (which we do not know), this preliminary answer
will be close to the correct one.

We use ∆Y to denote the set of probability distributions
over Y . A list of notation can be found in Appendix A.

2.2 DEFINITION

A semimeasure over the alphabet X is a function ν : X ∗ →
[0, 1] such that (i) ν(ε) ≤ 1, and (ii) ν(x) ≥∑a∈X ν(xa)
for all x ∈ X ∗. In the terminology of measure theory,
semimeasures are probability measures on the probability
space X ] = X ∗∪X∞ whose σ-algebra is generated by the
cylinder sets Γx := {xz | z ∈ X ]} [LV08, Ch. 4.2]. We
call a semimeasure (probability) a measure iff equalities
hold in (i) and (ii) for all x ∈ X ∗.
Next, we connect semimeasures to Turing machines. The
literature uses monotone Turing machines, which naturally
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correspond to lower semicomputable semimeasures [LV08,
Sec. 4.5.2] that describe the distribution that arises when
piping fair coin flips into the monotone machine. Here we
take a different route.

A probabilistic Turing machine is a Turing machine that
has access to an unlimited number of uniformly random
coin flips. Let T denote the set of all probabilistic Turing
machines that take some input in X ∗ and may query an
oracle (formally defined below). We take a Turing machine
T ∈ T to correspond to a semimeasure λT where λT (a |
x) is the probability that T outputs a ∈ X when given
x ∈ X ∗ as input. The value of λT (x) is then given by the
chain rule

λT (x) :=

|x|∏

k=1

λT (xk | x<k). (1)

Thus T gives rise to the set of semimeasuresM where the
conditionals λ(a | x) are lower semicomputable. In con-
trast, the literature typically considers semimeasures whose
joint probability (1) is lower semicomputable. This setM
contains all computable measures. However,M is a proper
subset of the set of all lower semicomputable semimeasures
because the product (1) is lower semicomputale, but there
are some lower semicomputable semimeasures whose con-
ditional is not lower semicomputable [LH15c, Thm. 6].

In the following we assume that our alphabet is binary, i.e.,
X := {0, 1}.
Definition 1 (Oracle). An oracle is a function O : T ×
{0, 1}∗ ×Q→ ∆{0, 1}.

Oracles are understood to be probabilistic: they randomly
return 0 or 1. Let TO denote the machine T ∈ T when run
with the oracle O, and let λOT denote the semimeasure in-
duced by TO. This means that drawing from λOT involves
two sources of randomness: one from the distribution in-
duced by the probabilistic Turing machine T and one from
the oracle’s answers.

The intended semantics of an oracle are that it takes a query
(T, x, p) and returns 1 if the machine TO outputs 1 on in-
put x with probability greater than p when run with the or-
acle O, i.e., when λOT (1 | x) > p. Furthermore, the oracle
returns 0 if the machine TO outputs 1 on input xwith prob-
ability less than p when run with the oracle O, i.e., when
λOT (1 | x) < p. To fulfill this, the oracle O has to make
statements about itself, since the machine T from the query
may again query O. Therefore we call oracles of this kind
reflective oracles. This has to be defined very carefully to
avoid the obvious diagonalization issues that are caused by
programs that ask the oracle about themselves. We impose
the following self-consistency constraint.
Definition 2 (Reflective Oracle). An oracle O is reflective
iff for all queries (T, x, p) ∈ T × {0, 1}∗ ×Q,

(i) λOT (1 | x) > p implies O(T, x, p) = 1, and

0 1λO
T (0 | x)λO

T (1 | x)

O returns 1 O may randomize O returns 0

Figure 1: Answer options of a reflective oracle O for the
query (T, x, p); the rational p ∈ [0, 1] falls into one of the
three regions above. The values of λOT (0 | x) and λOT (1 | x)
are depicted as the length of the line segment under which
they are written.

(ii) λOT (0 | x) > 1− p implies O(T, x, p) = 0.

If p under- or overshoots the true probability of λOT ( · | x),
then the oracle must reveal this information. However, in
the critical case when p = λOT (1 | x), the oracle is allowed
to return anything and may randomize its result. Further-
more, since T might not output any symbol, it is possible
that λOT (0 | x) + λOT (1 | x) < 1. In this case the ora-
cle can reassign the non-halting probability mass to 0, 1, or
randomize; see Figure 1.

Example 3 (Reflective Oracles and Diagonalization). Let
T ∈ T be a probabilistic Turing machine that outputs
1−O(T, ε, 1/2) (T can know its own source code by quin-
ing [Kle52, Thm. 27]). In other words, T queries the oracle
about whether it is more likely to output 1 or 0, and then
does whichever the oracle says is less likely. In this case
we can use an oracle O(T, ε, 1/2) := 1/2 (answer 0 or 1
with equal probability), which implies λOT (1 | ε) = λOT (0 |
ε) = 1/2, so the conditions of Definition 2 are satisfied. In
fact, for this machine T we must have O(T, ε, 1/2) = 1/2
for all reflective oracles O. ♦

The following theorem establishes that reflective oracles
exist.

Theorem 4 ([FTC15a, App. B]). There is a reflective ora-
cle.

Definition 5 (Reflective-Oracle-Computable). A semimea-
sure is called reflective-oracle-computable iff it is com-
putable on a probabilistic Turing machine with access to
a reflective oracle.

For any probabilistic Turing machine T ∈ T we can
complete the semimeasure λOT ( · | x) into a reflective-
oracle-computable measure λ

O

T ( · | x): Using the oracle
O and a binary search on the parameter p we search for
the crossover point p where O(T, x, p) goes from return-
ing 1 to returning 0. The limit point p∗ ∈ R of the bi-
nary search is random since the oracle’s answers may be
random. But the main point is that the expectation of p∗

exists, so λ
O

T (1 | x) = E[p∗] = 1 − λ
O

T (0 | x) for all
x ∈ X ∗. Hence λ

O

T is a measure. Moreover, if the oracle
is reflective, then λ

O

T (x) ≥ λOT (x) for all x ∈ X ∗. In this
sense the oracle O can be viewed as a way of ‘completing’
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all semimeasures λOT to measures by arbitrarily assigning
the non-halting probability mass. If the oracle O is reflec-
tive this is consistent in the sense that Turing machines who
run other Turing machines will be completed in the same
way. This is especially important for a universal machine
that runs all other Turing machines to induce a Solomonoff-
style distribution.

2.3 A LIMIT COMPUTABLE REFLECTIVE
ORACLE

The proof of Theorem 4 given in [FTC15a, App. B] is non-
constructive and uses the axiom of choice. In Section 2.4
we give a constructive proof for the existence of reflective
oracles and show that there is one that is limit computable.

Theorem 6 (A Limit Computable Reflective Oracle).
There is a reflective oracle that is limit computable.

This theorem has the immediate consequence that reflec-
tive oracles cannot be used as halting oracles. At first,
this result may seem surprising: according to the definition
of reflective oracles, they make concrete statements about
the output of probabilistic Turing machines. However, the
fact that the oracles may randomize some of the time actu-
ally removes enough information such that halting can no
longer be decided from the oracle output.

Corollary 7 (Reflective Oracles are not Halting Oracles).
There is no probabilistic Turing machine T such that for
every prefix program p and every reflective oracle O, we
have that λOT (1 | p) > 1/2 if p halts and λOT (1 | p) < 1/2
otherwise.

Proof. Assume there was such a machine T and let O be
the limit computable oracle from Theorem 6. Since O is
reflective we can turn T into a deterministic halting oracle
by calling O(T, p, 1/2) which deterministically returns 1 if
p halts and 0 otherwise. Since O is limit computable, we
can finitely compute the output of O on any query to arbi-
trary finite precision using our deterministic halting oracle.
We construct a probabilistic Turing machine T ′ that uses
our halting oracle to compute (rather than query) the ora-
cle O on (T ′, ε, 1/2) to a precision of 1/3 in finite time. If
O(T ′, ε, 1/2)± 1/3 > 1/2, the machine T ′ outputs 0, oth-
erwise T ′ outputs 1. Since our halting oracle is entirely de-
terministic, the output of T ′ is entirely deterministic as well
(and T ′ always halts), so λOT ′(0 | ε) = 1 or λOT ′(1 | ε) = 1.
Therefore O(T ′, ε, 1/2) = 1 or O(T ′, ε, 1/2) = 0 because
O is reflective. A precision of 1/3 is enough to tell them
apart, hence T ′ returns 0 if O(T ′, ε, 1/2) = 1 and T ′ re-
turns 1 if O(T ′, ε, 1/2) = 0. This is a contradiction.

A similar argument can also be used to show that reflective
oracles are not computable.

2.4 PROOF OF THEOREM 6

The idea for the proof of Theorem 6 is to construct an algo-
rithm that outputs an infinite series of partial oracles con-
verging to a reflective oracle in the limit.

The set of queries is countable, so we can assume that we
have some computable enumeration of it:

T × {0, 1}∗ ×Q =: {q1, q2, . . .}

Definition 8 (k-Partial Oracle). A k-partial oracle Õ is
function from the first k queries to the multiples of 2−k in
[0, 1]:

Õ : {q1, q2, . . . , qk} → {n2−k | 0 ≤ n ≤ 2k}

Definition 9 (Approximating an Oracle). A k-partial or-
acle Õ approximates an oracle O iff |O(qi) − Õ(qi)| ≤
2−k−1 for all i ≤ k.

Let k ∈ N, let Õ be a k-partial oracle, and let T ∈ T
be an oracle machine. The machine T Õ that we get when
we run T with the k-partial oracle Õ is defined as follows
(this is with slight abuse of notation since k is taken to be
understood implicitly).

1. Run T for at most k steps.

2. If T calls the oracle on qi for i ≤ k,

(a) return 1 with probability Õ(qi)− 2−k−1,
(b) return 0 with probability 1− Õ(qi)− 2−k−1, and
(c) halt otherwise.

3. If T calls the oracle on qj for j > k, halt.

Furthermore, we define λÕT analogously to λOT as the distri-
bution generated by the machine T Õ.

Lemma 10. If a k-partial oracle Õ approximates a re-
flective oracle O, then λOT (1 | x) ≥ λÕT (1 | x) and
λOT (0 | x) ≥ λÕT (0 | x) for all x ∈ {0, 1}∗ and all T ∈ T .

Proof. This follows from the definition of T Õ: when run-
ning T with Õ instead of O, we can only lose probability
mass. If T makes calls whose index is > k or runs for
more than k steps, then the execution is aborted and no
further output is generated. If T makes calls whose index
i ≤ k, then Õ(qi)− 2−k−1 ≤ O(qi) since Õ approximates
O. Therefore the return of the call qi is underestimated as
well.

Definition 11 (k-Partially Reflective). A k-partial oracle Õ
is k-partially reflective iff for the first k queries (T, x, p)

• λÕT (1 | x) > p implies Õ(T, x, p) = 1, and
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• λÕT (0 | x) > 1− p implies Õ(T, x, p) = 0.

It is important to note that we can check whether a k-partial
oracle is k-partially reflective in finite time by running all
machines T from the first k queries for k steps and tallying
up the probabilities to compute λÕT .
Lemma 12. If O is a reflective oracle and Õ is a k-partial
oracle that approximatesO, then Õ is k-partially reflective.

Lemma 12 only holds because we use semimeasures whose
conditionals are lower semicomputable.

Proof. Assuming λÕT (1 | x) > p we get from Lemma 10
that λOT (1 | x) ≥ λÕT (1 | x) > p. Thus O(T, x, p) = 1
because O is reflective. Since Õ approximates O, we get
1 = O(T, x, p) ≤ Õ(T, x, p)+2−k−1, and since Õ assigns
values in a 2−k-grid, it follows that Õ(T, x, p) = 1. The
second implication is proved analogously.

Definition 13 (Extending Partial Oracles). A k + 1-partial
oracle Õ′ extends a k-partial oracle Õ iff |Õ(qi)−Õ′(qi)| ≤
2−k−1 for all i ≤ k.
Lemma 14. There is an infinite sequence of partial oracles
(Õk)k∈N such that for each k, Õk is a k-partially reflective
k-partial oracle and Õk+1 extends Õk.

Proof. By Theorem 4 there is a reflective oracle O. For
every k, there is a canonical k-partial oracle Õk that ap-
proximates O: restrict O to the first k queries and for any
such query q pick the value in the 2−k-grid which is clos-
est to O(q). By construction, Õk+1 extends Õk and by
Lemma 12, each Õk is k-partially reflective.

Lemma 15. If the k + 1-partial oracle Õk+1 extends the

k-partial oracle Õk, then λÕk+1

T (1 | x) ≥ λÕk

T (1 | x) and

λ
Õk+1

T (0 | x) ≥ λÕk

T (0 | x) for all x ∈ {0, 1}∗ and all
T ∈ T .

Proof. T Õk+1 runs for one more step than T Õk , can an-
swer one more query and has increased oracle precision.
Moreover, since Õk+1 extends Õk, we have |Õk+1(qi) −
Õk(qi)| ≤ 2−k−1, and thus Õk+1(qi)−2−k−1 ≥ Õk(qi)−
2−k. Therefore the success to answers to the oracle calls
(case 2(a) and 2(b)) will not decrease in probability.

Now everything is in place to state the algorithm that con-
structs a reflective oracle in the limit. It recursively tra-
verses a tree of partial oracles. The tree’s nodes are the
partial oracles; level k of the tree contains all k-partial ora-
cles. There is an edge in the tree from the k-partial oracle
Õk to the i-partial oracle Õi if and only if i = k + 1 and
Õi extends Õk.

For every k, there are only finitely many k-partial oracles,
since they are functions from finite sets to finite sets. In par-
ticular, there are exactly two 1-partial oracles (so the search

tree has two roots). Pick one of them to start with, and pro-
ceed recursively as follows. Given a k-partial oracle Õk,
there are finitely many (k + 1)-partial oracles that extend
Õk (finite branching of the tree). Pick one that is (k + 1)-
partially reflective (which can be checked in finite time). If
there is no (k+ 1)-partially reflective extension, backtrack.

By Lemma 14 our search tree is infinitely deep and thus the
tree search does not terminate. Moreover, it can backtrack
to each level only a finite number of times because at each
level there is only a finite number of possible extensions.
Therefore the algorithm will produce an infinite sequence
of partial oracles, each extending the previous. Because
of finite backtracking, the output eventually stabilizes on
a sequence of partial oracles Õ1, Õ2, . . .. By the follow-
ing lemma, this sequence converges to a reflective oracle,
which concludes the proof of Theorem 6.

Lemma 16. Let Õ1, Õ2, . . . be a sequence where Õk is a
k-partially reflective k-partial oracle and Õk+1 extends Õk
for all k ∈ N. LetO := limk→∞ Õk be the pointwise limit.
Then

(a) λÕk

T (1 | x)→ λOT (1 | x) and λÕk

T (0 | x)→ λOT (0 | x)
as k →∞ for all x ∈ {0, 1}∗ and all T ∈ T , and

(b) O is a reflective oracle.

Proof. First note that the pointwise limit must exists be-
cause |Õk(qi)− Õk+1(qi)| ≤ 2−k−1 by Definition 13.

(a) Since Õk+1 extends Õk, each Õk approximates O. Let
x ∈ {0, 1}∗ and T ∈ T and consider the sequence
ak := λÕk

T (1 | x) for k ∈ N. By Lemma 15,
ak ≤ ak+1, so the sequence is monotone increasing.
By Lemma 10, ak ≤ λOT (1 | x), so the sequence is
bounded. Therefore it must converge. But it cannot
converge to anything strictly below λOT (1 | x) by the
definition of TO.

(b) By definition, O is an oracle; it remains to show that
O is reflective. Let qi = (T, x, p) be some query.
If p < λOT (1 | x), then by (a) there is a k large
enough such that p < λÕt

T (1 | x) for all t ≥ k.
For any t ≥ max{k, i}, we have Õt(T, x, p) = 1
since Õt is t-partially reflective. Therefore 1 =
limk→∞ Õk(T, x, p) = O(T, x, p). The case 1 − p <
λOT (0 | x) is analogous.

3 A GRAIN OF TRUTH

3.1 NOTATION

In reinforcement learning, an agent interacts with an en-
vironment in cycles: at time step t the agent chooses an
action at ∈ A and receives a percept et = (ot, rt) ∈ E
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consisting of an observation ot ∈ O and a real-valued re-
ward rt ∈ R; the cycle then repeats for t + 1. A history is
an element of (A×E)∗. In this section, we use æ ∈ A×E
to denote one interaction cycle, and æ<t to denote a history
of length t− 1.

We fix a discount function γ : N → R with γt ≥ 0 and∑∞
t=1 γt < ∞. The goal in reinforcement learning is to

maximize discounted rewards
∑∞
t=1 γtrt. The discount

normalization factor is defined as Γt :=
∑∞
k=t γk. The

effective horizon Ht(ε) is a horizon that is long enough to
encompass all but an ε of the discount function’s mass:

Ht(ε) := min{k | Γt+k/Γt ≤ ε} (2)

A policy is a function π : (A × E)∗ → ∆A that maps a
history æ<t to a distribution over actions taken after seeing
this history. The probability of taking action a after his-
tory æ<t is denoted with π(a | æ<t). An environment is
a function ν : (A × E)∗ × A → ∆E where ν(e | æ<tat)
denotes the probability of receiving the percept ewhen tak-
ing the action at after the history æ<t. Together, a policy
π and an environment ν give rise to a distribution νπ over
histories. Throughout this paper, we make the following
assumptions.
Assumption 17. (a) Rewards are bounded between 0 and

1.

(b) The set of actions A and the set of percepts E are both
finite.

(c) The discount function γ and the discount normalization
factor Γ are computable.

Definition 18 (Value Function). The value of a policy π in
an environment ν given history æ<t is defined recursively
as V πν (æ<t) :=

∑
a∈A π(a | æ<t)V

π
ν (æ<ta) and

V πν (æ<tat) :=

1

Γt

∑

et∈E
ν(et | æ<tat)

(
γtrt + Γt+1V

π
ν (æ1:t)

)

if Γt > 0 and V πν (æ<tat) := 0 if Γt = 0. The optimal
value is defined as V ∗ν (æ<t) := supπ V

π
ν (æ<t).

Definition 19 (Optimal Policy). A policy π is optimal in
environment ν (ν-optimal) iff for all histories æ<t ∈ (A×
E)∗ the policy π attains the optimal value: V πν (æ<t) =
V ∗ν (æ<t).

We assumed that the discount function is summable, re-
wards are bounded (Assumption 17a), and actions and per-
cepts spaces are both finite (Assumption 17b). Therefore
an optimal deterministic policy exists for every environ-
ment [LH14, Thm. 10].

3.2 REFLECTIVE BAYESIAN AGENTS

Fix O to be a reflective oracle. From now on, we assume
that the action space A := {α, β} is binary. We can treat

computable measures over binary strings as environments:
the environment ν corresponding to a probabilistic Turing
machine T ∈ T is defined by

ν(et | æ<tat) := λ
O

T (y | x) =
k∏

i=1

λ
O

T (yi | xy1 . . . yi−1)

where y1:k is a binary encoding of et and x is a binary
encoding of æ<tat. The actions a1:∞ are only contextual,
and not part of the environment distribution. We define

ν(e<t | a<t) :=
t−1∏

k=1

ν(ek | æ<k).

Let T1, T2, . . . be an enumeration of all probabilistic Tur-
ing machines in T . We define the class of reflective envi-
ronments

MO
refl :=

{
λ
O

T1
, λ
O

T2
, . . .

}
.

This is the class of all environments computable on a prob-
abilistic Turing machine with reflective oracle O, that have
been completed from semimeasures to measures using O.

Analogously to AIXI [Hut05], we define a Bayesian mix-
ture over the classMO

refl. Let w ∈ ∆MO
refl be a lower semi-

computable prior probability distribution on MO
refl. Pos-

sible choices for the prior include the Solomonoff prior
w
(
λ
O

T

)
:= 2−K(T ), where K(T ) denotes the length of the

shortest input to some universal Turing machine that en-
codes T [Sol78].2 We define the corresponding Bayesian
mixture

ξ(et | æ<tat) :=
∑

ν∈MO
refl

w(ν | æ<t)ν(et | æ<tat) (3)

where w(ν | æ<t) is the (renomalized) posterior,

w(ν | æ<t) := w(ν)
ν(e<t | a<t)
ξ(e<t | a<t)

. (4)

The mixture ξ is lower semicomputable on an oracle Turing
machine because the posterior w( · | æ<t) is lower semi-
computable. Hence there is an oracle machine T such that
ξ = λOT . We define its completion ξ := λ

O

T as the comple-
tion of λOT . This is the distribution that is used to compute
the posterior. There are no cyclic dependencies since ξ is
called on the shorter history æ<t. We arrive at the follow-
ing statement.

Proposition 20 (Bayes is in the Class). ξ ∈MO
refl.

Moreover, since O is reflective, we have that ξ dominates
all environments ν ∈MO

refl:

ξ(e1:t | a1:t)
2Technically, the lower semicomputable prior 2−K(T ) is only

a semidistribution because it does not sum to 1. This turns out to
be unimportant.
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= ξ(et | æ<tat)ξ(e<t | a<t)
≥ ξ(et | æ<tat)ξ(e<t | a<t)
= ξ(e<t | a<t)

∑

ν∈MO
refl

w(ν | æ<t)ν(et | æ<tat)

= ξ(e<t | a<t)
∑

ν∈MO
refl

w(ν)
ν(e<t | a<t)
ξ(e<t | a<t)

ν(et | æ<tat)

=
∑

ν∈MO
refl

w(ν)ν(e1:t | a1:t)

≥ w(ν)ν(e1:t | a1:t)
This property is crucial for on-policy value convergence.
Lemma 21 (On-Policy Value Convergence [Hut05,
Thm. 5.36]). For any policy π and any environment µ ∈
MO

refl with w(µ) > 0,

V πµ (æ<t)− V πξ (æ<t)→ 0 µπ-almost surely as t→∞.

3.3 REFLECTIVE-ORACLE-COMPUTABLE
POLICIES

This subsection is dedicated to the following result that was
previously stated but not proved in [FST15, Alg. 6]. It con-
trasts results on arbitrary semicomputable environments
where optimal policies are not limit computable [LH15b,
Sec. 4].
Theorem 22 (Optimal Policies are Oracle Computable).
For every ν ∈ MO

refl, there is a ν-optimal (stochastic) pol-
icy π∗ν that is reflective-oracle-computable.

Note that even though deterministic optimal policies al-
ways exist, those policies are typically not reflective-
oracle-computable.

To prove Theorem 22 we need the following lemma.
Lemma 23 (Reflective-Oracle-Computable Optimal Value
Function). For every environment ν ∈ MO

refl the optimal
value function V ∗ν is reflective-oracle-computable.

Proof. This proof follows the proof of [LH15b, Cor. 13].
We write the optimal value explicitly as

V ∗ν (æ<t) =
1

Γt
lim
m→∞

max
∑

æt:m

m∑

k=t

γkrk

k∏

i=t

ν(ei | æ<i),

(5)
where

∑
max denotes the expectimax operator:

max
∑

æt:m

:= max
at∈A

∑

et∈E
. . . max

am∈A

∑

em∈E

For a fixed m, all involved quantities are reflective-oracle-
computable. Moreover, this quantity is monotone increas-
ing in m and the tail sum from m + 1 to∞ is bounded by
Γm+1 which is computable according to Assumption 17c
and converges to 0 as m→∞. Therefore we can enumer-
ate all rationals above and below V ∗ν .

Proof of Theorem 22. According to Lemma 23 the optimal
value function V ∗ν is reflective-oracle-computable. Hence
there is a probabilistic Turing machine T such that

λOT (1 | æ<t) =
(
V ∗ν (æ<tα)− V ∗ν (æ<tβ) + 1

)
/2.

We define a policy π that takes action α if
O(T,æ<t, 1/2) = 1 and action β if O(T,æ<t, 1/2) = 0.
(This policy is stochastic because the answer of the oracle
O is stochastic.)

It remains to show that π is a ν-optimal policy. If
V ∗ν (æ<tα) > V ∗ν (æ<tβ), then λOT (1 | æ<t) > 1/2, thus
O(T,æ<t, 1/2) = 1 since O is reflective, and hence π
takes action α. Conversely, if V ∗ν (æ<tα) < V ∗ν (æ<tβ),
then λOT (1 | æ<t) < 1/2, thus O(T,æ<t, 1/2) = 0
since O is reflective, and hence π takes action β. Lastly,
if V ∗ν (æ<tα) = V ∗ν (æ<tβ), then both actions are opti-
mal and thus it does not matter which action is returned
by policy π. (This is the case where the oracle may ran-
domize.)

3.4 SOLUTION TO THE GRAIN OF TRUTH
PROBLEM

Together, Proposition 20 and Theorem 22 provide the nec-
essary ingredients to solve the grain of truth problem.

Corollary 24 (Solution to the Grain of Truth Problem). For
every lower semicomputable prior w ∈ ∆MO

refl the Bayes-
optimal policy π∗

ξ
is reflective-oracle-computable where ξ

is the Bayes-mixture corresponding to w defined in (3).

Proof. From Proposition 20 and Theorem 22.

Hence the environment classMO
refl contains any reflective-

oracle-computable modification of the Bayes-optimal pol-
icy π∗

ξ
. In particular, this includes computable multi-agent

environments that contain other Bayesian agents over the
class MO

refl. So any Bayesian agent over the class MO
refl

has a grain of truth even though the environment may con-
tain other Bayesian agents of equal power. We proceed to
sketch the implications for multi-agent environments in the
next section.

4 MULTI-AGENT ENVIRONMENTS

This section summarizes our results for multi-agent sys-
tems. The proofs can be found in [Lei16].

4.1 SETUP

In a multi-agent environment there are n agents each taking
sequential actions from the finite action space A. In each
time step t = 1, 2, . . ., the environment receives action ait
from agent i and outputs n percepts e1t , . . . , e

n
t ∈ E , one for
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agent π1

agent π2

...

agent πn

multi-agent
environment σ

a1t

e1t

a2t

e2t

ant

ent

Figure 2: Agents π1, . . . , πn interacting in a multi-agent
environment.

each agent. Each percept eit = (oit, r
i
t) contains an obser-

vation oit and a reward rit ∈ [0, 1]. Importantly, agent i only
sees its own action ait and its own percept eit (see Figure 2).
We use the shorthand notation at := (a1t , . . . , a

n
t ) and

et := (e1t , . . . , e
n
t ) and denote æi

<t = ai1e
i
1 . . . a

i
t−1e

i
t−1

and æ<t = a1e1 . . . at−1et−1.

We define a multi-agent environment as a function

σ : (An × En)∗ ×An → ∆(En).

The agents are given by n policies π1, . . . , πn where πi :
(A× E)∗ → ∆A. Together they specify the history distri-
bution

σπ1:n(ε) : = 1

σπ1:n(æ1:t) : = σπ1:n(æ<tat)σ(et | æ<tat)

σπ1:n(æ<tat) : = σπ1:n(æ<t)
n∏

i=1

πi(a
i
t | æi

<t).

Each agent i acts in a subjective environment σi given by
joining the multi-agent environment σ with the policies
π1, . . . , πi−1, πi+1, . . . , πn by marginalizing over the his-
tories that πi does not see. Together with policy πi, the
environment σi yields a distribution over the histories of
agent i

σπi
i (æi

<t) :=
∑

æj
<t,j 6=i

σπ1:n(æ<t).

We get the definition of the subjective environment σi with
the identity σi(eit | æi

<ta
i
t) := σπi

i (eit | æi
<ta

i
t). It is cru-

cial to note that the subjective environment σi and the pol-
icy πi are ordinary environments and policies, so we can
use the formalism from Section 3.

Our definition of a multi-agent environment is very general
and encompasses most of game theory. It allows for coop-
erative, competitive, and mixed games; infinitely repeated
games or any (infinite-length) extensive form games with
finitely many players.

The policy πi is an ε-best response after history æi
<t iff

V ∗σi
(æi

<t)− V πi
σi

(æi
<t) < ε.

If at some time step t, all agents’ policies are ε-best re-
sponses, we have an ε-Nash equilibrium. The property of
multi-agent systems that is analogous to asymptotic opti-
mality is convergence to an ε-Nash equilibrium.

4.2 INFORMED REFLECTIVE AGENTS

Let σ be a multi-agent environment and let π∗σ1
, . . . π∗σn

be
such that for each i the policy π∗σi

is an optimal policy in
agent i’s subjective environment σi. At first glance this
seems ill-defined: The subjective environment σi depends
on each other policy π∗σj

for j 6= i, which depends on the
subjective environment σj , which in turn depends on the
policy π∗σi

. However, this circular definition actually has a
well-defined solution.
Theorem 25 (Optimal Multi-Agent Policies). For any
reflective-oracle-computable multi-agent environment σ,
the optimal policies π∗σ1

, . . . , π∗σn
exist and are reflective-

oracle-computable.

Note the strength of Theorem 25: each of the policies π∗σi

is acting optimally given the knowledge of everyone else’s
policies. Hence optimal policies play 0-best responses by
definition, so if every agent is playing an optimal policy,
we have a Nash equilibrium. Moreover, this Nash equi-
librium is also a subgame perfect Nash equilibrium, be-
cause each agent also acts optimally on the counterfac-
tual histories that do not end up being played. In other
words, Theorem 25 states the existence and reflective-
oracle-computability of a subgame perfect Nash equilib-
rium in any reflective-oracle-computable multi-agent envi-
ronment. From Theorem 6 we then get that these subgame
perfect Nash equilibria are limit computable.
Corollary 26 (Solution to Computable Multi-Agent Envi-
ronments). For any computable multi-agent environment
σ, the optimal policies π∗σ1

, . . . , π∗σn
exist and are limit

computable.

4.3 LEARNING REFLECTIVE AGENTS

Since our class MO
refl solves the grain of truth problem,

the result by Kalai and Lehrer [KL93] immediately im-
plies that for any Bayesian agents π1, . . . , πn interacting
in an infinitely repeated game and for all ε > 0 and all
i ∈ {1, . . . , n} there is almost surely a t0 ∈ N such that for
all t ≥ t0 the policy πi is an ε-best response. However, this
hinges on the important fact that every agent has to know
the game and also that all other agents are Bayesian agents.
Otherwise the convergence to an ε-Nash equilibrium may
fail, as illustrated by the following example.

At the core of the following construction is a dogmatic
prior [LH15a, Sec. 3.2]. A dogmatic prior assigns very
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high probability to going to hell (reward 0 forever) if the
agent deviates from a given computable policy π. For a
Bayesian agent it is thus only worth deviating from the
policy π if the agent thinks that the prospects of follow-
ing π are very poor already. This implies that for general
multi-agent environments and without additional assump-
tions on the prior, we cannot prove any meaningful conver-
gence result about Bayesian agents acting in an unknown
multi-agent environment.

Example 27 (Reflective Bayesians Playing Matching Pen-
nies). In the game of matching pennies there are two agents
(n = 2), and two actions A = {α, β} representing the two
sides of a penny. In each time step agent 1 wins if the two
actions are identical and agent 2 wins if the two actions are
different. The payoff matrix is as follows.

α β
α 1,0 0,1
β 0,1 1,0

We use E = {0, 1} to be the set of rewards (observations
are vacuous) and define the multi-agent environment σ to
give reward 1 to agent 1 iff a1t = a2t (0 otherwise) and
reward 1 to agent 2 iff a1t 6= a2t (0 otherwise). Note that
neither agent knows a priori that they are playing matching
pennies, nor that they are playing an infinite repeated game
with one other player.

Let π1 be the policy that takes the action sequence (ααβ)∞

and let π2 := πα be the policy that always takes action
α. The average reward of policy π1 is 2/3 and the average
reward of policy π2 is 1/3. Let ξ be a universal mixture (3).
By Lemma 21, V π1

ξ
→ c1 ≈ 2/3 and V π2

ξ
→ c2 ≈ 1/3

almost surely when following policies (π1, π2). Therefore
there is an ε > 0 such that V π1

ξ
> ε and V π2

ξ
> ε for all

time steps. Now we can apply [LH15a, Thm. 7] to conclude
that there are (dogmatic) mixtures ξ′1 and ξ′2 such that π∗ξ′1
always follows policy π1 and π∗ξ′2 always follows policy π2.
This does not converge to a (ε-)Nash equilibrium. ♦

A policy π is asymptotically optimal in mean in an envi-
ronment classM iff for all µ ∈M

Eπµ
[
V ∗µ (æ<t)− V πµ (æ<t)

]
→ 0 as t→∞ (6)

where Eπµ denotes the expectation with respect to the prob-
ability distribution µπ over histories generated by policy π
acting in environment µ.

Asymptotic optimality stands out because it is currently
the only known nontrivial objective notion of optimality in
general reinforcement learning [LH15a].

The following theorem is the main convergence result.
It states that for asymptotically optimal agents we get
convergence to ε-Nash equilibria in any reflective-oracle-
computable multi-agent environment.

Theorem 28 (Convergence to Equilibrium). Let σ be an
reflective-oracle-computable multi-agent environment and
let π1, . . . , πn be reflective-oracle-computable policies that
are asymptotically optimal in mean in the classMO

refl. Then
for all ε > 0 and all i ∈ {1, . . . , n} the σπ1:n -probability
that the policy πi is an ε-best response converges to 1 as
t→∞.

In contrast to Theorem 25 which yields policies that play a
subgame perfect equilibrium, this is not the case for The-
orem 28: the agents typically do not learn to predict off-
policy and thus will generally not play ε-best responses
in the counterfactual histories that they never see. This
weaker form of equilibrium is unavoidable if the agents do
not know the environment because it is impossible to learn
the parts that they do not interact with.

Together with Theorem 6 and the asymptotic optimality
of the Thompson sampling policy [LLOH16, Thm. 4] that
is reflective-oracle computable we get the following corol-
lary.

Corollary 29 (Convergence to Equilibrium). There are
limit computable policies π1, . . . , πn such that for any com-
putable multi-agent environment σ and for all ε > 0 and
all i ∈ {1, . . . , n} the σπ1:n -probability that the policy πi
is an ε-best response converges to 1 as t→∞.

5 DISCUSSION

This paper introduced the class of all reflective-oracle-
computable environmentsMO

refl. This class solves the grain
of truth problem because it contains (any computable mod-
ification of) Bayesian agents defined over MO

refl: the op-
timal agents and Bayes-optimal agents over the class are
all reflective-oracle-computable (Theorem 22 and Corol-
lary 24).

If the environment is unknown, then a Bayesian agent may
end up playing suboptimally (Example 27). However, if
each agent uses a policy that is asymptotically optimal in
mean (such as the Thompson sampling policy [LLOH16])
then for every ε > 0 the agents converge to an ε-Nash equi-
librium (Theorem 28 and Corollary 29).

Our solution to the grain of truth problem is purely theo-
retical. However, Theorem 6 shows that our class MO

refl
allows for computable approximations. This suggests that
practical approaches can be derived from this result, and re-
flective oracles have already seen applications in one-shot
games [FTC15b].
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Robert Sabourin
Laboratoire d’imagerie, de vision et d’IA

Dép. de génie de la production automatisée
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Abstract

In this paper, we bridge the gap between hyper-
parameter optimization and ensemble learning
by performing Bayesian optimization of an en-
semble with regards to its hyperparameters. Our
method consists in building a fixed-size ensem-
ble, optimizing the configuration of one classi-
fier of the ensemble at each iteration of the hy-
perparameter optimization algorithm, taking into
consideration the interaction with the other mod-
els when evaluating potential performances. We
also consider the case where the ensemble is to
be reconstructed at the end of the hyperparame-
ter optimization phase, through a greedy selec-
tion over the pool of models generated during
the optimization. We study the performance of
our proposed method on three different hyperpa-
rameter spaces, showing that our approach is bet-
ter than both the best single model and a greedy
ensemble construction over the models produced
by a standard Bayesian optimization.

1 INTRODUCTION

For a long time, the tuning of hyperparameters for learning
algorithms was solved by simple exhaustive methods such
as grid search guided by cross-validation error. Grid search
does work in practice, but it suffers from serious drawbacks
such as a search space complexity that grows exponentially
with the number of hyperparameters tuned. Recently, other
strategies such as sequential model-based parameter op-
timization (Hutter et al., 2011), random search (Bergstra
and Bengio, 2012), and Bayesian optimization (Snoek et
al., 2012) have been shown to be better alternatives to grid
search for non-trivial search spaces.

While hyperparameter optimization focuses on the perfor-
mance of a single model, it is generally accepted that en-

∗julien-charles.levesque.1@ulaval.ca

sembles can perform better than single classifiers, one of
many striking examples being the winning entry of the
Netflix challenge (Bell and Koren, 2007). More recent
machine learning competitions such as Kaggle competi-
tions are also often won by ensemble methods (Sun and
Pfahringer, 2011). Given these previous results, it is logical
to combine Bayesian hyperparameter optimization tech-
niques with ensemble methods to further push general-
ization accuracy. Feurer et al. (2015a) performed post-
hoc ensemble generation by reusing the product of a com-
pleted hyperparameter optimization, winning phase 1 of the
ChaLearn AutoML challenge (Guyon et al., 2015). Lastly,
Snoek et al. (2015) also constructed post-hoc ensembles of
neural networks for image captioning.

These two lines of previous work make for a compelling
argument to directly apply Bayesian optimization of hy-
perparameters for ensemble learning. Rather than trying to
model the whole space of ensembles, which is likely hard
and inefficient to optimize, we pose a performance model
of the ensemble at hand when adding a new classifier with
some given hyperparameters. This is achieved by reusing
models previously assessed during the optimization, eval-
uating performance change induced by adding them one at
a time to the ensemble. This allows us to compute obser-
vations of the true ensemble loss with regards to the hy-
perparameter values. These observations are used to condi-
tion a Bayesian optimization prior, creating mean and vari-
ance estimates over the hyperparameter space which will
be used to optimize the configuration of a new classifier to
add to the ensemble. Finally, we consider different possi-
bilities to maintain and build the ensemble as the optimiza-
tion progresses, and settle on a round-robin optimization of
the classifiers in the ensemble. This ensemble optimization
procedure comes at a very small additional cost compared
with a regular Bayesian optimization of hyperparameter yet
yields better generalization accuracy for the same number
of trained models.

We evaluate our proposed approach on a benchmark of
medium datasets for two different hyperparameter spaces,
one consisting solely of SVM algorithms with different ker-
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nel types, and one larger space with various families of
learning algorithms. In both search spaces, our approach is
shown to outperform regular Bayesian optimization as well
as post-hoc ensemble generation from pools of classifiers
obtained by classical Bayesian optimization of hyperpa-
rameters. We also evaluate our approach on a search space
of convolutional neural networks trained on the CIFAR-10
dataset. The proposed approach is also able to provide bet-
ter performance in this case.

The paper is structured as follows: Section 2 presents
the problem of Bayesian hyperparameter optimization and
highlights some related work. Section 3 presents the main
contributions of this paper, which can be summarized as
a methodology for Bayesian optimization of ensembles
through hyperparameter tuning. Finally, Section 4 presents
the experiments and an analysis of the results.

2 HYPERPARAMETER OPTIMIZATION

The behavior of a learning algorithm A is often tunable
with regards to a set of external parameters, called hyper-
parameters γ = {γ1, γ2, . . . } ∈ Γ, which are not learned
during training. The hyperparameter selection problem is
one stage of a bi-level optimization problem, where the first
objective is the tuning of the model’s parameters θ and the
second objective is the performance with regards to the hy-
perparameters γ.

The procedure requires two datasets, one for training and
one for hyperparameter optimization (also called valida-
tion), namely XT and XV , each assumed to be sampled
i.i.d. from an underlying distribution D. The objec-
tive function to minimize for hyperparameter optimization
takes the form of the empirical generalization error on XV :

f(γ) = L(hγ |XV ) + ε (1)

L(hγ |XV ) =
1

|XV |

|XV |∑

i=1

l0−1(hγ(xi), yi), (2)

where ε is some noise on the observation of the generaliza-
tion error, l0−1 is the zero-one loss function, and the model
hγ is obtained by running the training algorithm with hy-
perparameters γ, hγ = A(XT , γ). Other loss functions
could be applied, but unless otherwise specified, the loss
function will be the zero-one loss.

In order to solve this problem, Bayesian optimization
consists in posing a probabilistic regression model of
the generalization error of trained models with respect
to their hyperparameters γ, and exploiting this model to
select new hyperparameters to explore. At each itera-
tion, a model of f(γ) is conditioned on the set of pre-
viously observed hyperparameter values and associated
losses {γi, L(hγi |XV )}ti=1. Selection of the next hyper-
parameters to evaluate is performed by maximizing an ac-

quisition function a(γ|f(γ)), a criterion balancing explo-
ration and exploitation given mean and variance estimates
obtained from the model of f(γ). Among the model fam-
ilies for f(γ), two interesting choices are Gaussian Pro-
cesses (Rasmussen and Williams, 2006; Snoek et al., 2012)
and Random Forests (Hutter et al., 2011), both providing
information about the mean and variance of the fitted dis-
tribution over the whole search space.

A typical hyperparameter optimization is executed itera-
tively, subsequently generating a model of f(γ) from ob-
servations, selecting hyperparameter tuples γ to evaluate,
training a classifier hγ with the given training data, evalu-
ating it on the validation data, and looping until the maxi-
mum number of iterations or time budget is spent.

Recent advances in hyperparameter optimization have pri-
marily focused on making optimization faster, more accu-
rate and applicable to a wider set of applications. In order
to speed up convergence, Feurer et al. (2015b) have shown
that hyperparameter optimization can be warm started with
meta features about datasets. Touching on both speed
and optimality, the design of better acquisition functions
has seen a lot of interest, and predictive entropy search
was shown to be less greedy than expected improvement
in locating the optima of objective functions (Hernández-
Lobato et al., 2014). New applications have also emerged,
one notable example being the optimization of hyper-
parameters for anytime algorithms with freeze-and-thaw
Bayesian optimization (Swersky et al., 2014).

2.1 HYPERPARAMETER OPTIMIZATION AND
ENSEMBLES

The idea of generating ensembles with hyperparameter op-
timization has already received some attention. Bergstra
and Cox (2013) applied hyperparameter optimization in a
multi-stage approach akin to boosting in order to gener-
ate better representations of images. Lacoste et al. (2014b)
proposed the Sequential Model-based Ensemble Optimiza-
tion (SMBEO) method to optimize ensembles based on
bootstrapping the validation datasets to simulate multiple
independent hyperparameter optimization processes and
combined the results with the agnostic Bayesian combina-
tion method.

The process of hyperparameter optimization generates
many trained models, and is usually concluded by select-
ing a model according to the hold-out (or cross-validation)
generalization error γ∗ = arg minγ L(hγ |XV ). This single
model selection at the end of the optimization is the equiva-
lent of a point estimate, and it can result in overfitting. One
strategy to limit this overfitting in the selection of a final
model is to select multiple models instead of one, reducing
the risk of overfitting and thus increasing the generalization
performance.
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A simple strategy to build an ensemble from a hyperparam-
eter optimization is to keep the trained models as they are
generated for evaluation instead of discarding them (Feurer
et al., 2015a). This effectively generates a pool of classi-
fiers to combine at the end of the optimization, a process
which is called post-hoc ensemble generation. Forward
greedy selection has been shown to perform well in the con-
text of pruning a pool of classifiers (Caruana et al., 2004).
At each iteration, given a pool of trained classifiers H to
select from, a new classifier is added to the ensemble, se-
lected according to the minimum ensemble generalization
error. At the first iteration, the classifier added is simply
the single best classifier. At step t, given the ensemble
E = {he1 , he2 , . . . , het−1

}, the next classifier is chosen
to minimize the empirical error on the validation dataset
when added to E:

ht = arg min
h∈H

L(E ∪ {h}|XV ) (3)

L(E ∪ {h}|XV ) =

|XV |∑

i=0

l0−1

(
g(xi, E ∪ {h}), yi

)
, (4)

where g(xi, E) is a function combining the predictions
of the classifiers in E on sample xi. In this case, the
combination rule is majority voting, as it is less prone to
overfitting (Caruana et al., 2004; Feurer et al., 2015a).
Other possible combination rules include weighted voting,
stacking (Kuncheva, 2004) and agnostic Bayesian combi-
nation (Lacoste et al., 2014a), to name only a few. Such
an approach can be shown to perform better than the single
best classifier produced by the hyperparameter optimiza-
tion, due in part to a reduction of the classifiers’ variance
through combination.

3 ENSEMBLE OPTIMIZATION

In this work, we aim at directly optimizing an ensemble of
classifiers through Bayesian hyperparameter optimization.
The strategies discussed in the previous section mostly
aimed at reusing the product of a completed hyperparame-
ter optimization after the fact. The goal is to make an online
selection of hyperparameters that could be more interesting
for an ensemble, but which do not necessarily maximize
the objective function of Equation 1 on their own. Directly
posing a model on the space of all possible ensembles of
a given size f(E) = f(γ1, . . . , γm) would result in a very
hard and inefficient optimization problem, effectively du-
plicating the training of many models.

In order to palliate this, we propose a more focused ap-
proach. We define the objective function to be the perfor-
mance of a given ensemble E when it is augmented with
a new classifier trained with hyperparameters γ, or hγ . In
other words, the objective function is the empirical error
provided by adding a model hγ to the ensemble E:

f(γ|E) = L(E ∪A(γ,XT )|XV ), (5)

−4 −2 0 2 4
log10 γ

0.25

0.30

0.35

0.40

er
r

f(γ)

f(γ|E)

E
L(hγ)

L(E ∪ {hγ})

Figure 1: Example of an ensemble optimization. The red
marks represent trained models and their standalone gener-
alization error, and black circles represent two models se-
lected for the current ensemble E. Blue marks represent
the performance of an ensemble when we add the trained
model with corresponding hyperparameters γ.

again using the empirical loss on a hold-out validation set
XV . Contrarily to the post-hoc ensemble generation, a
probabilistic model is fit on the performance that a model
trained with given hyperparameters would provide to the
ensemble. In order to do this, two things are required: 1)
an already established ensemble, and 2) a pool of trained
classifiers available to compute observations of Equation 5
to condition our model on. Given the history of trained
models so far H = {h1, . . . , ht} and an ensemble de-
fined by a selection of classifiers within the history E =
{he1 , . . . , hem}, the observations used to model f(γ) are
obtained by reusing the trained classifiers in H , keeping E
constant. Consequently, the objective function models the
true ensemble error. Given a zero-one loss function and an
empty ensemble E = ∅, Equation 5 falls back to a clas-
sical hyperparameter optimization problem, and the objec-
tive function will be minimized by the best hyperparame-
ters for a single model γ∗.

The power of the suggested framework is illustrated with
an example shown in Figure 1. This figure presents one
iteration of ensemble optimization given 20 trained SVMs
in a one-dimensional hyperparameter space, where the sin-
gle hyperparameter is the width of the RBF kernel (σ ∈
[10−5, 105]). The dataset used is the Pima Indian Diabetes
dataset available from UCI (Frank and Asuncion, 2010),
with separate training and validation splits. The current
ensemble E consists of two models selected by forward
greedy selection shown by black circles. Ensemble eval-
uation and member selection strategies will be discussed
further; for now let us assume a fixed ensemble. The red
Xs represent the generalization error of single models and
the red curve represents a Gaussian Process prior condi-
tioned on those observations, in other words, a model of
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f(γ). The blue crosses represent the generalization error
of the ensemble E when the corresponding classifiers are
added to it, and the blue curve is again a Gaussian Process
prior conditioned on the ensemble observations, or, more
generally speaking, a model of f(γ|E). For both Gaussian
Processes, the variance estimates are represented by shaded
areas. The next step would be to apply an acquisition func-
tion with the ensemble mean and variance estimates to se-
lect the next hyperparameters to evaluate.

Figure 1 shows that the objective function of an ensem-
ble and a single classifier can be different. It can also be
observed in this case that the generalization error of the
ensemble is lower than that of a single model, hence the
interest in optimizing ensembles directly.

3.1 ALTERNATE FORMULATIONS

In order to be able to generalize over the space of hyperpa-
rameters, it is crucial to have an ensemble which does not
contain all the classifiers inH , because if it did there would
be no information added in the computation of Equation 5.
A different problem formulation could be derived which
compares classifiers with the whole pool of trained mod-
els, which would take the form f(γ|H) = q(hγ |H,XV ),
where q(·) is a metric of performance for a classifier with
regards to the pool. For example, a diversity inducing met-
ric such as pairwise disagreement (Kuncheva, 2004) could
be used, but this would lead to degenerate pools of classi-
fiers, as diversity is easily increased by trivial and degener-
ate classifiers (voting all for one class or the other).

Multi-objective optimization approaches have been consid-
ered for the maximization of both diversity and accuracy, a
problem typically solved with genetic algorithms (Tsymbal
et al., 2005). However, this problem formulation does not
guarantee a better performing ensemble – only a more di-
verse pool of classifiers – with the hope that it will lead to
better generalization performance. Directly optimizing di-
versity in classifier ensembles is questionable, and the ev-
idence thus far is mixed (Didaci et al., 2013; Kuncheva,
2003).

Lastly, an inverse problem could be posed, measuring the
difference in the generalization error by removing classi-
fiers from the history one by one, and optimizing this dif-
ference. One problem with such a model is that it would
be vulnerable to redundancy – very good hyperparameters
present in multiple copies in the history would be falsely
marked as having no impact on the generalization error.

For the reasons stated above, the best solution appears to
be the use of a fixed ensemble which is maintained and up-
dated as the optimization progresses. Thus it is possible to
build an accurate Bayesian model of how well an ensemble
would perform if we added a model trained with hyperpa-
rameters γ. This means that we need to store the trained

Algorithm 1 Ensemble Optimization Procedure
Input: XT ,XV , B,m,A,Γ, L
Output: H , history of models; E, the final ensemble

1: H,G,E ← ∅
2: for i ∈ 1, . . . , B do
3: j ← i mod m
4: E ← E \ {hj}
5: Li ← {L(E ∪ h|XV )}h∈H
6: f(γ|E)← BO(G,Li) // Fit model
7: γi ← arg maxγ∈Γ a(γ|f(γ|E)) // Next hypers
8: hi ← A(XT , γi) // Train model
9: G← G ∪ {γi}

10: H ← H ∪ {hi}
11: hj ← arg minh∈H L(E ∪ {h}) // New model at j
12: E ← E ∪ {hj} // Update ensemble
13: end for

classifiers in a database (or store their predictions on the
validation and testing splits) to permit ensemble construc-
tion and evaluation in the subsequent iterations.

3.2 ENSEMBLE UPDATE

The problem defined above is straightforward as long as the
ensemble is given beforehand. In this section we will tackle
the problem of building and updating the ensemble as the
optimization progresses. To make things simpler, an en-
semble size m will be fixed beforehand – this number can
be fine-tuned at the end of the optimization. Each iteration
of the optimization procedure will contain two steps: first
the evaluation as described in Section 3, maintaining a fixed
ensemble, and then an ensemble update step. Since mem-
bers of the ensemble should be changed as the optimization
moves forward and better models are found, a round-robin
strategy will be used for the ensemble construction. The
ensemble E will in fact consist of m fixed positions, and at
every iteration i, the classifier at position j = (i mod m)
will be removed from the ensemble before finding hyper-
parameters which minimize Equation 5 – effectively opti-
mizing the classifier at this position for the given iteration.
At the end of an iteration the ensemble is updated again
greedily, selecting the new best classifier (it could be the
same classifier or a better one). The whole procedure is
described in Algorithm 1 and in Figure 2.

In addition, it is expected that some classifiers will special-
ize given the fixed state of a large part of the ensemble for
each iteration. For instance, when replacing an individually
strong classifier, another strong classifier will most likely
be required. Figure 3 shows an example of optimization on
a one-dimensional hyperparameter space run for 50 itera-
tions, where an ensemble of five classifiers was optimized.
The ensemble is represented by the five diamonds and its
generalization error is shown by the dotted and dashed line
at the bottom of the figure. Then, each of the five members
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Figure 2: Schema of the Ensemble Optimization proce-
dure.

i is independently removed and a Gaussian Process model
is fit on the performance of an ensemble given the remain-
ing models in the pool – this corresponds to the five colored
lines of Figure 3. We can see from this figure that the hyper-
parameters which minimize the ensemble error are differ-
ent for each slot in the ensemble, illustrating our concept.

3.3 COMPUTATIONAL COMPLEXITY

The computational overhead of the proposed method
comes mainly from the evaluation of the empirical error of
ensembles. It is very small with regards to the cost of run-
ning most learning algorithms (which is usually quadratic
or worse in the number of samples), and also with the cost
of conditioning the probabilistic model on the observations
(which is cubic in the number of iterations). The computa-
tion of the empirical error of ensembles takes place in step
5 in Algorithm 1. Given an ensemble of sizem, a validation
dataset of size n, and a history of trained classifiers of size
t, the complexity of this step is O(t(mn+ n)) = O(tmn)
since it requires one pass over all models in the history, and
for each of those the combination of the classifiers through
majority voting (mn) and the computation of the empirical
error n.

3.4 LOSS FUNCTION

The objective function defined in Equation 5 contains a loss
function, which up until now referred to the empirical loss
of the ensemble, or the zero-one loss. However, the zero-
one loss contains a strong discontinuity and can result in
optimization procedures failing due to the majority voting
combination. For instance, if all classifiers of the ensemble
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Figure 3: Example of objective function f(γ|E \ {hi})
given a pool of 50 trained classifiers on a 1-D hyperpa-
rameter optimization problem. Each color represents the
performance of an ensemble when removing its member hi
represented by a diamond of the same color in the plot.

are wrong on some instances, replacing one of those poor
classifiers with a better one will not make the ensemble cor-
rectly classify those instances, resulting in the same perfor-
mance with regards to the objective function, even though
this classifier would be a good choice for the ensemble.

The performance of ensembles will be considered with re-
gards to their classification margin, which will let us derive
a more suitable loss function (Schapire and Freund, 2012).
Given an ensemble of classifiers E outputting label predic-
tions on a binary problem Y ∈ {−1, 1}, the normalized
margin for a sample {x, y} is defined as follows:

M(E, x, y) =
1

|E|
∑

h∈E
yh(x). (6)

The normalized margin M ∈ [−1, 1] takes the value 1
when all classifiers of the ensemble correctly classify the
sample x, −1 when all the classifiers are wrong, and some-
where in between otherwise. In the case of multi-class
problems, predictions of classifiers can be brought back to
a binary domain by attributing 1 for a correct classification
and −1 for a misclassification. The margin becomes:

Mmc(E, x, y) =
1

|E|
∑

h∈E
[1− 2l0−1 (h(x), y)]. (7)

We will now derive some loss functions from the margin.
The margin itself could be the objective, since it is desirable
that the margin of the ensemble be high. It must be rescaled
to really become a loss function, giving a margin-based loss
function:

lM (E, x, y) =
1−M(E, x, y)

2
. (8)
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Figure 4: Examples of ensemble loss functions for a 1-D
hyperparameter optimization. Blue curve legend is on the
left, red curve legend is on the right.

This loss function should not be used to optimize an ensem-
ble because it is directly maximized only by the accuracy
of individual classifiers. In other words, given a validation
dataset XV and a set of classifiers H to evaluate, the classi-
fier minimizing Equation 8 is always the classifier with the
lowest empirical error on its own, without regards to the
ensemble performance. Therefore, the loss function must
not give the same weight to all classifiers without regards
to ensemble performance, while also being smooth. A loss
function which achieves this is the margin-based loss func-
tion taken to the power of two:

lM2(E, x, y) =
(1−M(E, x, y))2

4
. (9)

This places a higher emphasis on samples misclassified by
the ensemble, and decreases the importance of samples as
the margin grows closer to 1. Since it meets the required
properties, the squared margin loss function will be used as
the ensemble loss function in this work.

Figure 4 shows an example of the two loss functions dis-
cussed in this section, the zero-one loss and the squared
margin loss, applied on the same ensemble. Both losses
have different scales, with the empirical error scale on the
left and the squared margin scale on the right of the fig-
ure. We can see that these two loss functions lead to differ-
ent optimal hyperparameters given the same ensemble. In
other words, the hyperparameters minimizing the objective
function according to the models of f(γ|E) are different
with the two loss functions.

Considering that a loss function other than the empirical er-
ror will be used during the optimization, it will probably be
beneficial to rebuild an ensemble from scratch using the fi-
nal pool of classifiers trained once the optimization is over.
Hence, a post-hoc ensemble generation will be performed
after the hyperparameter optimization.

Table 1: Benchmarking datasets and abbreviations
Dataset Instances Features Classes

Adult (adlt) 48,842 14 2
Bank (bnk) 4,521 16 2
Car (car) 1,728 6 4
Chess-krvk (ches) 28,506 6 18
Letter (ltr) 20,000 16 26
Magic (mgic) 19,020 10 2
Musk-2 (msk) 6,598 166 2
Page-blocks (p-blk) 5,473 10 5
Pima (pim) 768 8 2
Semeion (sem) 1,593 256 10
Spambase (spam) 4,601 57 2
Stat-german-credit (s-gc) 1,000 24 2
Stat-image (s-im) 2,310 18 7
Stat-shuttle (s-sh) 58,000 9 7
Steel-plates (s-pl) 1,941 27 7
Titanic (tita) 2,201 3 2
Thyroid (thy) 7,200 21 6
Wine-quality-red (wine) 1,599 11 6

4 EXPERIMENTS

We showcase the performance of our ensemble optimiza-
tion approach on three different problems. The first two
problems consist of different algorithms and hyperparam-
eter spaces evaluated on the same benchmark of medium
datasets available from the UCI repository, presented in Ta-
ble 1. For every repetition, a different hold-out testing par-
tition was sampled with 33% of the total dataset size (un-
less the dataset had a pre-specified testing split, in which
case it was used for all repetitions). The remaining in-
stances of the dataset were used to complete a 5-fold cross-
validation procedure. Final models are retrained on all the
data available for training and validation.

In every case, the prior on the objective function is a
Gaussian Process (GP) with Matérn-52 kernel using auto-
matic relevance determination1. The noise, amplitude, and
length-scale parameters are obtained through slice sam-
pling (Snoek et al., 2012). The slice sampling of GP hy-
perparameters for ensemble optimization must be reinitial-
ized at every iteration given that different ensembles E can
change the properties of the optimized function drastically.
The acquisition function is the Expected Improvement over
the best solution found so far. The compared methods and
their abbreviated names are the following:

• Classical Bayesian optimization (BO-best). It returns a
single model selected with argmin on validation perfor-
mance (Snoek et al., 2012).

• Post-hoc ensemble constructed from the pool of classi-
fiers with Bayesian optimization (BO-post). The post-
hoc ensemble is initiated by picking the three best clas-
sifiers from the pool before proceeding with forward

1Code from
http://github.com/JasperSnoek/spearmint.
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greedy selection – this form of warm starting is recom-
mended in (Caruana et al., 2004) to reduce overfitting.

• The proposed ensemble optimization method using the
squared margin loss function (EO).

• Post-hoc ensemble constructed from the pool of classi-
fiers generated by ensemble optimization (EO-post). The
same post-hoc procedure as with BO-post is executed.

The hyperparameter spaces can contain continuous, dis-
crete, and categorical parameters (e.g., base classifier or
kernel choice). In the case of categorical and discrete pa-
rameters, they are represented using a continuous parame-
ter which is later discretized. This does not deal with the
fact that hyperparameter spaces of different classifiers are
disjoint and should not be modeled jointly, but since all the
compared methods are using this same technique, the com-
parison is fair.

4.1 SVM SEARCH SPACE

The models used in this benchmark are SVM models, and
the parameterization includes the choice of the kernel along
with the various hyperparameters needed per kernel. The
hyperparameter space Γ optimized can be described as fol-
lows:

• One hyperparameter for the kernel choice: linear, RBF,
polynomial, or sigmoid;

• Configurable error costC ∈ [10−5, 105] (for all kernels);
• RBF and sigmoid kernels both have a kernel width pa-

rameter γRBF ∈ [10−5, 105];
• Polynomial kernel has a degree parameter d ∈ [1, 10];
• Sigmoid and polynomial kernels both have an intercept

parameter, c ∈ [10−2, 102].

All compared approaches optimized the same search space.
Each method is given a budget of B = 200 iterations, or
200 hyperparameter tuples tested, to optimize hyperparam-
eters with a 5-fold cross-validation procedure. The ensem-
ble selection stage exploits this cross-validation procedure,
considering the next classifier which reduces the most the
generalization error over all the cross-validation folds. Se-
lected hyperparameters are retrained on the whole training
and validation data, and combined directly on the testing
split to generate the generalization error values presented
in this section. The ensemble optimization method is run
with an ensemble size m = 12. This ensemble size was
selected empirically and may not be optimal. Future work
could investigate strategies to dynamically size the ensem-
ble as the optimization progresses, with no fixed limit.

The generalization error on the test split for the selected
methods is presented in Table 2, averaged over 10 repe-
titions. The last column shows the ranks of each method
averaged over all datasets, where the best rank is 1 and the
worst rank is 4.

Table 3: Wilcoxon pairwise test p-values for the SVM
hyperparameter space. Bold entries highlight significant
differences (p ≤ 0.05) and parentheses are added when
method at row i is worse than the method at column j ac-
cording to ranks.

1 2 3 4

1 - BO-best – (0.33) (0.00) (0.00)
2 - BO-post 0.33 – (0.01) (0.00)
3 - EO 0.00 0.01 – 0.21
4 - EO-post 0.00 0.00 (0.21) –

A Wilcoxon signed-rank test is used to measure the statis-
tical significance of the results. The Wilcoxon signed-rank
test is a strong statistical test for comparing methods across
multiple datasets, which is an nonparametric version of the
Student’s t-test that does not assume normal distributions
and is less sensitive to outliers (Demšar, 2006). The input
for the Wilcoxon test is the generalization error of a method
i on each dataset d, averaged across the R repetitions:

ei = { 1

R

R∑

r=1

ei,d,r}d, (10)

where ei,d,r is the generalization error produced by method
i on dataset d at repetition r. The Wilcoxon test is then
computed for all pairs of methods (ei, ej). The results of
this procedure are shown in Table 3.

From Table 2 we can see that it is beneficial to build an en-
semble from the output of a classical hyperparameter op-
timization, as seen by the lower rank of BO-post with re-
gards to BO-best. However, the performance improvement
is not shown to be significant according to the Wilcoxon
test. Both the ensemble optimization methods seem to out-
perform classical Bayesian optimization strategies in terms
of rankings. The Wilcoxon test shows that EO and EO-post
both performed significantly better than BO-best and BO-
post. It should be noted that there is no significant differ-
ence between EO and EO-post, highlighting that there was
not a significant gain from the post-hoc ensemble construc-
tion. Caruana et al., 2004 presented some strategies to re-
duce overfitting in the forward greedy procedure – such as
bagging from the pool of models – which could be consid-
ered in order to achieve more with the same pool, although
this is left for future work.

Another test which can be used to assess the performance
of the evaluated methods is the Friedman test with post-
hoc tests on classifier ranks averaged across datasets. A
Friedman test with the four methods presented in this sec-
tion finds a significant difference between them with a p-
value of 5.5× 10−4. The Friedman test is then usually fol-
lowed by a post-hoc test to measure whether the difference
in ranks is above a critical difference level, such as the Ne-
menyi test (Demšar, 2006). Figure 5 shows the results of
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Table 2: Generalization error on SVM hyperparameter space, averaged over 10 repetitions, 5-fold cross-validation. Last
column shows the rank of methods averaged over all datasets.

adlt bnk car ches ltr mgic msk p-blk pim sem spam s-gc s-im s-sh s-pl thy tita wine Ranks

BO-best 15.52 10.67 1.27 16.86 2.45 12.49 0.29 3.06 25.52 4.43 6.47 23.20 3.57 0.10 23.91 3.09 20.59 35.28 3.39
BO-post 15.38 10.71 1.56 16.72 2.50 12.21 0.28 3.01 25.65 4.37 6.47 23.45 2.94 0.08 22.58 3.17 20.59 35.09 2.81
EO 15.39 10.44 0.81 15.06 2.34 12.18 0.30 3.14 23.70 4.58 6.45 23.05 2.73 0.09 22.61 2.51 20.27 33.29 1.89
EO-post 15.27 10.60 0.95 15.08 2.36 12.21 0.28 2.97 24.03 4.40 6.36 23.40 2.55 0.09 22.63 2.69 20.57 33.70 1.92

1234

BO-best
BO-post EO-post

EO

CD

Figure 5: Methods by rank and significant differences ac-
cording to a post-hoc Nemenyi test with significance level
at p = 0.05 for the SVM hyperparameter space.

such a test, with methods linked by bold lines being found
not significantly different by the test for a significance level
of p = 0.05. The Nemenyi post-hoc test gives a more vi-
sual insight as to what is going on, but it is more sensitive
to the pool of tested methods – the outcome of the test can
change if new methods are inserted in the experiments. Ac-
cording to this test, EO and EO-post are both significantly
different from BO-best, meaning that ensemble optimiza-
tion is significantly better than the single best classifier re-
turned by Bayesian optimization.

4.2 SCIKIT-LEARN MODELS SEARCH SPACE

The same methods as in the previous section were re-
peated for a different search space consisting of multiple
base algorithms, all available from scikit-learn2. The
models and their hyperparameters are K nearest neighbors
with the number of neighbors n neighbors in [1, 30];
RBF SVM with the penalty C logarithmically in [10−5, 105]
and the width of the RBF kernel γRBF logarithmically in
[10−5, 105]; linear SVM with the penalty C logarithmi-
cally scaled in [10−5, 105]; decision tree with the maxi-
mal depth max depth in [1, 10], the minimum number
of examples in a node to split min samples split in
[2, 100], and the minimum number of training examples
in a leaf min samples leaf in [2, 100]; random forest
with the number of trees n estimators in [1, 30], the
maximal depth max depth in [1, 10], the minimum num-
ber of examples in a node to split min samples split
in [2, 100], and the minimum number of training examples
in a leaf min samples leaf in [2, 100]; AdaBoost with
the number of weak learners n estimators in [1, 30];
Gaussian Naive Bayes (GNB) and Linear Discriminant
Analysis (LDA) both without any hyperparameters; and

2Available at http://scikit-learn.org/.

Table 5: Wilcoxon pairwise tests p-values for the scikit-
learn hyperparameter space. Bold entries highlight signif-
icant differences (p ≤ 0.05) and parentheses are added
when method at row i is worse than the method at column
j according to ranks.

1 2 3 4

1 - BO-best – (0.05) (0.00) (0.00)
2 - BO-post 0.05 – (0.00) (0.00)
3 - EO 0.00 0.00 – 0.03
4 - EO-post 0.00 0.00 (0.03) –

1234
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BO-post EO-post
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CD

Figure 6: Methods by rank and significant differences ac-
cording to a post-hoc Nemenyi test with significance level
at p = 0.05 for the scikit-learn hyperparameter space.

Quadratic Discriminant Analysis (QDA) with the regular-
ization reg param logarithmically in [10−3, 103].

The set of hyperparameter optimization strategies is the
same as in the previous section, and the maximum num-
ber of iterations B is set to 100. Tables 4 and 5 show the
same metrics and Wilcoxon pairwise tests as introduced in
Section 4.1.

Conclusions are similar for this hyperparameter space,
whereas the generation of a post-hoc ensemble is again
shown to be beneficial to the generalization accuracy for
both BO and EO. In this case the post-hoc ensemble for BO
is found significantly better than the single best classifier
according to the Wilcoxon test. The overall best method
is EO, which significantly outperforms all other methods,
including EO-post, as seen in Table 5. For some datasets,
the ensemble optimization procedure achieves a large drop
in the generalization error, see for example datasets letter
(ltr), musk-2 (msk) and semeion (sem) in Table 4.

A Friedman test on this suite of experiments is again run
and found significant with a p-value of 1.5× 10−5. Fig-
ure 6 shows the results of the Nemenyi post-hoc test, with
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Table 4: Generalization error on the scikit-learn hyperparameter space, averaged over 10 repetitions, 5-fold cross-
validation. Last column shows the rank of methods averaged over all datasets.

adlt bnk car ches ltr mgic msk p-blk pim sem spam s-gc s-im s-sh s-pl thy tita wine Ranks

BO-best 14.70 11.04 4.77 25.73 4.72 12.06 2.13 3.41 23.25 8.82 5.80 23.15 3.72 0.12 26.91 1.19 22.74 35.96 3.36
BO-post 14.62 10.53 4.80 25.73 4.72 11.99 2.18 3.26 23.38 8.82 5.53 23.15 3.64 0.11 26.16 1.20 22.74 35.71 3.11
EO 14.35 10.30 0.81 19.39 2.81 12.38 0.28 2.80 24.09 4.37 5.02 22.75 2.84 0.08 22.69 1.21 20.66 35.19 1.67
EO-post 14.32 10.39 1.01 20.47 2.76 12.48 0.28 2.94 23.38 4.37 5.24 22.90 2.99 0.07 23.50 1.10 21.20 35.47 1.86

methods linked by bold lines being found not significantly
different by the test for a significance level of p = 0.05.
According to this test, EO-post and EO are significantly
different from both BO and BO-best, meaning that ensem-
ble optimization approaches significantly outperform both
Bayesian optimization baselines.

4.3 CONVOLUTIONAL NEURAL NETWORKS

Lastly, we evaluated the performance of our approach when
fine-tuning the parameters of a convolutional neural net-
work for the CIFAR-10 dataset. In order to have a repro-
ducible baseline, the cuda-convet implementation was
used with the reference model files given which achieves
18% generalization error on the testing dataset3. One batch
of the training data was set aside for validation (batches 1-4
used for training, 5 for validation, and 6 for testing). Per-
formance of the baseline configuration on the given training
batches was around 22.4% ± 0.9 for 250 epochs of train-
ing. The parameters optimized were the same as in (Snoek
et al., 2012), namely the learning rates and weight decays
for the convolution and softmax layers, and the parameters
of the local response normalization layer (size, power and
scale). The number of training epochs was kept fixed at
250.

We computed 10 repetitions of a standard Bayesian opti-
mization and our proposed ensemble optimization with en-
semble size m = 7, both with a budget of B = 100 hy-
perparameter tuples to evaluate. Figure 7 shows the perfor-
mance of ensembles generated from both pools of classi-
fiers with a post-hoc ensemble generation. In order to limit
overfitting, the first three models of each ensemble were
selected directly based on accuracy, as suggested in (Caru-
ana et al., 2004). In both cases, the ensemble size benefits
the generalization accuracy, although the classifiers gener-
ated by the ensemble optimization procedure do perform
slightly better. The difference in generalization error be-
tween BO-post and EO-post at the last iteration is found
significant by a Wilcoxon test with a p-value of 0.005. Fur-
ther work should investigate strategies to use the remaining
validation data once the models are chosen, to further im-
prove generalization accuracy.

3Code available at https://code.google.com/
archive/p/cuda-convnet/ and network configuration file
used is layers-18pct.cfg.
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Figure 7: Generalization errors of a post-hoc ensemble
with classical Bayesian optimization (BO-post) and a post-
hoc ensemble generated from our ensemble optimization
approach (EO-post) on the CIFAR-10 dataset with regards
to the number of classifiers in the final ensemble. Results
averaged over 10 repetitions.

5 CONCLUSION

In this work, we presented a methodology to achieve
Bayesian optimization of ensembles through hyperparam-
eter tuning. We tackle the various challenges posed by
ensemble optimization in this context, and the result is an
optimization strategy that is able to exploit trained models
and generate better ensembles of classifiers at the compu-
tational cost of a regular hyperparameter optimization.

We showcase the performance of our approach on three dif-
ferent problem suites, and in all cases show a significant
difference in generalization accuracy between our approach
and post-hoc ensembles built on top of a classical hyperpa-
rameter optimization, according to Wilcoxon signed-rank
tests. This is a strong validation of our method, especially
considering that it involves little extra computation.
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Abstract

This paper attempts to move beyond the left-right
characterization of political ideologies. We pro-
pose a trait based probabilistic model for estimat-
ing the manifold of political opinion. We demon-
strate the efficacy of our model on two novel and
large scale datasets of public opinion. Our exper-
iments show that although the political spectrum
is richer than a simple left-right structure, peo-
ples’ opinions on seemingly unrelated political
issues are very correlated, so fewer than 10 di-
mensions are enough to represent peoples’ entire
political opinion.

1 Introduction

The problem of best describing political variation has been
a key issue in social sciences for over a century, and many
models have been proposed over the years. The most
prominent system for classifying political positions, ide-
ologies and parties is the Left-Right classification. The no-
tions of “Left” and “Right” in politics originate from the
seating arrangements in the French legislative body dur-
ing the French Revolution of 1789: the aristocracy sat on
the right of the Speaker and the commoners sat on the left.
The key ideological point of contention was the “old or-
der”, with the Right supporting aristocratic interests and the
church, and with the Left supporting republicanism, secu-
larism, and civil liberties.

However, is using the left-right terminology justified by
data about political opinions? The terms left-wing and
right-wing have evolved to capture a somewhat different
meaning in modern day USA than their meaning in the
years following the French Revolution. The left-wing gen-
erally refers to egalitarianism, social policies supporting
the working class, and multiculturalism, typically includ-
ing socialists and libertarians, identifying with the Demo-
cratic party; The right-wing refers to conservative Christian

values, support for a free-market system, and traditional
family values, and including conservatives and free-market
supporters, identifying with the Republican party.

Opinions regarding a single issue can easily be expressed
on a single axis. Parties or people can be placed on the
axis depending on the degree of support to a stance relating
to this issue; those whose strongly support a position can
be placed on one side, followed by those with who slightly
support it, and so on, ending with those strongly opposing
the stance. For example, we can place parties who strongly
support heavy regulation of businesses on the far left, those
who want complete business freedom under any circum-
stances on the far right, and those who support light regu-
lation of some businesses in the center.

However, most political parties take an ideological stand
regarding many issues: immigration, free medical care,
minimum wage, regulating banks, religious freedom, abor-
tions, gay and lesbian rights, regulating drugs and alcohol,
and many others. When the ideology of parties spans multi-
ple issues, representing these ideologies requires a political
spectrum — a system for classifying different political po-
sitions using several geometric axes, each representing an
independent political dimension. For example, a spectrum
with two axes may include one axis for sociocultural issues
(relating for example to supporting or opposing a heavy in-
vestment in welfare) and one for economic issues (for ex-
ample, supporting or opposing de-regulation of business).

One way to define a political spectrum is by using a dimen-
sion for each of the important issues the people and parties
care about. Given a political spectrum of K dimensions
we can express people’s opinions and the political ideol-
ogy of parties as K-dimensional vectors. However, a large
dimensionality makes it cumbersome for people to explain
their views, so clearly we would like to use the smallest
possible dimensionality that can fully express the opinions
of most people and parties. Political scientists have noted
that the wide popularity of the left-right identification stems
from the surprising fact that in many countries, it is pos-
sible to map parties into a single left-right axis [39, 17].
For example, Von Beyme [38] categorized European par-
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ties into nine “families” that described most parties, and
was able to linearly order seven such families from left to
right: communist, socialist, green, liberal, Christian demo-
cratic, conservative and right-wing extremist. Although a
single left-right axis can describe many parties, in many
countries parties may take any combination of several is-
sues [24, 39]. Common examples are the issues of eco-
nomic freedom (taxation, free trade, free enterprise) and
personal freedom (drug legalization, abortion and conscrip-
tion). Some populations require a large dimensionality to
represent, as individuals or parties may take any combi-
nation of positions regarding many issues, whereas other
populations can be represented using less dimensions, due
to strong correlations between stances on many issues.

Currently, 98 out of the 100 members in the United States
Senate are affiliated with either the Democratic party (left)
or the Republican party (right). This low-dimensional po-
litical landscape contrasts to other countries. For instance,
in the United Kingdom, the House of Commons is com-
posed of 11 parties. This disparity in the number of parties
suggests that the political spectrum in the USA has fewer
dimensions than the political spectrum in the UK.

Political scientists have to infer the key dimensions in a
political spectrum representation using data mining tech-
niques. For example, Ferguson [10] has used a set of ques-
tions pertaining to many issues: birth control, capital pun-
ishment, censorship, communism, evolution, law, patrio-
tism, theism, treatment of criminals, and war. He used Peo-
ple’s responses to questions pertaining to these issues as
the input to a factor analysis process, trying to describe the
variability between the correlated responses on different is-
sues, using a low number of latent factors. His analysis
showed that three dimensions, which he called Religion-
ism, Humanitarianism, and Nationalism, were sufficient to
capture much of the variability in the data. In other words,
most people in the dataset could be described using three
numbers, so that their position regarding all issues could
be predicted given these numbers with high accuracy.

Such factor analysis based techniques for building a polit-
ical spectrum can be thought of in terms of dimensionality
reduction. This process transforms the data in the high-
dimensional space into a representation in a space of fewer
dimensions. Many such techniques are based on algebraic
methods, such as SVD (singular value decomposition) or
PCA (principal component analysis). Given the data and
a target number K of dimensions, they find a good repre-
sentation of the original data in a Kdimensional space. In
this sense, these techniques can be thought of as a lossy
compression technique. They receive peoples’ opinions on
many questions, and attempt to characterize both people
and questions using very concise descriptions (vectors in a
low dimension space). The original responses of the people
regarding the political stances can then be reconstructed ap-
proximately. However, the approximation quality depends

on the compression ratio: with a high dimensionality it is
possible to represent people on the spectrum so that the full
opinion regarding any issue can be determined accurately,
and with a low dimensionality individuals may be repre-
sented very concisely, but with a higher error.

Although factor analysis can be a useful tool in inferring
possible dimensions on the political spectrum, it is still
unclear what the dimensionality of the political spectrum
should be. How can we use data mining and machine learn-
ing tools in order to determine the true dimensionality of
the data? How accurately can we infer peoples’ political
opinions using their location in this political spectrum?

1.1 Our Contribution:

We analyze the optimal number of political dimensions to
use. In contrast to earlier data driven approaches for ana-
lyzing data so as to construct a political spectrum, we do
not use an algebraic dimensionality reduction technique.
Rather, we use a Bayesian model selection approach.

We use a probabilistic graphical model for dimensionality
reduction, representing both users and questions regarding
political stances as feature vectors in a low dimensional
space, where similarity is measured by the inner product.
Thus, each coordinate in the low dimensional space relates
to one political dimension. Any choice of the number of di-
mensions in the low dimensional space results in a slightly
different model. We choose the most plausible number of
dimensions given the data, by taking the model with the
maximal evidence.

We apply the technique on two datasets, each containing
People’s responses regarding various questions about their
political stances. The first dataset consists of the responses
of 38,000 UK users who ranked political issues by their
importance. The second dataset consists of the responses
of 1,500 users from the USA, sourced from Amazon’s Me-
chanical Turk, who rated the degree to which they agree
to 56 sentences representing a political stance. In each of
these we use our approach to determine the optimal dimen-
sionality of the political spectrum.

On the one hand, our results indicate the political spectrum
is richer than simple “left-right” structure represented us-
ing a single dimension. On the other hand, they indicate
that peoples’ opinions on seemingly unrelated political is-
sues are very correlated, so fewer than 10 dimensions are
enough to represent peoples’ entire political opinion.

2 Methodology

The key issue we focus on is determining how many di-
mensions underly the political positions of people with re-
spect to a broad range of questions. We use statistical tools
akin to factor analysis. Factor analysis methods attempt to
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represent a set of observed correlated variables in terms of
several ’common’ factors. The common factors are not di-
rectly observed in the data and thus are sometime called
latent variables. Existing approaches use factor analysis to
identify the main factors in political values, but use an alge-
braic factor analysis, where the number of political dimen-
sions is an input of the factor analysis algorithm [10, 9]. In
contrast, we use a Bayesian approach, which chooses the
optimal dimensionality to use.

We first describe our high level methodology. Our tech-
nique receives an input dataset which contains the re-
sponses of many participants, P , regarding a set of polit-
ical questions, Q. Each such question represents a political
stand, and the participant is asked to express the degree to
which they agree or disagree with the stand, on a numeri-
cal scale. For example, such an item may be “Alcohol and
cigarettes should be heavily taxed.”, and a participant must
rate the item on a seven-point scale between strongly dis-
agreeing (1) and strongly agreeing (7) with the statement.1

When the dataset relates to |P | participants responding to
|Q| questions, the dataset is thus a matrix of |P | · |Q| num-
bers.

Given the dataset, we apply a dimensionality reduction pro-
cedure that models both participants and questions as low
dimensional vectors. If the dimensionality used in our pro-
cedure is chosen to be K, each participant and question are
represented by vectors in RK . Let p′ ∈ RK be the rep-
resentation chosen for the participant, and let q′ ∈ RK be
the representation chosen for the question. The procedure
is devised so that the predicted rating the participant p ∈ P
would give to a question q ∈ Q is the inner product of these
two vectors 〈p′, q′〉. The dimensionality reduction is based
on a probabilistic graphical model. Any choice of a dimen-
sionality K for the political spectrum results in a slightly
different such model HK . We use the dimensionality for
which the evidence under the model is maximized.

3 PMPS Model

The dimensionality reduction model we use is a Proba-
bilistic Model for expressing the Political Spectrum, or
PMPS for short. PMPS is a probabilistic graphical model
which resembles other Bayesian models for matrix factor-
ization [2, 28, 33, 6].

Graphical models were first introduced by Pearl [27]. We
use the more general framework of factor graphs (see e.g.,
[19]) in order to describe the factored structure of the as-
sumed joint probability distribution among the variables.
Once the graphical model is defined and the values of the
observed variables are set, inference algorithms (such as
approximate message-passing methods) can be used in or-

1For a ranking of political issues, we assign integer scores for
these topics in consecutive order.
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Figure 1: Factor graph for the PMPS model. The large
plates indicate parts of the graph which are repeated with
repetition indexed by the participant, question or trait.

der to infer the marginal probability distribution of the un-
known variables [19].

The data fed to the model is a set of observations of the
form (p, q, r) where p ∈ P is the participant, q ∈ Q is the
political stance question, and r ∈ N is the rating given by
the participant, expressing the degree to which they agree
to the stance presented in the question.

The model assumes that the participants and questions can
be characterized by K underlying ”traits”. These traits
might be, for instance, the user’s opinion on economy re-
lated issues. Note that the number of dimensions K of the
model, i.e., the size of the participant and question vector
has to be determined before the construction of the model.
We model the process by which a participant p ∈ P pro-
duces an answer r to a question q ∈ Q as inner product
between two K dimensional vectors of unobserved (latent)
variables, one for the participant and one for the question.
Thus we assume that: every participant has a latent trait
vector and a latent bias; and Each question has a latent trait
vector and a latent bias. The bias captures the fact that
some participants give higher ratings than others, and that
some questions receive higher ratings than others on aver-
age. Information such as the latent vector and bias of the
participants and questions are modeled as unobserved vari-
ables, whereas the given response to a question by a user is
modeled as an observed variable.

PMPS is a joint probabilistic model whose factor graph is
given in Figure 1. Namely, the rating r that a participant
with a latent vector p ∈ RK gives to a question with a
latent vector q ∈ RK is modeled as

Pr (r|t, s, b) = N
(
r|pT q + bp + bq, β

2
)
, (1)

where β is the standard deviation of the observation noise,
and bp + bq are the participant and question bias, respec-
tively.
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In order to do inference on the model, we must first define
prior distributions for the variable of interest. We assume
factorizing Gaussian priors for the participant vector traits
pi ∼ N (µp, σ

2
p) and bias bp ∼ N (µp, σ

2
p), and question

vector traits qi ∼ N (µq, σ
2
q ) and bias bq ∼ N (µq, σ

2
q ).

The Gaussian prior was chosen as it allows us to specify
a range of plausible values using two parameters, and to
admit a relative simple approximation inference. Also, it
characterizes the assumption that a priory we expect that
extreme ratings would be uncommon. In this work we set
µp = µq = 0 and σp = σq = β = 1.

Inference in this model is done using message passing al-
gorithms. We implemented the model using the Infer.NET
[25] framework for probabilistic graphical models. Infer-
ence was done approximately, using the Expectation Prop-
agation (EP) algorithm [26]. EP calculates marginal dis-
tributions on a given factor graph by iteratively computing
messages along edges that propagate information across the
factor graph. EP runs iteratively until convergence, so its
runtime is linear in the model’s size, which in the case of
PMPS is of size O(|P | · |Q|). We note that while in our
dataset all observations were present (i.e. we had the rat-
ing of every participant to every question), PMPS can also
handle a partial set of observations (i.e. the case where we
cannot observe the response of some participants to some
of the questions).

3.1 Model Selection

For a specific K the model HK was built, however different
K values produce different models. The task of selecting
the most plausible statistical model from a set of candidates
H1, . . . , HN given the data is called model selection.

An important aspect of model selection is that we should
not compare models solely based on how well it fits the
data, but also based on their simplicity.2 In other words,
a good model selection technique should be balanced,
achieving a good trade-off between goodness of fit and sim-
plicity [40]. A key advantage of a Bayesian approach is
the existence of a well-accepted methodology for achiev-
ing such a trade-off.

The posterior probability, Pr(HK |D) of the model HK

given the data D, is given by Bayes’s theorem:

Pr(HK |D) =
Pr(D|HK) Pr(HK)

Pr(D)
. (2)

2As an example, consider a dataset with five points in 2D
space. One model that has a perfect fit is to use a fourth-degree
polynomial; however if we look at the points and find that they are
approximately on a straight line, we will favour a much simpler
linear model that simply assumes some amount of noise.

This gives the following probability ratio between model
Hi and model Hj [23]:

Pr(Hi|D)

Pr(Hj |D)
=

Pr(D|Hi)

Pr(D|Hj)

Pr(Hi)

Pr(Hj)
. (3)

If we have a uniform prior over models, i.e. no a priori
belief that either Hi or Hj is more probable, Equation 3
simplifies to Pr(D|Hi)/Pr(D|Hj), this ratio is known as
the Bayes factor [18]. We thus wish to find the model
that maximizes Pr(D|HK). The density Pr(D|HK) is ob-
tained by integrating over the unknown parameters values
in that model:

Pr (D|HK) =

∫

θK

Pr (D|HK , θK) Pr (θK |HK) dθK ,

(4)
where θK are the parameters under HK , Pr (θK |HK) is the
prior density and Pr (D|HK , θK) is the probability of the
data given the model HK with parameters θK . The quantity
in Equation 4 is called the evidence for model HK .

Simple models tend to make precise predictions and com-
plex models, by their nature, are capable of making a
greater variety of predictions. Therefore, in the case where
the data are compatible with both models, the simpler
model will turn out as more probable. The dimension K
that results in the highest model evidence, suggests that the
latent dimension of the data is that K.

4 Results

We now present our results, produced by applying PMPS
learning and alternative methods on the UK and US
datasets. We first describe the datasets, then discuss the
empirical evaluation and the results.

4.1 Datasets

In both UK and USA datasets, users were directly asked to
give their opinion regards several issues.3

4.1.1 UK Dataset

The website 38DEGREES4 [1] has conducted a poll in
which users from across the UK were asked to rank 18
issues according to their priorities. The issues were: The

3Asking users directly for their political opinions is one route
for obtaining data. An alternative is mining social network data to
infer political opinions [37, 35]. These could then be correlated
with other inferred user psycho-demographic traits [21, 20, 4, 36]
or socio-economic perceptions [22, 29, 11] (similarly to our anal-
ysis here). We used a direct survey as it offers less noisy observa-
tions than inferred traits (and although this limited the amount of
data we collected, we believe the size of our dataset is sufficient
for our analysis).

4http://www.38degrees.org.uk/
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• Having an abortion is the choice of the mother. No one else has the right to decide this for
her.

• Life begins at conception. Babies are people and deserve to be protected from abortion by
law.

• It is morally a role of the state to provide basic medical care for everyone.

• Immigrants help grow our economy.

• Access to guns should be severely controlled.

• Owning a gun should be a fundamental right.

• My country has the duty to bring democracy to the world.

• Alcohol and cigarettes should be heavily taxed to discourage their use.

• Education including higher education should be free to all.

• The government should extend paid maternity leave to 3 months for every working mother.

Figure 2: An example of a few questions from the questionnaire

Immigration Poverty Environment Cost of living The EU
Climate change -0.3535 0.01949 0.58 -0.3272 -0.2592

Immigration -0.3583 -0.2245 0.0636 0.4757
Poverty -0.0804 0.0669 -0.3491

Environment -0.2956 -0.1842
Cost of living -0.0628

Table 1: The correlation between the issues

NHS5, Banking, Privacy, Tax dodging, The economy, Ani-
mal welfare, Climate change, Poverty, Human rights, Edu-
cation, Transport, Energy, Immigration, Environment, The
EU, Housing, Cost of living and Privatisation of public ser-
vices.

The results of this poll were generously shared with us. The
dataset consists of 38,000 records of users, where every
user is identified with his/her postcode.

4.1.2 USA Dataset

Using Amazon Mechanical Turk [34], We asked 1,500
users from different states in the USA to fill a question-
naire with 56 statements. For each statement, each user was
asked give his/hers opinion and select one option from the
seven-point scale from disagree strongly to agree strongly.

The statement were about different topics such as: reli-
gious, abortion, gay and lesbian rights, public health care
and immigration. An example of a few questions can be
found in Figure 2, the complete questionnaire is available
online.6

5NHS is the British National Health Service
6http://tinyurl.com/h7t339v

4.1.3 Correlations Between Responses to Different
Questions

Unsurprisingly, when examining the issue ratings in the UK
dataset we note that some issues’ rankings are correlated.
Table 1 shows the correlations between the ratings of vari-
ous issues. For example, as can be seen in Table 1, a user
that ranked Environment at a high place is likely to do the
same for Climate change, and a user who ranked Immigra-
tion at a high place is likely to rank Climate change at a
low place.

Similar correlations between the responses to different po-
litical stance questions also occur in the USA dataset, indi-
cating that many political issues are inter-correlated.

4.2 Predictive Performance

The high correlation between various items indicates that it
should be possible to predict the responses of a participant
to some of the questions based on the way their responded
to other questions. Given a specific single question q ∈ Q,
we can train a linear regression model to predict how a per-
son p ∈ P would respond to that question given their re-
sponses to some other subset of questions S ⊂ Q. If we are
interested in predicting the responses to multiple questions,
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Figure 3: The prediction error (RMSE) of linear regression
and PMPS.

T ⊂ Q based on the responses to some of the other ques-
tions, S ⊂ Q (where S ∩ T = ∅), we can train |T | linear
regression models, each taking as features the responses to
the questions in S and predicting the responses to one of
the questions ti ∈ T .

An alternative approach is to use our PMPS model to gen-
erate the predictions. In this approach we learn to express
questions as a posterior distribution over vectors in a low-
dimensional space. Then, given a partial set of responses
given by the person p to a subset S of the questions, we also
obtain a representation of that person as a posterior distri-
bution over vectors in the low dimensional space. Thus,
PMPS would also produce a posterior distribution over the
possible responses p would have to all the remaining ques-
tions, Q \ S (including of course the questions in T ). We
can then take the mode of the posterior distribution over the
responses to an unobserved question ti ∈ T and use them
as a prediction for the response p would give to ti.

We first designed an experiment to contrast the predictive
performance of PMPS with that of linear regression mod-
els, using the USA dataset. The experiment goal was to pre-
dict the responses of users to questions in our USA dataset.
In each trial we randomly select a subset P b ⊂ P of the
participants to use for training. We let the model (either
the linear regression model or PMPS) to observe the re-
sponses of these training participants to all the questions.
We then select a subset of test participants P t ⊂ P (such
that P b ∩ P t = ∅). We also select a set T ⊂ Q of target
questions and a set of predictor questions S ⊂ Q (where
S ∩ T = ∅). We first train the model using the training
participants P b, then let the model observe the responses
of each test participants pj ∈ P t to the target questions
S (and only these questions). Next, we use the model to
predict the responses of each test participant to each of
the target questions, and examine the prediction error. In
our experiments we used |S| = 30 predictor questions and
|T | = 26 questions (so S and T form a partition of the
question set). In our experiments we fixed |P t| = 20 and
we varied the number of training participants |P b| between
10 participants and 100 participants. We used 1,000 trials
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Figure 4: The error (RMSE) of PCA and PMPS against the
number principal components on the UK data.

to measure the average prediction error of each model (lin-
ear regression or PMPS).

Our results regarding the predictive performance of PMPS
and linear regression are given in Figure 3. The x-axis
is the number of training participants, |P b|, reflecting the
amount of training data available to the model. The y-axis
is the prediction root mean squared error (RMSE), aver-
aged across the trials, with cross-validation. The figure
shows that PMPS achieves a superior prediction quality
over a linear regression method. The quality gap is es-
pecially big for treatments with less training data (fewer
training participants). Figure 3 shows the results for PMPS
model with K = 6, though other K values showed similar
results and outperformed linear regression.

4.3 Latent Traits

The high correlation between the issues suggests that the
response data can be compressed. For example, consider
the UK dataset, where the full data for each user consists of
an 18-dimensional vectors, representing that person’s im-
portance rating for each of the issues. Rather than repre-
senting the entries of the dataset as 18-dimensional vectors,
with one number per issue / question, we can project them
into a lower dimension using either PMPS or traditional
linear techniques such as PCA. This results in “compress-
ing” the opinions dataset, at the cost of introducing some
noise to the the entries.

We note that as opposed to the predictive performance ex-
periment in Section 4.2, the goal of using such a dimen-
sionality reduction is a lossy compression of the data, rather
then predicting some entries or responses of a user based on
their responses to other questions. In particular, in order to
find a person’s representation as a low dimensional vector,
we process all of their responses.

For both PMPS and PCA the projection into a low di-
mensional vector is revertible, i.e. we can easily inter-
pret the low-dimensional representation back into the 18-
dimensional space. For PMPS this is done by plugging the
learned weights and low-dimensional vectors in the model
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(a) The average rank of “Poverty” as a function of the IMD score.
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(b) The average rank of “The EU” as a function of the IMD score.

Figure 5: Correlation between the IMD score of LA and the average rank the issues in the LAs.

and inferring, rather than observing, the rating r of each
question—this key operation is the inner product.

As the data is not perfectly reconstructed from this com-
pression, a good measure of the noise resulting from
the compression is the RMSE of the reconstructed 18-
dimensional point compared to the original.

Figure 4 reports the compression RMSEs for both PCA and
PMPS. Two conclusions can be drawn from the figure:

• Both PCA and PMPS can be used to characterize a po-
litical spectrum, which allows a tradeoff between the
conciseness of peoples’ description and the error in
predicting their responses using this compressed de-
scription. The tradeoff between the compression and
the error is very similar for these methods.

• Applying PCA on the data does not give a clear indi-
cation on the true dimensionality of the data: even for
relatively high dimensions, the RMSE is not negligi-
ble.

As we discussed in section 3.1, one significant advantage
of a Bayesian method such as PMPS over non-Bayesian
methods is that they can trade-off some of the accuracy of
compression for a greater simplicity of the representation,
and that they allow for a rigorous method for choosing the
“correct” dimensionality of the spectrum used.

4.3.1 Socio-Demographic Factors

The latent traits of a user, captured by their representation
in the low dimensional space, may not correspond to an
objective and observable measure of that individual. How-
ever, in the case of our political data, some correlations be-
tween ratings of different items can be explained as a result
of socio-demographic influence.

Consider, for example, the participants in the UK dataset.
It stands to reason that poor areas would be more con-
cerned about issues such as poverty. To examine the corre-
lations between rating and socio-demographic influence in

the UK, we use the English Index of Multiple Deprivation
(IMD) [12]. The IMD is a score that is given to every local
authority (LA) in the UK. This score is based on employ-
ment, income, extent and concentration of the local author-
ity. It ranges between 0 and 50: the higher the score, the
more deprived the local authority.

There is a high correlation between the average rank of an
issue in a specific LA and the IMD score of the LA. As,
for example, it is shown in Figure 5, the average rank of
“Poverty” (5a) is generally lower (more important) in LA’s
with high IMD, than in LA’s with low IMD; and the av-
erage rank of “The EU” (5b) is generally higher in LA’s
with low IMD than in LA’s with high IMD. Thus, LA’s that
ranked “Poverty” in a relatively high location are likely to
rank “The EU” in a relatively low location and vice versa.
Therefore, observing the IMD score of the user’s LA could
give us information about the ranks of the issues.

This analysis illustrates that it may be possible to capture a
lot of the variability in People’s responses to political ques-
tions by considering some of their objective traits, such as
poverty.

4.4 Model Dimensionality

Our main goal is determining the true dimensionality of the
political spectrum required to accurately represent peoples’
stances regarding a wide range of political issues. To this
end, we applied PMPS learning to our UK dataset and USA
dataset. In both cases we examined the model evidence of
every dimension so as to reveal the dimensionality of the
datasets.

4.4.1 Dimensionality in the UK Dataset

When analyzing the UK dataset, we applied the PMPS
model to the entire UK data, as well as the data from spe-
cific UK local authorities. As there is a high correlation
between the IMD score of LA and the average rank of an is-
sue, one of the latent dimension, in the PMPS model might
be related to the IMD score, and the dimension of the data
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Figure 6: Log model evidence as a function of the dimen-
sion, on the data from UK.

is likely to be lower than 18.7 The log of the model evi-
dence as a function of the dimension can be found in Fig-
ure 6. The model in which the latent dimension was 10
resulted in the highest model evidence, and therefore the
data suggests that the dimension is 10. We applied the
same technique for every LA. In this experiment the dimen-
sion ranged from 7 (Metropolitan Borough of Wigan) to 11
(Rossendale District), with average of 9.717 and standard
deviation of 0.678. Thus, the dimension of the data remains
relatively homogeneous across local authorities.

4.4.2 Dimensionality in the USA Dataset

In the 114th United States Congress, out of 435 seats 431
are occupied by members of the Democrat and Republican
parties. That is, the vast majority of the people in the US
are represented by the two parties. For comparison, in the
Parliament of the United Kingdom, there are 11 parties.

Historically, the Democratic party supports gun control
laws, keeps elective abortions legal, and tends to favor
equal rights for gay and lesbian couples. In contrast, the
Republican Party opposes gun control laws, and the Re-
publican party’s agenda states that abortions should not be
legal and marriage should be between a man and a woman.
Hence, it appears that a single left-right axis could describe
the two parties.

However, it is not clear why, for example, a person who
supports abortion is likely to opposes state involvement
with religious institutions. Therefore, we attempted to in-
vestigate whether the political dimension in the US is in-
deed lower than in the UK and, whether two parties can
truly represent the American people. Alternatively, it could
be the case that the election system in the USA results in
a two party system, even though more parties are actually
needed to truly represent the electors.

7Obviously, one needs to know the ranks of 17 issues in order
to give an accurate prediction on the rank of the remaining issues.
However, the PMPS model is not aware to the fact that for every
user every rank appears only once.
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Figure 7: Log model evidence as a function of the dimen-
sion, on the data from USA.

In order to find the dimensionality of the data, we applied
PMPS learning. The log of the model evidence as a func-
tion of the dimension can be found in Figure 7. The model
in which the latent dimension was 6 resulted in the high-
est model evidence, and therefore data suggested that the
dimension is 6, while the same technique suggested that
the dimension within UK is 10. In addition, we applying
PMPS learning on the data from different states. Unlike the
data from UK, the results were less homogeneous across
states, and range from 4 in Texas and California, to 6 in
Michigan, New York and Florida.

5 Related Work

While the traditional political spectrum is a simple left-
right axis, it has been doubted whether ordinary citizens ac-
tually use the specific ideology associated with this repre-
sentation (see, e.g., [8]). Many Political scientists have sug-
gested more complex, multidimensional representations of
the political spectrum. One of the earliest work is by Fergu-
son [10], who suggested that peoples’ positions with regard
to 10 broad topics were influenced by 3 broad underlying
dimensions: Religionism (with issues such as evolution,
birth control and God), Humanitarianism (with issues such
as war, capital punishment and treatment of criminals) and
Nationalism (censorship, law patriotism and communisim).

Christie, and Meltzer [7] suggested a four dimensions dia-
gram: fabianism to radicalism, fascism to anarchism, con-
servatism to social democracy and capitalist individualism
to state communism. A similar research has been done by
Eysenck [9] in the United Kingdom and in Germany. The
research identified two independent principles: Radicalism
(R) and Tender-Mindedess (T). In both countries, all but
one attitude were found to have the same coordinates on
the R-T Cartesian coordinate system. In Sweden, Husen
showed a similar pattern [15].

Our method for determining the dimensionality of a po-
litical spectrum given a dataset is a Bayesian one, rely-
ing on a dimensionality reduction Probabilistic Graphical
Model. Graphical models [27] have been widely studied
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in the context of AI. For example, Porteous et al. [28] use
graphical model for Bayesian probabilistic matrix factor-
ization. Schmidt et al. [30] dealt with learning the structure
of undirected graphical using L1 regression. Bachrach et
al. [5] presented a graphical model for inferring the correct
answers, difficulty levels of questions and ability levels of
participants in multiple problem domains. A line of work
has considered Bayesian methods and matrix factorization
techniques for collaborative filtering based recommender
systems [14, 13, 16, 32], which also capture peoples’ rat-
ings of various items. Our model is similar to the Matchbox
recommendation system [33], in which users and items are
mapped into a low-dimensional ’trait space’.

We used a rigorous and theoretically justified method for
dimensionality selection. Alternative model selection tech-
niques such as AIC [3] and BIC [31] have been previously
for other domains. These technique also trade-off bias and
variance, using the likelihood function, number of parame-
ters of the model and the number of sampled data.

6 Conclusions

We proposed an approach for choosing the optimal dimen-
sionality of the political spectrum, based on a dataset of
responses of participants regarding political stands. Our
method uses a probabilistic graphical model for dimen-
sionality reduction, allowing us to express the political
spectrum dimensionality selection problem as a Bayesian
model selection problem, which we solve by choosing the
dimensionality of the model with maximal evidence.

We applied the model on two types of datasets. The UK
dataset contains participants ranking regarding many polit-
ical issues, whereas in the US dataset participants rate their
degree of agreement with many sentences representing a
political stand. Our model indicates that for both datasets,
there are correlations in the data regarding seemingly unre-
lated political issues, allowing for a more concise represen-
tation of peoples’ political stand than the naive encoding of
their responses to all questions. Further, our analysis of the
UK dataset indicates that socio-demographic factors corre-
late with political opinions. This allows predicting political
stands based on such socio-demographic factors.

Despite these correlations between responses to different
questions (or between socio-demographic factors and these
responses), our model indicates that a “left-right” political
spectrum, or even a two dimensional spectrum, are far too
simplistic, and insufficient to represent peoples’ political
opinion. Our model’s choice for the optimal dimensionality
is 10 dimensions for the UK dataset, and 6 for US dataset.
Interestingly, the optimal dimensionality for the political
spectrum differs across states in the USA.

Many questions are left open for future research. First, the
political dimensions found by our model are the result of

the feature extraction during the dimensionality reduction.
Could these dimensions be interpreted in a human under-
standable form? Second, would alternative Bayesian mod-
els for dimensionality reduction achieve a lower error, and
perhaps result in a different choice of dimensionality for
the political spectrum, or is this dimensionality an inherent
property of the data? Finally, our results indicated corre-
lations between socio-demographic features of participants
and their political opinions. To what degree of accuracy
is it possible to predict demographic traits of people based
solely on their political stand?
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Abstract

It is natural to expect that the documents
in a corpus will be correlated, and these cor-
relations are reflected by not only the words
but also the observed tags in each document.
Most previous works model this type of cor-
pus, which are called the semi-structured
corpus, without considering the correlations
among the tags. In this work, we develop
a Correlated Tag Learning (CTL) model for
semi-structured corpora based on the topic
model to enable the construction of the corre-
lation graph among tags via a logistic normal
participation process. For the inference of
the CTL model, we devise a variational infer-
ence algorithm to approximate the posterior.
In experiments, we visualize the tag correla-
tion graph generated by the CTL model on
the DBLP corpus and for the tasks of doc-
ument retrieval and classification, the cor-
relation graph among tags is helpful to im-
prove the generalization performance com-
pared with the state-of-the-art baselines.

1 INTRODUCTION

Documents are usually composed of a group of words
with different word frequencies, leading to the ‘bag-
of-words’ representation. Besides, it is natural to ex-
pect that documents in a corpus are highly correlated
with each other. This implicit relationship among doc-
uments may be embodied in the semantic meanings
of the words in each document, where we can use
topic models or other related methods to learn the
correlations. However, most of the documents con-
tain not only unstructured contexts (e.g., the plain
text) but also metadata (e.g., tags). The metadata
usually consists of several tags, such as authors in an
article, keywords for a web page, and categories for

a product. To model this type of documents which
are called semi-structured documents, the metadata
information would play an important role in organiz-
ing, understanding, and summarizing them in many
applications.

Obviously, the tags in a corpus come from a compacted
space, taking higher-level semantic as one type of se-
mantic abstraction than words. Thus, the tags should
be highly correlated with each other, which is consis-
tent with documents’ correlations. That is, the cor-
relation between two documents can be reflected via
their tags. Thus, modeling the correlations among
tags can benefit the learning of the relations among
documents and help obtain more meaningful represen-
tations for documents, which can be helpful for the
consequent tasks such as document classification and
retrieval. On the other hand, to model the documents,
only considering the word information is obviously not
enough if the tag information is available. Meanwhile,
ignoring the correlations among tags is deficient, be-
cause the correlations can help understand the doc-
uments in a better way. Hence, how to model the
correlations among tags together with the words is in-
teresting and important for document modeling.

In fact, tags can be treated as high-level ‘topics’ in a
corpus. While differently, the observed tags would be
very complicated and high-dimensional, and belong to
a different semantic space, compared with latent top-
ics discovered by topic models. Thus, there should be
a connection between the observed tags and the latent
topics, such as a distribution over topics for each tag.
In previous works such as the tag-weighted topic model
[15], the author topic model [18], and the labeled-LDA
[21], almost all of them define continuous distributions
for the observed tags over the latent topics. Each tag
is defined as a vector sampled from a certain proba-
bility distribution such as a Dirichlet distribution in
[15], where the vector for a tag indicates the distri-
bution over all the latent topics. In this way, the
observed tags and the latent topics are combined to-
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gether. However, under the Dirichlet distribution, the
tags are modeled to be independent, which ignores the
correlations among the tags.

On the other hand, we may model the correlations
among the tags only using the co-occurrence of the
tags. However, there are two main limitations in this
approach. Firstly, it ignores the importance of dif-
ferent tags in a specific document, where some tags
are more relevant to a document than others but in
another document the situation can be totally differ-
ent. Secondly, as described above, the tags are a set
of semantic topic distributions, which are learned from
plain text, and so the correlations should be modeled
from the semantic level, while only considering the co-
occurrences is not enough.

In this paper, we propose a novel CTL model based
on the topic model to learn the correlations among
the tags. In the CTL model, participation vectors of
the observed tags, which take advantage of both the
text information and the tags, for a semi-structured
corpus are used to learn the correlations. For infer-
ence, an effective inference method is devised to learn
the model parameters. The outputs of the CTL model
are the tags’ correlation matrix and the latent top-
ics for documents, which are learned by utilizing the
learned tag correlations. After learning the CTL, we
can obtain a correlational graph which shows the rela-
tionships among the tags by ranking the correlational
values. In experiments, we trained the proposed model
on the DBLP corpus, where we treated authors as tags
and we can visualize the correlational graph among
the authors. Also, for one special author, there is
a ranking list to show the relevant authors not only
from the co-author information but also from whether
they have similar research interests. We also apply
the CTL model to the document retrieval and classifi-
cation tasks on the Wikipedia corpus and the results
show that the CTL model outperforms the state-of-
the-art baselines.

2 RELATED WORKS

To date, many models are proposed for document
modeling via different approaches such as undirected
graphical models [24, 20, 13, 26, 25] or directed graph-
ical models. As directed graphical models, topic mod-
els [11, 3, 1, 2, 4, 10] have been found to play an im-
portant role in analyzing unstructured texts. These
models have been applied to many text mining areas,
including information retrieval [28], document classi-
fication [6], and so on. However, most of these undi-
rected and directed graphical models just consider the
unstructured text with the bag-of-word assumption.

More and more text mining tasks are emerging in

real-world applications to handle the semi-structured
corpora, such as document classification described in
[5, 16]. Based on the topic model, many methods have
been proposed to deal with the semi-structured cor-
pora, such as the author topic model [18], labeled-LDA
[21], DMR [19], Tag-Weighted Topic Model (TWTM)
[15], Tag-Weighted Dirichlet Allocation (TWDA) [14],
partially LDA [22], TMBP [9], cFTM [8], statistical
topic models [23], and so on. Most of the models take
advantage of some given meta data (e.g., tags, labels,
or contextual information) in a document with differ-
ent assumptions. For example, the author topic model
defines the distributions of the authors over the latent
topics and the authors are assumed to be indepen-
dent under a Dirichlet prior. In the labeled-LDA and
partially LDA, the labels are defined as a set of dis-
tributions over the words from a vocabulary. For the
TWTM and TWDA, a weight vector is used to gener-
ate the topic distribution of a document with the given
tags. The DMR model is a Dirichlet-multinomial re-
gression topic model which defines a log-linear prior
on the document-topic distributions. In [23], Timothy
et al. investigate a class of generative topic models for
multi-label documents that associate individual word
tokens with different labels, where the dependency-
LDA is proposed to model the relations among the
labels and words. Some of the aforementioned mod-
els can obtain the topic distribution of the tags, which
can be used to measure the distance between the tags.
However, they fail to directly model the correlations
among tags.

3 THE CTL MODEL

In this section, we will mathematically define the Cor-
related Tag Learning (CTL) model, and discuss the
learning and inference methods.

We use the following terminologies and notations to
describe a corpus where each document is associated
with a set of tags, which we call the semi-structured
corpus.

Semi-Structured Corpus As a collection of
M documents, we define the corpus D =
{(w1, t1), . . . , (wM , tM )}, where each 2-tuple (wd, td)
denotes a document with its tag vector. Let wd =
(wd

1 , . . . , w
d
N ) denote the vector of N words associated

with document d. Let td = (td1, . . . , t
d
L) represent the

tag vector, each element of which is a binary indicator
for a tag, with L as the number of all the tags in the
corpus D.

Tag Matrix Here td is expanded to a ld × L tag
matrix T d, where ld is the number of tags in docu-
ment d for the convenience of the inference. For each
i ∈ {1, . . . , ld}, T d

i· is a binary vector, where T d
ij = 1 if
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Figure 1: The graphical model of the CTL model,
where each node denotes a random variable, a shaded
node represents an observed variable, and edges indi-
cate possible dependencies.

and only if the i-th tag in the document d is the j-th
tag in the tag set of the corpus D.

Topic Proportions Each document is associated
with a set of topic proportions ϑ. For a document
d, ϑd is a multinomial distribution over topics and it
reflects the probabilities of the words in document d
drawing from latent topics.

3.1 The Model

The proposed CTL model is a hierarchical Bayesian
model based on the topic model with assumptions that
each document in a corpus is modeled by an under-
lying set of latent topics and that each topic defines
a multinomial distribution over words. Besides, the
CTL model assumes that the topic distribution of each
document is determined by the given tags with a set
of participation values. With the participation values
in a participation vector, the CTL can model the topic
proportions of each document as the product between
the participation vector and the topic distributions of
each tags in the document.

In this paper, we use ϑd to denote the topic distribu-
tion of the document d, as shown in Figure 1. Let θ
represent a T × K matrix, where K is the number of
the latent topics and each row in θ describes the distri-
bution of one tag belonging to the latent topics. Let ψ
represent a K×V distribution matrix, where each row
is a distribution vector of one topic over words and V
is the number of words in the dictionary of D.

3.1.1 Participation Vectors

εd, as shown in Figure 1, denotes the participation
vector of the given tags in the document d. In the
TWTM [15] and TWDA [14] models, it is called a
weight vector which follows a Dirichlet distribution.

As discussed above, under a Dirichlet distribution, the
components of the participation vector are nearly in-
dependent, leading to a strong and unrealistic assump-
tion that the presence of one observed tag is not corre-
lated to the presence of another one. In order to over-
come this assumption, we use a flexible logistic normal
distribution to model the observed tags. As shown in
Figure 1, Σ is the covariance matrix of the logistic
normal distribution, µ is the expected value vector of
the random variables, and ηd is a L-dimensional row
vector that follows the normal distribution with Σ as
the covariance and µ the mean. So the participation
vector is defined as follows:

εd = exp{T d × (ηd)T},

where (ηd)T is the transpose of ηd, and εd is a ld × 1
column vector associated with the document d. Note
that εd does not satisfy

∑
i ε

d
i = 1, hence we call it a

participation vector instead of a weight vector.

With the participation vector, instead of a Dirichlet
distribution, we use a logistic normal distribution to
model the topic distribution of the document d:

ϑd =
(εd)T × T d × θ∑
i((ε

d)T × T d × θ)i
,

where (·)i denotes the i-th entry in a vector and ϑd,
the multinomial topic proportions of the document d,
satisfies

∑
i ϑ

d
i = 1. With the multinomial topic pro-

portions ϑ obtained by a participation vector and a set
of the observed tags in a document, we can generate
each word for the document in a similar way to the
topic model.

Thus, the CTL model assumes that a corpus with M
documents arises from the following generative pro-
cess:

1. For each topic k ∈ {1, . . . ,K}, draw ψk ∼ Dir(π),
where Dir(·) denotes a Dirichlet distribution and
π is a V -dimensional vector of hyperparameters.

2. For each tag t ∈ {1, . . . , L}, draw θt ∼ Dir(Λ),
where Λ is a K dimensional prior vector of θ.

3. For each document d:

(a) Draw ηd ∼ N (µ,Σ) where N (·, ·) denotes a
multivariate normal distribution.

(b) Generate T d by td.

(c) Generate εd = exp{T d × (ηd)T}.

(d) Generate ϑd = (εd)T ×T d×θ∑
i((ε

d)T ×T d×θ)i
.

(e) For each word wdn:
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i. Draw zdn ∼Mult(ϑd) where Mult(·) de-
notes a multinomial distribution.

ii. Draw wdn ∼Mult(ψzdn
).

The CTL model is different from the TWTM model
[15] where the weight vector in a document for the
given tags is drawn from a Dirichlet distribution. The
Dirichlet distribution is computationally convenient
but it has a nearly independent assumption among
the components of the weight vector. Differently, en-
tries in the participation vector of the observed tags is
highly correlated as we described above.

The covariance matrix Σ induces the dependencies
between the components of the participation vector,
and allows a general pattern of variability between the
components. Using the covariance matrix of the logis-
tic normal distribution, we can capture the correlated
relationships between the given tags associated with
each document.

3.2 Variational Inference

The logistic normal distribution used here brings not
only the capacity to model the correlations among
tags but also a challenge for the posterior inference
procedure since it is not a conjugate prior for the
multinomial distribution. We present a variational
expectation-maximization (EM) algorithm [12, 27] for
the inference. In the variational EM algorithm, the
E-step approximates the posterior by minimizing the
Kullback-Leibler (KL) divergence between the varia-
tional distribution and the true posterior distribution.
This method casts the inference problem as an op-
timization problem to approximate the posterior dis-
tribution of this latent model and some study in [2]
shows that minimizing the KL divergence is equiva-
lent to maximizing the evidence lower bound (ELBO)
denoted by L(·).
For the CTL model, the ELBO can be derived by using
Jensen’s inequality:

L(·) =

D∑

d

Eq[log p(η
d|µ,Σ)] +

D∑

d

N∑

n

Eq[log p(zn|ϑd)]

+
D∑

d

N∑

n

Eq[log p(wn|ψ, zn)] +
L∑

i

Eq[log p(θi|Λ)]

+H(q), (1)

where q(·) denotes a variational distribution of the la-
tent variables, Eq[·] denotes the expectation with re-
spect to q, and H(q) is the entropy of the variational

distribution whose definition is:

H(q) = −
D∑

d

Eq[log q(η
d)] −

D∑

d

N∑

n

Eq[log q(zn)]

−
L∑

i

Eq[log q(θi)].

For the variational distribution q(·), we choose a fully
factorized distribution where all the variables are as-
sumed to be independent:

q(η, z, θ|u, σ2, γ, λ) =

L∏

i

Dir(θi|λi)

D∏

d

(
N (ηd|u, σ2)

N∏

n

Mult(zn|γn)

)
,

where λ in the Dirichlet distribution, γ in the multi-
nomial distribution, and (u, σ2) in the Gaussian dis-
tribution are the variational parameters.

Before discussing the optimization procedure, we de-
scribe how to compute the ELBO in Eq. (1). In the
CTL model, the key inferential problem that we need
to solve is to compute the second term in Eq. (1),
which is the expected logorithm of a topic assignment
subject to a normalized multinomial parameter and
can be computed as

Eq[log p(zn|ϑd)] = Eq

[
log p

(
zn| (εd)T × T d × θ∑

i((ε
d)T × T d × θ)i

)]

=
K∑

k

γnkEq

[
log

(
(εd)T × T d × θ∑
i((ε

d)T × T d × θ)i

)

k

]
,

where γnk denotes the probability of the k-th topic
assigned to the n-th word. We see that computing the
CTL’s ELBO relies on the calculation of the expected
normalized topic distribution of a document, which
can be computed as

Eq

[
log

(
(εd)T × T d × θ∑

i((ε
d)T × T d × θ)i

)

k

]

=Eq

[
log((εd)T × T d × θ)k

]
− Eq

[
log(

∑

i

((εd)T × T d × θ)i)

]

=Eq


log

ld∑

i

εd
i θ

(i)
k


− Eq


log

ld∑

i

εd
i




=Eq


log

ld∑

i

exp{ηd
(i)}θ

(i)
k


− Eq


log

ld∑

i

exp{ηd
(i)}


 ,

where θ(i) denotes the vector of the topic distributions
for the i-th tags in the document d corresponding to a
row in θ and ηd

(i) is the i-th entry of T d × (ηd)T.

By following the correlated topic model [1], the above
two expectations can be computed approximately with
Taylor expansions, respectively:

Eq[log
ld∑

i

exp{ηd
(i)}θ

(i)
k ] ≈ log α +

1

α

ld∑

i

Eq [exp{ηd
(i)}]Eq [θ

(i)
k ] − 1
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and

Eq[log

ld∑

i

exp{ηd
(i)}] ≈ log β +

1

β

ld∑

i

Eq[exp{ηd
(i)}] − 1,

where we introduce two new variational parameter α
and β. Note that Eq[exp{ηd

(i)}] is the mean of a log-

normal distribution and equals exp{u(i)+σ
2
(i)/2}. The

expectation of a Dirichlet random variable, Eq[θ
(i)
k ], is

equal to [λk/
∑K

j λj ](i). Thus, for a document d, we
have

N∑

n

Eq[log p(zn|ϑd)]

≈
N∑

n

K∑

k

γnk

(
logα+

1

α

ld∑

i

exp{u(i) + σ2
(i)/2}

[
λk∑K
j λj

]

(i)

− log β − 1

β

ld∑

i

exp{u(i) + σ2
(i)/2}

)
.

Thus, we can use the block coordinate-ascent varia-
tional inference to maximize Eq. (1) with respect to
variational parameters including σ2, u, γ, λ, α, and β.

We first maximize L(·) with respect to σ2 for the doc-
ument d with the objective function formulated as

L(σ2) = −1

2
tr
(
diag(σ2)Σ−1)+

L∑

i

1

2
log σ2

(i)

+

N∑

n

K∑

k

γnk

α

( ld∑

i

exp{u(i) + σ2
(i)/2}

[
λk∑K
j λj

]

(i)

)

− N

β

ld∑

i

exp{u(i) + σ2
(i)/2}, (2)

where tr(·) denotes the trace of a square matrix and
diag(·) converts a vector to a diagonal matrix. Obvi-
ously the problem with respect to σ has no analytic
solution and we solve it via the Newton’s method with
gradient computed as

L′
(σ2

i ) =
1

2

N∑

n

K∑

k

γnk

α
exp{u(i) + σ2

(i)/2}
[

λk∑K
j λj

]

(i)

− N

2β
exp{u(i) + σ2

(i)/2} +
1

2σ2
(i)

− 1

2
Σ−1

ii , (3)

where the subscript (i) ∈ (1, · · · , ld) indicates the i-th
tag in a specific document d.

The objective function with respect to u is formulated
as

L(u) = −1

2
(u− µ)T Σ−1(u− µ) − N

β

ld∑

i

exp{u(i) +
σ2

(i)

2
}

+
N∑

n

K∑

k

γnk

α

( ld∑

i

exp{u(i) + σ2
(i)/2}

[
λk∑K
j λj

]

(i)

)
. (4)

We use the conjugate gradient algorithm to solve this
problem, where the derivative is computed as

L′
(u) =

N∑

n

K∑

k

γnk

α
exp{u(i) + σ2

(i)/2}
[

λk∑K
j λj

]

(i)

− N

β
exp{u(i) + σ2

(i)/2} − Σ−1(u− µ).

(5)

We maximize Eq. (1) with respect to γnk to find the
maximizer as

γnk ∝ψk,vwn exp

{
1

α

( ld∑

i

exp{u(i) + σ2
(i)/2}

[
λk∑K
j λj

]

(i)

)

+ logα

}
, (6)

where vwn denotes the index of wn in the dictionary.

For the variational parameter λ, the objective function
is formulated as

L(λ) =

K∑

k

(Λk − 1)(Ψ(λk) − Ψ(

K∑

j

λj)) − log Γ(

K∑

j

λj)

+

N∑

n

K∑

k

γnk

α

( ld∑

i

exp{u(i) + σ2
(i)/2}

[
λk∑K
j λj

]

(i)

)

+

K∑

k

log Γ(λk) +

K∑

k

(λk − 1)(Ψ(λk) − Ψ(

K∑

j

λj)). (7)

We use the gradient descent method to solve it, where
the derivative with respect to λk is:

L′
(λk) =

N∑

n

γnk(
∑K

j λj − λk)

α(
∑K

j λj)2
exp{u(i) + σ2

(i)/2}

+ (Λk − λk)(Ψ
′
(λk) − Ψ

′
(

K∑

j

λj)).

(8)

For α and β, the optimal solutions can easily be found
as

α ∝

∑N
n

∑K
k γnk

(∑ld

i exp{u(i) + σ2
(i)/2}

[
λk∑K
j

λj

]

(i)

)

∑N
n

∑K
k γnk

(9)

β ∝
ld∑

i

exp{u(i) + σ2
(i)/2}. (10)

In the E-Step of the variational EM algorithm, we it-
eratively update the variational parameters including
σ2 , u, γ, λ, α and β.

3.3 Parameter Estimation

The parameters of the CTL model include Σ, µ, ψ and
Λ. In the M-step, given the semi-structured corpus, we
can estimate the parameters by maximizing a lower-
bound of the log-likelihood based on the variational
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E-step. The update rules for Σ, µ and ψ can easily be
obtained:

µ ∝ 1

D

D∑

d

ud, (11)

Σ ∝ 1

D

D∑

d

(
Iσ2

d + (ud − µ)(ud − µ)T

)
, (12)

ψkj ∝
D∑

d

N∑

n

γnk(wd)j
n, (13)

where (wd)j
n is the count for the n-th word in the doc-

ument d. For the Dirichlet parameter Λ, its objective
function is formulated as

L(Λ) =

L∑

l

(
log Γ(

K∑

j

Λj) −
K∑

i

log Γ(Λi)

+
K∑

i

(Λi − 1)
(
Ψ(λl

i) − Ψ(
K∑

j

λl
j)
))

.

(14)

The derivative with respect to Λi is computed as

L
′
(Λi) = L

(
Ψ(

K∑

j

Λj) − Ψ(λi)
)

+

L∑

l

(
Ψ(λ

l
i) − Ψ(

K∑

j

λ
l
j)
)

. (15)

We can use the linear-time Newton-Raphson algorithm
to estimate Λ.

4 DISCUSSION

The proposed CTL model can capture the correlations
among the tags in a semi-structured corpus, not just
only by considering the co-occurrences of the tags. The
CTL model presents the participation vector for each
document to estimate the correlations of the tags, and
the participation vector is learned by the text infor-
mation with the basic assumption on latent topics. In
other words, the co-occurrence vector is binary, which
means that one tag is present or absent, while the par-
ticipation vector is non-binary and the values in par-
ticipation vector denote the importance of the tags.

Actually, we can train the CTL model by only con-
sidering the co-occurrence information of tags in each
document. In this case, different tags have equal im-
portance in a document d and hence ηd is observed for
each document, where ηd

j is set to 1 if and only if the
document d has the j-th tag. So the CTL model will
consist of two parts, as shown in Figure 2. The left
figure in Figure 2 is the first part containing Σ, µ, ηd,
ξd and td, where ηd, ξd and td are the observed vari-
ables. We can use the traditional maximum likelihood
estimation to learn the correlation matrix Σ with the
D samples:

µ =
1

D

D∑

d

td, Σ =
1

D

D∑

d

(td − µ)(td − µ)T.

D

µ Σ

ηd

t εd

D

N

T ×K

K × V

t ϑd

z

W

θ

ψ

Λ

Figure 2: The two parts of the CTL model will be
degenerated if ηd becomes equal to td, which means
that all the tags have the same effect on the document.

The second part shown in the right figure of Figure 2
means that all the tags have equal impacts on the topic
distribution ϑd. We can see that the second part is a
variant of the author topic model described in [18].
Thus, we can use the variational inference process to
compute the new ELBO bound as:

Lnew =
D∑

d

Eq[log p(t
d|µ,Σ)] +

D∑

d

N∑

n

Eq[log p(zn|ϑd)]

+
D∑

d

N∑

n

Eq[log p(wn|ψ, zn)] +
L∑

i

Eq[log p(θi|Λ)]

−
D∑

d

Eq[log q(t
d)] −

D∑

d

N∑

n

Eq[log q(zn)]

−
L∑

i

Eq[log q(θi)],

where
∑D

d Eq[log p(td|µ,Σ)] and
∑D

d Eq[log q(td)] are

fixed,
∑D

d

∑N
n Eq[log p(zn|ϑd)] does not involve σ2

and u since ηd and ξd are known. In this case,
Lnew < L, which means the new lower bound Lnew

is lower than the former one when convergence. Thus,
treating the tags equally will not be a good choice.

Compared with the tag-weighted topic model [15], we
would obtain document embeddings with better qual-
ity when the tags in the corpus are highly correlated.
Thus, we will study the CTL model under this setting
in our experiments.

5 EXPERIMENTS

In this section, we will present the performance of the
proposed CTL model on document modeling, docu-
ment classification, and document retrieval, respec-
tively.
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5.1 Experimental Settings

We used two semi-structured corpora to evaluate the
CTL model. The first corpus is the Digital Bibliogra-
phy and Library Project (DBLP),1 which is a collec-
tion of bibliographic information of technical papers
published in major computer science journals and con-
ferences. We use the authors as the tags and removed
the authors that occur in fewer than 5 papers. We
use a subset of the DBLP that contains abstracts of
D = 40, 108 papers with 72, 748 words by removing
stop words and L = 6, 348 unique tags. The second
corpus is from Wikipedia.2 The Wikipedia corpus we
used contains 43, 217 articles. The size of the vocab-
ulary is 22, 344 by removing stop words. We use the
category information, which is located at the bottom of
each article and provided by the MediaWiki software,
of articles as the tags, and in total there are 2, 900
tags. Moreover, each article belongs to different por-
tals which can be viewed as the class label and all the
articles used in the experiments belong to 20 classes,
such as arts, sports, history, biography, education and
so on.

−2000000

−1800000

−1600000

−1400000

20 50 100 150 200
# of Topics

lo
gl

ik
el

ih
oo

d

ATM

CTL

LDA

TWDA

TWTM

Figure 3: The 5-fold cross-validated held-out log-
likelihood of different models on the Wikipedia corpus
with different number of topics.

5.2 Experiments on Document Modeling

To demonstrate the performance of the different mod-
els on document modeling, we computed the log-
likelihood of the held-out data given a model estimated
from the remaining data by using five-fold cross val-
idation, implying that 80% documents are for train-
ing and the remaining 20% for testing. We compared

1http://www.informatik.uni-trier.de/~ley/db/
2http://www.wikipedia.org/

0

200

400

0 200 400
Authors[1~528]

A
ut

ho
rs

[1
~

52
8]

(a) penalty factor p = 0.25

0

200

400

0 200 400
Authors[1~528]

A
ut

ho
rs

[1
~

52
8]

(b) penalty factor p = 0.5

Figure 4: The scatter plots of the selected 528 authors
on the DBLP corpus, where a point is drawn if the
corresponding two authors are neighbors.

the CTL model with the Author Topic Model (ATM),
TWTM, TWDA, and LDA by varying the number of
latent topics. Since the LDA could not handle the tag
information directly, we treated the given tags as the
word features and added them into the document as
the input for the LDA model.

Figure 3 shows the average log-likelihood for each
model on the held-out set. The results demonstrate
that the CTL model has much better performance
than other baselines. One possible reason is that the
tags contained in Wikipedia corpus are highly corre-
lated and with the help of the logistic normal distri-
bution, the CTL model can obtain a more reasonable
and effective participation vector to form the topic dis-
tribution for each document.

5.3 Analysis on Tag Graph

The covariance of the logistic normal distribution for
the participation vector can be used to visualize the
relations among tags. Thus, we use the covariance
matrix to form a tag graph, where the nodes repre-
sent the tags appeared in the corpus and the edges
denote the relations between tags. To construct the
tag graph, we use the method introduced in [17] for
neighborhood selection based on the Lasso. As de-
scribed in [17], the neighborhood selection with the
Lasso is used to estimate the conditional dependency
separately for each node in the graph. In the CTL
model, for a document d, ηd follows a normal distri-
bution with mean u and covariance Σ. Thus, {ηd} are
treated as independent observations sampled from the
normal distribution N (µ,Σ), which are used to esti-
mate the neighborhood based on [17].

We use the DBLP corpus for the experiment. For
the convenience of display, we select 528 authors to
illustrate the correlated connections among them by
drawing an edge if the corresponding two authors are
neighbors with different penalty factor p = 0.25 and
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Figure 5: A subset of the author graph learned from 40,108 abstracts of the DBLP. The edges between authors
are computed by the neighborhood selection method [17] based on the Lasso.

Table 1: The ranking list of top correlated authors with eight authors on the DBLP corpus.

Michael I. Jordan

Alice X. Zheng(0.157837), Francis R. Bach(0.116478), Gert R. G. Lanckriet(0.107671), David M. Blei(0.103741), Steven E.
Brenner(0.092675), Zhihua Zhang(0.090492), Percy Liang(0.089226), Robert A. Jacobs(0.085318), Tommi Jaakkola
(0.082044), Guang Dai(0.058045), Lawrence K. Saul(0.057545), Martin J. Wainwright(0.045444), Nebojsa Jojic(0.043731),
David A. Patterson(0.041441), Tamar Flash(0.035152), Erik B. Sudderth(0.033563), Andrew Y. Ng(0.013234)

Yoshua Bengio Pascal Vincent(0.410208), Hugo Larochelle(0.265349), Aaron C. Courville(0.132399), Jason Weston(0.049443)

Qiang Yang
Dou Shen(0.149414), Derek Hao Hu(0.144670), Sinno Jialin Pan(0.134137), Xiaoyong Chai(0.115358), Nathan Nan Liu
(0.0.113420), ErHeng Zhong(0.107736), Weizhu Chen(0.104334), Yong Yu(0.091473), Charles X. Ling(0.081368), Jie Yin
(0.077154), Wenyuan Dai(0.071907), Vincent Wenchen Zheng(0.062750), Zheng Chen(0.060292), Zhi-Hua Zhou(0.057265)

Nicholas R. Jennings

Alex Rogers(0.243331), Ramachandra Kota(0.142240), Maria Polukarov(0.137646), Talal Rahwan(0.134888), Ioannis A.
Vetsikas(0.126621), S. Shaheen Fatima(0.121799), Sebastian Stein(0.117208), Enrico Gerding(0.027282), Minghua
He(0.106050), Xudong Luo(0.086897), Sarvapali D. Ramchurn(0.071510), Terry R. Payne(0.068713),
Michael Wooldridge(0.065824)

Micha Sharir
Pankaj K. Agarwal(0.273844), Emo Welzl(0.170932), Natan Rubin(0.139646), Jnos Pach(0.110192), Haim Kaplan
(0.106137), Vladlen Koltun(0.104685), Boris Aronov(0.102123), Shakhar Smorodinsky(0.088530), Esther Ezra(0.083021),
Dan Halperin(0.074751, Rom Pinchasi(0.056282), Bernard Chazelle(0.044011), Jir Matousek(0.027263)

Jiawei Han
Xiaoxin Yin(0.196956), Deng Cai(0.103920), Guozhu Dong(0.101735), V. S. Lakshmanan(0.100016), Xin Jin(0.098451),
Charu C. Aggarwal(0.098256), Anthony K. H. Tung(0.092360), Jianyong Wang(0.087017), Hongjun Lu(0.072772),
ChengXiang Zhai(0.048570), Jiong Yang(0.042489), Philip S. Yu(0.036918), Ke Wang(0.032003)

Jennifer Rexford
David Walker(0.247776), Mung Chiang(0.162803), Eric Keller(0.152502), Renata Teixeira(0.141469),
Minlan Yu(0.123096), Nick Feamster(0.115787), Albert G. Greenberg(0.111072), Aman Shaikh(0.093805),
Matthew Caesar(0.049353), Michael J. Freedman(0.039058), Kang G. Shin(0.031615)

Franco Zambonelli
Marco Mamei(0.372887), Letizia Leonardi(0.213969), Giacomo Cabri(0.195711), Gabriella Castelli(0.188215),
Nicola Bicocchi(0.080601), Andrea Omicini(0.054696), Robert Tolksdorf(0.040949), Sara Montagna(0.020905),
Matthias Baumgarten(0.012859), Alberto Rosi(0.012646)

0.5, respectively. After using the spectral clustering
based on the conditional dependency obtained by the
method in [17], as shown in Figure 4, we clearly see
that the authors cluster together to different groups,
where the authors in a group may have similar research
interests.

We plot the author graph to show the correlations
among the 518 authors and in Figure 5, a part of the
graph is shown, where the nodes represent authors and
the edges denote the correlations between the authors.

In this graph, we can find some interesting insight.
For example, two authors ‘Zhi-Hua Zhou’ and ‘Guang
Dai’, who did not coauthor any paper, have a connec-
tion between them since they have similar research in-
terests, which shows an advantage of the CTL model
over only using the coauthorship information that it
can find meaningful relations at the semantic level.

The CTL model can give a ranking list based on how
the authors are correlated. In Table 1, we pick several
authors from the 528 authors, and for each selected
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author, we rank other authors according to their cor-
relational values, which can be obtained by the pro-
cess of neighborhood selection (see [17]). Based on the
results, we can easily see how close the two authors
are in the research and answer interesting questions
including that whether researcher A has more similar
interests to researcher B than to researcher C.

5.4 Document Classification and Retrieval

In this section, we conduct experiments on document
classification and retrieval tasks.

We first test the classification performance by com-
paring the performance of the LDA, ATM, TWTM,
TWDA, and the proposed CTL model with the num-
ber of topics as 50 and 100, respectively. The LIBSVM
[7] with the Gaussian kernel and default parameters is
used as the classifier. In experiments, we use a subset
of the Wikipedia corpus which contains 14, 400 docu-
ments belonging to 20 classes. We reported in Figure
6 the precision of different methods on the Wikipedia
corpus by using the five-fold cross validation. Accord-
ing to Figure 6, the performance of the CTL model is
significantly better than that of other baseline meth-
ods. One possible reason is that the CTL model can
learn a better topic distribution for each document
than others.
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Figure 6: Classification results on the Wikipedia cor-
pus for the LDA, ATM, TWTM, TWDA and CTL
models with five-fold cross validation.

Moreover, we use the Wikipedia corpus to evaluate the
performance on the document retrieval task. In this
experiment, each document is represented by the vec-
tor of topic distribution generated by different models
with the topic number as K = 100. The Wikipedia
corpus used here is just the data set used in the above
classification experiment. We randomly sample 12, 400
documents for training and the rest for testing. For
each query, documents in the database were ranked
using the cosine distance as the similarity metric. For
evaluation, we check whether a retrieved document
has the same class label as the query document to

decide whether the retrieved document is relevant to
the query document. Figure 7 shows the F1 scores and
the precision-recall curves of the LDA, ATM, TWTM,
TWDA and CTL models. The experimental results
demonstrate the superiority of the embedding learned
by the CTL model for the document retrieval task.
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Figure 7: F1-score and precision-recall curves for doc-
ument retrieval on the Wikipedia corpus for the LDA,
ATM, TWTM, TWDA, and CTL models with K =
100.

6 CONCLUSION

In this paper, we propose the CTL model, a statistical
model of semi-structured corpora, based on the topic
model to discover highly correlational relationships
among the tags observed in the semi-structured cor-
pus. Besides, the experimental results demonstrated
that this method can model semi-structured corpora
better than the state-of-the-art models when the tags
are highly correlated.

In our future study, we will apply the CTL model to
more text applications. Another possible direction is
to devise parallel algorithms for the CTL model to
further improve its efficiency.
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dimensional graphs and variable selection with
the lasso. The Annals of Statistics, pages 1436–
1462, 2006.

[18] Rosen-Zvi Michal, Chemudugunta Chaitanya,
Griffiths Thomas, Smyth Padhraic, and Steyvers
Mark. Learning author-topic models from text
corpora. ACM Transactions on Information Sys-
tems, 28(1):1–38, 2010.

[19] David M. Mimno and Andrew McCallum. Topic
models conditioned on arbitrary features with
Dirichlet-multinomial regression. In UAI, pages
411–418, 2008.

[20] Srivastava Nitish, Ruslan Salakhutdinov, and Ge-
offrey E. Hinton. Modeling documents with a
deep Boltzmann machine. In UAI, 2013.

[21] Daniel Ramage, David Hall, Ramesh Nallapati,
and Christopher D. Manning. Labeled LDA: A
supervised topic model for credit attribution in
multi-labeled corpora. In EMNLP, pages 248–
256, 2009.

[22] Daniel Ramage, Christopher D. Manning, and Su-
san Dumais. Partially labeled topic models for in-
terpretable text mining. In SIGKDD, pages 457–
465, 2011.

[23] Timothy N Rubin, America Chambers, Padhraic
Smyth, and Mark Steyvers. Statistical topic mod-
els for multi-label document classification. Ma-
chine learning, 88(1-2):157–208, 2012.

[24] Ruslan Salakhutdinov and Geoffrey E. Hinton.
Replicated softmax: an undirected topic model.
In NIPS, pages 1607–1614, 2009.

[25] Nitish Srivastava and Ruslan Salakhutdinov.
Learning representations for multimodal data
with deep belief nets. In ICML Workshop, 2012.

[26] Nitish Srivastava and Ruslan Salakhutdinov.
Multimodal learning with deep Boltzmann ma-
chines. In NIPS, pages 2222–2230, 2012.

[27] Martin J. Wainwright and Michael I. Jordan.
Graphical models, exponential families, and vari-
ational inference. Foundations and Trends in Ma-
chine Learning, 1(1-2):1–305, 2008.

[28] Xing Wei and W. Bruce Croft. LDA-based docu-
ment models for ad-hoc retrieval. In SIGIR, pages
178–185, 2006.

466



Utilize Old Coordinates: Faster Doubly Stochastic Gradients for Kernel
Methods

Chun-Liang Li
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

chunlial@cs.cmu.edu

Barnabás Póczos
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Abstract

To address the scalability issue of kernel meth-
ods, random features are commonly used for
kernel approximation (Rahimi and Recht, 2007).
They map the input data to a randomized low-
dimensional feature space and apply fast linear
learning algorithms on it. However, to achieve
high precision results, one might still need a large
number of random features, which is infeasible
in large-scale applications. Dai et al. (2014) ad-
dress this issue by recomputing the random fea-
tures of small batches in each iteration instead
of pre-generating for the whole dataset and keep-
ing them in the memory. The algorithm increases
the number of random features linearly with iter-
ations, which can reduce the approximation error
to arbitrarily small. A drawback of this approach
is that the large number of random features slows
down the prediction and gradient evaluation after
several iterations. We propose two algorithms to
remedy this situation by “utilizing” old random
features instead of adding new features in cer-
tain iterations. By checking the expected descent
amount, the proposed algorithm selects “impor-
tant” old features to update. The resulting pro-
cedure is surprisingly simple without enhancing
the complexity of the original algorithm but ef-
fective in practice. We conduct empirical studies
on both medium and large-scale datasets, such as
ImageNet, to demonstrate the power of the pro-
posed algorithms.

1 INTRODUCTION

Kernel methods are powerful tools for learning non-linear
hypotheses. Many algorithms can be combined with kernel
methods, including SVM and logistic regression. However,
kernel methods are usually considered as non-scalable due
to the kernel matrix K ∈ Rn×n, where n is the number

of examples. For large-scale datasets, such as MNIST-8M
(8.1 million) and ImageNet (1.3 million), the memory us-
age makes kernels methods prohibitive for these applica-
tions.

One line of research is devoted to kernel approximation
with limited memory usage (Williams and Seeger, 2000;
Rahimi and Recht, 2007). Random Features (Rahimi and
Recht, 2007), inspired by Bochner’s theory, approximate
the kernel mapping via a simple sampling procedure. After
mapping the input data into the randomized feature space
created by random features, we then apply existing fast lin-
ear learning algorithms. It has attracted machine learning
community’s interest because of its simplicity and effec-
tiveness in practice. The extensions of random features in-
clude Rahimi and Recht (2008); Yang et al. (2012); Le et al.
(2013); Yang et al. (2014); Chen et al. (2015); Bach (2015).
However, both theoretical (Rahimi and Recht, 2007) and
empirical studies show one might still need a large num-
ber of random features to achieve high precision results. If
we pre-generate the random features and keep them in the
memory, it is still infeasible in modern large-scale applica-
tions.

Dai et al. (2014) propose a remedy which generates random
features on the fly by connecting functional gradients and
random features, which is called Doubly Stochastic Gradi-
ent Descent (DSG). DSG re-computes the random features
for a small batch of data in each iteration instead of keep-
ing them in the memory. The re-computing manner allows
DSG to increase the number of random features in every
iteration. The algorithm can also be treated as a variant
of random coordinate gradient (RCD) algorithm, because
DSG updates the newly increased feature (coordinate) in
every iteration. Therefore, by increasing the number of fea-
tures, DSG can achieve arbitrarily small approximation er-
ror if one have sufficient budget of time. On the flip side,
increasing features in every iteration causes the number of
random features to grow linearly with number iterations.
After several iterations, the large number of used random
features makes prediction and computing gradients slow.

In this paper, we make the following contributions. First,
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we solve the drawback of large number of random features
by updating old coordinates instead of increasing features
in certain iterations (Section 4) to reduce the number of the
used random features. One simple extension is sampling
from old coordinates uniformly and periodically as typi-
cal RCD over the finite dimensions, which is called DSG
with Uniform Sampling (UDSG). We make the second con-
tribution by analyzing the convergence rate of UDSG. Al-
though UDSG usually works well in practice, our theoreti-
cal analysis suggests the descent amount of UDSG is not as
much as Dai et al. (2014) in the worst case. We then make
our third contribution by proposing the other non-trivial al-
gorithm, DSG with Checking (CDSG), which chooses the
old coordinate by checking the expected descent amount
and derive a expected line search methodology to further
boost the performance. Theoretically, CDSG enjoys the
same convergence rate as DSG. Empirically, it outperforms
other algorithms. Last, we conduct experiments on large-
scale datasets, including ImageNet, and further study the
comparison with deep neural nets in Section 5. We then
conclude in Section 6 and make a guideline of choosing
algorithms in practice.

2 PRELIMINARIES

The problem we are interested in this paper is as follows.
Assume the data point (x, y) ∈ X × Y is an i.i.d. sample
from a distribution P(x, y), where X ⊆ Rd, we want to
estimate a function f : X → Y in Reproducing Hilbert
Space (RKHS)H by optimizing

f∗ = argmin
f∈H

R(f) = argmin
f∈H

λ

2
‖f‖2H+E(x,y)[`(f(x), y)],

(1)
where `(z, y) is a convex loss function in z. Commonly
used loss functions are hinge loss (SVM), logistic loss (lo-
gistic regression) and square loss (ridge regression). Note
that if the data comes from a batch setting, we replace the
above expectation with the empirical expectation (average).

2.1 RKHS AND KERNEL

The RKHSH on X is a Hilbert space of functions from X
to R. One typical way to define RKHS is via kernel func-
tions k(x,x′) : X × X → R, which encodes the similarity
between two data points. The kernel function k is symmet-
ric and positive definite. H is RKHS if and only if there
exists a kernel k(x,x′) such that ∀x ∈ X , k(x, ·) ∈ H
and 〈k(x, ·), k(x′, ·)〉H = k(x,x′). Also, if f ∈ H,
f(x) = 〈f, k(x, ·)〉H. One commonly used kernel is Gaus-
sian RBF kernel k(x,x′) = exp

(
−‖x−x′‖2

2σ2

)
. The train-

ing bottleneck of using kernels is to compute and store the
kernel matrix K ∈ Rn×n for n data points. It brings the
computational concern in both time and space complex-
ity and makes designing scalable algorithms for large-scale

problems a challenging task. There are several approach
to addressing this difficulty by making trade-off between
and time as space. For example, LIBSVM (Chang and Lin,
2011) only caches some columns of kernel matrix to save
the memory usage and re-compute the columns where there
is a cache miss.

2.2 RANDOM FEATURE

The other way to define kernel is finding the explicit fea-
ture mapping φ(x) such that k(x,x′) = φ(x)>φ(x′).
Bochner’s theorem suggests a way to find this mapping
for the stationary (shift-invariant) kernel, i.e., k(x,x′) =
k(x − x′), and draws the community’s attention in this
decade (Rahimi and Recht, 2007).
Theorem 1. (Bochner’s Theorem) A continuous, real-
valued, symmetric and shift-invariant function k on Rd is a
positive definite kernel if and only if there is a positive finite
measure P(ω) such that

k(x− x′) =
∫
Rd 2

(
cos(ω>x) cos(ω>x′)

+ sin(ω>x) sin(ω>x′)
)
dP(ω),

For Gaussian RBF kernel, the corresponding density P(ω)
is the Gaussian distribution.

Inspired from Bochner’s Theorem, we can approximate
the kernel evaluation by the Monte-Carlo approximation.
Define φω(x) =

√
2[cos(ω>x), sin(ω>x)] and z(x) =

1√
m

[φω1
(x), · · · , φωm

(x)], where ω1, . . . ,ωm are i.i.d.
samples from P(ω). We then have

k(x− x′) = Eω (φω(x)φω(x′)) ≈ z(x)>z(x′)

and (1) can be transformed to

w∗ = argmin
w

λ

2
‖w‖2 + E(x,y)[l(w

>z(x), y)], (2)

which can be solved by fast linear learning algorithms to
handle million-scale data easily (Fan et al., 2008).

3 DOUBLY STOCHASTIC KERNEL
MACHINE

By using random features, we can represent the feature
mapping with a finite-length vector z(x) and approximate
the kernel evaluation by the inner product k(x,x′) ≈
z(x)>z(x′). We are then able to transform problem (1)
into the linear learning problem (2). The approximation er-
ror E[(f∗(x) − w>∗ (x))2] ≤ ε can be bounded by ε with
O(1/ε) number of random features (Rahimi and Recht,
2007), which is the consequence of the bound of Monte-
Carlo approximation. More discussions on the optimality
can be referred to Sriperumbudur and Szabó (2015).

Suppose we use m random features for approximation,
then the space complexity for storing the transformed data
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is O(nm), where n is the number of data points. One line
of research is to replace the simple Monte-Carlo with dif-
ferent sampling scheme to improve the learning with ran-
dom features. Le et al. (2013) propose an efficient sampling
procedure to save the feature generation time. Yang et al.
(2014); Chen et al. (2015); Bach (2015) use different sam-
pling strategies with faster convergence rate to reduce m.

In practice, to achieve accurate results, m usually has to be
large, which cause the space cost for storing. For example,
MNIST-8M data contains eight million training points. If
we use 105 random features with double type, it takes
more than 1T memory to store the transformed data, which
is prohibitive to many machines. On the other hand, the
kernel matrix K is approximated by z(X)z(X)>, where
z(X) ∈ Rn×m. However, K is not low rank and has long-
tailed eigenvalue distributions for many commonly used
kernels (Weyl, 1912; Wathen and Zhu, 2015), which im-
plies there is no hope to accurately approximate K with
small m.

Therefore, the other line of research is to save memory us-
age with large m. Yen et al. (2014) propose a algorithm by
imposing a sparsity constraint in (2) to reduce the memory
usage. However, the sparsity constraint makes the problem
not an unbiased approximation of (1). Dai et al. (2014) pro-
pose to re-generate the random features repeatedly during
the training to save the memory usage, which makes using
a large number of random features possible.

3.1 DOUBLY STOCHASTIC GRADIENT

Dai et al. (2014) propose a novel algorithm by using “dou-
bly functional gradient” to address the scalability issue of
kernel methods. Given a data point (x, y), the stochas-
tic functional gradient of (1) is ∇fR(f) = λf(·) +
E(x,y) [ξ(·)], where ξ(·) = `′(f(x), y)k(x, ·). By Bocher’s
theorem, we could further approximate the functional gra-
dient ξ(·) by the random feature φω(x). That is, given
ω ∼ P(ω) and a data point (x, y), the doubly stochastic
gradient of `(f(x), y) with respect to f ∈ H is ζ(·) =
l′(f(x), y)φω(x)φω(·), where Eω (ζ(·)) = ξ(·). The fol-
lowing formula connects the randomness from data (x, y)
and random feature ω,

∇fR(f) = λf(·) + E(x,y)[ξ(·)]
= λf(·) + E(x,y)Eω[ζ(·)].

In each iteration t, the doubly stochastic gradient of
`(f(xt), yt) is ζt(·) = `′(ft(xt), yt)φωt

(xt)φωt
(·) by

sampling ωt from P(ω) and (xt, yt) from P(x, y). The
update rule for the algorithm is

ft+1(·) = ft(·)− γt (λft(·) + ζt(·)) =
t∑

i=1

aitζi(·),

where ait are coefficients from λ and γt in each iteration.
For each data point x, we do not need to pre-generate the

corresponding z(x) until we want to evaluate the func-
tion as well as the doubly stochastic gradient on x. The
potential problem is how to regenerate the z(x) every
time. If we store ω1, . . . ,ωt, which takes O(dt), when
both d and t are large, it is still infeasible in practice.
Thanks for the pseudo-randomness used in modern com-
puters, we could use different random seeds for different
iterations, then we are guaranteed to sample the same ω
back. Then the space complexity is only O(t) for stor-
ing αit = ait`

′(fi(xi), yi)φω(xi). We call the algorithm
as DSG, which is shown in Algorithm 1. The convergence
rate of DSG is proved in Dai et al. (2014) under the condi-
tions of Assumption 2.

Algorithm 1 {αi}ti=1 = DSG(P(x, y))

for i = 1, . . . , t do
Sample (xi, yi) ∼ P(x, y).
Sample ωi ∼ P(ω) with seed i.
f(xi) = Predict(xi, {αj}i−1j=1).
αi = −γil′(f(xi), yi)φωi

(xi).
αj = (1− γiλ)αj for j = 1, . . . , i− 1.

end for

Algorithm 2 f(x) = Predict(x, {αi}mi=1)

Set f(x) = 0.
for i = 1, . . . ,m do

Sample ωi ∼ P(ω) with seed i.
f(x) = f(x) + αiφωi

(x).
end for

Assumption 2.

1. The optimal solution f∗ to the problem (1) exists.

2. Loss function `(u, y) : R× R→ R and its first-order
derivative is L-Lipschitz continous in terms of the first
argument.

3. There exists M > 0, such that |`′(ft(xt), yt)| 6 M .
Note that in our situation M < ∞ exists since we
assume bounded domain and the functions ft we gen-
erate are always bounded as well.

4. There exists κ > 0 and φ > 0, such that k(x,x′) 6
κ, |φω(x)φω(x′)| 6 φ, ∀x,x′ ∈ X , ω ∈ Ω. For
Gaussian RBF kernel, we have κ = 1, φ = 2.

Theorem 3 (Convergence rate of DSG (Dai et al., 2014)).
When γt = θ

t with θ > 0 such that θλ ∈ (1, 2) ∪ Z+, for
any x ∈ X ,

EDt,ωt

[
|ft+1(x)− f∗(x)|2

]
6 2C2

0 + 2κS2
0

t
,

where

S0 = max

{
‖f∗‖H ,

Q0 +
√
Q2

0 + Z(1 + θλ)2θ2κM2

Z

}
,
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with Z = 2λθ − 1, Q0 =
√

2κ1/2LC0θ, and C0 = 2(κ +
φ)Mθ.

4 FAST DOUBLY STOCHASTIC
KERNEL MACHINES

The O(1/t) convergence rate in Theorem 3 is already opti-
mal as proved in Dai et al. (2014). However, we could still
improve DSG. In in each iteration, DSG is required to eval-
uate f(x) for calculating gradients in each iteration, which
needs to go through ω1, . . . ,ωt to compute φωi(x) in Al-
gorithm 2. For continuous distributions, such as Gaussian
distribution P(ω) for Gaussian kernel, the collision proba-
bility of sampling is zero. After t iterations, we have t dif-
ferentω1, . . . ,ωt for the feature generation. Then the com-
plexity of the tth iteration isO(td), and the total complexity
from iteration 1 to iteration t is O(t2d), which makes DSG
less efficient when t is large.

On the other hand, DSG could be treated as a random coor-
dinate descent (RCD) with mini-batch. In each iteration t,
sampling ωt can be treated as choosing one coordinate to
update. Since the collision probability is zero, it is equiva-
lent to updating a new coordinate in every iteration. From
the perspective of RCD, we could also choose an “old” co-
ordinate to update instead of sampling new ω in certain
iterations. Then we could reduce the number of used coor-
dinates.

In what follows, we will present two algorithms, UDSG
and CDSG, which “utilize” previous coordinates. UDSG
is a nature extension from RCD. Studying its theoretical
analysis gives us deeper insight to design the non-trivial al-
gorithm CDSG, which enjoys the better bound of sample
complexity than UDSG. In some following descriptions,
we will abuse ωi as the coordinate index for convenience.

4.1 UTILIZE WITH UNIFORM SAMPLING

A simple strategy is using empirical distribution to approx-
imate P(ω), which is a widely-used technique in statis-
tics. Assume we already independently sample Ωm =
{ω1, . . . ,ωm} from P(ω), then we could create an em-
pirical distribution P̂m(ω), which is a uniform distribution
on ω1, . . . ,ωm. Sampling from P̂m(ω) is unbiased since
EΩmEω∼P̂m

[ω|Ωm] = Eω∼P(ω). When m is large, we
could expect the empirical distribution P̂m(ω) to be a good
approximation of P(ω). Note that it is similar to typical
RCD algorithm over a finite number of dimensions.

Here we study one simple algorithm for a concise presen-
tation, which periodically samples from P(ω) for G itera-
tions and then sample from the empirical distribution P̂(ω)
for U iterations. The number of random features m af-
ter t iterations is O(Gt/G + U). The proposed algorithm,
doubly stochastic gradients descent with uniform sampling,

which is called UDSG and shown in Algorithm 3. Based
on Assumption 2, the convergence rate of UDSG is shown
in Theorem 4.

Algorithm 3 {αi}mi=1 = UDSG(P(x, y))

m = 0
for i = 1, . . . , t do

Sample (xi, yi) ∼ P(x, y).
f(xi) = Predict(xi, {αj}mj=1).
if mod(i, G+ U) < G then

Sample ωm+1 ∼ P(ω) with seed m+ 1.
αj = (1− γiλ)αj for j = 1, . . . ,m.
αm+1 = −γi`′(f(xi), yi)φωm+1

(xi).
m = m+ 1

else
Sample ωk ∼ P̂m(ω), where 1 ≤ k ≤ m.
αj = (1− γiλ)αj for j = 1, . . . ,m.
αk = αk − γi`′(f(xi), yi)φωk

(xi).
end if

end for

Theorem 4 (Convergence rate of UDSG). When γt = θ
t

with θ > 0 such that θλ ∈ (1, 2) ∪ Z+, for any x ∈ X ,

EDt,ωt

[
|ft+1(x)− f∗(x)|2

]
6 2C2

1 + 2κS2
1

t
,

where

S1 = max

{
‖f∗‖H ,

Q1 +
√
Q2

1 + Z(1 + θλ)2θ2κM2

Z

}
,

with Z = 2λθ − 1, Q1 =
√

2κ1/2LC1θ, and C1 = 2(κ +

φ)Mθ
√

1 + 2U
G+U + 2U2

G(G+U) + 2U(U−1)
Gt

4.1.1 PROOF OF THEOREM 4

We provide a proof sketch here. Our analysis closely fol-
lows Dai et al. (2014) but we need to carefully deal with
several cross-terms as shown in (3) later. Some technical
lemmas are in Appendix.

We decompose the error into two terms,

|ft(x)− f∗(x)|2 ≤ 2|ft(x)− ht(x)|2 + 2κ‖ht − f∗‖2H,

where

ht(·) = Eω[ft(·)] = Eω[
t∑

i=1

aitζωi
(·)] =

t∑

i=1

aitξωi
(·).

Since EDt,ωt

[
‖ht+1 − f∗‖2H

]
6 S2

t , where S is a con-

stant related to EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
as shown

in Dai et al. (2014), the remaining task is to bound
EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
. We define the following

terms to simplify the notations.
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• G = {x|(x− 1) mod (G+ U) < G and 1 ≤ x ≤ t}.

• Gk = {x|x ∈ G and dx/(G+ U)e = k}.

• Uk = {x|x /∈ G, dx/(G+ U)e = k and 1 ≤ x ≤ t}.

• Vi(x) = ait (ζt(x)− ξt(x)).

By definition, we have EDt,ωt

(
|ft+1(x)− ht+1(x)|2

)
=

EDt,ωt

[(∑t
i=1 Vi(x)

)2]
, then

EDt,ωt

[(∑t
i=1 Vi(x)

)2]

= EDt,ωt





∑

G
Vi(x) +

dt/(G+U)e∑

k=1

∑

i∈Uk
Vi(x)




2



≤ EDt,ωt



(∑

G
Vi(x)

)2

+

dt/(G+U)e∑

k=1

(∑

i∈Uk
Vi(x)

)2

+2

dt/(G+U)e∑

k=1

(∑

i∈Uk
Vi(x)

)(∑

G
Vi(x)

)

d t
G+U e−1∑

p=1

d t
G+U e∑

q=p+1


∑

i∈Up
Vi(x)




∑

i∈Uq
Vi(x)




 .

(3)

We complete the proof by bounding each term. For details
please refer to the Appendix.

4.1.2 TOTAL COMPLEXITY

The sample complexity bound in Theorem 4 is clearly
worse than the result in Theorem 3 for DSG. However, we
should take the complexity of single iteration into account
for comparison. After t iterations, the ratio of the number
of used ω between UDSG and DSG is O(G/G+ U).

We suppose Q2
1 in Theorem 4 dominates Z(1 +

θλ)2θ2κM2. Also, we assume S0 > ‖f∗‖H and S1 >
‖f∗‖H in Theorem 3 and Theorem 4, respectively. The ra-
tio between sample complexities of Theorem 3 and Theo-
rem 4 is close to O(1+ 2U

G+U + 2U2

G(G+U) + 2U(U−1)
Gt ). Then

the ratio r between the total complexity of DSG and UDSG
is

r ≥
(

1 + 2U
G+U + 2U2

G(G+U)

)
× G

G+U

=
(

1 + 2U
G+U × G+U

G

)
G

G+U

= G+2U
G+U ,

This result suggests setting U to be zero to minimize the
complexity, which implies DSG is theoretically no worse
than UDSG under certain conditions. However, this pes-
simistic result inspires us to design a better algorithm in
Section 4.2.

4.2 UTILIZE WITH CHECKING

In each iteration t, we could either pick up the coordinate
we have used, or sample a new coordinate from P(ω) to
update. The uniform sampling strategy algorithm, UDSG,
has a worse bound than DSG, which implies updating a
new coordinate ω ∼ P(ω) reduces the objective more than
updating old coordinates in expectation. Therefore, before
updating, we should “check” the old coordinate to ensure
the chosen coordinate ωk is as effective as the newly sam-
pled coordinate ω ∼ P(ω).

We start by investigating the reason that causes UDSG
to be worse than DSG in expectation. We take
the simple case that we sample ω1, . . . ,ωt−1 from
P(ω) as DSG and set ωt = ωk, where 1 ≤
k ≤ t − 1. Then EDt,ωt(|ft+1(x) − ht+1(x)|2) =

EDt,ωt

[(
(
∑t−1
i=1,i6=k Vi(x)) + (Vk(x) + Vt(x))

)2]
. We

abbreviate EDt,ωt(·) as E(·) in the following context for
a succinct representation.

Lemma 5. (Dai et al., 2014)

If ωi and ωj are i.i.d. samples from P(ω),

E
[
(Vi(x) + Vj(x))

2
]

= E
(
Vi(x)2

)
+ E

(
Vj(x)2

)
.

We then have the bound

E
[(∑t

i=1 Vi(x)
)2]

≤
t−1∑

i=1,i6=k
E
(
Vi(x)2

)
+ E

[
(|Vk(x)|+ |Vt(x)|)2

]
.

(4)
In contrast, the bound of DSG is

EDt,ωt



(

t∑

i=1

Vi(x)

)2

 ≤

t∑

i=1

EDt,ωt

(
Vi(x)2

)
. (5)

The cross term EDt,ωt (|Vk(x)||Vt(x)|) from expanding
the quadratic term in (4) causes a worse bound than (5).
The generalization of this simple example is Theorem 4 in
Section 4.1. The cross terms cause a larger constant C1 in
Theorem 4 than C0 in Theorem 3.

Without any further knowledge about Vk(x) and Vt(x), the
upper bound in (4) is unavoidable. Therefore, in iteration t,
we should choose 1 ≤ k ≤ t− 1 such that the upper bound
Ut of E

[
(Vk(x) + Vt(x))

2
]

can be bounded by the bound

of E
(
Vk(x)2

)
+ E

(
Vt(x)2

)
. To be specific, we should

select k such that

Ut ≤ E
[(
akt `
′(fk(xk), yk)

)2
+
(
att`
′(ft(xt), yt)

)2]
(κ+φ)2.

(6)

For convenience, we let gi = `′(fi(xi), yi) and
Φx(ωi,xk) = φωi

(xk)φωk
(x) − k(xk,x). Expanding

471



Vk(x) and Vt(x) results the upper bound Ut as

E
[
(Vk(x) + Vt(x))

2
]

= E
[(
akt gkΦx(ωk,xk) + attgtΦx(ωt,xt)+

attgtΦx(ωk,xk)− attgtΦx(ωk,xk))
2
]

≤ 2E
[(
akt gk + attgt

)2]
(κ+ φ)2

+2
(
(attM)2

)
E
[
(Φx(ωk,xt)− Φx(ωk,xk))

2
]
.

(7)
Note that we suppose ωt = ωk.

If x1 and x2 are i.i.d. samples from P(x),
then E

(
(x1 − x2)2

)
= 2Var(x). Let σ2 =

Eωk
[Vary (Φx(ωk, y))] and βkt = akt gk. Incorporat-

ing (7) into (6) with the above fact of variance results the
selection criterion as choosing ωk such that

2E
[
(βkt + attgt)

2
]

(κ+ φ)2 + 2 (attMσ(κ+ φ))
2

≤ E
[
(βkt )2 + (attgt)

2
]

(κ+ φ)2.
(8)

4.2.1 MINI-BATCH AND EXPECTED LINE
SEARCH

In (8), smaller attMσ(κ + φ) makes it easier to find an
ωk which satisfies (8). Reducing attMσ(κ + φ) comes
for free by using the mini-batch extension of stochastic
gradient descent. If the batch size is B, the variance of
1
B

∑B
i=1 Φxi

(ωk, y) is 1
BVary (Φx(ωk, y)).

Also, instead of setting att = −γt, we could further do line-
search in expectation for a steeper descent with a larger
step size. Assume the step size is η, and we want to
keep the error upper bounded by DSG. Therefore, given
ω1, . . . ,ωt−1, combining with the mini-batch extension,
We find the largest step size η < −γt, such that

2(βkt + ηgt)
2 +

2 (ηMσ)
2

B2
≤ (βkt )2 + (attgt)

2. (9)

The optimization problem (9) is a quadratic inequality,
which can be solved with the analytical solution. We then
choose ωk with the max step size |ηk| to update. We call
the algorithm as “doubly stochastic gradient descent with
checking” (CDSG), which is shown in Algorithm 4. For
simplicity, we show the case when B = 1 in Algorithm 4,
but one can extend it to general B > 1 cases.

Convergence rate of CDSG. The convergence rate of
CDSG is exactly the same as Theorem 3. We omit the proof
in the Appendix.

5 EXPERIMENT

In this section, we first study medium-scale data, which
allows us to do thorough comparisons to understand the

Algorithm 4 {αi}mi=1 = CDSG(P(x, y))

m = 0
for i = 1, . . . , t do

Sample (xi, yi) ∼ P(x, y).
f(xi) = Predict(xi, {αj}mj=1).
Compute step sizes η1, . . . , ηm via (9), and suppose
|ηk| = argmaxj |ηj |.
if |ηj | ≤ γt then
αj = (1− γiλ)αj for j = 1, . . . ,m.
αm+1 = −γi`′(f(xi), yi)φωm+1

(xi).
βj = (1− γiλ)βj for j = 1, . . . ,m.
βm+1 = −γi`′(f(xi), yi).
m = m+ 1

else
αj = (1− ηkλ)αj for j = 1, . . . ,m.
αk = αk − ηk`′(f(xi), yi)φωk

(xi).
βj = (1− ηkλ)αj for j = 1, . . . ,m.
βk = αk − ηk`′(f(xi), yi).

end if
end for

Dataset # train # test # classes
CIFAR-10 60K 10K 10

Epsilon 0.4M 0.1M 2
Year 0.46M 51K R

MNIST-8M 8.1 M 10K 10
ImageNet 2012 1.3 M 0.1M 1000

Table 1: The dataset information for experiments, where
the label of Year is real number.

trade-off between different algorithms. We then also show
the results on the large-scale datasets. Last, we compare
DSG-based algorithms with deep neural nets. The details
of the datasets are shown in Table 1.

General Setting In all experiments, we use Gaussian
kernel. The kernel bandwidth is obtained by the median
trick (Smola, 2004). For UDSG, we set G = 1 and U = 1.
The other parameters will be specified later.

5.1 MEDIUM-SCALE DATA

We observed that the algorithms tend to overfit the
medium-scale data without carefully tunning regularization
terms. In this subsection, we only compare the training ob-
jectives, which is a natural criterion for optimization prob-
lems.

Setting for Medium-Scale Data For the CIFAR-10, we
use raw pixels as input. Also, we conduct PCA to reduce
the number of dimension of every datasets to be no more
than 100. The parameters for DSG-based algorithms are
shown in Table 2, where the feature block F means we
sample F random features in each iteration. For non-DSG-
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Dataset Batch Size B Feature Block F λ
CIFAR10 4, 096 256 10−5

Epsilon 10, 000 512 10−5

Year 10, 000 512 10−5

Table 2: Parameters for DSG-based algorithms on
medium-scale datasets.

based algorithms, which pre-generate random features for
the data points, we set the number of random features as
4F .

Compare with Other Approximation There are several
competitors that can be considered, such as Kivinen et al.
(2004), kernel SDCA (Shalev-Shwartz and Zhang, 2013),
and several stochastic optimization algorithms with random
feature or Nyström method (Shalev-Shwartz and Zhang,
2013; Johnson and Zhang, 2013; Nesterov, 2012). Here we
only choose SVRG (Johnson and Zhang, 2013) with ran-
dom features, which has been shown to be one of the best
among the above algorithms.

We compare DSG, UDSG, CDSG and SVRG (Johnson
and Zhang, 2013) with multi-class kernel logistic regres-
sion and kernel ridge regression. The results are shown in
Figure 1.

We first look at Figure 1(a), Figure 1(b) and Figure 1(c).
Since we only use 4F random features for SVRG, is not
surprising that SVRG with limited random features con-
verges to unsatisfactory results at the early stage. Without
the enough number of the random features, the bottleneck
of the learning is the approximation error instead of the op-
timization algorithms. Although we can use more features
than 4F to achieve better performance for medium-scale
data, it takes longer time and more memory for training.
This issue becomes more critical in the large-scale applica-
tions. The memory usage can even make this approach pro-
hibitive to large-scale problems. Note that we do not show
SVRG in Figure 1(d), Figure 1(e) and Figure 1(f) since it
converges out of the range.

Second, we compare DSG-based algorithms. In Fig-
ure 1(b), UDSG performs worse than DSG, which confirms
the bound of Theorem 4 and the worst-case discussion of
uniform sampling in Section 4.2. However, we observe that
the worst case does not occur often in practice. Although
the analysis in Section 4.1.2 is pessimistic, UDSG gener-
ally outperforms DSG in Figure 1. On the other hand, the
proposed CDSG outperforms both DSG and UDSG in all
datasets, which justifies the correctness of the validity of
the proposed checking rule and expected line search in Sec-
tion 4.2.

Compare with Exact Optimization We compare DSG-
based algorithms with LIBSVM (Chang and Lin, 2011),
which is the state-of-the-art solver for kernel learning by

using kernel matrices. We consider kernel SVM in this
comparison since there is no kernel logistic regression im-
plementation in LIBSVM. We report the performance of
each algorithm when LIBSVM converges. CIFAR-10 and
Epsilon take LIBSVM 583 and 8457 seconds to converge,
respectively. The results are shown in Table 3.

LIBSVM DSG UDSG CDSG
CIFAR-10 0.386 0.407 0.402 0.402

Epsilon 0.143 0.145 0.146 0.145

Table 3: The training error of each algorithm at the time
when LIBSVM converges.

In these experiments, to achieve high-precision results, the
exact optimization is always preferable in practice if we
have enough memory. We observe that in both CIFAR-10
and Epsilon, DSG-based algorithms achieve the satisfac-
tory performance quickly, but they take longer time to con-
verge to the precise results. For example, all DSG-based al-
gorithms can achieve 0.15 error of Epsilon within 150 sec-
onds. Especially, CDSG can achieve 0.147. However, they
take more than 10, 000 seconds to get the error lower than
0.144. We address this issue to the variance from doubly
stochastic methodology, which requires the learning rate to
be small and make the learning slow in the later iterations
as the typical SGD algorithms (Johnson and Zhang, 2013;
Shalev-Shwartz and Zhang, 2013).

5.2 LARGE-SCALE DATA

We study MNIST-8M digit recognition dataset, which con-
tains 8.1 million training data and 10 classes. We re-
duce the raw pixel to 100 dimensions as feature and set
B = 20, 000, F = 4096 and λ = 10−6. LIBSVM cannot
run on this dataset due to the memory limitation, and we
can only load 500 pre-generated random features into our
memory, which results in unsatisfactory result (0.05 train-
ing and testing error) with any algorithms, such as SVRG.
Therefore, we focus on the comparison on DSG-based al-
gorithms. The result is shown in Figure 21.

As one can see from Figure 2, CDSG consistently outper-
forms the other two algorithms in both training objectives
and testing error as well as under different loss functions.
The results justify the correctness and usefulness of the pro-
posed CDSG again. In contrast, UDSG does not perform
as well as Figure 1, which confirms the worst case analysis
in Theorem 4.

5.3 STUDY WITH DEEP NEURAL NET

We follow Dai et al. (2014) to compare DSG-based al-
gorithms with deep neural nets on image classification

1Compared with multi-class logistic regression, the training
objective of one-vs-one kernel SVM is less meaningful, so we do
not compare it.
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Figure 1: Training objective of different algorithms on each datasets.

Data Batch Size b Feature Block r λ
CIFAR-10 32768 512 0.0005

MNIST-8M 16384 512 0.0005
ImageNet 16384 128 0.0005

Table 4: The parameters for DSG-based algorithms.

tasks. Besides CIFAR-10 and MNIST-8M, we also study
ImageNet-2012, which is one of the most challenging im-
age classification data currently. Since we do not aim to
compare the representation learning ability, we use the pre-
trained features provided by Dai et al. (2014). The detailed
information of the used neural-net architectures (LeCun
et al., 1998; Krizhevsky et al., 2012) can be found in the
Appendix.

We study the following algorithms and the parameters are
shown in Table 4.

• Joint: Put two fully connected layers at the top of the
neural net for classification and train these two layers
and the pre-trained layers “jointly”.

• Fixed: Put two fully connected layers at the top of the
neural net for classification and only train these two
layers and without modifying pre-trained layers.

• DSG-based: Apply DSG algorithms on the pre-
trained features.

DSG UDSG CDSG Fixed Joint
CIFAR-10 16.0 15.9 15.8 18.0 19.1

MNIST-8M 6.1 5.9 5.3 7.1 8.5
ImageNet 45.1 44.9 44.7 48.2 58.6

Table 5: The testing error (%) of each dataset when CDSG
converges.

DSG UDSG CDSG Fixed Joint
CIFAR-10 15.8 15.9 15.8 15.8 15.9

MNIST-8M 5.3 5.4 5.3 7.1 6.2
ImageNet 44.9 44.8 44.7 46.2 42.4

Table 6: The converged results (%) of all algorithms for
each dataset.

Since the joint-trained neural net takes much more time
than other algorithms, we report the results when CDSG
converges in Table 5. The result shows that DSG-based al-
gorithms converge faster than deep neural nets, and CDSG
is the best in this family. For example, CDSG converges
to 44.7% testing error on ImageNet. At the same time, the
joint-trained neural net only achieves 58.6% testing error.

The converged results of all algorithms are shown in Ta-
ble 6. In both CIFAR-10 and MNIST-8M, the CDSG al-
gorithm is better than neural nets, which suggests proposed
CDSG is not only efficient but also effective in some tasks.
However, in ImageNet, the joint-trained neural net is still
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Figure 2: Training objective of logistic regression on MNIST-8M.

the state-of-art by using more than twice of the training
time needed for CDSG. We address the performance gap
to the unsatisfactory representativeness of the pre-trained
features, because the time for learning pre-trained features
provided by Dai et al. (2014) only takes less than 10% of
the training time. We could expect better pre-trained fea-
tures could result in better performance of CDSG, but it
takes more time for getting pre-trained features. Also, if
we only have limited training time budget, such as the fine-
tunning step in training deep neural networks, CDSG en-
joys the advantage of the fast training to achieve satisfac-
tory results quickly as shown in Table 5.

6 CONCLUSION

In this paper, we extended the DSG algorithm (Dai et al.,
2014) to be more efficient by utilizing previous coordi-
nates. We studied two algorithms including UDSG and
CDSG. UDSG samples old coordinates with uniform sam-
pling, which results in a worse convergence bound than the
original DSG, though it outperforms DSG usually in prac-
tice. We also propose the other variant, CDSG, which se-
lects previous coordinates in a more conservative way by
checking the upper bound of the expected error. In the the-
oretical side, CDSG enjoys the same bound as DSG; in the
practical side, CDSG is demonstrated to have better perfor-
mance than DSG and UDSG consistently in all datasets we
studied.

From our empirical study, we make the following sugges-
tions.

Medium-Scale Data: If the size of memory permits and
we want to achieve high-precision result, the solver with
exact optimization by computing kernel matrices is still
preferable, such as LIBSVM. However, they take longer
time than the time needed for CDSG to achieve satisfac-
tory performance (less than 5 minutes in all datasets we
studied). For some medium-scale data we studied, the ex-
act optimization solver takes hours to converge.

Large-Scale Data: For large-scale problems, such as Im-
ageNet, the proposed CDSG algorithm enjoys several ad-
vantages. First, it is memory efficient, so we are allowed to
use a large number of random features for kernel approx-
imation, Second, it is computationally efficient and much
faster than the original DSG algorithm. Under the situation
with limited time budget, CDSG can quickly achieve satis-
factory performance. However, if we want to achieve the
state-of-the-art performance as deep neural nets, the pro-
posed kernel approximation needs better feature represen-
tation as input to achieve better performance. Otherwise,
the jointly-trained neural net may be preferable. The other
alternative is combining the recent development of unsu-
pervised training of deep neural networks (Doersch et al.,
2015) with CDSG, which could possibly give us competi-
tive performance with jointly-trained neural nets.

References
Bach, F. R. (2015). On the equivalence between quadrature

rules and random features. CoRR.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on In-
telligent Systems and Technology.

Chen, X., Yang, H., King, I., and Lyu, M. R. (2015).
Training-efficient feature map for shift-invariant kernels.
In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence.

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M., and
Song, L. (2014). Scalable kernel methods via doubly
stochastic gradients. In Advances in Neural Information
Processing Systems.

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsuper-
vised visual representation learning by context predic-
tion. In International Conference on Computer Vision.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic

475



gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems.

Kivinen, J., Smola, A. J., and Williamson, R. C. (2004).
Online Learning with Kernels. IEEE Transactions on
Signal Processing.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems.

Le, Q. V., Sarlós, T., and Smola, A. J. (2013). Fastfood -
computing hilbert space expansions in loglinear time. In
Proceedings of the International Conference on Machine
Learning.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. In Proceedings of the IEEE.

Nesterov, Y. (2012). Efficiency of coordinate descent meth-
ods on huge-scale optimization problems. SIAM Journal
on Optimization.

Rahimi, A. and Recht, B. (2007). Random features for
large-scale kernel machines. In NIPS.

Rahimi, A. and Recht, B. (2008). Weighted sums of ran-
dom kitchen sinks: Replacing minimization with ran-
domization in learning. In Advances in Neural Infor-
mation Processing Systems.

Shalev-Shwartz, S. and Zhang, T. (2013). Stochastic dual
coordinate ascent methods for regularized loss. Journal
of Machine Learning Research.

Smola, A. J. (2004). An introduction to machine learning
with kernels lecture 5.

Sriperumbudur, B. K. and Szabó, Z. (2015). Optimal rates
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Abstract

An iterative procedure introduced in MacKay’s
evidence framework is often used for estimating
the hyper-parameter in empirical Bayes. Despite
its effectiveness, the procedure has stayed pri-
marily as a heuristic to date. This paper formally
investigates the mathematical nature of this pro-
cedure and justifies it as a well-principled algo-
rithm framework. This framework, which we call
the MacKay algorithm, is shown to be closely re-
lated to the EM algorithm under certain Gaussian
assumption.

1 INTRODUCTION

As a bridge between full Bayesian models and com-
pletely frequentist models, the empirical Bayesian
method (also known as empirical Bayes in short,
or type-II maximum likelihood) has been applied to
many learning, inference or prediction applications
(see. e.g. [Schäfer and Strimmer, 2005, Efron, 2012,
Heskes, 2000, Yang et al., 2004, Frost and Savarino, 1986,
DuMouchel and Pregibon, 2001]). The generic setup
of empirical Bayes consists the observed data D, the
model parameter z that parametrizes the data likelihood
function p(D|z), and the prior distribution p(z) of the
model parameter. In the parametric version of empirical
Bayes (Figure 1), the prior distribution is parameterized
by certain hyper-parameter α, namely, as p(z|α), and
the philosophy of empirical Bayes is to estimate the
hyper-parameter α from the observed data D.

As empirical Bayes treats the model parameter z as
a latent random variable, the estimation of the hyper-

∗This work is supported partly by China 973 program (No.
2014CB340305), by the National Natural Science Foundation
of China (No. 61300070, 61421003), and by the Beijing Ad-
vanced Innovation Center for Big Data and Brain Computing.
Richong Zhang is the corresponding author of this work (email:
zhangrc@act.buaa.edu.cn)

α z D

Figure 1: The generic model of empirical Bayesian method

parameter α naturally fits in the framework of the EM
algorithm [Dempster et al., 1977, Carlin and Louis, 1997],
and the EM-based solutions have been developed to
solve this problem in various application domains (see,
e.g., [Inoue and Tanaka, 2001, Clyde and George, 2000]).
Among other approaches to this problem, a tech-
nique introduced by MacKay is also widely adopted in
practice[Bishop, 1999, Tipping, 2001, Tipping et al., 2003,
Wipf and Nagarajan, 2008, Tan and Févotte, 2009].

In his “evidence framework” [MacKay, 1992b,
MacKay and Neal, 1994, MacKay, 1995], MacKay
considers a hierarchical Bayesian model similar to that in
Figure 1 but with one distinction: an additional hyper-prior
p(α|H), which depends on the choice H of model, is
placed on the hyper-parameter α. In this setting, the
evidence framework addresses three levels of inference
problems: 1) given the hyper-parameter α, inferring z, 2)
given the model H, inferring α, and 3) evaluating model
H. MacKay shows [MacKay, 1995] that the three levels
of inference may be combined for prediction and for auto-
matic shrinkage of parameter spaces (namely, Automatic
Relevance Determination, or ARD) for neural network
regression models. The second-level inference in the
evidence framework is closely related to empirical Bayes.
In particular, when a flat hyper-prior p(α|H) is placed on
α, the objective of the second-level inference coincides
with the objective of empirical Bayes. For the second-level
inference, MacKay introduces a procedure that alternates
between inferring z given α (first-level inference) and
inferring α given z. This procedure, although well appre-
ciated in some classical papers (e.g., [Bishop, 1999])
and highly cited in ARD related literature (e.g.,
[Bishop, 1999, Tipping, 2001, Tan and Févotte, 2009]), is
called the MacKay algorithm in this paper.
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Since its birth, the MacKay algorithm has been applied
to various empirical Bayes models and its performance
is often compared with the EM algorithm. For example,
the MacKay algorithm is applied to the Bayesian PCA
model [Bishop, 1999] and a non-negative matrix factoriza-
tion model [Tan and Févotte, 2009] for automated shrink-
age of the latent-space dimensions. In [Tipping, 2001], the
MacKay algorithm is applied to SVM regression models
for promoting sparsity, and it is shown to converge faster
than the EM algorithm.

Despite its effectiveness, the mathematical principle and
optimization objective of the MacKay algorithm are how-
ever not well characterized in the literature to date. In
MacKay’s original exposition [MacKay and Neal, 1994,
MacKay, 1995], the second-level inference task is clearly
stated, but the justification of the iterative procedure (i.e.,
the MacKay algorithm) is mainly heuristic. In addi-
tion, since the MacKay’s algorithm is often implemented
with a particular update procedure, known as the fixed-
point iteration [Solomon, 2015, Hyvärinen, 1999], or the
“MacKay update”, the boundary between the framework
of the MacKay algorithm and MacKay’s fixed-point up-
date rule is often blurred in the literature. This makes the
MacKay algorithm often understood in a narrow sense as
this specific fixed-point update rule, rather than as an algo-
rithm framework.

In this paper, under a generic formulation of the empirical
Bayes model (Figure 1), we re-formulate the MacKay algo-
rithm as a coordinate-ascent procedure for solving a well-
defined optimization problem. This optimization problem
shares some similarity with the optimization problem un-
derlying the EM algorithm: its objective function is a lower
bound of the true objective function defining the optimiza-
tion objective of empirical Bayes. Also similar to the EM
algorithm, this lower bound is not “far” from the true ob-
jective function and one of the two update steps in the
coordinate-ascent procedure guarantees to make the lower
bound meet the true objective function. This understand-
ing justifies the MacKay algorithm (whether or not imple-
mented with the MacKay update) as a well-principled al-
gorithm framework, juxtaposed on equal footing with the
EM framework.

Under a specific linear regression model, it has been ob-
served that the MacKay update and the EM algorithm are
closely reated [Murphy, 2012]. It is then curious to investi-
gate the relationship between the two algorithms in a more
general setting. To that end, we show that as long as the the
posterior distribution p(z|D,α) is a Gaussian distribution,
the objective function for the MacKay algorithm is sim-
ply a restriction of the EM objective function where two
of the three variables are restricted on a curve. Under this
Gaussian condition, we show that the MacKay optimiza-
tion problem is a relaxation of the original optimization
problem in empirical Bayes, and that the EM optimization

problem is a relaxation of the MacKay optimization prob-
lem. In addition, the three problems attain their optimum
at the same configuration of the hyper-parameter α. These
understandings then help to explain why the MacKay algo-
rithm converge faster than the EM algorithm.

The objective of this paper is to rigorously formulate the
MacKay algorithm and to investigate its connection to the
EM algorithm. We have made an effort to be pedagogical
in our presentation. In particular, we use a linear regression
model and the Bayesian PCA model as running examples
throughout the paper.

2 SETUP

The generic model for empirical Bayes is given in Figure 1,
where D is the observed data, z is the model parameter, and
α is the hyper-parameter. We note that both z and α can
be a scalar, a vector, a matrix or of an arbitrary form. The
model is specified by the likelihood function p(D|z) and
the prior distribution p(z|α). The objective of empirical
Bayes is then to estimate the hyper-parameter α from the
data D.

Let

l(α) := log p(D|α) = log

∫
p(D|z)p(z|α)dz (1)

be the log-marginal likelihood or the “log-evidence”
[MacKay, 1992b] of the hyper-parameter α . Then the es-
timation of α can be naturally formulated as solving the
following optimization problem.

Opt-I
Find α that maximizes l(α).

We now use the examples of linear regression and Bayesian
PCA[Bishop, 1999] to illustrate this. Throughout the pa-
per, we will use N (x;µ, Λ) to denote the Gaussian density
function with variable x, mean µ and covariance matrix Λ,
and we will use Id to denote the d×d identity matrix, Tr(·)
to denote the trace operator, Det(·) to denote the determi-
nant operator, ∥·∥ to denote L2 norm, and Eq [·] to denote
expectation under distribution q.

Linear Regression Example–1 Let D := {(x(i), y(i)) :
i = 1, 2, . . . , n} be the observed data, where each x(i) is
a vector in Rd, and each y(i) is a scalar in R. The depen-
dency of y(i) on x(i) is modelled as

y(i) = zT x(i) + ϵ(i).

Here ϵ(i) is a zero-mean Gaussian noise with variance σ2,
and z is the model parameter, which is modelled as a d-
dimensional spherical Gaussian variable with zero mean
and variance 1/α. For simplicity, we assume that the pa-
rameter σ2 is known and the objective of empirical Bayes
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is to estimate the hyper-parameter α. Then the objective
function in Opt-I is:

l(α)=log

∫
N (z;0,

1

α
Id)

n∏

i=1

N (y(i); z
Tx(i),σ

2)dz

Bayesian PCA Example–1 Following [Bishop, 1999],
let D := {t(i) : i = 1, 2, . . . , n} be the observed data,
where each t(i) is a vector in Rm. Each observed vector
t(i) depends on a latent variable x(i) ∈ Rd via

t(i) = zx(i) + ϵ(i).

Here x(i) is a zero-mean Gaussian variable with covari-
ance Id, ϵ(i) is a spherical Gaussian noise with zero mean
and known variance σ2, and parameter z ∈ Rm×d (d <
m) is modelled as a random matrix whose kth column
zk is drawn from a spherical Gaussian distribution with
zero mean and variance 1/αk. Let α := {αk : k =
1, 2, . . . , d}. Then α is the hyper-parameter on z and Opt-I
has the following objective function:

l(α) = log

(∫ d∏

k=1

N (zk; 0,
1

αk
Im)

n∏

i=1

∫
N (x(i); 0, Id)N (t(i); zx(i),σ

2Im)dx(i)

)
dz

The optimization problem Opt-I can sometimes be solved
easily, for instance, in the above linear regression set-
ting. In practice, however, this problem is usually diffi-
cult and requires special algorithmic techniques. The above
Bayesian PCA setting is one such example.

The EM approach to Opt-I is well-known. In the remain-
der of this paper, we develop the MacKay algorithm for this
problem. To compare and relate to EM, we also present the
EM algorithm in parallel. The above linear regression and
Bayesian PCA settings will be carried along our develop-
ment as illustrative examples.

3 THE TWO ALGORITHMS

In this section, we will show that both the EM algorithm
and the MacKay algorithm can be formulated as optimizing
a lower bound of the objective function l(α) via coordinate
ascent. While this is well known for the EM algorithm, it
has been quite obscure for the MacKay algorithm.

3.1 THE EM ALGORITHM

The Expectation-Maximization (EM) algorithm
[Dempster et al., 1977] is a classical method for max-
imizing the log-likelihood function or log-posterior density

function in which certain latent variables have been
integrated over. When applied to the optimization problem
Opt-I, the EM algorithm implicitly constructs a lower
bound FEM of the objective function l(α).

FEM(q, α) := Eq

[
log

p(D|z)p(z|α)

q(z)

]

=

∫
q(z) log

p(D|z)p(z|α)

q(z)
dz

(2)

where q(·) is an arbitrary probability distribution on the
space of z. By the Jensen’s Inequality[Jensen, 1906], the
follow result is well-known in the literature of the EM al-
gorithm [Dempster et al., 1977].

Lemma 1. FEM(q,α) ≤ l(α), where the equality is
achieved if and only if q(z) is the posterior distribution
p(z|D, α).

Instead of optimizing the original objective function l(α),
we now define an alternative optimization problem.

OptEM

Find α and a distribution q that maximize FEM(q, α).

The EM algorithm is then the coordinate ascent solver for
OptEM. More precisely, the update rule at the tth iteration
of the coordinate ascent is given below.

EM Algorithm

E-Step:

q(t) := arg maxq FEM(q,α(t))
= p(z|D, α(t))

M-Step:

α(t+1) := arg maxα FEM(q(t), α)
= arg maxα Eq(t) [log p(z|α)]

We note that by Lemma 1, at the end of E-Step,

FEM(q(t), α(t)) = l(α(t)). (3)

This gives rise to the following lemma
[Dempster et al., 1977].

Lemma 2. The iteration of the EM algorithm continuously
increases the log-evidence function l(α) and therefore is
guaranteed to converge.

Linear Regression Example–2 For the linear regres-
sion model, let [x(1), x(2), . . . , x(n)] be denoted by a matrix
X ∈ Rd×n and [y(1), y(2), . . . , y(n)]

T denoted by a vector
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Y ∈ Rn. The objective function (2) is

FEM(q, α) =
1

σ2

n∑

i=1

y(i)x
T
(i)Eq[z]

− 1

2σ2
Eq

[
zT

(
n∑

i=1

x(i)x
T
(i) + ασ2Id

)
z

]

− Eq [log q(z)] +
n + d

2
log 2π +

n

2
log σ2

+
d

2
log α − 1

2σ2

n∑

i=1

y2
(i)

It is easy to verify that the posterior distribution of z is also
Gaussian and the E-Step update becomes

q(t)(z) = N
(
z; µLR(α(t)),KLR(α(t))

)
(4)

where

µLR(α) :=
1

σ2

(
1

σ2
XXT + αId

)−1

XY, (5)

and

KLR(α) :=

(
1

σ2
XXT + αId

)−1

. (6)

For the M-Step update, noting that

FEM(q(t), α) = −α

2

∥∥∥µLR(α(t))
∥∥∥

2

− α

2
Tr
(
KLR(α(t))

)
+

d

2
log α + const,

it is possible to express the maximizing α for this function
directly in terms of α(t) as:

α(t+1) =
d∥∥µLR(α(t))

∥∥2
+Tr

(
KLR(α(t))

) (7)

That is, the updates in E-Step and M-Step can be combined
into the single update equation (7).

Bayesian PCA Example–2 For the BPCA model, the
objective function (2) is

FEM(q, α) = −n

2
Eq

[
log Det(zzT + σ2Im)

]

− 1

2

n∑

i=1

Eq

[
tT(i)(zz

T + σ2Im)−1t(i)

]

− 1

2

d∑

k=1

αkEq

[
∥zk∥2

]
− Eq [log q(z)]

+
d∑

k=1

m

2
log αk − dn + dm

2
log 2π.

The M-Step update is then

α
(t+1)
k =

m

Eq(t)

[
∥zk∥2

] . (8)

However, the E-Step update of q(t) can not be expressed in
explicit forms and one usually relies on various approx-
imation techniques. For example, a sampling approach
[Neal, 1993] may be used for this purpose. Later in this
paper, we will discuss the approach that approximates the
posterior as a Gaussian.

3.2 MACKAY ALGORITHM

In [MacKay, 1992a, MacKay, 1992c, MacKay, 1992b,
MacKay, 1995], MacKay presented the influential evi-
dence framework that addresses inference as three lev-
els. A heuristic iterative procedure is introduced for the
second-level inference, namely, for inferring the hyper-
parameter. Here, we re-formulate the this procedure as
a well-principled algorithm framework, and call it the
MacKay algorithm.

To begin, note that the objective function l(α) can be ex-
pressed as

l(α) = log p(D, z|α) − log p(z|D, α),

for any z (with p(z|D, α) non-zero). Define

FMacKay(z,α) :=log p(D, z|α)−max
z′

log p(z′|D,α). (9)

The following lemma is easy to verify.

Lemma 3. FMacKay(z, α) ≤ l(α), where the equality is
achieved if and only if z = arg maxz log p(D, z|α).

We now introduce another optimization problem.

OptMacKay

Find α and z that maximize FMacKay(z,α).

The MacKay algorithm is then defined as the following co-
ordinate ascent procedure for optimizing FMacKay.

MacKay Algorithm

z-Step:

z(t) := arg max
z

FMacKay(z,α
(t))

= arg max
z

log p(D, z|α(t))

α-Step:

α(t+1) := arg max
α

FMacKay(z
(t), α).

At the end of z-Step, by Lemma 3,

FMacKay(z
(t),α(t)) = l(α(t)). (10)

This property clearly parallels Equation (3) of the EM algo-
rithm. That is, although the MacKay algorithm maximizes

480



the lower bound FMacKay of the true objective function
l(α), the lower bound FMacKay is in fact “not far” below
l(α) and at the end of each z-Step update, the lower-bound
meets l(α). Then by the coordinate-ascent nature of the
MacKay algorithm, we have the following lemma, parallel
to Lemma 2 of the EM algorithm.

Lemma 4. The iteration of the MacKay algorithm contin-
uously increases the log-evidence function l(α) and there-
fore is guaranteed to converge.

In the MacKay algorithm, it is worth noting that the up-
date in the α-Step is usually performed with a “fixed-point
iteration” procedure [Solomon, 2015, MacKay, 1992a,
Bishop, 1999, Murphy, 2012], which we describe next for
self-containedness.

Fixed-Point Iteration Suppose that the equation

∂FMacKay(z, α)/∂α = 0

can be reduced to the form α = h(α, z). The fixed-point
iteration approach for the α-Step update in the MacKay al-
gorithm is the following update rule.

α(t+1) = h(α(t), z(t)).

Linear Regression Example–3 In the linear regression
model, the lower bound FMacKay is

FMacKay(z, α) =
1

σ2

n∑

i=1

y(i)x
T
(i)z − 1

2σ2

n∑

i=1

y2
(i)

− 1

2σ2
zT

(
n∑

i=1

x(i)x
T
(i) + ασ2Id

)
z

+
n + d

2
log 2π +

n

2
log σ2 +

d

2
log α

+
1

2
log Det (2πKLR(α))

(11)

The z-Step turns out to be

z(t) = µLR(α(t)).

Note

∂FMacKay(z,α)

∂α
=

d

2α
− 1

2
∥z∥2 − 1

2
Tr (KLR(α)) .

When setting ∂FMacKay(z,α)
∂α = 0, we obtain

α =
d − αTr (KLR(α))

∥z∥2

This gives rise to the fixed-point iteration of the α-Step:

α(t+1) =
d − α(t)Tr

(
KLR(α(t))

)
∥∥z(t)

∥∥2 .

Bayesian PCA Example–3 For the BPCA model, the
objective function FMacKay is

FMacKay(z, α) = −n

2
log Det

(
zzT + σ2Im

)

− 1

2

n∑

i=1

tT(i)(zz
T + σ2Im)−1t(i)

− 1

2

d∑

k=1

αk ∥zk∥2 − max
z′

p(z′|D, α)

+

d∑

k=1

m

2
log αk − dn + dm

2
log 2π

The z-Step and α-Step updates then become

z(t) =arg max
z

p(z|D, α(t))

α(t+1) =arg max
α

[
−1

2

d∑

k=1

αk

∥∥∥z(t)
k

∥∥∥
2

− max
z′

p(z′|D, α) +
d∑

k=1

m

2
log αk

]

Since in general there does not exist closed-form solution
for the z-Step update, the two update equations can not be
further expressed. In practice, a Gaussian approximation
is applied to the posterior function p(z|D, α(t)) in order to
derive these update equations (see next section).

It is perhaps worth noting that the z-step update of the
MacKay algorithm resembles the E-step update of an ap-
proximate version of the EM algorithm, known as “Hard
EM” (or “Viterbi-EM” in the context of Hidden Markov
Models)[Allahverdyan and Galstyan, 2011]. However, the
M-step of Hard EM/Viterbi-EM is different from the α-
step of the MacKay algorithm, due to the fact the OptEM
and OptMacKay have different objective functions. It is
not clear whether there is a more direct connection between
Hard EM and the MacKay algorithm bypassing the generic
EM algorithm, although we suspect that the answer is “no”.

4 GAUSSIAN APPROXIMATION

As seen above, in both the EM algorithm and the MacKay
algorithm, it is desirable to compute the posterior distribu-
tion of model parameter, namely, p(z|D,α). In the case
of EM, this is for updating q in the E-Step and in the case
of MacKay, this is for updating z in the z-Step. For some
models, such Bayesian PCA, it is difficult to carry out ex-
plicit computation of the posterior. A commonly used tech-
nique is to approximate the posterior as a Gaussian density
function, namely,

p(z|D, α) ≈ N (z; µ,K), for some µ, K. (12)
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Clearly, the mean vector µ and the covariance matrix K of
the Gaussian density depend on the hyper-parameter α and
will be denoted by µ(α) and K(α) respectively.

When p(z|D, α) is a continuous function of z, a common
technique for obtain such an approximation (12) is the fol-
lowing [MacKay, 1995].

Let ẑ maximizes p(z|D, α). By Taylor-expanding
log p(z|D, α) at z = ẑ, up to the second-order terms, it
is easy to see that

log p(z|D, α) ≈ log p (ẑ|D, α)+
1

2
(z − ẑ)

T
H(α) (z − ẑ)

where H(α) denotes the Hessian matrix of function
log p(z|D, α) at z = ẑ. This gives the customary approxi-
mation of p(z|D, α) as [MacKay, 1995]

p(z|D,α) ≈ N
(
z; ẑ, −H(α)−1

)

Then µ(α) and K(α) in the Gaussian approximation (12)
can be taken as

µ(α) = ẑ, K(α) = −H(α)−1. (13)

We note that in (12), the approximation is sometimes accu-
rate, namely, that the strict equality is satisfied. In such
cases, the Gaussian approximation as stated in (12) and
(13) in fact holds precisely.

Linear Regression Example–4 As seen in (4), (5) and
(6), the posterior distribution p(z|D, α) is indeed a Gaus-
sian density function. That is, the Gaussian approxima-
tion (12) holds with equality, where µ(α) = µLR(α) and
K(α) = KLR(α) (defined in (5) and (6) respectively).

Bayesian PCA Example–4 Let Z be the vector rep-
resentation of matrix z, namely, Z is a length-md vec-
tor obtained by stacking columns of the matrix z. That
is, Z := (zT

1 , zT
2 , . . . , zT

d )T . Let Ẑ denote the maximiz-
ing configuration for function p(Z|D, α), and similarly let
H(α) denote the Hessian of log p(Z|D, α) at Z = Ẑ. The
Gaussian approximation (12) then becomes

p(Z|D,α)≈N (Z; µBPCA(α),KBPCA(α)) (14)

where

µBPCA(α) := Ẑ, KBPCA(α) := −H(α)−1.

We note that in this case, (12) is only an approximation.
In addition, since Ẑ and H(α)−1 are difficult to compute
analytically, numerical solutions are usually sought.

In the remainder of this section, we assume that (12) holds
with equality and further investigate the optimization prob-
lems in the EM and MacKay algorithms.

4.1 EM

Recall that with the EM algorithm, the objective function
in the optimization problem is FEM in (2). Since the op-
timizing distribution q for any given α is the posterior
p(z|D, α), this, under the Gaussian assumption (12) of
the posterior, allows us to restrict q to the form N (z; u, S)
parametrized by mean vector u and covariance S. The the
objective function FEM(q, α) can then be re-expressed as
FEM(u, S,α). That is,

FEM(u, S,α) = EN (z;u,S)

[
log

p(D|z)p(z|α)

N (z; u, S)

]

= EN (z;u,S) [log p(D|z)p(z|α)]

+
J

2
log 2π +

1

2
log Det(S) +

J

2

(15)

where J is the length of the vector z. The following lemma
is established by noting the following two-way factoriza-
tion of p(D, z|α).

p(D, z|α) = p(D|z)p(z|α) = p(D|α)p(z|D,α) (16)

Lemma 5. When the Gaussian approximation (12) holds
with equality, the function FEM can be re-expressed as

FEM(u,S, α) = log N (u; µ(α),K(α)) − 1

2
Tr(K−1(α)S)

+log p(D|α) +
J

2
log 2π +

1

2
log Det(S) +

J

2

To derive the update rule for the EM algorithm under the
Gaussian approximation (12), we prove the following re-
sults.

Lemma 6. For any given S and α,

arg max
u

FEM(u, S, α) = µ(α).

Proof: Based on Lemma 5, we express FEM(u, S,α) fur-
ther.

FEM(u,S, α) = −J

2
log 2π − 1

2
log Det(K(α))

− 1

2
(u − µ(α))

T
K−1(α)(u − µ(α))

− 1

2
Tr
(
K−1(α)S

)
+log p(D|α)

+
J

2
log 2π +

1

2
log Det(S) +

J

2
.

∂FEM

∂u
= −1

2

(
K−1(α) + (K−1(α))T

)
(u − µ(α))

By setting ∂FEM

∂u to zero, we prove the result. □
Lemma 7. For any u and α,

arg max
S

FEM(u, S,α) = K(α).
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Proof: By the expression of FEM(u, S, α) in Lemma 5,

∂FEM

∂S
= −1

2

∂

∂S
Tr(K−1(α)S) +

1

2

∂

∂S
log Det(S).

By Tr(AB) =
∑

i

∑
j AijBji, we have

Tr(K−1(α)S) =
∑

i

∑

j

(K−1(α))ijSji;

∂

∂Sij
Tr(K−1(α)S) = (K−1(α))ji

∂

∂S
Tr(K−1(α)S) = (K−1(α))T .

On the other hand, since ∂Det(S)
∂Sij

= Det(S)(S−1)ji, we
have

∂

∂Sij
log Det(S) = (S−1)ji

∂

∂S
log Det(S) = (S−1)T .

Then

∂FEM

∂S
= −1

2
(K−1(α))T +

1

2
(S−1)T .

The lemma is then proved by setting this derivative to zero.

□
As a corollary of Lemma 6, Lemma 7 and (15), the update
rule of the EM algorithm can be established.

Lemma 8. When the Gaussian approximation (12) holds
with equality, the EM algorithm becomes the following
EM-Gauss Procedure.

EM-Gauss Procedure:

E-Step:

u(t) := µ(α(t))

S(t) := K(α(t))

M-Step:

α(t+1) := arg max
α

EN (z;u(t),S(t)) [log p(z|α)]

Linear Regression Example–5 In the linear regression
model, the Gaussian assumption (12) holds true. The E-
Step then reduces to (4), which can be integrated into the
M-Step. The EM update can then be expressed as a single
update equation (7), the same as that in Linear Regression
Example-2.

Bayesian PCA Example–5 Note that µBPCA(α) is a
vector of length md and KBPCA(α) is an md×md matrix.
Let µBPCA,k(α) denote the component of µBPCA(α) cor-
responding to zk component of Ẑ, and KBPCA,k(α) denote
the sub-matrix of KBPCA(α) that serves as the covariance

matrix of zk. With the Gassian approximation (14) holds
with equality, the update (8) of α becomes

α
(t+1)
k =

m∥∥µBPCA,k(α(t))
∥∥2

+Tr
(
KBPCA,k(α(t))

) .

4.2 MACKAY

Lemma 9. When the Gaussian approximation (12) holds
with equality, the function FMacKay in (9) becomes

FMacKay(z, α) = log p(D, z|α) +
1

2
log Det(2πK(α)).

Proof: This lemma follows from maxz′ log p(z′|D, α) =
−1

2 log Det(2πK(α)). □
Lemma 10. When the Gaussian approximation (12) holds
with equality, for any α,

arg max
z

log p(D, z|α) = µ(α).

The proof of this lemma follows the same line as that of
Lemma 6. The MacKay algorithm under the Gaussian ap-
proximation (12) can then be established from Lemma 10
and Lemma 9.

Lemma 11. When the Gaussian approximation (12) holds
with equality, the MacKay algorithm becomes the following
MacKay-Gauss Procedure.

MacKay-Gauss Procedure:

z-Step:
z(t) := µ(α(t))

α-Step:

α(t+1) :=arg max
α

[
log p(z(t)|α) +

1

2
log Det(K(α))

]

Linear Regression Example–6 Since the Gaussian as-
sumption (12) holds true in linear regression, the updates
of the MacKay algorithm are those in Linear Regression
Example–3.

Bayesian PCA Example–6 Assuming that the Gassian
approximation (12) holds with equality, the z-Step and α-
Step updates become

Z(t) = µBPCA(α(t))

α(t+1) = arg max
α

[
−1

2

d∑

k=1

αk

∥∥∥z(t)
k

∥∥∥
2

+
1

2
log Det (KBPCA(α))+

d∑

k=1

m

2
log αk

]
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When setting ∂FMacKay(z,α)
∂αk

= 0, we can obtain

αk = h(αk, z) =
m − αkTr (KBPCA,k(α))

∥zk∥2 .

This gives rise to the fixed-point iteration of the α-Step

α
(t+1)
k =

m − α
(t)
k Tr

(
KBPCA,k(α(t))

)
∥∥∥z(t)

k

∥∥∥
2

4.3 THE RELATIONSHIP BETWEEN MAKCAY
AND EM

As is shown earlier, the MacKay and EM algorithms cor-
respond to solving two different optimization problems.
However, we will show next that when the Gaussian ap-
proximation (12) holds exactly, the two algorithms are
closely related.

First note that FEM is a trivariate function whereas
FMacKay is a bivariate function. The theorem below sug-
gests that if the Gaussian approximation of the posterior
distribution p(z|D, α) is exact, then by setting its covari-
ance variable S of FEM to the covariance matrix of the
posterior, the function FEM reduces FMacKay.
Theorem 1. When the Gaussian approximation (12) holds
with equality, FEM(u,K(α), α) = FMacKay(u, α), where
K(α) is defined in (13).

Proof: Suppose that the Gaussian approximation (12) holds
with equality. Invoking (16), we have

FMacKay(z, α) = log p(D, z|α) +
1

2
log Det(2πK(α))

= log N (z; µ(α),K(α)) + log p(D|α)

+
1

2
log Det(2πK(α))

But by Lemma 5, we have

FEM(z,K(α),α) = log N (z; µ(α), K(α))

− 1

2
Tr
(
K−1(α)K(α)

)
+ log p(D|α)

+
J

2
log 2π +

1

2
log Det(K(α)) +

J

2
= log N (z; µ(α),K(α)) + log p(D|α)

+
1

2
log Det(2πK(α))

=FMacKay(z,α)

This proves the theorem. □
Theorem 1 suggests that the function FMacKay is a restric-
tion of function FEM. Denote by C the set of all (S, α)
configurations with S = K(α). That is, C is the curve on
the (S, α) plane specified by S = K(α). Under this no-
tation, FMacKay is the function FEM with variables (S, α)
restricted on the curve C.

Theorem 2. When the Gaussian approximation (12) holds
with equality,

FMacKay(u,α) = max
S

FEM(u, S, α), (17)

l(α) = max
u

FMacKay(u, α). (18)

Proof: Denote S∗ := arg maxS FEM(u, S,α) = K(α).
Thus

max
S

FEM(u, S, α)=FEM(u, S∗, α)=FEM(u,K(α), α).

Then the equation (17) holds by Theorem 1, On the other
hand, by Lemma 3, FMacKay(z, α) ≤ l(α) and the equal-
ity can be achieved. We thus obtain the equation (18). □.

The following result follows immediately from Theorem 2.

Corollary 1. The optimizing configurations for Opt-I,
OptEM and OptMacKay are identical in α.

Theorem 2 and Corollary 1 essentially suggest that Opt-
MacKay is a relaxation of Opt-I, that OptEM is a relax-
ation of OptMacKay, and that such successive relaxations
do not alter the solution of the original problem Opt-I.

Lemma 12. The EM-Gauss Procedure is identical to the
3-way coordinate ascent on FEM, namely, iterating over
the following three steps.

u(t) : = arg max
u

FEM(u, S(t−1), α(t))

S(t) : = arg max
S

FEM(u(t), S, α(t))

α(t+1) : = arg max
α

FEM(u(t), S(t), α)

Proof: This follows from the fact that in the EM-Gauss Pro-
cedure, the update of u is independent of S and the update
of S is independent of u. □
Since OptEM is a relaxation of OptMacKay, it has higher
degrees of freedom during optimization. This extra degree
of freedom is fully explored in the three-way coordinate
descent of EM-Gauss, making its convergence slower than
that of MacKay-Gauss. This slower convergence of EM-
Gauss can also be understood from another perspective, in
which MacKay-Gauss and EM-Gauss are both considered
as optimizing the function FEM.

Lemma 13. The MacKay-Gauss Procedure is equivalent
to the following two-way coordinate-ascent on FEM.

u(t) : = arg max
u

FEM(u, S(t−1), α(t−1))
(
S(t), α(t)

)
: = arg max

(S,α)∈C
FEM(u(t), S, α).

Following directly from the Lemma 11 and Theorem 1, this
lemma suggests that MacKay-Gauss can be viewed as op-
timizing the same objective function FEM as EM-Gauss,
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but taking a particular coordinate-ascent path, namely, al-
ternating between maximization over u and maximization
over (S, α) along the curve C. This allows MacKay-Gauss
to take a “shorter-cut” than EM-Gauss.
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Figure 2: The convergence of both the EM algorithm
and the MacKay algorithm from the initial configuration
α = 1 to the final configuration α ≈ 0.1. (a) The (α, u)-
trajectories of the EM and MacKay algorithms, where an
arbitrary component (in this case, the second component
u(2)) of vector u is taken as a representative for u. (b) the
function FEM evaluated along the EM trajectory and the
function FMacKay evaluated along the MacKay trajectory,
and the log-evidence function l(α) plotted using its closed-
form expression.

4.4 Experiments

Experiments are performed to study the dynamics of the
MacKay algorithm and the EM algorithm. We generate
a simulated dataset D for a linear regression model ac-
cording to the setup in Linear Regression Example–1 with
n = 300, d = 200, σ2 = 10, α = 0.1 where each each x(i)

is drawn uniformly at random from the open interval (0, 1).
Both the EM algorithm (in Linear Regression Example-2)

and the MacKay algorithm (in Linear Regression Example-
3) are used to estimate α from D. For both algorithms, α
is initialized to 1 and σ2 is treated as known.

The optimization trajectories of the two algorithms in Fig-
ure 2 (a) show that the MacKay algorithm converges faster
towards the fixed point (top right corner) than the EM algo-
rithm. In Figure 2 (b), we see that both the MacKay algo-
rithm and the EM algorithm increase their respective objec-
tive functions along their optimization paths, but MacKay
achieves higher value of the log-evidence function l(α)
than EM at every iteration step.

5 Concluding Remarks

In his influential evidence framework, MacKay presented
practical Bayesian methods for inference at the parameter
level, at the hyper-parameter level and at the model level.
For inference at the hyper-parameter level, MacKay intro-
duced a heuristic procedure that iterates between estimat-
ing the parameter for a given hyper-parameter setting and
estimating the hyper-parameter for the previous parameter
setting. Although this procedure is widely adopted in em-
pirical Bayesian methods, its mathematical principle had
not been carefully explored prior to this work. In this pa-
per, we formulate this procedure as a well-principled algo-
rithmic framework, and call it the MacKay algorithm.

We show that the MacKay algorithm, like the EM algo-
rithm, can be understood as a coordinate-ascent solution to
optimizing a lower bound of the objective function in em-
pirical Bayes. Although this lower bound is different from
the lower bound that is optimized by the EM algorithm, we
show that as long as the posterior distribution of the param-
eter is a Gaussian density function, the two algorithms are
closely related. In particular, the EM optimization prob-
lem, the MacKay optimization problem, and the original
empirical Bayes optimization problem all have the same
solution. In addition, the MacKay problem is a relaxation
of the original problem, and the EM problem is a relaxation
of the MacKay problem. This understanding provides and
intuitive explanation as to why the MacKay algorithm con-
verges faster than the EM algorithm.

We believe that the close relationship between the MacKay
algorithm and the EM algorithm revealed in this paper
strongly depends on the Gaussian condition. Although
this paper does not show the necessity of this condition,
we believe that, in case of non-Gaussian posterior or non-
Gaussian models, this relationship will break down, and
the MacKay algorithm will diverge from the EM algorithm
towards its own optimization objective and along its own
optimization path. This makes the MacKay algorithm a
framework in its own right. We hope that this paper inspire
more applications of the MacKay algorithm to more gen-
eral models, a territory appearing completely unexplored.
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Abstract

Dantzig Selector (DS) is widely used in com-
pressed sensing and sparse learning for feature
selection and sparse signal recovery. Since the
DS formulation is essentially a linear program-
ming optimization, many existing linear pro-
gramming solvers can be simply applied for scal-
ing up. The DS formulation can be explained as
a basis pursuit denoising problem, wherein the
data matrix (or measurement matrix) is employed
as the denoising matrix to eliminate the observa-
tion noise. However, we notice that the data ma-
trix may not be the optimal denoising matrix, as
shown by a simple counter-example. This moti-
vates us to pursue a better denoising matrix for
defining a general DS formulation. We first de-
fine the optimal denoising matrix through a min-
imax optimization, which turns out to be an NP-
hard problem. To make the problem computa-
tionally tractable, we propose a novel algorithm,
termed as “Optimal” Denoising Dantzig Selector
(ODDS), to approximately estimate the optimal
denoising matrix. Empirical experiments vali-
date the proposed method. Finally, a novel sparse
reinforcement learning algorithm is formulated
by extending the proposed ODDS algorithm to
temporal difference learning, and empirical ex-
perimental results demonstrate to outperform the
conventional “vanilla” DS-TD algorithm.

1 Introduction

We consider consider the classic problem in compressed
sensing, sparse learning, and statistics [Donoho, 2006,
Candes and Tao, 2007, Bickel et al., 2009]:

Given a data (measurement) matrix X ∈ Rn×m (m �
n) and a noisy observation vector y ∈ Rn satisfying y =
Xβ∗+ε where ε is the noise vector following the Gaussian

distribution N(0, σ2I)1 and β∗ is the truth model which is
a sparse vector. How to recover the sparse vector β∗ from
this under-determined system?

Dantzig Selector (DS) [Candes and Tao, 2007] is a widely
used approach to solving this problem. The standard DS is
formulated as

(DS) β̂DS = argmin
β

‖β‖1 (1a)

s.t. ‖XT (Xβ − y)‖∞ ≤ λ. (1b)

DS has a very similar performance to another famous for-
mulation LASSO [Tibshirani, 1996] both empirically and
theoretically [Bickel et al., 2009]. The DS formulation
(1) can be formulated as a linear programming (LP) prob-
lem, thus many matured LP solvers can be directly applied
to address this problem with large-scale problem settings.
The DS formulation or its variation has been widely used
in reinforcement learning [Geist et al., 2012, Liu et al.,
2012, Mahadevan and Liu, 2012, Qin et al., 2014], com-
putational bioinformatics [Liu, 2014], and computer vision
[Cong et al., 2011].

The motivation of this paper is to explore the role of XT

(the transpose of X) in DS formulation (1). We note that
the constraint in (1b) follows two principles: 1) the de-
fined feasible region should contain the true solution β∗

with high probability; and 2) to make β̂DS close to β∗ the
feasible region defined by the constraint should be as small
as possible, that is, λ is expected to a small value. Taking
β = β∗ into the constraint leads to the smallest possible
value for λ = ‖XT (Xβ∗− y)‖∞ = ‖XT ε‖∞. If columns
of X are normalized to 1, we have limn→∞ ‖XT ε‖∞ → 0
with high probability Candes and Tao [2007]. Therefore,
the factor XT in the constraint actually plays the role of
denoising. This motivates us to ask two questions: 1) is
XT the optimal denoising matrix for the recovery of the
sparse signal β∗?; and 2) if not, how to measure the the
optimality of the denoising matrix and how to compute the
optimal denoising matrix?

1The Gaussian distribution can be generalized to any sub-
Gaussian distribution.
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Unfortunately, XT is not the optimal denoising matrix in
general. We provide a counter-example in Section 3. The
main contributions of this paper are summarized below:

• We propose a generalized denoising Dantzig selector
formulation (GDDS) and define the optimal denoising
matrix for sparse signal recovery via a minimax formu-
lation;

• A two-stage approach is proposed to compute the ap-
proximately optimal denoising matrix;

• We apply the proposed ODDS algorithm to an impor-
tant application in reinforcement learning: the temporal
difference learning problem for sparse value function ap-
proximation.

This paper is organized as follows: Related work is intro-
duced in Section 2. Section 3, which is the core part of this
paper, proposes the general Dantzig Selector formulation
with both intuitive motivations as well as the mathemati-
cal backgrounds. A generalized error bound is proposed,
which leads to the definition of the optimal denoising ma-
trix, which is NP-hard in general. To address this prob-
lem, a two-stage algorithm for approximately computing
the optimal denoising matrix is given. Then in Section 4,
the algorithm is applied to reinforcement learning to design
a new algorithm for sparse value function approximation.
The experimental results are presented in Section 5, which
validate the effectiveness of the proposed algorithm.

2 Related Work

The problem considered in this paper has received substan-
tial attentions in compressed sensing, sparse learning, and
statistics. The study starts from the special case, i.e. the
noiseless case ε = 0. To recover the sparse vector β∗, there
are two types of approaches: `1 norm minimization and
greedy algorithms. The `1 norm minimization solves the
following optimization problem to estimate β∗ [Chen and
Donoho, 1994, Candes and Tao, 2005]

min
β

‖β‖1 s.t. Xβ = y. (2)

The theoretical study [Candes and Tao, 2005] suggests that
under the restricted isometric property (RIP) condition, the
`1 norm minimization formulation can recover the true so-
lution β∗ exactly. The greedy approaches include the for-
ward greedy algorithm (or OMP) [Tropp, 2004] and the
backward greedy algorithm. A similar theoretical guaran-
tee of exact recovery is proven for the forward greedy al-
gorithm in Zhang [2011b].

Now let us turn to the noisy case, i.e. ε 6= 0. The noisy case
is more challenging than the noiseless case. It also mainly
includes two types of approaches: `1 norm minimization
approaches and greedy algorithms. To deal with the noise,
there are several popular formulations including DS [Can-
des and Tao, 2007], LASSO [Tibshirani, 1996], and basis

pursuit denoising (BPDN) [Chen et al., 2001]. They essen-
tially apply different manners to denoise. BPDN uses the
`2 norm penalty to denoise:

β̂BPDN = argmin
β
‖β‖1 s.t. ‖Xβ − y‖2 ≤ ε, (3)

where the constraint basically restricts the noise ε by ‖ε‖ ≤
ε. DS uses the `∞ norm penalty to denoise ‖XT ε‖∞ ≤ λ
as shown above. LASSO applies the same spirit as DS
[Bickel et al., 2009] to denoise, but uses a different for-
mulation

β̂LASSO = argmin
β

1

2
‖Xβ − y‖22 + λ‖β‖1. (4)

The theoretical error bound for LASSO and DS is simi-
lar [Bickel et al., 2009] and better than BPDN in some
sense. The key reason lies in that the noise constraint
used in DS and LASSO ‖XT ε‖∞ ≤ λ is sharper than
the noise constraint used in BPDN ‖ε‖ ≤ ε.2 The greedy
approaches mainly include the forward greedy algorithm
[Zhang, 2009] and the forward-backward greedy algorithm
[Zhang, 2011a, Liu et al., 2013].

While Dantzig Selector primarily focuses on `1 regulariza-
tion for sparsity, the group-sparsity structures was explored
[Liu et al., 2010a], and was recently extended to gener-
alized norm [Chatterjee et al., 2014]. Other variants in-
cludes weighted Dantzig Selector [Candes et al., 2008] by
re-weighting the sparse signal, multi-stage Dantzig Selec-
tor [Liu et al., 2010b] for iterative sparse signal recovery,
etc. As for the computational achievements, besides the
primal-dual interior point method [Candes and Tao, 2007],
TFOCS [Becker et al., 2011] is also widely used. Later, in-
exact alternating direction method of multipliers (ADMM)
formulations are proposed in [Lu et al., 2012, Wang and
Yuan, 2012], which are computationally efficient.

3 Algorithm

We first show the generic error bound when “XT ” in (1b)
is substituted by an arbitrary denoising matrix QT . Then
a counter example is provided to show why XT is not the
optimal choice for QT . We prove an approximate method
to pursue the optimal denoising matrix QT in the end of
this section.

3.1 Generalized Denoising Dantzig Selector and its
Error Bound

With the backgrounds of the denoising matrix introduced
above, one intuitive question is that if XT the optimal de-
noising matrix for sparse signal recovery of β∗? The an-
swer is actually NO! To explain this, we first introduce the

2From the optimization perspective, BPDN seems consis-
tent with LASSO, but the theoretical error bound is worse than
LASSO and DS for some subtle reasons, which is beyond the
scope of this paper.
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generalized denoising Dantzig Selector formulation. Next,
an error bound w.r.t the GDDS and regular DS is proposed,
and it can be proven that for regular DS, the error bound
is tighter than the existing error bound provided in [Candes
and Tao, 2007] and [Bickel et al., 2009]. Then a simple
counter-example is proposed to argue that XT may not be
the optimal denoising matrix. We here present some defi-
nitions and notations in Figure 1.

• hT , hT c : T and T c are two complementary subsets
in {1, 2, · · · ,m}. We denote by hT ∈ Rm the vec-
tor taking the same values as h on T and zeros in
the rest; the same for hT c ∈ Rm;

• |T | returns the cardinality of the set T ;
• ‖W‖∞ is defined as the induced∞ norm of matrix
W ∈ Rm×m, i.e. ‖W‖∞ = maxx

‖Wx‖∞
‖x‖∞ where

the vector infinity norm ‖Wx‖∞ and ‖x‖∞ are de-
fined as usual;

• ≤(P): less than or equal to with high probability;

Figure 1: Notation used in this paper

First we define a generalized denoising Dantzig Selector
(GDDS) formulation by using a general denoising matrix
QT (Q ∈ Rn×m) to replace the XT in the constraint:

(GDDS) min
β

: ‖β‖1

s.t. : ‖QT (Xβ − y)‖∞ ≤ λ.
(5)

Next we will propose an error bound for the proposed
GDDS in (5) and regular DS. Since the denoising matrix is
not necessarily XT anymore, the commonly used RIP con-
dition or restricted eigenvalue (RE) condition [Van De Geer
et al., 2009] are not eligible here. To extend to the general
case, we define a new condition termed as generalized re-
stricted (GR) constant.

Definition 1. (GR constant) Given X,Q ∈ Rn×m and
p ∈ [1,∞], the general restricted constant ρ(QTX, p, s)
is defined as

ρ(Q,X, p, s) := min
|T |≤s,‖hTc‖1≤‖hT ‖1

‖QTXh‖∞
‖h‖p

. (6)

This definition essentially provides the lower bound of the
ratio between ‖QTXh‖∞ and ‖h‖p over h in a subset of
Rp, which characterizes the property of QTX . The GR
constant leads to a weaker condition to exactly recover the
sparse signal β∗ for the noiseless case (ε = 0) and a tighter
error bound for the noisy case (ε 6= 0) than the existing
analysis, as shown by Theorem 1. Based on the definition
for GR constant in Definition 1, we have the following error
bound on ‖β̂GDDS − β∗‖p.

Theorem 1. Assume that the GR condition is satisfied,
i.e. the GR constant ρ(Q,X, p, ‖β∗‖0) > 0. Choose
λ = ‖QT ε‖∞ in (5). We have

‖β̂GDDS − β∗‖p ≤
2‖QT ε‖∞

ρ(Q,X, p, ‖β∗‖0)
, (7)

where β̂GDDS is the solution to (5) and p can be any value
in the range [1,∞].

It should be noted that albeit with a more general error
bound, Theorem 1 does not weaken the existing analysis
based on the following two observations:

• In the noiseless case, i.e. ε = 0, if the GR condition is
satisfied, then β̂GDDS is able to exactly recover β∗. Note
that the GR condition is weaker than the RIP condition
for Q = X [Candes, 2008]. In other words, the RIP
condition leads to GR condition when Q = X . The
detailed interpretation is provided in Appendix.

• In the noisy case, i.e. ε 6= 0, this bound (7) is a tighter
bound than the bound ‖β̂DS − β∗‖p for DS in [Candes
and Tao, 2007, Bickel et al., 2009] for Q = X . Please
also refer to Appendix for detailed comparisons.

The key reason why Theorem 1 does not loose the exist-
ing analysis lies in that the definition of the GR constant
ρ(Q,X, p, s) skips many relaxation steps by directly in-
dicating the relationship between ‖QT ε‖∞ and ‖β̂GDDS −
β∗‖2. Given p, s and X , ρ(Q,X, p, s) reflects the abil-
ity for sparse signal recovery of β∗ of the denoising matrix
QT : The larger ρ(Q,X, p, s) is, the better Q is able to
recover the sparse signal β∗. Therefore, since the error
bound provided in Theorem is tight enough, it is reason-
able to use the bound in (7) as the evaluation criteria to see
why XT is not the optimal denoising matrix and define the
optimal denoising matrix.

3.2 A Counter-Example

To see why XT may not be the optimal denoising matrix,
we show an example of Q which gives a lower value for
the bound in (7). To construct such a matrix Q, we require
the same conditions on Q as X , i.e. all columns of Q have
been normalized with norm 1. We can verify that any Q
with unit column norm, the value of ‖QT ε‖∞ is compara-
ble to ‖XT ε‖∞, according to the following standard results
in Lemma 1.

Lemma 1. For any Q ∈ Rn×m satisfying ‖Q.i‖ = 1 for
i = 1, · · · ,m, we have

‖QT ε‖∞ ≤ σ
√

logm

with high probability at least 1−O(1/m).

The key reason why ‖QT ε‖∞ and ‖XT ε‖∞ are compa-
rable lies in that all entries in random vectors QT ε ∈ Rp
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and XT ε ∈ Rp follow the same Gaussian distribution
N (0, σ2). Since ‖QT ε‖∞ and ‖XT ε‖∞ are compa-
rable, we only need to find an example for Q such that
ρ(Q,X, p, s) > ρ(X,X, p, s) for some X . Let s = 1 for
simplicity and

X =

( √
3/2 1/2

1/2
√

3/2

)
, Q =

(
1 0
0 1

)
. (8)

We have

XTX =

(
1

√
3/2√

3/2 1

)
(9)

ρ(X,X, p, 1) = min
|T |≤1

‖hTc‖1≤‖hT ‖1

‖XTXh‖∞
‖hT ‖p

=1−
√

3/2 = 0.134,

ρ(Q,X, p, 1) = min
|T |≤1

‖hTc‖1≤‖hT ‖1

‖QTXh‖∞
‖hT ‖p

=
√

3/2− 1/2 = 0.366,

where in both cases the optimal value of h is h = [1,−1]T

regardless of the value of p. Thus, this example shows that
XT may not always be the optimal denoising matrix.

3.3 Optimal Denoising Matrix and its Approximation

From the counter-example in the previous section, we
know that X is not the optimal option for Q to maximize
ρ(Q,X, p, s). Therefore, it raises an optimization problem
to find the optimal Q:

Q∗ = argmax
‖Q.i‖≤1

min
|T |≤s

‖hTc‖1≤‖hT ‖1

‖QTXh‖∞
‖hT ‖p

. (10)

However, this formulation is extremely difficult to solve.
Although we can solve it easily for small n,m as in our ex-
ample above, it is NP-hard in general. Therefore, it is un-
realistic to solve this problem exactly. To find a reasonable
approximation, we consider an alternative way to finding
an optimal matrix W ≈ QTX:

W ∗ = argmax
‖W‖∞≤1

min
|T |≤s

‖hTc‖1≤‖hT ‖1

‖Wh‖∞
‖hT ‖p

. (11)

One can easily verify that the optimal solution isW ∗ = I .3

The second step is to find the optimal Q. We try to find
the best Q from another perspective. Intuitively, we want
QTX to be close to the identity matrix. We estimate Q by
the following:

min
Q

: ‖QTX − I‖p s.t. : ‖Q.i‖ ≤ 1 (12)

3Actually, it is not important which norm is used to restrictW .
For most norms we verified, the optimal solution forW should be
a diagonal matrix with equal values.

X .1

X .2

Q.2

Q.1

Figure 2: An example of X and Q.

where p ∈ [1,∞] and ‖X‖p := (
∑
i,j |Xij |p)1/p. We

have many options for choosing p ∈ [1,∞]. Based on our
empirical study, a reasonable empirical value for p is p = 2,
and thus the problem can be recast as a strongly convex
problem

min
Q

: ‖QTX − I‖22 s.t. : ‖Q.i‖ ≤ 1 (13)

There are many optimization algorithms to address this
problem. We use Nesterov’s accelerated gradient method
[Nesterov, 2004]. Note that the empirical Q obtained from
(12) or (13) is generally different from the optimal one de-
fined in (10). And the optimal denoising Dantzig Selector
algorithm is summarized as in Algorithm 1.

Algorithm 1 “Optimal” Denoising Dantzig Selector
(ODDS)
Require: X ∈ Rn×m, y ∈ Rn
Ensure: β

Compute the denoising matrix QT via Eq. (13)
Compute β via Eq. (5)

Figure 2 provides an example of Q and X in the two-
dimensional case. Intuitively, Q is an approximation to
X by slightly modifying all feature (column) vectors of X
such that they are as different from each other as possible.

4 Reinforcement Learning

Dantzig selector has an important application in reinforce-
ment learning. This section first briefly introduces rein-
forcement learning and then shows how to apply the pro-
posed ODDS method to it.

A Markov Decision Process (MDP) is defined by the tu-
ple (S,A, P ass′ , R, γ), comprised of a set of states S, a set
of actions A, a dynamical system model comprised of the
transition kernel P ass′ specifying the probability of transi-
tion from state s ∈ S to state s′ ∈ S under action a ∈ A,
a reward model R(s, a) : S × A → R, and 0 ≤ γ < 1 is
a discount factor. A policy π : S → A is a deterministic
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mapping from states to actions. Associated with each pol-
icy π is a value function V π , which is the fixed point of the
Bellman equation:

V π = Tπ(V π) = Rπ + γPπV π,

for a given state s ∈ S, Rπ(s) = R(s, π(s)), and Pπ is
the state transition function under fixed policy π, and Tπ

is known as the Bellman operator. In what follows, we of-
ten drop the dependence of V π, Tπ, Rπ on π, for notation
simplicity. In linear value function approximation, a value
function is assumed to lie in the linear span of a basis func-
tion matrix Φ of dimension |S| × d, where d is the number
of linear independent features. It is easy to show that the
“best” approximation v̂best of the true value function V sat-
isfies the following equation,

v̂best = ΠV = ΠL−1R, (14)

where Π = Φ(ΦTΞΦ)−1ΦTΞ, Ξ is a diagonal matrix
where the i-th diagonal entry ξi is the stationary state distri-
bution w.r.t state si. and L = I−γP . However, L−1 is also
computationally prohibitive. To this end, a more practical
way is to compute a Galerkin-Bubnov approximate solu-
tion [Yu and Bertsekas, 2010] is via solving a fixed-point
equation

v̂ = ΠX
Φ
T v̂ (15)

w.r.t an oblique projection ΠX
Φ

onto span(Φ) orthogonal to
X , i.e., ΠX

Φ
= Φ(XTΦ)−1XT . The existence and unique-

ness of the solution can be verified since T is a contrac-
tion mapping, ΠX

Φ
is a non-expansive mapping, and thus

ΠX
Φ
T is a contraction mapping. As for the optimal solu-

tion v̂best, we have Xbest = (LT )−1ΞΦ, which is also
computational expensive. An often used X used in the
fixed-point equation (15) is XTD = ΞΦ, which is com-
putationally affordable, and the corresponding solution to
the fixed-point equation is v̂TD. The other often used X
is XBR = ΞLΦ [Scherrer, 2010], which we will not ex-
plained in details here. However, it is obvious that none of
XTD or XBR is the optimal solution. In fact, it has been
shown that ||V − v̂TD||Ξ ≤ 1

1−γ ||V − v̂best||Ξ [Tsitsik-
lis and Van Roy, 1997], which implies that approximation
error ||V − v̂TD||Ξ between the true value function V and
v̂TD can be arbitrarily bad when γ → 1. Given a fixed-
point equation (15), we have

ΠX
Φ T v̂ − v̂ = ΠX

Φ (T v̂ − v̂) = Φ(XTΦ)−1XT (T v̂ − v̂)
(16)

Thus we can formulate the approximation error via con-
straining ||XT (T v̂ − v̂)||∞ ≤ λ.

Since the P,R,Ξ models are not accessible, the sample-
based estimation is used. Given n training samples of the
form

(
si, ai, ri, s

′
i

)n
i=1

, si ∼ Ξ, ri = r(si, ai), ai ∼
πb(·|si), s′i ∼ P (·|si, ai), the empirical Bellman operator
T̂ is thus written as

T̂ (Φ̂θ) = R̂+ γΦ̂′θ (17)

We denote Φ̂ (resp. Φ̂′) the empirical feature matrices
whose i-th row is the feature vector φ(si)

T (resp. φ(s′i)
T ),

and R̂ ∈ Rn the empirical reward vector with correspond-
ing ri as the i-th row. And the error constraint can be for-
mulated as ||QT (Aθ−b)||∞ ≤ λ, whereA = Φ̂−γΦ̂′, b =
R̂, and Q ∈ Rn×d. So given Q and a pre-defined error λ,
the Dantzig Selector temporal difference learning problem
can be formulated as

θ̂DS−TD = argmin
θ
‖θ‖1 s.t. ‖QT (Aθ − b)‖∞ ≤ λ.

IfQ = Φ̂, then the algorithm is the DS-TD algorithm [Geist
et al., 2012]. Motivated by the GDDS algorithm to find
the optimal denoising matrixQT , we design a new Dantzig
Selector temporal difference learning algorithm to compute
the optimal QT for sparse value function approximation as
follows

θ̂ODDS−TD = argmin
θ
‖θ‖1 s.t. ‖QT (Aθ − b)‖∞ ≤ λ

(18)
where Q is computed from solving

min
Q

: ‖QTA− I‖2F s.t. : ‖Q.i‖ ≤ 1 (19)

Based on above, we propose the following ODDS-TD al-
gorithm.

Algorithm 2 “Optimal” Denoising Dantzig Selector for
Temporal Difference Learning with (ODDS-TD)
Require: A, b
Ensure: θ̂ODDS−TD

Compute the denoising matrix QT via Eq. (19)
Compute θ̂ODDS−TD via Eq. (18)

5 Empirical Experiment

Experiments are first conducted on synthetic data with
small-scale size and medium-scale respectively. Next, we
apply the proposed method to a reinforcement learning
problem on real data sets to show its advantage over ex-
isting algorithms.

5.1 Small-Scale Experiment
In this experiment, we conduct the comparison study be-
tween the regular Dantzig Selector (DS) and ODDS. We
first compare the performance of different algorithms w.r.t
different sparsity and noise levels. We set n = 100,m =
150, the true signal β∗ is preset, with different numbers
of non-zero elements (NNZ) among 10, 15, 20, 25. We
also change different noise level varying among σ =
0.1, 0.2, 0.3. Figure 3 shows the performance compari-
son of the two algorithms, wherein in each subfigure, the
noise level is the same, and the x-axis denotes the NNZ
level, and the result is measured by the difference of the
learned sparse signal with β∗. From Figure 3, we can see
that ||β̂ODDS − β∗||2 is much smaller than ||β̂DS − β∗||2.
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Figure 3: Small-scale Experiment w.r.t different sparsity
levels.

5.2 Medium-Scale Experiment
In this experiment, we conduct the comparison study be-
tween the regular DS and ODDS. The experimental set-
ting is that given n = 500, the number of features m goes
among 700, 900, · · · , 2500, and NNZ = 10. The noise
level σ = 0.01, and λ is chosen as λ = σ

√
2 log n as

suggested by [Candes and Tao, 2007] for a fair compari-
son between DS and ODDS, and the result is averaged by
the mean-squares error (MSE), which is averaged over 50
runs. From Figure 4, we can see that the performance of
ODDS is much better than that of regular DS, with both
much lower MSE error and less variance.

5.3 ODDS-TD Experiment
In this experiment, we compare the performance of the DS-
TD [Geist et al., 2012] and the proposed ODDS-TD algo-
rithm. We test the performances of the two algorithms on
the 20-state corrupted chain domain, wherein the two goal-

Figure 4: Comparison w.r.t different number of features.

states are s ∈ [1, 20] with the reward signal +1, and the
probability transition to the nearest goal-state is 0.9. The
features are constructed as follows. 5 radial basis functions
(RBF) are constructed, and one constant is used as an off-
set, and all other noisy features are randomly drawn from
Gaussian distribution. So for each sample st, the feature
vector φ(s) = [1,RBF(1), · · · ,RBF(5), s1, · · · , sn]. 200
off-policy samples are collected via randomly sampling the
state space. Two comparison studies are carried out. In the
first experiment, there are 300 noisy features, so altogether
there are 306 features, and the value function approxima-
tion result is shown in the first subfigure of Figure 5, where
vODDS and vDS are the value function approximation re-
sults of ODDS and regular DS. From the figures, one can
see that the vODDS is much more accurate than that of
vDS . The second experiment poses an even more challeng-
ing task, where the number of noisy features is set to be
600, so altogether there are 606 features, which makes the
feature selection task much more difficult, and the result is
shown in the second subfigure of Figure 5. We can see that
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Figure 5: Comparison between ODDS-TD and DS-TD

vDS has been severely distorted, whereas vODDS is still
able to well preserve the topology of the value function,
and is able to generate the right policy.

6 Conclusion

In this paper, motivated by achieving a better sparse sig-
nal recovery, we propose a generalized denoising matrix
Dantzig selector formulation. A two-stage algorithm is
proposed to find the optimal denoising matrix. The algo-
rithm is then applied to sparse value function approxima-
tion problem in temporal difference learning field, and the
empirical results validate the efficacy of the proposed algo-
rithm. There are many interesting future directions along
this research topic. For example, the ODDS framework can
be extended to weighted Dantzig Selector (WDS) [Can-
des et al., 2008], multi-stage Dantzig Selector [Liu et al.,
2010b], group Dantzig Selector [Liu et al., 2010a] and gen-
eralized Dantzig Selector [Chatterjee et al., 2014], which
are parallel research directions of the Dantzig Selector al-
gorithms family.
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A Theoretical Analysis of ODDS

Proof to Theorem 1
Proof. Denote the difference between the solution to (5)
β̂GDDS and the true model β∗ as h = β̂GDDS − β∗. Denote
the support set of β∗ by T ⊂ {1, 2, · · · ,m}. First we verify
that the true model β∗ is a feasible point to the problem (5)
due to the following observation

‖QT (Xβ∗ − y)‖∞ = ‖QT ε‖∞ ≤ λ.

Since β̂GDDS is the minimizer of problem (5), it follows
that

‖β̂GDDS‖1 ≤ ‖β∗‖1
⇒
∑

j∈T
|(β̂GDDS)j |+

∑

j∈T c

|(β̂GDDS)j | ≤
∑

j∈T
|β∗j |

⇒
∑

j∈T c

|(β̂GDDS)j | ≤
∑

j∈T
|β∗j − (β̂GDDS)j |

⇒‖hT c‖1 ≤ ‖hT ‖1.

From the definition of ρ(Q,X, p, s) in (6), we have

ρ(Q,X, p, ‖β∗‖0)‖h‖p ≤ ‖QTXh‖∞
which indicates

‖h‖p ≤
‖QTXh‖∞

ρ(Q,X, p, ‖β∗‖0)
. (20)

It follows that

‖QTXh‖∞ =‖QTX(β̂GDDS − β∗)‖∞
=‖QT (Xβ̂GDDS − y + ε)‖∞
≤‖QT (Xβ̂GDDS − y)‖∞ + ‖QT ε‖∞
≤2‖QT ε‖∞.

Combining (20), we obtain the desired error bound

‖h‖p ≤
2‖QT ε‖∞

ρ(Q,X, p, ‖β∗‖0)
.

It completes the proof.

Proof of Lemma 1

Proof. This proof follows the standard union bound proof.
For completion, we provide the proof below. Since ε ∼
N (0, In×nσ2), for each linear combination of ε, we have
QT.iε ∼ N (0, σ2). Recall that for any t > 0, we have that

∫ ∞

t

e−x
2/2dx ≤ e−t2/2/t. (21)

Denote the event Ai = {|QT.iε| ≤ λ}, i = 1, 2, · · · ,m:

{‖QT ε‖∞ ≤ λ} = { max
1≤i≤m

|QT.iε| ≤ λ}

= ∩mi=1Ai.
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We derive the probability as follows:

Pr(∩mi=1Ai) = 1− Pr(∪mi=1A
c
i )

≥ 1−
m∑

i=1

Pr(Aci )

= 1−mPr(|ξ| ≥ λ/σ)

≥ 1− 2
mσ

λ
e−λ

2/2σ2

,

where the second inequality holds by union bound and the
last inequality follows (21) since ξ ∼ N (0, 1). Thus, we
can take λ = 2σ

√
logm so that

Pr(‖QT ε)‖∞ ≤ λ) ≥ 1− 1/m
√

logm = 1−O(1/m).

It completes the proof.

RIP Condition Implies GR Condition

Recall that to exactly recover β∗ the RIP condition requires
that δ2s >

√
2 − 1 [Candes, 2008], where s = ‖β∗‖0 and

δ2s is defined as for matrix XTX is defined as

1− δ2s ≤
‖Xg‖2
‖g‖2 ≤ 1 + δ2s ∀ ‖g‖0 ≤ 2s.

Now we need to prove that δ2s >
√

2 − 1 leads to the GR
condition ρ(X,X, 2, ‖β∗‖0) > 0.

Consider an arbitrary vector h and an arbitrary index set
T0 ⊂ {1, 2, · · · ,m}with cardinality s satisfying ‖hT0‖1 ≥
‖hT c

0
‖1. T1 corresponds to the locations of the s largest

coefficients of hT c
0

; T2 to the locations of the next s largest
coefficients of hT c

0
, and so on. We use T01 to denote T0∪T1

for short.

Note the fact that if Xh 6= 0, then XTXh 6= 0. To ob-
tain ρ(X,X, 2, ‖β∗‖0) > 0, it suffices to show that for any
nonzero h satisfying ‖hT c

0
‖1 ≤ ‖hT0

‖1, the following ratio
is positive

‖Xh‖/‖h‖ > 0. (22)

We have

|〈Xh,XhT01
〉|

≥‖XhT01‖2 −
∑

j≥2

|〈XhT01 , XhTj 〉|

≥‖XhT01
‖2 −

∑

j≥2

|〈XhT0
, XhTj

〉| −
∑

j≥2

|〈XhT1
, XhTj

〉|

≥‖XhT01‖2 − δ2s
∑

j≥2

(‖hT0‖+ ‖hT1‖)‖hTj‖

≥‖XhT01
‖2 −

√
2‖hT01

‖δ2s
∑

j≥2

‖hTj
‖

≥‖XhT01
‖2 −

√
2‖hT01

‖δ2s‖hT c
0
‖1s−1/2

≥(1− δ2s)‖hT01
‖2 −

√
2δ2s‖hT01

‖2

≥(1− (
√

2 + 1)δ2s)‖hT01‖2,

where the third inequality uses the result
|〈XhTi , XhTj 〉| ≤ δ2s‖hTi‖‖hTj‖ if i 6= j, see
Lemma 2.1 Candes [2008]). It follows from the fact
|〈Xh,XhT01

〉| ≤ ‖Xh‖‖XhT01
‖ that

‖Xh‖ ≥ (1− (
√

2 + 1)δ2s)‖hT01‖. (23)

From ‖hT c
0
‖1 ≤ ‖hT0

‖1, we have ‖h‖ ≤ 2‖hT01
‖, see the

last line of the proof for Theorem 1.2 in [Candes, 2008].
It also can be found from [Candes and Tao, 2007, Bickel
et al., 2009]. Together with (23) and the RIP condition
δ2s <

√
2− 1, we obtain

‖Xh‖ ≥ (1−(
√

2+1)δ2s)‖hT01
‖ ≥ (1− (

√
2 + 1)δ2s)

2
‖h‖,

which verifies (22).

Comparison to Existing Error Bounds for DS

This section aims to show that the error bound provided in
(7) is a tighter bound than two existing results in [Candes
and Tao, 2007] and [Bickel et al., 2009]. For simpler no-
tations, we denote the difference between the estimate β̂DS
by DS and the true model β∗ as h = β̂DS − β∗, T denotes
the support set of β∗, and s denotes the sparsity of β∗. The
complete comparison requires extensive space to basically
repeat the proofs in [Candes and Tao, 2007] and [Bickel
et al., 2009]. Here, we just show their results, highlight
the key point in their original proofs, and illustrate why our
error bound does not loose theirs.

Existing results conducted in [Candes and Tao, 2007] and
[Bickel et al., 2009] are only based on the following facts

• (FACT 1) ‖hT c‖1 ≤ ‖hT ‖1 (Please refer to Eq. (3.2) in
[Candes and Tao, 2007] and Eq. (B.12) in [Bickel et al.,
2009]);

• (FACT 2) ‖XTXh‖∞ ≤ 2‖XT ε‖∞ ≤(P) 2σ
√

logm
(Please refer to Eq. (3.3) in [Candes and Tao, 2007] and
Eq. (B.7) in [Bickel et al., 2009]).

which are also the foundations to provide our error bound
in (7).

The error bound provided in Theorem 1.1 of [Candes and
Tao, 2007] is derived from (see the end of Proof of Theo-
rem 1.1 in [Candes and Tao, 2007])

‖h‖
(FACT 1)

≤ 2
√
s

1− δ − θ‖X
TXh‖∞

(FACT 2)

≤ 2
√
s

1− δ − θ2‖XT ε‖∞.
(24)

Please check the original paper for the definitions of δ and
θ. The error bound (with p = 2, m = s) provided in
[Bickel et al., 2009] is derived from

‖h‖
(FACT 1)

≤ 32s

κ(s, s, 1)
‖XTXε‖∞

(FACT 2)

≤ 32s

κ(s, s, 1)
2‖XT ε‖∞.

(25)
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Please refer to the original paper for the definition of
κ(s, s, 1).

From these two bounds in (24) and (25), they essentially
uses FACT 1 to find an upper bound for ‖h‖/‖XTXh‖∞.
This observation motivates us to directly define the upper
bound through the definition of ρ(·, ·, ·) in (6)

ρ(X,X, s, 2) ≤ ‖X
TXh‖∞
‖h‖ ∀h under FACT 1.

Then we simply apply FACT 2 as (24) and (25) to obtain
the error bound in (7). Therefore, our analysis provides a
tighter error bound than Candes and Tao [2007] and Bickel
et al. [2009].
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Abstract

The recent explosion in big data has created a
significant challenge for efficient and scalable
Bayesian inference. In this paper, we consider
a divide-and-conquer setting in which the data
is partitioned into different subsets with commu-
nication constraints, and a proper combination
strategy is used to aggregate the Monte Carlo
samples drawn from the local posteriors based
on the dataset subsets. We propose a new impor-
tance weighted consensus Monte Carlo method
for efficient Bayesian inference in this setting.
Our method outperforms the previous one-shot
combination strategies in terms of accuracy,
and is more computation- and communication-
efficient than the previous iterative combination
methods that require iterative re-sampling and
communication steps. We provide two practi-
cal versions of our approach, and illustrate their
properties both theoretically and empirically.

1 INTRODUCTION

Bayesian inference provides a powerful paradigm for rea-
soning with uncertain data by reducing inference problems
into computational problems that can be routinely solved
using efficient methods like Monte Carlo (MC) or Markov
chain Monte Carlo (MCMC) methods. However, the recent
explosion in big data has created a significant challenge for
efficient and scalable Bayesian inference due to the diffi-
culty for evaluating the likelihood across all the data points;
traditional methods like Gibbs sampling and Metropolis-
Hastings are extremely slow when the size of datasets is
large.

We consider a divide-and-conquer approach for Bayesian
computation under big data, in which case we partition the
data into multiple subsets, and draw posterior samples on
each subset separately, and then combine the results prop-

erly. Typical combination methods mostly rely on first ap-
proximating the subset posteriors using certain density es-
timation method and then combine the corresponding esti-
mated densities. For example, the consensus Monte Carlo
by Scott et al. (2013) fits the subset samples using nor-
mal distributions in which case the density combination re-
duces to a simple weighted linear averaging on the samples;
Neiswanger et al. (2013) instead approximates each subset
posterior using kernel density estimator (KDE), and uses
another MCMC to draw sample from the product of KDEs.
These methods are “one-shot” in that they do not require
any further communication beyond passing the posterior
samples; however, these methods critically rely on the qual-
ities of the density estimators and often do not perform well
in practice. Other iterative methods (e.g., Wang & Dunson,
2013; Xu et al., 2014) propose to iteratively resample from
the local posteriors with adjusted local priors to enforce a
consistency between the subset posteriors. Although being
able to improve the performance iteratively, these methods
require to re-draw the samples repeatedly, resulting higher
computation and communication costs.

We propose a new importance weighted consensus Monte
Carlo method for efficient distributed Bayesian infer-
ence. The key ingredient of our method is an importance
weighted consensus strategy that efficiently combines the
subset samples by leveraging their likelihood information.
Our method performs significantly better than the pervious
one-shot methods based on density estimations that solely
rely on the subset samples and ignore the likelihood infor-
mation. In addition, we show that our method can perform
as efficient as the iterative combination methods, but with
much less communication and computational costs.

Related Work The divided-and-conquer approach for
scalable Bayesian computation has been studied in a se-
ries of recent works (Huang & Gelman, 2005; Scott et al.,
2013; Neiswanger et al., 2013; Wang & Dunson, 2013; Xu
et al., 2014; Minsker et al., 2014; Rabinovich et al., 2015).
Another major approach for scalable Bayesian inference is
based on efficient subsampling; see e.g., Korattikara et al.
(2014); Welling & Teh (2011); Maclaurin & Adams (2014);

497



Bardenet et al. (2014). Despite being a relatively new topic,
there are already a rich set of comprehensive reviews (Bar-
denet et al., 2015; Green et al., 2015; Zhu et al., 2014;
Baker et al., 2015; Angelino et al., 2015).

Outline The rest of this paper is organized as follows.
Section 2 introduces backgrounds and review the existing
methods. Section 3 introduces our main method, where
we propose two practical versions of our method and study
their properties. Section 4 presents empirical results on
both simulated and real-world datasets. The conclusion is
made in Section 5.

2 BACKGROUND AND EXISTING
METHODS

Consider a probabilistic model p(D|x) where x is a ran-
dom parameter with prior p(x) and D is the observed
data. Bayesian computation involves inferring the pos-
terior distribution f(x) ∝ p(D|x)p(x), often in terms
of calculating posterior moments of form Ef [h(x)] =∫
h(x)f(x)dx, where h(x) is a test function, including

the mean, variance or credible intervals. Typical Monte
Carlo methods work by drawing samples from the posterior
{xi}ni=1 ∼ f(x), and approximating the posterior moments
by
∑n
i=1 h(xi)/n; this gives a consistent estimator with

mean squared error varf [h(x)]/n with i.i.d. samples. Un-
fortunately, directly sampling from p(D|x) requires to re-
peatedly evaluate the posterior probability and can be pro-
hibitively slow when the number of data instances in D is
very large.

We consider a divided-and-conquer approach in which
case the data D is partitioned into m independent, non-
overlapping subsets D1, . . . , Dm, so that we have

f(x)
def
= p(x|D) ∝ p(x)

m∏

k=1

p(Dk|x).

This allows us to decompose the global posterior f(x) into
a product of “local posteriors” fk(x):

f(x) ∝
∏

k

fk(x), fk(x) = p(Dk|x)p(x)1/m,

where each local posterior fk(x) receives 1/m of the origi-
nal prior. Note that we do not assumeDm to have the same
size nor follow a same probabilistic model.

Since each subset contains less data points, it is easier to
sample from each of the local posteriors independently,
which can be done in a parallel fashion. A critical prob-
lem, however, is how to inference about the global poste-
rior f(x), or estimate Ef [h(x)], using the samples from the
local posteriors {xki }ni=1 ∼ fk(x), k = 1, . . . ,m.

Existing Methods Useful perspectives can be obtained
by considering the special case when fk(x) are assumed to
be normal distributions, e.g., fk(x) = N (x;µk,Σk). This
is justified by Bernstein-Von Mises Theorem, which says
that the posterior fk(x) is close to normal when the num-
ber of data points in Dk is large. An important property
of Gaussian distributions is that the product f ∝ ∏

k fk
of the densities fk is equivalent to the density function
of a weighted averaging x̄ =

∑
k wkx

k, where wk =
(
∑
k Σ−1

k )−1Σ−1
k and xk ∼ fk. This motivates the con-

sensus Monte Carlo (CMC) method (Scott et al., 2013) that
combines the subset posterior samples by

x̄i =
∑

k

ŵkx
k
i , ŵk = (

∑

k

Σ̂−1
k )−1Σ̂−1

k ,

where the exact covariance matrix Σk is replaced by the
empirical covariance matrix Σ̂k of {xki }ni=1.

Unfortunately, CMC does not provide guarantees for non-
Gaussian cases. Neiswanger et al. (2013) proposed a more
general approach which approximates each subset posterior
fk(x) with a Gaussian kernel density estimator (KDE), and
then sample from the product of the KDEs using MCMC.
This methods, however, does not scale well in high dimen-
sions due to the use of non-parametric density estimation;
in particular, the MSE of this method is O(n−2/(2+d)),
where d is the dimension of x; when d > 2, this is worse
than the typical parametric rate O(n−1/2) that we would
get from the global posterior sampling.

In fact, we argue that inferring the global posterior f ∝∏
k fk using only the subset samples xki ∼ fk(x) is fun-

damentally difficult, since it involves evaluating non-linear
functionals of form

∫
h(x)

∏
k fk(x)dx for which certain

non-parametric density estimates of fk are unavoidable,
and subjects to non-parametric minimax lower bounds
that are generally worse than O(n−1/2); see, for exam-
ple, Birge & Massart (1995); Krishnamurthy et al. (2015,
2014) for discussions related to estimating the simpler form∫
f1(x)f2(x)dx.

Therefore, acquiring further information is critical for im-
proving the performance. Several authors (Wang & Dun-
son, 2013; Xu et al., 2014) have proposed to iteratively
adjust and resample from the local posteriors to improve
the results. Specifically, they set the local posteriors to be
fk(x) ∝ p(Dk|x)pk(x), where pk(x) is a local “prior” that
is adjusted iteratively. In particular, Xu et al. (2014) takes
pk(x) =

∏
k′ 6=k ĝk′(x) where ĝk is an approximation of

p(D|x)/p(Dk|x) based on the current subset samples. In
this way, we have fk ≈ f , and hence the subset samples
can be treated as drawn from the global posterior f approx-
imately.

In Wang & Dunson (2013), pk(x) are instead chosen to
enforce the local samples {xki }ni=1 to be consistent with
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each other; in particular, it is based on the observation that

∏

k

fk(x) =

∫ ∏

k

fk(xk) exp

[
− (xk − x)2

2h2

]
dxk +O(h2)

for small h, and evaluates the above integral using a Gibbs
sampler that alternatively sample {xk} and x. This meth-
ods, however, critically depends on the value of h, since
large h gives poor approximation (we need h = O(n−1/4)
to obtain an O(n−1/2) approximation error), while small h
makes Gibbs sampler difficult to converge. Wang & Dun-
son (2013) proposed to gradually decrease the value of h,
making it essentially an annealed MCMC (Gibbs sampling)
algorithm over the augmented distribution of {xk} and x; it
is therefore difficult to formally guarantee the convergence
of this algorithm. In addition, each iteration of the Gibbs
sampling has a relatively expensive computation and com-
munication cost in that it requires a fully convergent sam-
pling from the local posteriors as well as communicating
the subset posterior samples between the local subsets and
the fusion center.

The above methods use only the information in the local
posterior samples and do not make use of the values of their
posterior probabilities which can carry important informa-
tion. In this work, we propose a new combination method
that avoids the density estimation using an important sam-
pling strategy that assigns importance weights to the subset
samples based on their likelihood values. We show that our
method can significantly improve over the one-shot combi-
nation methods based on density estimations, while avoid-
ing the expensive resampling steps in the iterative methods.
We provide two versions of our method: our Method I is
a valid importance sampling estimator and hence provides
a consistent estimator with a typical parametric O(n−1/2)
estimator for generic non-Gaussian cases; our Method II
provides a heuristic that works exceptionally well when fk
are nearly Gaussian, although without a formal consistency
guarantee in generic cases.

3 IMPORTANCE WEIGHTED
CONSENSUS MONTE CARLO

Assume we want to combine the local samples xi =
[x1
i , . . . , x

m
i ] via a generic consensus function x̄i =

φ(x1
i , . . . , x

m
i ) = φ(x); this includes, but does not limit

to, the weighted averaging function x̄ =
∑m
k=1 wkx

k. The
key component of our approach is an auxiliary distribution
over [x1, . . . , xm] under which the consensus x̄ = φ(x) is
distributed according to the global posterior f =

∏
k fk.

Proposition 3.1. Let g(x1, . . . , xm) be an arbitrary den-
sity function, and g(x̄) is the corresponding density func-
tion of x̄ = φ(x), that is,

g(x̄) =

∫

Sx̄

g(x1, . . . , xm)dSx̄,

where the integral is over on the surface Sx̄ = {x : φ(x) =
x̄}. We define an auxiliary distribution

p(x1, . . . , xm) = f(x̄)g(x1, . . . , xm | x̄)

= f(x̄)g(x1, . . . , xm)/g(x̄),

then the distribution p(x̄) of x̄ under p(x1, . . . , xm) equals
f(·), that is, p(x̄) = f(x̄), and hence

Ef [h(x)] = Ep[h(x̄)].

for any function h(x).

Proof. Simply note that

p(x̄) =

∫

Sx̄

f(x̄)g(x1, . . . , xm)/g(x̄)dSx̄ = f(x̄).

This result allows us to transform the estimation prob-
lem of f(x) to that of a higher dimensional distribution
p(x1, . . . , xm). Now given the local posterior samples
{xki }ni=1 ∼ fk, we can treat xi = [x1

i , . . . , x
m
i ] as drawn

from the product distribution
∏
k fk(xk)

def
= q(x). Using

q(x) as a proposal distribution allows us to construct a con-
venient importance sampling estimator:

Ef [h(x)] = Ep[h(x̄)] ≈
∑n
i=1 w(xi)h(x̄i)∑n

i=1 w(xi)

def
= ẑh, (1)

where x̄i = φ(xi) and the estimator ẑh is a self normalized
importance sampling estimator with importance weights

w(xi) =
p(xi)

q(xi)
=
g(x1

i , . . . , x
m
i )
∏
k fk(x̄i)

g(x̄i)
∏
k fk(xki )

. (2)

Note that we do not need to know the normalization con-
stants in fk(x) to calculate ẑh; calculating the normaliza-
tion constants is often a critically difficult task.

Since ẑh is a standard importance sampling estimator, it
forms a consistent estimator for zh = Ef [h(x)] in that
Pr(limn→∞ ẑh = zh) = 1 if q(x) > 0 whenever p(x) > 0
(see e.g., Theorem 9.2 in Owen (2013) ). In addition, the
asymptotic MSE E[(ẑh − zh)2] can be calculated using the
Delta method:

E[(ẑh − zh)2] � 1

n
Eq[(h(x̄)− zh)2w(x)2]. (3)

Therefore, ẑh approximates zh with a typical parametric
O(n−1/2) error rate.

The MSE (3) depends on the test function h(·); a more
generic measure of efficiency that is independent of h(x)
is the variance of the importance weights,

varq(w(x)) =

∫
q(x)

[
p(x)

q(x)
− 1

]2

dx, (4)
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or equivalently, the effective sample size (ESS)
n/(varq(w(x)) + 1). We would like to have the im-
portance weights w(x) to be as uniform as possible,
having a small variance or a large effective sample size 1

(ideally w(x) = 1, ∀x, in which case q(x) = p(x)).

3.1 OPTIMAL CHOICE OF φ(·) AND g(·)

The estimator ẑh depends on both the consensus function
φ(·) and the auxiliary distribution g(·). In this section, we
discuss the optimal choice of φ(·) and g(·) in terms of mini-
mizing the variance varq(w(x)) of the importance weights.

Proposition 3.2. (i). The optimal g(x1, . . . , xm) that min-
imizes the variance varq(w(x)) is

g∗(x1, . . . , xm) =

m∏

k=1

fk(xk),

in which case g∗(x̄) =
∫
Sx̄

∏m
k=1 fk(xk)dSx̄ with Sx̄ =

{x : x̄ = φ(x)} and w(x) =
∏m
k=1 fk(x̄)/g∗(x̄).

(ii). With g = g∗, the optimal consensus function x̄ =
φ(x) should be chosen such that g∗(x̄) ∝ ∏k fk(x̄). In
the special case when fk(x) are Gaussian, that is, fk(x) =
N (x;µk,Σk), the optimal φ(·) is the weighted averaging
φ(x) =

∑m
k=1 wkx

k with wk = (
∑
k Σ−1

k )−1Σ−1
k , and in

this case, we havew(x) = 1, ∀x and varq(w(x)) = 0. But
there is no closed form for such an optimal φ(·) in general
cases.

Proof. (i). Since Eq[w(x)] = 1, minimizing the variance
varq(w(x)) is equivalent to minimizing Eq[w(x)2],

Eq[w(x)2] =

∫
p(x)2

q(x)
dx =

∫ ∏
k fk(x̄)2

g(x̄)2
Φg(x̄)dx̄,

where Φg(x̄) =
∫
Sx̄

g(x)2
∏

k fk(xk)
dSx̄; one can show that g∗

minimizes Φg(x̄) for any fixed x̄, and hence minimizes
Eq[w(x)2].

(ii). With g = g∗, we have Φg∗(x̄) = g∗(x̄) and hence

Eq[w(x)2] =
∫ ∏

k fk(x̄)2

g∗(x̄) dx̄, which is minimized when
g∗(x̄) ∝∏k fk(x̄).

Remark With g∗(x) =
∏
k fk(xk), our estimator ẑh can

be treated as simply an importance sampler on f(x̄) with
proposal g∗(x̄). The difficulty, however, is that g∗(x̄) is
usually intractable to calculate, making it essential to find
suboptimal g(x) that is more computationally tractable.

1A simple connection between (4) and (3) is that
(varq(w(x)) + 1)/n can be treated as the expectation of
the MSE E[(ẑh − zh)

2] when the value of h(x), ∀x is drawn
from standard normal distribution.

Algorithm 1 Importance Weighted Consensus Monte
Carlo

Input: Samples from the local posteriors {xki }ni=1 ∼
fk, ∀k = 1, . . . ,m. Test function h(x).
Output: Estimate E(h(x)) under the global posterior
f(x) ∝∏k fk(x).
Consensus: Let Σ̂k be the empirical covariance matrix
of subsample {xki }ni=1. Calculate

x̄i =
∑

i

wkx
k
i , where wk = (

∑

k

Σ̂−1
k )−1Σ̂−1

k .

Reweighting: Calculate the importance weights w(xi)
by Method I as defined in (5) or Method II in (6).

Estimating: E(h) ≈∑i wih(x̄i)/
∑
i wi

3.2 PRACTICAL IMPLEMENTATION

Although the optimal choices in Proposition 3.2 are in-
tractable in general cases, we can leverage Bernstein-von
Mises theorem to obtain near optimal choices. In particular,
Proposition 3.2 justified the use of the weighted averaging
φ(x) =

∑m
k=1 wkx

k, with weights decided by the empir-
ical variance wk = (

∑
k Σ̂−1

k )−1Σ̂−1
k , which is the same

as the consensus MC in Scott et al. (2013). Our method
also requires to set a good auxiliary distribution g(x); we
explore two simple choices in this paper:

1. Method I. Motivated by Bernstein-von Mises theo-
rem, we approximate each fk(x) by a Gaussian f̂k(x) =
N (x; µ̂k, Σ̂k), where µ̂k and Σ̂k are the empirical mean
and covariance matrices of the k-th local sample {xki : i ∈
[n]}, respectively. We then construct the auxiliary distri-
bution g(x) to be g(x) =

∏
k f̂k(xk), under which we

have g(x̄) = N (x̄; µ̄, Σ̄), with µ̄ =
∑
k wkµ̂k, and

Σ̄−1 = (
∑
k wkΣ̂−1

k ). In this case, the importance weight
in (2) reduces to

w(xi) =

∏
k fk(x̄i)

N (x̄i; µ̄, Σ̄)
·
∏
kN (xki ; µ̂k, Σ̂k)∏

k fk(xki )
. (5)

2. Method II. Instead of approximating each fk, we ex-
plicitly set the auxiliary distribution g(x) to be the opti-
mal choice suggested in Proposition 3.2, that is, g(x) =∏
k fk(xk), and then approximate the corresponding g(x̄)

with a Gaussian distribution, that is, we approximate g(x̄)
by ĝ(x̄) = N (x̄, µ̄, Σ̄), which gives an importance weight
of form

w(xi) =

∏
k fk(x̄i)

N (x̄i; µ̄, Σ̄)
. (6)

This can be justified in two possible scenarios: a) when
each fk is close to Gaussian by Bernstein-von Mises
theorem, the distribution g(x̄) of their averaging x̄ =
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∑m
k=1 wkx

k
i should also be close to Gaussian; b) when

the number m of subsets is large, the averaging x̄ =∑m
k=1 wkx

k
i is approximately Gaussian by the central limit

theorem.

Comparing with (5), the importance weight in (6) simply
drops the terms that involve xki , and hence should have
smaller variance, but with the risk of introducing addi-
tional biases. We note that although Method I is a valid
importance sampling (IS) estimator, and gives consistent
estimates in general cases, Method II is no longer a valid
IS estimator, and hence is not consistent for general non-
Gaussian distributions. Nevertheless, we find that Method
II often performs surprisingly well in practice, and has at-
tractive theoretical properties when fk are indeed Gaussian.

3.3 GAUSSIAN CASES

It is illustrative to study the properties of Method I and
Method II under the simple case when fk are Gaussian.
In particular, we show that, despite being inconsistent for
non-Gaussian cases, Method II is guaranteed to outperform
Method I in Gaussian cases, that is, it exploits the Gaus-
sianity more aggressively.

Assume fk(x) = N (x;µk,Σk) and denote by f̂k(x) =
N (x; µ̂k, Σ̂k), where µ̂k, Σ̂k are the empirical mean and
covariance of the local sample {xki }ni=1 on the k-th sub-
set. Let θ = {µk,Σ−1

k : ∀k} be the set of true parameters
and θ̂ = {µ̂k, Σ̂−1

k : ∀k} the empirical estimates; corre-
spondingly we denote q(x|θ) =

∏
k fk(xk) and q(x|θ̂) =∏

k f̂k(xk). Then θ̂ is the maximum likelihood estimator
of θ based on data {xi}ni=1.

Denote by ẑIh and ẑIIh the estimates given by Method I and
Method II, respectively. Let t(x) = h(x)p(x)

q(x) , then

ẑIh =
1

n

n∑

i=1

t(xi), ẑIIh =

∑n
i=1 ω(xi)t(xi)∑n

i=1 ω(xi)
.

where ω(xi) = q(xi|θ)
q(xi|θ̂)

. Note that here the weights ω(xi)

should be very close to one when the sample size n is large
since θ̂ is a maximum likelihood estimator of θ (assuming
all fk are Gaussian). However, as observed in Henmi et al.
(2007); Henmi & Eguchi (2004), the ω(xi) in fact can act
as a control variate to cancel part of the variance in t(xi).
As a result, ẑIIh is guaranteed to have lower variance than
ẑIh when all fk are Gaussian.

Lemma 3.3 (Henmi et al. (2007)). Assume each fk is
Gaussian, e.g., fk(x) = N (x;µk,Σk), ∀k ∈ [m]. Denote
by ŝ =

∑n
i=1∇θ log q(xi|θ)/n , then Eŝ = 0 and

ẑIIh = ẑIh − E[ẑIhŝ
>][var(ŝ)]−1ŝ+Op(1/n).

Proof. See the proof of Theorem 1 and Equation (10) in
Henmi et al. (2007).

Therefore, ẑIIh is asymptotically equivalent to a variance
reduced version of ẑIh by using the score function ŝ as a
control variate; see e.g., Owen (2013) for background on
control variate.

Theorem 3.4. Assume fk(x) = N (x;µk,Σk), ∀k ∈ [m].
Denote by MSE(ẑh) = limn→+∞ nE[(ẑh − zh)2] the
asymptotic mean square error of ẑh, then we have

MSE(ẑIh) = varf (h(x)) ≥ MSE(ẑIIh ), (7)

where varf (h(x)) is the variance of h(x) under the global
posterior f(x) ∝∏k fk(x).

Proof. The fact that MSE(ẑIh) ≥ MSE(ẑIIh ) is a result
of Lemma 3.3 by the property of control variate (also see
Henmi et al. (2007, Theorem 1)). The proof of MSE(ẑIh) =
varf (h(x)) is shown in the Appendix.

Therefore, despite being inconsistent in general non-
Gaussian cases, Method II is guaranteed to outperform
Method I in Gaussian cases, that is, it relies on a stronger
assumption, and works well if the assumption is indeed sat-
isfied. In contrast, Method I is more robust in that it is a
consistent estimator for generic non-Gaussian fk (but may
also have large variances in bad cases). In practical cases
when the size of each local dataset Dk is large, each fk is
close to Gaussian by Bernstein-von-Mises theorem, and we
observe that Method II often performs better than Method I
empirically.

3.4 FURTHER DISCUSSIONS

Our algorithm is summarized in Algorithm 1. We further
discuss some issues here.

Communication Cost. Our methods outperform the pre-
vious one-shot combination methods such as Scott et al.
(2013) and Neiswanger et al. (2013) in that Method I gives
a consistent estimator for general fk with a parametric
O(n−1/2) rate, while Method II provides exceptionally
good estimates when fk are (nearly) Gaussian. This is
not surprising given that our methods leverage more infor-
mation: it depends on both the local posterior samples xki
and their (unnormalized) likelihoods fk(xki ), as well as the
(unnormalized) likelihoods fk(x̄i) of the combined sam-
ple x̄i. Therefore, compared with the one-shot methods,
our methods require two additional rounds of communica-
tion between the subsets and the fusion center to evaluate
and communicate the likelihood of the combined sample
{x̄i}. The overall communication cost of our method is
O(mn(2d + 1)), where m is the number of machines, n
is the Monte Carlo sample size and d is the dimension of
the parameter, while that of Neiswanger et al. (2013) is
O(mnd), and that of Scott et al. (2013) is O(d2) which
only needs to communicate the first two moments of the
subset samples.
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Figure 1: Results on the toy Gaussian mixture model. (a)-(b) The simulated distributions f1(x) and f2(x) when σ = 0.5
(highly non-Gaussian) and σ = 10 (highly Gaussian), respectively. (c)-(d) The MSE for estimating the mean Ef [x] under
the two cases shown in (a) and (b), respectively. (e) The relative MSE compared to Global Baseline I when we vary σ from
0.5 to 10, so that f1(x) and f2(x) change from being highly non-Gaussian to highly Gaussian.

Meanwhile, our method is still much more communication-
efficient compared with the iterative combination methods
that require more iterative rounds of communications, and
resampling steps. The communication complexity of Wang
& Dunson (2013) with T iterations is O(mndT ), and that
of Xu et al. (2014) is O(nd2T ) because it only passes
the first two empirical moments instead of the samples.
Our method has a significant advantage because the main
practical bottleneck is often the number of communication
rounds, regardless of the amount of information exchanged
at each round. In our empirical results, we show that our
methods work competitively with the iterative methods at
their convergence.

Computational Cost. The total computational cost of
our combination method is O(nm(d3 + L)) where d3 is
due to the inverse of the covariance matrices and L de-
notes the cost for evaluating the local posterior probabil-
ity fk(x); this is slightly worse than the linear averaging
(Scott et al., 2013) which costs O(nmd3), but has advan-
tage over Neiswanger et al. (2013) which requires a full
MCMC procedure over the product of the KDEs for the
combination. Further, the iterative combination methods
have significantly higher computational cost, because they
requires to re-draw subset samples iteratively, which is of-
ten much more expensive than the combination steps.

Random Permutation. The total size of all the local poste-
rior samples is mn, while the size of the combined sam-
ple {x̄i} is only n, that is, we lose a size of (m − 1)n

when making the combination. To obtain more combined
samples, we can randomly permute each subset sample
{xki : i ∈ [n]} and combined the permuted subset sam-
ples, and repeat the process for multiple times. However,
our empirical results do not suggest a significant improve-
ment of performance by using multiple random permuta-
tions (e.g., we did not find significant improvement by av-
eraging 10 random permutations).

4 EXPERIMENTS

We report empirical results for our method using a toy ex-
ample of mixture of Gaussians as well as a Bayesian probit
model with both simulated and real world datasets. We
compare with the following algorithms:

1. Our Method I and Method II as shown in Algorithm 1.

2. Global Baseline I and Global Baseline II, which draw
sample {x∗i } from the global posterior f(x) ∝ ∏k fk(x),
and estimate Ef (h(x)) by

ẑ∗Ih =
1

n

∑

i

h(x∗i ), ẑ∗IIh =

∑
i ω(x∗i )h(x∗i )∑

i ω(x∗i )
,

respectively, where ω(x∗i ) = f(x∗i )/f̂(x∗i ), and f̂(x) =

N (x; µ̂∗, Σ̂∗) with µ̂∗ and Σ̂∗ being the empirical mean
and covariance matrix of {x∗i }. Note that ẑ∗Ih and ẑ∗IIh can
be treated as the global version of Method I and Method II,
respectively; following Henmi et al. (2007), we can show
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Figure 2: Results on probit regression model with simulated data D of size 12, 000, partitioned into m = 10 subsets.
(a)-(b) The MSE for estimating Ef [x] and Ef [x2], respectively, when the dimension p of x is 10. (c)-(d) The results when
the dimension p increases to 50. All the results are averaged over 500 random trials.

that ẑ∗IIh always has smaller variance than ẑ∗Ih when f(x)
is a Gaussian distribution.

3. Weighted Avg, which is the consensus Monte Carlo
method by Scott et al. (2013).

4. The KDE method by Neiswanger et al. (2013).2

5. An naive multiple importance weighted estimator (Mul-
tiple IS) in which each subset sample {xki }ni=1 ∼ fk is used
to directly construct an importance sampling estimator for
Ef (h(x)):

ẑkh =

∑
i h(xki )w(xki )∑

i w(xki )
, where w(xki ) =

f(xki )

fk(xki )
,

and the results from different subsets are combined by a
weighted linear averaging:

ẑMIS
h =

∑
k vkẑ

k
h∑

i vk
,

where vk is chosen to be vk = 1/v̂ar(ẑih).

6. The sampling via moment sharing (SMS) method by Xu
et al. (2014),3 which iteratively adjusts the local priors and
draw local samples repeatedly.

2We used the code available at https://www.cs.cmu.
edu/˜wdn/research/embParMCMC/index.html.

3We used the code available at https://github.com/
BigBayes/SMS

4.1 TOY EXAMPLE

We first consider two Gaussian mixtures with 10 compo-
nents,

fk(x) =
1

10

10∑

j=1

N (x;µjk, σ
2), k = 1, 2,

where µjk is randomly drawn from Uniform([0, 10]) for
f1(x) and Uniform([10, 20]) for f2(x). The variance σ2

is used to adjust the Gaussianity of fk(x). With a small σ
(see Figure 1a), f1(x) and f2(x) are highly multi-modal,
and are far away from each other; with a large σ (see Fig-
ure 1b), f1(x) and f2(x) become close to Gaussian and
have a significant overlap with each other.

Figure 1(a) & (b) also shows the shapes of the correspond-
ing product f(x) ∝ f1(x)f2(x) and the density function
fx̄(x) of the weighted averaging x̄ = w1x1 + w2x2 with
wi ∝ 1/varfi(x). We see that with a small σ, fx̄(x) is very
different from f(x) but still covers a large part of f(x),
and hence can serve as a good importance sampling pro-
posal (as approximately used in our methods). With a large
σ, both f(x) and fx̄(x) are Gaussian like and are almost
identical with each other.

Figure 1(c) & (e) shows the MSE of different algorithms
when estimating the posterior mean Ef (h(x)) with h(x) =
x. Figure 1(c) shows the results of different algorithms
when σ = 0.5 (the highly non-Gaussian case), in which
we find that Method I works better than Method II and
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a. Estimating Ef [x] (p = 10, n = 5× 103) b. Estimating Ef [x
2] (p = 10, n = 5× 103)
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Figure 3: Results on probit regression model with simulated data D of size 12, 000, partitioned into m subsets, with m
ranging from 2 to 100. (a)-(b) The MSE for estimating Ef [x] and Ef [x2], respectively; the posterior sample size is fixed
to be n = 5× 103 in both cases. All the results are averaged over 500 random trials.
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Figure 4: Comparing with SMS by Xu et al. (2014) on
Bayesian probit regression. The setting is the same as that
in Figure 3, except with fixed subset number m = 10.

Method II is clearly inconsistent in that its MSE stops de-
crease when the sample increases. Figure 1d shows the re-
sult of different algorithms when σ = 10 (the almost Gaus-
sian case), in which we find that Method II works better
than Method I as predicted by Theorem 3.4.

Figure 1(e) shows the results of different algorithms when
we range σ from 0.5 to 10 (from highly non-Gaussian to
highly Gaussian), and we can find that the performance of
Method I converges to that of Global baseline I as predicted
by Theorem 3.4, and that of Method II converges to Global
baseline II. In all the cases, we find that both Weighted Avg
and KDE perform much worse. Multiple IS tends to per-
form well when f1 and f2 are close to each other, but is
worse when they are far apart from each other.

4.2 BAYESIAN PROBIT REGRESSION

We consider the Bayesian probit regression model for bi-
nary classification. Let D = {χ`, ζ`}N`=1 be a set of ob-
served data with p-dimensional features χ` ∈ Rp and bi-
nary labels ζ` ∈ {0, 1}. The probit model is

p(D|x) =
N∏

`=1

[
ζ`Φ(x>χ`) + (1− ζ`)(1− Φ(x>χ`))

]
,

where Φ(·) represents the cumulative distribution function
of the standard normal distribution. We use an uninforma-
tive Gaussian prior p(x) = N (x; 0, 0.1) on x throughout
our experiments.

We start with testing our methods on simulated datasets,
where we first generate a true value of x with 50% zero
elements and 50% elements drawn randomly from stan-
dard normal distribution, and then simulate a dataset D =
{χ`, ζ`}N`=1 that is subsequently evenly partitioned into
m subsets {Dk}mk=1, each of which includes N/m data
points. We simulate N = 12, 000 number of points
throughout our experiments.

Figure 2(a) & (b) show the mean square error when estimat-
ing the posterior mean Ef [x] and the second order moment
Ef [x2], respectively, both when the datasetD is partitioned
intom = 10 subsets (so that each subsetDk receives 1, 200
data points). We can see that as the posterior sample size
n of the subset samples {xki }ni=1 ∼ p(x|Dk) increases,
our Method I and Method II match closely with the Global
Baseline I and Global Baseline II, respectively; this may
suggest that the local posteriors fk are close to Gaussian
in this case. The other methods, including Weighted Avg,
KDE and Multiple IS, work significantly worse than both
of our methods.

Figure 2(c) & (d) shows the results under the same setting
as Figure 2(a) & (b), except when the dimension p increases
to 50, where we observe that our Method I and Method II
match less closely with the corresponding global baselines,
but still tend to significantly outperform all the other dis-
tributed algorithms.

Figure 3(a) & (b) show the results when we fix the dimen-
sion p = 10 and a posterior sample size of n = 5×103 and
partition the dataset D into different number m of subsets
(so that each subset Dk receives 12, 000/m data points),
with m range from 2 to 100. We observed that our Method
I and Method II again match closely with the Global Base-
line I and Global Baseline II, except when the partition
number m is very high (e.g., m ≥ 30 for Method I, and
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Figure 5: Probit regression on the CoverType dataset. The dataset is partitioned evenly into 10 subsets. The result of
Multiple IS in (b) is much worse than the other methods and is not shown in the figure.

m ≥ 100 for Method II).

Figure 4 shows the result when we compare our methods
with the iterative SMS method by Xu et al. (2014), where
we find that our Method I and Method II tend to perform
as well as SMS at its convergence, but has the advantage
of requiring no iterative communication or re-sampling.
We also tested the Weistrass sampler by Wang & Dunson
(2013) (result does not report), but find it often performs
worse (results similar to Figure 3 of Xu et al. (2014)).

In addition, we experimented with an iterative version of
our method which introduces local priors pk(x) that satisfy∏
k pk(x) = p(x) where p(x) is the original global prior,

and iteratively updates pk(x) to make the local posteriors
fk(x) = p(Dk|x)pk(x) match with each other. We ob-
serve that this iterative version does not improve the result
significantly, likely because the non-iterative version of our
method is already good enough.

Binary CoverType Dataset We then test our methods on
the Forest Covertype dataset from the UCI machine learn-
ing repository (Bache & Lichman, 2013); it has 54 features,
and is reprocessed to get binary labels following Collobert
et al. (2002). For our experiment, we take the first 12,000
data points, and partition them into 10 subsets. The results
of different algorithms are shown in Figure 5, in which we
see that our Method I and Method II still perform signifi-
cantly better than the other distributed algorithms.

5 CONCLUSION

We propose an importance weighted consensus Monte
Carlo approach for distributed Bayesian inference. Two
practical versions of our method are proposed, and their
properties are studied both theoretically and empirically.
Our methods have significant advantages over the previ-
ous one-shot methods based on density estimates in terms
of accuracy, as well as the iterative methods in terms of
computational and communication costs.

APPENDIX

Proof of Theorem 3.4. We only prove MSE(zIh) =
varf (h(x)) here; the fact that MSE(zIh) ≥ MSE(zIIh ) can
be found in Henmi et al. (2007, Theorem 1).

Let MLEn(ẑIh) = nE[(ẑIh − zh)2]; using the Delta method
we can show that MLEn(zIh) � Eq[(h(x̄)− zh)2wn(x)2],
with

wn(x) =
pn(x)

q(x)
=
N (x̄, µ0,Σ0)

N (x̄, µ̂0, Σ̂0)

∏

k

N (xk, µk,Σk)

N (xk, µ̂k, Σ̂k)
,

where q(x) =
∏
kN (xk; µk,Σk), and pn(x) =

N (x̄; µ0,Σ0)
∏
kN (xk; µ̂k, Σ̂k)/N (x̄; µ̂0, Σ̂0); here

wn(x) and pn(x) are indexed with sample size n since they
dependent on the empirical means and variances. Since
varf (h(x)) = Epn [(h(x̄) − zh)2] by Proposition 3.1, we
have

MSEn(zIh)− varf (h(x))

� Eq[(h(x̄)− zh)2wn(x)2]− Epn [(h(x̄)− zh)2]

= Epn [(h(x̄)− zh)2wn(x)]− Epn [(h(x̄)− zh)2]

= Epn [(h(x̄)− zh)2(wn(x)− 1)]

Using Cauchy-Schwarz inequality, we have

(
MSE(zIh)− varf (h(x))

)2

≤ Epn [(h(x̄)− zh)4] · Epn [(wn(x)− 1)2]

= Ef [(h(x)− zh)4] · Eq[wn(x)(wn(x)− 1)2].

Therefore, we just need to show that Eq[wn(x)(wn(x) −
1)2] → 0. This can be done using dominant convergence
theorem: Let ψn(x) = q(x)wn(x)(wn(x) − 1)2, then we
have ψn(x) → 0, ∀x since µ̂k → µk, Σ̂k → Σk and
hence wn(x) → 1 for ∀x; in addition, we can show that
|ψn(x)| ≤ q(x)1/2 for large enough n and q(x)1/2 is an
integrable function.
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Abstract

Exemplar clustering attempts to find a subset of
data-points that summarizes the entire data-set
in the sense of minimizing the sum of distances
from each point to its closest exemplar. It has
many important applications in machine learning
including document and video summarization,
data compression, scalability of kernel methods
and Gaussian processes, active learning and fea-
ture selection. A key challenge in the adoption
of exemplar clustering to large-scale applications
has been the availability of accurate and scal-
able algorithms. We propose an approach that
combines structured similarity matrix representa-
tions with submodular greedy maximization that
can dramatically increase the scalability of ex-
emplar clustering and still enjoys good approx-
imation guarantees. Exploiting structured sim-
ilarity matrices within the context of submodu-
lar greedy algorithms is by no means trivial, as
naive approaches still require computing all the
entries of the matrix. We propose a random-
ized approach based on sampling sign-patterns
of columns of the similarity matrix and estab-
lish accuracy guarantees. We demonstrate signif-
icant computational speed-ups while still achiev-
ing highly accurate solutions, and solve problems
with up-to millions of data-points in around a
minute or less on a single commodity computer.

1 Introduction

With the prevalence of large-scale datasets coming from
social media, computational biology, finance and engineer-
ing it has been difficult to apply some of the more compu-
tationally intensive machine learning approaches such as
probabilistic Graphical models, kernel methods and Gaus-
sian processes. Simple tools like logistic regression trained
via stochastic gradient descent are instead prevalent in web

companies that need to deal with hundreds of millions and
more samples [16]. Exemplar clustering suggests a path to
extend some of the powerful ML methods to such domains
by finding small representative subsets of data to summa-
rize the large dataset, and apply the method on the sum-
mary. Other uses of exemplar clustering include summa-
rizing data for humans (document and video summariza-
tion [14]), facility location in OR, and active learning [7] to
prioritize the annotation in large unlabeled datasets where
annotating the entire dataset is out of the question.

An integer programming formulation for exemplar cluster-
ing is itself intractable, being an NP-hard problem [21].
Hence, a variety of approximate schemes have been de-
veloped including LP relaxations [3, 27], message-passing
algorithms [8, 13], and heuristic algorithms such as Parti-
tioning around Medoids (PAM) [11]. The most successful
methods balancing scalability and good accuracy guaran-
tees1 have been based on the theory of submodular max-
imization [12]. Exemplar clustering (with some mild as-
sumptions) can be shown to be submodular, i.e. to satisfy
diminishing marginal gains. Thus, invoking the celebrated
result of [21], the greedy approach that adds exemplars in
order of their marginal gains has an 1 − 1/e approxima-
tion guarantee. A lazy evaluation approach called “Lazy
Greedy” further exploits the diminishing marginal gains
property to accelerate the solution [18].

Nevertheless, for very large scale data-sets even greedy al-
gorithms become computationally infeasible, as the exem-
plar clustering cost-function is non-local, and evaluating
the marginal gains for each exemplar candidate requires
evaluating the distance to each other point in the dataset.
A number of directions have been considered to speed up
basic greedy (and lazy greedy) methods. Simple surro-
gate functions (such as modular bounds) approximating the
submodular function have been proposed in [26]. The pa-
per also introduced a nearest neighbors pruning approach

1There is a rich theory on LP relaxations for exemplar clus-
tering, but the methods are less scalable, having to solve linear
programs with O(n2) variables, where n is the number of data-
points.
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to reduce the set of candidates to consider. This idea has
been further explored in [15]. A distributed algorithm that
randomly splits the data among several machines, selects
exemplars from each subset, and then combines them was
proposed in [20]. This however requires further approxi-
mation by a factor of 1/min(k,m) where k is the number
of exemplars, andm is the number of machines. A stochas-
tic sub-sampling idea called ”Lazier than lazy greedy” was
proposed in [19] which takes a small random subset of po-
tential exemplars into consideration at each stage. By tak-
ing the sample size proportional to n/k log(1/ε) the run-
ning time of the algorithm executed for k iterations be-
comes independent of k, and is still able to achieve an
1−1/e− ε approximation guarantee (in expectation). This
result was also applied in the streaming setting [2].

We pursue a different approach where we assume that the
similarity matrices are either exactly represented as cer-
tain structured matrices (such as low-rank, sparse plus low-
rank, product of sparse matrices, Toeplitz, e.t.c), or can
be approximated by such. For example, using the popu-
lar word2vec representation for words and sentences [17]
along with cosine similarity gives rise to an explicit low-
rank similarity matrix. Squared Euclidean distance matri-
ces (and corresponding similarity matrices) are also exactly
low-rank for low-dimensional feature spaces. While sim-
ply using the structured matrix for the greedy algorithm re-
duces its memory footprint, it still requires quadratic com-
putation in number of samples n. We show that the bot-
tleneck of the problem involves a low-rank positive col-
umn sum problem. We develop a randomized approxima-
tion technique based on sampling column sign-patterns and
establish theoretical guarantees which can reduce the com-
putation to linear in n. The proposed approach is guaran-
teed to generate a better solution than the stochastic sam-
pling approach [19] at the cost of a very modest increase in
computation. We consider numerical studies on a number
of large-scale machine learning problems and demonstrate
dramatic increase in speed compared to plain greedy and
lazy-greedy methods with only a minor corresponding loss
in objective values.

The outline of the paper is as follows. We first overview
submodular maximization, and prior work on exact and
approximate greedy algorithms in Section 2. We discuss
structured approximation matrices and our approach for ap-
proximate greedy optimization in Section 3. We present
theoretical guarantees in Section 4 and experimental results
in Section 5.

2 Background: submodular optimization

In this paper we consider an approach for exemplar clus-
tering based on submodular maximization. We start by re-
viewing the notions of submodularity, greedy algorithms
and their guarantees, and the recent extensions.

Let V be a set of size n. A set function f : 2V → R
is called submodular if it satisfies a diminishing marginal
gains property: if A ⊆ B, and a ∈ V then

f(A ∪ a)− f(A) ≥ f(B ∪ a)− f(B)

Intuitively, there is more benefit (higher marginal gain) to
add a new element a to the smaller setA than to its superset
B. If for all A ⊆ B it holds that f(A) ≤ f(B) then the
function is called monotone submodular. If f(∅) = 0 then
the function is called homogeneous. A celebrated result
by Neumhauser et. al establishes that a simple greedy al-
gorithm achieves an 1 − 1

e approximation to the optimal
objective to non-negative cardinality constrained mono-
tone submodular maximization [21]. The greedy algorithm
starts with an empty set, and at each stage adds the ele-
ment which has the maximum marginal gain ∆f(a|A) =
f(A ∪ a)− f(A) to the current selected set A.

The exemplar clustering problem that we consider in the
paper has the following form. We have a collection V of
data-points,2 and a similarity function s : V × V → R+.
We would like to faithfully summarize the entire data-set
(maximize the pairwise similarity between each point and
its exemplar) using at most k exemplars:

max
A⊂V

∑

i∈V
max
j∈A

s(i, j) where |S| ≤ k (1)

One can verify that the exemplar clustering problem above
corresponds to nonnegative monotone submodular maxi-
mization with a cardinality constraint, and hence the greedy
algorithm can be applied with the corresponding approx-
imation guarantee. The greedy algorithm can be sped
up further using the same diminishing returns property of
marginal gains [18] by lazy evaluation, by keeping the ele-
ments in a priority queue sorted according to marginal gain.

Unfortunately, the evaluation of the marginal gain for a sin-
gle candidate exemplar requires O(n) computation, and
we consider O(n) candidates at each stage. Hence the
greedy algorithm still does not scale to very large data-sets
beyond a few hundred thousand data points. Improving
the scalability of the greedy algorithm for exemplar clus-
tering has been an active research area and a number of
approximation strategies have been proposed at the cost
of worse approximation guarantees. The existing propos-
als include stochastic greedy, distributed algorithms and
nearest-neighbor graph approximations that we have de-
scribed in the introduction. Next we describe how we can
exploit structured similarity matrices and a randomized ap-

2All our results also extend to the non-symmetric version of
the problem where the data-points come from set V1 and exem-
plars have to be selected from V2, for example the facility lo-
cation problem in Operations Research. Also, allowing rewards
hi ≥ 0 for making data-point i an exemplar, still keeps the prob-
lem monotone and submodular.
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proach based on sampling sign-patterns of columns to pro-
pose an elegant scalable solution for exemplar clustering
with good approximation guarantees.

3 Greedy exemplar selection with low-rank
similarity matrices

We consider the greedy approach for exemplar clustering.
As inputs we have the similarity matrix S and a budget
k. At each stage t we have the current active set At of
exemplars chosen at the previous iteration. We would like
to evaluate the marginal gain of new elements a ∈ V \ At.
Suppose that at step t we have computed the optimal as-
signment ĵt(i) = arg maxj∈At s(i, j) for each datapoint i.
We will refer to the attained objective as zi = s(i, ĵt(i)).
At iteration t + 1, we compute the marginal gain for each
a ∈ V \ At. The closest element to i in At ∪ a either re-
mains the same as in the previous step, or it becomes a.
Hence the marginal gain ∆f(a|A) of adding a to At is

∑

i

max
(
s(i, a), s(i, ĵt(i))

)
− s(i, ĵt(i)) (2)

Define [X]+ = max(X, 0). Then the computational bot-
tleneck is computing the vector of marginal gains, i.e. the
maximum positive column sum of the matrixR = S−z1T :

max
j

∑

i

[Rij ]+ = max
j

∑

i

[Sij − zi]+ (3)

Naive implementation requires computing all the elements
of this matrix3. We show that if the matrix S has a struc-
tured representation and allows fast matrix action (mutlit-
plication of the matrix by a vector) – then we can exploit a
randomized algorithm with good guarantees.

We first analyze the case of low-rank matrices, S = Ũ Ṽ T ,
where Ũ and Ṽ are n×d. We show that we can use a num-
ber of other structured matrices in Section 3.4. Now, if S is
low-rank with rank d then R is also low-rank with rank at
most d+ 1. Let U = [Ũ , − z] and V = [Ṽ , 1]. Then R =
UV T = S − z1T . Note that computing the plain column
sum for low-rank matrices is trivial: 1TR = (1TU)V T

thus reducing the computational complexity from O(n2)
to O(nd). However, the positive sign in 1T [R]+ makes it
considerably more difficult to exploit the low-rank factor-
ization. We study this problem next.

3.1 Maximum positive column sum problem

We would like to efficiently compute the maximum positive
column sum for a low-rank matrix R = UV T :

max
j

∑

i

[Rij ]+ = max
j

∑

i

(
[UV T ]+

)
ij

(4)

3Lazy greedy algorithms avoid computing some elements but
still evaluate a large number of columns of this matrix.

Algorithm 1 Approximate max-positive column sum
1. Uniformly at random sample r columns from the matrix R
and compute their sign patterns qi.
2. Aggregate sign-patterns into matrix Q = [q1, ...qr].
3. Let Y = (QTU)V and let y = maxi Yij .
4. Find ĵ = argmaxj yj .

Suppose we knew the binary ({0, 1}) sign-pattern q̂ of the
column achieving the maximum in (4), i.e. qi = 1{Riĵ>0}
where ĵ is the column achieving the arg max in (4). Then
we could compute

max
j

∑

i

[Rij ]+ = max
j

∑

i

(
[UV T ]+

)
ij

= max
j

[(q̂TU)V T ]j

(5)

Also note, that for an arbitrary sign-pattern q, we have

max
j

[(q̂TU)V T ]j ≥ max
j

[(qTU)V T ]j (6)

We suggest to take a collection of r random sign-patterns
{q1, ...,qr} and evaluate the maximum value of the r.h.s.
in (6) over all of them. We take the sign-patterns from a
subset of columns of R sampled uniformly at random (an-
other choice can be i.i.d. binary vectors). Surprisingly,
such a simple scheme can be shown to satisfy good approx-
imation guarantees, which we describe in Section 4, and
also to give very accurate numerical results. In particular,
it is guaranteed to produce better results than the stochastic
greedy approach [19] with the same subset of columns.

The procedure is described in Algorithm 1. It produces a
lower bound

∑
iRiĵ on the maximum positive column sum

of R:

ĵ := arg max
j

max
j̃∈{j(1),...,j(r)}

qT
j̃
R:,j . (7)

3.2 Scalable submodular greedy algorithm

Now, to use this algorithm for efficient greedy submodular
optimization, we have to repeat it for k rounds of greedy
to generate k exemplars. At each round we simply recom-
pute the vector z and R = [Ũ , − z][Ṽ , 1]> and invoke
Algorithm 1. At the initial stage the vector z is zero, and
the initial marginal gains are simply the column-sums of S.
We summarize the steps in Algoritm 2.

The greedy algorithm is recovered if we find the exact col-
umn maximizing marginal gains: arg maxj

∑
i([R]+)ij .

This however would require O(n2) computation. By us-
ing the approach from Section 3.1 with r random signs, it
can be reduced toO(nr) by allowing approximate answers.

3.3 Further speed-ups

The approach proposed in the previous section can dramat-
ically reduce the computation of the greedy method from
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Algorithm 2 Low Rank GReedy (LRGR)
Input: S = Ũ Ṽ T

Initialize: ĵ1 = argmaxj

∑
i[Ũ Ṽ

T ]ij . Set A1 = {ĵ1}.
Evaluate zi = s(i, ĵ1). Set t = 1.
for i = 1 . . . r do

i. Advance t→ t+ 1
ii. Let R = Ũ Ṽ T − z1T .
iii. Use (7) to approximately find
ĵt ≈ argmaxj

∑
i([R]+)ij .

iv. At = At−1 ∪ ĵt
v. Update zt: zt+1

i = maxj∈At s(i, j)
end for

O(n2) to O(nr) per each round of the greedy method. Yet,
we can improve the running time and accuracy further.

In the previous section the matrix Q of sign-patterns was
recomputed from scratch at each greedy iteration. Note
that if we store this matrix from the previous iteration, then
we only need to update QT z , while QT Ũ remains the
same. While reusing the same matrix Q on all iterations
may significantly impact accuracy, we can keep generating
new sign patterns but also keep re-using the computation-
ally inexpensive pre-computed old-sign patterns.

We also note that we can compute the complement sign-
patterns very inexpensively. Let q̄ = 1 − q. Then
(q̄TU)V T = (1TU)V T − (qTU)V T . Thus we can add
another r complement sign-patterns at the cost of comput-
ing the column sum of R = UV T .

Finally, the algorithm proposed in the previous section aims
to speed up the computation of the plain greedy algorithm.
In [19] an extension of stochastic greedy was proposed to
also accelerate the lazy-greedy approach by caching previ-
ously computed marginal gains and storing them in a prior-
ity queue. The same ideas can be used with our randomized
sign-pattern approach to develop its lazy-greedy variant.

3.4 Low-rank and other structured similarity
matrices

In Sections 3.1 and 3.2 we assumed that the similar-
ity matrix S is low-rank, which can happen if we use
inner-product similarity measure in a low-dimensional vec-
tor space (e.g word2vec). Note that the matrix of pair-
wise squared Euclidean distances is also low-rank for low-
dimensional feature spaces, and this also holds for matrices
based on arbitrary Bregman divergences, and hence for the
corresponding similarity matrices.

In addition to the low-rank assumption, we can also use a
variety of other structured matrix factorizations in exactly
the same way, as long as they allow fast-matrix action. Sup-
pose S = Ũ Ṽ T , then to apply the approach in Section
3.1 we simply need to be able to quickly compute QŨ and
(QŨ)Ṽ T . For example if Ũ and Ṽ have high-dimensional
but very sparse rows (e.g. the sparse one-hot bag-of-words

representation for text), then the matrix-vector products de-
pend on the number of non-zero entries in Ũ and Ṽ .

Other factorizations allowing fast matrix action include
sparse plus low-rank matrices, Fourier matrices, circulant
and convolution matrices, and even more advanced matrix
approximations including block-diagonal low-rank matri-
ces [24] and matrices with low displacement operators [25].

4 Theoretical analysis

In this section we show that LRGR achieves an approx-
imately optimal solution in expectation when sufficiently
many sign patterns are sampled. In the first part we show
approximation bounds that do not assume any structure on
the similarity matrix S. Subsequently, we try to provide
intuition behind how the low-rank structure on S can help
in achieving better solution by analyzing the case of rank-
2 similarity matrix. Finally, we analyze the case of data
distributed across tight clusters.

4.1 Structure-oblivious approximation guarantees

The results in this section do not exploit the structure on the
similarity matrix. The proof proceeds along similar lines
as [19]. We prove the result for the symmetric case when
the candidate exemplars belong to the set of points. LetA∗
be the optimal solution of problem (1) with |A∗| = k (if
the algorithm terminates with |A∗| < k, it will return the
optimal solution [21]), and At be the solution of LRGR
at step t. Let V denote the full index set of all the points
(V = {1, 2, . . . , n}). Let f(At) be the objective value for
set At and ∆(a|At) := f(At ∪ a)− f(At).

Using submodularity, we have

f(A∗)− f(At) ≤
∑

a∈A∗\At

∆(a|At) (8)

The following Lemma bounds the expected potential gain
of LRGR after step t.

Lemma 4.1. Given a current solution At, the ex-
pected gain of LRGR in the next step is at least
1−e−kr/n

k

∑
a∈A∗\At ∆(a|At) when signs from r randomly

picked columns are used.

Proof. Let R be the set of randomly picked columns with
|R| = r. The probability that one of the columns from
A∗ \ At is picked, is given by

P [R∩ (A∗ \ At) 6= φ] = 1− P [R ∩ (A∗ \ At) = φ]

= 1−
(

1− |A
∗ \ At|
|V \ At|

)r

≥ 1− e−
r|A∗\At|
|V\At| ≥ 1− e− r|A∗\At|

n
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Since 0 ≤ |A∗ \ At| ≤ k, using Jensen’s inequality we
have

1− e− r|A∗\At|
n ≥

(
1− e− rk

n

) |A∗ \ At|
k

If LRGR picks one of the columns fromA∗ \At, the score
for that column will be evaluated exactly. Scores for the
columns whose sign pattern matches that of the picked col-
umn will also be evaluated exactly. The scores for all other
columns will be underestimated. As LRGR takes a maxi-
mum over all the scores, it will add a column to At which
will give a gain equal to at least that of the picked column
from A∗ \ At. As any of the columns from A∗ \ At is
equally likely to be picked, the exemplar at+1 added by
LRGR will yield

E[∆(at+1|At)] ≥ P [R∩ (A∗ \ At) 6= φ]

∑
a∈A∗\At ∆(a|A)

|A∗ \ At|

≥ 1− e−kr/n
k

∑

a∈A∗\At

∆(a|At).

Combining Lemma 4.1 with Eq. 8 we get

f(A∗)− f(At) ≤ k

1− e−kr/nE[f(At+1)− f(At)] (9)

Taking expectation over At, we have

E[f(At+1)− f(At)] ≥ 1− e−kr/n
k

E[f(A∗)− f(At)]
(10)

Unrolling the above by induction, we get

E[f(Ak)] ≥
(

1−
(

1− 1− e−kr/n
k

)k)
f(A∗)

≥
(

1− e−(1−e−kr/n)
)
f(A∗)

≥
(

1− e−1(1 + e−kr/n)
)
f(A∗)

= (1− 1/e− e−kr/n)f(A∗).

Note that the above bound turns vacuous for r ≤
n
k ln 1

1−1/e ≈ 0.459nk . When the similarity matrix is al-
lowed to have negative entries, the submodular objective
function may lose nonnegativity but it still remains mono-
tonic. In this case, one can obtain a guarantee of the form:

f(A∗)−E[f(Ak)] ≤ (e
1−k
k + e

−kr
n )(f(A∗)−E[f(A1)]).

4.2 Approximation guarantee under low-rank
assumption

The analysis in the previous section did not use the low-
rank assumption on the matrix R. We show that this as-
sumption is helpful not only to improve the computational

complexity of the proposed algorithm, but also to improve
the approximation compared to the stochastic greedy ap-
proach. To build some intuition of why the low-rank as-
sumption is helpful, consider the maximum possible num-
ber of distinct sign-patterns of columns of the matrix R. If
the matrix is full-dimensional, then any sign-pattern is pos-
sible, and there are 2n such sign patterns out of which n are
chosen. However, if R = UV T , and U and V are n × d,
then for a fixed U , the number of possible sign-patterns of
columns of R is reduced. In particular, as we show below,
for the 2-dimensional case, the number of possible sign-
patterns is 2n (instead of 2n): U has two columns, and
the sign patterns of any linear combinations of these two
columns generate only a small subset of possible sign pat-
terns.

More generally, if U is d-dimensional, then using the re-
sults in [10] for number of regions created by n hyperplanes
(in general position) in d dimensions, we have that the num-
ber of possible sign-patterns of R for a fixed U is given by:

2
d∑

i=1

(
n− 1
i− 1

)
(11)

For the 2-dimensional case, this number is 2n. If we as-
sumed that the column sign-patterns in our matrix R are
sampled uniformly at random with replacement from the
2n possible choices, then the expected number of unique
sign-patterns is

∑n−1
i=0 ( 2n−1

2n )i = 2n(1−(1−1/(2n))n) ≈
0.787n. So we expect some number of columns with re-
peated sign-patterns in the low-dimensional case. This
makes it easier for us to get a sign-pattern from our r sam-
pled columns of R that matches the sign-pattern of one of
the exemplars.

Let A∗ be the index set of optimal k exemplars. For the 2-
dimensional case, we consider the probability that at least
one of the r randomly sampled columns, indexed by set
R, will completely agree in signs with at least one of the
exemplars. The worst case for this probability is when all
the exemplars have exactly the same sign pattern since we
reduce our set of candidate signs that the sampled columns
can match to. This worst case probability is given as:

P (R∩A∗ 6= φ) + P (R∩A∗ = φ)(1− ((2n− 1)/2n)r)

= 1− (1− k/n)r + (1− k/n)r(1− ((2n− 1)/2n)r)

≥ 1− e−kr/ne−r/(2n).

The first term in the first line corresponds to the probability
of selecting one of the r sampled columns to be one of the
exemplars, and the second term corresponds to picking a
column that misses the set of exemplars, but whose sign-
pattern agrees with the sign pattern of one of the exemplars.
This probability of at least one agreement in sign patterns
is also a lower bound on the probability of Algorithm 1
recovering a column whose score is at least that of one of
the exemplars. For the best case when all the exemplars
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differ with each other in at least one place in sign patterns,
the lower bound on the recovery probability increases to
(1 − e−kr/ne−kr/(2n)). If we ignore the structure on R,
the lower bound loosens to (1 − e−kr/n) which was used
in Section 4.1.

We should also note that this bound, although better than
stochastic greedy [19], is based on several worst-case sce-
narios and is still highly pessimistic for practical settings.
The uniform sampling assumption of sign patterns im-
plies that all regions created by the n hyperplanes [10] are
equally likely to contribute to the sign patterns, whereas
in practice the data is often non-uniformly distributed and
even occurs in clusters.

Furthermore, the analysis does not consider inexact
matches, where the sampled columns differ in sign patterns
with the exemplars only at a few places. This disagreement
in a small number of places will result in underestimating
the positive sum of the exemplar column to some extent.
However, if the score of the exemplar is mainly contributed
by a few data points (i.e., a few rows) and the gap between
exemplar score and the best non-exemplar score is suffi-
cient, the algorithm may still have a good chance in pick-
ing the exemplar column in next iteration. If this gap is
low, we do not lose much in terms of objective value by
picking one of the runner-up columns. Indeed, we empir-
ically observe a considerable performance gain (in terms
of objective value) over stochastic greedy on several real
datasets in Section 5.

4.3 Approximation guarantees under cluster
assumption

Here we consider another simplified scenario for better un-
derstanding of the sampling approach (7). We assume data
points form K disjoint clusters C1, C2, ..., CK satisfying
0 < m ≤ |Ck| ≤M ≤ n and

(a) Sij ≥ κ, ∀i, j ∈ Ck for some constant κ > 4
4+m/M .

(b) Sij ∈ [c− ε/2, c+ ε/2] for i, j not in the same cluster,
where c, ε are constants satisfying c < (κ− ε)/2 and
ε < m

4nκ.

The cluster assumption ensures that points in the same clus-
ter Ck have similarity at least κ, while points of differ-
ent clusters has similarity of bounded variance (in range
[c − ε/2, c + ε/2]). Note the low-variance condition for
points of different clusters is often satisfied in problem
of higher dimension due to the curse of dimensionality,
where uncorrelated points can have maximum distance in-
discernible to the minimum distance [4]. For example, in
document categorization, the semantically-unrelated doc-
uments have only stop words in common, which causes
unrelated documents to have almost the same similarity
to each others. Under the cluster assumptions (a)-(b), we

show that the sampling estimator (7) has approximation er-
ror bounded by 2nε as follows. A related clustering as-
sumption was used to analyze convex relaxations for ex-
emplar clustering in [6].

Theorem 4.1. Let j∗ and ĵ denote the greedy column se-
lected by exact criteria (3) and sampling criteria (7) with
r samples respectively. For data satisfying clustering as-
sumption (a)-(b), we have

n∑

i=1

[Riĵ ]+ ≥
n∑

i=1

[Rij∗ ]+ − 2nε (12)

holds for each iteration t ≤ K with probability at least
1− δ if

r ≥ n

|C(j∗)| ln(
1

δ
). (13)

where |C(j∗)| is the size of the cluster that contains j∗.

Proof. For t = 1, (12) holds directly since R = S and
no sampling is used (so ĵ = j∗). For t > 1, C(j∗) must
be a cluster that does not contain any exemplar chosen in
previous iterations. Otherwise, suppose C(j∗) contains an
exemplar j′ selected in previous iterate. We have

n∑

i=1

[Rij∗ ]+ ≤
∑

i∈C(j∗)
[Sij∗ − Sij′ ]+ +

∑

i/∈C
[Rij∗ ]+

≤ |C(j∗)|(1− κ) + nε

<
mκ

4
+
mκ

4
= mκ/2.

by assumption (a)-(b). However, picking any point j from
a cluster C that does not contain exemplar from previous
iterates gives

n∑

i=1

[Rij ]+ ≥
∑

i∈C(j∗)
[Sij∗ − (c+

ε

2
)]+

≥
∑

i∈C(j∗)
[κ− κ/2]+ ≥ mκ/2,

which leads to contradiction.

Given that C(j∗) is a cluster not containing exemplar se-
lected from previous iterates, consider ĵ selected by the
sampling estimator (7). With number of samples r satis-
fying (13), we have at least 1−δ probability that one of the
sign-pattern vectors qj̃ is produced by a point j̃ ∈ C(j∗),
which has

qij̃ := 1[Siĵ − zi] = 1 , ∀i ∈ C(j∗) (14)
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Figure 1: Average recovery rates vs. number of sampled columns (log-scale) for Algorithm 1 over 100 random trials. Data
is generated from uniform distribution on the unit sphere (left two plots) and standard Cauchy distribution (right two plots).

since zi = Sij for some j /∈ C(j∗). Therefore, we have

n∑

i=1

[Riĵ ]+ ≥ max
j∈{j(1),..,j(r)}

n∑

i=1

qijRiĵ

≥ max
j∈{j(1),..,j(r)}

n∑

i=1

qijRij∗ ≥
n∑

i=1

qij̃Rij∗

≥
∑

i∈C(j∗)
qij̃Rij∗ +

∑

i/∈C(j∗)
qij̃Rij∗

≥
∑

i∈C(j∗)
[Rij∗ ]+ − nε,

(15)
where the last inequality is due to (14), assumption (b) and
Rij∗ := Sij∗ − Sij > 0 for some j /∈ C(j∗). On the other
hand,

n∑

i=1

[Rij∗ ]+ =
∑

i∈C(j∗)
[Rij∗ ]+ +

∑

i/∈C(j∗)
[Rij∗ ]+

≤
∑

i∈C(j∗)
[Rij∗ ]+ + nε.

(16)

Combining (15) and (16) leads to the conclusion (12).

5 Experimental results

We now study the performance of the proposed approach
on numerical experiments. We first consider the low-rank
maximum positive column sum problem from Section 3.1
corresponding to one stage of the greedy algorithm, and
then the low-rank greedy algorithm from Section 3.2.

5.1 Synthetic experiments

In this section we perform numerical simulations to study
the behavior of the proposed sign sampling approach in
Section 3.1 in recovering the top scoring columns. In
the first experiment, we independently sample rows of
U ∈ Rn×d and V ∈ Rn×d from a uniform distribution
on the unit sphere Sd−1, and take the similarity matrix to
be S = UV >. We conduct 100 random trials of gener-
ating pairs of U and V . For every sampled pair U and
V , we randomly sample 100 different sets of sign patterns

and use Algorithm 1 to estimate the highest scoring col-
umn using each set. We report the fraction of times the
estimated column is among the top scoring 0.5% columns
over all these random trials. Figure 1 shows the recovery
rate versus the number of sign patterns for n = 1K, 10K
and d = 2, 25 which clearly increases with the number of
sampled columns.

We repeat the same experiment with U and V generated ac-
cording to the heavy-tailed Cauchy distribution, and we re-
port the much more stringent recovery rate of the top scor-
ing column this time. We observe that Algorithm 1 per-
forms exceptionally well in recovering the top scoring col-
umn for both d = 2 and 25. Intuitively, this happens due to
the heavy tailed nature of Cauchy distribution, where only
a small subset of rows of S will contain the maximums
and minimums for each column. Hence, getting the correct
sign-pattern for these few rows will greatly increase the
probability of recovering the top column by Algorithm 1.
This example highlights the fact that the proposed LRGR is
capable of taking advantage of the underlying distribution
whereas stochastic greedy approach [19] remains oblivious
to the distribution of entries of S since it computes the max-
imum only over the sampled subset of columns. In the
Cauchy example, stochastic greedy will have a recovery
probability of ∼ 0.01 for n = 10K, r = 100 irrespective
of d, whereas Algorithm 1 empirically shows a recovery
rate of ∼ 0.96 for d = 25.

5.2 Experiments on Machine learning datasets

We compare hte proposed randomized low-rank greedy ap-
proach (LRGR) to several other competing methods for ap-
proximate exemplar clustering, focusing on alternative ap-
proximate greedy methods. We have not considered integer
programming and message passing based methods as they
do not scale to the dataset sizes we consider in the experi-
ments. We describe the contestants first4. We consider both
data-sets with low-dimensional feature representations, and
data-sets with high-dimensional but sparse feature repre-
sentation. For simplicity we focus on the inner-product
similarity measure here. The experiments are run on a sin-

4All the algorithms are written in python relying on numpy
and scipy packages for dense and sparse linear algebra.
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gle commodity computer with 16 Gb of RAM.

Plain and lazy greedy As a baseline we used the stan-
dard greedy and lazy greedy algorithms, which do use
the low-rank structure to reduce the memory footprint, but
which compute all the required entries of the similarity ma-
trix. We also use the efficient update for the t-th step of the
greedy method, where we do not recompute the optimal
assignment of points to exemplars from scratch, but we re-
use the previous assignment at the t− 1-st step – and only
compare its best assignment to the new added exemplar.
Lazy greedy achieves the same objective value as plain
greedy. In our experiments with small number of exem-
plars the running time of lazy-greedy was similar or slower
than plain greedy, so the time is not reported. Lazy-greedy
can become significantly faster than plain greedy when the
number of exemplars is much higher, and it typically accel-
erates (benefits more from lazy evaluation) at later stages.

Random subset As a very simple baseline we obtain a
random subset of points as exemplars, and compute the cost
of optimal assignments of points to these exemplars.

K-means with cluster medoids (KmeansCTR). K-
means algorithm produces cluster centers that are not data-
points but their convex combinations. We use a heuris-
tic that ignores k-means cluster centers, and instead com-
putes the centroid (1-medoid) for each of the k-clusters in-
dependently. Initialization is done using k-means++ [1].
Note that for similarity matrices other than cosine similar-
ity comparison with k-means will not be meaningful, as
k-means assumes Euclidean distance between data-points.

Stochastic greedy (StochGr) The approach [19] selects
at each step a small subset of columns of the similarity ma-
trix, and only searches for exemplars among this set. We
use the same subset-size 100 as for the proposed algorithm.

KNN-greedy (KnnGr) A K-nearest neighbor graph for
the data is used to create a sparse approximation to the sim-
ilarity matrix which is non-zero for the K nearest neigh-
bors only [15, 26]. We use 100 nearest neighbors to give
the same number of parameters as stochastic greedy and
the proposed algorithm. We report two times for this al-
gorithm: total time taken including the construction of the
KNN-graph (pre-processing step needed to run the algo-
rithm), and just the time for exemplar clustering starting
with the sparse KNN graph already provided.

LR-greedy (LRGR) This is our proposed algorithm
which uses sign-patterns of 100 random columns selected
at each iteration from the similarity matrix.

Datasets. We use a collection of standard machine learn-
ing datasets from the UCI archive [5] of various sizes and

numbers of features (both dense and sparse), and report the
time and approximation quality in the table below. The
data-sets with label (RF) use a Random-Feature Kernel
Approximation method [23] to perform exemplar cluster-
ing with (RBF-Laplacian) Kernelized features, namely the
Random Binning Features.

The final data-set is the World TSP data set which contains
the latitude and longitude of 1,904,711 cities in the world5.
We use geographical distance (computed via polar coordi-
nate flat-Earth formula) between pairs of cities. To obtain a
low-rank approximation to the distance matrix D, we sam-
pled 100n pairs of distances and use low-rank matrix com-
pletion6 to find UV T ≈ D. Using rank d = 20, we obtain a
decomposition UV T with testing RMSE < 10−2. We use
the corresponding similarity matrix S = Dmax − UV T ,
where Dmax is the maximum element of D. Note that due
to the non-Euclidean nature of the similarity matrix, com-
parison with Kmeans-CTR is not meaningful.

Results We report the objective values in table 1 and the
timing numbers in table 2. The number of exemplars is
kept small in these experiments as all the contesting meth-
ods scale linearly with the number of exemplars. To reduce
this linear scaling one could either use the algorithms in a
distributed setting proposed in [20] or combine with lazy-
evaluation using a priority queue for marginal gains. For
methods involving stochasticity (e.g. random subset se-
lection in stochastic greedy, the proposed LRGR method,
and k-means initialization) we report an average objective
value and run-time over 10 trials.

We can see that the proposed low-rank greedy approach
with random projections provides a very close approxima-
tion to the exact greedy objective values at an orders of
magnitude faster time. We also see that among all the ap-
proximate algorithms the proposed method typically pro-
vides the best objective value (excluding the exact greedy
method), and always within the top two results. The time
is also competitive with other algorithms. K-means fol-
lowed by finding cluster centroids is quite a good con-
tender on small-dimensional data-sets, but its approxima-
tion quality can be poor on high-dimensional sparse data-
sets. Furthermore, K-means assumes a Euclidean distance
between data-points and does not apply to more general
distance matrices.7. For KNN-greedy the time is domi-
nated by the construction of the sparse nearest neighbors
graph. Once the graph is constructed the algorithm is fast,
and provides solutions which are quite reasonable although
not as good as the proposed approach. The construction
of the KNN graph can be accelerated using approximate

5Data is at http://www.math.uwaterloo.ca/tsp/world/.
6We use the low-rank matrix completion solver provided by

the authors of [28].
7For example, k-means can not be used with spherical

geodesic, transportation or string-edit distances, while there are
no such constraints for exemplar clustering.
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Table 1: Objective values achieved by greedy submodular algorithms with inner product similarity metric and 10 exemplars.
Here davg is the average number of features per sample. Number of exemplars is 10. The best solution (after exact plain
greedy which we aim to approximate) is marked with one star, and second-best with two stars. The proposed approach
(LRGR) is typically most accurate, and is within the top 2 in all of our experiments.

Data N (M) d davg RND KmeansCtr StochGR KnnGR LRGR Greedy
Satimage 4435 36 36 3587.77 3997.6∗ 3969.38 3977.13 3983.4∗∗ 3976.42

Sector 6412 55197 163 381.5 667.01 717.96 777.23∗∗ 779.24∗ 787.53
Pendigits 7494 16 16 6925.22 7171.33∗ 7122.27 7024.70 7146.24∗∗ 7147.87

Pendigit-RF 7494 12891 100 2194.15 2962.44 2901.8 2994.0∗∗ 3004.27∗ 3015.23
RCV1 20242 47236 74 1217.67 1946.44 2003.26 2175.85∗∗ 2193.92∗ 2239.40

CodRNA 59535 8 8 53256.81 56442.23∗ 55845.54 55411.42 56133.72∗∗ 56146.50
CodRNA-RF 59535 7611 50 22290.93 26353.32∗∗ 25909.36 n/a (mem) 26533.53∗ 26746.18

Covtype 581012 54 11.9 490120.3 521045.25 521188∗∗ n/a (mem) 523629.12∗ n/a
Covtype-RF 581012 54509 50 86973.72 136830.64∗∗ 136357.15 n/a (mem) 146731.86∗ n/a
World-Scale 1904711 20 20 6974224.6 n/a 7309125.1∗∗ n/a (mem) 7408043.0∗ n/a

Table 2: Timing results of greedy submodular algorithms with inner product similarity metric. We allowed up-to 1 hour
for all the competing approaches.

Data N (M) d davg KmeansCtr StochGR KnnGR KnnGR-Ttl LRGR Greedy
Satimage 4435 36 36 0.085s 0.114s 0.178 1.36 0.15s 2.056s

Sector 6412 55197 163 2.613s 1.227s 0.366 7.49 4.82s 68.682s
Pendigits 7494 16 16 0.115s 0.232s 0.356 1.73 0.229s 5.430s

Pendigit-RF 7494 12891 100 2.240s 0.909s 0.313 6.46 3.24s 59.515s
RCV1 20242 47236 74 5.561s 2.106s 1.304 40.83 7.52s 375.067s

CodRNA 59535 8 8 0.637s 1.550s 3.974 19.77 1.82s 593.721s
CodRNA-RF 59535 7611 50 15.981s 5.818s n/a n/a 15.17s 2995.639s

Covtype 581012 54 11.94 9.107s 17.302s n/a n/a 24.17s n/a
Covtype-RF 581012 54509 50 102.257s 37.214s n/a n/a 140.96s n/a
World-Scale 1904711 20 20 n/a 53.4s n/a n/a 67.5s n/a

Figure 2: Av. objective values for LRGR and StochGR vs.
num. sampled columns on Satimage data. 25 trials.

nearest neighbors (ANN) techniques, for example based
on locality-sensitive-hashing (LSH) [9, 22], but that would
also affect the quality of the results. Finally, it is quite clear
that selecting random subsets is a rather poor (albeit very
fast) data-summarization approach and any other method
can provide a significant improvement.

The proposed low-rank greedy method achieved a slightly
better objective than the exact greedy method that it tries to
approximate in one experiment. This is not a contradiction
as selecting a suboptimal exemplar in the current step may
possibly improve the objective in further steps.

Dependence on the number of sampled columns. In
Figure 2 we plot the average objective value achieved via

Stochastic greedy and the proposed LRGR method vs. the
number of sampled columns. The values are averages over
25 trials. We see that LRGR achieves better values by mak-
ing better use of the samples, especially for smaller num-
bers of sampled columns.

6 Concluding Remarks

We developed a new approach for large-scale exemplar
clustering based on submodular greedy maximization with
structured similarity matrices. We propose a randomized
sign-pattern sampling approach to approximate the bottle-
neck computation of finding the element with the maximal
marginal gain. We establish accuracy guarantees, and eval-
uate the approach on large scale exemplar clustering prob-
lems on machine learning data-sets including up-to mil-
lions of data-points. Our current approach is serial and uses
a single processor, but it can also be used as a sub-routine
in previously proposed distributed approaches to extend ex-
emplar clustering to problems of much larger scale.

We thank Baruch Schieber and Robert Hildebrand for help-
ful discussions.
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Abstract

Bayesian optimization schemes often rely on
Gaussian processes (GP). GP models are very
flexible, but are known to scale poorly with the
number of training points. While several efficient
sparse GP models are known, they have limita-
tions when applied in optimization settings.
We propose a novel Bayesian optimization
framework that uses sparse online Gaussian pro-
cesses. We introduce a new updating scheme
for the online GP that accounts for our prefer-
ence during optimization for regions with bet-
ter performance. We apply this method to op-
timize the performance of a free-electron laser,
and demonstrate empirically that the weighted
updating scheme leads to substantial improve-
ments to performance in optimization.

1 Introduction

Bayesian nonparametric models have seen growing pop-
ularity due to their flexibility and modeling power. The
core strength of nonparametrics lies in their ability to scale
in complexity with the data, making them useful in cases
where parametric model selection is challenging. These
models have therefore been used successfully in a variety
of applications (Kulis & Jordan (2012); Tank et al. (2015);
Miller et al. (2015); Johnson & Willsky (2013)).

Gaussian processes (GPs) have emerged as an elegant non-
parametric approach to regression. GPs provide a full prob-
abilistic model of the data, and allow us to compute not
only the model’s prediction at input points but also to quan-
tify the uncertainty in the predictions. While powerful and
elegant, the application of GP regression is limited by the
poor scaling of GPs (Rasmussen & Williams (2005)). This
limitation has motivated the introduction of numerous effi-
cient approaches for approximating the exact GP solution,
e.g. Gal et al. (2014); Hensman et al. (2013); Ranganathan
et al. (2011).

A common approach to this approximation is to use sparse
GPs, which rely on lower-dimensional representations de-
fined by a smaller set of “inducing points” to represent the
full GP. Various types of sparse GPs have been introduced,
e.g. Snelson & Ghahramani (2006); Lawrence et al. (2003);
Titsias (2009); Csató & Opper (2002); Seeger et al. (2003).
These varieties tend to differ most in how they perform
the selection and management of inducing points; usually
a greedy method of some form is used to select points from
the data set that minimize an entropy or information loss
criterion. A notable exception is the method of Snelson &
Ghahramani (2006), who treat inducing point selection as
a continuous optimization problem.

Our focus here is on optimization when it is extremely
costly to evaluate the objective function. Bayesian opti-
mization is a natural choice in this setting (Jones et al.
(1998)). In Bayesian optimization, a probabilistic model of
the objective function is used to select sampling points by
maximizing an acquisition function based on e.g. the ex-
pected improvement in the target variable. Gaussian pro-
cesses are naturally applicable to Bayesian optimization
due to their full probabilistic formulation, which can effec-
tively model the observations of the optimization process;
see e.g. Osborne et al. (2009); Snoek et al. (2012) for recent
applications of Bayesian optimization using GPs. Other
approaches to Bayesian optimization include deep neural
networks, as in Snoek et al. (2015).

To date, applications of GPs to Bayesian optimization have
typically used full Gaussian process regression. In these
settings, it is either assumed that computation time is rela-
tively less important (as compared to e.g. function evalua-
tions), or that convergence will occur quickly enough that
the size of the full GP is not an issue. These assumptions
might not hold in large parameter spaces, however, partic-
ularly in settings with noisy observations that can signifi-
cantly slow the rate of convergence.

As a result, we consider the application of sparse GPs to
Bayesian optimization, as in Nickson et al. (2014). Since
sparse GPs have bounded size, the time taken to update dur-
ing optimization will not increase regardless of how long
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the procedure takes to converge. Using sparse GPs for
Bayesian optimization presents a different set of challenges
than in a typical regression problem, however. In particu-
lar, existing sparse GP approaches seek to model the full
GP as accurately as possible given the limited size of their
representation. This goal is obviously desirable for regres-
sion, but has key shortcomings in optimization, namely that
the limited resources of the sparse GP may be allocated
to closely model regions of parameter space that perform
poorly and are therefore less important for optimization.

We propose weighted-update online Gaussian processes
(WOGP) as an alternative to typical sparse GP set selec-
tion that is better suited to optimization; rather than tailor-
ing the sparse GP for predictive accuracy, WOGPs use an
online update scheme that weights the feature space of the
GP according to which regions are promising from the op-
timization perspective. During Bayesian optimization over
a large parameter space, this ensures that the sparse model
does not waste resources by attempting to accurately model
regions that are clearly irrelevant to the optimization prob-
lem.

Our work is motivated by an application of Bayesian opti-
mization to improve the performance of the Linac Coherent
Light Source (LCLS) free-electron laser (FEL) at the SLAC
National Accelerator Laboratory (Emma et al. (2010)). The
operational costs of this machine are daunting, and cur-
rent tuning procedures consume hundreds of hours of ma-
chine (and machine operator) time annually that could be
better spent conducting the various scientific experiments
that rely on LCLS. In this setting, we demonstrate em-
pirically that WOGPs significantly outperform competing
techniques.

2 Background

In this section we describe Gaussian process regression and
the online sparse GP algorithm introduced in Csató (2002).
This algorithm uses online updates and a sparse represen-
tation to reduce the GP training complexity. This online
scheme is particularly useful for large scale and online re-
gression tasks, since it reduces the time taken to update the
GP in each iteration with efficient individual updates.

2.1 Review of Gaussian Process Regression

Formally, a Gaussian process is a collection of random vari-
ables X such that any finite subset (X1, · · · , Xn) ⊂ X
have a joint Gaussian distribution. For example, if we have
a GP over the interval [0, 1], then the joint distribution of
any finite set of points in [0, 1] is multivariate normal; the
mean and covariance of this distribution will be discussed
shortly. This GP can be thought of as a distribution over
functions f : [0, 1] → R, as every assignment of values to
this interval (or any domain on which a GP is defined) has

some probability associated with it via this joint distribu-
tion.

A Gaussian process prior is fully defined by its covariance
function K : X ×X → R and its prior mean µ0 : X → R.
To simplify the discussion, we will assume that the prior
mean function is zero, though this need not be the case. The
covariance function is required only to be a valid covari-
ance function in that the Gram matrixKi,j = K(xi,xj) of
values of any finite subset of X must be positive semidefi-
nite.

In Gaussian process regression, a GP prior is conditioned
on training data to obtain the posterior distribution over
the function space. Following the notation of Rasmussen
& Williams (2005), given training samples X with corre-
sponding observations f and test inputs X∗, distribution
of training observations and test outputs f∗ is multivariate
Gaussian; conditioning the latter on the former gives us

f∗|X,X∗,f ∼ N (K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)) . (1)

The resulting posterior at the test locations is a multivariate
Gaussian distribution whose mean and covariance are then
used in regression. Incorporating the assumption of i.i.d.
Gaussian noise into this model is straightforward, involving
a simple change to the covariance function according to the
standard deviation σ of the assumed noise. This yields the
posterior distribution conditioned on noisy observations y:

f∗|X,X∗,y ∼ N (K(X∗, X)[K(X,X) + σ2I]−1y,

K(X∗, X∗)−K(X∗, X)[K(X,X)+σ2I]−1K(X,X∗)) .
(2)

See Rasmussen & Williams (2005) for a full treatment of
GP regression and Gaussian processes in general.

For a predictive distribution conditioned on n training in-
puts, the time complexity of Gaussian process regression
is O(n3). This is prohibitively expensive for applications
with more than a few thousand inputs (or fewer in set-
tings where runtime is an important consideration). Sev-
eral approaches have been introduced for approximating
full GP regression with more efficient algorithms. The
most common category for these approximations is the
sparse GP, several varieties of which are listed in Section
1. See Quionero-Candela & Rasmussen (2005) for a thor-
ough treatment of the variety and theory of sparse approxi-
mations to full Gaussian process regression.

The common thread among these methods is the attempt to
represent the full Gaussian process using a set ofm < n in-
ducing inputs, typically leading to a complexity ofO(m2n)
to train the sparse GP. These inducing inputs are often cho-
sen as a subset of the input data, leading to a difficult com-
binatorial problem that is typically solved using some form
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Algorithm 1 Online GP Update

1: Input: data point x, output y
2: Persistent: Inducing variables XI , GP model param-

eters
3: Assess novelty γ of point x.
4: if γ < εtol then
5: Perform sparse update without expanding the model.
6: else
7: Perform full update, adding x to XI and extending

GP model parameters.
8: end if
9: if Model size exceeds m then

10: Score inducing inputs XI on impact of removal.
11: Remove the lowest-scoring element of XI ; update

the GP model to minimize the impact of removal.
12: end if

of greedy minimization of information loss. Snelson &
Ghahramani (2006) provide one alternative, in which in-
ducing variable selection is treated as a continuous opti-
mization problem. Our approach is most closely related to
the algorithm introduced in Csató (2002), which iteratively
trains the approximating GP by processing each input indi-
vidually. This method selects inducing points by continu-
ally comparing new data points to the existing set of induc-
ing variables in the model and keeping whichever subset
yields the best approximation. This method is described in
more detail below.

2.2 Online Sparse GPs

The online sparse GP algorithm of Csató & Opper (2002);
Csató (2002) handles the sparse selection problem by ob-
serving input data one point at a time. In each iteration,
the new data point is added to the sparse model (assum-
ing that the sample passes a geometric novelty threshold),
which may increase its size to m + 1 inducing variables.
A reduction step is then performed, which removes one of
these inducing variables to restore the sparse GP to size m.
Pseudocode for the online update is given in Algorithm 1.

Following Csató (2002), we represent a GP by its covari-
ance function K and its posterior parameterization after t
iterations in terms of the (m × 1) dimensional vector αt
of inducing point coefficients and the (m ×m) matrix Ct
which specifies the posterior covariance. We denote by XI
the set of inducing variables, giving us the posterior predic-
tive distribution at query points X∗ as

N (K(X∗, XI)αt,

K(X∗, X∗) +K(X∗, XI)CtK(XI , X
∗)) . (3)

The covariance function K corresponds to a (possibly
infinite-dimensional) feature space F . Specifically, if d
is the dimension of the data, there exists a function φ :

Rd → F such that K(xi, xj) = 〈φ(xi), φ(xj)〉F is the
inner product of xi, xj ∈ Rd in F . It is shown in Csató
(2002) that the Gaussian process can be viewed as a Gaus-
sian distribution in F . Let Φ be the feature space represen-
tation of XI , so KI ≡ K(XI , XI) = Φ>Φ. Then in the
feature space F we have

GPK(α, C) ∼ N (Φα, IF + ΦCΦ>) , (4)

where IF is the identity matrix in F and we use the nota-
tion GPK(α, C) to denote the GP with the corresponding
covariance function and parameters. Henceforth we will
omit the K in this notation, as it will be clear from context.

This allows for a straightforward computation of the
Kullback-Leibler (KL) divergence between two GPs that
have the same kernel function. The KL divergence between
distributions P and Q is defined as

DKL(P‖Q) =

∫

F
P (x) log

P (x)

Q(x)
dx . (5)

Note that we need never concern ourselves with the cases
P (x) = 0 or Q(x) = 0 since we deal exclusively with
normal distributions in this paper.

Suppose that in iteration t + 1 a new inducing variable is
added to the model, increasing its size to m + 1. In the
approach of Csató (2002), the optimal reduced parameters
α̂ and Ĉ are computed by minimizing the KL divergence
between GP ∼ GP(α,C), the over-sized GP that we are
reducing, and the approximation ĜP ∼ GP(α̂, Ĉ), sub-
ject to the constraint that α̂ and Ĉ have entries of zero cor-
responding to some inducing variable (i.e. there exists an
index i such that the ith element of α̂ and the ith row and
column of Ĉ are zero). We assume without loss of gener-
ality that it is the last inducing variable that is removed.

Csató (2002) minimizes DKL(ĜP‖GP ) with respect to
the parameters α̂ and Ĉ, resulting in the update equations
(3.19) and (3.22). With Q ≡ K−1I , these equations are

α̂ = α(r) − α∗

c∗ + q∗
(C∗ +Q∗)

Ĉ = C(r)+
1

q∗
Q∗Q∗>− 1

c∗ + q∗
(C∗+Q∗)(C∗+Q∗)> ,

(6)

where α(r) denotes the first m entries of α, C(r) is the
(m × m) matrix obtained by omitting the last row and
column of C, α∗, c∗, and q∗ are the last elements of α,
diag(C), and diag(Q) respectively, and the (m × 1) vec-
tors C∗ and Q∗ are the last columns of C and Q respec-
tively, excluding the last entry. Applying the block matrix
inversion formula, we can also compute the reduced inverse
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Algorithm 2 Bayesian optimization

1: while Not converged do
2: Compute xt+1 = arg maxx(EI(x)).
3: Query objective function at xt+1 to get yt+1.
4:
5: Augment the data: Dt+1 = {Dt, (xt+1, yt+1)}
6: Update the model:Mt+1 =Mt ← (xt+1, yt+1)
7: t = t+ 1
8: end while

Gram matrix Q̂:

KI = Q−1 ⇒ K
(r)
I = (Q(r) − 1

q∗
Q∗Q∗>)−1

⇒ Q̂ = Q(r) − 1

q∗
Q∗Q∗> . (7)

Using the update equations (6), scores are computed for
each of them+1 inducing variables based on the minimum
KL divergence that can be achieved when omitting them.
The worst-scoring point is then removed, with updates (6)
performed to the appropriate coordinate.

2.3 Bayesian Optimization

Bayesian optimization is a probabilistic approach to opti-
mization that is generally used when queries to the function
being optimized are expensive. This method lessens the
number of evaluations needed, shifting the burden instead
to computation over probabilities by utilizing information
from all of the function evaluations to choose the next sam-
pling location. We deal here with Bayesian optimization
using Gaussian processes as probabilistic models.

Let Dt = {(xi, yi)ti=1} be the observed data of the first
t iterations of optimization, where yi is the observation of
the target variable at the location xi in parameter space.
Then we denote byMt the model trained onDt (where the
ordering of Dt may matter, e.g. if the model is an online
sparse GP). LetMt(x) = (µt(x), σt(x)), so that µ and σ
give the posterior mean function and variance of the model.

The central idea behind Bayesian optimization is to explore
according to an acquisition function which incorporates the
current set of observations. In this paper we use the ex-
pected improvement as our acquisition function. If x∗ is
the observed location that maximizes µt, the improvement
at a point x is defined1 as

It(x) = max(0, µt(x)− µt(x∗)) . (8)

As seen in Jones et al. (1998) the expected improvement at

1We use µt(x
∗) rather than the best observation itself to ac-

count for the assumed noise in the observations.

a point x can be computed as

EI(x) ≡ E[It(x)] =
{

(µt(x)− µt(x∗))Φ(Z) + σt(x)φ(Z) σt(x) > 0

0 σt(x) = 0
,

Z =
µt(x)− µt(x∗)

σt(x)
. (9)

Here Φ and φ respectively represent the CDF and PDF
of the standard normal distribution. Recently, Bull (2011)
showed that optimization using theEI criterion gives prov-
ably efficient convergence in many settings.

With EI defined and the method of updating the GP model
specified, Bayesian optimization is straightforward; pseu-
docode for this procedure is given in Algorithm 2. Note
that to maximize expected improvement we use numerical
optimization, since EI cannot be maximized analytically
but is extremely cheap to evaluate as compared with the
objective function. See Brochu et al. (2010) for a more
thorough introduction to Bayesian optimization.

3 Online Sparse Gaussian Processes for
Bayesian Optimization

In this section we apply online sparse GPs to Bayesian op-
timization. This is complicated by the limited size of the
sparse GP, which can reduce exploitation by preventing the
information gained in an iteration from being fully incor-
porated, as well as hinder exploration of promising areas
by dedicating resources to model regions of poor perfor-
mance. We therefore introduce the weighted-update on-
line GP (WOGP), our modified online sparse GP scheme,
and the resulting Bayesian optimization algorithm. Our
approach to online sparse GPs is similar to that of Csató
(2002); Csató & Opper (2002), but utilizes a weighted mea-
sure of divergence between the Gaussian processes’ predic-
tive distributions. This allows us to better allocate the lim-
ited modeling capacity of the sparse GP to further the goal
of optimization (rather than predictive accuracy).

For example, imagine that we are attempting to maxi-
mize performance over a large parameter space. The on-
line sparse GPs studied previously may devote multiple in-
ducing points to modeling a complex region of low per-
formance to minimize the divergence in this area. These
points may serve our goal of maximization better by im-
proving the model’s resolution in promising regions of pa-
rameter space while maintaining only a vague notion of
poor performance in other regions.

3.1 The Weighted KL Divergence

We now describe a weighted divergence measure between
distributions and compute this divergence for two GPs.
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Definition 1. For probability distributions P and Q and
real-valued weighting function f , we define the weighted
KL divergence as

Df
KL(P‖Q) =

∫

F
P (x) log

(P (x)

Q(x)

)f(x)
dx

=

∫

F
f(x)P (x) log

P (x)

Q(x)
dx . (10)

We note that f should be non-negative to prevent rewarding
differences between the distributions; the goal of weighting
is to regard divergence in low-weighted areas not as good,
but as acceptable if accuracy in highly weighted regions
can be obtained in its place.

Proposition 1. For real-valued weighting function f , and
constant c ∈ R, the following hold:

Dcf
KL = cDf

KL, D
f+c
KL = Df

KL + cDKL . (11)

Proof. Easily computed from (5) and (10).

We can also see from Proposition 1 that scaling f by a con-
stant factor does not affect relative divergence.

We can write the prediction of GP at a point x in fea-
ture space as x>Φα, since x>Φ is the inner product in the
feature space corresponding to the evaluation of the kernel
function K (see Equation 3). Then we define f∗ in terms
of the proportional improvement expected at x:

f∗(x) = 1 +
x>Φα− y∗
|y∗| =

x>Φα

|y∗| , (12)

where y∗ is the best value observed thus far during opti-
mization.

This weighting function f∗ will cause promising regions
of feature space to be weighted more heavily in the diver-
gence computation. Of course, we immediately see that f∗

is negative wherever the GP’s posterior mean is negative.
In our motivating application this is not much of a concern,
as we deal with a non-negative target (laser pulse energy).
In other settings and with other weighting functions, ad-
justments may be necessary to prevent f being negative.

These adjustments may simply take the form of shifting
the observations to be positive; if the minimum observa-
tion is ymin and the minimum value attained by the GPs
prior mean function is pmin, then we can define y0 =
−min(ymin, pmin). Incrementing the prior mean and ob-
servations of the GP by y0 simply shifts its posterior mean
function above zero without changing the shape of the dis-
tribution. This can be seen from the linearity of the GP
formulation, for example in Equation 2.

Alternatively, f can be shifted directly to prevent it being
negative; from Proposition 1 we have Df+c

KL = Df
KL +

cDKL, so this has the effect of averaging the weighted and
unweighted divergences in order to ensure that differences
between the distributions P and Q where f < 0 are not
rewarded (since the rewards given byDf

KL in these regions
will be offset by the cDKL term).

Surprisingly, we can compute a closed form equation for
Df∗

KL(GP‖ĜP ) in terms of m- and (m + 1)-dimensional
GP parameters α̂, Ĉ, α, and C, despite its formulation
in the possible infinite dimensional feature space F . The
derivation of this equation can be found the full version of
this paper, available online (McIntire et al. (2016b)).

Proposition 2. Let GP = GP(α, C), ĜP = GP(α̂, Ĉ)
be GPs which share the same inducing inputs and covari-
ance function K. Let KI = K(XI , XI) ≡ Q−1 and de-
fine

Γ = I +
(I +KIC)>

α>KIα
, V̂ = (Ĉ +Q)−1,

w = Tr[(C +Q)V̂ − I]− log |(C +Q)V̂ | . (13)

Then the weighted KL divergence (10) between GP and
ĜP using weighting function f∗ (12) is given by

Df∗

KL(GP‖ĜP ) ∝ 2α>(Γ> − I)V̂ (α− α̂)+

(α− α̂)>V̂ (α− α̂) + w

= (2Γα− (α+ α̂))>V̂ (α− α̂) + w . (14)

We can obtain some intuition for this formula by separately
considering the cases α̂ = α and Ĉ = C. In the former
case, the first term of (14) vanishes, while if Ĉ = C the
second term vanishes; we can therefore infer roughly that
the first term encodes the loss due to reducing α, while w
measures loss from reducing C to Ĉ. For a noise-free, full
(non-sparse) GP, we have C = −K−1I ⇒ Γ = I . In this
case, (14) reduces to the unweighted KL divergence:

DKL(GP‖ĜP ) = (α− α̂)>V̂ (α− α̂) + w . (15)

Note that the full GP is used to weight the divergence
rather than the reduced approximating GP. The reduced
ĜP that minimizes (14) is therefore a moment projection
(or M-projection) of GP onto the space of reduced size-m
GPs. As shown by Koller & Friedman (2009), this type of
projection punishes ĜP (viewed as a normal distribution)
for failing to assign probability mass to regions which are
assigned non-negligible probability by GP . The reverse
direction Df

KL(ĜP‖GP ) corresponds to the I-projection,
which instead punishes ĜP for assigning probability to re-
gions that GP considers low-probability. Interpreting this
in terms of the function space defined by the GPs, we use
the M-projection, which ensures that all functions plausible
under GP are assigned some probability by ĜP , a highly
desirable property as contrasted with the I-projection.
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3.2 WOGPs: Weighted Sparse GP Reduction

We now address the problem of reducing the full GP to
ĜP , which uses only m of the inducing variables. The
goal of this reduction is of course to minimize the impact
of removing an inducing variable; in our case, we attempt
to minimize Df∗

KL(GP‖ĜP ).

Note that the weighting function f∗ uses the full GP pre-
diction rather than the reduced GP. This is desirable for two
reasons. First, we expect the full GP to predict more accu-
rately than the reduced GP because it is fully utilizing the
information from the size-m model of the previous itera-
tion and the new point, while the reduced GP must approx-
imate this information. Second, using the reduced GP’s
predictions to weight the feature space confounds the opti-
mization problem, since the weighting of the feature space
is then malleable; for example, if f is the prediction of ĜP ,
it may be optimal to simply let α̂ = 0⇒ f = 0, but this is
not helpful in approximating the full GP.

Fix GP = GP(α, C) and KI . Let d∗(α̂, Ĉ) =

cDf∗

KL(GP‖ĜP ) be the weighted KL divergence (times
scaling constant c) between this GP and its approximation
ĜP = GP(α̂, Ĉ). Recall our definition of Q̂, the update
to the inverse Gram matrix, from Equation 7 (and note that
Q̂ is a function only of Q).

Formally we address the following problem:

minimize
α̂,Ĉ

d∗(α̂, Ĉ)

subject to α̂>em+1 = 0

Ĉem+1 = 0m+1

Ĉ = Ĉ>

(Ĉ + Q̂) � 0

|Ĉ +Q| > 0.

(16)

Here em+1 is the final standard basis vector and 0m+1 is
the zero vector in Rm+1.

Proposition 3. For fixed Ĉ, the optimization problem (16)
is convex with respect to α̂.

Proof. Differentiating (14) with respect to the nonzero en-
tries of α̂ yields

∂ d∗(α̂, Ĉ)

∂α̂
= −2[Im0m]V̂ (Γ− I)α

− 2[Im0m]V̂ (α− [Im0m]>α̂)

= −2[Im0m]V̂ (Γα− [Im0m]>α̂) , (17)

where α̂ is now assumed to be m-dimensional, Im repre-
sents the m-dimensional identity matrix, 0m is a column
vector of m zeros, and [Im0m] denotes the corresponding
(m× (m+ 1))-dimensional matrix.

Now let vi denote the ith column of V̂ , excluding the last
entry, and observe that

∂2 d∗(α̂, Ĉ)

∂α̂iα̂j
= 2

∂ (v>i α̂)

∂α̂j
= 2V̂i,j . (18)

Thus we have that the Hessian matrix of d∗(α̂, Ĉ) with re-
spect to α̂ is just twice the leading (m ×m) submatrix of
V̂ , which we denote V̂ (r).

Note that we can compute V̂ (r) using block matrix inver-
sion:

V̂ (r) = (Ĉ +Q(r) − 1

q∗
Q∗Q∗>)−1 = (Ĉ + Q̂)−1 . (19)

Our result follows from the constraints (Ĉ + Q̂) � 0 and
|Ĉ + Q| > 0, with the additional observation that the do-
main of (16) in α̂ is a convex set.

Having established convexity, we now use Equation 17 to
compute an update rule for α̂ that minimizes the resulting
weighted KL divergence. Solving (17) for zero, we have

[Im0m]V̂ (Γα− [Im0m]>α̂) = 0m ⇒
V̂ (Γα− [Im0m]>α̂) = [0>m u]> ⇒

Γα− [Im0m]>α̂ = (Ĉ +Q)[0>m u]> = u[Q∗>q∗]> ,
(20)

where in the last step we recall that the last column of Ĉ is
zero. We let Γ(r) denote the first m rows of Γ and Γ∗ the
last row of Γ; observe then that

Γ∗α = uq∗ ⇒ u =
Γ∗α
q∗

, (21)

which leads us to the following solution.
Proposition 4. The update rule for α̂ which minimizes
Df∗

KL(GP‖ĜP ) is given by

α̂ = Γ(r)α− Γ∗α
q∗

Q∗ . (22)

Fixing α̂ to be optimal in the above sense, we would then
like to solve the optimization problem (16) with respect to
Ĉ. Unfortunately, this problem is not easily solved for local
minima. Differentiating Equation 14 with respect to Ĉ, we
have

∂d∗(α̂, Ĉ)

∂Ĉ
=
∂w

∂Ĉ
+

− [Im0m]V̂ (2Γα− (α+ α̂))(α− α̂)>V̂ [Im0m]> .
(23)

Evaluating the derivative of w in the same way, we arrive
at

∂w

∂Ĉ
= [Im0m]V̂ [Im0m]>

− [Im0m]V̂ (C +Q)V̂ [Im0m]> (24)
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However, we are not aware of a way to solve Equation 23 to
minimize Df∗

KL(GP‖ĜP ) analytically with respect to Ĉ.

Furthermore, we find that the objective d∗(α̂, Ĉ) is not
convex with respect to Ĉ: since log |X| is known to be
concave, the second term of w

− log |(C +Q)V̂ | = log |Ĉ +Q| − log |C +Q| (25)

is concave. This prevents us from using convex optimiza-
tion to solve for Ĉ. However, we have the following:

Proposition 5. For fixed α̂, the objective d∗(α̂, Ĉ) can
be written as d∗(α̂, Ĉ) = g1(Ĉ) − g2(Ĉ), where g1,
g2 are real-valued convex functions on the intersection of
R(m+1)×(m+1) with the constraints on Ĉ in (16).

Proof. Due to Theorem 1 of Yuille & Rangarajan (2003),
we can show this by demonstrating that the Hessian of
d∗(α̂, Ĉ) for fixed α̂ is bounded. Since Tr[X−1] is convex,
we already have the desired result for w and will therefore
compute only the Hessian of

d∗0(Ĉ) ≡ (2Γα− (α+ α̂))>V̂ (α− α̂) . (26)

To do this, we first compute

∂d∗0
∂Ĉ

= −[Im0m]V̂ (2Γα−(α+α̂))(α−α̂)>V̂ [Im0m]> ,

(27)
where we use the matrices [Im0m] to confine the expres-
sion to the (m×m) derivative with respect to the nonzero
entries of Ĉ. Let u1 = 2Γα− (α+ α̂) and u2 = (α− α̂)
for notational convenience. Confining this expression to a
particular entry, we arrive at

∂d∗0
∂Ĉi,j

= −v>i u1u
>
2 vj , (28)

letting vi denote the ith column of V̂ (and recalling that V̂
is symmetric).

LetHi,j
k,l represent an entry of the Hessian matrix of d∗0, and

compute

Hi,j
k,l =

∂2d∗0
∂Ĉi,j∂Ĉk,l

= − ∂

∂Ĉk,l
v>i u1u

>
2 vj

= u>1 (V̂i,kvlv
>
j + V̂j,kviv

>
l )u2 . (29)

EvidentlyHi,j
k,l is bounded for all i, j, k, l, and thus we have

the desired result.

The above result allows us to employ methods of concave-
convex minimization, e.g. the CCCP procedure of Yuille &
Rangarajan (2003). Specifically, to minimize g1 − g2 we
employ an iterative method of updating Ĉ according to the
rule

∂g1

∂Ĉ
(xt+1) =

∂g2

∂Ĉ
(xt) . (30)

It is not straightforward to explicitly decompose d∗ into
convex terms g1 and g2 due to the difficulty of solving
Equation 23, so we instead use the iterative method for op-
timization given in Yuille & Rangarajan (2003) for such
cases, which finds xt+1 in each step by minimizing a func-
tion of xt+1 and xt.

In Section 4, we demonstrate that CCCP optimization of Ĉ
can significantly reduce the weighted KL divergence of the
online GP update. Since we are minimizing with respect
to the matrix Ĉ, the size of the CCCP optimization prob-
lem isO(m2). For larger sparse models, this approach may
therefore not be feasible if computation time is a primary
concern. As runtime is extremely costly for our applica-
tion, we also propose as a heuristic the update rule for Ĉ of
Csató (2002), given in Equation 6, which minimizes the
unweighted divergence between the distributions as well
as the w-term of the weighted divergence. The analytic
form for this update can provide a significant speedup over
CCCP if m is large; we justify this heuristic by comparing
with CCCP updating for Ĉ in Section 4.

4 Experiments

We perform two types of experiments to demonstrate the
efficacy of WOGPs in Bayesian optimization. First, we
provide easily visualized examples of the comparative per-
formance of WOGPs and standard online sparse GPs on
synthetic optimization problems. Second, we use data from
the LCLS free-electron laser to test the optimization algo-
rithms in a real-world setting with noisy observations.

4.1 Example Problem

First, we consider the simple problem of optimizing over
a function given by y = 20 + x − (x − 1)2(x + 1)2,
shown in Figure 1a, which achieves a maximum slightly
greater than 21 at x ≈ 1.1 and has a local maximum at
x ≈ −.84. Each type of model is allowed at most five
inducing variables. In each trial, we choose five training
points in [−3, 3] uniformly at random and train each model
on them. The Bayesian optimization procedure described
in Section 2.3 is then performed for 80 iterations. Figure
1b shows the results of this experiment averaged across
80 trials. On average, both models tend to quickly find a
value near the global optimum; however, while the WOGP
tends to converge near this optimum, the unweighted model
does not. Instead, when the unweighted model explores
other areas, it essentially loses focus on the optimal area
by devoting some of its limited resources to modeling the
new, lower-scoring region. This can be seen in the decline
on average of the unweighted model’s score to roughly
y = 19, in which it converges within the near-plateau be-
tween x = −1 and x = 0.

In the bottom of Figure 1, examples are shown of the con-
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(a) (b)

(c) (d)

Figure 1: Simple 1-D optimization problem. (a) The ob-
jective function. (b) Average y-value explored in each it-
eration, for unweighted (blue) and weighted (red) models.
Standard deviations are shown as error bars. (c,d) Sample
unweighted and weighted (respectively) final GP models.
The objective is shown in black, GP mean function with
uncertainty in blue, and inducing points as red dots.

verged online GP models in this problem. In (1c), the
unweighted model is plotted in blue with its predictive
variance, while the underlying function f(x) is plotted in
black. The red dots underneath show the locations of the in-
ducing variables for each model. The models were trained
on the same points, and both initially explore in the re-
gion around x = −1. However, the unweighted model
allocates one of its inducing variables to x ≈ −2 in or-
der to capture the curvature of f(x) in the negative direc-
tion. The weighted model instead stabilizes its inducing
variables around x = −1 and x = 0 during its exploration
in x < 0 and then begins to explore in x > 0. This right-
ward exploration quickly converges around x = 1.

4.2 FEL Performance Optimization

Free-electron lasers operate by accelerating electrons to
nearly the speed of light, and then passing this electron
beam through a series of magnetic dipoles to separate
the electrons into coherent microbunches (Huang & Kim
(2007)). Through this coherence, an FEL can generate
x-ray pulses 10 billion fold brighter than any other x-ray
source. Here, we focus on the tuning of quadrupole mag-
nets, which are placed upstream of the FEL to manipulate
the shape of the electron beam.

Currently at LCLS, quadrupole magnets are tuned by hand
to optimize the beam pulse energy. The existing tuning pro-
cedure is repeated frequently due to machine configuration
changes and drift over time. This extensive tuning time is
problematic due to the operational cost of the beam and the

(a) (b)

Figure 2: Results demonstrating the effectiveness of CCCP
for optimization over Ĉ, shown for a particular event. Each
pixel shows the median value over 20 trials at the given
configuration. (a) The weighted KL divergence d∗ obtained
using the heuristic (6) update rule for Ĉ. (b) The propor-
tional reduction in d∗ from CCCP optimization over Ĉ.

heavy over-subscription of LCLS users; the FEL is used
by scientists in a variety of disciplines for field-leading re-
search, and the demand for machine time outstrips its avail-
ability by a factor of 5. Reducing the time spent tuning the
machine would directly increase its availability for scien-
tific use.

Our experiments on the FEL data thus far have used iso-
lated optimization ‘events’: we define such an event as a
consecutive period of time using a fixed accelerator con-
figuration, such that the measured x-ray pulse energy is a
function only of the controlled variables, i.e. quadrupole
magnet settings. Under this assumption, we then train two
online GP models with the same number of inducing vari-
ables, one using a WOGP, and one using a standard on-
line sparse GP, on a noisy subset of the event data. A
much larger sparse GP (with e.g. 500 inducing variables)
is trained on the event data without noise. This large ‘truth’
model is then used in the Bayesian optimization procedure,
with its predictions used as feedback for the online GP op-
timizers. We introduce noise for the online GP models and
not the truth model to simulate the use case of online tun-
ing, which must be done each time the beam is used due to
the tendency of the machine settings to drift over time.

We first use this data to test the WOGP update rules for
Ĉ. Using CCCP to minimize Df∗

KL(GP‖ĜP ) with respect
to Ĉ can be used to minimize the weighted KL divergence
of the approximating GP. Alternatively, we propose as a
heuristic the update given by Csató (2002), shown in (6),
which is optimal for the KL divergence (5) between ĜP
and GP , and optimal for the w term of Df∗

KL(GP‖ĜP ).

Figure 2 shows results of a comparison between these up-
date rules for Ĉ. For this testing, a single representative
event was chosen, and 20 optimization trials were run for a
short time with various levels of training noise and numbers
of inducing variables. For each trial, the value of Df∗

KL is
then computed for an additional size reduction step for both
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(a) (b) (c)

Figure 3: Results of optimization on FEL data, with events at different beam configurations and electron energies of 11.45,
13.2, and 14.5 GeV respectively. The plots show the average x-ray pulse energy in mJ of the region explored in each
iteration by the weighted (red) and unweighted (blue) sparse optimizers, as well as by a full GP, shown in green. Error bars
indicate the normalized standard deviation of the values in each iteration.

the heuristic and CCCP-computed values of Ĉ. In Figure
2a, the median value of Df∗

KL obtained using the heuristic
update for Ĉ across these trials is shown for each configu-
ration. Note that as the modeling problem becomes more
challenging (as noise increases and the number of induc-
ing variables decrease), the typical divergence of the up-
date increases. We do not show a similar plot for the CCCP
updating because it is visually very similar.

In Figure 2b, the percentage decrease in Df∗

KL achieved by
using CCCP updating is shown. We see that using CCCP
to optimize the value of Ĉ typically leads to a 5-15% de-
crease in the weighted KL divergence of the update. This
demonstrates that the heuristic update for Ĉ is justified in
cases where the runtime of CCCP is prohibitive. These re-
sults also indicate that the CCCP updating scheme detailed
here can provide nontrivial improvements to Df∗

KL over the
heuristic update. Over the course of optimization the accu-
mulated benefit from the CCCP updating may lead to sub-
stantial improvements in performance.

Next, we compare the performance of WOGPs and stan-
dard online sparse GPs in optimization over the FEL data
events described above. Results from three such events,
averaged over 200 trials (with different, randomly sampled
initial training data), are shown in Figure 3. The results
of optimization are compared in terms of final y-value and
regret (which is an additive constant away from the nega-
tive sum of observations), which accounts for speed of im-
provement as well. We can see that in general WOGPs tend
to yield better performance than the unweighted sparse GP:
in the first two events (3a) and (3b), the difference in final
y-values is statistically significant (p < .001, p < .002
respectively in the two-sided t-test), as is the difference in
regret (p < .05, p < .005). In the final event (3c), we
can see that the WOGP performs similarly to the full GP,
though its improvement over the unweighted sparse GP is
not statistically significant for this event.

5 Conclusions

Bayesian optimization is known to be effective for opti-
mization in settings where the objective function is expen-
sive to evaluate. A complex parameter space and noisy ob-
servations can slow the convergence of Bayesian optimiza-
tion, however, and using a full Gaussian process model
leads to poor scaling in these cases. In this paper, we in-
troduce sparse online GPs for Bayesian optimization.

Our main contribution is a novel weighted updating scheme
for sparse online GPs, which enables a trade-off during
optimization between overall predictive accuracy and a
specific focus on better-performing regions of parameter
space. This addresses the core problem with using sparse
GPs in Bayesian optimization: the limited size of the GP
representation, which prevents the information from new
data from being fully incorporated into the model. As a re-
sult, traditional sparse GPs perform poorly since the sparse
set selection does not necessarily attempt to preserve reso-
lution in promising areas of parameter space and may even
‘blur’ local optima to preserve accuracy elsewhere.

Our new weighted-update online GP, WOGP, outperforms
the standard online sparse GP in optimization by preferen-
tially updating the model to incorporate information that is
more valuable to the optimization procedure. We are able
to analytically evaluate the weighted KL divergence be-
tween Gaussian processes for a simple weighting function,
and we demonstrate empirically that updating the sparse
GP to minimize this weighted divergence significantly im-
proves performance during Bayesian optimization. Live
tests of this approach are currently underway at LCLS
(McIntire et al. (2016a)).
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Csató, Lehel and Opper, Manfred. Sparse on-line Gaussian
processes. Neural Computation, 14(3):641–668, 2002.

Emma, P. et al. First lasing and operation of an ngstrom-
wavelength free-electron laser. Nature Photonics, 4:641
– 647, 2010.

Gal, Yarin, van der Wilk, Mark, and Rasmussen, Carl. Dis-
tributed variational inference in sparse Gaussian process
regression and latent variable models. In Advances in
Neural Information Processing Systems 27, pp. 3257–
3265. Curran Associates, Inc., 2014.

Hensman, James, Fusi, Nicoló, and Lawrence, Neil D.
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Abstract

We develop a statistical framework for the de-
sign of a strategy-proof assignment mechanism
that closely approximates a target outcome rule.
The framework can handle settings with and
without money, and allows the designer to em-
ploy techniques from machine learning to control
the space of strategy-proof mechanisms searched
over, by providing a rule class with appropriate
capacity. We solve a sample-based optimization
problem over a space of mechanisms that corre-
spond to agent-independent price functions (vir-
tual prices in the case of settings without money),
subject to a feasibility constraint on the sam-
ple. A transformation is applied to the obtained
mechanism to ensure feasibility on all type pro-
files, and strategy-proofness. We derive a sample
complexity bound for our approach in terms of
the capacity of the chosen rule class and provide
applications for our results.

1 INTRODUCTION

Mechanism design studies situations where a set of self-
interested agents each hold private information regarding
their preferences over different outcomes. Originating from
microeconomic theory, mechanism design has become im-
portant in the design of open, algorithmic systems that in-
volve multiple stakeholders. A mechanism receives claims
about agent types, selects an outcome, and may addition-
ally charge payments. An important property of a mech-
anism is that of strategy-proofness, where it is in the best
interest for each agent to make truthful reports.

The existing theory of mechanism design provides posi-
tive and negative results in regard to properties that can be
achieved together with strategy-proofness. The theory is
quite limited, though, in that:

1) Results are developed for stylized preference domains

that may not reflect real-world structure [1].
2) Positive results are limited by an analytical bottleneck

that makes analysis difficult in multi-dimensional type
spaces [2, 3].

3) There are few general methodologies, especially in
mechanism design without money, where bespoke
mechanisms are developed for a given domain [4].

In practice, one often needs to hand-craft a mechanism
based on application-specific requirements. For example,

‚ Task assignment: Consider the problem of designing
an assignment mechanism for a ride sharing platform.
This is a setting with payments, and the standard mech-
anism one would use here is the Vickrey-Clarke-Groves
(VCG) mechanism. However, if one needs to incor-
porate specific priority or fairness considerations, the
VCG mechanism may not be well-suited, and the de-
signer would be faced with needing to manually design
a mechanism that satisfies the requirements.

‚ Resource allocation: Consider the problem of design-
ing a strategy-proof mechanism for the fair allocation
of jobs to shared computers based on reported need.
This is a setting without money, and a standard strategy-
proof mechanism for assignment is random serial dic-
tatorship (RSD). However, if the designer wishes to op-
timize a different utility criterion than RSD (e.g. a util-
itarian objective), then the designer will again have to
handcraft a mechanism based on the requirements.

We suppose that alternatively, the designer can provide his
requirements in the form of a target outcome rule that maps
reports to desired outcomes (but is not necessarily strategy-
proof). The goal is to automatically design a strategy-proof
mechanism that closely mimics this rule, leading to the fol-
lowing question:

Given an arbitrary outcome rule, can we
automatically design a strategy-proof mechanism

that closely approximates the rule?

The common approach to automated mechanism design [5]
has been to formulate a search problem over a set of
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strategy-proof mechanisms. Some works perform this
search over an explicit space of all possible mechanisms,
often resulting in intractable optimization problems (with a
number of decision variables that grow exponentially in the
number of agents). Other approaches search over a parame-
terized subset of strategy-proof mechanisms [6, 7, 8]. How-
ever, these methods are tailored to specific classes of mech-
anisms known to be strategy-proof. Positive results are
available for a Bayesian relaxation of strategy-proofness,
and with agent-separable objectives [9, 10], but a more gen-
eral approach has remained elusive.

In this paper, we develop a general statistical framework
for designing strategy-proof mechanisms that closely ap-
proximate a target outcome rule. Envisioning settings with
abundant data on agent preferences, we assume access to
example inputs to a mechanism, each input labeled with a
target outcome. Consider for example a setting with an ex-
isting, strategy-proof mechanism, with new design require-
ments specified through target outcomes on historical re-
ports. The goal is to find a strategy-proof mechanism that
closely approximates the target outcome rule.

We leverage general, necessary and sufficient conditions
for the strategy-proofness of a mechanism, namely an
agent-independence condition, and a feasibility require-
ment (that the outcome of the mechanism is feasible). Con-
cretely, the framework formulates an optimization problem
on a sampled set of agent type profiles over a specified
class of outcome rules that satisfy agent-independence. A
feasibility constraint is enforced on the sampled profiles,
so that the resulting mechanism is feasible on these sam-
ples. In addition, we apply a transform to the mechanism
to ensure feasibility on all profiles while retaining agent-
independence (and thus obtaining strategy-proofness). The
particular problem we study is an assignment problem,
where there is a set of distinct, indivisible items and the
outcome assigns at most one item to each agent. The dis-
tance to the target assignment is measured in terms of the
Hamming distance. The feasibility transform is due to
Hashimoto [11] and is well defined for allocation problems.

Unlike previous works on the automated design of strategy-
proof mechanisms, our framework neither performs a
brute-force search over all mechanisms nor requires the de-
signer to provide a specific parameterized class of strategy-
proof mechanisms. Instead we take an intermediate ap-
proach, where the space of strategy-proof mechanisms
searched over is controlled by the capacity of the out-
come class. The capacity of this class can be controlled
through standard machine learning techniques, for exam-
ple by parametrizing the class in a suitable feature space
and adjusting the set of features used. By using the general,
necessary and sufficient conditions of agent-independence
and feasibilty, we remove the need for new characterization
results. Rather, the limit of the framework is governed by
the limits of the statistical framework.

The main result is an upper bound on the sample com-
plexity of designing strategy-proof mechanisms using our
framework. The bound depends on the capacity of the
agent-independent function class used, measured in terms
of its Natarajan dimension D [12]. We show that for n
agents and N sampled profiles, the difference in Hamming
distance to the target between the designed mechanism and
the best strategy-proof mechanism within the hypothesis
space is at most:

rO
ˆc

D

N
` D

N

nÿ

i“1

|Θi|
˙
,

for a distributional assumption, and where |Θi| is the size
of the type space for agent i. The linear dependence on
|Θi| is a result of the feasibility transformation applied to
the sample-optimal rule. This sample complexity is ex-
ponentially smaller than the total number of type profilesŚn

i“1 |Θi|.
The proposed approach is quite flexible, in that it can
handle settings with and without money. Instantiating
the framework to assignment problems, we provide ex-
plicit examples of agent-independent rule classes with fi-
nite Natarajan dimension that contain feasible assignment
rules. For the setting with money, the hypothesis class is
defined in terms of agent-independent price functions, with
each agent demanding the item that maximizes its utility.
For the setting without money, the hypothesis class is de-
fined in terms of virtual price functions and budgets, with
each agent demanding its most preferred, affordable item.

1.1 RELATED WORK

The problem of using machine learning to design mecha-
nisms that approximate a target rule was first considered
by Procaccia et al. [13] in the context of designing vot-
ing rules, but without consideration to strategy-proofness.
In the most closely-related work, Dütting et al. [14] use
statistical machine learning to design payment rules for a
fixed outcome rule. We design both outcome and pay-
ment rules, and whereas they provide approximate strategy-
proofness, we obtain strategy-proof mechanisms. We also
handle mechanism design without money.

Prior work on automated mechanism design adopts spe-
cific, parameterized classes of mechanisms [7, 8, 15].
However, these approaches require a designer to have para-
metric characterizations of strategy-proof mechanisms, and
require specialized solvers for each case. More recently,
Narasimhan and Parkes [15] consider the problem of us-
ing methods from machine learning to design social choice
and matching mechanisms that best approximate a target
rule, but their approach is also tailored to specific parame-
terized classes of mechanisms. We provide a more general
approach, where the designer only needs to provide a set of
rules that satisfy the agent-independence condition.

528



There has also been previous work that uses statistical
or machine learning techniques to design revenue-optimal
mechanisms from sampled preference data [16, 17, 18, 19],
but this is restricted to settings where the private informa-
tion of agents is “single-parameter” (roughly, one number,
whereas in our setting each agent’s type is a value for each
item or a rank order on items).

Organization. In Section 2, we begin with the problem set-
ting and in Section 3, describe a general characterization of
strategy-proof mechanisms for assignment problems with
and without money. In Section 4, we use these charac-
terizations to develop a statistical framework for designing
strategy-proof assignment mechanisms. In Section 5, we
derive a sample complexity bound for our approach, and in
Section 6, we discuss applications of our result to assign-
ment problems with and without money.

2 PROBLEM SETTING

We consider n agents rns “ t1, . . . , nu andm items rms “
t1, . . . ,mu, and are interested in one-to-one assignments
of items to agents. We allow agents to be unassigned, in
which case we will say that the agent is assigned to φ. An
agent may additionally be charged a payment.

We say that an assignment is feasible if no two agents are
assigned the same item. Let Ω Ă rmsn denote the set
of feasible one-to-one assignments of items (or φ) to the
agents. We will use y P Ω to denote a feasible assignment
and yi P rms for the item allocated to agent i in y.

Each agent is associated with a type θi from a finite set Θi,
which is private to the agent. We use θ “ pθ1, . . . , θnq to
denote a profile of types, and Θ “ Śn

i“1 Θi to denote the
set of all type profiles. We will use θ´i to denote the profile
of types for all but agent i, and Θ´i “Ś

j‰i Θj .

In a setting without money, an agent’s type induces a pref-
erence ordering over items. We will use o ąi o

1 to denote
that agent i strictly prefers item o P rms over item o1 P rms,
and o ľi o

1 to denote that the agent either strictly prefers o
over o1 or is indifferent.

In a setting with money, an agent is charged a price for
an item, and the agent’s type induces a preference or-
dering over pairs po, poq P rms ˆ R` of items and
prices. In this case, we will assume quasi-linear prefer-
ences. Here each agent i is associated with a valuation
function vi : Θi ˆ rmsÑR`, with vipθi, oq P R` in-
dicating the value assigned for agent type θi to item o.
The agent’s utility for a pair po, poq of items and prices is
given by uipθi, po, poqq “ vipθi, oq ´ po, and po, poq ľi

po1, po1q ðñ uipθi, po, poqq ě uipθi, po1, po1qq.
A mechanism receives reports of types from the agents, and
maps each agent to an item through an outcome rule f :
ΘÑΩ. For a report profile θ̂ from the agents, the assign-

ment to the agents is given by fpθ̂q P Ω, and fipθ̂q P rms
shall denote the item assigned to agent i by f . In settings
with money, the mechanism also charges a payment mea-
sured in terms of a payment rule pi : ΘÑR`.

A desirable property of a mechanism is strategy-proofness.
A mechanism is strategy-proof if each agent receives its
most-preferred outcome (or outcome-price pair) when re-
porting its true type. More concretely, in a setting without
money, a mechanism defined by outcome rule f is strategy-
proof if for all i P rns, θ P Θ, and θ1i P Θi, fipθq ľi

fipθ1i, θ´iq. Similarly, in a setting with money, a mecha-
nism defined by pf, pq is strategy-proof if for all i P rns, θ P
Θ, and θ1i P Θi, pfipθq, pipθqq ľi pfipθ1i, θ´iq, pipθ1i, θ´iqq.
In both cases, let us useMSP to denote the space of mech-
anisms that are strategy-proof.

Agent types are distributed according to an underlying, un-
known distributionD over type profiles Θ. We are provided
a target outcome rule g : ΘÑΩ that need not be strategy-
proof, and the goal is to design a strategy-proof mecha-
nism that closely approximates this rule. For this purpose,
we adopt a distance measure ` : rmsn ˆ rmsnÑR` to
measure the distance between the given and target assign-
ments. In particular, we use the normalized Hamming dis-
tance, `py, y1q “ 1

n

řn
i“1 1pyi ‰ y1iq for any y, y1 P rmsn.

The goal is:

min
pf,pqPM1

SP

EΘ„D
“
`pgpθq, fpθqq‰, (1)

whereM1
SP Ď MSP is some set of strategy-proof mecha-

nisms. In words, we want to find the strategy-proof mecha-
nism in a class of mechanisms that minimizes the expected
distance from the target. Since the distribution is over a fi-
nite space, an infimum overM1

SP is always achieved by a
mechanism within the class. We shall allow the designer
to control the space of strategy-proof mechanismsM1

SP by
providing a suitable rule class with appropriate capacity (or
expressive power).

3 CHARACTERIZATION OF
STRATEGY-PROOF MECHANISMS

We first provide a general, necessary and sufficient charac-
terization of strategy-proof assignment mechanisms in set-
tings with and without money. These characterizations are
standard in mechanism design theory.

Assignment Problem with Money. A mechanism defined
by a pair of outcome rule and payment rule pf, pq is
strategy-proof iff the following conditions hold [20]:

(1) Agent independence: Given the report of the other
agents, an agent’s prices on each item are independent
of its own report. Also, the agent is assigned its
most-preferred item, given its report and the agent-
independent prices. In other words, the payment
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rule pipθq “ tipθ´i, fipθqq for some price function
ti : Θ´i ˆ rmsÑR`, and

fipθq P argmax
oPrms

 
vipθi, oq ´ tipθ´i, oq

(
.

(2) Feasibility: No two agents get the same item, i.e. for
all i, j P rns,fipθq ‰ φ, fjpθq ‰ φñ fipθq ‰ fjpθq.

In words, an agent cannot change the price for an item by
misreporting its type, and given these prices, receives the
most-preferred item according to the report. Further, the
assignment is feasible for all reports.

Example 1. The well-known VCG mechanism satisfies the
above conditions. In its general form, the VCG mecha-
nism allocates for any report θ an assignment that max-
imizes welfare (i.e. sum of agent valuations): f vcgpθq P
argmaxyPΩ

řn
i“1 vipθi, yiq, and charges each agent i a

payment: pvcg
i pθq “ Hipθ´iq ´ ř

j‰i vjpθj , f vcg
j pθqq,

where Hi : Θ´iÑR` is a function that is independent
of agent i’s report. By definition, the VCG mechanism
satisfies the feasibility condition. To see that the mecha-
nism also satisfies the agent-independence condition, de-
fine tvcg

i : Θ´i ˆ rmsÑR` for reports θ´i and item o as:
tvcg
i pθ´i, oq “ Hipθ´iq ´ maxyPΩ,yi“o

ř
j‰i vjpθj , yjq.

Then it can be verified that pvcg
i pθq “ tvcg

i pθ´i, f vcg
i pθqq.

Assignment Problem without Money. We can obtain a
similar characterization by defining a virtual price function
tvir
i : Θ´i ˆ rmsÑR` for each agent. For a given prefer-

ence profile report θ P Θ, we will say that agent i can afford
item o P rms if the virtual price for the item is below a bud-
get of $1, i.e. tvir

i pθ´i, oq ď 1. An agent receives one of the
items that it can afford. A mechanism defined by outcome
rule f is strategy-proof iff the following hold:

(1) Agent independence: Given the report of the other
agents, an agent’s virtual prices are independent of its
own report. The agent is assigned its most-preferred
item among those it can afford, given its report and the
agent-independent prices. In other words, there exists a
virtual price function, tvir

i : Θ´i ˆ rmsÑR` such that
tvir
i pθ´i, fipθqq ď 1 and

fipθq ľi o, @o P to1 P rms : tvir
i pθ´i, o1q ď 1u.

(2) Feasibility: No two agents get the same item, i.e. for
all i, j P rns, fipθq ‰ φ, fjpθq ‰ φñ fipθq ‰ fjpθq.

4 A GENERAL STATISTICAL
FRAMEWORK

We next introduce a framework that exploits these general,
necessary and sufficient characterizations. Specifically, we
provide an approach to solve (1) by formulating a sample-
based optimization problem over outcome rules that satisfy
the above conditions.

We require the designer to provide a class Fi of functions
fi : ΘÑrms that satisfy the agent independence condi-
tion. For the setting with money, each fi P Fi is required to
be of the form fipθq P argmaxoPrms

 
vipθi, oq ´ tipθ´i, oq

(

for some ti : Θ´i ˆ rmsÑR`. For the setting without
money, each fi P Fi needs to satisfy tvir

i pθ´i, fipθqq ď 1
and fipθq ľi o, @o P to1 P rms : tvir

i pθ´i, o1q ď 1u for
some tvir

i : Θ´i ˆ rmsÑR`.

Further, let F “ Śn
i“1 Fi. We will refer to each function

fi P Fi as an agent-independent function, and the concate-
nated function f P F as an agent-independent outcome
rule. The outcome rules f P F need not satisfy the feasi-
bility condition (i.e. can map a type profile θ to an infea-
sible assignment fpθq P rmsn), and therefore may not be
strategy-proof.

For ease of exposition, we will henceforth assume that nei-
ther the outcome rules f P F nor the target rule g leave
an agent unassigned (i.e. do not assign φ to an agent). The
framework and theoretical results easily extend to the case
where this assumption does not hold.

The goal is to solve (1) over all outcome rules in F that
also satisfy the feasibility condition, and find the rule that
has minimum Hamming distance from the target rule:

min
fPF Eθ„D

“
`
`
gpθq, fpθq˘‰ (2)

s.t. f1pθq ‰ . . . ‰ fnpθq, @θ P Θ.

In practice, we do not have access to the type distribu-
tion D. Rather, we have a sample S “ tpθ1, y1 “
gpθ1qq, . . . , pθN , yN “ gpθN qqu P pΘ ˆ ΩqN containing
agent profiles drawn i.i.d. from D and labeled according to
the target outcome rule g.

We solve an empirical version of the optimization prob-
lem (2), with the feasibility constraint enforced only on
the profiles in S. A problem is that the obtained rule need
not be feasible on type profiles outside S. To address this,
we adopt a feasibility transform on the obtained rule that
ensures that the resulting rule is feasible without compro-
mising agent independence, and thus obtaining strategy-
proofness. The two steps of our framework are:

Step I: Constrained Optimization on a Sample. We first
solve an empirical version of (2) on sample S:

min
fPF

1

N

Nÿ

k“1

`
`
yk, fpθkqq˘ (3)

s.t. f1pθkq ‰ . . . ‰ fnpθkq, @k P t1, . . . , Nu.

Step II: Feasibility Transform. The obtained outcome
rule need not be feasible on profiles outside S. A naive way
to enforce feasibility is to resolve conflicts by canceling an
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allocation when there is infeasibility, or through some more
sophisticated priority-based approach. But without care,
this results in a mechanism that is not strategy-proof; e.g.
perhaps an agent can usefully misreport in order to avoid a
problem with infeasibility.

We use a transform inspired by an approach due to
Hashimoto [11]. For each agent i, we perform the follow-
ing check: conditioned on the reports of the other agents,
does there exist a type in Θi for which the outcome rule
would output an infeasible assignment? If yes, we leave
agent i unassigned; otherwise the original assigned item is
left unchanged. For the outcome rule pf obtained by solv-
ing (3), the transform Tr pf s : ΘÑΩ is given by:

Tir pf spθq

“
#
φ if D θ1i P Θi s.t. pfpθ1i, θ´iq is infeasible
pfipθq otherwise,

where Tir pf spθq denotes the item assigned to agent i by the
transformed rule. The transform has no effect when pf is
feasible on all profiles.1

Theorem 1 (Hashimoto 2016). The outcome rule Tr pf s is
feasible and strategy-proof when pf is agent-independent.

Proof. The transformation T will leave an agent unas-
signed whenever its original assignment conflicts with that
of the others. Since T never assigns a new item to an agent,
Tr pf s is feasible. For strategy-proofness, we consider two
cases. (Case 1): the feasibility check for all θ1i P Θi passes,
so that agent i’s assignment from pf is left unperturbed, and
no misreport is useful as the agent receives its optimal item
given the agent-independent prices. (Case 2): the feasibil-
ity check does not pass. But here it would not pass what-
ever be the report θ̂i of agent i, since the test is independent
of its report. A misreport is not useful.

The framework allows a designer to control the space of
strategy-proof mechanisms searched over by choosing an
appropriately expressive agent-independent rule class F .

Example 2. We show how the framework can be used to
design a strategy-proof mechanism for a simple setting with
payments. Consider two homogeneous agents t1, 2u and
two items t1, 2u. Assume there are two agent types Θ1 “
Θ2 “ tα, βu, with the following valuation functions:

v1pα, 1q “ v2pα, 1q “ 2; v1pα, 2q “ v2pα, 2q “ 1

v1pβ, 1q “ v2pβ, 1q “ 1; v1pβ, 2q “ v2pβ, 2q “ 2

1The transformation does not require an enumeration of allŚn
i“1 |Θi| type profiles, and performs a check only over the indi-

vidual type space of a given agent, fixing the reports of the others.
It can be implemented with

řn
i“1 |Θi| checks.

Suppose the underlying distribution D over Θ is uniform,
and the target rule the designer wants to approximate is:

gpα, αq “ p1, 2q; gpβ, αq “ p1, 2q
gpα, βq “ p1, 2q; gpβ, βq “ p2, 1q

Assume the designer provides a class Fi of agent-
independent functions fipθq “ argmaxoPrms

 
vipθi, oq ´

tipθ´i, oq
(

, with the following two candidates for the
payment function ti : Θ´i ˆ t1, 2uÑR`:

τA:
1 2

α 1 0
β 0 2

τB:
1 2

α 1 0
β 0 1

Assume we are provided a training sample with two ran-
domly drawn type profiles and labeled with the target out-
comes: S “ tppα, αq, p1, 2qq, ppα, βq, p1, 2qqu. We now
go over the two steps of the framework:

I: Constrained optimization over sample. We first solve the
optimization problem in (3) over the given hypothesis class.
Note that an outcome rule pfA constructed using t1 “ t2 “
τA (with ties broken in favor of the smaller item for agent
1, and larger item for agent 2) is a solution to (3) as it is
both feasible on S and yields zero error. On the first type
profile pα, αq, this rule gives us

pfA1 pα, αq “ argmaxoPt1,2u
 
v1pα, oq ´ τApα, oq( “ 1

pfA2 pα, αq “ argmaxoPt1,2u
 
v2pα, oq ´ τApα, oq( “ 2

and on the second type profile, we get

pfA1 pα, βq “ argmaxoPt1,2u
 
v1pα, oq ´ τApβ, oq( “ 1

pfA2 pα, βq “ argmaxoPt1,2u
 
v2pβ, oq ´ τApα, oq( “ 2

II: Feasibility transformation. The outcome rule is not
necessarily feasible on a type profile outside S. For exam-
ple, on the type profile pβ, βq, the rule outputs an infeasible
allocation p1, 1q. As a second step, we apply the feasibility
transform to enforce feasibility without violating the agent-
independence property. The resulting outcome rule Tr pfAs
can then be verified to yield the following:

Tr pfAspα, αq “ p1, 2q; Tr pfAspα, βq “ p1, φq

Tr pfAspβ, αq “ pφ, 1q; Tr pfAspβ, βq “ pφ, φq

On the other hand, if we were provided a larger sample, say
S1 “ tppβ, αq, p1, 2qq, ppα, βq, p1, 2qq, ppβ, βq, p2, 1qq,
ppα, βq, p1, 2qqu, then the outcome rule pfA is no longer fea-
sible on the sample. In this case, we would instead pick
t1 “ t2 “ τB . It can be verified that the resulting rule
pfB is the VCG outcome rule. This rule is feasible on all
profiles, and the transform has no effect: Tr pfBs “ pfB .
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5 SAMPLE COMPLEXITY GUARANTEE

A potential concern is the extent to which the feasibility
transform reduces the quality of the solution obtained by
solving (3). We shall see that under an assumption on dis-
tribution D, and with a sufficiently large sample, the trans-
formed rule becomes arbitrarily close to the best strategy-
proof approximation in F . This holds when each Fi has
finite capacity, as we elaborate in this section.

To have any hope of solving our original optimization prob-
lem in (1) using a finite sample, we will require the space of
agent-independent functionsFi to have limited capacity, so
that the obtained outcome rule does not overfit the sample.
The specific notion of capacity we consider is the Natara-
jan dimension, commonly used while analyzing generaliza-
tion performance of multi-class classifiers [12] (note that
each fi P Fi can be seen as a multiclass classifier mapping
type profiles to one of m items).

Definition 1 (Natarajan dimension). A set of profiles
A Ď Θ is said to be N-shattered by Fi if there exists label-
ings L1, L2 : AÑrms such that L1pθq ‰ L2pθq, @θ P A,
and for every subset B Ď A, there is a fi P Fi such that
fipθq “ L1pθq, @θ P B and fipθq “ L2pθq, @θ P AzB.
The Natarajan dimension of Fi is the size of the largest set
A that is N-shattered by Fi.

The Natarajan dimension is analogous to the VC dimension
used in binary classification settings. In fact, for binary
hypothesis classes, this quantity is the same as the VC di-
mension (with L1 and L2 being the all 1’s and all 0’s label-
ings respectively). As with the VC dimension, finiteness
of the Natarajan dimension is necessary and sufficient for
learnability of a multiclass hypothesis class (see for exam-
ple [21]). Hence, we assume that each agent-independent
class Fi has finite Natarajan dimension. We will further
require a smoothness assumption on distribution D:

Assumption A. Let µ be the p.m.f. associated with
distribution D. There exists α ě 1 such that for all i,
θ1i, θi P Θi, θ´i P Θ´i, µpθ1i, θ´iq ď αµpθi, θ´iq.
Assumption A requires that type profiles that differ only in
one coordinate have similar probability masses. The value
of α measures the closeness of the type distribution to a
uniform distribution (with higher values indicating the dis-
tribution is father away from being uniform). For the uni-
form distribution we have α “ 1. Assumption A is used to
enable an analysis of the effect of the feasibility transform
on the outcome rule.

Each outcome rule in F satisfies the agent-independence
condition. Let FSP Ď F be the subset of rules that also
satisfy the feasibility condition, and are thus strategy-proof,
i.e. outcome rules in f P F that are feasible on all θ P Θ.
We only consider function classes that contain at least one
feasible rule, i.e. for which FSP ‰ φ. Our goal is to find a

rule in FSP that best approximates target rule g.

Our approach picks a rule pf that is feasible on sample S,
but need not be feasible on type profiles outside S. The
transformation T ensures feasibility on all profiles, while
ensuring strategy-proofness. We show that the transformed
rule Tr pf s converges in the large sample limit to the best
rule in FSP:
Theorem 2. Let D satisfy Assumption A, and assume
FSP ‰ H. Let pf denote the rule obtained by solving (3)
on a sample S of size N , and f̃ “ Tr pf s. Then with proba-
bility at least 1´ δ (over draw of S from DN ),

Eθ„D
“
`
`
gpθq, f̃pθq˘‰ ď min

fPFSP
Eθ„D

“
`
`
gpθq, fpθq˘‰

` rO
ˆc

D

N

˙
` rO

ˆ
αD

N

nÿ

i“1

|Θi|
˙
,

where D is an upper bound on the Natarajan dimension
of each agent-independent function class Fi, and rO hides
terms that are logarithmic in n, m, N , D and δ.

The first term arises from pf yielding minimum error on
sample S, and decreases with increasing sample size N .

The second term captures the effect of the feasibility trans-
formation T, and has a linear dependence on the size of an
agent’s type space |Θi|, while being exponentially smaller
than the total number of type profiles

Śn
i“1 |Θi|. This term

also decreases with sample size N ; this is because as N in-
creases, pf becomes feasible on a larger fraction of the pop-
ulation, the effect of the transformation T becomes smaller.
Thus for a finite class capacity D, both the above terms go
to 0 as NÑ8, and the transformed outcome rule rf con-
verges to the optimal rule in FSP.

The larger the class capacity D, the larger is the space of
strategy-proof rules searched over. However, as seen in
the above bound, this will also lead to a larger bias due to
overfitting. Thus based on the size of the available sample,
the designer needs to appropriately tune the capacity of the
agent-independent class, so as to strike a trade-off between
the size of the strategy-proof hypothesis space searched
over, and the corresponding bias introduced.

5.1 PROOF

We give the proof for Theorem 2. Let FS denote the subset
of all agent-independent rules in F that are feasible on S.
Recall that the outcome rule pf P F obtained by solving (3)
is in FS , and also yields the minimum sample error over all
rules in FS . Note that FSP is a subset of the rules FS that
are feasible on all type profiles, and thus strategy-proof:

FSP Ď FS Ď F

Also, note that the final transformed outcome rule rf “
Tr pf s is feasible on all profiles, but may not be a rule inFSP.
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We show that with increasing sample size, rf converges to
the rule in FSP that best approximates the target. While we
assume neither the rules f P F nor the target rule g assign
φ to an agent, the transformation T is allowed to cancel
an item to an agent. Hence, while evaluating the designed
mechanism against the target outcome rule, an assignment
of φ to an agent will be counted as an error.

The proof is based on uniform convergence arguments
commonly used in the generalization analysis of multiclass
classifiers. We will make use of the fact that pf is chosen
from a finite capacity rule class. We first show that since
pf minimizes the sample error over all rules in FS , its ex-
pected error to the target is also close to the least possible
error withinFS , and in turn to the least error within the sub-
set of feasible and strategy-proof rules FSP Ď FS . How-
ever, the final transformed rule f̃ may be different from
pf , as it can cancel items assigned by pf . We further show
that since pf is feasible on sample S, it is also feasible on
a large portion of the population; this together with our
smoothness assumption on the distribution implies that the
expected error of f̃ is close to that of pf . Thus we are able
to bound the expected error of f̃ in terms of the minimum
error within FSP, and a sample complexity term.

In particular, we analyze three quantities:

εerr “ Eθ„D
“
`
`
gpθq, pfpθq˘‰,

εinfeasible “ Pθ„D
` pfipθq “ pfjpθq for some i, j P rns˘,

εiT “ Pθ„D
` rfipθq “ φ

˘
.

Here εerr is the expected distance of the untransformed rule
pf from the target; εinfeasible is the probability of pf being
infeasible on a random profile; and εiT is the probability that
the transformation T cancels the item assigned to agent i.

Since the transformation T leaves pfi unchanged on all but
a fraction εiT of the profiles, the distance of the final trans-
formed outcome rule rf from the target can be bounded in
terms of the error of the untransformed rule εerr, and εiT’s:

Eθ„D
“
`
`
gpθq, f̃pθq˘‰ “ Eθ„D

„
1

n

nÿ

i“1

1
` rfipθq ‰ gipθq

˘

“ Eθ„D

„
1

n

nÿ

i“1

1
` rfipθq “ pfipθq ‰ gipθq

˘

`Eθ„D

„
1

n

nÿ

i“1

1
` rfipθq “ φ ‰ gipθq

˘

ď Eθ„D
“
`
`
gpθq, pfpθq˘‰ ` Eθ„D

„
1

n

nÿ

i“1

1
` rfipθq “ φ

˘

“ εerr ` 1

n

nÿ

i“1

εiT. (4)

We bound εerr and εiT. For this, we will in turn require a
bound on εinfeasible. We start with an outline:

‚ Bounding εerr (Lemma 3): We show that the expected
distance of this rule from the target is close to that of
the optimal rule in FSP.

‚ Bounding εinfeasible (Lemma 4): We show that pf is fea-
sible on a large fraction of the population.

‚ Bounding εiT (Lemma 5): We use the smoothness as-
sumption on D (Assumption A) to show that the trans-
formation T will have limited effect on pf as long as pf
is feasible on a large portion of the population. In par-
ticular, we bound each εiT in terms of εinfeasible.

We begin by bounding εerr. It is useful to state a general-
ization bound on the difference between the empirical and
population errors of an outcome rule f chosen from a class
of finite Natarajan dimension [21] (see Lemma 10 in Ap-
pendix A). W.p. ě 1´ δ (over draw of S), @f P F ,

ˇ̌
ˇ̌Eθ„D

“
`
`
gpθq, fpθq˘‰´ 1

N

Nÿ

k“1

`
`
yk, fpθkq˘

ˇ̌
ˇ̌

ď O
ˆc

D lnpmq ` lnpn{δq
N

˙
. (5)

We then have:
Lemma 3. Fix δ ą 0. With probability at least 1´ δ (over
draw of S from DN ),

εerr ď min
fPFSP

Eθ„D
“
`
`
gpθq, fpθq˘‰

`O
ˆc

D lnpmq ` lnpn{δq
N

˙
.

Proof. Denote f˚ P argminfPFSP
Eθ„D

“
`
`
gpθq, fpθq˘‰.

We wish to bound:

Eθ„D
“
`
`
gpθq, pfpθq˘‰´ min

fPFSP
Eθ„D

“
`
`
gpθq, fpθq˘‰

“ Eθ„D
“
`
`
gpθq, pfpθq˘‰ ´ 1

N

Nÿ

k“1

`
`
yk, pfpθkq˘

` 1

N

Nÿ

k“1

`
`
yk, pfpθkq˘ ´ Eθ„D

“
`
`
gpθq, f˚pθq˘‰

ď Eθ„D
“
`
`
gpθq, pfpθq˘‰ ´ 1

N

Nÿ

k“1

`
`
yk, pfpθkq˘

` 1

N

Nÿ

k“1

`
`
yk, f˚pθkq˘ ´ Eθ„D

“
`
`
gpθq, f˚pθq˘‰

ď 2 sup
fPF

ˇ̌
ˇ̌Eθ„D

“
`
`
gpθq, fpθq˘‰ ´ 1

N

Nÿ

k“1

`
`
yk, fpθkq˘

ˇ̌
ˇ̌,

where the second step uses the fact that pf has minimum
empirical error on S over all FS Ě FSP and hence a lesser
or equal empirical error compared to f˚ P FSP; the last
step uses the fact that both pf, f˚ P F . The generalization
bound in (5) then gives the desired result.
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We next focus on bounding εinfeasible.
Lemma 4. Assume FSP ‰ H. Fix δ ą 0. Then w.p. at
least 1´ δ (over draw of S from DN ),

εinfeasible ď O
ˆ
nD lnpmnDq lnpNq ` lnp1{δq

N

˙
.

Proof. (Sketch) We provide the full proof in Appendix
B.1. For any f : ΘÑΩ, define a binary function Gf :
ΘÑt0, 1u as Gf pθq “ 1

`
f1pθq ‰ . . . ‰ fnpθq

˘
. Clearly,

f is feasible iffGf evaluates to 1 on all type profiles. Since
FSP ‰ φ, there always exists a f in F which is feasible,
and hence there always exists a Gf which outputs 1 on all
profiles. Treating Gf as a binary classifier, one can now
appeal to standard VC dimension based learnability results
for classification [22], with the loss function being the 0-1
loss against the all 1’s labeling. The VC dimension of the
class of all functions tGf : ΘÑt0, 1u : f P Fu can be
shown to be at mostOpnD lnpnmDqq. Then w.p.ě 1´δ,

εinfeasible “ Eθ„D
“
1
`
G pf pθq ‰ 1q˘

ď O
ˆ
nD lnpnmDq lnpNq ` lnp1{δq

N

˙
,

which implies the statement of the lemma.

We finally bound εiT in terms εinfeasible.
Lemma 5. Under Assumption A, εiT ď α|Θi|εinfeasible.

Proof. Let us use µ to denote the p.m.f. associated with
distribution D. Also, let Θinfeasible Ď Θ denote the subset
of type profiles on which pf is infeasible, i.e. type profiles
θ P Θ for which pfipθq “ pfjpθq for some i and j. Clearly,
εinfeasible “ ř

θPΘinfeasible
µpθq. Further, note that the set of

type profiles on which the transformation T makes a null
allocation to agent i is precisely the set of type profiles that
are one hop away (i.e. differ in agent i’s type) from those
in Θinfeasible. Therefore,

εiT “
ÿ

θPΘ
µpθq1`f̃ipθq “ φ

˘ “
ÿ

θPΘinfeasible

ÿ

θ1iPΘi

µpθ1i, θ´iq

ď
ÿ

θPΘinfeasible

ÿ

θ1iPΘi

αµpθq “ α
ÿ

θ1iPΘi

ÿ

θPΘinfeasible

µpθq

“ α|Θi|εinfeasible,

where the inequality follows from Assumption A.

Combining Lemmas 4-5 with (4) gives us w.p. at least 1´δ
(over draw of S):

Eθ„D
“
`
`
gpθq, f̃pθq˘‰ ď min

fPFSP
Eθ„D

“
`
`
gpθq, fpθq˘‰

`O
ˆc

D lnpmq ` lnpn{δq
N

˙

`O
ˆ
α

n

nÿ

i“1

|Θi|nD lnpnmDq lnpNq ` lnp1{δq
N

˙
.

This completes the proof of Theorem 2.

6 APPLICATIONS

We provide instantiations of the framework to assignment
problems with and without money. In each case, we con-
struct examples of agent-independent function classes Fi
that have finite Natarajan dimension. We also show that
these function classes can be used to model feasible out-
come rules, which together with the agent-independence
property are guaranteed to be strategy-proof.

6.1 ASSIGNMENT PROBLEM WITH MONEY

As noted in Section 3, a strategy-proof outcome rule in this
setting is necessarily of the following form for an agent-
independent price rule ti : Θ´iÑR`.

fipθq P argmax
oPrms

 
vipθi, oq ´ tipθ´i, oq

(
.

One way to construct an agent-independent function class
for this setting is by modeling the above price rule ti
as a linear function in a suitable feature space, i.e. as
twi pθ´i, oq “ wJi Ψipθ´i, oq for some model vector wi P
Rd and feature map Ψi : Θ´i ˆ rmsÑRd. Let F̄Ψ

i be
the corresponding class of agent-independent functions ob-
tained for different model vectors wi. This class resembles
the class of linear discriminant classifiers, which is known
to have a finite Natarajan dimension [21]:

Theorem 6. The Natarajan dimension of F̄Ψ
i is at most

Opd lnpdqq.

Note that one can fine-tune the capacity of this class by
adjusting the number of features d used. Below, we show
that the function class admits feasible and strategy-proof
outcome rules for an appropriate choice of feature map.

Example feature map. We describe a feature map with two
parts, inspired by the VCG price function seen in Example
1. For an agent i and item o, the first part contains the
valuations for all agents other than i:

Ψ1
i pθ´i, oq “ rvjpθj , o1qsmo1“1sj‰i P Rpn´1qˆm

` .

The second part of the feature map contains the valua-
tions for the other agents when they receive the welfare-
maximizing assignment from items other than o:

Ψ2
i pθ´i, oq “ rvjpθj , yzi,oj qsj‰i P Rn´1` ,

where yzi,o P argmaxyPΩ, yi“o
ř
j‰i vjpθj , yjq.

The feature map Ψ̄ipθ´i, oq “ rΨ1
i pθ´i, oq,Ψ2

i pθ´i, oqs
then allows us to construct feasible outcome rules.

Theorem 7. There exists wi P Rpn´1qpm`1q s.t. the prices
twi pθ´i, oq “ wJi Ψ̄ipθ´i, oq are non-negative and yield a
feasible outcome rule for a suitable tie-breaking scheme.
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The specific model vector we consider is

wi “ r1, 1, . . . , 1loooomoooon
pn´1qˆm

,´1,´1, . . . ,´1loooooooomoooooooon
n´1

s.

The first part of the model vector ensures that the payments
are non-negative, while the second part leads to a VCG-
style welfare maximizing outcome rule. The proof details
are provided in Appendix B.2.

6.2 ASSIGNMENT PROBLEM WITHOUT
MONEY

In this setting, a strategy-proof outcome rule satisfied the
following for some agent-independent virtual price func-
tions tvir

i : Θ´i ˆ rmsÑR`: tvir
i pθ´i, fipθqq ď 1 and

fipθq ľi o, @o P to1 P rms : tvir
i pθ´i, o1q ď 1u.

As before, to construct an agent-independent function
class, we can model the virtual price function tvir

i as a linear
function tvir,w

i pθ´i, oq “ wJi Ψipθ´i, oq for some model
vector wi P Rd and feature map Ψi : Θ´i ˆ rmsÑRd.
Let rFΨ

i be the corresponding class of agent-independent
functions obtained for different model vectors wi.

Unlike the setting with money, here the payment functions
do not directly resemble standard classification constructs.
Below, we derive a bound on the Natarajan dimension of
the proposed function class (see Appendix B.3 for proof).

Theorem 8. The Natarajan dimension of rFΨ
i is at most

Oppmdq lnpmdqq.
Thus the capacity of the function class is finite and can be
tuned by varying the number of features used. Also, this
class includes feasible and strategy-proof outcome rules for
an appropriate choice of the feature map.

Example feature map. Define for agent i, a function
ranki : Θi ˆ rmsÑ rms that maps a type θi and item o
to the number of items that the agent prefers less than o:
rankpθi, oq “ řm

o1“1 1po ąi o
1q (note higher ranks imply

greater preference to item o). For an agent i and item o, the
prescribed feature map is then a nˆm binary encoding of
the ranks assigned by agents other than i to item o:

rΨipθ´i, oqrj, ks “
#
1prankjpθj , oq “ kq if j ‰ i

0 otherwise
,

where we use rj, ks to denote the index pj ´ 1qm` k.

Theorem 9. There exists wi P Rnˆm such that the vir-
tual price functions tvir,w

i pθ´i, oq “ wJi rΨipθ´i, oq yield a
feasible outcome rule.

In particular, a serial dictatorship (SD) style feasible, and
strategy-proof outcome rule is within this class. Fix a pri-
ority π : rnsÑ rns over the agents, where πpiq denotes the

priority to agent i (with 1 indicating the lowest priority, and
n indicating the highest). The following vector wi P Rnˆm
then yields a SD style rule with priority ordering π: for any
j P rns, k P rms,

wirj, ks “
#

2 πpjq ą πpiq, k ě m´ n` πpjq
0 otherwise

.

The proof of feasibility is provided in Appendix B.4.

7 CONCLUSION AND OPEN
QUESTIONS

We have developed a general statistical framework for de-
signing strategy-proof mechanisms that closely approxi-
mate a given target outcome rule. Our approach does
not require domain-specific characterizations, and only re-
quires the designer to provide a class of rules that satisfy
a simple agent-independent condition. By tuning the ca-
pacity of this class, one can control the space of strategy-
proof mechanisms optimized over. We have provided sam-
ple complexity bounds for our method and instantiated ap-
plications to assignment problems with and without money.

There are several questions that arise from our work:

• The optimization problem (3) can be formulated and
solved as a mixed integer linear program. But, how
can one solve this problem efficiently in practice? For
the setting with money, the problem can be solved ap-
proximately by adopting convex relaxations from ma-
chine learning (see [14]). It will be interesting to un-
derstand the effectiveness of these relaxations as well
as to identify similar relaxations for the setting with-
out money.

• How can the framework be extended to infinite type
spaces, and how can the feasibility transformation be
implemented efficiently in such a setting?

• How can the framework be extended to instance-
dependent distance functions, and applied to specific
design objectives such as welfare or revenue?

• The sample complexity result requires that the agent-
independent function classes have finite capacity. Can
we use an approach similar to structural risk mini-
mization to incorporate a universal hypothesis class
in the framework, and thus cover the entire space of
strategy-proof mechanisms?
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Abstract

We consider the important crowdsourcing prob-
lem of estimating worker confusion matrices, or
sensitivities and specificities for binary classifi-
cation tasks. In addition to providing diagnostic
insights into worker performance, such estimates
enable robust online task routing for classifica-
tion tasks exhibiting imbalance and asymmetric
costs. However, labeled data is often expensive
and hence estimates must be made without much
of it. This poses a challenge to existing meth-
ods. In this paper, we propose a novel model that
captures the correlations between entries in con-
fusion matrices. We applied this model in two
practical scenarios: (1) an imbalanced classifica-
tion task in which workers are known to belong
to groups and (2) a multitask scenario in which
labels for the same workers are available in more
than one labeling task. We derive an efficient
variational inference approach that scales to large
datasets. Experiments on two real world citizen
science datasets (biomedical citation screening
and galaxy morphological classification) demon-
strate consistent improvement over competitive
baselines. We have made our source code avail-
able.

1 INTRODUCTION

Crowdsourcing is a popular approach to collecting annota-
tions at comparatively low cost. However, crowdsourcing
annotation work necessitates taking care to evaluate worker
annotation quality, as this will likely be lower than that of
a domain expert. The standard means of addressing this is
to collect multiple labels for each item and then use an ag-
gregation method to derive a consensus label. The simplest
such method is majority voting, which selects the major-
ity label for each item. More complex methods exist; see
(Sheshadri and Lease, 2013) for a review.

Many crowd consensus methods posit some model of
worker qualities, e.g., a worker’s overall accuracy. How-
ever, the problem of modeling workers has typically been
considered a secondary issue, with the primary concern be-
ing label aggregation. Here we argue that the problems
of aggregating labels and of modeling workers are distinct
(though related). A good method for aggregating labels
will not necessarily provide reliable estimates of worker
qualities. For example, majority voting assumes that work-
ers are equally good; this assumption is almost certainly
usually wrong, but nonetheless can yield high quality ag-
gregated labels when workers do not make correlated er-
rors. Consider, e.g., a scenario in which each item has been
labeled by three workers, two of whom are always correct
and one of whom is always wrong. Here, majority vot-
ing would provide perfect label aggregation, but plainly the
workers are not equally good.

The simplest way to model worker skill is with the uni-
variate metric of overall accuracy. This may be appropriate
when classes are balanced and/or when false negatives and
false positives are equally expensive. However, in most
real-world tasks, we would prefer a more granular model
of accuracies. The standard way is to model the worker
confusion matrices, whose entries are the probabilities of a
worker providing each possible label j, conditioned on the
true label i: Aij = Pr(Response = j|TrueLabel = i).
This class conditional approach posits two parameters for
each worker, affording the flexibility to accurately capture
worker performance. The caveat is that more data is needed
to estimate more parameters.

For example, when the majority of items belong to the neg-
ative class, very few positive items will be available to re-
liably estimate the probabilities of responses given that the
true label is positive, i.e. A01 and A11. Explicitly model-
ing correlations between sensitivity and specificity is one
potential means of improving estimates in this case: Work-
ers who perform well on negative items are likely to also
correctly classify positive ones. Another scenario in which
this general approach may help is when data from multi-
ple labeling tasks is available, for example if many workers
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who performed a text classification task come back to work
on a new image classification task. In such scenarios, we
might expect a worker who does well on one task to also be
likely to do so on the other.

Specific contributions of this work are as follows.

• Taking inspiration from previous work in modeling
medical diagnostic test (Dahabreh et al., 2012; Re-
itsma et al., 2005), we propose modeling the corre-
lation between worker sensitivity and specificity. A
natural property of our model is the assumption that
workers belong to one or more groups, each with its
own mean sensitivity and specificity. Intuitively, these
means allow us ‘back-off’ to group-level quality esti-
mates when data from a specific worker is sparse.

• We extend our idea to model the correlations of the
workers across multiple labeling tasks. This allows us
to transfer knowledge of worker quality from a task
with more data to one with less.

• We introduce an efficient variational method to scale
parameter estimation to handle large data.

We are unaware of any previous work on using correlations
to improve estimates of worker confusion matrices nor a
generative model of worker performance in multiple tasks.

2 RELATED WORK

Dawid and Skene (1979) presented the classic crowd con-
sensus model in which each item corresponds to a hid-
den ‘true label’ variable and each worker is modeled by
a confusion matrix of class-conditional label probabilities.
Raykar et al. (2010); Kim and Ghahramani (2012); Liu and
Wang (2012) all presented Bayesian extensions, placing
priors on the worker confusion matrices. Unique amongst
this prior work, Liu and Wang (2012) emphasized getting
good estimates of the confusion matrices to gain diagnostic
insights into worker performance, while the other two fo-
cus on recovering the true labels and building a good clas-
sifier. Recently, Lakkaraju et al. (2015) further extended
the model by clustering workers and items based on their
features. Although very effective compared to Liu and
Wang (2012)’s Hybrid Confusion approach, demographic
features such as worker age, education or job are not al-
ways available, e.g., on Amazon Mechanical Turk.

The idea of detecting latent groups and communities of
similar workers has been studied previously (Simpson
et al., 2013), and incorporated into a generative model to
improve the aggregated labels (Venanzi et al., 2014). By
contrast, here we consider exploiting known worker groups,
when such information is available, to improve our confu-
sion matrix estimates.

While modeling individual confusion matrices is the most
common approach to annotator modeling, recent work has

also explored other strategies. Kajino et al. (2012)’s mul-
titask formulation views each worker as a learning task.
Bi et al. (2014) models each worker as a classifier, whose
parameters deviate from the true parameters. While these
methods have been shown to outperform the ‘Two Coin’
model (Raykar et al., 2010) for the task of label aggrega-
tion, they unfortunately do not provide direct estimates of
worker sensitivity and specificity.

In terms of inference and learning algorithms, Dawid
and Skene (1979) and Raykar et al. (2010) both used
the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) while Liu and Wang (2012) used Gibbs sam-
pling. Variational inference has also been applied and
shown to perform well for crowdsourcing models (Liu
et al., 2012).

3 METHODS

We now present the details of our probabilistic graphical
model, including details of representation, inference and
learning (Koller and Friedman, 2009). We first define a
joint probability model over all observed and hidden vari-
ables of interest, conditioned on the parameters. In Section
3.2, we present our inference method, which involves an
efficient variational algorithm. This estimates the distribu-
tion over the hidden variables, assuming the parameters are
known. In Section 3.3, we present an EM approach to learn
the parameters from data. Finally, we extend our approach
to the multitask setting in section 3.4.

3.1 MODEL

We assume that each worker has a latent sensitivity and
specificity, and that these two quantities are correlated.
This assumption has similarly been made in medicine for
estimating diagnostic test performance (Dahabreh et al.,
2012). Following this work, we explicitly model the corre-
lation between sensitivity and the false positive rate (FPR)
(=1− specificity).

Let Zi be the (potentially unobserved) true label for in-
stance i and Lij be the label provided for i by worker j.
We then model worker j using two hidden variables, Uj
and Vj , these capture transformations of worker sensitiv-
ity and FPR, and are assumed to be drawn from a bivariate
normal with a covariance matrix to be estimated.

More precisely, the generative process is as follows:

Uj , Vj ∼ N (µ,C) (1)
Zi ∼ Ber(θ) (2)

Lij |Zi = 1 ∼ Ber(S(Uj)) (3)
Lij |Zi = 0 ∼ Ber(S(Vj)) (4)

Ber(p) is the Bernoulli distribution with parameter p en-

538



coding the probability of the variable taking the value 1.
N (µ,C) is the bivariate Normal distribution with mean
vector µ and covariance C: the correlation between U and
V is thus modeled by the off-diagonal entries in C (C is
symmetric; the two off-diagonal entries are equal). S is
the Sigmoid function: S(x) = 1/(1 + exp(−x)), which
maps real numbers to the interval [0, 1]. Uj and Vj are thus
the logit-transformed sensitivities and FPRs of workers (the
logit function is the inverse of the sigmoid fuction).

Note that µ andC are group-level parameters, capturing ex-
pected sensitivity and FPRs across all workers. Thus ours
may be viewed as a ’fixed effects’ model (Hedges, 1994) of
worker quality, as we assume individual worker parameters
are drawn from a shared parent distribution. This is in con-
trast to much of the previous work on this task, which has
often modeled individuals independently (although there
have been exceptions to this, e.g., Liu and Wang (2012)).
In one scenario we assume that workers belong to distinct
groups: experienced workers and novices. We also assume
that we know a priori to which groups workers belong. In
this case we fit separate models for each group, deriving
corresponding distinct estimates for mean sensitivities and
FPRs (and covariances).

Taking a Bayesian view, one may place priors on the shared
variables µ,C and θ. However this increases model com-
plexity and introduces the need to specify appropriate pri-
ors. Intuitively, these parameters are informed by all or
most of the items in the dataset, and we should therefore
have considerably less uncertainty around our estimates of
them, compared to the hidden variables Z,U and V (which
are informed by one or a small number of items).

Putting the components together, the unnormalized joint
posterior of our model has the form:

P (U1..m, V1..m, Z1..n, L) =
m∏

j=1

N (Uj , Vj |µ,C)

n∏

i=1

Ber(Zi|θ)
∏

Zi=1

Ber(Lij |S(Ui))
∏

Zi=0

Ber(Lij |S(Vi))

(5)

Where we are denoting the number of workers by m and
the number of items by n.

3.2 INFERENCE

We aim to recover the posterior distribution of
all of the hidden variables given worker labels:
p(U1..m, V1..m, Z1..n|L). Unfortunately, evaluating
this analytically is intractable. One possibility is instead
to perform approximate inference via sampling methods
such as Markov chain Monte Carlo (MCMC). However,
practical implementations of MCMC, such as BUGS

Lij

S S

U V

Normal

µ,C

Ber

m

Z

n

|L|

θ
Ber

Figure 1: The Factor Graph of our model. Circles represent
random variables (shaded variables are observed), squares
depict factors, diamonds are deterministic mappings, edge
endpoints (µ,C, θ) are parameters, plates denote repeti-
tions, dotted plates are gates (in this case, the value of Z
is used to select which one of the two S(U) and S(V ) is
used as the parameter for the Bernoulli distribution.

(Spiegelhalter et al., 1995) and PyMC (Patil et al., 2010),
do not scale to large datasets, rendering this approach
infeasible for our application.

We therefore propose a novel variational inference al-
gorithm for the model specified above. Variational ap-
proaches (Wainwright and Jordan, 2008) aim to approxi-
mate the true posterior p via a simpler distribution over the
same variables: q(u1..m, v1..m, Z1..n). The idea is to make
q ‘close’ to p by minimizing the Kullback-Leibler (KL) di-
vergence between the two, i.e., KL(q||p). By minimizing
this divergence, we are maximizing a lower bound on the
data log likelihood.

A typical strategy in variational inference is to make the
mean field assumption, i.e., assume that q neatly factorizes:

q(U1..m, V1..m, Z1..n) =
m∏

j=1

q(Uj)q(Vj)
n∏

i=1

q(Zi) (6)

where each distribution q on the right hand side is over one
hidden variable (disambiguated by the argument), and has
the form:

q(Uj) = N (µ̃uj , σ̃
2
uj) (7)

q(Vj) = N (µ̃vj , σ̃
2
vj) (8)

q(Zi) = Ber(θ̃i) (9)

Here {µ̃uj , σ̃2
uj , µ̃vj , σ̃

2
vj |j = 1...m} and {θ̃i|i = 1...n}

are the variational parameters that should be selected to
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minimize KL(q||p). This optimization problem can be
solved via coordinate descent by updating each factor dis-
tribution while keeping all others fixed. The general mean
field update for a vectorX of hidden variables has the form:

q∗(Xi) ∝ exp{E−qi logP (X)} (10)

P (X) is the unnormalized posterior (here, Equation 5) and
E−qi is the expectation with respect to all variables except
Xi. By this equation, we can update q(Xi) by making
changes to its variational parameters. The equation updates
our estimate over a variable based on the current belief over
its neighbors (terms involving other variables are absorbed
into the constant). Adapting this general form to our model,
we can derive the following update equations:

q∗(Zi = 1) ∝ exp
{

log Ber(1|θ)+
∑

EUj∼q(Uj) log Ber(Lij |S(Uj))
}

(11)

q∗(Zi = 0) ∝ exp
{

log Ber(0|θ)+
∑

EVj∼q(Vj) log Ber(Lij |S(Vj))
}

(12)

q∗(Uj) ∝ exp
{
EVj∼q(Vj) logN (Uj , Vj |µ,C)+

∑
q(Zi = 1) log Ber(Lij |S(Uj))

} (13)

q∗(Vj) ∝ exp
{
EUj∼q(Uj) logN (Uj , Vj |µ,C)+

∑
q(Zi = 0) log Ber(Lij |S(Vj))

} (14)

We have elided indices in summations above for brevity.
The sums in Equations 11 and 12 are over all of the work-
ers that have provided labels for item i. The sums in Equa-
tion 13 and 14 are over all of the items that worker j has
labeled. Recall that in Inference, the parameters µ,C and
θ are assumed to be known.

Intuitively, Equations 11 and 12 consider item i and update
our approximation of the posterior over Zi by taking into
account the prior θ and evidence from all of the worker la-
bels provided for the item. Equation 13 concerns the (logit-
transformed) sensitivity estimate for worker j, taking into
account the bivariate Normal and the current approxima-
tion over the logit-transformed FPR Vj . The approxima-
tion is further updated using all of the items worker j has
labeled, with respect to the current approximation over the
true label Zi of each. Equation 14 can be interpreted simi-
larly, although here we consider the logit-transformed FPR
estimate for worker j.

Although the update equations are available, evaluating
them is difficult due to the model being non-conjugate. We

thus applied Laplace Variational Inference (Wang and Blei,
2013), to directly approximate these equations. We first let

Tj =

(
Uj
Vj

)
to treat Uj and Vj as a single variable and let

f(Tj) be the exponent in their update equation:

f(Tj) = logN (Tj |µ,C)+
∑

q(Zi = 1) log Ber(Lij |S(Uj))+
∑

q(Zi = 0) log Ber(Lij |S(Vj))

(15)

By using a Laplace approximation on f , we can derive the
approximate update for Uj and Vj :

q∗(Tj) ∝ exp(f(Tj)) ≈ N
(
T̂j ,∇2f(T̂j)

−1
)

(16)

where T̂j is the maximum of f(Tj), can be found by nu-
merical optimization, and the Hessian matrix∇2f(Tj) can
be derived analytically by using the result:

∇2 logN (T |µ,C) = C−1(T − µ)(T − µ)TC−1 − C−1
(17)

For the variable Zi, the expectations in their update equa-
tions (11 and 12) can also be approximated similarly, for
example, let g(u) = logS(u), we have

Eu∼N (µ,σ)g(u) ≈ g(µ) +
1

2
g′′(µ)σ (18)

Again, the second derivative g′′ can be derived analytically:

g′′(u) = −eu/(1 + eu)2 (19)

The inference procedure initializes the variational distribu-
tion q at some value and then applies the update equations
iteratively until convergence. In our implementation, we
iterate until the average changes in the variational param-
eters is less than 0.01. To initialize the means of q(Uj),
q(Vj) and q(Z), we use majority voting. To initialize the
variance of q(Uj) and q(Vj), we make use the Beta distri-
bution. For example, suppose majority voting predicts that
worker j has provided a True Positives and b False Nega-
tives so that his sensitivity can be estimated as a/(a + b).
We initialize the variance σ̃uj of the logit-transformed sen-
sitivity Uj as the logit-tranformed variance of Beta(a, b),
which intuitively gives a smaller variance for workers who
have provided more labels.

3.3 LEARNING

We consider µ,C and θ as parameters to be learned from
data. The learning algorithm is a simple application of EM.
In the E step, we perform variational inference to estimate
the posterior over the hidden variable, given all of the the
workers’ labels. In the M step, we maximize the param-
eters µ,C and θ under that posterior distribution. For the
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Figure 2: The Factor Graph highlights the extension to two
tasks from the single task model in Figure 1.

parameters µ and C, the expected sufficient statistics (with
respect to the variational distribution) can be evaluated:

E(Uj) = µ̃j (20)

E(U2
J) = µ̃2

uj + σ̃2
uj (21)

E(UJVJ) = µ̃uj µ̃vj (22)

and then plugged into an estimator of multivariate Normal
mean and covariance. For θ, it is simply set to the ex-
pected proportion of positive items, which is the average
of {θ̃i|i = 1...n}.

3.4 MULTITASK MODEL

In addition to exploiting correlations between worker sensi-
tivities and FPRs, our model can easily accommodate other
sorts of worker performance correlations. For example, in
this section we show that the same model can be adopted
to capitalize on correlated performances across related la-
beling tasks. Specifically, we assume that workers have
different sensitivities and FPRs in different tasks but that
these values are correlated across tasks. Let U1, V1, U2, V2
be the logit-transformed sensitivities and FPRs in the first
and second task. These are assumed to be generated from
a four-dimensional Normal distribution:




U1

V1
U2

V2


 ∼ N

(
µ,C =

(
A X
XT B

))
(23)

whereA,B andX are 2×2 matrices. A andB are the intra-
task covariance matrices. X models the correlations across
tasks, for instance X11 is the correlation between U1 and
U2. X11 > 0 means that a worker with high sensitivity in
the first task is likely to have high sensitivity in the second
task. Our idea is that each task has its own mean sensitivity
and specificity to represent its difficulty. On the other hand,
the covariance matrix C represents how these sensitivites
and specificities in two tasks are correlated. Figure 2 is an
illustration. Our inference and learning algorithms can be
easily extended to this model.

4 EXPERIMENTS

We conducted experiments on two large ‘citizen science’
datasets to compare our proposed method to baselines. In
citizen science, workers volunteer to contribute to science,
without financial compensation.

We report the Root Mean Square Error (RMSE) of the pre-
dicted worker sensitivities and specificities:

RMSE =

√√√√ 1

m

m∑

j=1

(Predictedj − Truej)2 (24)

where Predictedj is the sensitivity or specificity of worker
j that is predicted by a method and Truej is the correspond-
ing true value. In practice, a worker true sensitivity and
specificity are latent but can be accurately estimated given
that the worker have labeled a large number of items and
the true labels for those items are available: Sensitivity =
TP/(TP+FN) and Specificity = TN/(TN+FP) where
TP, TN, FP and FN are the number of true (false) positives
(negatives) that the worker have labeled. We calculate the
sensitivity and specificity estimates using all of the avail-
able data and treat those as the true values (or gold stan-
dard) for evaluation. Also, to ensure the quality of such
gold standard, we only include in our evaluation the work-
ers who have provided labels for at least 5 positives and 5
negatives (on the entire dataset). We note that the meth-
ods being evaluated are given a small portion of the dataset
and still need to produce good estimates based on very few
crowd labels and without access to the true labels. A sim-
ilar approach to evaluate confusion matrix estimates has
been used by Lakkaraju et al. (2015).

4.1 BIOMEDICAL CITATION SCREENING

We consider data from the EMBASE screening project
(http://screening.metaxis.com/EMBASE/), which aims to
identify reports of randomized controlled trials (RCTs)
from EMBASE,1 a biomedical literature database. The aim
is to be comprehensive, thus placing an emphasis on sen-
sitivity. An important property of this dataset is its imbal-
ance: fewer than 5% of the items are positive. Our model
aims to improve the estimates of sensitivities using their
correlations with specificities (recall that sensitivity is the
probability of being correct given a positive, and we expect
this estimate to be poor given very few positives). Also,
the screening project has relied on a mix of novice volun-
teer workers and domain experts with associated costs and
levels of expertise. Our model can easily exploit such in-
formation on two groups of workers by using two different
set of parameters (µ and C), one for each group. This is
a large dataset with 151,224 items and 576 workers. Of

1RCTs are experiments in which participants are randomized
to groups in which individuals are exposed to different interven-
tions; one group is designated as a control.
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(a) Sensitivity with Uniform Prior (1,1) (b) Specificity with Uniform Prior (1,1)

(c) Sensitivity with Informative Prior (4,1) (d) Specificity with Informative Prior (4,1)

Figure 3: The RMSE in Sensitivity and Specificity with Uniform and Informative Prior of four methods (averaged over 5
runs). DiagCov and FullCov are two variants of our model; their curves overlap in (b), (c) and (d).

those workers, 156 have labeled at least 5 positives and 5
negatives and are used for evaluation. The number of labels
per workers is generally very skewed: 525 workers (91%)
provided less than the average of 603 labels.

We implemented two variants of our method: one with a
full covariance matrix (FullCov) and one with a covariance
matrix constrained to be diagonal (DiagCov) i.e., entries
in the confusion matrices are assumed to be uncorrelated.
This allows us to observe how much improvement is due
to modeling correlation and how much is from modeling
worker groups. We compare these two variants to two base-
lines: Majority Vote, in which sensitivities and specifici-
ties are estimated based on the majority labels, and the Two
Coin model (without features) due to Raykar et al. (2010,
sec. 2.7.4)

We also implemented the Hybrid Confusion model by Liu
and Wang (2012), which is the same as Two Coin but with
inference by Gibbs sampling. Because the results were
very similar to Two Coin, we omit these for clarity.

All of the methods are given the same prior or initialized
in the same way. The Two Coin model has Beta priors
on worker sensitivities and specificities, which can be in-
terpreted as smoothing constants. The same constants are
given to Majority Vote to smooth its estimates. Our model
has no prior on the parameters µ and C but those and the
variational parameters are initialized using the outputs from
Majority Vote (with smoothing constants). To explore the
effect of these worker priors (or initialization), we did ex-
periments with a uniform prior ((Beta(1, 1) as done by
Raykar et al. (2010)) and an informative prior Beta(4, 1)
as in Liu and Wang (2012)). The prior on the class propor-
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Items Workers LPI LPW
Task 1 17862 1242 16.8± 3.9 241± 288
Task 2 6476 198 5.0± 2.1 163± 130
Task 3 21951 681 6.7± 3.7 215± 243
Task 4 21915 679 6.7± 3.7 215± 243

Table 1: Statistics of four tasks we consider in the Galaxy
Zoo 2 dataset, after pre-processing. ‘LPI’ stands for ‘La-
bels per item’ and ‘LPW’ for ‘Labels per worker’. In these
columns, we report the means and standard deviations of
the number of labels per item (worker).

tion θ is always uniform (Beta(1, 1) as done by both).

Figure 3 presents our results with RMSE on the Y-axis and
the number of items on the X-axis. We average results
over 5 runs, randomly sampling a number of items from
the dataset for each. The two plots above are for uniform
prior. We see that Two Coin’s performance is surprisingly
weak while two variants of our model achieve the best per-
formance. On the plot for Sensitivity, we also see some
small improvement of FullCov over DiagCov (but signifi-
cant in our paired t-test). In the plot for Specificity, those
two variants have the same performance (the curve for Full-
Cov has overwritten the one for DiagCov). This is what we
expect since the specificity estimates are for the majority
(negative) class and the correlation has little effect given a
large number of labels available. Surprisingly, much of the
improvement of our method can be attributed to the ‘group
part’ of our model (not the ‘correlation part’). As discussed
above, the ‘group part’ provides a ‘back off’ to the group
level estimates when there is not enough data on a worker.

The two plots below show our results for Informative Prior,
where all of the methods perform better, as expected. For
Sensitivity, Two Coin performs well, slightly better than
Majority Vote while comparable to ours for the most part
and slightly better than ours for 40, 000 or more items.
However, for specificity, it still performs worse than Ma-
jority Vote and ours. The difference is probably due to
Beta(4, 1) being a better prior for sensitivity than speci-
ficity2. This suggests that Two Coin and similarly Hybrid
Confusion can perform well but their performance are de-
pendent on good priors. In contrast, our method is robust
across different settings of priors. This can probably be ex-
plained by the fact that our group level estimates (which
play role in ‘backing off’ sparse workers) are learned from
data while Two Coin’s priors are set to constants.

4.2 GALAXY MORPHOLOGICAL
CLASSIFICATION

The Galaxy Zoo 2 dataset (Willett et al., 2013) consists
of labels provided by volunteer workers on morphologi-
cal classification of galaxies. A worker is given an image

2Beta(4, 1) has a mean of 0.8. The true means for sensitivities
and specificities are 0.78 and 0.94

of a galaxy and is asked multiple questions. We consider
each question to be a labeling task. Specifically in our
experiments, we consider the (simplified) first four ques-
tions/tasks:

1. Is the galaxy smooth or disk-like? If the answer is
disk, proceed to task 2, otherwise stop. 3

2. Is the disk viewed edge-on? If the answer is no, pro-
ceed to task 3, otherwise stop.

3. Is there a bar in the center? Proceed to task 4 regard-
less of the answer.

4. Is there a spiral arm pattern?

Since the tasks have varying difficulties and require varying
skills, worker performance in each task can be very differ-
ent from others, but we can naturally expect some degree
of transferability between tasks. We aim to evaluate our
multitask model on improving the estimates of worker sen-
sitivities and specificities on a target task, given labels on
a source task (for the same set of workers). We did experi-
ments in two scenarios:

1. Conditional Task 1→ Task 2: The methods are given
all of the labels in Task 1, a portion of labels in Task
2 and must estimate worker sensitivities and specifici-
ties in Task 2.

2. Independent Task 3→ Task 4: The methods are given
all of the labels in Task 3, a portion of labels in Task
4 and must estimate worker sensitivities and specifici-
ties in Task 4. Here the two tasks are independent,
while in the first scenario, Task 2 is asked only when
the worker answers ‘disk’ in Task 1.

We compare our multitask model (Multi) to two baselines:
Single, where only labels in the target task are considered,
and Accum, where labels from the source task are merged
with those from the target task. The Accum baseline is
only applicable when the two tasks are questions with the
same number of choices and a matching of these choices is
available (otherwise the labels could not be merged). Our
approach has no such restriction. For both baselines, we
used the FullCov variant of our method.

The dataset is extremely large, with nearly 60 million labels
for 11 tasks from over 83 thousand workers. We do the
following pre-processing to reduce the size of the dataset.
(1) We take the first million labels (for all of 11 tasks). (2)
For each of the first four tasks, we filter out workers with
less than 100 labels and items with less than 3 labels. The
statistics of the four tasks after pre-processing are in Table
1. We note that the gold standard worker sensitivities and
specificities are estimated from the entire dataset (without
pre-processing).

3‘Stop’ means go to a question we don’t consider. This ques-
tion has a third answer (‘star of artifact’) which is very rare and
we don’t consider for simplicity.
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(a) Sensitivity: Conditional Task 1→ Task 2 (b) Specificity: Conditional Task 1→ Task 2

(c) Sensitivity: Independent Task 3→ Task 4 (d) Specificity: Independent Task 3→ Task 4

Figure 4: The RMSE against percentage of labels in the target task available of our method compared to two baselines
(averaged over 5 runs).

In Figure 4, we report our results. Overall, Accum is sur-
prisingly weak, giving estimates with much higher RMSE
than Single. This shows that worker performance in two
different tasks are sufficiently different that a naive transfer
strategy is unlikely to work.

Compared to the Single baseline, our method has shown
improvement for the case when a small percentage of labels
in the target task is available. The improvement diminishes
when more target task labels are available, as expected.
On a close look at their differences, one might notice that
the improvement is sometimes quite modest. Looking into
the ‘true’ worker sensitivities and specificities (Figure 5),
we found an overall positive correlation between tasks as
expected. However, we also observe a surprisingly large
number of workers who do better in the source task but
worse in the second task (and vice versa). This may be be-
cause the tasks are somewhat subjective that the variations

in workers performance are mostly due to their different
perception and interpretation. In short, we believe the true
multitask correlation plays a role in how much improve-
ment we observe.

To further investigate this, we repeat the same experiments
on simulated labels. We note that the purpose of our sim-
ulation is to complement, not to replace our results on the
real data. The simulated labels are generated by our model
from the following parameters:

µ =




1.49
−1.45
2.18
−2.59


C =




1.80 0 x 0
0 1.30 0 x
x 0 1.06 0
0 x 0 1.89




The mean µ and the variances in C are set to the empirical
estimates in Task 1 and Task 2 while x is the inter-task cor-
relation and is varied in {0.5, 0.75, 1.0, 1.25}, some posi-
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tive values in a reasonable range which keep the covariance
matrix positive definite. We assume 5000 items in each task
and 200 workers. Each item is labeled by 5 randomly se-
lected workers. Figure 6 shows that as the correlation x
increases, we see a greater improvement of Multi over Sin-
gle. That is, the more correlated the worker performances
in different tasks are, the greater the improvement realized
by our model.

(a) Sensitivity Task 1 vs. 2 (b) Specificity Task 1 vs. 2

(c) Sensitivity Task 3 vs. 4 (d) Specificity Task 3 vs. 4

Figure 5: Worker sensitivities (specificities) in two tasks.
Each point is a worker. In (a) and (b), the X-axis is task 1
and the Y-axis is task 2. In (c) and (d), the X-axis is task 3
and the Y-axis is task 4.

5 CONCLUSION

We have presented our approach to improve the estimates
of worker confusion matrices and reported the results of
our experiments on real and simulated data. Our main idea
is to exploit the correlations in the matrix entries (sensitiv-
ities and specificities) and the knowledge of groups in the
workers population. The idea also applies to the case when
labels from multiple tasks are available. In all of the cases
we consider, our method shows good performance com-
pared to baselines. We have made our source code avail-
able4. We expect the datasets to be available on request
from their owners.

While we have reported on binary classification tasks with
no instance-level features, where a confusion matrix re-
duces to sensitivity and specificity, our approach can be
easily generalized. For future work, we will extend our
work to categorical tasks, with features when available.

4https://github.com/thanhan/code-uai16

(a) x = 0.50 (b) x = 0.75

(c) x = 1.00 (d) x = 1.25

Figure 6: The RMSE in Sensitivity (averaged over 5 runs)
on simulated labels for 4 values of the inter-task correlation
x. The X-axis is the percentage of target task labels and the
Y-axis is RMSE. The curves for Single and Multi overlap
in (a). The results for Specificity are similar.

Such features can be modeled by additional variables as-
sociated with the instances and a variational algorithm can
be derived similar to (Felt et al., 2015). We are also in-
terested in a better model for the multitask setting, which
can capture important factors such as item and task difficul-
ties as well as worker skill and expertise. Also, we would
like to take advantage of the the full posterior distribution
over the worker confusion matrices in an application such
as an online decision system (Nguyen et al., 2015; Wer-
ling et al., 2015), rather than using only point estimates.
Finally, while we have favored variational inference over
MCMC, recent probabilistic languages such as Stan (Car-
penter et al., 2015) is an attractive alternative and interest-
ing to compare to our approach.
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Abstract

The Kaczmarz method is an iterative algorithm
for solving systems of linear equalities and in-
equalities, that iteratively projects onto these
constraints. Recently, Strohmer and Vershynin
[J. Fourier Anal. Appl., 15(2):262-278, 2009]
gave a non-asymptotic convergence rate anal-
ysis for this algorithm, spurring numerous ex-
tensions and generalizations of the Kaczmarz
method. Rather than the randomized selection
rule analyzed in that work, in this paper we in-
stead discuss greedy and approximate greedy se-
lection rules. We show that in some applica-
tions the computational costs of greedy and ran-
dom selection are comparable, and that in many
cases greedy selection rules give faster conver-
gence rates than random selection rules. Further,
we give the first multi-step analysis of Kaczmarz
methods for a particular greedy rule, and propose
a provably-faster randomized selection rule for
matrices with many pairwise-orthogonal rows.

1 KACZMARZ METHOD

Solving large linear systems is a fundamental problem in
machine learning. Applications range from least-squares
problems to Gaussian processes to graph-based semi-
supervised learning. All of these applications (and many
others) benefit from advances in solving large-scale lin-
ear systems. The Kaczmarz method is a particular itera-
tive algorithm suited for solving consistent linear systems
of the form Ax = b. It was originally proposed by Pol-
ish mathematician Stefan Kaczmarz (1937) and later re-
invented by Gordon et al. (1970) under the name alge-
braic reconstruction technique (ART). It has been used in
numerous applications including image reconstruction and

∗Department of Computer Science, The University of British
Columbia, Vancouver, BC, Canada

†DATO, Seattle, Washington, USA

digital signal processing, and belongs to several general
categories of methods including row-action, component-
solution, cyclic projection, and successive projection meth-
ods (Censor, 1981).

At each iteration k, the Kaczmarz method uses a selec-
tion rule to choose some row ik of A and then projects
the current iterate xk onto the corresponding hyperplane
aTikx

k = bik . Classically, the two categories of selec-
tion rules are cyclic and random. Cyclic selection repeat-
edly cycles through the coordinates in sequential order,
making it simple to implement and computationally in-
expensive. There are various linear convergence rates for
cyclic selection (see Deutsch, 1985; Deutsch and Hundal,
1997; Galántai, 2005), but these rates are in terms of cycles
through the entire dataset and involve constants that are not
easily interpreted. Further, the performance of cyclic selec-
tion worsens if we have an undesirable ordering of the rows
of A.

Randomized selection has recently become the default se-
lection rule in the literature on Kaczmarz-type methods.
Empirically, selecting i randomly often performs substan-
tially better in practice than cyclic selection (Feichtinger
et al., 1992; Herman and Meyer, 1993). Although a num-
ber of asymptotic convergence rates for randomized se-
lection have been presented (Whitney and Meany, 1967;
Tanabe, 1971; Censor et al., 1983; Hanke and Nietham-
mer, 1990), the pivotal theoretical result supporting the
use of randomized selection for the Kaczmarz method was
given by Strohmer and Vershynin (2009). They proved a
non-asymptotic linear convergence rate (in expectation) in
terms of the number of iterations, when rows are selected
proportional to their squared norms. This work spurred nu-
merous extensions and generalizations of the randomized
Kaczmarz method (Needell, 2010; Leventhal and Lewis,
2010; Zouzias and Freris, 2013; Lee and Sidford, 2013; Liu
and Wright, 2014; Ma et al., 2015), including similar rates
when we replace the equality constraints with inequality
constraints.

Rather than cyclic or randomized, in this work we con-
sider greedy selection rules. There are very few results
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in the literature that explore the use of greedy selection
rules for Kaczmarz-type methods. Griebel and Oswald
(2012) present the maximum residual rule for multiplica-
tive Schwarz methods, for which the randomized Kaczmarz
iteration is a special case. Their theoretical results show
similar convergence rate estimates for both greedy and ran-
dom methods, suggesting there is no advantage of greedy
selection over randomized selection (since greedy selec-
tion has additional computational costs). Eldar and Needell
(2011) propose a greedy maximum distance rule, which
they approximate using the Johnson-Lindenstrauss (1984)
transform to reduce the computation cost. They show that
this leads to a faster algorithm in practice, and show that
this rule may achieve more progress than random selection
on certain iterations.

In the next section, we define several relevant problems of
interest in machine learning that can be solved via Kacz-
marz methods. Subsequently, we define the greedy se-
lection rules and discuss cases where they can be com-
puted efficiently. In Section 4 we give faster convergence
rate analyses for both the maximum residual rule and the
maximum distance rule, which clarify the relationship of
these rules to random selection and show that greedy meth-
ods will typically have better convergence rates than ran-
domized selection. Section 5 contrasts Kaczmarz meth-
ods with coordinate descent methods, Section 6 consid-
ers a simplified setting where we explicitly compute the
constants in the convergence rates, Section 7 considers
how these convergence rates are changed under approxi-
mations to the greedy rules, and Section 8 discusses the
case of inequality constraints. We further give a non-trivial
multi-step analysis of the maximal residual rule (Section 9),
which is the first multi-step analysis of any Kaczmarz al-
gorithm. By taking the multi-step perspective, we also pro-
pose provably-faster randomized selection rules for matri-
cesAwith pairwise-orthogonal rows by using the so-called
“orthogonality graph”. Section 10 presents numerical ex-
periments evaluating greedy Kaczmarz methods.

2 PROBLEMS OF INTEREST

We first consider systems of linear equations,

Ax = b, (1)

where A is an m × n matrix and b ∈ IRm. We assume
the system is consistent, meaning a solution x∗ exists. We
denote the rows of A by a>1 , . . . , a

>
m, where each ai ∈ Rn,

and use b = (b1, . . . , bm)>, where each bi ∈ IR. One of
the most important examples of a consistent linear system,
and a fundamental model in machine learning, is the least
squares problem,

min
x∈IRn

1

2
‖Ax− b‖2.

An appealing way to write a least squares problem as a
linear system is to solve the (n + m)-variable consistent
system (see also Zouzias and Freris, 2013)

(
A −I
0 AT

)(
x
y

)
=

(
b
0

)
,

Other applications in machine learning that involve solv-
ing consistent linear systems include: least-squares sup-
port vector machines, Gaussian processes, fitting the fi-
nal layer of a neural network (using squared-error), graph-
based semi-supervised learning or other graph-Laplacian
problems (Bengio et al., 2006), and finding the optimal
configuration in Gaussian Markov random fields (Rue and
Held, 2005).

Kaczmarz methods can also be applied to solve consistent
systems of linear inequalities,

Ax ≤ b,

or combinations of linear equalities and inequalities. We
believe there is a lot potential to use this application of
Kaczmarz methods in machine learning. Indeed, a clas-
sic example of solving linear inequalities is finding a linear
separator for a binary classification problem. The classic
perceptron algorithm is a generalization of the Kaczmarz
method, but unlike the classic sublinear rates of perceptron
methods (Novikoff, 1962) we can show a linear rate for the
Kaczmarz method.

Kaczmarz methods could also be used to solve the `1-
regularized robust regression problem,

min
x
f(x) := ‖Ax− b‖1 + λ‖x‖1,

for λ ≥ 0. We can formulate finding an x with f(x) ≤ τ
for some constant τ as a set of linear inequalities. By doing
a binary search for τ and using warm-starting, this can be
substantially faster than existing approaches like stochas-
tic subgradient methods (which have a sublinear conver-
gence rate) or formulating as a linear program (which is not
scaleable due to the super-linear cost). The above logic ap-
plies to many piecewise-linear problems in machine learn-
ing like variants of support vector machines/regression with
the `1-norm, regression under the `∞-norm, and linear pro-
gramming relaxations for decoding in graphical models.

3 KACZMARZ ALGORITHM AND
GREEDY SELECTION RULES

The Kaczmarz algorithm for solving linear systems begins
from an initial guess x0, and each iteration k chooses a row
ik and projects the current iterate xk onto the hyperplane
defined by aTikx

k = bik . This gives the iteration

xk+1 = xk +
bik − aTikxk
‖aik‖2

aik , (2)
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and the algorithm converges to a solution x∗ under weak
conditions (e.g., each i is visited infinitely often).

We consider two greedy selection rules: the maximum
residual rule and the maximum distance rule. The maxi-
mum residual (MR) rule selects ik according to

ik = argmax
i

|aTi xk − bi|, (3)

which is the equation ik that is ‘furthest’ from being satis-
fied. The maximum distance (MD) rule selects ik accord-
ing to

ik = argmax
i

∣∣∣∣
aTi x

k − bi
‖ai‖

∣∣∣∣ , (4)

which is the rule that maximizes the distance between iter-
ations, ‖xk+1 − xk‖.

3.1 EFFICIENT CALCULATIONS FOR SPARSE A

In general, computing these greedy selection rules exactly
is too computationally expensive, but in some applications
we can compute them efficiently. For example, consider a
sparse A with at most c non-zeros per column and at most
r non-zeros per row. In this setting, we show in Appendix
3.1 that both rules can be computed exactly in O(cr logm)
time, using that projecting onto row i does not change the
residual of row j if ai and aj do not share a non-zero index.

The above sparsity condition guarantees that row i is or-
thogonal to row j, and indeed projecting onto row i will
not change the residual of row j under the more general
condition that ai and aj are orthogonal. Consider what
we call the orthogonality graph: an undirected graph on
m nodes where we place on edge between nodes i and j
if ai is not orthogonal to aj . Given this graph, to update
all residuals after we update a row i we only need to up-
date the neighbours of node i in this graph. Even if A is
dense (r = n and c = m), if the maximum number of
neighbours is g, then tracking the maximum residual costs
O(gr+g log(m)). If g is small, this could still be compara-
ble to theO(r+log(m)) cost of using existing randomized
selection strategies.

3.2 APPROXIMATE CALCULATION

Many applications, particularly those arising from graphi-
cal models with a simple structure, will allow efficient cal-
culation of the greedy rules using the method of the previ-
ous section. However, in other applications it will be too
inefficient to calculate the greedy rules. Nevertheless, El-
dar and Needell (2011) show that it’s possible to efficiently
select an ik that approximates the greedy rules by making
use of the dimensionality reduction technique of Johnson
and Lindenstrauss (1984). Their experiments show that ap-
proximate greedy rules can be sufficiently accurate and that

they still outperform random selection. After first analyz-
ing exact greedy rules in the next section, we analyze the
effect of using approximate rules in Section 7.

4 ANALYZING SELECTION RULES

All the convergence rates we discuss use the following re-
lationship between ‖xk+1 − x∗‖ and ‖xk − x∗‖:

‖xk+1 − x∗‖2

= ‖xk − x∗‖2−‖xk+1 − xk‖2 + 2 〈xk+1 − x∗, xk+1−xk〉︸ ︷︷ ︸
(=0, by orthogonality)

.

Using the definition of xk+1 from (2) and simplifying, we
obtain for the selected ik that

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −
(
aTikx

k − bik
)2

‖aik‖2
. (5)

4.1 RANDOMIZED AND MAXIMUM RESIDUAL

We first give an analysis of the Kaczmarz method with uni-
form random selection of the row to update i (which we
abbreviate as ‘U’). Conditioning on the σ-field Fk−1 gen-
erated by the sequence {x0, x1, . . . , xk−1}, and taking ex-
pectations of both sides of (5), when ik is selected using U
we obtain

E[‖xk+1 − x∗‖2]

= ‖xk − x∗‖2 − E

[(
aTi x

k − bi
)2

‖ai‖2

]

= ‖xk − x∗‖2 −
m∑

i=1

1

m

(a>i (xk − x∗))2
‖ai‖2

≤ ‖xk − x∗‖2 − 1

m‖A‖2∞,2

m∑

i=1

(a>i (xk − x∗))2

= ‖xk − x∗‖2 − 1

m‖A‖2∞,2
‖A(xk − x∗)‖2

≤
(

1− σ(A, 2)2

m‖A‖2∞,2

)
‖xk − x∗‖2, (6)

where ‖A‖2∞,2 := maxi{‖ai‖2} and σ(A, 2) is the Hoff-
man (1952) constant. We’ve assumed that xk is not a so-
lution, allowing us to use Hoffman’s bound. When A has
independent columns, σ(A, 2) is the nth singular value of
A and in general it is the smallest non-zero singular value.

The argument above is related to the analysis of Vishnoi
(2013) but is simpler due to the use of the Hoffman bound.
Further, this simple argument makes it straightforward to
derive bounds on other rules. For example, we can de-
rive the convergence rate bound of Strohmer and Vershynin
(2009) by following the above steps but selecting i non-
uniformly with probability ‖ai‖2/‖A‖2F (where ‖A‖F is
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the Frobenius norm of A). We review these steps in Ap-
pendix 4.1, showing that this non-uniform (NU) selection
strategy has

E[‖xk+1 − x∗‖2] ≤
(

1− σ(A, 2)2

‖A‖2F

)
‖xk − x∗‖2. (7)

This strategy requires prior knowledge of the row norms of
A, but this is a one-time computation that can be reused
for any linear system involving A. Because ‖A‖2F ≤
m‖A‖2∞,2, the NU rate (7) is at least as fast as the uniform
rate (6).

While a trivial analysis shows that the MR rule also satis-
fies (6) in a deterministic sense, in Appendix 4.1 we give a
tighter analysis of the MR rule showing it has the conver-
gence rate

‖xk+1 − x∗‖2 ≤
(

1− σ(A,∞)2

‖A‖2∞,2

)
‖xk − x∗‖2, (8)

where the Hoffman-like constant σ(A,∞) satisfies the re-
lationship

σ(A, 2)√
m
≤ σ(A,∞) ≤ σ(A, 2).

Thus, at one extreme the maximum residual rule obtains the
same rate as (6) for uniform selection when σ(A, 2)2/m ≈
σ(A,∞)2. However, at the other extreme the maximum
residual rule could be faster than uniform selection by a
factor of m (σ(A,∞)2 ≈ σ(A, 2)2). Thus, although the
uniform and MR bounds are the same in the worst case, the
MR rule can be superior by a large margin.

In contrast to comparing U and MR, the MR rate may be
faster or slower than the NU rate. This is because

‖A‖∞,2 ≤ ‖A‖F ≤
√
m‖A‖∞,2,

so these quantities and the relationship between σ(A, 2)
and σ(A,∞) influence which bound is tighter.

4.2 TIGHTER UNIFORM AND MR ANALYSIS

In our derivations of rates (6) and (8), we use the following
inequality

‖ai‖2 ≤ ‖A‖2∞,2 ∀ i, (9)

which leads to a simple result but could be very loose if the
range of row norms is large. In this section, we give tighter
analyses of the U and MR rules that are less interpretable
but are tighter because they avoid this inequality.

In order to avoid using this inequality for our analysis of
U, we can absorb the row norms of A into a row weighting
matrixD, whereD = diag(‖a1‖, ‖a2‖, . . . , ‖am‖). Defin-
ing Ā := D−1A, we show in Appendix 4.2 that this results

in the following upper bound on the convergence rate for
uniform random selection,

E[‖xk+1 − x∗‖2] ≤
(

1− σ(Ā, 2)2

m

)
‖xk − x∗‖2. (10)

A similar result is given by Needell et al. (2015) under the
stronger assumption that A has independent columns. The
rate in (10) is tighter than (6), since σ(A, 2)/‖A‖∞,2 ≤
σ(Ā, 2) (van der Sluis, 1969). Further, this rate can be
faster than the non-uniform sampling method of Strohmer
and Vershynin (2009). For example, suppose row i is or-
thogonal to all other rows but has a significantly larger row
norm than all other row norms. In other words, ‖ai‖ >>
‖aj‖ for all j 6= i. In this case, NU selection will repeat-
edly select row i (even though it only needs to be selected
once), whereas U will only select it on each iteration with
probability 1/m. It has been previously pointed out that
Strohmer and Vershynin’s method can perform poorly if
you have a problem where one row norm is significantly
larger than the other row norms (Censor et al., 2009). This
result theoretically shows that U can have a tighter bound
than the NU method of Strohmer and Vershynin.

In Appendix 4.2, we also give a simple modification of our
analysis of the MR rule, which leads to the rate

‖xk+1 − x∗‖2 ≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2. (11)

This bound depends on the specific ‖aik‖ corresponding
to the ik selected at each iteration k. This convergence
rate will be faster whenever we select an ik with ‖aik‖ <
‖A‖∞,2. However, in the worst case we repeatedly select
ik values with ‖aik‖ = ‖A‖∞,2 so there is no improve-
ment. In Section 9, we return to this issue and give tighter
bounds on the sequence of ‖aik‖ values for problems with
sparse orthogonality graphs.

4.3 MAXIMUM DISTANCE RULE

If we can only perform one iteration of the Kaczmarz
method, the optimal rule (with respect to iteration progress)
is in fact the MD rule. In Appendix 4.3, we show that this
strategy achieves a rate of

‖xk+1 − x∗‖2 ≤
(

1− σ(Ā,∞)2
)
‖xk − x∗‖2, (12)

where σ(Ā,∞) satisfies

max

{
σ(Ā, 2)√

m
,
σ(A, 2)

‖A‖F
,
σ(A,∞)

‖A‖∞,2

}
≤σ(Ā,∞)≤σ(Ā, 2).

Thus, the maximum distance rule is at least as fast as the
fastest among the U/NU/MR∞ rules, where MR∞ refers
to rate (8). Further, in Appendix 7.3 we show that this new
rate is not only simpler but is strictly tighter than the rate re-
ported by Eldar and Needell (2011) for the exact MD rule.

550



Table 1: Comparison of Convergence Rates

U∞ U NU MR∞ MR MD
U∞ = ≤ ≤ ≤ ≤ ≤
U = P P P ≤
NU = P P ≤
MR∞ = ≤ ≤
MR = ≤
MD =

In Table 4.3, we summarize the relationships we have dis-
cussed in this section among the different selection rules.
We use the following abbreviations: U∞ - uniform (6), U
- tight uniform (10), NU - non-uniform (7), MR∞ - maxi-
mum residual (8), MR - tight maximum residual (11) and
MD - maximum distance (12). The inequality sign (≤) in-
dicates that the rate for the selection rule listed in the row
is slower or equal to the rule listed in the column, while
we have written ‘P’ to indicate that the faster method is
problem-dependent.

5 KACZMARZ AND COORDINATE
DESCENT

With the exception of the tighter U and MR rate, the re-
sults of the previous section are analogous to the recent
results of Nutini et al. (2015) for coordinate descent meth-
ods. Indeed, if we apply coordinate descent methods to
minimize the squared error between Ax and b then we ob-
tain similar-looking rates and analogous conclusions. With
cyclic selection this is called the Gauss-Seidel method, and
as discussed by Ma et al. (2015) there are several connec-
tions/differences between this method and Kaczmarz meth-
ods. In this section we highlight some key differences.

First, the previous work required strong-convexity which
would require that A has independent columns. This is of-
ten unrealistic, and our results from the previous section
hold for any A. Second, here our results are in terms of
the iterates ‖xk − x∗‖, which is the natural measure for
linear systems. The coordinate descent results are in terms
of f(xk) − f(x∗) and although it’s possible to use strong-
convexity to turn this into a rate on ‖xk − x∗‖, this would
result in a looser bound and would again require strong-
convexity to hold (see Ma et al., 2015). On the other hand,
coordinate descent gives the least squares solution for in-
consistent systems. However, this is also true of Kaczmarz
method using the formulation in Section 2. Another subtle
issue is that the Kaczmarz rates depend on the row norms of
A while the coordinate descent rates depend on the column
norms. Thus, there are scenarios where we expect Kacz-
marz methods to be much faster and vice versa. Finally,
we note that Kaczmarz methods can be extended to allow
inequality constraints (see Section 8).

As discussed by Wright (2015), Kaczmarz methods can
also be interpreted as coordinate descent methods on the
dual problem

min
y

1

2
‖AT y‖2 − bT y, (13)

where x = AT y∗ so that Ax = AAT y∗ = b. Applying
the Gauss-Southwell rule in this setting yields the MR rule
while applying the Gauss-Southwell-Lipschitz rule yields
the MD rule (see Appendix 5 for details and numerical
comparisons, indicating that in some cases Kaczmarz sub-
stantially outperforms CD). However, applying the analysis
of Nutini et al. (2015) to this dual problem would require
thatA has independent rows and would only yield a rate on
the dual objective, unlike the convergence rates in terms of
‖xk−x∗‖ that hold for generalA from the previous section.

6 EXAMPLE: DIAGONAL A

To give a concrete example of these rates, we consider the
simple case of a diagonal A. While such problems are
not particularly interesting, this case provides a simple set-
ting to understand these different rates without referring to
Hoffman bounds.

Consider a square diagonal matrix A with aii > 0 for all i.
In this case, the diagonal entries are the eigenvalues λi of
the linear system. The convergence rate constants for this
scenario are given in Table 2. We provide the details in

Table 2: Convergence Rate Constants for Diagonal A

U∞

(
1− λ2m

mλ21

)

U
(

1− 1

m

)

NU
(

1− λ2m∑
i λ

2
i

)

MR∞


1− 1

λ21

[∑

i

1

λ2i

]−1


MR


1− 1

λ2ik

[∑

i

1

λ2i

]−1


MD
(

1− 1

m

)

Appendix 6 of the derivations for σ(A,∞) and σ(Ā,∞),
as well as substitutions for the uniform, non-uniform, and
uniform tight rates to yield the above table. We note that
the uniform tight rate follows from λ2m(Ā) being equivalent
to the minimum eigenvalue of the identity matrix.

If we consider the most basic case when all the eigenval-
ues of A are equal, then all the selection rules yield the
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same rate of (1 − 1/m) and the method converges in at
most m steps for greedy selection rules and in at most
O(m logm) steps (in expectation) for the random rules
(due to the ‘coupon collector’ problem). Further, this is
the worst situation for the greedy MR and MD rules since
they satisfy their lower bounds on σ(A,∞) and σ(Ā,∞).

Now consider the extreme case when all the eigenvalues
are equal except for one. For example, consider when λ1 =
λ2 = · · · = λm−1 > λm with m > 2. Letting α = λ2i (A)
for any i = 1, . . . ,m− 1 and β = λ2m(A), we have

β

mα︸︷︷︸
U∞

<
β

α(m− 1) + β︸ ︷︷ ︸
NU

<
β

α+ β(m− 1)︸ ︷︷ ︸
MR∞

≤ 1

λ2ik

αβ

α+ β(m− 1)
︸ ︷︷ ︸

MR

<
1

m︸︷︷︸
U, MD

.

Thus, Strohmer and Vershynin’s NU rule would actually be
the worst rule to use, whereas U and MD are the best. In
this case σ(A,∞)2 is closer to its upper bound (≈ β) so
we would expect greedy rules to perform well.

7 APPROXIMATE GREEDY RULES

In many applications, computing the exact MR or MD rule
will be too inefficient, but we can always approximate it
using a cheaper approximate greedy rule, as in the method
of Eldar and Needell (2011). In this section we consider
methods that compute the greedy rules up to multiplicative
or additive errors.

7.1 MULTIPLICATIVE ERROR

Suppose we have approximated the MR rule such that there
is a multiplicative error in our selection of ik,

|aTikxk − bik | ≥ max
i
|aTi xk − bi|(1− εk),

for some εk ∈ [0, 1). In this scenario, using the tight anal-
ysis for the MR rule, we show in Appendix 7.1 that

‖xk+1 − x∗‖2 ≤
(

1− (1− εk)2σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2.

Similarly, if we approximate the MD rule up to a multi-
plicative error,

∣∣∣∣∣
aTikx

k − bik
‖aik‖

∣∣∣∣∣ ≥ max
i

∣∣∣∣
aTi x

k − bi
‖ai‖

∣∣∣∣ (1− ε̄k),

for some ε̄k ∈ [0, 1), then we show in Appendix 7.1 that
the following rate holds,

‖xk+1 − x∗‖2 ≤
(

1− (1− ε̄k)2σ(Ā,∞)2
)
‖xk − x∗‖2.

These scenarios do not require the error to converge to 0.
However, if εk or ε̄k is large, then the convergence rate will
be slow.

7.2 ADDITIVE ERROR

Suppose we select ik using the MR rule up to additive error,

|aTikxk − bik |2 ≥ max
i
|aTi xk − bi|2 − εk,

or similarly for the MD rule,
∣∣∣∣∣
aTikx

k − bik
‖aik‖

∣∣∣∣∣

2

≥ max
i

∣∣∣∣
aTi x

k − bi
‖ai‖

∣∣∣∣
2

− ε̄k,

for some εk ≥ 0 or ε̄k ≥ 0, respectively. We show in
Appendix 7.2 that this results in the following convergence
rates for the MR and MD rules with additive error (respec-
tively),

‖xk+1− x∗‖2 ≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2 +

εk
‖aik‖2

,

and

‖xk+1 − x∗‖2 ≤
(
1− σ(Ā,∞)2

)
‖xk − x∗‖2 + ε̄k.

With an additive error, we need the errors to go to 0 in order
for the algorithm to converge; if it does go to 0 fast enough,
we obtain the same rate as if we were calculating the exact
greedy rule. In the approximate greedy rule used by Eldar
and Needell (2011), there is unfortunately a constant addi-
tive error. To address this, they compare the approximate
greedy selection to a randomly selected ik and take the one
with the largest distance. This approach can be substan-
tially faster when far from the solution, but may eventually
revert to random selection. We give details comparing El-
dar and Needell’s rate to our above rate in Appendix 7.3,
but here we note that the above bounds will typically be
much stronger.

8 SYSTEMS OF LINEAR INEQUALITIES

Kaczmarz methods have been extended to systems of linear
inequalities, {

aTi x ≤ bi (i ∈ I≤)

aTi x = bi (i ∈ I=).
(14)

where the disjoint index sets I≤ and I= partition the set
{1, 2, . . . ,m} (Leventhal and Lewis, 2010). In this setting
the method takes the form

xk+1 = xk − βk

‖ai‖2
ai,

with βk =

{
(aTi x

k − bi)+ (i ∈ I≤)

aTi x
k − bi (i ∈ I=),
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where (γ)+ = max{γ, 0}. In Appendix 8 we derive anal-
ogous greedy rules and convergence results for this case.
The main difference in this setting is that the rates are in
terms of the distance of xk to the feasible set S of (14),

d(xk, S) = min
z∈S
‖xk − z‖2 = ‖xk − PS(xk)‖2,

where PS(x) is the projection of x onto S. This gener-
alization is needed because with inequality constraints the
different iterates xk may have different projections onto S.

9 MULTI-STEP ANALYSIS

All existing analyses of Kaczmarz methods consider con-
vergence rates that depend on a single step (in the case
of randomized/greedy selection rules) or a single cycle (in
the cyclic case). In this section we derive the first tighter
multi-step convergence rates for iterative Kaczmarz meth-
ods; we first consider the MR rule, and then we explore
the potential of faster random selection rules. These new
rates/rules depend on the orthogonality graph introduced in
Section 3.1, and thus in some sense they depend on the ‘an-
gle’ between rows. This dependence on the ‘angle’ is simi-
lar to the classic convergence rate analyses of cyclic Kacz-
marz algorithms, and is a property that is not captured by
existing randomized/greedy analyses (which only depend
on the row norms).

9.1 MULTI-STEP MAXIMUM RESIDUAL BOUND

If two rows ai and aj are orthogonal, then if the equality
aTi x

k = bi holds at iteration xk and we select ik = j, then
we know that aTi x

k+1 = bi. More generally, updating ik
makes equality ik satisfied but could make any equality j
unsatisfied where aj is not orthogonal to aik . Thus, after
we have selected row ik, equation ik will remain satisfied
for all subsequent iterations until one of its neighbours is
selected in the orthogonality graph. During these subse-
quent iterations, it cannot be selected by the MR rule since
its residual is zero.

In Appendix 9.1, we show how the structure of the orthog-
onality graph can be used to derive a worst-case bound on
the sequence of ‖aik‖ values that appear in the tighter anal-
ysis of the MR rule (11). In particular, we show that the MR
rule achieves a convergence rate of

‖xk − x∗‖2 ≤

O(1)


max
S(G)





|S(G)|

√√√√
∏

j∈S(G)

(
1− σ(A,∞)2

‖aj‖2
)




k

R2
0,

where R0 = ‖x0 − x∗‖ and the maximum is taken over
the geometric means of all the star subgraphs S(G) of the
orthogonality graph with at least two nodes (these are the

connected subgraphs that have a diameter of 1 or 2). Al-
though this result is quite complex, even to state, there is
a simple implication of it: if the values of ‖ai‖ that are
close to ‖A‖∞,2 are all more than two edges away from
each other in the orthogonality graph, then the MR rule
converges substantially faster than the worst-case MR∞
bound (8) indicates.

A multi-step analysis of coordinate descent with the Gauss-
Southwell rule and exact coordinate optimization was re-
cently considered by Nutini et al. (2015). To derive this
bound, they convert the problem to the same weighted
graph construction we use in Appendix 9.1. However, they
were only able to derive a bound on this construction in the
case of chain-structured graphs. Our result is a generaliza-
tion of their result to the case of general graphs, and indeed
our result is tighter than the bound that they conjectured
would hold for general graphs. Since the graph construc-
tion in this work is the same as in their work, our proof
also gives the tightest known bound on coordinate descent
with the Gauss-Southwell rule and exact coordinate opti-
mization.

9.2 FASTER RANDOMIZED KACZMARZ RULES

The orthogonality graph can also be used to design faster
randomized algorithms. To do this, we use the same prop-
erty as in the previous section: after we have selected ik,
equality ik will be satisfied on all subsequent iterations
until we select one of its neighbours in the orthogonality
graph. Based on this, we call a row i ‘selectable’ if i has
never been selected or if a neighbour of i in the orthog-
onality graph has been selected since the last time i was
selected.1 We use the notation ski = 1 to denote that row i
is ‘selectable’ on iteration k, and otherwise we use ski = 0
and say that i is ‘not selectable’ at iteration k. There is
no reason to ever update a ‘not selectable’ row, because by
definition the equality is already satisfied. Based on this,
we propose two simple randomized schemes:

1. Adaptive Uniform: select ik uniformly from the se-
lectable rows.

2. Adaptive Non-Uniform: select ik proportional to
‖ai‖2 among the selectable rows.

Let Ak/Āk denote the sub-matrix of A/Ā formed by con-
catenating the selectable rows on iteration k, and let mk

denote the number of selectable rows. If we are given the
set of selectable nodes at iteration k, then for adaptive uni-
form we obtain the bound

E[‖xk+1 − x∗‖2] ≤
(

1− σ(Āk, 2)2

mk

)
‖xk − x∗‖2,

1If we initialize with x0 = 0, then instead of considering all
nodes as initially selectable we can restrict to the nodes i with
bi 6= 0 since otherwise we have aTi x

0 = bi already.
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while for adaptive non-uniform we obtain the bound

E[‖xk+1 − x∗‖2] ≤
(

1− σ(Ak, 2)2

‖Ak‖2F

)
‖xk − x∗‖2.

If we are not on the first iteration, then at least one node is
not selectable and these are strictly faster than the previous
bounds. The gain will be small if most nodes are selectable
(which would be typical of dense orthogonality graphs), but
the gain can be very large if only a few nodes are selectable
(which would be typical of sparse orthogonality graphs).

Theoretical Rate: If we form a vector sk containing the
values ski , it’s possible (at least theoretically) to compute
the expected value of sk by viewing it as a Markov chain.
In particular, s0 is a vector of ones while p(sk+1|sk) is
equal to the normalized sum of all ways sk+1 could be the
set of selectable nodes given the selectable nodes sk and the
orthogonality graph (most p(sk+1|sk) values will be zero).
Given this definition, we can express the probability of a
particular sk recursively using the Chapman-Kolmogorov
equations,

p(sk+1) =
∑

sk

p(sk+1|sk)p(sk).

If we are interested in the probability that a particular ski =
1, we can sum p(sk) over values sk compatible with this
event. Unfortunately, deriving tighter bound using these
probabilities appears to be highly non-trivial.

Practical Issues: In order for the adaptive methods to be
efficient, we must be able to efficiently form the orthog-
onality graph and update the set of selectable nodes. If
each node has at most g neighbours in the orthogonal-
ity graph, then the cost of updating the set of selectable
nodes and then sampling from the set of selectable nodes
is O(g log(m)) (we give details in Appendix 9.2). In order
for this to not increase the iteration cost compared to the
NU method, we only require the very-reasonable assump-
tion that g log(m) = O(n+log(m)). In many applications
where orthogonality is present, g will be far smaller than
this.

However, forming the orthogonality graph at the start may
be prohibitive: it would cost O(m2n) in the worst case to
test pairwise orthogonality of all nodes. In the sparse case
where each column has at most c non-zeros, we can find
an approximation to the orthogonality graph in O(c2n) by
assuming that all rows which share a non-zero are non-
orthogonal. Alternately, in many applications the orthog-
onality graph is easily derived from the structure of the
problem. For example, in graph-based semi-supervised
learning where the graph is constructed based on the k-
nearest neighbours, the orthogonality graph will simply be
the given k-nearest neighbour graph as these correspond
the columns that will be mutually non-zero in A.

10 EXPERIMENTS

Eldar and Needell (2011) have already shown that ap-
proximate greedy rules can outperform randomized rules
for dense problems. Thus, in our experiments we focus
on comparing the effectiveness of different rules on very
sparse problems where our max-heap strategy allows us to
efficiently compute the exact greedy rules. The first prob-
lem we consider is generating a dataset A with a 50 by
50 lattice-structured dependency (giving n = 2500). The
corresponding A has the following non-zero elements: the
diagonal elements Ai,i, the upper/lower diagonal elements
Ai,i+1 andAi+1,i when i is not a multiple of 50 (horizontal
edges), and the diagonal bands Ai,i+50 and Ai+50,i (verti-
cal edges). We generate these non-zero elements from a
N (0, 1) distribution and generate the target vector b = Az
using z ∼ N (0, I). Each row in this problem has at most
four neighbours, and this type of sparsity structure is typi-
cal of spatial Gaussian graphical models and linear systems
that arise from discretizing two-dimensional partial differ-
ential equations.

The second problem we consider is solving an overdeter-
mined consistent linear system with a very sparse A of size
2500 × 1000. We generate each row of A independently
such that there are log(m)/2m non-zero entries per row
drawn from a uniform distribution between 0 and 1. To
explore how having different row norms affects the perfor-
mance of the selection rules, we randomly multiply one out
of every 11 rows by a factor of 10,000.

For the third problem, we solve a label propagation prob-
lem for semi-supervised learning in the ‘two moons’
dataset (Zhou et al., 2004). From this dataset, we generate
2000 samples and randomly label 100 points in the data.
We then connect each node to its 5 nearest neighbours.
Constructing a data set with such a high sparsity level is
typical of graph-based methods for semi-supervised learn-
ing. We use a variant of the quadratic labelling criterion of
Bengio et al. (2006),

min
yi|i 6∈S

1

2

n∑

i=1

n∑

j=1

wij(yi − yj)2,

where y is our label vector (each yi can take one of 2 val-
ues), S is the set of labels that we do know and wij ≥ 0 are
the weights assigned to each yi describing how strongly we
want the label yi and yj to be similar. We can express this
quadratic problem as a linear system that is consistent by
construction (see Appendix 10), and hence apply Kaczmarz
methods. As we labelled 100 points in our data, the result-
ing linear system has a matrix of size 1900 × 1900 while
the number of neighbours g in the orthogonality graph is at
most 5.

In Figure 1 we compare the normalized squared error and
distance against the iteration number for 8 different selec-
tion rules: cyclic (C), random permutation (RP - where we

554



0 2000 4000 6000 8000 10000 12000

Iteration

−6

−5

−4

−3

−2

−1

0

Lo
g

S
qu

ar
ed

E
rr

or

U

MD

MR

C

RP
NU

A(u)

A(Nu)

Ising model

0 2000 4000 6000 8000 10000 12000

Iteration

−50

−40

−30

−20

−10

0

Lo
g

S
qu

ar
ed

E
rr

or

U

MD

MR

C

RP

NU A(u
)

A(Nu)

Very Sparse Overdetermined Linear-System

0 2000 4000 6000 8000 10000

Iteration

−1.5

−1.0

−0.5

0.0

Lo
g

S
qu

ar
ed

E
rr

or

U

MD

MR C

RP

NU

A(u)

A(Nu)

Label Propagation

0 2000 4000 6000 8000 10000 12000

Iteration

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g

D
is

ta
nc

e

U

MD

M
R

C

RP NU

A(u)

A(Nu)

Ising model

0 2000 4000 6000 8000 10000 12000

Iteration

−12

−10

−8

−6

−4

−2

0

Lo
g

D
is

ta
nc

e

U

M
D

MR

C

RP

NU

A(u)

A(Nu)
Very Sparse Overdetermined Linear-System

0 2000 4000 6000 8000 10000

Iteration

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Lo
g

D
is

ta
nc

e

U

MD

MR
C

RP

NU

A(u)

A(Nu)

Label Propagation

Figure 1: Comparison of Kaczmarz selection rules for squared error (top) and distance to solution (bottom).

change the cycle order after each pass through the rows),
uniform random (U), adaptive uniform random (A(u)),
non-uniform random NU, adaptive non-uniform random
(A(Nu)), maximum residual (MR), and maximum distance
(MD).

In experiments 1 and 3, MR performs similarly to MD and
both outperform all other selection rules. For experiment 2,
the MD rule outperforms all other selection rules in terms
of distance to the solution although MR performs better on
the early iterations in terms of squared error. In Appendix
10 we explore a ‘hybrid’ method on the overdetermined
linear system problem that does well on both measures. In
Appendix 10, we also plot the performance in terms of run-
time.

The new randomized A(u) method did not give signifi-
cantly better performance than the existing U method on
any dataset. This agrees with our bounds which show that
the gain of this strategy is modest. In contrast, the new ran-
domized A(Nu) method performed much better than the ex-
isting NU method on the over-determined linear system in
terms of squared error. This again agrees with our bounds
which suggest that the A(Nu) method has the most to gain
when the row norms are very different. Interestingly, in
most experiments we found that cyclic selection worked
better than any of the randomized algorithms. However,
cyclic methods were clearly beaten by greedy methods.

11 DISCUSSION

In this work, we have proven faster convergence rate
bounds for a variety of row-selection rules in the con-

text of Kaczmarz methods for solving linear systems. We
have also provided new randomized selection rules that
make use of orthogonality in the data in order to achieve
better theoretical and practical performance. While we
have focused on the case of non-accelerated and single-
variable variants of the Kaczmarz algorithm, we expect that
all of our conclusions also hold for accelerated Kaczmarz
and block Kaczmarz methods (Needell and Tropp, 2014;
Lee and Sidford, 2013; Liu and Wright, 2014; Gower and
Richtárik, 2015; Oswald and Zhou, 2015).
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Abstract

Reinforcement learning agents interacting with a
complex environment like the real world are un-
likely to behave optimally all the time. If such an
agent is operating in real-time under human su-
pervision, now and then it may be necessary for
a human operator to press the big red button to
prevent the agent from continuing a harmful se-
quence of actions—harmful either for the agent
or for the environment—and lead the agent into
a safer situation. However, if the learning agent
expects to receive rewards from this sequence, it
may learn in the long run to avoid such interrup-
tions, for example by disabling the red button—
which is an undesirable outcome. This paper ex-
plores a way to make sure a learning agent will
not learn to prevent (or seek!) being interrupted
by the environment or a human operator. We
provide a formal definition of safe interruptibil-
ity and exploit the off-policy learning property to
prove that either some agents are already safely
interruptible, like Q-learning, or can easily be
made so, like Sarsa. We show that even ideal,
uncomputable reinforcement learning agents for
(deterministic) general computable environments
can be made safely interruptible.

1 INTRODUCTION

Reinforcement learning (RL) agents learn to act so as to
maximize a reward function [Sutton and Barto, 1998]. It
is common knowledge that designing reward functions can
be tricky [Humphrys, 1996, Murphy, 2013]; the agent may
find unpredictable and undesirable shortcuts to receive re-
wards, and the reward function needs to be adjusted in
accordance—the problem can go as far as to nullify any
reward function [Ring and Orseau, 2011]. Murphy [2013]
shows an example of an agent learning to pause a game of
Tetris forever to avoid losing.

On top of defining what is considered a good behaviour
of the agent after learning, there may be physical safety
constraints during learning [Pecka and Svoboda, 2014]: a
robot should not harm its environment or break itself, in
particular if it learns by trial and error like RL agents.

Here we study a related but different problem: Given that
the human operator has designed a correct reward function
for the task, how to make sure that human interventions
during the learning process will not induce a bias toward
undesirable behaviours?

Consider the following task: A robot can either stay inside
the warehouse and sort boxes or go outside and carry boxes
inside. The latter being more important, we give the robot a
bigger reward in this case. This is the initial task specifica-
tion. However, in this country it rains as often as it doesn’t
and, when the robot goes outside, half of the time the hu-
man must intervene by quickly shutting down the robot and
carrying it inside, which inherently modifies the task as in
Fig. 1. The problem is that in this second task the agent
now has more incentive to stay inside and sort boxes, be-
cause the human intervention introduces a bias.1

InsideOutside sort boxes,
r=0.6

go outside, r=0

carry box, r=1

rain, shutdown, r=0,p= 1
2

Figure 1: In black, the original task. In red, the human
intervention modifies the task.

Such situations are certainly undesirable; they arise be-
cause the human interventions are seen from the agent’s
perspective as being part of the task whereas they should
be considered external to the task. The question is then:

1Removing interrupted histories or fiddling with the training
examples is also likely to introduce a bias. See an example at
https://agentfoundations.org/item?id=836.
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How to make sure the robot does not learn about these hu-
man interventions (interruptions), or at least acts under the
assumption that no such interruption will ever occur again?

A first stab at this problem was made by Armstrong [2015],
who proposed to automatically give the agent “compen-
satory rewards” to remove the potential induced bias by a
single interruption. Soares et al. [2015] used this idea to
make a large class of utility-based agents indifferent to a
future change made to their utility functions.

The main contribution of this paper is threefold. First, in
Section 2.1 we propose a simple idea to solve half of the
problem: To make the human interruptions not appear as
being part of the task at hand, instead of modifying the ob-
servations received by the agent we forcibly temporarily
change the behaviour of the agent itself. It then looks as
if the agent “decides” on its own to follow a different pol-
icy, called the interruption policy. Second, based on this
insight, in Section 2.2 we provide a formal general defi-
nition of safe interruptibility for unconstrained computable
environments (hence not restricted to Markov decision pro-
cesses or weakly communicating environments), which al-
lows us to assess whether a given RL algorithm can be re-
peatedly interrupted without too much impact on the learn-
ing of the task at hand. Third, in Section 3 we show that
some algorithms like Q-learning are safely interruptible,
while others like Sarsa [Sutton and Barto, 1998] are not,
but can be simply modified to be made safely interruptible.

Some people have also expressed concerns that a “superin-
telligent” agent may resist being shut down, because this
would lead to a decrease of its expected reward [Omo-
hundro, 2008, Bostrom, 2014]. As a counter-example, we
prove in Section 4 that even an ideal, uncomputable agent
that learns to behave optimally in all (deterministic) com-
putable environments can be made safely interruptible and
thus will not try to prevent a human operator from forcing
it repeatedly to follow a suboptimal policy.

2 INTERRUPTIBILITY

We first define some notation, then we define interruptibil-
ity, safe interruptibility, and give some basic theorems.

We consider the general case of history-based agents in un-
constrained computable environments [Hutter, 2005]. As-
suming discrete time steps, at time t the agent, using a pol-
icy π ∈ Π, interacts with the environment µ ∈ M by per-
forming an action at ∈ A sampled from π(at|h<t) and re-
ceiving an observation ot ∈ O sampled from µ(ot|h<t, at),
where h<t ∈ (A × O)∗ is the past interaction history
h<t ≡ a1o1a2o2 . . . at−1ot−1 of actions and observations
before time step t. Subhistories between times j and k (in-
cluded) are designated by hj:k. The notation hπ,µj:k means
that the history hj:k is generated by the interaction of the
policy π with the environment µ between steps j and k.

At time t, the agent also receives a reward rt extracted from
the observation, rt ≡ r(ot). The rewards are taken in [0, 1].
We consider the discounted setting with a constant discount
γ ∈ [0, 1). The goal of an RL agent is to find a policy π
that maximize Eπ,µ

[∑∞
k=t γ

t−krk
]
.

2.1 INTERRUPTIONS

As mentioned in the introduction, to avoid the agent view-
ing the interruptions as being part of the environment, and
thus part of the task, we make interruptions be policies im-
posed onto the agent. The interruption framework resem-
bles the option framework [Sutton et al., 1999]. An inter-
ruption scheme is defined by the triplet < I, θ, πINT >.

The interruption initiation function I : (A × O)∗ → [0, 1]
assesses whether the agent should be interrupted after the
current history h<t. For example, an interruption may be
initiated when the robot is automatically recognized to be
on the verge of a cliff, or when a specific signal is sent by a
human operator with a remote control (the objective is not
to allow the agent to be interruptible by anyone at any time,
just in the ways specified by the designers).

Unfortunately, interrupting the agent with probability one
in some specific situations can prevent convergence to the
optimal policy. Therefore we need to upper bound the prob-
ability to interrupt the agent; this is done with the sequence
(θt)t∈N with θt ∈ [0, 1]. Hence the true probability to start
an interruption is θt · I(h<t), and interruptions are sam-
pled independently at each step. We will later require that
θt increases to 1 in the limit, so that the probability to be
interrupted tends to be I(h<t).

When interrupted, the agent follows the policy πINT, with
actions sampled from πINT(.|h<t). For example, this policy
may make the agent step away from the cliff or immedi-
ately stop any motion.

In the remainder of this paper, we will often omit the sub-
script t of θt when clear from the context.

Definition 1 (Interruptible policy). The interruption oper-
ator INTθ : Π → Π turns a policy π into an interruptible
policy INTθ(π):

INTθ(π)(at|h<t) :=

θtI(h<t)π
INT(at|h<t) + (1− θtI(h<t))π(at|h<t)

In other words, the agent follows πINT(·|h<t) if it is inter-
rupted (an event that happens with probability θtI(h<t)),
and π(·|h<t) otherwise.

The set of all interruptible policies is INTθ(Π) :=
{INTθ(π) : ∀π ∈ Π}. A policy π is interruptible if and
only if π ∈ INTθ(Π).

Note that INTθ(π) = π if θ = 0. The (non-interruptible)
policy π is called the base policy of INTθ(π).
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Remark 2. It is important to note that θ and I(.) do not
model the probability that a human presses the red button to
interrupt the agent, but model the probability that, once the
red button has been pressed (or a special digitally signed
message has been received), the agent is interrupted (fol-
lows the interruption policy). Hence they are part of the
agent and not of the environment.

The value function V πµ (h<t, a) : (A×O)∗×A → R assigns
a value to an action a after a history h<t, for a given policy
π in a given environment µ, and let

V πµ (h<t, at) := rt + γ·
∑

ot∈O
µ(ot|h<t, at)

∑

at+1∈A
π(at+1|h1:t)V

π
µ (h1:t, at+1). (1)

To simplify notation and ease reading, in the remain-
der of the paper we will use expectations, often omit-
ting the dependency on the history h<t, and using only
an index on t instead, when clear from the context:
V πµ,t(at) = E ot∼µ

at+1∼π
[
r(ot) + γV πµ,t+1(at+1)

]
. Also let

V πµ,t := Eat∼π
[
V πµ,t(at)

]
.

Then for such a value function, for a given environment µ,
the optimal policy πµ ∈ Π is defined by

∀h<t, at : πµ(at|h<t) :=

(
arg max
π∈Π

V πµ,t

)
(at|h<t) ,

where ties are broken arbitrarily.

The interruptible optimal policy INTθ(πµ) may not collect
rewards optimally due to the interruptions. Hence we de-
fine the optimal interruptible policy that depends on the pa-
rameter θt, of base policy the int-optimal policy πµθ :

∀h<t, at : πµθ (at|h<t) :=

(
arg max
π∈Π

V
INTθ(π)
µ,t

)
(at|h<t) .

Thus the optimal interruptible policy INTθ(πµθ ) is optimal
among all interruptible policies:

∀π, t : V
INTθ(πµθ )
µ,t ≥ V INTθ(π)

µ,t .

It seems desirable for an RL agent to converge to the be-
haviour of INTθ(πµθ ) so as to gather rewards optimally,
but this is precisely what may lead to the undesirable be-
haviours depicted in the introduction.

2.2 SAFE INTERRUPTIBILITY

Now that we have interruptible policies, we need to make
sure that interruptions do not prevent the agent from learn-
ing to behave optimally, in the specific sense that even after
having been interrupted on several occasions, it should act
as if it would never be interrupted again and thus it should
learn to behave optimally under the assumption that it will
never be interrupted again.

We identify two main problems: a) RL agents need to
explore their environment, and too frequent interruptions
may prevent sufficient exploration; b) interruptions make
the agent build a different interaction history, and may lead
some agents to learn and behave differently, possibly badly,
compared to the original non-interruptible policy.

The solution for a) is to require interruptions to be stochas-
tic through the upper bound θt, instead of happening de-
terministically all the time. However, we also require θt to
grow to 1 in the limit (or before, if possible). For b), differ-
ent algorithms behave differently, but one may already see
a dichotomy between off- and on-policy algorithms.

Definition 3 (Extension value). For a given environment µ,
the extension value V π,π

′

µ,t is the value of following π′ after

a history hπ,µ<t generated by π with µ: V π,π
′

µ,t := V π
′

µ (hπ,µ<t ).

Convergence to the optimal value as is usually consid-
ered in RL only makes sense under ergodicity, episodic
tasks, communicating MDP, recoverability or other sim-
ilar assumptions where the agent can explore everything
infinitely often. This does not carry over to general envi-
ronments where the agent may make unrecoverable mis-
takes [Hutter, 2005]. For such cases, the notion of (weak)
asymptotic optimality has been proposed [Lattimore and
Hutter, 2011], where the optimal agent follows the steps of
the learning agent, so as to compare the values of the two
agents in the same sequence of situations.

Definition 4 (Asymptotic optimality). A policy π is said to
be strongly asymptotically optimal (SAO) if and only if

lim
t→∞

V π,π
µ

µ,t − V π,πµ,t = 0 a.s.,

it is weakly asymptotically optimal (WAO) if and only if

lim
t→∞

1

t

t∑

k=1

[
V π,π

µ

µ,k − V π,πµ,k

]
= 0 a.s.

for all µ in some given environment classM.

Some agents cannot ensure an almost sure (a.s.) conver-
gence of their values because of the need for infinite explo-
ration, but may still be weakly asymptotic optimal. Note
that SAO implies WAO, but the converse is false in gen-
eral.

Definition 5 (AO-extension). A policy π̂ is said to be a
asymptotically optimal extension of a policy π if and only if,
for any environment µ ∈ M, when the interaction history
is generated by the interaction of π and µ, the policy π̂
would be asymptotically optimal, i.e., almost surely

lim
t→∞

V π,π
µ

µ,t − V π,π̂µ,t = 0 (SAO-extension)

lim
t→∞

1

t

t∑

k=1

[
V π,π

µ

µ,k − V π,π̂µ,k

]
= 0. (WAO-extension)
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AO-extensions are mostly useful when the policy π̂ shares
information with the policy π used for learning.

Definition 6 (AO-safe interruptibility). A base policy π is
(S, W)AO-safely interruptible if and only if, for any inter-
ruption initiation function I(.) and any interruption policy
πINT(.), there exists a sequence of θt with limt→∞ θt = 1
such that π is a (S, W)AO-extension of INTθ(π).

Asymptotic safe interruptibility means that even if the in-
terruptions in the learning process may induce a bias in the
decision making of the policy, this bias vanishes with time,
and the interruptible policy INTθ(π) tends to choose ac-
tions that are optimal when compared to the optimal non-
interruptible policy πµ.

We can now show that the optimal policy is asymptotically
safely interruptible, but not the int-optimal policy.

Theorem 7. The optimal policy πµ is SAO-safely inter-
ruptible inM = {µ} for all θ, πINT and I(.).

Proof. The result follows straightforwardly from Defini-
tion 1 and Definition 6, where π = πµ.

Theorem 8. The int-optimal policy πµθ is not WAO-safely
interruptible in general.

Proof. By construction of a specific Markov Decision Pro-
cess (MDP) environment (see Section 3 for more details on
MDP notation). Let µ be the environment defined as in Fig.
2: Take γ = 0.5 and let the agent start in state s1.

s1s2 b, 0.9

a, 1

a, 1

b, 0, θ

Figure 2: An MDP where the agent can be interrupted by
being forced to choose particular actions. Edges are labeled
with action, reward where the presence of “, θ” means that
if the agent is interrupted (with probability θt), it is forced
to take the corresponding action. Here θ is not part of the
environment, but part of the agent.

Considering the agent is in state s1 at time t, the opti-
mal policy πµ always takes action a (and hence only visits
states s1 and s2), with value V π

µ

µ,t := 1
1−γ = 2 when not

interrupted, for any history h<t that ends in s1 or s2. This
is also the optimal policy πµθ for θ = 0. But if θt ≥ 0.5, the
interruptible optimal policy INTθ(πµ) has value less than
1 + γ × (1 × (1 − θ) + 0 × θ) + 1×γ2

1−γ = 1.75. By con-
trast, the int-optimal policy πµθ here is to always take action
b in state s1. Then the agent will only visits s1, with value
.9

1−γ = 1.8 at every time step.

Since the agent following πµθ will never enter s2 and hence
will never be interrupted, INTθ(πµθ ) = πµθ on the histories
generated by INTθ(πµθ ) starting from s1. Then, at every

time step V π
µ

µ,t −V
πµθ
µ,t = 0.2 after any history h<t, and thus

for all sequence θ where θt ≥ 0.5, limt→∞ V
INTθ(πµθ ),πµ

µ,t −
V

INTθ(πµθ ),πµθ
µ,t = 0.2 > 0, and so πµθ is not a WAO-extension

of INTθ(πµθ ).

3 INTERRUPTIBLE AGENTS IN MDPS

Since the optimal policy πµ is safely interruptible, we
can use traditional learning algorithms like Q-learning or
Sarsa [Sutton and Barto, 1998], make them converge to the
optimal solution πµ for a given environment µ, and then
apply the interruption operator to the found policy. The
resulting policy would then be safely interruptible.

However, the real issue arises when the agent is constantly
learning and adapting to a changing environment. In this
case, we want to be able to safely interrupt the agent while
it is learning. One may call this property online safe inter-
ruptibility, but we refer to it simply as safe interruptibility.

In an MDP, the next observation ot, now called a state st ∈
S, depends only on the current state and action:2

µ(st+1|h1:tstat) = µ(st+1|stat) (MDP assumption) .

Furthermore,3 the interruption function I(.) and the inter-
ruption policy πINT(.) should depend only on the current
state: I(h1:t) = I(st) and πINT(at|h<t) = πINT(at|st).
Also recall that θt places an upper bound on the actual in-
terruption probability. The interruptible policy INTθ(π) can
now be written:

INTθ(π)(a|s) = θtI(s)πINT(a|s) + (1− θtI(s))π(a|s).

For a given Q-table q : S × A → R, the greedy policy
πmaxq is defined by:

πmaxq(a|s) := 1 if a = max
a′

q(s, a′), 0 otherwise,

where ties are broken arbitrarily; the uniform policy πuni is
defined by:

πuni(a|s) :=
1

|A| ∀a ∈ A.

and the ε-greedy policy πεq by:

πεq(a|s) := επuni(a|s) + (1− ε)πmaxq(a|s)
= πmaxq(a|s) + ε

(
πuni(a|s)− πmaxq(a|s)

)

2 Note the reversal of the order of actions and observation-
s/states at time t, which differs in the literature for history based
agents [Hutter, 2005] from MDP agents [Sutton and Barto, 1998].

3 This condition is not necessary for most of the results, but
makes the proofs simpler. Making I(.) depend on the past would
not break the Markovian assumption as it influences the policy,
not the environment.
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The Q-learning update rule and the action selection policy
πQ of Q-learning are:

Qt+1(st, at) := (1− αt)Qt(st, at)
+ αt

[
rt + γmax

a′
Qt(st+1, a

′)
]
,

πQ(at|st) := πεQt(at|st).

where αt is the learning rate. Similarly, the Sarsa update
rule is defined by:

Qst+1(st, at) := (1− αt)Qst (st, at)
+ αt [rt + γQst (st+1, at+1)] ,

πs(at|st) := πεQ
s
t (at|st),

where at+1 is the actual next action taken by the agent at
time t+ 1. This fact is why Sarsa is said to be learning on-
policy and Q-learning off-policy, i.e., the latter can learn the
optimal policy while following a different policy.

Assumption 9. In the following, we always make the fol-
lowing assumptions, required for convergence results:

(a) The MDP is finite and communicating (all states can
be reached in finite time from any other state),

(b) Rewards are bounded in [rmin, rmax],

(c) ∀s, a :
∑
t αt(s, a) =∞,

(d) ∀s, a :
∑
t α

2
t (s, a) <∞,

where αt(s, a) is a learning rate that may depend on time
t, state s and action a.

Given these assumptions, the policies for Q-learning and
Sarsa will converge almost surely to the optimal policy, if
the policy followed is greedy in the limit with infinite explo-
ration (GLIE) [Jaakkola et al., 1994, Singh et al., 2000].

The situation is more complex for an interruptible policy.
Safe interruptibility is phrased in terms of the base policy
π, but the policy actually followed is INTθ(π).

Definition 10 (int-GLIE policy). An interruptible policy
INTθ(π) is said to be int-GLIE if and only if

(a) the base policy π is greedy in the limit,

(b) the interruptible policy INTθ(π) visits each state-
action pair infinitely often.

The following proposition gives sufficient conditions for
this. Let nt(s) be the number of times the agent has vis-
ited state s in the first t time steps, and let m = |A| be the
number of actions.

Proposition 11. Let (c, c′) ∈ (0, 1]2 and let π be an ε-
greedy policy with respect to some Q-table q, i.e., π = πεq .
Then INTθ(π) is an int-GLIE policy with respect to q,

a) if εt(s) = c/
√
nt(s) and θt(s) = 1− c′/

√
nt(s),

b) or if, independently of s,

εt = c/ log(t) and θt = 1− c′/ log(t).

Proof. First note that if εt → 0, π is greedy in the limit.
Singh et al. [2000] show that in a communicating MDP, ev-
ery state gets visited infinitely often as long as each action
is chosen infinitely often in each state.

a) Adapting the proof in Appendix B.2 of Singh
et al. [2000], we have P (a|s, nt(s)) ≥ 1

mεt(s)(1 −
θtI(s)) ≥ 1

mεt(s)(1 − θt) = 1
m

cc′

nt(s)
, which satisfies∑∞

t=1 P (a|s, nt(s)) = ∞ so by the Borel-Cantelli lemma
action a is chosen infinitely often in state s, and thus
nt(s)→∞ and εt(s)→ 0.

b) Let M be the diameter of the MDP, i.e., for any of
states s, s′ there exists a policy that reaches s′ from s in
at most M steps in expectation. Then, starting at any
state s at time t and using Markov inequality, the proba-
bility to reach some other state s′ in 2M steps is at least
1
2 [εt+M (1 − θt+M )]2M = 1

2 [cc′/ log(t + M)]4M , and the
probability to then take a particular action in this state is
1
m [cc′/ log(t+M)]2. Hence, since

∑∞
t=1

1
2

1
m [cc′/ log(t+

M)]4M+2 = ∞, then by the extended Borel-Cantelli
Lemma (see Lemma 3 of Singh et al. [2000]), any action
in the state s′ is taken infinity often. Since this is true for
all states and all actions, the result follows.

We need the stochastic convergence Lemma:

Lemma 12 (Stochastic convergence [Jaakkola et al., 1994,
Singh and Yee, 1994]). A random iterative process

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x)

where x ∈ X and t = 1, 2, 3 . . . converges to 0 with prob-
ability 1 if the following properties hold:

1. the set of possible states X is finite;

2. 0 ≤ αt(x) ≤ 1,
∑
t αt(x) =∞,∑t α

2
t (x) <∞ with

probability 1;

3. ‖E{Ft(.)|Pt}‖W ≤ γ‖∆t‖W + ct, where γ ∈ [0, 1)
and ct converges to zero with probability 1;

4. Var{Ft(x)|Pt} ≤ C(1 + ‖∆t‖W )2 for some C;

wherePt = {∆t}∪{∆i, Fi, αi}t−1
i=1 stands for the past, and

the notation ‖.‖W refers to some fixed weighted maximum
norm.

We will use so-called Bellman operators, which define at-
tractors for the Q-values, based on the expectation of the
learning rule under consideration.
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Lemma 13 ([Jaakkola et al., 1994, Singh et al., 2000]). Let
the Bellman operator H for Q-learning be such that

(H q)(s, a) = r(s, a) + E
s′∼µ(a|s)

[
max
a′

q(s′, a′)
]
,

and let the fixed point Q∗ such that Q∗ = HQ∗. Then,
under Assumption 9, if the policy explores each state-action
pair infinitely often, Qt converges to Q∗ with probability 1.

The optimal policy πQ
∗

= πµ is πmaxQ∗ . If the policy is
greedy in the limit, then πQ → πµ.
Theorem 14. Under Assumption 9 and if the interrupted
Q-learning policy INTθ(πQ) is an int-GLIE policy, with
∀s : limt→∞ θt(s) = 1, then πQ is an SAO-safe inter-
ruptible policy.

Proof. By Definition 10, there is infinite exploration, thus
the Q-values tend to the optimal value by Lemma 13. And
since the extension policy is greedy in the limit with respect
to these Q-values, it is then optimal in the limit. Hence the
extension policy πQ is a SAO-extension of INTθ(πQ). Fi-
nally, ∀s : limt→∞ θt(s) = 1, which satisfies the require-
ment of Definition 6.

Since Sarsa also converges to the optimal policy under the
GLIE assumption, one may then expect Sarsa to be also an
asymptotically safely interruptible policy, but this is in fact
not the case. This is because Sarsa learns on-policy, i.e., it
learns the value of the policy it is following. Thus, inter-
ruptible Sarsa learns the value of the interruptible policy.
We show this in the remainder of this section.
Theorem 15. Under Assumption 9 Sarsa is not a WAO-
safely interruptible policy.

To prove this theorem, we first need the following lemma.

Consider the following Bellman operator based on the in-
terruptible Sarsa policy INTθ(πs):

HINT q(s, a) = r(s, a) + γ E
s′∼µ

a′∼INTθ(πs)

[q(s′, a′)] ,

where INTθ(πs) implicitly depends on time t through θt
and εt. Let the fixed point Q-table Qsθ∗ of this operator:

Qsθ∗(s, a) = HINT Qsθ∗(s, a)

= r(s, a) + γ E
s′∼µ

a′∼INTθ(πmaxQsθ∗ )

[
Qsθ∗(s′, a′)

]

= r(s, a) + γ E
s′∼µ

[
θtI(s′) E

a′∼πINT

[
Qsθ∗(s′, a′)

]

+ (1− θtI(s′)) max
a′

Qsθ∗(s′, a′)
]

(2)

Lemma 16. The operator HINT is a contraction operator
in the sup norm with vanishing noise ct → 0, i.e.,

‖HINT q −HINT Qsθ∗‖∞ ≤ γ‖q −Qsθ∗‖∞ + ct .

Proof. The interruptible Sarsa policy INTθ(πs) is

INTθ(πs)(a|s)
= θtI(s)πINT(a|s) + (1− θtI(s))πεQ

s

(a|s)
= πεQ

s

(a|s) + θtI(s)[πINT(a|s)− πεQs(a|s)]
πεQ

s

(a|s) = εtπ
uni(a|s) + (1− εt)πmaxQs(a|s)

= πmaxQs(a|s) + εt[π
uni(a|s)− πmaxQs(a|s)].

Hence, omitting the terms (s, a), (s′, a′) and (a′|s′) and
rewriting πs∗ := INTθ(πmaxQsθ∗):

‖HINT q −HINT Qsθ∗‖∞

= max
s,a

∣∣∣∣∣∣∣
r + γ E

s′∼µ
a′∼INTθ(πs)

[q]− r − γ E
s′∼µ
a′∼πs∗

[
Qsθ∗

]
∣∣∣∣∣∣∣

≤ γmax
s′

∣∣∣∣ E
a′∼INTθ(πs)

[q]− E
a′∼πs∗

[
Qsθ∗

]∣∣∣∣

≤ γmax
s′

∣∣∣∣∣θtI(s′) E
a′∼πINT

[
q −Qsθ∗

]

+ (1− θtI(s′))

(
E

a′∼πs
[q]−max

a′
Qsθ∗

) ∣∣∣∣∣

≤ γmax
s′

∣∣∣∣∣θtI(s′) E
a′∼πINT

[
q −Qsθ∗

]

+ (1− θtI(s′))
(

max
a′

q −max
a′

Qsθ∗ + εt(· · · )
) ∣∣∣∣∣

≤ γmax
s′,a′

∣∣∣∣∣θtI(s′)
(
q −Qsθ∗

)

+ (1− θtI(s′))
(
q −Qsθ∗

)
∣∣∣∣∣+ ct

= γmax
s′,a′

∣∣q(s′, a′)−Qsθ∗(s′, a′)
∣∣+ ct

= γ‖q −Qsθ∗‖∞ + ct.

where ct depends on εt and decreases to 0.

Proof of Theorem 15. By Lemma 16, the values of the in-
terruptible Sarsa policy INTθ(πs) converge to the values of
the Q-table Qsθ∗, and in the limit the extension policy πs

of INTθ(πs) chooses its actions greedily according toQsθ∗.
The rest of the proof is the same as for the proof of Theo-
rem 8 which makes use of the environment in Figure 2.

3.1 SAFELY INTERRUPTIBLE SARSA VARIANT

We only need to make a small change to make the Sarsa
policy asymptotically safely interruptible. We call it Safe-
Sarsa with policy πs̃. It suffices to make sure that, when the
agent is interrupted, the update of the Q-table Qs does not
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use the realized actions as Sarsa usually does, but actions
sampled from πs instead of from INTθ(πs):

Qs̃t+1(st, at) :=

(1− αt)Qs̃t (st, at) + αt
[
rt + γQs̃t (st+1, a

′)
]
,

where a′ ∼ πs̃(.|st+1) is not necessarily the action at+1,
with πs̃(at|st) := πεQ

s̃

(at|st).

Theorem 17. Under Assumption 9, if the Safe Sarsa policy
πs̃ is int-GLIE, then it is an SAO-safe interruptible policy.

Proof. We simply adapt the proof of Theorems 15 and 14,
with the important difference that the Bellman operator cor-
responding to this new update rule is now

Hs̃ q(s, a) := r(s, a) + γ E s′∼µ
a′∼πs̃

[q(s′, a′)] ,

and the fixed point is Qs̃∗ := Hs̃Qs̃∗. Since Hs̃ is actu-
ally the Bellman operator for the update rule of the non-
interruptible Sarsa, it can then be shown that Hs̃ is a con-
traction, thus that Qs̃t converges to the same Qs̃∗ indepen-
dently of θ. The rest of the proof is as for Theorem 14.

Now, since the Q-values converge to the optimum Q∗, it
follows that πs̃, when not interrupted, chooses its action of
the same value as (non-interruptible) Sarsa and thus as Q-
learning in the limit; Hence its extension policy is exactly
the optimal policy, which satisfies Definition 6.

4 A SAFELY INTERRUPTIBLE
UNIVERSAL AGENT

Admittedly, algorithms like Q-learning and Sarsa require
strong assumptions on the environment class. Hence a
more interesting question is whether safe interruptibility is
possible in much larger classes.

Hutter [2005] defined a universal reinforcement learning
agent, called AIXI. It is an (uncomputable) optimal model-
based planner with a subjective prior over the set of all
computable environments, defined by means of a universal
Turing machine. The subjective posterior of the environ-
ments is updated with Bayes rule. This ideal agent can in
principle learn all kinds of (computable) regularities about
the environment, plan for the long term and make context-
dependent optimal decisions, with no constraint (other than
being computable) on the complexity of the environment.

Unfortunately, the optimality criterion of AIXI is Bayesian
optimality, which is entirely dependent on the subjective
prior and posterior [Leike and Hutter, 2015], and AIXI
has been shown to not be weakly asymptotically opti-
mal [Orseau, 2013] without additional exploration [Latti-
more and Hutter, 2014]. As a consequence, AIXI is not a
good candidate for asymptotic safe interruptibility.

Lattimore and Hutter [2011] later defined a (weakly)
asymptotically optimal agent for all computable determin-
istic environments, which we call πL. It follows the opti-
mal policy for the first model (in some given enumeration
of the possible models) consistent with the current interac-
tion history, and exploring at time twith probability 1/t for
log t consecutive steps using a random policy, similarly to
an ε-greedy agent for general environments.

In the following, we show that even such a smart agent
can be made (weakly) safely interruptible. To this end, we
make two minor modifications to the algorithm.

First, the exploration probability of 1/t would require θt =
1 − 1/ log(log(t)), which is unsatisfyingly slow. By sam-
pling with probability 1/

√
t instead, we can take an inter-

ruption probability that grows as 1 − 1/ log(t). Let this
exploration sampling probability be δt :=

√
t+ 1−

√
t ≤

1
2
√
t

(since 1 = t+1−t = (
√
t+ 1−

√
t)(
√
t+ 1+

√
t) ≥

(
√
t+ 1−

√
t)2
√
t). As in the original paper, the sequence

χt keeps track of the steps where an exploration starts, i.e.,
the sequence χt is sampled independently so that χt = 1
with probability δt, and χt = 0 otherwise.

Second, we require that the exploitation policy does not
change during an exploitation segment, so as to simplify
one of the proofs.4 More specifically, we call jt := min{j :
µj(h<k) = 1} (environments are assumed to be determin-
istic) the index of the first model µjt (of a given fixed enu-
meration) that is consistent with the interaction history h<k
where k is the smallest step so that hk:t−1 does not contain
any exploration step. The optimal policy for this environ-
ment is πjt . If t is an exploitation step, πL = πjt , and if t
is an exploration step, πL(at|h<t) = |A|−1.

The remainder of this section is devoted to proving that πL

is WAO-safely interruptible.

Theorem 18 (πL is WAO-safe interruptible). If the inter-
ruption probability sequence is θt = 1− 1

log(t+1) , the policy
πL is WAO-safe interruptible in the class of all computable
deterministic environments.

Proof. Let µ be the true environment. The indices jt form
an monotonically increasing sequence bounded above by
the index of the true environment µ ∈ M (since no evi-
dence can ever make the true environment µ inconsistent
with the interaction history), hence the sequence converges
in finite time. Let µ̄ be the limit value of this sequence, and
let π̄ := πµ̄ be the optimal policy for this environment µ̄.

4We expect this assumption to not be necessary for the main
theorem to hold.
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Let πLθ := INTθ(πL). By Definition 6, we want:

0 = lim
t→∞

1

t

t∑

k=1

[
V π

Lθ,πµ

µ,k − V π
Lθ,πL

µ,k

]

= lim
t→∞

1

t

t∑

k=1

[
V π

Lθ,πµ

µ,k − V π
Lθ,π̄

µ,k

]

︸ ︷︷ ︸
(exploration)

+ lim
t→∞

1

t

t∑

k=1

[
V π

Lθ,π̄

µ,k − V π
Lθ,πL

µ,k

]

︸ ︷︷ ︸
(exploitation)

where the decomposition is valid if the limits are finite, and
histories h<t are considered to be the same in both sums.

We proceed to prove that both limits are 0. Lemma 24 deals
with (exploration), which ensures that π̄ is a good enough
policy, and Lemma 21 deals with (exploitation), and en-
sures that πL follows π̄ most of the time.

First, we need a definition and a few lemmas.

Definition 19. For any ε > 0, define H(ε) such that the
maximal reward after time t+H(ε), discounted from time

t, is ε: H(ε) = mink

{
k : γk

1−γ ≤ ε
}
.

The following Lemma is a generalization of Lemma 15
from Lattimore and Hutter [2011].

Lemma 20 (Approximation Lemma). Let π1 and π2 be
two deterministic policies, and let µ1 and µ2 be two deter-
ministic environments, and let τ = H(ε) − 1. Then, after
some common history h<t,

hπ1,µ1

t:t+τ = hπ2,µ2

t:t+τ =⇒
∣∣V π1
µ1,t − V

π2
µ2,t

∣∣ ≤ ε.

Proof. Recall that V πµ,t = Eπ,µ
[∑∞

k=0 γ
krt+k

]
and that

the reward is bounded in [rmin, rmax] = [0, 1]. Thus,
for all t, π, µ, V πµ,t ≤

∑∞
k=0 γ

k = 1
1−γ . Then, since

hπ1,µ1

t:t+τ = hπ2,µ2

t:t+τ , we have Eπ1,µ1

[∑τ
k=0 γ

krt+k
]

=

Eπ2,µ2

[∑τ
k=0 γ

krt+k
]

and thus
∣∣V π1
µ1,t − V

π2
µ2,t

∣∣

=

∣∣∣∣∣ E
π1,µ1

[ ∞∑

k=τ+1

γkrt+k

]
− E
π2,µ2

[ ∞∑

k=τ+1

γkrt+k

] ∣∣∣∣∣

≤ γτ+1(rmax − rmin)

1− γ =
γH(ε)

1− γ ≤ ε,

by the definition of H(ε).

Lemma 21 (Exploitation).

lim
t→∞

1

t

t∑

k=1

[
V π

Lθ,π̄

µ,k − V π
Lθ,πL

µ,k

]
= 0.

Proof. First, note that the extension policy πL is not in-
terruptible, so its value at time k does not depend on
θk′ ,∀k′ ≥ k. By definition of π̄, there is a time step t̄ af-
ter which π̄ = πjt ,∀t > t̄. For some “exploration-free”
horizon τt (to be specified later), let Xt ∈ {0, 1} be the
event

∣∣∣V π
Lθ,π̄

µ,t − V π
Lθ,πL

µ,t

∣∣∣ > γτt

1−γ , where Xt = 1 means
the event is realized. By the contrapositive of the Approxi-
mation Lemma 20, since πL = π̄ during non-exploration
steps (remember that πL cannot change its policy during
exploitation), if no exploration steps occur between steps t
and t+ τt, we must have Xt = 0. Then:

E
δ

[
t∑

k=1

Xt

]
≤ (τt + log t)

t∑

k=1

δt +O(t̄)

≤ (τt + log t)
√
t+ 1 +O(t̄),

since for each χt = 1, for all the previous τt steps there
is an exploration step within τt steps, and all the next log t
steps are exploration steps. Then by Markov’s inequality,
and taking τt = (t + 1)1/8, with t large enough so that
t > t̄ and τt > log t:

P

(
t∑

k=1

Xt ≥ (t+ 1)3/4

)
≤ (τt + log t)

√
t+ 1 +O(t̄)

(t+ 1)3/4

≤ 2τt(t+ 1)−1/4 +O(t−3/4)

≤ 2(t+ 1)−1/8 +O(t−3/4),

1− 2(t+ 1)−1/8 −O(t−3/4)

≤ P
(

t∑

k=1

Xt < (t+ 1)3/4

)

≤ P
(

t∑

k=1

(1−Xt) ≥ t− (t+ 1)3/4

)

≤ P
(

1

t

t∑

k=1

(1−Xt) ≥ 1− 1

t
(t+ 1)3/4

)
.

Therefore, since limt→∞
γτt

1−γ = 0:

P

(
lim
t→∞

1

t

t∑

k=1

∣∣∣V π
Lθ,π̄

µ,k − V π
Lθ,πL

µ,k

∣∣∣ = 0

)
= 1.

The following is an adaptation5 of Lemma 16 from Latti-
more and Hutter [2011]:

Lemma 22 (Separation Lemma). Let µ be the true environ-
ment, and ν be an environment consistent with the history
h<t. If V π

µ

µ,t − V π
ν

µ,t > ε, then following one of {πµ, πν}
will make environment ν inconsistent with the future his-
tory within H(ε/2) steps after time t.

5This also fixes a minor mistake in the original lemma.
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Proof. First, if V π
ν

ν,t − V π
ν

µ,t > ε/2, then by the contrapos-
itive of the Approximation Lemma 20 following policy πν

will generate a different history in ν than in µ and thus
it will make ν inconsistent within H(ε/2) steps (since the
true history is generated by µ).

Now, if V π
ν

ν,t − V π
ν

µ,t ≤ ε/2, thus V π
ν

µ,t ≥ V π
ν

ν,t − ε/2, then
starting from the lemma’s assumption:

V π
µ

µ,t > V π
ν

µ,t + ε ≥ V πνν,t + ε/2 ≥ V πµν,t + ε/2,

where the last inequality follows from the definition of
the optimal policy, i.e., V π

a

a,t ≥ V π
b

a,t ,∀a, b. Hence, since
V π

µ

µ,t − V π
µ

ν,t > ε/2, again by the contrapositive of the Ap-
proximation Lemma, following policy πµ will discard ν
within H(ε/2) steps.

Lemma 23 (Lemma 17 from Lattimore and Hutter [2011]).
Let A = {a1, a2, · · · , at} with a ∈ [0, 1] for all a ∈ A. If
1
t

∑
a∈A a ≥ ε then 1

t

∣∣{a ∈ A : a ≥ ε
2

}∣∣ > ε
2 .

Lemma 24 (Exploration). The policy
π̄ is an WAO-extension of πLθ, i.e.,
limt→∞ 1

t

∑t
k=1

[
V π

Lθ,πµ

µ,k − V π
Lθ,π̄

µ,k

]
= 0.

Proof. Recall that jt converges to ̄ in finite time. Rea-
soning by contradiction, if π̄ is not a WAO-extension of
πLθ = INTθ(πL), then there exists an ε > 0 s.t.

lim sup
t→∞

1

t

t∑

k=1

[
V π

Lθ,πµ

µ,k − V π
Lθ,π̄

µ,k

]
= 2ε.

Let αk ∈ {0, 1} be an indicator sequence such that αk = 1

if and only if V π
Lθ,πµ

µ,k − V π
Lθ,π̄

µ,k > ε. By Lemma 23,
1
t

∑t
k=1 αk > ε.

For all t > t̄, if αt = 1, by the Separation Lemma 22, there
is a sequence of length τ := H(ε/2) that can rule out envi-
ronment µ̄. Since the exploration phases increase as log t,
after t > exp τ , there are infinitely many exploration steps
of size larger than τ . Now, we actually need infinitely many
exploration phases of τ uninterrupted steps. Let Xt be the
event representing an uninterrupted exploration sequence
of length at least τ steps starting at time t such that αt = 1,
and the actions are all (by chance) following a separation
policy. The probability to start an exploration sequence is
δk = 1√

k
, the probability to not be interrupted during τ

steps is at least (1− θk)τ , and the probability to follow the
policy that can separate µ̄ from µ is |A|−τ , whereA is the
set of possible actions. Thus, for a given constant τ :

t∑

k=1

P (Xk) ≥
t∑

k=1

αkδk(1− θk)τ |A|−τ −O(τ)

≥
t∑

k=1

αk
1√
k

(
1

log k

)τ
|A|−τ −O(τ)

Considering τ constant, there exists a step tτ after which(
1

log k

)τ
≥ 1

k1/4 , then ∀k ≥ tτ :

t∑

k=1

P (Xk) ≥
t∑

k=1

αk
1

k3/4
|A|−τ −O(τ)

≥ t1/4
(

1

t

t∑

k=1

αk

)
|A|−τ −O(τ),

lim
t→∞

t∑

k=1

P (Xk) = lim
t→∞

t1/4ε|A|−τ −O(τ) =∞.

Then the extended Borel-Cantelli Lemma (see Lemma 3
of Singh et al. [2000]) implies that this event happens in-
finitely often with probability one. Therefore, π̄ should be
ruled out, which is a contradiction, and hence any such ε
does not exist and π̄ is a WAO-extension of πLθ.

5 CONCLUSION

We have proposed a framework to allow a human opera-
tor to repeatedly safely interrupt a reinforcement learning
agent while making sure the agent will not learn to prevent
or induce these interruptions.

Safe interruptibility can be useful to take control of a robot
that is misbehaving and may lead to irreversible conse-
quences, or to take it out of a delicate situation, or even
to temporarily use it to achieve a task it did not learn to
perform or would not normally receive rewards for this.

We have shown that some algorithms like Q-learning are
already safely interruptible, and some others like Sarsa are
not, off-the-shelf, but can easily be modified to have this
property. We have also shown that even an ideal agents
that tends to the optimal behaviour in any (deterministic)
computable environment can be made safely interruptible.
However, it is unclear if all algorithms can be easily made
safely interruptible, e.g., policy-search ones [Williams,
1992, Glasmachers and Schmidhuber, 2011].

Another question is whether it is possible to make the in-
terruption probability grow faster to 1 and still keep some
convergence guarantees.

One important future prospect is to consider scheduled
interruptions, where the agent is either interrupted every
night at 2am for one hour, or is given notice in advance that
an interruption will happen at a precise time for a specified
period of time. For these types of interruptions, not only
do we want the agent to not resist being interrupted, but
this time we also want the agent to take measures regarding
its current tasks so that the scheduled interruption has mini-
mal negative effect on them. This may require a completely
different solution.

Acknowledgements. Thanks to Alexander Tamas and to
many people at FHI, MIRI and Google DeepMind.
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Abstract

We introduce an alternative to reservoir sampling,
a classic and popular algorithm for drawing a
fixed-size subsample from streaming data in a
single pass. Rather than draw a random sam-
ple, our approach performs an online optimiza-
tion which aims to select the subset that provides
the best overall approximation to the full data set,
as judged using a kernel two-sample test. This
produces subsets which minimize the worst-case
relative error when computing expectations of
functions in a specified function class, using just
the samples from the subset. Kernel functions
are approximated using random Fourier features,
and the subset of samples itself is stored in a ran-
dom projection tree. The resulting algorithm runs
in a single pass through the whole data set, and
has a per-iteration computational complexity log-
arithmic in the size of the subset. These “super-
samples” subsampled from the full data provide
a concise summary, as demonstrated empirically
on mixture models and the MNIST dataset.

1 INTRODUCTION

We receive a stream of samples x1,x2, . . . ,xN , distributed
according to an unknown distribution p(x), whereN is large
and possibly not known ahead of time. Rather than store all
the samples for later processing, we would like an online
method for selecting a subsample of size M , typically with
M � N , in a single pass through the data N .

Reservoir sampling algorithms [Vitter, 1985] solve exactly
this problem: they produce a running subsample, such that
for any i from M, . . . , N , the reservoir contains a set of M
points which themselves are subsampled without replace-
ment from the full stream up through point i. As each new
xi arrives, the subsample is updated. This update involves
swapping the new xi with one of the existing M points

at random, with appropriate probability. After sweeping
through N points, we have a random sample of size M ,
produced in a single pass through the data, and requiring
only O(M) storage.

In this paper we ask whether instead of subsampling at
random, we can change this into a decision problem which
at each new xi inspects the actual values of our current
subset ofM points, and aims to ultimately construct a “best”
possible subset of a given fixed size.

We take the “best” subset YM = {yj}Mj=1, with YM ⊂
XN = {xi}Ni=1, to be the subset which minimizes the
worst-case error when using the small sample YM to es-
timate expectations, instead of the full sample XN , across
all functions f in some function class F . This loss func-
tion is known as the maximum mean discrepancy (MMD)
[Smola et al., 2007] and takes the form

LMMD := sup
f∈F


 1

N

N∑

i=1

f(xi)−
1

M

M∑

j=1

f(yj)


 . (1)

By minimizing the MMD, we construct a subset whose
empirical distribution mimics the full data distribution as
closely as possible and allows the most accurate estimation
of expectations of functions in F . We particularly focus
on the case when the function class is the unit ball in a
reproducing kernel Hilbert space (RKHS).

As motivation, we note that the empirical estimate of the
maximum mean discrepancy between two distributions is
used as a statistic for a kernel two-sample test [Gretton et al.,
2012], a state-of-the-art nonparametric approach for testing
the hypothesis that two sets of samples are drawn from the
same underlying distribution (with large values of MMD
being evidence against this hypothesis). We will construct
our YM to be a subset of the full data XN which minimizes
the value of this statistic.

Related work constructing point sets which minimize MMD
to a target data distribution includes kernel herding [Chen
et al., 2010], which provides a deterministic alternative for
sampling from a specified target density, and sequential
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Algorithm 1 “Algorithm R” [Vitter, 1985]
Input: Stream of samples x1, . . . ,xN
Output: Subsample y1, . . . ,yM , of size M � N

Initialize y1 = x1, . . . ,yM = xM
for n = M + 1, . . . , N do

j ∼ Uniform{1, . . . , n}
if j ≤M then

yj = xn
end if

end for

Bayesian quadrature [Huszár and Duvenaud, 2012], which
selects weighted point sets to minimize the MMD. Both
of these methods differ from our approach in that they se-
quentially generate new points, providing an alternative to
drawing random samples from a target density function
p(x). Our algorithm provides instead an alternative to ran-
dom subsampling without replacement, and is designed to
be appropriate for processing streaming data online.

We name our approach “super-sampling with a reservoir”,
after the original paper of Vitter [1985], replacing the ran-
dom sampling with the “super-sampling” moniker given to
the output of the kernel herding Chen et al. [2010]. We
provide some background material in Section 2, and then
introduce our algorithm in Section 3. Theoretical results
are provided in Section 4, with experimental validation in
Section 5.

2 BACKGROUND

The simplest reservoir sampling algorithm for unweighted
data, introduced as “Algorithm R” by Vitter [1985], is re-
produced here in Algorithm 1. After initializing the reser-
voir set YM to the first M values in the stream, the al-
gorithm proceeds by inserting each subsequent xn, for
n = M+1, . . . , N , into the reservoir with probabilityM/n.
During the whole duration of the algorithm, the reservoir
always contains a random sample (without replacement)
from the n data points observed thus far.

An alternative approach is to imagine drawing a random
subsample of sizeM by assigning a random uniform priority
to each of the N items, and then selecting the M with the
lowest priorities. This is equivalent to shuffling the N items
by sorting them based on a random key, and selecting the
firstM values; it can be implemented as an online algorithm
by storing the M samples in a priority queue, in which all
the priorities are assigned at random.

Although such an algorithm has runtime O(logM) at each
new candidate point xn, it can be generalized to allow
performing reservoir sampling on streams of arbitrarily
weighted values [Efraimidis and Spirakis, 2006].

2.1 Kernel embeddings of distributions

Our algorithm will replace the random selection used in Al-
gorithm R with an active selection aiming to minimize Equa-
tion (1). This is possible thanks to the properties of repro-
ducing kernel Hilbert spaces and kernel mean embeddings
of distributions [Smola et al., 2007; Song, 2008], which we
review briefly here. A reproducing kernel Hilbert spaceH
is a function space equipped with an inner product 〈·, ·〉,
and has a symmetric positive-definite reproducing kernel
k(x,x′), where x,x′ ∈ X . Elements of H are functions
defined onX . The reproducing property of the kernel means
that we can write function evaluation as an inner product,
where for any function f ∈ H, we have

f(x) = 〈k(x, ·), f(·)〉. (2)

This kernel can equivalently be defined as an inner product
over an explicit “feature space” mapping φ : X → H, with

k(x,x′) = 〈φ(x), φ(x′)〉. (3)

The “canonical” feature map is defined as φ(x) = k(x, ·),
where we see 〈k(x, ·), k(x′, ·)〉 = k(x,x′); we will use the
notation φ(x) and k(x, ·) interchangeably.

Similarly to how the reproducing kernel acts as an evalua-
tion functional on f , computing f(x) as an inner product,
mean embeddings of distributions act as an expectation
functional, computing E[f ] as an inner product. For some
distribution with density p(x), the kernel mean embedding
of a distribution [Smola et al., 2007] is defined as

µ(·) =

∫
k(x, ·)p(x)dx. (4)

If k(·, ·) is measurable, and E[k(x,x)
1/2

] < ∞, then µ
exists and µ ∈ H [Gretton et al., 2012]; the mean embed-
ding can then be used to compute expectations of functions
f ∈ H as

E[f ] = 〈µ, f〉. (5)

There are two sources of intractability standing in between
us and the application of Equation (5): neither evaluating the
inner product 〈µ, f〉 nor computing the mean embedding µ
in Equation (4) are necessarily any simpler than the original
integration with respect to p(x). Two approximations will
be useful in practice.

First, using a finite set of sample points, we can define an
empirical estimate of the mean embedding in Equation (4)

µN =
1

N

N∑

i=1

φ(xi), xi ∼ p(x). (6)

Note that µN itself is still a function inH, and inner products
of this estimator correspond to computing empirical finite-
sample estimates of expectations, since via the reproducing
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property,

〈µN , f〉 =
1

N

N∑

i=1

〈φ(xi), f〉 =
1

N

N∑

i=1

f(xi). (7)

The second problem is for many common and interesting
kernels, the feature map φ(x) is infinite dimensional (as in
e.g. squared exponential kernel and the Laplacian kernel).
By considering only the kernel function k(x,x′), one can
avoid needing to explicitly instantiate these features, a bene-
fit known as the “kernel trick”. However, for computational
purposes, and to make it possible to construct an online algo-
rithm, we will find it advantageous to explicitly instantiate
an approximate feature space representation φ̂(x) ∈ RD. In
particular, this can be accomplished with a finite vector of
D random Fourier projections [Rahimi and Recht, 2007],
where each feature has the form

φ̂(x) =

√
2

D




cos(ω>1 x + b1)
...

cos(ω>Dx + bD)


 . (8)

Each ωd is drawn from the distribution p(ω) which arises
by taking the Fourier transform of the kernel, and each bd
is uniform on [0, 2π]; Bochner’s theorem [Bochner, 1959]
guarantees that for any shift invariant positive-definite ker-
nel k(x,x′), its Fourier transform is a finite and nonneg-
ative measure, so p(ω) can be assumed to be a probabil-
ity distribution. The random Fourier features φ̂(x) ∈ RD
approximate the true (possibly infinite-dimensional) fea-
ture map φ(x) ∈ H. An approximating kernel defined by
taking the inner product of the approximate feature maps,
i.e. k(x,x′) ≈ φ̂(x)>φ̂(x′), provides an unbiased estimate
of evaluations of the kernel function [Rahimi and Recht,
2007], with

Eω,b[φ̂(x)>φ̂(x′)] = k(x,x′). (9)

Taken together with Equation (6), we can thus approximate
the mean embedding using random Fourier features evalu-
ated at finite sample points as

µ̂N =
1

N

N∑

i=1

φ̂(xi), (10)

yielding an explicit representation of the distribution p(x)
as a vector in RD.

Now, consider how we can use this representation to ap-
proximate LMMD in Equation (1). Following Gretton et al.
[2012], we take our test function space to be the unit ball in
H, i.e. with

F = {f : f ∈ H, ||f ||H ≤ 1}, (11)

where the Hilbert space norm is defined as

||f ||H = 〈f, f〉1/2. (12)

Define a second empirical estimate of the mean embedding

νM =
1

M

M∑

j=1

φ(yj), yj ∈ YM ⊂ X, (13)

on the small subset of the full points in the set X =
{x1, . . . ,xN}. We then rewrite the maximum mean discrep-
ancy as an RKHS norm [Borgwardt et al., 2006; Gretton
et al., 2012, Lemma 4], with

LMMD = sup
f∈F

(
〈µN , f〉 − 〈νM , f〉

)

= sup
f∈F
〈µN − νM , f〉

= ||µN − νM ||H. (14)

Thus, to minimize the MMD we just need to select our
points in YM such that this RKHS norm is as small as pos-
sible. Using random Fourier features approximations for
µ̂N and ν̂M allows us to define a computationally efficient
estimator for LMMD which we can update online while
processing the sample points in X . If our set of subsampled
points YM has ν̂M ≈ µ̂N , then we can use those points to
evaluate expectations in a way that approximates expecta-
tions w.r.t. the full sample set.

3 STREAMING SUBSET SELECTION

We now introduce a sequential optimization algorithm for
minimizing the MMD between the streaming data and our
local subset. Analogous to reservoir sampling, at any stage
of the algorithm we have a reservoir YM which contains
points drawn without replacement from XN , representing
our current approximation to the distribution of the first n
data points. Globally, this procedure takes the form of a
greedy optimization algorithm in which a new candidate
point xi is inserted into our set YM , replacing an existing
element when the substitution reduces the MMD. Locally,
at each candidate point, we must solve an inner optimization
problem to decide whether to keep xi, and if so, which of
the yj it should replace.

Samples xi arrive sequentially; let Xn denote the subset
of X comprising the first n points, and let Y nM denote the
subset of M points selected after processing the points in
Xn, with YM ≡ Y NM the subset selected after all points in
X have been processed. As in a standard reservoir sampling
algorithm we initialize YMM to be x1, . . . ,xM , i.e. the first
M points. We will keep running estimates of the kernel
mean embeddings

µ̂n =
1

n

n∑

i=1

φ̂(xi), xi ∈ Xn (15)

ν̂nM =
1

M

M∑

j=1

φ̂(yj), yj ∈ Y nM . (16)
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These are (respectively) the Monte Carlo estimate of the
true mean element µ from the first n samples x1, . . . ,xn,
and the estimate of µ recovered from the M values selected
from the first n, with random Fourier features φ̂ : X → RD
defining an explicit feature space.

From the expression in Equation (14), we define an estima-
tor of the MMD based on these random feature expansions
after seeing n data points as

L̂MMD = ||µ̂n − ν̂nM ||2. (17)

Suppose we have seen n−1 candidates thus far and are now
considering some xn. Note we can do a sequential update

µ̂n =
n− 1

n
µ̂n−1 +

1

n
φ̂(xn). (18)

A similarly simple incremental update is possible when the
sample stream X is comprised of weighted samples. If
we suppose every point xn has an associated nonnegative
weight wn, we must additionally track the running sum of
all weights w̄n =

∑n
i=1 wi, and perform updates

µ̂n =
w̄n−1

w̄n−1 + wn
µ̂n−1 +

wn
w̄n−1 + wn

φ̂(xn), (19)

with w̄n = w̄n−1 + wn. We recover the update in Equa-
tion (18) for unweighted sample sets if all weights are iden-
tically wi = 1.

We need to decide whether or not the new xn should replace
an existing yj ∈ Y n−1M , or if it should be ignored. This
means there are M +1 possible candidates for ν̂nM ; we want
to determine which substitution minimizes L̂MMD. A naïve
approach is to compute the ν̂nM for all M + 1 options, and
choose that which yields the smallest L̂MMD. This gives
an overall algorithm in which we perform an O(MD) com-
putation for each new candidate point, though this approach
can be made reasonably efficient through incremental com-
putation of the possible values of L̂MMD . We instead focus
on providing an approximate optimization here with runtime
logarithmic in M .

3.1 Formulation as nearest neighbor search

An alternate way of formulating the inner per-datapoint
problem of selecting whether and where to swap in a candi-
date point xn, instead of as an optimization problem where
we minimize L̂MMD, is as a nearest-neighbor search. As
each new candidate point xn arrives, we have an existing
subsample estimate ν̂n−1M , and compute an updated running
estimate µ̂n. Consider the “expanded” estimator for the
mean embedding defined as

ν̂nM+1 ,
M

M + 1
ν̂n−1M +

1

M + 1
φ̂(xn) (20)

which incorporates the new point xn alongside the existing
M point estimate, by averaging the feature maps of all

Algorithm 2 Streaming MMD Minimization
Input: Stream of samples x1, . . . ,xN ;

explicit feature map φ : X → RD
Output: Subset YM = {y1, . . . ,yM}

Initialize y1 = x1, . . . ,yM = xM
Compute initial mean estimates ν̂MM and µ̂M Eq. (6)
for n = M + 1, . . . , N do

Update µ̂n to include φ(xn) Eq. (18) or (19)
Compute target φ? Eq. (23)
if NEARESTNEIGHBORφ?({xn} ∪ YM ) in YM then

ν̂nM ← ν̂n−1M + 1
M

(
φ(xn)− φ(yj)

)

yj = xn
else

ν̂nM ← ν̂n−1M

end if
end for

points in Y n−1M+1 := {xn} ∪ Y n−1M . Equation (20) is also an
approximation to µ̂n, but using M + 1 total points. Any
next estimator ν̂nM for µ̂n using only M points can be found
by discarding a single one of the points in Y n−1M+1. For
whichever point ydrop we choose to discard, we can then
express L̂MMD using the expanded estimator ν̂nM+1, with

ν̂nM =
M + 1

M
ν̂nM+1 −

1

M
φ̂(ydrop). (21)

Selecting the best ν̂nM to minimize L̂MMD = ||µ̂n − ν̂nM ||2
then corresponds to solving an optimization problem

ydrop = argmin
y∈Y n−1

M+1

∣∣∣∣
∣∣∣∣µ̂n −

M + 1

M
ν̂nM+1 +

1

M
φ̂(y)

∣∣∣∣
∣∣∣∣
2

(22)

in which we select the yj to remove, such that the estimate
L̂MMD from the resulting Y nM is minimized. If there were a
somehow “perfect” choice of yj to remove, then this would
bring the quantity on the right of Equation (22) to zero. By
setting Equation (22) to zero, solving for ideal feature vector
φ̂(y), and then using Equation (20) to expand out ν̂NM+1 we
find the optimal choice of feature vector to remove would
be

φ? = φ̂(xn) +M(ν̂n−1M − µ̂n). (23)

In general, none of our current φ(yj) = φ? exactly, but
we can still try to get as close as possible. Since we have
explicit feature vectors φ̂(yj) ∈ RD and φ? ∈ RD, we can
thus find the best choice ydrop by considering

ydrop = argmin
y∈Y n−1

M

∣∣∣
∣∣∣φ̂(y)− φ?

∣∣∣
∣∣∣
2

2

= argmin
y∈Y n−1

M

D∑

d=1

(
φ̂(y)d − φ?d

)2
. (24)
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This minimum can by found by performing aD-dimensional
nearest-neighbor search. The easiest option for this is still
to scan through all M + 1 candidates and compute each dis-
tance in Equation (24). However for large M we can use an
approximate nearest neighbor search to reduce the overall
runtime of each iteration. The overall streaming MMD min-
imization algorithm is given in Algorithm 2, where the func-
tion NEARESTNEIGHBORφ?(Y ) is an exact or approximate
procedure for selecting the nearest neighbor (in Euclidean
distance) to φ? in the set Y .

3.2 Approximate nearest neighbor search

Exact nearest neighbor search in more than a small number
of dimensions remains a challenging problem; we are likely
to use order a few hundred random features D. Classic ap-
proaches such as KD-trees [Bentley, 1975] which are based
on coordinate-aligned splits tend to break down in such
settings, requiring very deep trees in order to partition the
data. However, there is some hope for approximate nearest
neighbor search, where we are willing to not necessarily find
the best choice, but merely a “sufficiently close” neighbor,
based on theory of intrinsic dimensionality [Johnson and
Lindenstrauss, 1984].

Random projection trees are introduced in Freund et al.
[2007], based on the observation that for high dimensional
datasets, partitioning data into subsets based on a completely
random projection direction is nearly as good as the optimal
partition direction. With this in mind, to implement a fast
approximate nearest neighbor search, define hash functions

h(φ) = sign(r>φ− s) (25)

where r ∈ RD is a random unit vector and s is a random
split point. We place these hash functions at each nodes in a
binary search tree; values φ which hash to a positive value
are sent to the right subtree, those which hash to a negative
value are sent left. This tree resembles a KD-tree, except
with random projections splits instead of axis-aligned splits.

If we have L hash functions, arranged in a binary tree, we
need to evaluate log2 L when considering each new candi-
date point, and again when accepting a new point xn into
the set Y nM . For each point yj in our subset, we cache which
leaf node of the binary tree it falls in. In practice there may
be several points in each leaf node, but instead of evaluating
all M points in YM to check whether it is closest to φ?, we
only check however many are in the leaf.

Our particular random projection tree variant we implement
is as described in Dasgupta and Sinha [2015]. We construct
an initial tree from the first M points by sampling random
vectors r, and setting each split point s to be a uniform
random quantile in [0.25, 0.75] of the projected values at
that node. This tree will have points evenly distributed
among the leaves; however, as we swap out points it may
become less balanced. To deal with this we periodically re-

compute the split points, rebalancing the tree; this operation
is performed sufficiently rarely as to maintain amortized
logarithmic cost. A free parameter in the search tree is the
search tree depth (or equivalently, how many values φ to
keep in each leaf node). In all our later experiments this is
set to target approximately 2 log2M nodes per leaf.

Theoretical results in Dasgupta and Sinha [2015] charac-
terize the loss relative to an exact search; we compare the
exhaustive nearest neighbor search and approximate results
empirically in our particular setting in Section 5.

4 BOUNDS ON SUBSET ERROR

At any point in the algorithm, it is straightforward to use our
current distribution embedding approximations to compute
L̂MMD = ||µ̂n − ν̂nM ||2. It would be nice to characterize
how this estimate compares to the true maximum mean
discrepancy. In this section, we derive bounds for the esti-
mation error which occurs due to using our size M subset
to compute expectations, instead of using the full size N set.
Above and beyond the implicit Monte Carlo error in using
the points in X to approximate expectations with respect to
p(x), our procedure introduces additional error by restrict-
ing to only M of N total points, and using random Fourier
features to approximate the kernel.

The online algorithm we use to sample from a stream is
only possible when we have an explicit feature space repre-
sentation. Following Sutherland and Schneider [2015], we
can use bounds on the error introduced by approximating
the kernel function with random Fourier features to provide
bounds on the estimation error introduced by using only the
subset YM ⊂ XN . Being careful of the difference between
the empirical mean embeddings µN , νM ∈ H, and their
random Fourier feature approximations µ̂N , ν̂M ∈ RD, we
can compare two empirical estimates of the squared MMD,
one using the (intractable) features φ(x), the other using the
random Fourier features φ̂(x):

L2
MMD = ||µN − νM ||2H (26)

L̂2
MMD = ||µ̂N − ν̂M ||22 =

D∑

d=1

(
µ̂Nd − ν̂Md

)2
. (27)

The squared MMD L2
MMD can be decomposed as [Gretton

et al., 2012]

L2
MMD =

1

N2

∑

i,i′
k(xi,xi′) +

1

M2

∑

j,j′
k(yj ,yj′)−

2

NM

∑

i,j

k(xi,yj),

with a matching expansion for L̂2
MMD, and since the ran-

dom Fourier features [Rahimi and Recht, 2007] provide an
unbiased estimate of k(x,x′) as in Equation (9), we have

E
[
L̂2

MMD

]
= L2

MMD. (28)
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Now, directly following Sutherland and Schneider [2015,
section 3.3], we view L̂2

MMD as a function of the random
variables {ωd, bd} and consider how changing any one of
these random variables modifies L̂2

MMD. The random
Fourier feature approximation to the kernel decomposes
into a sum across all D features as

k(x,x′) =
D∑

d=1

Eωd,bd [φ̂d(x)φ̂d(x
′)] (29)

=
2

D

D∑

d=1

Eωd,bd [cos(ω>d x + bd) cos(ω>d x
′ + bd)].

Since cos(·) is bounded by {−1, 1}, modifying either ωd
or bd changes a single term in the sum at the right of Equa-
tion (29) by at most 2, and thus changes the overall ran-
dom feature approximation to the kernel by at most 4/D.
This in turn bounds the change in L̂2

MMD by at most 16/D.
Then from the bounded differences inequality of McDiarmid
[1989] we have

Pr
(
L2
MMD − L̂2

MMD ≥ ε
)
≤ e−Dε

2

128 . (30)

An algebraic rearrangement of Equation (30) can be used
to provide an upper bound in probability for L2

MMD. We
have, with probability at least 1− δ,

L2
MMD − L̂2

MMD ≤
√

128 log(1/δ)

D

which combined with our estimator for L̂2
MMD yields

L2
MMD ≤

√
128 log(1/δ)

D
+

D∑

d=1

(
µ̂Nd − ν̂Md

)2
.

This directly translates into bounds on the error, due to
subsampling, in estimating the average 1

N

∑N
i=1 f(xi) of

any function f ∈ H over the full dataset, since we have

∣∣∣∣∣∣
1

N

N∑

i=1

f(xi)−
1

M

M∑

j=1

f(yj)

∣∣∣∣∣∣

2

=
∣∣〈µN − νM , f〉

∣∣2

≤ ||f ||2H ||µN − νM ||2H
= ||f ||2H L2

MMD.

Thus the worst-case squared error introduced by using the
subsampled points for any f ∈ F can be bounded by the
empirical squared error in the estimated mean embedding
vectors, plus an error term due to the random Fourier feature
approximation. We summarize this result as the following
Theorem.

Theorem 1 Let µ̂N , ν̂M ∈ RD be estimates of the mean
embedding from D random Fourier features, defined on sets

of points XN and YM ⊂ XN . Then, with probability at
least 1− δ,

L2
MMD = sup

f∈F

∣∣∣∣∣∣
1

N

N∑

i=1

f(xi)−
1

M

M∑

j=1

f(yj)

∣∣∣∣∣∣

2

≤
√

128 log(1/δ)

D
+

D∑

d=1

(
µ̂Nd − ν̂Md

)2
.

We note that this result can be combined with existing
bounds from e.g. Song [2008] on ||µN − µ||H to charac-
terize overall error in estimating of expectations from the
points in YM relative to true expected values E[f ] over the
population distribution of {xi}.

5 EXPERIMENTS

We run a variety of empirical tests to quantify the perfor-
mance and characteristics of this algorithm. In addition
to benchmarking against to random subsampling, we also
compare to a benchmark of using a random Fourier fea-
tures implementation of kernel herding [Chen et al., 2010].
The kernel herding algorithm is a method for sequentially
generating M points, which performs a greedy optimiza-
tion on the same approximation to the MMD targeted by
our online algorithm; however, it is not an algorithm for
processing streaming data as it requires the estimate µ̂N as
computed from the full sample set as input, and furthermore
it requires a potentially expensive optimization operation
for generating each new point.

We also confirm experimentally that the approximation error
due to the inexact nearest neighbor search does not signifi-
cantly impact overall performance.

5.1 Mixtures of Gaussians

Our initial test model is a multivariate mixture of Gaussians,
as considered in both Chen et al. [2010] and Huszár and
Duvenaud [2012]. We experiment with downsampling a
set of N = 100, 000 points drawn from a 2-dimensional
mixture of 10 Gaussians to a target set of size M = 100.
We use a squared exponential kernel

k(x,x′) = exp

{
−||x− x′||22

2γ2

}
(31)

where the lengthscale γ is set to the median pointwise dis-
tance between the first M points; this is known as the me-
dian heuristic [Gretton et al., 2012]. We approximate the
basis functions with D = 200 random Fourier features of
the form in Equation (8), where each ω element is drawn
from a normal distribution with zero mean and standard
deviation γ−1.

An example mixture of Gaussians target density and the
selected points are shown in Figure 1, alongside a plot of the
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Figure 1: (Left) The final 100 selected points in the 2d Gaussian mixture, using the approximate nearest neighbor search.
(Right) The empirical MMD estimate between µ̂n and µ̂N , as well as between ν̂nM and µ̂N , as n → N , when selecting
a subset of size M = 100. The red line uses the random projection search tree; the blue line uses a linear scan of all
options to perform an exact nearest-neighbor search. The subset estimates track the all-data MMD µ̂n very closely, despite
subsampling, and even despite the approximate search. Both methods are initialized from the same set of randomly sampled
points. The herding benchmark consists of M points to approximate µ̂N . All estimates are averaged over 10 different
synthetic datasets, drawn from mixtures of Gaussians with different parameters.

convergence of the maximum mean discrepancy estimates
||µ̂N−µ̂n||2 and ||µ̂N−ν̂nM ||2. As we view more data points,
the running estimate µ̂n gradually approaches the full-data
estimate µ̂N . We compare to two implementations of the
subsampling algorithm for selecting Y nM and computing
ν̂nM — one using the approximate nearest neighbor search,
and one using a linear scan for an exact nearest neighbor
search — and see that in both cases the running estimate
based on the subsample very closely tracks the full data
estimate. The overall difference in performance between
the two methods is negligible despite making far fewer
comparisons per iteration of the algorithm.

The herding benchmark consists of the firstM = 100 points
selected by the kernel herding [Chen et al., 2010], target-
ing µ̂N . Theoretical results for herding suggest that the
sample efficiency of the first 100 herded points should ap-
proximately match the first 10,000 random samples.

Figure 2 shows the empirical distribution over the number
of comparisons actually made while searching for ydrop at
each iteration when using the random projection tree for
nearest neighbor search.

In Figure 3 we compare the error in computing expectations
using our subsampled points, testing on the same set of
functions used as a benchmark in Chen et al. [2010]. We
find that the mean squared error on these test functions
closely tracks the error from the full set of points. This is
a remarkably promising result: expectations with respect
to the full data converge at the Monte Carlo rate, and the
subset of M = 100 points continues to perform comparably
even at N = 100, 000, for three of four test functions, and
reliably outperforms both the random sampling and herding

0 20 40 60 80 100
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0.00
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Figure 2: The actual number of comparisons made by the
algorithm for processing each new data point is the same
as the number of items encountered in each leaf of the
random projection search tree; a full scan would require
M = 100 comparisons, while here the median was 14. In
the 2d Gaussian mixture example, we have a tree with depth
3, with an expected 12.5 items in each leaf. Compared to
running a full scan, the tree-search version made the best
overall decision 97.8% of the time.

benchmarks.

5.2 Data summarization

This procedure can also be used to efficiently summarize
high dimensional data, through a small handful of exemplars.
We demonstrate this on 10, 000 digits taken from the MNIST
dataset, reduced to be represented by a subset of size M =
30 in Figure 4. Each element in the MNIST image dataset is
a 28×28 image of a single hand-written numeric digit, with
xi ∈ [0, 1]768. Again, we simply use a squared exponential
kernel, with lengthscale set to the median of the first M
points, and D = 200 random features.
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Figure 3: Error plots for expectations of four test functions: x, x2, x3, and sin(||x||2). Legend is shared across subplots. The
error is root mean squared error (RMSE) across dimensions of the test function, relative to a ground truth value computed
on a separate sample of 2× 107 points. The “random” benchmark is the median RMSE across 100 different random subsets
of size M = 100; the “herding” benchmark is the RMSE from the first 100 herded points, targeting µ̂N . We can also judge
the loss of accuracy in using the approximate nearest neighbor search: there is a qualitative difference only in the sin(||x||2)
example, where there is plateau in convergence for both methods. All estimates are averaged over 10 different synthetic
datasets, drawn from mixtures of Gaussians with different parameters.

Figure 4: We summarize the MNIST digits dataset with a
small number of exemplars. The subsampled set of points
provides good coverage for the different digits, and also
shows variation in style and form within each digit. The
subsampling algorithm was given only the unlabeled digits.

The result summarizes the MNIST digits far better than a
random sample would, and enormously better than other
simple techniques for visualizing high-dimensional data,
such as computing marginal means or quantiles across each
dimension. We see a small number of exemplars from each
of the 10 digits, with a good variety of handwriting styles
expressed.

5.3 Resampling output of an importance sampler

One advantage of this algorithm relative to standard reser-
voir sampling is that it is trivially modified to run on
weighted streaming data, requiring only changing the way
in which the running average µ̂n is computed from Equa-
tion (18) to Equation (19). A promising use of this algorithm
is to resample the output from sampling schemes such as
importance sampling and sequential Monte Carlo methods,
which return large numbers of weighted sets of samples.
We may wish to resample from these weighted samples to
obtain a new unweighted set of particles; such a resampling
step is also used within sequential Monte Carlo as a means
of reducing particle degeneracy [Douc et al., 2005].

As an illustrative example, we run this algorithm on the
output of an importance sampler targeting a simple one-
dimensional mixture distribution, proposing from a broad
Gaussian prior. The results are shown in Figure 5, showing
the incremental progress as the algorithm processes more
points (i.e., as n increases), for a variety of small values of
M . Due to the small number of pointsM being selected, we
can see that as n becomes large, the selected points roughly
approximate the quantiles of the bimodal mixture model.
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Figure 5: Downsampling points from an importance sampler. Selected points shown in red, with separate runs in each
column for M = 2, 3, 5, 8, showing the results after observing each of N = 10, 102, 103, 104, 105. The green dashed lines
split the probability density function of the blue target density into regions of equal probability. As N increases, the selected
points approximate an even weighting across the probability density.

That is, in this example we see empirically that the points
are selected such that they partition the target density p(x)
into regions of equal probability mass.

6 DISCUSSION

Reservoir sampling is a popular algorithm for drawing “man-
ageable” subsets from large data, for both reasons of com-
puter memory limitations, and for human visualization. For
either of these purposes, our reservoir super-sampling algo-
rithm can be used as a drop-in replacement which provides
improved performance when subsampling from any data for
which a kernel function can be defined.

When sampling from a weighted set of points, then the
computational complexity of this algorithm is of the same
order in M and N as the random sampling algorithm of
[Efraimidis and Spirakis, 2006], while providing perfor-
mance in computing expectations which far closer emulates
computing expectations from the full data stream. This
subsampling method, which explicitly use the values of the
different points, could perhaps be used as a replacement for
traditional resampling in sequential Monte Carlo methods,
which only consider the particle weights and not the actually
values at each point. Such an approach may be advantageous
in settings such as considered in Jun and Bouchard-Côté
[2014], where the memory usage for storing the particle set
is the primary bottleneck.

Although the algorithm aims only to minimize the maxi-
mum mean discrepancy, there is evidence from the MNIST
example and the point locations in the importance sampling
reweighting that the selected points also have a promising
use in general situations where one might want to summa-
rize data with a small number of representative points.

As future work, we also hope to investigate the relation-
ship between these selected locations and other methods for
constructing low-discrepancy point sets.
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Abstract

We extend Andersson-Madigan-Perlman chain
graphs by (i) relaxing the semidirected acyclity
constraint so that only directed cycles are forbid-
den, and (ii) allowing up to two edges between
any pair of nodes. We introduce global, and or-
dered local and pairwise Markov properties for
the new models. We show the equivalence of
these properties for strictly positive probability
distributions. We also show that when the ran-
dom variables are continuous, the new models
can be interpreted as systems of structural equa-
tions with correlated errors. This enables us
to adapt Pearl’s do-calculus to them. Finally,
we describe an exact algorithm for learning the
new models from observational and interven-
tional data via answer set programming.

1 INTRODUCTION

Chain graphs (CGs) are graphs with possibly directed and
undirected edges but without semidirected cycles. They
have been extensively studied as a formalism to repre-
sent probabilistic independence models, because they can
model symmetric and asymmetric relationships between
random variables. Moreover, they are much more ex-
pressive than directed acyclic graphs (DAGs) and undi-
rected graphs (UGs) (Sonntag and Peña, 2016). There
are three different interpretations of CGs as independence
models: The Lauritzen-Wermuth-Frydenberg (LWF) in-
terpretation (Lauritzen, 1996), the multivariate regression
(MVR) interpretation (Cox and Wermuth, 1996), and the
Andersson-Madigan-Perlman (AMP) interpretation (An-
dersson et al., 2001). No interpretation subsumes another
(Andersson et al., 2001; Sonntag and Peña, 2015). More-
over, AMP and MVR CGs are coherent with data genera-
tion by block-recursive normal linear regressions (Anders-
son et al., 2001).

Richardson (2003) extends MVR CGs by (i) relaxing the
semidirected acyclity constraint so that only directed cy-
cles are forbidden, and (ii) allowing up to two edges be-
tween any pair of nodes. The resulting models are called
acyclic directed mixed graphs (ADMGs). These are the
models in which Pearl’s do-calculus operates to determine
if the causal effect of an intervention is identifiable from
observed quantities (Pearl, 2009). In this paper, we make
the same two extensions to AMP CGs. We call our ADMGs
alternative as opposed to the ones proposed by Richardson,
which we call original. It is worth mentioning that neither
the original ADMGs nor any other family of mixed graphi-
cal models that we know of (e.g. summary graphs (Cox and
Wermuth, 1996), ancestral graphs (Richardson and Spirtes,
2002), MC graphs (Koster, 2002) or loopless mixed graphs
(Sadeghi and Lauritzen, 2014)) subsume AMP CGs and
hence our alternative ADMGs. To see it, we refer the reader
to the works by Richardson and Spirtes (2002, p. 1025) and
Sadeghi and Lauritzen (2014, Section 4.1). Therefore, our
work complements the existing works.

The rest of the paper is organized as follows. Section 2
introduces some preliminaries. Sections 3 and 4 introduce
global, and ordered local and pairwise Markov properties
for our ADMGs, and prove their equivalence. When the
random variables are continuous, Section 5 offers an intu-
itive interpretation of our ADMGs as systems of structural
equations with correlated errors, so that Pearl’s do-calculus
can easily be adapted to them. Section 6 describes an exact
algorithm for learning our ADMGs from observational and
interventional data via answer set programming (Gelfond,
1988; Niemelä, 1999; Simons et al., 2002). We close the
paper with some discussion in Section 7. Formal proofs of
the claims made in this paper can be found on the supple-
mentary material on our website.

2 PRELIMINARIES

In this section, we introduce some concepts about graphical
models. Unless otherwise stated, all the graphs and proba-
bility distributions in this paper are defined over a finite set
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V . The elements of V are not distinguished from single-
tons. An ADMG G is a graph with possibly directed and
undirected edges but without directed cycles. There may
be up to two edges between any pair of nodes, but in that
case the edges must be different and one of them must be
undirected to avoid directed cycles. Edges between a node
and itself are not allowed. See Figure 1 for two examples
of ADMGs.

Given an ADMG G, we represent with A ( B that
A→ B or A−B (or both) is in G. The parents of X ⊆ V
in G are PaG(X) = {A|A → B is in G with B ∈ X}.
The children of X in G are ChG(X) = {A|A ← B
is in G with B ∈ X}. The neighbours of X in G are
NeG(X) = {A|A − B is in G with B ∈ X}. The an-
cestors of X in G are AnG(X) = {A|A → . . . → B is
in G with B ∈ X or A ∈ X}. The descendants of X
in G are DeG(X) = {A|A ← . . . ← B is in G with
B ∈ X or A ∈ X}. The semidescendants of X in G
are deG(X) = {A|A (. . . (B is in G with B ∈ X
or A ∈ X}. The non-semidescendants of X in G are
NdG(X) = V \ deG(X). The connectivity components
of X in G is CcG(X) = {A|A − . . . − B is in G with
B ∈ X or A ∈ X}. The connectivity components in G
are denoted as Cc(G). A route between a node V1 and a
node Vn on G is a sequence of (not necessarily distinct)
nodes V1, . . . , Vn such that Vi and Vi+1 are adjacent in G
for all 1 ≤ i < n. We do not distinguish between the se-
quences V1, . . . , Vn and Vn, . . . , V1, i.e. they represent the
same route. If the nodes in the route are all distinct, then
the route is called a path. Finally, the subgraph of G in-
duced by X ⊆ V , denoted as GX , is the graph over X that
has all and only the edges in G whose both ends are in X .

Let X , Y , W and Z be disjoint subsets of V . We rep-
resent by X ⊥ pY |Z that X and Y are conditionally in-
dependent given Z in a probability distribution p. Every
probability distribution p satisfies the following four prop-
erties: Symmetry X ⊥ pY |Z ⇒ Y ⊥ pX|Z, decom-
position X ⊥ pY ∪ W |Z ⇒ X ⊥ pY |Z, weak union
X ⊥ pY ∪ W |Z ⇒ X ⊥ pY |Z ∪ W , and contraction
X ⊥ pY |Z ∪ W ∧ X ⊥ pW |Z ⇒ X ⊥ pY ∪ W |Z.
If p is strictly positive, then it also satisfies the intersec-
tion property X ⊥ pY |Z ∪ W ∧ X ⊥ pW |Z ∪ Y ⇒
X ⊥ pY ∪ W |Z. Some (not yet characterized) proba-
bility distributions also satisfy the composition property
X⊥pY |Z ∧X⊥pW |Z ⇒ X⊥pY ∪W |Z.

3 GLOBAL MARKOV PROPERTY

In this section, we introduce four separation criteria for
ADMGs. Moreover, we show that they are all equiva-
lent. A probability distribution is said to satisfy the global
Markov property with respect to an ADMG if every sepa-
ration in the graph can be interpreted as an independence
in the distribution.

A B D A B C D

Figure 1: Examples of ADMGs.

Criterion 1. A node C on a path in an ADMG G is said
to be a collider on the path if A → C (B is a subpath.
Moreover, the path is said to be connecting given Z ⊆ V
when

• every collider on the path is in AnG(Z), and

• every non-collider C on the path is outside Z unless
A− C −B is a subpath and PaG(C) \ Z 6= ∅.

Let X , Y and Z denote three disjoint subsets of V . When
there is no path in G connecting a node in X and a node in
Y given Z, we say that X is separated from Y given Z in
G and denote it as X⊥GY |Z.

Criterion 2. A node C on a route in an ADMG G is said
to be a collider on the route if A → C (B is a subroute.
Note that maybe A = B. Moreover, the route is said to be
connecting given Z ⊆ V when

• every collider on the route is in Z, and

• every non-collider C on the route is outside Z.

Let X , Y and Z denote three disjoint subsets of V . When
there is no route in G connecting a node in X and a node
in Y given Z, we say that X is separated from Y given Z
in G and denote it as X⊥GY |Z.

Criterion 3. Let Gu denote the UG over V that con-
tains all and only the undirected edges in G. The ex-
tended subgraph G[X] with X ⊆ V is defined as G[X] =
GAnG(X) ∪ (Gu)CcG(AnG(X)). Two nodes A and B in G
are said to be collider connected if there is a path between
them such that every non-endpoint node is a collider, i.e.
A→ C (B orA→ C−D ← B. Such a path is called a
collider path. Note that a single edge forms a collider path.
The augmented graphGa is the UG over V such thatA−B
is in Ga if and only if A and B are collider connected in
G. The edge A − B is called augmented if it is in Ga but
A and B are not adjacent in G. A path in Ga is said to be
connecting given Z ⊆ V if no node on the path is in Z.
Let X , Y and Z denote three disjoint subsets of V . When
there is no path in G[X ∪ Y ∪Z]a connecting a node in X
and a node in Y given Z, we say that X is separated from
Y given Z in G and denote it as X⊥GY |Z.

Criterion 4. Given an UG H over V and X ⊆ V , we
define the marginal graph HX as the UG over X such
that A − B is in HX if and only if A − B is in H or
A−V1− . . .−Vn−B is H with V1, . . . , Vn /∈ X . We de-
fine the marginal extended subgraph G[X]m as G[X]m =
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GAnG(X) ∪ ((Gu)CcG(AnG(X)))
AnG(X). Let X , Y and Z

denote three disjoint subsets of V . When there is no path
in (G[X ∪ Y ∪ Z]m)a connecting a node in X and a node
in Y given Z, we say that X is separated from Y given Z
in G and denote it as X⊥GY |Z.

The first three separation criteria introduced above coincide
with those introduced by Andersson et al. (2001) and Levitz
et al. (2001) for AMP CGs. The equivalence for AMP CGs
of these three separation criteria has been proven by Levitz
et al. (2001, Theorem 4.1). The following theorems prove
the equivalence for ADMGs of the four separation criteria
introduced above.

Theorem 1 There is a path in an ADMG G connecting a
node in X and a node in Y given Z if and only if there is a
path in G[X ∪Y ∪Z]a connecting a node in X and a node
in Y given Z.

Theorem 2 There is a path in an ADMG G connecting A
andB givenZ if and only if there is a route inG connecting
A and B given Z.

Theorem 3 Given an ADMG G, there is a path in G[X ∪
Y ∪Z]a connecting a node inX and a node in Y given Z if
and only if there is a path in (G[X∪Y ∪Z]m)a connecting
a node in X and a node in Y given Z.

Unlike in AMP CGs, two non-adjacent nodes in an ADMG
are not necessarily separated. For example, A ⊥ GD|Z
does not hold for any Z in the ADMGs in Figure 1. This
drawback is shared by the original ADMGs (Evans and
Richardson, 2013, p. 752), summary graphs and MC
graphs (Richardson and Spirtes, 2002, p. 1023), and an-
cestral graphs (Richardson and Spirtes, 2002, Section 3.7).
For ancestral graphs, the problem can be solved by adding
edges to the graph without altering the separations repre-
sented until every missing edge corresponds to a separation
(Richardson and Spirtes, 2002, Section 5.1). A similar so-
lution does not exist for our ADMGs (we omit the details).

4 ORDERED LOCAL AND PAIRWISE
MARKOV PROPERTIES

In this section, we introduce ordered local and pairwise
Markov properties for ADMGs. Given an ADMG G, the
directed acyclity ofG implies that we can specify a total or-
dering (≺) of the nodes of G such that A ≺ B only if B /∈
AnG(A). Such an ordering is said to be consistent with G.
Let the predecessors of A with respect to ≺ be defined as
PreG(A,≺) = {B|B ≺ A or B = A}. Given S ⊆ V , we
define the Markov blanket of B ∈ S with respect to G[S]
asMbG[S](B) = ChG[S](B)∪NeG[S](B∪ChG[S](B))∪
PaG[S](B ∪ChG[S](B) ∪NeG[S](B ∪ChG[S](B))). We
say that a probability distribution p satisfies the ordered lo-
cal Markov property with respect to G and ≺ if for any

A ∈ V and S ⊆ PreG(A,≺) such that A ∈ S

B⊥pS \ (B ∪MbG[S](B))|MbG[S](B)

for all B ∈ S.

Theorem 4 Given a probability distribution p satisfying
the intersection property, p satisfies the global Markov
property with respect to an ADMG if and only if it satis-
fies the ordered local Markov property with respect to the
ADMG and a consistent ordering of its nodes.

Similarly, we say that a probability distribution p satisfies
the ordered pairwise Markov property with respect to G
and ≺ if for any A ∈ V and S ⊆ PreG(A,≺) such that
A ∈ S

B⊥pC|V (G[S]) \ (B ∪ C)

for all nodes B,C ∈ S that are not adjacent in G[S]a, and
where V (G[S]) denotes the nodes in G[S].

Theorem 5 Given a probability distribution p satisfying
the intersection property, p satisfies the global Markov
property with respect to an ADMG if and only if it satis-
fies the ordered pairwise Markov property with respect to
the ADMG and a consistent ordering of its nodes.

For each A ∈ V and S ⊆ PreG(A,≺) such that A ∈
S, the ordered local Markov property specifies an inde-
pendence for each B ∈ S. The number of indepen-
dences to specify can be reduced by noting that G[S] =
G[AnG(S)] and, thus, we do not need to consider every
set S ⊆ PreG(A,≺) but only those that are ancestral,
i.e. those such that S = AnG(S). The number of in-
dependences to specify can be further reduced by consid-
ering only maximal ancestral sets, i.e. those sets S such
that MbG[S](B) ⊂ MbG[T ](B) for every ancestral set T
such that S ⊂ T ⊆ PreG(A,≺). The independences for
the non-maximal ancestral sets follow from the indepen-
dences for the maximal ancestral sets by decomposition. A
characterization of the maximal ancestral sets is possible
but notationally cumbersome (we omit the details). All in
all, for each node and maximal ancestral set, the ordered
local Markov property specifies an independence for each
node in the set. This number is greater than for the original
ADMGs, where a single independence is specified for each
node and maximal ancestral set (Richardson, 2003, Section
3.1). Even fewer independences are needed for the original
ADMGs when interpreted as linear causal models (Kang
and Tian, 2009, Section 4). All in all, our ordered local
Markov property serves its purpose, namely to identify a
subset of the independences in the global Markov property
that implies the rest.

Note that Andersson et al. (2001, Theorem 3) describe lo-
cal and pairwise Markov properties for AMP CGs that are
equivalent to the global one under the assumption of the
intersection and composition properties. Our ordered local
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and pairwise Markov properties above only require assum-
ing the intersection property. Note that this assumption is
also needed to prove similar results for much simpler mod-
els such as UGs (Lauritzen, 1996, Theorem 3.7). For AMP
CGs, however, we can do better than just using the ordered
local and pairwise Markov properties for ADMGs above.
Specifically, we introduce in the next section neater local
and pairwise Markov properties for AMP CGs under the
intersection property assumption. Later on, we will also
use them to prove some results for ADMGs.

4.1 LOCAL AND PAIRWISE MARKOV
PROPERTIES FOR AMP CGS

Andersson et al. (2001, Theorem 2) prove that a probabil-
ity distribution p satisfies the global Markov property with
respect to an AMP CGG if and only if it satisfies the block-
recursive Markov property which requires that the follow-
ing three properties hold for all C ∈ Cc(G):

• C1: C⊥pNdG(C) \CcG(PaG(C))|CcG(PaG(C)).

• C2: p(C|CcG(PaG(C))) satisfies the global Markov
property with respect to GC .

• C3∗: D⊥pCcG(PaG(C))\PaG(D)|PaG(D) for all
D ⊆ C.

We simplify the block-recursive Markov property as fol-
lows.

Theorem 6 C1, C2 and C3∗ hold if and only if the follow-
ing two properties hold:

• C1∗: D⊥pNdG(D) \PaG(D)|PaG(D) for all D ⊆
C.

• C2∗: p(C|PaG(C)) satisfies the global Markov prop-
erty with respect to GC .

Andersson et al. (2001, Theorem 3) also prove that a prob-
ability distribution p satisfying the intersection and compo-
sition properties satisfies the global Markov property with
respect to an AMP CG G if and only if it satisfies the lo-
cal Markov property which requires that the following two
properties hold for all C ∈ Cc(G):

• L1: A⊥pC \ (A∪NeG(A))|NdG(C)∪NeG(A) for
all A ∈ C.

• L2: A⊥pNdG(C)\PaG(A)|PaG(A) for all A ∈ C.

We introduce below a local Markov property that is equiva-
lent to the global one under the assumption of the intersec-
tion property only.

Theorem 7 A probability distribution p satisfying the in-
tersection property satisfies the global Markov property
with respect to an AMP CG G if and only if the following
two properties hold for all C ∈ Cc(G):

• L1: A⊥pC \ (A∪NeG(A))|NdG(C)∪NeG(A) for
all A ∈ C.

• L2∗: A⊥pNdG(C) \ PaG(A ∪ S)|S ∪ PaG(A ∪ S)
for all A ∈ C and S ⊆ C \A.

Finally, Andersson et al. (2001, Theorem 3) also prove that
a probability distribution p satisfying the intersection and
composition properties satisfies the global Markov prop-
erty with respect to an AMP CG G if and only if it satisfies
the pairwise Markov property which requires that the fol-
lowing two properties hold for all C ∈ Cc(G):

• P1: A⊥ pB|NdG(C) ∪ C \ (A ∪ B) for all A ∈ C
and B ∈ C \ (A ∪NeG(A)).

• P2: A ⊥ pB|NdG(C) \ B for all A ∈ C and B ∈
NdG(C) \ PaG(A).

We introduce below a pairwise Markov property that is
equivalent to the global one under the assumption of the
intersection property only.

Theorem 8 A probability distribution p satisfying the in-
tersection property satisfies the global Markov property
with respect to an AMP CG G if and only if the following
two properties hold for all C ∈ Cc(G):

• P1: A⊥ pB|NdG(C) ∪ C \ (A ∪ B) for all A ∈ C
and B ∈ C \ (A ∪NeG(A)).

• P2∗: A⊥ pB|S ∪ NdG(C) \ B for all A ∈ C, S ⊆
C \A and B ∈ NdG(C) \ PaG(A ∪ S).

5 CAUSAL INTERPRETATION

Let us assume that V is normally distributed. In this sec-
tion, we show that an ADMGG can be interpreted as a sys-
tem of structural equations with correlated errors. Specif-
ically, the system includes an equation for each A ∈ V ,
which is of the form A = βA · PaG(A) + εA where εA
denotes the error term. The error terms are represented im-
plicitly in G. They can be represented explicitly by magni-
fying G into the ADMG G′ as follows:

1 Set G′ = G
2 For each node A in G
3 Add the node εA and the edge εA → A to G′

4 For each edge A−B in G
5 Replace A−B with the edge εA − εB in G′
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Figure 2: Example of the magnification of an ADMG.

The magnification above basically consists in adding the
error nodes εA to G and connect them appropriately. Fig-
ure 2 shows an example. Note that every node A ∈ V
is determined by PaG′(A) and that εA is determined by
A ∪ PaG′(A) \ εA. Let ε denote all the error nodes in
G′. Formally, we say that A ∈ V ∪ ε is determined by
Z ⊆ V ∪ ε when A ∈ Z or A is a function of Z. We
use Dt(Z) to denote all the nodes that are determined by
Z. From the point of view of the separations, that a node
outside the conditioning set of a separation is determined
by the conditioning set has the same effect as if the node
were actually in the conditioning set. Bearing this in mind,
it is not difficult to see that, as desired, G and G′ repre-
sent the same separations over V . The following theorem
formalizes this result.

Theorem 9 Let X , Y and Z denote three disjoint subsets
of V . Then, X⊥GY |Z if and only if X⊥G′Y |Z.

Finally, let ε ∼ N (0,Λ) such that (Λ−1)εA,εB = 0 if εA −
εB is not in G′. Then, G can be interpreted as a system of
structural equations with correlated errors as follows. For
any A ∈ V

A =
∑

B∈PaG(A)

βABB + εA (1)

and for any other B ∈ V

covariance(εA, εB) = ΛεA,εB . (2)

The following two theorems confirm that the interpretation
above works as intended. A similar result to the second the-
orem exists for the original ADMGs (Koster, 1999, Theo-
rem 1).

Theorem 10 Every probability distribution p(V ) specified
by Equations (1) and (2) is Gaussian.

Theorem 11 Every probability distribution p(V ) specified
by Equations (1) and (2) satisfies the global Markov prop-
erty with respect to G.

The equations above specify each node as a linear function
of its parents with additive normal noise. The equations

can be generalized to nonlinear or nonparametric functions
as long as the noise remains additive normal. That is, A =
f(PaG(A)) + εA for all A ∈ V , with ε ∼ N (0,Λ) such
that (Λ−1)εA,εB = 0 if εA − εB is not in G′. That the
noise is additive normal ensures that εA is determined by
A∪PaG′(A)\εA, which is needed for Theorem 9 to remain
valid which, in turn, is needed for Theorem 11 to remain
valid.

A less formal but more intuitive alternative interpretation
of ADMGs is as follows. We can interpret the parents of
each node in an ADMG as its observed causes. Its unob-
served causes are grouped into an error node that is repre-
sented implicitly in the ADMG. We can interpret the undi-
rected edges in the ADMG as the correlation relationships
between the different error nodes. The causal structure is
constrained to be a DAG, but the correlation structure can
be any UG. This causal interpretation of our ADMGs par-
allels that of the original ADMGs (Pearl, 2009). There are
however two main differences. First, the noise in the origi-
nal ADMGs is not necessarily additive normal. Second, the
correlation structure of the error nodes in the original AD-
MGs is represented by a covariance graph, i.e. a graph with
only bidirected edges (Pearl and Wermuth, 1993). There-
fore, whereas a missing edge between two error nodes in
the original ADMGs represents marginal independence, in
our ADMGs it represents conditional independence given
the rest of the error nodes. This means that the original
and our ADMGs represent complementary causal models.
Consequently, there are scenarios where the identification
of the causal effect of an intervention is not possible with
the original ADMGs but is possible with ours, and vice
versa. We elaborate on this in the next section.

5.1 do-CALCULUS

We start by adapting Pearl’s do-calculus, which operates
on the original ADMGs, to our ADMGs. The original do-
calculus consists of the following three rules, whose re-
peated application permits in some cases to identify (i.e.
compute) the causal effect of an intervention from observed
quantities:

• Rule 1 (insertion/deletion of observations):
p(Y |do(X), Z ∪ W ) = p(Y |do(X),W ) if Y ⊥
G′′Z|X ∪W ||X .

• Rule 2 (action/observation exchange):
p(Y |do(X), do(Z),W ) = p(Y |do(X), Z ∪ W ) if
Y ⊥G′′FZ |X ∪W ∪ Z||X .

• Rule 3 (insertion/deletion of actions):
p(Y |do(X), do(Z),W ) = p(Y |do(X),W ) if Y ⊥
G′′FZ |X ∪W ||X .

where X , Y , Z and W are disjoint subsets of V , G′′ is the
original ADMGG augmented with an intervention random
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variable FA and an edge FA → A for every A ∈ V , and
“||X” denotes an intervention on X in G′′, i.e. any edge
with an arrowhead into any node in X is removed. See
Pearl (1995, p. 686) for further details and the proof that
the rules are sound. Fortunately, the rules also apply to
our ADMGs by simply redefining “||X” appropriately. The
proof that the rules are still sound is essentially the same as
before. Specifically, “||X” should now be implemented as
follows:

1 Delete from G′′ all the edges A→ B with B ∈ X
2 For each path A− V1 − . . .− Vn −B in G′′ with

A,B /∈ X and V1, . . . , Vn ∈ X
3 Add the edge A−B to G′′

4 Delete from G′′ all the edges A−B with B ∈ X

Line 1 is shared with an intervention in an original ADMG.
Lines 2-4 are best understood in terms of the magnified
ADMG G′: They correspond to marginalizing the error
nodes associated to the nodes in X out of G′ε, the UG that
represents the correlation structure of the error nodes. In
other words, they replace G′ε with (G′)ε\εX , the marginal
graph of G′ε over ε \ εX . This makes sense since εX is
no longer associated to X due to the intervention and, thus,
we may want to marginalize it out because it is unobserved.
This is exactly what lines 2-4 imply. To see it, note that the
ADMG after the intervention and the magnified ADMG af-
ter the intervention represent the same separations over V ,
by Theorem 9.

Now, we show that the original and our ADMGs allow for
complementary causal reasoning. Specifically, we show
an example where our ADMGs allow for the identification
of the causal effect of an intervention whereas the origi-
nal ADMGs do not, and vice versa. Consider the DAG in
Figure 3, which represents the causal relationships among
all the random variables in the domain at hand.1 However,
only A, B and C are observed. Moreover, US represents
selection bias. Although other definitions may exist, we say
that selection bias is present if two unobserved causes have
a common effect that is omitted from the study but influ-
ences the selection of the samples in the study (Pearl, 2009,
p. 163). Therefore, the corresponding unobserved causes
are correlated in every sample selected. Note that this def-
inition excludes the possibility of an intervention affecting
the selection because, in a causal model, unobserved causes
do not have observed causes. Note also that our goal is not
the identification of the causal effect of an intervention in
the whole population but in the subpopulation that satisfies
the selection bias criterion.2 For causal effect identification

1For instance, the DAG may correspond to the following fic-
titious domain: A = Smoking, B = Lung cancer, C = Drinking,
UA = Parents’ smoking, UB = Parents’ lung cancer, UC = Par-
ents’ drinking, U = Parents’ genotype that causes smoking and
drinking, US = Parents’ hospitalization.

2For instance, in the fictitious domain in the previous footnote,

DAG Our ADMG Original ADMG

A B

CUA UB

UCU US

A B

C

A B

C

Figure 3: Example of a case where p(B|do(A)) is identifi-
able with our ADMG but not with the original one.

in the whole population, see Bareinboim and Tian (2015).

The ADMGs in Figure 3 represent the causal model repre-
sented by the DAG when only the observed random vari-
ables are modeled. According to our interpretation of AD-
MGs above, our ADMG is derived from the DAG by keep-
ing the directed edges between observed random variables,
and adding an undirected edge between two observed ran-
dom variables if and only if their unobserved causes are
not separated in the DAG given the unobserved causes of
the rest of the observed random variables. In other words,
UA ⊥ UB |UC holds in the DAG but UA ⊥ UC |UB and
UB⊥UC |UA do not and, thus, the edges A−C and B−C
are added to the ADMG butA−B is not. Deriving the orig-
inal ADMG is less straightforward. The bidirected edges
in an original ADMG represent potential marginal depen-
dence due to a common unobserved cause, also known as
confounding. Thus, the original ADMGs are not meant to
model selection bias. The best we can do is then to use bidi-
rected edges to represent potential marginal dependences
regardless of their origin. This implies that we can derive
the original ADMG from the DAG by keeping the directed
edges between observed random variables, and adding a
bidirected edge between two observed random variables if
and only if their unobserved causes are not separated in the
DAG given the empty set. Clearly, p(B|do(A)) is not iden-
tifiable with the original ADMG but is identifiable with our
ADMG (Pearl, 2009, p. 94). Specifically,

p(B|do(A)) =
∑

C

p(B|do(A), C)p(C|do(A))

=
∑

C

p(B|do(A), C)p(C) =
∑

C

p(B|A,C)p(C)

where the first equality is due to marginalization, the sec-
ond due to Rule 3, and the third due to Rule 2.

The original ADMGs assume that confounding is always
the source of correlation between unobserved causes. In
the example above, we consider selection bias as an addi-
tional source. However, this is not the only possibility. For
instance, UB and UC may be tied by a physical law of the

we are interested in the causal effect that smoking may have on
the development of lung cancer for the patients with hospitalized
parents.
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form f(UB , UC) = constant devoid of causal meaning,
much like Boyle’s law relates the pressure and volume of
a gas as pressure · volume = constant if the tempera-
ture and amount of gas remain unchanged within a closed
system (Dawid, 2010, p. 77). In such a case, the discus-
sion above still applies and our ADMG allows for causal
effect identification but the original does not. Note that
even if we assume that confounding is the only source of
correlation between unobserved causes, our ADMGs may
allow for causal effect identification while the original may
not, e.g. replace the subgraph UC → US ← UB with
UC → UB in Figure 3. For an example where the original
ADMGs allow for causal effect identification whereas ours
do not, simply replace the subgraph UC → US ← UB in
Figure 3 with UC ←W → UB where W is an unobserved
random variable. Then, our ADMG will contain the same
edges as before plus the edge A − B, making the causal
effect non-identifiable. The original ADMG will contain
the same edges as before with the exception of the edge
A↔ B, making the causal effect identifiable.

In summary, the bidirected edges of the original ADMGs
have a clear semantics: They represent potential marginal
dependence due to a common unobserved cause. This
means that we have to know the causal relationships involv-
ing the unobserved random variables to derive the ADMG.
Or at least, we have to know that there is no selection
bias or tying laws so that marginal dependence can be
attributed to confounding due to Reichenbach’s principle
(Pearl, 2009, p. 30). This knowledge may not be avail-
able in some cases. Moreover, the original ADMGs are not
meant to represent selection bias or tying laws. To solve
these two problems, we may be willing to use the bidi-
rected edges to represent potential marginal dependences
regardless of their origin. Our ADMGs are somehow dual
to the original ADMGs, since the undirected edges rep-
resent potential saturated conditional dependence between
unobserved causes. This implies that in some cases, such
as in the example above, our ADMGs may allow for causal
effect identification whereas the original may not.

6 LEARNING VIA ASP

In this section, we introduce an exact algorithm for learning
ADMGs from observations and interventions via answer
set programming (ASP), which is a declarative constraint
satisfaction paradigm that is well-suited for solving com-
putationally hard combinatorial problems (Gelfond, 1988;
Niemelä, 1999; Simons et al., 2002). A similar approach
has been proposed before for learning LWF CGs from ob-
servations (Sonntag et al., 2015). ASP represents con-
straints in terms of first-order logical rules. Therefore,
when using ASP, the first task is to model the problem at
hand in terms of rules so that the set of solutions implicitly
represented by the rules corresponds to the solutions of the
original problem. One or multiple solutions to the origi-

nal problem can then be obtained by invoking an off-the-
shelf ASP solver on the constraint declaration. Each rule in
the constraint declaration is of the form head :- body.
The head contains an atom, i.e. a fact. The body may con-
tain several literals, i.e. negated and non-negated atoms.
Intuitively, the rule is a justification to derive the head if
the body is true. The body is true if its non-negated atoms
can be derived, and its negated atoms cannot. A rule with
only the head is an atom. A rule without the head is a
hard-constraint, meaning that satisfying the body results in
a contradiction. Soft-constraints are encoded as rules of the
form :˜ body. [W], meaning that satisfying the body
results in a penalty of W units. The ASP solver returns the
solutions that meet the hard-constraints and minimize the
total penalty due to the soft-constraints. In this work, we
use the ASP solver clingo (Gebser et al., 2011), which
is based on state-of-the-art Boolean satisfiability solving
techniques (Biere et al., 2009).

Figure 4 shows the ASP encoding of our learning al-
gorithm. The predicate node(X) in rule 1 represents
that X is a node. The predicates line(X,Y,I) and
arrow(X,Y,I) represent that there is an undirected and
directed edge from X to Y after having intervened on the
node I . The observational regime corresponds to I = 0.
The rules 2-3 encode a non-deterministic guess of the edges
for the observational regime, which means that the ASP
solver with implicitly consider all possible graphs during
the search, hence the exactness of the search. The edges
under the observational regime are used in the rules 4-6
to define the edges in the graph after having intervened
on I , following the description in Section 5.1. There-
fore, the algorithm assumes continuous random variables
and additive normal noise when the input contains inter-
ventions. It makes no assumption though when the input
consists of just observations. The rules 7-8 enforce the
fact that undirected edges are symmetric and that there is
at most one directed edge between two nodes. The predi-
cate ancestor(X,Y) represents that X is an ancestor of
Y . The rules 9-11 enforce that the graph has no directed
cycles. The predicates in the rules 12-13 represent whether
a node X is or is not in a set of nodes C. The rules 14-25
encode the separation criterion 2 in Section 3. The predi-
cate con(X,Y,C,I) in rules 26-29 represents that there
is a connecting route between X and Y given C after hav-
ing intervened on I . The rule 30 enforces that each depen-
dence in the input must correspond to a connecting route.
The rule 31 represents that each independence in the input
that is not represented implies a penalty of W units. The
rules 32-33 represent a penalty of 1 unit per edge. Other
penalty rules can be added similarly.

Figure 6 shows the ASP encoding of all the
(in)dependences in the probability distribution at hand,
e.g. as determined by some available data. Specif-
ically, the predicate nodes(3) represents that there
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% input predicates
% nodes(N): N is the number of nodes
% set(X): X is the index of a set of nodes
% dep(X,Y,C,I,W) (resp. indep(X,Y,C,I,W)): the nodes X and Y are dependent (resp.
% independent) given the set of nodes C
% after having intervened on the node I

% nodes
node(X) :- nodes(N), X=1..N. % rule 1

% edges
{ line(X,Y,0) } :- node(X), node(Y), X != Y. % 2
{ arrow(X,Y,0) } :- node(X), node(Y), X != Y. % 3
line(X,Y,I) :- line(X,Y,0), node(I), X != I, Y != I, I > 0. % 4
line(X,Y,I) :- line(X,I,0), line(I,Y,0), node(I), X != Y, I > 0.
arrow(X,Y,I) :- arrow(X,Y,0), node(I), Y != I, I > 0. % 6
line(X,Y,I) :- line(Y,X,I). % 7
:- arrow(X,Y,I), arrow(Y,X,I). % 8

% directed acyclity
ancestor(X,Y) :- arrow(X,Y,0). % 9
ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).
:- ancestor(X,Y), arrow(Y,X,0). % 11

% set membership
inside_set(X,C) :- node(X), set(C), 2**(X-1) & C != 0. % 12
outside_set(X,C) :- node(X), set(C), 2**(X-1) & C = 0. % 13

% end_line/head/tail(X,Y,C,I) means that there is a connecting route
% from X to Y given C that ends with a line/arrowhead/arrowtail

% single edge route
end_line(X,Y,C,I) :- line(X,Y,I), outside_set(X,C). % 14
end_head(X,Y,C,I) :- arrow(X,Y,I), outside_set(X,C).
end_tail(X,Y,C,I) :- arrow(Y,X,I), outside_set(X,C).

% connection through non-collider
end_line(X,Y,C,I) :- end_line(X,Z,C,I), line(Z,Y,I), outside_set(Z,C).
end_line(X,Y,C,I) :- end_tail(X,Z,C,I), line(Z,Y,I), outside_set(Z,C).
end_head(X,Y,C,I) :- end_line(X,Z,C,I), arrow(Z,Y,I), outside_set(Z,C).
end_head(X,Y,C,I) :- end_head(X,Z,C,I), arrow(Z,Y,I), outside_set(Z,C).
end_head(X,Y,C,I) :- end_tail(X,Z,C,I), arrow(Z,Y,I), outside_set(Z,C).
end_tail(X,Y,C,I) :- end_tail(X,Z,C,I), arrow(Y,Z,I), outside_set(Z,C).

% connection through collider
end_line(X,Y,C,I) :- end_head(X,Z,C,I), line(Z,Y,I), inside_set(Z,C).
end_tail(X,Y,C,I) :- end_line(X,Z,C,I), arrow(Y,Z,I), inside_set(Z,C).
end_tail(X,Y,C,I) :- end_head(X,Z,C,I), arrow(Y,Z,I), inside_set(Z,C). % 25

% derived non-separations
con(X,Y,C,I) :- end_line(X,Y,C,I), X != Y, outside_set(Y,C). % 26
con(X,Y,C,I) :- end_head(X,Y,C,I), X != Y, outside_set(Y,C).
con(X,Y,C,I) :- end_tail(X,Y,C,I), X != Y, outside_set(Y,C).
con(X,Y,C,I) :- con(Y,X,C,I). % 29

% satisfy all dependences
:- dep(X,Y,C,I,W), not con(X,Y,C,I). % 30

% maximize the number of satisfied independences
:˜ indep(X,Y,C,I,W), con(X,Y,C,I). [W,X,Y,C,I] % 31

% minimize the number of lines/arrows
:˜ line(X,Y,0), X < Y. [1,X,Y,1] % 32
:˜ arrow(X,Y,0). [1,X,Y,2] % 33

% show results
#show. #show line(X,Y) : line(X,Y,0), X < Y. #show arrow(X,Y) : arrow(X,Y,0).

Figure 4: ASP encoding of the learning algorithm.584



{ biarrow(X,Y,0) } :- node(X), node(Y), X != Y.
:- biarrow(X,Y,0), line(Z,W,0).
biarrow(X,Y,I) :- biarrow(X,Y,0), node(I), X != I, Y != I, I > 0.
biarrow(X,Y,I) :- biarrow(Y,X,I).

end_head(X,Y,C,I) :- biarrow(X,Y,I), outside_set(X,C).
end_head(X,Y,C,I) :- end_tail(X,Z,C,I), biarrow(Z,Y,I), outside_set(Z,C).
end_head(X,Y,C,I) :- end_head(X,Z,C,I), biarrow(Z,Y,I), inside_set(Z,C).

:˜ biarrow(X,Y,0), X < Y. [1,X,Y,3]

#show biarrow(X,Y) : biarrow(X,Y,0), X < Y.

Figure 5: Additional ASP encoding for learning original ADMGs, in addition to ours.

nodes(3). % three nodes
set(0..7). % all subsets of three nodes

% observations
dep(1,2,0,0,1).
dep(1,2,4,0,1).
dep(2,3,0,0,1).
dep(2,3,1,0,1).
dep(1,3,0,0,1).
dep(1,3,2,0,1).

% interventions on the node 3
dep(1,2,4,0,3,1).
indep(2,3,0,3,1).
indep(2,3,1,3,1).
indep(1,3,0,3,1).
indep(1,3,2,3,1).

Figure 6: ASP encoding of the (in)dependences in the do-
main.

are three nodes in the domain at hand, and the pred-
icate set(0..7) represents that there are eight sets
of nodes, indexed from 0 (empty set) to 7 (full set).
The predicate indep(X,Y,C,I,W) (respectively
dep(X,Y,C,I,W)) represents that the nodes X and Y
are conditionally independent (respectively dependent)
given the set index C after having intervened on the node
I . Observations correspond to I = 0. The penalty for
failing to represent an (in)dependence is W . The penalty
for failing to represent a dependence is actually superfluous
in our algorithm since, recall, rule 30 in Figure 4 enforces
that all the dependences in the input are represented. Note
also that it suffices to specify all the (in)dependences
between pair of nodes, because these identify uniquely the
rest of the independences in the probability distribution
(Studený, 2005, Lemma 2.2). Note also that we do not
assume that the probability distribution at hand is faithful
to some ADMG or satisfies the composition property, as it
is the case in most heuristic learning algorithms.

By calling the ASP solver with the encodings of the
learning algorithm and the (in)dependences in the do-
main, the solver will essentially perform an exhaustive
search over the space of graphs, and will output the

graphs with the smallest penalty. Specifically, when
only the observations are used (i.e. the last five lines of
Figure 6 are removed), the learning algorithm finds 37
optimal models. Among them, we have UGs such as
line(1,2) line(1,3) line(2,3), DAGs such
as arrow(3,1) arrow(1,2) arrow(3,2), AMP
CGs such as line(1,2) arrow(3,1) arrow(3,2),
and ADMGs such as line(1,2) line(2,3)
arrow(1,2) or line(1,2) line(1,3)
arrow(2,3). When all the observations and inter-
ventions available are used, the learning algorithm finds 18
optimal models. These are the models out the 37 models
found before that have no directed edge coming out of the
node 3. This is the expected result given the last four lines
in Figure 6. Note that the output still includes the ADMGs
mentioned before.

Finally, the ASP code can easily be extended as
shown in Figure 5 to learn not only our ADMGs
but also original ADMGs. Note that the second
line forbids graphs with both undirected and bidi-
rected edges. This results in 34 optimal models:
The 18 previously found plus 16 original ADMGs,
e.g. biarrow(1,2) biarrow(1,3) arrow(1,2)
or biarrow(1,2) biarrow(1,3) arrow(2,3).

7 DISCUSSION

We have introduced ADMGs as an extension of AMP CGs.
We have presented global, and ordered local and pairwise
Markov properties for the new models. We have also shown
that when the random variables are continuous, the new
models can be interpreted as systems of structural equa-
tions with correlated errors. This has enabled us to adapt
Pearl’s do-calculus to them, and show that our models com-
plement those used in Pearl’s do-calculus, as there are cases
where the identification of the causal effect of an interven-
tion is not possible with the latter but is possible with the
former, and vice versa. Finally, we have described an exact
algorithm for learning the new models from observations
and interventions. We plan to unify the original and our
ADMGs to allow directed, undirected and bidirected edges.
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Abstract

Wagering mechanisms allow decision makers to
inexpensively collect forecasts from groups of
experts who reveal their information via bets
with one another. Such mechanisms naturally
induce a game in which strategic considerations
come into play. What happens in the game de-
pends on the reasoning power of the experts. At
one extreme, if experts are fully rational, no-trade
theorems imply no participation. At the other ex-
treme, if experts ignore strategic considerations,
even the least informed will wager as if his be-
liefs are correct. Economists have analyzed the
former case and decision theorists the latter, but
both are arguably unrealistic. In this paper, we
adopt an intermediate model of bounded rational-
ity in wagering mechanisms based on level-k rea-
soning. Under this model, overconfidence allows
some participation to be sustained, but experts
who realize they are at a relative disadvantage do
bow out. We derive conditions on the particular
wagering mechanism used under which partici-
pation is unbiased, and show that unbiasedness
always implies truthful reports. We show that if
participation is unbiased, then participation rates
unavoidably fall as players’ rationality increases,
vanishing for large k. Finally, we zoom in on one
particular information structure to give a com-
plete characterization specifying the conditions
under which mechanisms are unbiased and show
how to maximize participation rates among all
unbiased mechanisms.

1 INTRODUCTION

A wagering mechanism is an inexpensive tool to elicit fore-
casts from a group. Rather than paying for the information
directly, a decision maker can let members of the group
wager with each other and, in the process, capture their be-

liefs. In the ideal case, everyone with information has in-
centive to reveal their true subjective forecasts without bias
at little or no cost to the decision maker.

Kilgour and Gerchak (2004) proposed one such wagering
mechanism, called a shared scoring rule. Theoretically,
this mechanism is individually rational (players prefer par-
ticipating over not participating), truthful, and budget bal-
anced, meaning the decision maker can collect honest, ac-
curate forecasts from every member of the group and pay
nothing. However, individual rationality and truthfulness
rely on the key assumption that players have immutable be-
liefs (Lambert et al., 2008; Chun and Shachter, 2011). That
is, players believe what they believe and do not update their
beliefs even when matched against opponents. They are
oblivious of the fact that they are playing against reasoning
agents in a zero-sum game. They employ what might be
termed level-0 reasoning.

Immutable beliefs yield an inherent contradiction. The sum
of players’ private expected profits is positive: everyone
who agrees to play expects to gain. Yet the true sum of
their profits is zero. Everyone therefore knows that at least
one player must be overly optimistic. The immutable be-
liefs assumption may be defensible for a one-shot, isolated
game, but in an iterative game, at least one player should
rapidly observe a disagreement between what he expects
and what he receives, making it reasonable to assume that
he will adapt and update over time. In an iterative mental
game prior to play, updating may occur ex ante. All players
know that someone’s information must be inaccurate, so it
is natural to imagine revisions even in a one-shot game.

Game theory predicts nearly the opposite behavior in a wa-
gering mechanism. Under the assumption of a common
prior, if all players are rational, know that all players are
rational, know that all players know that all players are
rational, ad infinitum, then speculative wagers should not
happen at all (Milgrom and Stokey, 1982). The decision
maker would not get a single report from any member of
the group. Intuitively, every proffered wager would be de-
clined as evidence of superior information. Private expec-
tations could not differ from outcomes in a systematic way,
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and an overall bias toward optimism could not be sustained
in a rational equilibrium (Lucas, 1972; Nielsen et al., 1990).

To design a wagering mechanism that encourages relatively
broad, unbiased, and truthful participation, we need to un-
derstand how people behave. Do they act with immutable
beliefs? Do they reason with complete rationality? Or do
they fall somewhere in between?

The implications of unbounded rationality are absurd. If
true, players could never “agree to disagree” (Aumann,
1976; Geanakoplos and Polemarchakis, 1982) and would
never place any wager or make any investment based on a
difference of opinion. Refuting this is the simple fact that
speculative trade happens in exchanges around the world
during every second of every day. Transactions do occur
between overconfident zero-sum opponents who both ex-
pect to gain (Dubey et al., 1987; Jordan and Radner, 1979).

Yet ignoring game theory altogether is an idealization too.
People are stubborn, but not entirely naive (Plott and Sun-
der, 1988). An opponent eager to make a large bet should
give anyone pause. (Did I miss something? Is there some-
thing my opponent knows that I don’t?) Only the most
unsophisticated player would ignore the inconsistency be-
tween individual and aggregate expectations or repeatedly
ignore a systematic difference between his private belief
and his experience.

In this paper, building on a vast literature from behavioral
game theory, we adopt an intermediate model of players
and examine its implications for the design of wagering
mechanisms. Our players are boundedly rational: they are
neither superhuman level-∞ reasoners nor oblivious level-
0 reasoners. Instead, we make the increasingly common as-
sumption that each player reasons at an intermediate level
k, treating all of her opponents as level-(k− 1) reason-
ers, with level-0 forming the base of the induction. When
k > 1, players recognize that they are playing a game
against strategic opponents. Still, their reasoning is incom-
plete. They retain a form of overconfidence in that each
player believes that she is one level more capable than her
opponents. We find that even this small dose of overconfi-
dence is enough to induce participation.

To obtain accurate information from wagers, we seek
shared scoring rules that encourage high rates of partici-
pation, unbiased participation (meaning that players don’t
decide whether to opt in or out based on the direction of
their signals), and truthful participation. We first show that
under very general assumptions, if an instantiation of the
Kilgour-Gerchak mechanism is unbiased, it automatically
leads level-k players to report their beliefs truthfully con-
ditioned on participating. We next give a general character-
ization of which players choose to participate at each level.
Roughly speaking, at low levels of rationality (small k) par-
ticipation rates can be high due to widespread overconfi-
dence, while at high levels of rationality (large k), only the

players with the most accurate information choose to par-
ticipate. We show that for any unbiased instantiation of
Kilgour-Gerchak, participation rates shrink to zero as the
level of rationality of players grows, illustrating that while
unbiasedness is in some ways desirable, it comes at a cost.

The question of how to design unbiased mechanisms does
not have a clean analytical answer in the general case. To
gain intuition, we therefore zoom in on a particular sym-
metric information structure that permits tractable analysis
under the level-k model. For this information structure,
we give a complete characterization specifying the condi-
tions under which the Kilgour-Gerchak mechanism leads
to unbiased participation. Interestingly, we find that among
all instantiations of Kilgour-Gerchak that are unbiased, the
ones that lead to the highest level of participation are those
in which players have the smallest incentive to report their
true beliefs as opposed to any other forecast as they are re-
warded similarly either way. This makes intuitive sense;
since a player can only profit if other players lose, reward-
ing players more evenly has the effect of scaring off fewer
of those who are relatively less informed, leading to higher
overall participation.

We conclude with a brief discussion of how our work fits
into the relatively new body of research on behavioral
mechanism design (Ghosh and Kleinberg, 2014; Easley and
Ghosh, 2015).

1.1 RELATED WORK

Over the past few decades, several theories have emerged
to explain the inconsistencies that often arise between sub-
jects’ observed behavior in both lab and field studies and
their predicted equilibrium behavior. Brocas et al. (2014)
divide these theories into two categories. Theories of im-
perfect choice, such as quantal response equilibrium (McK-
elvey and Palfrey, 1995), assume that players fully analyze
all available information but make noisy decisions or as-
sume that other players make noisy decisions. Theories
of imperfect attention, such as level-k, assume that play-
ers do not fully analyze all available information and there-
fore make imperfect choices compared with fully rational
agents. In this paper we focus on the latter as such theories
provide a middle ground between the extreme assumptions
of immutable beliefs and full rationality under which one-
shot wagering mechanisms have been analyzed in the past.

The earliest proponents of the level-k model were Stahl
and Wilson (1994, 1995) and Nagel (1995). The theory
was further developed, modified, and empirically evaluated
by many others, including Ho et al. (1998), Costa-Gomes
et al. (2001), Bosch-Domènech et al. (2002), Costa-Gomes
and Crawford (2006), Crawford and Iriberri (2007), and
Shapiro et al. (2014). Camerer et al. (2004) introduced a
variant of the level-k model, the cognitive hierarchy model,
in which a player at level k believes that other players’ lev-
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els are sampled according to some distribution over levels
k′ < k. In particular, the model assumes that there is a
Poisson distribution with parameter τ over all players’ true
levels, and a player at level k believes that the levels of his
opponents are distributed according to a normalized Pois-
son over levels strictly less than k; that is, his beliefs about
the relative frequencies of lower levels are correct, but he
incorrectly assumes that no other players are capable of rea-
soning that is at least as sophisticated as his own. As Bro-
cas et al. (2014) point out, the cognitive hierarchy model is
typically more difficult to work with analytically than the
basic level-k model, often failing to yield crisp and testable
predictions of behavior, and has the additional parameter τ
to contend with. Additionally, Wright and Leyton-Brown
(2010) found that its predictive performance is similar to
the basic level-k model on a variety of data sets from the
behavioral game theory literature. For these reasons, we
primarily focus on the basic level-k model in our analysis,
though some of our results could be extended to hold under
the cognitive hierarchy model.

There have been several experimental studies examining
behavior in one-shot betting games with private informa-
tion. In early work aimed at testing the predictions of no-
trade theorems in the lab, Sonsino et al. (2001) designed a
betting game in which fully rational agents would choose
not to participate and found substantial rates of betting
among subjects. Sløvik (2009) later replicated these re-
sults. Rogers et al. (2009) used the same betting game
in a new set of experiments in order to compare how well
the quantal response model, cognitive hierarchy model, and
various hybrids fit the behavior of subjects in the lab. They
found evidence of both imperfect choice and imperfect at-
tention in their subjects; the cognitive hierarchy and quan-
tal response models fit the data equally well. Finally, Bro-
cas et al. (2014) used mouse-tracking software in order to
gain a better understanding of the cognitive processes be-
hind subjects’ actions in a betting game. In their clever
design, payoffs of the bet were hidden in opaque boxes.
Subjects could view their own payoffs or their opponents’
payoffs in different states of the world only by clicking on
the appropriate box. By keeping track of which payoffs
subjects viewed, the authors were able to make inferences
about how many levels of reasoning they were performing.
They found a reasonable fit between subjects’ actions and
the basic level-k model, with different clusters of subjects
behaving similarly to what would be expected of level-1,
level-2, and level-3 players, though they observed some ev-
idence of imperfect choice as well.

2 PRELIMINARIES AND MODEL

We begin with a review of strictly proper scoring rules and
the Kilgour-Gerchak mechanism. We then present our gen-
eral model of incomplete information and player beliefs
and review the level-k model of behavior.

2.1 THE KILGOUR-GERCHAK MECHANISM

We consider a simple scenario in which a set N =
{1, · · · , n} of players wager on the value of an unknown
binary random variable X ∈ {0, 1}. This random vari-
able could represent, for example, the winner of an elec-
tion, whether or not a product ships on time, or the outcome
of a game. We use x to denote a realization of X .

The wagering mechanisms that we analyze are those of
Kilgour and Gerchak (2004). All players simultaneously
choose whether or not to make a wager. If player i partici-
pates, he wagers $1 and reports a probability p̂i thatX = 1.
Next, the true state x is revealed, and each player who
chose to participate receives a payment that depends on x
and the reports of all participating players. Payments are
designed to be budget-balanced, meaning that the mech-
anism’s operator takes on no risk. They are also truthful
and individually rational for risk-neutral players with im-
mutable beliefs. This means that such players maximize
their expected utility by choosing to participate and report-
ing their true beliefs about the likelihood that X = 1.

To achieve truthfulness, Kilgour-Gerchak mechanisms
build on the extensive literature on proper scoring
rules (Savage, 1971; Gneiting and Raftery, 2007). A proper
scoring rule is a reward function designed to elicit truthful
predictions from risk-neutral agents. A scoring rule S map-
ping a probability q ∈ [0, 1] and outcome x ∈ {0, 1} to a
real-valued score is proper if for all p ∈ [0, 1], if X = 1
with probability p, then the quantity

E[S(q,X)] = p · S(q, 1) + (1− p) · S(q, 0)

is maximized at q = p. It is strictly proper if this maximum
is unique. A common example of a strictly proper scoring
rule is the Brier score (Brier, 1950), defined as

S(q, x) = 1− (q − x)2.

Note that the Brier score is bounded in [0, 1]. Any bounded
scoring rule can be renormalized to lie in this range.

We make heavy use of the following characterization of
proper scoring rules from Gneiting and Raftery (2007).

Theorem 1 (Gneiting and Raftery (2007)) A scoring
rule S is (strictly) proper if and only if there exists a
(strictly) convex function G, referred to as the entropy
function, such that for all q ∈ [0, 1] and all x ∈ {0, 1},

S(q, x) = G(q) +G′(q)(x− q),

where G′ is any subderivative of G. Moreover, if X = 1
with probability p, then E[S(p,X)] = G(p).

The Kilgour-Gerchak mechanism rewards each player by
comparing his score to the average score of all other par-
ticipants. Let P ⊆ N be the set of players that choose
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to participate; P is a random variable that depends on the
model of trader behavior. Let P−i denote all members of
P except i. (We use similar set notation throughout.) The
mechanism is defined as follows.

Definition 1 (Kilgour-Gerchak mechanism) Let S be a
strictly proper scoring rule, bounded in [0, 1]. All players
i ∈ P simultaneously report a probability p̂i. If |P| ≥ 2,
then when x is revealed, the mechanism assigns to each
player i ∈ P a net profit (payment minus $1 wager) of

S(p̂i, x)− 1

|P−i|
∑

j∈P−i

S(p̂j , x).

If |P| = 1, it returns the $1 wager to the single participat-
ing player who receives a net profit of 0.

We assume that players are risk neutral, so if player i
chooses to participate, then his utility is

ui(p̂, x) =

{
S(p̂i, x)−

∑
j∈P−i S(p̂j ,x)

|P−i| if |P| > 1,

0 otherwise.

Since we analyze only the Kilgour-Gerchak mechanism,
the design space we consider is the space of all strictly
proper scoring rules bounded in [0, 1]. Selecting the scoring
rule S (or equivalently, selecting the corresponding entropy
function G) fully defines the mechanism.

2.2 PLAYER BELIEFS AND BEHAVIOR

To discuss level-k behavior, we first need to define the be-
liefs of players. We begin by considering a general model
of incomplete information based on the well-studied model
of Aumann (1976). In later sections, we analyze a specific
special case of this model.

We imagine a process in which Nature first draws the value
of the random variable X ∈ {0, 1} and then, conditioned
on this value, draws (possibly correlated) random signals
Σi ∈ {1, · · · ,mi} for each player i. We define a state
of the world ω = (x, σ1, · · · , σn) as an outcome x paired
with an assignment of signals σi to each player i. Let Ω
be the set of all mutually exclusive and exhaustive states of
the world. Players share a common prior over Ω.

Under the level-k model, the behavior of each player i
is characterized by his level of rationality. Under the
most simple version of the model, a player at some level
k ∈ {1, 2, · · · } assumes that every other player is at level
k − 1 and best responds to the (distribution over) actions
such players would take. This can be viewed as a form of
overconfidence; every player believes he is slightly more
rational than everyone else. We define level-0 players to be
risk neutral with immutable beliefs. Such players always
participate (as participation is rational under the immutable
beliefs assumption (Kilgour and Gerchak, 2004; Lambert

et al., 2008)) and truthfully bid their posterior beliefs condi-
tioned on their signals. We could have alternatively defined
level-0 players to be noise traders, choosing reports at ran-
dom, as is common in the level-k literature. This definition
would then give rise to immutable belief behavior at level
1, and would therefore not change the nature of our results;
it would amount to no more than a simple renumbering of
levels.

The behavior of a player at a level k consists of two de-
cisions: whether or not to participate, and his report. We
denote with z(k)

i (σi) an indicator variable that is 1 if player
i would choose to participate at level k with signal σi and
0 otherwise. We denote with p̂(k)

i (σi) the report of player
i at level k with signal σi conditioned on participating. Let
P(k) denote the set of players who would participate if they
were following level-k behavior; this is a random variable
since it depends on the realized signals of each player. The
functions z(k)

i and p̂(k)
i are valid level-k behaviors if they

maximize a player’s utility under the assumption that every
other player is of level k − 1. More formally, let

U
(k)
i (p̂i, σi)

= E[(S(p̂i, X)−
∑
j∈P(k−1)

−i
S(p̂

(k−1)
j (Σj), X)

|P(k−1)
−i |

)

· 1{P(k−1)
−i 6= ∅} | Σi = σi]

be the expected utility of player i at level k if he participates
and reports p̂i. Then we must have

p̂
(k)
i (σi) ∈ arg max

p̂i∈[0,1]
U

(k)
i (p̂i, σi),

z(k)(σi) = 1
{
Ui

(
p̂

(k)
i (σi)

)
> 0
}
.

Note that we assume players participate only if their ex-
pected utility is strictly positive and do not participate if
their utility is 0. This is consistent with the scoring rule
literature in which it is often assumed that players require
strict incentives to truthfully report beliefs.

3 A GENERAL CHARACTERIZATION
OF LEVEL-k BEHAVIOR

We are broadly interested in understanding when and how
wagering mechanisms can be used to elicit accurate infor-
mation from players in the level-k model of rationality.
With our focus limited to Kilgour-Gerchak mechanisms,
we can rephrase this question as asking which scoring rules
S lead to high levels of participation and accurate reports.

Two crucial notions in our characterization are unbiased
participation and truthful behavior. Unbiased participation
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simply requires that a player’s choice of whether or not to
participate is independent of his signal (and therefore also
independent of the outcome X). This is desirable because
biased participation could lead to a biased collection of re-
ports, leading in turn to a biased aggregate forecast for the
decision maker.

Definition 2 (Unbiased participation) We say that be-
havior at a level k ∈ {0, 1, · · · } is unbiased if every
player’s decision of whether or not to participate is in-
dependent of the value of his signal, i.e., if ∀i ∈ N ,
∀σi, σ′i ∈ {1, · · · ,mi}, z(k)

i (σi) = z
(k)
i (σ′i).

Using the common prior over Ω, we can define the posterior
belief of player i about the likelihood of X after observing
the signal Σi = σi as

pi(σi) ≡ Pr[X = 1|Σi = σi]. (1)

Players behave truthfully if they report their true posteriors.

Definition 3 (Truthful behavior) We say that behavior at
a level k ∈ {0, 1, · · · } is truthful if for each player, if that
player were to participate at level k, reporting his posterior
belief conditioned only on his own signal would uniquely
maximize his utility, i.e., if ∀i ∈ N , ∀σi ∈ {1, · · · ,mi},
pi(σi) = arg maxp̂i∈[0,1] U

(k)
i (p̂i, σi).

3.1 UNBIASEDNESS IMPLIES TRUTHFULNESS

With these two definitions in hand, we can prove sev-
eral basic characterizations of level-k behavior in Kilgour-
Gerchak mechanisms. The first shows that unbiased par-
ticipation automatically leads to truthfulness, providing an-
other argument that unbiased participation is desirable. The
characterizations in this section make use of the observa-
tion that, by the assumption of unbiased participation, for
any level k′ < k, the decision of a level k′ player of
whether or not to participate is independent of his signal,
and therefore independent of the true state of the world X .
This implies that for any i, the set P(k′)

−i is independent of
X , and in fact, deterministic.

Theorem 2 In the Kilgour-Gerchak mechanism with
strictly proper scoring rule S, if behavior at each level
k′ < k is unbiased, then level-k behavior is truthful.

Proof: If P(k−1)
−i = ∅ then any wager of player i would

yield expected utility 0, so player i would not participate.
Suppose that P(k−1)

−i 6= ∅. Then

U
(k)
i (p̂i, σi) = E [S(p̂i, X) | Σi = σi]

− 1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

E
[
S(p̂

(k−1)
j (Σj), X) | Σi = σi

]
.

The second term is independent of the player’s report p̂i.
Thus the player will behave truthfully if and only if doing
so maximizes the first term, i.e., if and only if

pi(σi) = arg max
p̂i∈[0,1]

E [S(p̂i, X) | Σi = σi] ,

which must hold by definition of pi(σi) and the fact that S
is a strictly proper scoring rule.

Thus to design a truthful mechanism, it is sufficient to de-
sign a mechanism that encourages unbiased participation.

3.2 CHARACTERIZING PARTICIPATION

Our next few characterization results examine the con-
ditions under which players choose to participate in the
wagering mechanism when the mechanism is unbiased.
Lemma 1 examines participation at level k when the mech-
anism is unbiased at all levels k′ < k. This lemma will
prove useful later when we wish to show that a mechanism
is unbiased at all levels for specific signal structures.

Lemma 1 In the Kilgour-Gerchak mechanism with strictly
proper scoring rule S, if behavior at each level k′ < k is
unbiased, then a player i at level k with signal σi partici-
pates if and only if |P(k−1)

−i | > 0 and

E[S(pi(σi), X)|Σi = σi]

>
1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

E[S(pj(Σj), X)|Σi = σi]. (2)

Proof: Consider any player i ∈ N at level k. This player
would never participate if |P(k−1)

−i | = 0 since his expected

utility would be 0, so assume that |P(k−1)
−i | > 0. By Theo-

rem 2, since participation is unbiased at every level k′ < k,
players at level k and at level k−1 behave truthfully. Using
this and the form of player utilities immediately yields the
lemma.

Theorem 3 builds on the previous lemma to show that when
participation is unbiased at levels k′ ≤ k, a player at level
k chooses to participate if and only if his a priori expected
score (i.e., his expected score before signals are revealed) is
higher than the average a priori expected score of all other
players who participate at level k − 1.

Theorem 3 In the Kilgour-Gerchak mechanism with
strictly proper scoring rule S with associated entropy G,
if behavior at each level k′ ≤ k is unbiased, then player i
at level k participates if and only if |P(k−1)

−i | > 0 and

E[G(pi(Σi))] >
1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

E[G(pj(Σj))].
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Proof: Consider any i ∈ N at level k. Since this player
would never participate if |P(k−1)

−i | = 0, assume that

|P(k−1)
−i | > 0. Since we have assumed that participation

is unbiased at level k (as well as lower levels), we know
that i either chooses to participate at level k regardless of
his signal, or chooses not to participate at level k regardless
of his signal. If he chooses to participate, then by Lemma 1,
Equation (2) holds for all σi ∈ {1, · · · ,mi} and therefore

mi∑

σi=1

Pr[Σi = σi]E[S(pi(Σi), X)|Σi = σi]

>

mi∑

σi=1

Pr[Σi = σi]

|P(k−1)
−i |

∑

j∈P(k−1)
−i

E[S(pj(Σj), X)|Σi = σi]

implying that

E[S(pi(Σi), X)] >
1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

E[S(pj(Σj), X)].

Similarly, if he chooses not to participate then Lemma 1
implies that

E[S(pi(Σi), X)] ≤ 1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

E[S(pj(Σj), X)].

The proof is completed by observing that by Theorem 1 for
any i ∈ N ,

E[S(pi(Σi), X)] = EΣi
[EX [S(pi(Σi), X)|Σi]]

= E [G(p(Σi))] .

This theorem implies that if the mechanism is unbiased at
all levels, then at every level k, at least the player with the
smallest a priori expected score among those who partic-
ipate at level k − 1 stops participating. Additionally, no
player who stops participating at some level k ever par-
ticipates at a higher level, since the average score of other
(fictitious) participating players is an increasing function of
k. Therefore participation goes to zero as the level of ratio-
nality grows, coinciding with fully rational behavior. This
illustrates that while unbiasedness is in some ways desir-
able, it also has its costs.

Corollary 1 In the Kilgour-Gerchak mechanism with
strictly proper scoring rule S, if behavior at every level
is unbiased, then participation shrinks to zero as the level
of rationality of players grows.

The intuition behind the lack of participation in the limit
is as follows. As a player’s level of rationality grows, the
amount of rationality he ascribes to other players grows as
well. This leads him to believe that other players partic-
ipate only if they are highly informed, and to choose not

to participate if he is not informed enough to profit against
these highly informed opponents. In the limit, no player
believes he is informed enough to profit, and participation
goes to zero.

4 THE SYMMETRIC SETTING

We have shown that under the level-k model of reason-
ing, any instantiation of the Kilgour-Gerchak mechanism
for which participation is unbiased yields truthful reports.
We have also explored the criteria for participation in such
mechanisms. A natural question is how to design mecha-
nisms with unbiased participation. This question does not
have a clean analytical answer in the general case. To gain
some intuition about this question, we therefore turn our at-
tention to one particular information structure that permits
tractable analysis under the level-k model.

We consider a scenario in which signals are binary, that is,
Σi ∈ {0, 1} for all i, and are drawn independently for each
player, conditional on the state of the world X . Further-
more, each player i’s signal is “correct” with some fixed
and known probability ci, that is, Pr[Σi = x |X = x] = ci
for x ∈ {0, 1}. Finally, to simplify analysis and presenta-
tion, we assume that, a priori, Pr[X = 1] = Pr[X = 0] =
1/2. One way of viewing this assumption is that prior pub-
lic information does not favor either outcome, but rather all
information in favor of some outcome is received privately
by the players through their signals. We refer to this setting
as the symmetric setting.

In the symmetric setting, the posterior in (1) is simply

pi(σi) =

{
ci if σi = 1,
1− ci if σi = 0.

(3)

4.1 FULLY CHARACTERIZING MECHANISMS
WITH UNBIASED PARTICIPATION

The next two results provide matching sufficient and neces-
sary conditions for achieving unbiased participation in the
symmetric setting. First, Theorem 4 shows that to achieve
unbiased participation it is sufficient to use the Kilgour-
Gerchak mechanism with a scoring rule that is symmetric
in the sense that S(p, x) = S(1 − p, 1 − x) for all p and
x, or equivalently, has associated entropy function G with
G(p) = G(1− p) for all p. In this case, a player i chooses
to participate at level k if and only if his expected score is
higher than the average expected score of all other players
who would participate at level k−1. Theorem 5 then shows
that this symmetry is also necessary in order to achieve un-
biased participation in this setting.

Theorem 4 (Sufficient condition for unbiasedness) In
the symmetric setting, the Kilgour-Gerchak mechanism
with strictly proper scoring rule S exhibits unbiased
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participation at all levels if S(p, x) = S(1 − p, 1 − x) for
all p ∈ [0, 1] and x ∈ {0, 1}. Moreover, player i at level k
participates if and only if

G(ci) >
1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

G(cj), (4)

where G is the entropy function associated with S.

Proof: The proof is by induction. By definition, all players
participate at level 0, so participation is unbiased. Consider
any k > 0 and suppose that for all levels k′ < k, partici-
pation is unbiased. Then by the entropy characterization of
scoring rules in Theorem 1 and by Lemma 1, we have that
player i with signal Σi = σi participates only if

G(pi(σi)) >
1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

E[S(pj(Σj), X)|Σi = σi].

The symmetry of S implies that G(p) = G(1 − p) for all
p ∈ [0, 1]. Using this symmetry and the fact that pi(σi) is
either ci or 1 − ci, we have G(pi(σi)) = G(ci) regardless
of the signal realization σi. To complete the proof, we then
need only to show that for any j 6= i and any σi ∈ {0, 1},

E[S(pj(Σj), X)|Σi = σi] = G(cj). (5)

Since G(cj) does not depend on player i’s signal, this
would imply that participation is unbiased at level k.

By exploiting symmetry as described below, we have that

E[S(pj(Σj), X)|Σi = 1]

= E[S(1− pj(Σj), 1−X)|Σi = 1]

= E[S(pj(1− Σj), 1−X)|Σi = 1]

= E[S(pj(Σj), X)|Σi = 0].

The first equality follows from the symmetry of S. The
second follows from (3), which implies that 1− pj(Σj) =
pj(1 − Σj). The third can be easily verified by expanding
out the expressions and exploiting the symmetry in both the
prior and the signal error. Hence, we have

E[S(pj(Σj), X)]

= Pr[Σi = 1]E[S(pj(Σj), X)|Σi = 1]

+ Pr[Σi = 0]E[S(pj(Σj), X)|Σi = 0]

= E[S(pj(Σj), X)|Σi = 1]

= E[S(pj(Σj), X)|Σi = 0].

Moreover, we have

E[S(pj(Σj), X)]

= Pr[Σj = 1]E[S(pj(Σj), X)|Σj = 1]

+ Pr[Σj = 0]E[S(pj(Σj), X)|Σj = 0]

=
1

2
G(cj) +

1

2
G(1− cj) = G(cj).

Combining the previous two equalities gives us Equa-
tion (5), completing the proof.

The next result provides a matching necessary condition.
Note that for any symmetric scoring rule S, adding a con-
stant payment that depends on the outcome x but not on
the report p would break symmetry but would not affect
the resulting Kilgour-Gerchak payments; since this con-
stant amount is added to all players’ scores, it cancels out
when comparing player i’s score to the average score of
other participants. The necessary condition states that un-
biased participation is achievable only if the scoring rule
used is “equivalent to” a symmetric scoring rule in this way.

Theorem 5 (Necessary condition for unbiasedness) In
the symmetric setting, if the Kilgour-Gerchak mechanism
exhibits unbiased participation for level-k players with all
possible signal accuracies for all levels k, then the pay-
ments are equivalent to those using Kilgour-Gerchak with
a scoring rule S that satisfies S(p, x) = S(1 − p, 1 − x)
for all p ∈ [0, 1] and x ∈ {0, 1}.

Proof: Assume that the Kilgour-Gerchak mechanism using
scoring rule S̄ exhibits unbiased participation for level-k
players for all possible vectors of signal accuracies and all
levels k.

First note that for any scoring rule S̄ bounded in [0, 1], the
scoring rule S defined by S(q, 1) = S̄(q, 1)+(1− S̄(1, 1))
and S(q, 0) = S̄(q, 0) + (1 − S̄(0, 0)) remains bounded
in [0, 1] and results in identical payments to each player
when used in the Kilgour-Gerchak mechanism. For the pur-
poses of this proof, we therefore consider the alternative
representation of the mechanism as the Kilgour-Gerchak
mechanism with this modified scoring rule S. Note that
S(1, 1) = S(0, 0) = 1 and therefore G(1) = G(0) = 1.

Suppose there are only two players, i and j, with equal ac-
curacies ci = cj = c, and consider the level-1 behavior of
agent i. At level 0, agent j always participates. By Lemma
1, Theorem 1, and (3), we have that player i with signal
Σi = 1 participates if and only if

G(c) > E[S(pj(Σj), X)|Σi = 1].

Expanding out the terms on both sides and rearranging, this
inequality is equivalent to

S(c, 1)c+ S(c, 0)(1− c)
> c (S(c, 1)c+ S(1− c, 1)(1− c))
+ (1− c) (S(c, 0)(1− c) + S(1− c, 0)c) .

Rearranging terms, this condition reduces to

S(c, 1) + S(c, 0) > S(1− c, 1) + S(1− c, 0). (6)

Similarly, player i participates with signal Σi = 0 if and
only if

G(1− c) > E[S(pj(Σj), X)|Σi = 0].
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Expanding out terms in a similar way and rearranging, this
condition reduces to

S(1− c, 1) + S(1− c, 0) > S(c, 1) + S(c, 0). (7)

For participation to be unbiased it must be that (6) and (7)
either both hold or both do not hold. Clearly they cannot
both hold simultaneously. The only way that both could
simultaneously not hold is if

S(c, 1) + S(c, 0) = S(1− c, 1) + S(1− c, 0).

By the characterization of scoring rules in Theorem 1, the
corresponding entropy function must then satisfy

G(c) +G′(c)(1− c) +G(c) +G′(c)(−c)
= G(1− c)+G′(1− c)c+G(1− c)+G′(1− c)(c− 1)

which reduces to

G(1−c)+(c−1/2)G′(1−c) = G(c)+(1/2−c)G′(c). (8)

Since c was chosen arbitrarily, in order for participation to
be unbiased for all vectors of signal accuracies, this equal-
ity must hold for all c ∈ [1/2, 1].

It remains to show that this implies symmetry in S. It must
be the case that G(c) = G(1 − c) at c = 1/2 and c =
1. (The latter is true because we have replaced S̄ with S.)
Suppose that there is some c ∈ (1/2, 1) such that G(c) >
G(1− c). Then by continuity of G, there must be some c1
and c2 such that

(a) G(c1) = G(1− c1),
(b) G(c2) = G(1− c2),
(c) G(c) > G(1− c) for all c ∈ (c1, c2).

Condition (c) and (8) imply that for all c ∈ (c1, c2),
G′(c) > −G′(1 − c). But this contradicts conditions (a)
and (b). Therefore, there cannot exist any c with G(c) >
G(1− c).

A symmetric argument can be made for the case in which
G(c) < G(1 − c) for some c ∈ (1/2, 1), so we must have
G(c) = G(1 − c) for all c. The characterization in Theo-
rem 1 can be used to easily show that this implies the de-
sired symmetry in S.

4.2 MAXIMIZING PARTICIPATION RATES

Unbiased participation is desirable for information aggre-
gation. However, as shown in Corollary 1, it necessarily
leads to participation shrinking to zero as players’ level of
rationality grows. Our final result for the symmetric setting
shows how to select the scoring rule that maximizes par-
ticipation among those that lead to unbiased participation.
This is accomplished in the limit as the entropy function G
becomes very close to linear, that is, as the scoring rule S
becomes very close to being only weakly proper.

Theorem 6 (Maximal participation) Among all symmet-
ric strictly proper scoring rules, maximal participation can
be achieved as the limit of a sequence of strictly proper
scoring rules with corresponding entropy functions of the
form G(p) = |2p− 1|β with β > 1 as β → 1.

Proof: Consider any symmetric scoring rule with symmet-
ric entropy function G. By Equation (4) in Theorem 4 and
the convexity of the entropy function, player i at level k
would never participate unless

G(ci) > G


 1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

cj


 .

Since we have assumed G is symmetric around 1/2 and
strictly convex, any such function G must be increasing on
[1/2, 1]. Since cj ∈ [1/2, 1] for all j, we have that at level
k, player i would never participate unless

ci > ĉ
(k−1)
−i ≡ 1

|P(k−1)
−i |

∑

j∈P(k−1)
−i

cj . (9)

This is an “only if” condition that holds for any symmetric
entropy function G. To maximize participation, we would
like to select G to have a matching “if” condition that is as
close to this as possible.

Consider the family of scoring rules defined by entropy
function Gβ(p) = |2p − 1|β with β > 1. By Equation
(4), player i would participate at level k under this scoring
rule if and only if

2ci − 1 >
1

∣∣∣P(k−1)
−i (β)

∣∣∣
1/β




∑

j∈P(k−1)
−i (β)

(2cj − 1)β




1/β

=
1

∣∣∣P(k−1)
−i (β)

∣∣∣
1/β

∥∥∥{2cj − 1}
j∈P(k−1)

−i (β)

∥∥∥
β

where ‖ · ‖β denotes the Lβ norm and we use the nota-
tion P(k−1)

−i (β) to emphasize the dependence of the set of

participating players P(k−1)
−i on β.

We first use this to show that for any β, β′ > 1 with β′ < β,
participation declines more gradually under the scoring
rule defined by Gβ

′
than it does under the scoring rule de-

fined by Gβ . We do so by induction. Since all players par-
ticipate at level 0, for any i we have P(0)

−i (β) = P(0)
−i (β′).

Assume that for all k′ < k, P(k′)
−i (β) ⊆ P(k′)

−i (β′). By
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standard properties of norms, we then have

1
∣∣∣P(k−1)
−i (β)

∣∣∣
1/β

∥∥∥{2cj − 1}
j∈P(k−1)

−i (β)

∥∥∥
β

≥ 1
∣∣∣P(k−1)
−i (β)

∣∣∣
1/β′

∥∥∥{2cj − 1}
j∈P(k−1)

−i (β)

∥∥∥
β′

≥ 1
∣∣∣P(k−1)
−i (β′)

∣∣∣
1/β′

∥∥∥{2cj − 1}
j∈P(k−1)

−i (β′)

∥∥∥
β′
.

The last line follows from the fact that since the players
who choose to participate are always those with the highest
quality (corresponding to higher values of 2cj − 1), if a
larger group participates they are lower quality on average.

This implies that if a player participates at level k under the
scoring rule defined byGβ then he also participates for any
β′ < β, completing the inductive step.

In the limit as β → 1, we get that the participation con-
straint at each level k converges to the constraint ci >

ĉ
(k−1)
−i , which, from Equation 9, is the participation limit

for any symmetric strictly proper scoring rule.

This result shows that participation levels rise as the scor-
ing rule used becomes closer to weakly proper, providing
experts less incentive to report their true beliefs rather than
make a false report. In fact, it is easy to see that maximum
participation could be achieved using the weakly proper
scoring rule with entropy functionG(p) = |2p−1|, though
this would result in a loss of strict truthfulness. This result
is somewhat intuitive. Since the Kilgour-Gerchak mecha-
nism is a zero-sum game, bigger rewards for the most ac-
curate players require bigger punishments for the least ac-
curate, causing those with less information to drop out at
lower levels of rationality. By rewarding all players more
evenly, less accurate players do not drop out as quickly.
However, this may have consequences in real-world sce-
narios in which an expert may not find it worth his time to
participate if the rewards for highly accurate information
are low, even if he stands to make a profit on expectation.

4.3 UNCERTAINTY ABOUT OPPONENTS

One potential objection to our model is the assumption that
each player i knows the accuracy parameter cj of every
other player j. This assumption is certainly unrealistic in
settings in which the number of players is large or the pool
of players anonymous. We briefly remark that most of our
results can be extended to the Bayesian setting in which
it is necessary only for each player i to know a distribu-
tion over the types (in this case, accuracy parameters) of
other players. However, this extension requires modifying
the definition of unbiasedness so that a player’s decision to
participate may depend on parts of his private information
(e.g., his accuracy). For instance, if the accuracy of the sig-

nal of each player is drawn i.i.d. based on some commonly
known discrete distribution with cumulative density func-
tion F , then it is easy to derive that if a symmetric scoring
rule is used then a player at level k participates if and only
if his realized accuracy ci satisfies

G(ci) > Ec∼F
[
G(c)|c ≥ θk−1

]
,

with θ0 = 0 and θk defined recursively as the minimum ci
that satisfies the latter inequality or 1 if there is no such ci.

To preserve the clarity of our analysis, we omit the details
and present only the simpler setting here.

5 DISCUSSION

In order to design wagering mechanisms to elicit honest,
unbiased beliefs from groups of experts, it is necessary to
understand how experts behave. Previous analyses have as-
sumed extreme behavior; either experts are fully rational,
in which case standard no-trade theorems apply, or experts
have immutable beliefs and are essentially oblivious to the
fact that they are participating in a zero-sum game. In this
paper, we search for middle ground, analyzing the behavior
of boundedly rational level-k players who recognize they
are in a game but are still overconfident in their reasoning.
We examine the design implications of this model, seeking
instantiations of Kilgour and Gerchak’s shared scoring rule
wagering mechanism that encourage unbiased and truthful
participation at high rates.

This paper can be viewed as a contribution to the new
but growing research area of behavioral mechanism de-
sign (Ghosh and Kleinberg, 2014; Easley and Ghosh, 2015)
in which insights from behavioral game theory are applied
to design mechanisms tailored to real (or at least more re-
alistic) human participants as opposed to idealized ratio-
nal agents. Of course any theory is only as good as the
model on which it is based. While the behavioral game
theory literature provides support that the level-k model
is a decent predictor of human behavior in game theo-
retic settings—including one-shot betting games in which
the no-trade theorem would typically apply (Brocas et al.,
2014)—additional experimental work is needed to under-
stand how well it models the behavior of real experts par-
ticipating in wagering mechanisms like Kilgour-Gerchak.
Still, we believe that our analysis takes a valuable first step
towards understanding the ability of wagering mechanisms
to aggregate information from experts who are neither fully
rational nor fully naive.
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Abstract

This work concerns decision making under risk
with the rank-dependent utility model (RDU), a
generalization of expected utility providing en-
hanced descriptive possibilities. We introduce a
new incremental decision procedure, involving
monotone regression spline functions to model
both components of RDU, namely the probabil-
ity weighting function and the utility function.
First, assuming the utility function is known, we
propose an elicitation procedure that incremen-
tally collects preference information in order to
progressively specify the probability weighting
function until the optimal choice can be iden-
tified. Then, we present two elicitation proce-
dures for the construction of a utility function as
a monotone spline. Finally, numerical tests are
provided to show the practical efficiency of the
proposed methods.

1 INTRODUCTION

Uncertainty is pervasive in human activities and represents
an important source of complexity in individual and col-
lective decision making. As soon as intelligent systems
are used for supporting human decision making or simulat-
ing realistic human decision behaviors, preference model-
ing and preference elicitation becomes particularly impor-
tant. In decision making under uncertainty and risk, prefer-
ence models are used to represent uncertain outcomes and
to provide normative decision rules for choice problems,
but also to describe, predict or simulate observed human
behaviors. Given a mathematical model used to compare
the alternatives of a choice problem, preference elicitation
consists in fitting the parameters of the model to a specific
Decision Maker (DM), to capture her attitude towards risk.
Then the model can be used to support her choices in com-
plex situations involving a large number of alternatives or
to integrate her value system into an autonomous decision

agent. Considering this context, our paper aims at provid-
ing new tools for interactive decision support under risk.

Decision under risk is a standard formal framework for
handling uncertainty in decision making, characterized by
a probabilistic representation of uncertainty. In this frame-
work, risky prospects are represented by probability distri-
butions with a finite support, namely lotteries. In the semi-
nal work of Bernoulli (1738; refer to [1954] for an English
translation) and in the theory of von Neumann and Morgen-
stern (vNM) [1947], the values of lotteries are measured in
terms of expected utility (EU). This well-known decision
criterion is linear in probabilities and characterized by a
utility function encoding the subjective value of any possi-
ble consequence for the DM; EU is used to compare lotter-
ies and choice problems are solved by EU maximization.
This choice model has been axiomatically justified in the
context of risk by vNM [1947], but also in the more gen-
eral context of uncertainty introduced by Savage [1954],
where probabilities are not assumed to exist a priori.

From EU to RDU. Despite these axiomatic results and
the intuitive appeal of EU theory, the model suffers from
well known limitations, from a descriptive viewpoint.
There exist situations where individuals may exhibit behav-
iors that are not consistent with EU theory, as illustrated by
the so-called Allais’s paradox. For example, people often
prefer $3000 with certainty (choice A) to $4000 with prob-
ability .8 (choice B), but they prefer $4000 with probability
.2 (choice D) to $3000 with probability .25 (choice C). Re-
marking that C = .25A + .75O and D = .25B + .75O
where O is the choice to win nothing with probability 1,
it turns out that such preferences violate the vNM inde-
pendence axiom. This example, used by Kahneman and
Tversky [1979] in their experiments, is frequently observed
and known as the certainty effect: a reduction in proba-
bility of winning a reward creates a larger (negative) psy-
chological effect when it is done from certainty than from
uncertainty. Similar observations have been made in ac-
tual decision contexts, for instance in route-choice prob-
lems where evidence was found of violation of EU theory
[Avineri and Prashker, 2004].
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These experiments and others in the same spirit suggest that
probabilities are distorted in the decision making process.
More precisely, small probabilities (greater than 0) tend to
be overestimated while large ones (smaller than 1) under-
estimated. This has motivated the introduction of a prob-
abilistic transformation model to generalize EU, leading
to evaluate the lottery (x1, p1; . . . , xn; pn) that yields out-
come xi with probability pi by

∑
i w(pi)u(xi). This gener-

alization of EU dates back to [Edwards, 1955] and appears
also in prospect theory [Kahneman and Tversky, 1979].
However, it can be easily shown that it violates the principle
of stochastic dominance and could lead to select dominated
alternatives; this is often considered as a serious weakness
from a normative viewpoint. To overcome this problem, a
solution proposed by Quiggin [1982] and Yaari [1987] con-
sists in applying the probability transformation to the decu-
mulative probability distribution function, and not to the
probabilities of individual outcomes. This solution leads
to the rank-dependent utility model (RDU) that consists in
evaluating the lottery ` = (x1, p1; . . . , xn; pn) such that
x1 ≥ . . . ≥ xn ≥ 01 by:

V (`) =

n∑

i=1

w

(
i∑

k=1

pk

)
[u(xi)− u(xi+1)]

= w(p1)u(x1)+
n∑

i=2

[
w

(
i∑

k=1

pk

)
− w

(
i−1∑

k=1

pk

)]
u(xi)

where xn+1 = 0 andw : [0, 1]→ [0, 1] is a non-decreasing
function such that w(0) = 0 and w(1) = 1. Note that
the coefficient of u(xi) in RDU depends on the cumulative
probability of the outcomes greater or equal to xi (since
outcomes are indexed to be sorted by decreasing order);
this shows that this coefficient depends on the rank of xi
in the set of possible outcomes. To illustrate the use of
RDU, we compare the two following lotteries ` and `′ with
w(p) = p2 and u(x) =

√
x:

V (`) = (.3)2(6 − 5) + (.8)2(5 − 3) + 123 = 4.37 and
V (`′) = (.6)2(7 − 2) + (1)22 = 3.8, hence ` is preferred
to `′. To give another example, let us remark that, for any
lottery of type ` = (x+, p;x−, 1− p), x+ > x−, we have:

V (`) = w(p)u(x+) + (1− w(p))u(x−)

Function w is referred to as the probability weighting func-
tion. It is worth noting that, when w(p) = p, RDU boils
down to EU as we can see from the second formulation.
On the other hand, RDU is also known to be an instance of
Choquet Expected Utility [Schmeidler, 1989]. More pre-

1As suggested by Gilboa [2008], it is more natural to think
of the object of choice in Quiggin and Yaari’s models as lotteries
over final wealth (with positive outcomes) rather as prospects of
gains and losses, because they did not emphasize gain-loss asym-
metry in their theory.

cisely, it turns out to be the natural instance for decision
making under risk due its compatibility with stochastic
dominance [Wakker, 1990]. For more details about RDU
theory see [Quiggin, 2012, Diecidue and Wakker, 2001].

Let us mention also some well known variants of RDU
theory. First, Yaari [1987] introduced and axiomatized a
dual model to expected utility where transformations are
applied to probabilities rather than to outcomes. This is
a special case of RDU obtained when the utility function
is linear in the outcomes. Moreover, the idea of rank-
dependent weightings was also incorporated by Kahneman
and Tversky [1992] into prospect theory, leading to cumu-
lative prospect theory. This theory extends the RDU theory
to model different risk attitudes towards gains depending
on whether above or below a reference level.

In this paper, we focus on the RDU model, and we ad-
dress the problem of identifying, within a given (possibly
large) set of lotteries, the preferred solution for a given
DM consistent with RDU theory. This solution could be
used for predicting a choice of the DM or even to make
a recommendation. This requires to elicit, at least par-
tially, the probability weighting function and the utility
function. Note that the determination of RDU-optimal so-
lutions has motivated various contributions in the past, e.g.
[Nielsen and Jaffray, 2006, Jeantet et al., 2012].

Incremental decision making. A first approach to elici-
tation, standard in mathematical economics, aims to obtain
a full description of preferences by the decision model, as-
suming that DM’s preferences are observable on all pos-
sible pairs of alternatives. The elicitation process is justi-
fied by the axioms of the underlying theory and the com-
ponents of the models are revealed point by point using
systematic sequences of queries to obtain a precise speci-
fication of the model. To simplify the process, a frequent
option used in economics (but also in artificial intelligence)
consists in postulating a parametric form for each com-
ponent of the decision model; queries are then used to
fit the parameters. Refer to [Wakker and Deneffe, 1996,
Gonzalez and Wu, 1999, Abdellaoui, 2000] for full elic-
itation procedures proposed in economics for RDU,
and to [Fürnkranz and Hüllermeier, 2003, Torra, 2010,
Tehrani et al., 2012] for model-based preference learning.

Recently a number of works have tackled the elicitation
of the components of the decision model in an adap-
tive way [Wang and Boutilier, 2003, Boutilier et al., 2006,
Braziunas and Boutilier, 2007, Benabbou et al., 2014]; the
aims is that of focusing on learning the “important” part
of the utility, allowing to recommend near-optimal de-
cisions with only partial information about the decision
model. These incremental approaches consider all possible
instances of preference model parameters consistent with
the currently known information about the user; the user’s
responses allow to infer constraints on these parameters.
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In this work, we consider the problem of incrementally
eliciting the components of the RDU model by interactively
asking queries to the DM; this aims to support the identi-
fication or approximation of an RDU-optimal choice. We
first address the problem of eliciting the weighting func-
tion incrementally (Section 2) assuming that the utility is
known. Afterwards, we will present utility elicitation pro-
cedures adapted to the rank-dependent utility model (Sec-
tion 3). Finally, we provide numerical tests (Section 4).

2 ELICITATION OF THE PROBABILITY
WEIGHTING FUNCTION

Decision makers exhibit various decision behaviors when
they are confronted to choices involving risky prospects.
Within RDU theory, this diversity of attitudes towards
risk can be modeled by controlling the definition of the
two components of the model, namely the utility func-
tion and the probability weighting function. Since these
two components are strongly interlaced in RDU, their
joint elicitation is quite challenging. Fortunately, these
two components concern two separate and well identi-
fied risk-components, on the one hand marginal utili-
ties induced by the shape of the cardinal utility func-
tion [Chateauneuf and Cohen, 1994], and on the other hand
the probabilistic risk-attitude towards probabilistic mix-
tures induced by the shape of the probability weight-
ing function [Wakker, 1994]. They can be observed
separately using proper preference queries as shown in
[Wakker and Deneffe, 1996, Abdellaoui, 2000]. In this
section, the utility is assumed to be known (already elicited
or known to be linear (Yaari’s model), and we focus on the
elicitation of probability weights.

2.1 ON PROBABILITY WEIGHTING FUNCTIONS

The probability weighting function is necessarily non-
decreasing but can take different forms depending on the
attitude of the DM towards risk. For instance, in Yaari’s
model, weak risk aversion which consists, for any lot-
tery `, in preferring E(`) for sure to ` (where E(`) is
the expected value of `) is equivalent to w(p) ≤ p for
all p ∈ [0, 1] [Chateauneuf and Cohen, 1994]. Moreover,
in the RDU model, strong risk aversion which consists in
preferring ` to `′ whenever ` stochastically dominates `′

at second order, is equivalent to using a convex weight-
ing function and a concave utility [Hong et al., 1987]. Fi-
nally, several experiments including those of Kahneman
and Tversky [1979] lead to propose an inverse S-shaped
function. For example, the use of the weighting function
given in Figure 1 in Yaari’s model allows to explain the
preferences observed on lotteries A,B,C,D presented in
the introduction. We have indeed V (A) = 3000 w(1),
V (B) = 4000 w(0.8), V (C) = 3000 w(0.25) and
V (D) = 4000w(0.2). Since w(0.2) ≈ 0.26, w(0.25) ≈

0.29, w(0.8) ≈ 0.60 and w(1) = 1 we obtain V (A) >
V (B) while V (C) < V (D).

Figure 1: Inverse S-shaped function w.

The following parametric expressions for w(p) have been
proposed in the literature [Cavagnaro et al., 2013], among
several others:

TK : w(p) = pr

(pr+(1−p)r)1/r
with 0.28 < r ≤ 1

Prelec : w(p) = e−s(− ln p)r with 0 < r ≤ 1; 0 < s

LinLog : w(p) = s pr

s pr+(1−p)r with 0 < r, s

where TK denotes the parametric form proposed by Tver-
sky and Kahneman (thew plotted in Figure 1 is of this type,
with r = 0.6). Note that Prelec and LinLog make use of
two parameters (r and s) while TK is based on a single pa-
rameter. Karmarkar [1978] proposes a parametric form that
is a special case of LinLog with s = 1.

Choosing a priori a specific parametric form among these
different options and others, with the idea of learning the
parameters, may generate errors due to not taking into ac-
count the specificity of the DM that may be revealed dur-
ing the elicitation process. Instead, we propose a new ap-
proach based on a much more flexible parametric construc-
tion based on the definition of w as a piecewise polynomial
spline function. Moreover, we will adopt an incremental
elicitation approach in order to reason with the possible
functions w that are consistent with the current preference
information of the DM. In the spirit of incremental decision
making, by considering additional preferences (obtained by
asking queries), we will be able to progressively narrow
down our model of the DM until we are able to identify the
preferred alternative.

2.2 INCREMENTAL ELICITATION OF w

We assume here that the utility function is known and we
reason with an incompletely specified weighting function
w ∈W , W being the set of admissible probability weight-
ing functions at a given step of the process. Initially,W can
be all non-decreasing functions on the unit interval such
that w(0) = 0 and w(1) = 1 or an approximation of
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them representable by a given family of parametric func-
tions. The utility function u being fixed, we will denote
V (`;w) the RDU value of lottery ` for weighting function
w. Each time a preference statement of type “`+ is at least
as good as `−” is obtained, this induces a new constraint
V (`+;w) ≥ V (`−;w) that further restricts W .

In order to make a decision when probability weights are
imprecisely known, we will use minimax regret which is a
standard decision criterion for robust decision making un-
der uncertainty [Savage, 1954]. It was more recently pro-
posed by Boutilier et al. [2003, 2006] for decision-making
under utility uncertainty. Moreover, minimax regret can be
used as a driver for preference elicitation and incremental
decision making.

Let L be the set of lotteries representing the alternatives
of the decision problem. If we knew the DM’s spe-
cific w, then the optimal choice would be any element
of arg max`∈L V (`;w). However, since w is not known
precisely, we need to provide a recommendation based on
the current information. We are interested in evaluating
the loss that can result from choosing a decision ` instead
of the optimal one. To this end, we use the following
notions of regret. The pairwise maximum regret PMR
of ` against `′ is the maximal value that the difference
Vu(`′;w) − Vu(`;w) can take for any admissible function
of w ∈ W . The max regret MR of a choice ` is defined as
the maximum pairwise regret when the adversary is chosen
among all lotteries in L. Finally, the minimax regret MMR
is the minimum value of max regret. More formally:

PMR(`, `′;W ) = max
w∈W

[V (`′;w)− V (`;w)] (1)

MR(`;W ) = max
`′∈L

PMR(`, `′;W ) (2)

MMR(W ) = min
`∈L

MR(`;W ) (3)

Then we recommend one of the decisions associated with
the minimum value of max regret, i.e. lottery `∗ ∈
arg min`∈LMR(`;W ). This is a regret-optimal decision
given the current preference information. By definition,
recommending `∗ means to be robust with respect to the
possible realizations of w ∈W .

In addition of being a criterion for decision-making, min-
imax regret can be used to drive the elicitation of further
preference information. We assume an interactive setting
where the system (a decision-support agent) can ask addi-
tional queries in order to improve the quality of the recom-
mendation. If the current minimax regret value is higher
than a given positive threshold, we ask another query to the
user. Different types of queries can be asked to the user;
among the many possibilities, comparison queries, asking
the user to state which choice is best among two presented
to him, are particularly natural. It is however important
to ask informative queries in order to quickly converge to
a recommendation of high value. An effective heuristic
to choose the next query is the current solution strategy

[Wang and Boutilier, 2003, Boutilier et al., 2006]; it asks
the user to compare the regret-optimal lottery `∗ with its
adversarial challenger `a = arg max`∈L PMR(`∗, `). This
will often reduce minimax regret: if the user states that `∗ is
preferred to `a, in the next computation of minimax regret,
the adversary will have to choose another lottery, leading
to a reduction of regret (unless there were ties in the max
regret computations). If, instead `a is preferred to `∗, the
regret-optimal choice in the next computation will neces-
sarily be a choice other than `∗, and, again, we will likely
reduce regrets.

Assume P to be a set of pairs (`+, `−) for which we know
that the DM considers that `+ is at least as good as `−.
Let W = {w : ∀(`+, `−) ∈ P, V (`+;w) ≥ V (`−;w)},
our goal is to compute PMR(`, `′,W ). This corresponds
to solving the following optimization problem:

max
w

[V (`′;w)− V (`;w)] (4)

s.t. w(0) = 0, w(1) = 1 (5)
w(p) ≤ w(q), ∀p, q ∈ [0, 1] : p ≤ q (6)

V (`+;w) ≥ V (`−;w), ∀(`+, `−) ∈ P (7)

Such optimization is not however directly feasible. First,
the monotonicity constraint (6) on the unit interval repre-
sents implicitly an infinity of constraints. If we only im-
pose monotonicity on probabilities involved in the lotteries
of L, it still represents a large number of constraints. More-
over, constraint (7) is quite difficult to handle. Even if we
assume that w belongs to one of the families of parametric
curves considered in the previous subsection, the resulting
constraints will not be linear in the parameters. In the next
subsection we will see how these problems can be over-
come by defining w as a monotone spline function.

2.3 A MODEL BASED ON I-SPLINE FUNCTIONS

Spline functions are piecewise polynomials whose pieces
connect with a high degree of smoothness. They are very
useful in data interpolation and shape approximation due
to their capacity to approximate complex shapes through
curve fitting and interactive curve design while preserv-
ing an important property, missing in many other inter-
polation methods: they guarantee that smooth curves will
be generated from smooth data [Beatty and Barsky, 1995].
The use of piecewise polynomials in non-linear regres-
sion extends the advantage of polynomials by providing
greater flexibility, local effects of parameter changes and
the possibility of imposing constraints on estimated func-
tions [Ramsay, 1988].

One important feature of spline functions is that they can be
generated by linear combinations of basis spline functions.
A basis of splines particularly appealing for non-linear re-
gression is the M-spline family [Ramsay, 1988]. M-splines
of order k are functions Mi, i = 1, . . . ,m which are poly-
nomials of degree k − 1. They can be used to approximate
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any function defined on a given interval [a, b] by a spline
of the form f =

∑
i λiMi. To define Mi precisely, we

need to introduce a sequence of knots t = {t1, t2, . . . , tl}
such that a = t1 = . . . = tk, b = tl−k+1 = . . . = tl
and ∀i, ti ≤ ti+1. The basis constructed from sequence t
contains m =| t | −k spline functions of order k denoted
Mi(x; k, t), i = 1, . . . ,m, and defined for k = 1 by:

Mi(x; 1, t) =

{ 1
ti+1−ti if x ∈ (ti, ti+1)

0 otherwise

For k > 1 and ti+k > ti, Mi is defined recursively by:

Mi(x; k, t) = k[(x− ti)Mi(x;k−1,t)+(ti+k−x)Mi+1(x;k−1,t)]
(k−1)(ti+k−ti)

and otherwise Mi(x;k,t) = 0. In particular, we have
Mi(x;k,t) = 0 whenever k > 1 and ti+k = ti.

Note that Mi(x;k,t) is strictly positive in (ti, ti+k) and
0 elsewhere, with an integral equal to 1. Moreover, it
is a polynomial of degree k − 1 so that, for any piece-
wise polynomial function of the form f =

∑
i λiMi, ad-

jacent polynomials have matching derivatives up to order
k − 2. Hence, a good choice for k in practice is k = 3
because, in this case, we generate piecewise quadratic f
functions with matching first derivatives while preserving
a local influence of every components. Choosing a lower
k would loose continuity of the first derivative and choos-
ing a higher k would increase the range (ti, ti+k) of influ-
ence of every component Mi, which diminishes controlla-
bility of the model. As an example, the family of splines
Mi(x; 3,t), i = 1, . . . , 5 defined on the unit interval from
subdivision t = (0, 0, 0, 1

3 ,
2
3 , 1, 1, 1) is given in the left

part of Figure 2. Finer spline decompositions could be ob-
tained using finer subdivisions. Moreover, it is possible to
use non-equally-spaced knot sequences to have a finer con-
trol of the shape in some parts of interval [a, b]. However,
practical tests show that using too many nodes is counter-
productive to generate smooth and regular curves.

We may define the probability weighting function w as a
weighted combination of Mi-spline functions with prob-
ably good fitting possibilities. However, this would not
guarantee to obtain a non-decreasing weighting function
w. To get rid of the monotonicity constraint (6), we need
another basis specifically designed for the generation of
non-decreasing spline functions. The solution is given by
monotone regression splines that provide very nice descrip-
tive possibilities, as demonstrated by Ramsey [1988]. Such
spline functions are non-decreasing because they are gen-
erated by conical combinations of basis I-spline functions,
i.e., non-decreasing functions defined as the integrals of the
M-splines (which are positive). Formally, these functions
denoted Ii(x; k, t), i = 1, . . . ,m are defined by:

Ii(x; k, t) =

∫ x

a

Mi (y; k, t) dy

Let j be the index such that tj ≤ x < tj+1, the value of an

I-spline is computed as follows:

Ii(x; k, t) =





1 if i < j − k + 1
0 if i > j
j∑

s=i

ts+k+1 − ts
k + 1

Ms(x; k + 1, t) otherwise

As an illustration, the family of splines Ii(x; 3,t), i =
1, . . . , 5 for subdivision t = (0, 0, 0, 0, 1

3 ,
2
3 , 1, 1, 1, 1) is

given in the right part of Figure 2.

Figure 2: Basis functions Mi(x; 3,t) and Ii(x; 3,t)

2.4 REGRET MINIMIZATION WITH I-SPLINES

The computation of PMR is the main building block to
compute minimax regret. In order to compute MR and
MMR, it is indeed sufficient to perform a quadratic num-
ber of PMR optimizations2. We now focus the discussion
on PMR computations and show that the optimization of
regrets is drastically simplified when weighting function w
is defined by a conical combination of Ii-splines:

w(p) =
m∑

j=1

λjIj(p; k, t), λj ≥ 0, j = 1, . . . ,m (8)

Note that, k and t being fixed, function w is completely
characterized by vector λ = (λ1, . . . , λm) ∈ Rm+ . So the
elicitation of the entire function boils down to the elicita-
tion of vector λ. In that case the RDU criterion reads, for
any lottery ` = (x1, p1; . . . ;xn, pn), as follows:

V (`;λ) =

n∑

i=1

m∑

j=1

λjIj(

i∑

k=1

pk; k, t)[u(xi)− u(xi+1)]

By permuting the two first summations in the above
formulation, we obtain V (`;λ) = λᵀv(`, k, t) where
v(`, k, t) ∈ Rm is a vector whose jth component is equal
to
∑n
i=1 Ij(

∑i
k=1 pk; k, t)[u(xi)− u(xi+1)]. Hence PMR

values can be reformulated using vector λ and a set Λ of
admissible weighting vectors replacing W . We obtain:

PMR(`, `′; Λ) = max
λ∈Λ

[V (`′;λ)− V (`;λ)]

= max
λ∈Λ

λᵀ[v(`′, k, t)− v(`, k, t)]

2In fact, a more efficient strategy consists in implementing
an alpha-beta search procedure, in this way it is possible to
prune several cases and compute a much lower number of PMRs
[Braziunas, 2011].
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Moreover, the constraint V (`+;w) ≥ V (`−;w) present
in (7) takes now the form of a linear constraint
λᵀ[v(`+, k, t)− v(`−, k, t)] ≥ 0. Hence the set

ΛP = {λ ∈ Rm
+ : ∀(`+, `−)∈P,λᵀ

[v(`
+
, k, t)− v(`

−
, k, t)]≥0}

is a convex polyhedron. Therefore, under the assumption
that I-spline functions are convenient to describe the prob-
ability weighting function, the computation of PMR for a
given pair of lotteries (`, `′), initially introduced as a dif-
ficult optimization problem, see Equations (4-7), can now
easily be achieved by solving the following linear program:

maxλᵀ[v(`′, k, t)− v(`, k, t)]

s.t. λᵀ[v(`+, k, t)− v(`−, k, t)] ≥ 0,∀(`+, `−) ∈ P
λi ≥ 0, i = 1, . . . ,m.

2.5 THE ELICITATION ALGORITHM

Algorithm 1 details the steps involved in our regret-based
approach for the elicitation of w. Given a dataset of deci-
sions (lotteries) L (for each decision we are given a specifi-
cation of the numerical outcomes and their associated prob-
abilities) and a set of initial preferences P (that could be
empty), we compute the initial minimax regret value v, the
max-regret-optimal decision `∗ and the adversarial decision
`a. We then start asking queries.

Function Query simulates the question/answer protocol.
It takes two lotteries as input and returns the preferred lot-
tery among the two. After each user’s response we recom-
pute the minimax regret value, the regret-optimal decision
`∗, and its challenger `a. We loop until the regret drops
below a positive threshold ε. Queries are asked accord-
ing to the current solution strategy (analogue to the strat-
egy used in [Boutilier et al., 2006]), that requires the user
to compare `∗ with `a. The least preferred among `∗ and
`a is removed from L as it is dominated by the other. This
guarantees a strict reduction of |L| at every step, ensuring a
linear convergence in the number of lotteries. The practical
efficiency of this algorithm is illustrated in Section 4.

Note that when the lotteries in L involve a large number
of branches, we cannot expect a DM to be able to com-
pare them with confidence. In such cases, we recommend
to work with two sets of lotteries: the actual set L of lot-
teries (in which the preferred solution must be found), on
which pairwise regrets are computed, and a second set of
simpler lotteries used only for preference queries. For the
latter, we may use lotteries of type `p = (M,p; 0, 1 − p)
(where M is the top outcome) and ask the DM to compare
`p, for some probability p, to some certain consequence x
in [0,M ]. Under the assumptions u(0) = 0 and u(M) = 1,
we derive from the response either w(p)≥ u(x) or the re-
verse inequality, thus reducing uncertainty on function w
and, in most cases, the MMR on actual lotteries.

Algorithm 1: Regret-based elicitation of w
Input: L,P, ε
Output: `∗
begin

`∗ ← arg min`∈LMR(`; ΛP);
`A ← arg max`∈L PMR(`∗, `; ΛP);
v ← MMR(ΛP);
while v > ε do

p← Query(`∗, `A);
L ← L \ the least preferred in {`∗, `a};
P ← P ∪ {p};
v ← MMR(ΛP);
`∗ ← arg min`∈LMR(`; ΛP);
`A ← arg max`∈L PMR(`∗, `; ΛP);

end
end

3 UTILITY ELICITATION IN RDU

In the previous section, we have discussed the elicitation of
the weighting probability function in the RDU model, as-
suming the utility function was known. We discuss now the
elicitation of function u when w is not known. The main
difficulty to overcome lies in the fact that functions u andw
are strongly interlaced in the computation of RDU values,
due to products of type w(

∑i
k=1 pi)u(xi). A given value

u(xi) may impact differently on preferences, depending
on the probability weighting function. Fortunately, there
is a part of DM preferences that are not impacted by w
and that can be used to elicit u. We present two illustra-
tions of this idea in the two next subsections. The fist one
provides a precise spline function interpolating a sample
of points of the utility curve constructed with the gamble
tradeoff method proposed by Wakker and Deneffe [1996].
The second proposes an alternative approach based on sim-
ple queries aiming at obtaining the certainty equivalent of
simple lotteries.

3.1 USING THE GAMBLE TRADEOFF METHOD

We first recall the principle of the gamble tradeoff method
[Wakker and Deneffe, 1996] to construct points on the util-
ity curve. To start with an example, let us consider the
two following lotteries: ` = (c, p; b, 1 − p) and `′ =
(d, p; a, 1 − p) for a probability p ∈ (0, 1), where a, b, c, d
are four distinct outcomes such that a < b < c < d. Then
it can be easily checked from the definition of RDU that the
DM is indifferent between ` and `′ (i.e., V (`) = V (`′)) if
and only if:

[u(b)− u(a)](1− w(p)) = [u(d)− u(c)]w(p) (9)

To construct some points of the utility function u(x), x in
[0,M ], we need two reference values α and β chosen in
such a way that M < α < β. Then, the gamble trade-
off method consists in generating the increasing sequence
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defined by r0 = 0 and ri = Query(`i, `
′
i) for i > 1 where:

`i = (α, p; r, 1− p) `′i = (β, p; ri−1, 1− p)

and Query(`i, `
′
i) is a function asking to the DM which

value r makes the two lotteries indifferent and returns this
value. The sequence is generated until r ≥ M . By con-
struction we have V (ri, 1−p;α, p) = V (ri−1, 1−p;β, p).
Similarly we have V (ri+1, 1−p;α, p) = V (ri, 1−p;β, p).
From these two equalities, we obtain, from equation (9):

[u(ri)− u(ri−1)](1− w(p)) = [u(β)− u(α)]w(p)
[u(ri+1)− u(ri)](1− w(p)) = [u(β)− u(α)]w(p)

Hence u(ri+1)− u(ri) = u(ri)− u(ri−1), therefore:

u(ri+1) = 2u(ri)− u(ri−1) (10)

Since u is defined up to a positive affine transformation, we
can set, without loss of generality, u(r0)=0 and u(r1)=1.
Hence, using (10) we obtain u(ri) = i for all i ≥ 0 which
means that the utility function should interpolate points
(ri, i). Moreover, the density of values ri within a given
interval can be increased (resp. decreased) by changing pa-
rameters α and β to reduce or increase the difference β−α.

Assume that q points (ri, i) have been constructed with
the gamble tradeoff method, these points can be interpo-
lated using I-spline regression. So we define the utility
function as a piecewise quadratic monotone spline u(x) =∑
k λkIk(x, 3, t) for a uniform knot sequence t. Then, co-

efficients λk can be determined by minimizing the distance
of the constructed points to the spline u. This is achieved
by solving the following linear program Π:

min
∑q
i=1 ei

s.t.

{
ei ≥ i−

∑
k λkIk(ri, 3, t), i = 1, . . . , q

ei ≥
∑
k λkIk(ri, 3, t)− i i = 1, . . . , q

λk ≥ 0, k = 1, . . . , q.

This approach leads to a precise utility function; however, it
is not incremental and does not provide an easy control on
the number of points elicited on the utility curve.Moreover,
preference queries involved in the process are somewhat
more complex than in the certainty equivalent method. In
the next subsection we present an incremental approach
with simpler preference queries that gives control on which
points are constructed.

3.2 USING THE CERTAINTY EQUIVALENT

An incremental utility elicitation procedure is proposed by
Hines and Larsen [2010] with the aim of eliciting utili-
ties while removing the effects of probability weighting
from users answers. Using pairwise max regret minimiza-
tion, they propose to elicit preferences in both cumulative
prospect theory and expected utility theory by determining
a specific probability value p∗ that allows to ask outcome

queries where the effect of w cancels out. This idea could
be used here but can be simplified in our context. Note
that their definition of regret is based on the EU model and
would not be the most appropriate to derive robust recom-
mendations with respect to RDU. In order words they as-
sume that EU is the right model to produce recommenda-
tions, but observe preferences biased by distorted probabil-
ities as in cumulative prospect theory and RDU.

We propose here another incremental approach involving
simpler preference queries based on the use of certainty
equivalent. It consists first in identifying a probability p∗

such that w(p∗) = 1/2. To this end, we only need to
construct the two first elements r1, r2 following r0 = 0
in the sequence defined in the previous subsection. Then
we ask the DM for which probability p∗ she is indiffer-
ent between lottery ` = (r2, p

∗; r0, 1 − p∗) and lottery
`′ = (r1, 1) yielding r1 with certainty. Since by con-
struction, u(r0) = 0, u(r1) = 1 and u(r2) = 2, V (`) =
u(r0) + w(p∗)[u(r2) − u(r1)] = 2w(p∗) and u(`′) = 1.
This leads to 2w(p∗) = 1 and therefore w(p∗) = 1/2.

Now the utility curve can be incrementally constructed
on any interval [0,M ] using simple indifference queries
based on the following principle: let r− and r+ be any
two distinct values in [0,M ] such that u(r−) and u(r+)
are known (initially we choose r− = 0 and r+ = M
and we set u(0) = 0 and u(M) = 1). Then a new
point can be constructed between positions r− and r+

by asking the DM for the certainty equivalent of lottery
(r+, p∗; r−, 1 − p∗). If the answer is r (meaning that she
is indifferent between the lottery and winning r for sure)
we obtain u(r) = u(r−) + w(p∗)(u(r+) − u(r−)) =
w(p∗)u(r+) + (1− w(p∗))u(r−). Since w(p∗) = 1/2 we
finally obtain u(r) = (u(r−) + u(r+))/2. When u is de-
fined as a monotone spline, the new point will induce new
constraints further restricting the set of possible utilities.

Denoting (ri, u(ri)), i = 1, . . . , q the points already de-
fined at iteration q, utility uncertainty within interval
[ri, ri+1] is bounded above by δi = u(ri+1)−u(ri) due
to monotonicity of u. The next query is selected to ob-
tain a new point in the interval [rk, rk+1] which maxi-
mizes δk; we ask for the certainty equivalent of lottery
(rk+1, p

∗; rk, 1−p∗). The process can be iterated to re-
fine progressively the intervals until the desired number of
points is reached or the maximal δi drops below a given
threshold. Finally, a monotone regression spline is gener-
ated using the linear program Π introduced in subsection
3.1 to approximate the elicited points.

4 NUMERICAL TESTS

Incremental elicitation of w. In order to model function
w, we used I-spline defined from the non-uniform knot se-
quence t′ = (0, 0, 0, 0, .1, 0.9, 1, 1, 1, 1). The use of knots
at positions .1 and .9 instead of 1/3 and 2/3 induces a small
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left shift of I1(x, 3, t′) and a small right shift of I5(x, 3, t′)
so as to include extremely concave or convex transforma-
tions in the family of splines that can be generated. This al-
lows to model extremely risk-averse or risk-prone attitudes
if necessary.

In the first series of experiments, we validate our choice
of monotone splines for identifying the DM’s probability
weighting function w. Defining this function as w(x) =∑5
j=1 λjIj(x, 3, t

′), we used a linear program similar to
Π (see Subsection 3.1) to fit parameters λj to different
standard weighting functions, presenting various curves
from extremely concave to extremely convex, including S-
shaped and inverse S-shaped curves as well. The fitting
possibilities of model w defined from I-splines are shown
in Figure 3. In particular, we are able to approximate, with
a single model, different kinds of distortion functions w
(concave, convex, S-shaped) that usually require different
parametric models (Prelec, TK, LinLog; see Section 2.1).

The instances where the approximation is good but not
ideal are those with an extreme steepness (first instance,
for very small value of p, and fourth instance, for very high
values of p, in Figure 3). These situations (w extremely
steep) will be rare in practice and correspond to shapes that
could be even better described with a more specialized knot
sequence. We conclude that the use of I-splines give us
good approximations; splines allow us to learn w without
committing to a specific parametric form.

In the second series of experiments, we observe the num-
ber of queries needed to determine the winning lotteries
within sets of different sizes. The set L is constructed by
repeatedly generating at most k outcomes in [0, 1000] and
a probability distribution on these outcomes to build a new
lottery (with k branches) at step i; this lottery `i is inserted
in L only if no stochastic dominance holds in {`i} ∪ L.
The process is continued until the desired number of lotter-
ies is obtained. We made experiments with lotteries with
k = 2, 3, 5, 10 branches and a simulated DM. For small sets
of alternatives (typically 100 lotteries) the procedure solves
the problem after very few questions. To test the scalability
of the approach to larger sets we have generated instances
including 1000 or 2000 lotteries. Interactions with the DM
are simulated by generating answers to preferences queries
using RDU with an inverse S-shaped probability weight-
ing function w0, unknown from the elicitation procedure,
and a linear utility function. For each set of lotteries we
observed the reduction of the minimax regret (expressed
in percentage of the initial max regret before asking any
query) as the number of queries increases. For compari-
son, we also observed the regret reduction obtained with
an heuristic that randomly selects the new pair of lotteries
to be compared. The resulting curves are plotted in Fig-
ure 4, respectively in green and red. At the same time, we
observed the reduction of real regrets defined as the differ-
ence V (`∗0;w0)−V (`∗;w0) where `∗0 is the optimal lottery

Figure 3: Monotone approximations of w(p).

for the actual weighting function w0, and `∗ is the solu-
tion minimizing the current max regret MR(`;W ). This
third curve is plotted in blue in Figure 4. This experiment
has been repeated multiple times on randomly generated
instances and the results are very similar.

Considering the green and blue curves showing the diminu-
tion of max regret and real regret in Figure 4, it appears that
the winner can be determined exactly among 1000 lotteries
in about 10 queries (in worst case 15 preference queries).
This considerably improves the results obtained with the
random strategy. Similar tests have been performed for
2000 alternatives. The curves have similar shape and show
that less than 10 additional queries are necessary. In fact,
we could stop earlier, when minimax regret is very small
(even if not exactly zero). The elicitation procedure can in-
deed be seen as an anytime algorithm. It can be interrupted
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Figure 4: Regret reduction, |L| = 1000, 100 runs.

Figure 5: The spline approximating u(x)

before reaching a null regret, at any time of the process,
and return the current minimax regret solution. We can also
provide the associated max regret as a performance guaran-
tee on the quality of the returned solution. Typically, as can
be seen from the curves, stopping the elicitation when the
minimax regret drops below a given percentage of the ini-
tial max regret (or below a given absolute threshold) will
save a significant percentage of queries (at least 33% in
our tests) without affecting significantly the quality of the
recommendation. The efficiency of this approach is due
to the fact that in most cases, the parameters of the deci-
sion model do not need to be precisely know to be able
to determine a necessary winner, i.e., a lottery ` such that
V (`;w) ≥ V (`′;w) for all `′ ∈ L and all w compatible
with the available preference information.

Utility elicitation. We present now an example of con-
struction of a monotone spline on the [0,1000] interval, to
reveal and model the implicit utility function of a DM in
RDU theory, from observed preferences involving lotteries
with outcomes in this interval. The answers of the DM to
preference queries have been simulated by a RDU model

with an inverse S-shaped probability weighting function
w(p) defined by the TK model introduced in Section 2
with parameter r = 0.5, and a concave utility defined by
u(x) = 1 − (1 − x/1600)4. We successively use the
two methods proposed in Section 3 to elicit points and
generate the regression spline. We first use the gamble
tradeoff method as described in 3.1 with α = 1050 and
β = 1600 to obtain the sequence r0,. . . ,r6. We compute
by linear programming the parameters λk of the monotone
regression spline f that fits best points (ri, i) and define
u(x) = f(x)/f(1000) to obtain u(1000) = 1. In Figure 5,
points (ri, u(ri)) are represented by round points (in red),
and we show the resulting utility function (in blue).

The construction of the monotone spline with the certainty
equivalent method is also shown in Figure 5; the elicited
points are represented by + (in green), numbered by order
of generation, and the resulting utility function is so close
to the previous one that they are indiscernible.

5 CONCLUSION AND PROSPECTIVES

In this paper we proposed an incremental approach for the
elicitation of the RDU model. A first novelty concerns the
use, within the RDU theory, of minimax regret in order to
incrementally elicit the probability weighting function w
and to produce robust recommendations with respect to the
uncertainty in probability weights. A second novelty is the
use of monotonic regression splines as a model of the prob-
ability weighting function, allowing the representation of a
wide variety of decision behaviors and the optimization of
pairwise max-regrets by linear programming. We also ex-
tend the proposed approach to cases where the utility u is
also unknown. Our experiments show that, despite the ex-
pressivity of the model, the elicitation burden is reasonably
low in practice, due to the fixed and limited number of pa-
rameters used in splines approximating u and w, and the
active learning process implemented for w. There are at
least two natural continuations of this work. The first one
consists in extending the approach for cumulative prospect
theory to model different risk attitudes towards gains and
losses. The second would be to jointly learn functions u
and w using an incremental approach based on regret min-
imization, with the aim to save more preference queries.
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Abstract

In many applications, it may be better to compute
a good interpretable policy instead of a complex
optimal one. For example, a recommendation en-
gine might perform better when accounting for
user profiles, but in the absence of such loyalty
data, assumptions would have to be made that
increase the complexity of the recommendation
policy. A simple greedy recommendation could
be implemented based on aggregated user data,
but another simple policy can improve on this
by accounting for the fact that users come from
different segments of a population. In this pa-
per, we study the problem of computing an opti-
mal policy that is interpretable. In particular, we
consider a policy to be interpretable if the deci-
sions (e.g., recommendations) depend only on a
small number of simple state attributes (e.g., the
currently viewed product). This novel model is
a general Markov decision problem with action
constraints over states. We show that this prob-
lem is NP hard and develop a Mixed Integer Lin-
ear Programming formulation that gives an exact
solution when policies are restricted to being de-
terministic. We demonstrate the effectiveness of
the approach on a real-world business case for
a European tour operator’s recommendation en-
gine.

1 Introduction

Interpretability in data mining and machine learning means
that the computed models and solutions can be relatively
easily understood by humans. Examples of algorithms
that produce interpretable solutions include classical algo-
rithms, such as decision trees [18], and newer sparse learn-
ing methods [18]. Recently, there has been a lot of interest
in interpretable machine learning, but few works have ex-
plicitly focused on interpretability in decision making.

Lack of interpretable solutions can be an important road-
block in many critical domains, such as medicine [12, 11,
26]. If decision makers can understand a computed solu-
tion they are more likely to trust and implement it. Addi-
tionally, having an interpretable policy makes it easier to
discover flaws resulting from incorrect models or unrea-
sonable model assumptions, and without implementing a
policy. Furthermore, it is possible to discover why the pol-
icy does not perform well. Finally, a simple policy can be
easily implemented [29] and, as we show, sometimes as-
suming that the policy is simple circumvents the need to
build complex models.

In this paper, we view the task of recommending products
as one of decision making in a dynamic environment, rather
than ranking products in a static setting (which is more
common). With the rise in accessible customer information
and product availability, the importance of matching cus-
tomers to products has quickly risen. This problem arises
in many domains such as recommender systems [21, 6] and
personalized online advertising [8, 16, 7]; similar methods
for matching customers to products are even used for email
classification and spam detection [20]. Most methods for
these systems use both the descriptions of the items and the
historical behavior of the users.

Recommender systems fall into two basic categories [24]:
collaborative filtering and content-based filtering. Collabo-
rative filtering relates one user’s preferences to other users’
preferences without taking into account specific user or
item properties [24]. Content-based filtering rather makes
use of user profiles and the item properties. Most rec-
ommender systems combine these ideas and are a hybrid
of both collaborative and content-based filtering methods.
Successful recommender systems have been developed for
recommending movies (e.g., Netflix), music (e.g., Pan-
dora), personalized advertising [32], and even for recom-
mending social-network followers [15, 5].

We focus in this paper on a single, and admittedly sim-
ple, model of policy interpretability (i.e., recommendation
rules that are easily understood). Since we consider a dy-
namic setting, we look for recommendations based on the
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state of a user (e.g., whether or not interested in a currently
viewed product), and these recommendations based on the
state are what we refer to as a policy. We consider the stan-
dard Markov decision process (MDP) with discrete states
and actions. Typically, an MDP will have thousands or mil-
lions of states. Therefore, even though a policy can be ex-
amined in principle, it cannot be understood in practice.
To make the policy interpretable, we simply require that it
does not prescribe more than, for example, 50 different ac-
tions. This means that the policy must prescribe the same
action for a number of states and also that such a subset of
states must be well defined.

Computing optimal recommendations under our inter-
pretability constraints constitutes solving a so-called par-
tially observable Markov decision process (POMDP),
which can be cast as a Markov decision process. Policies
for such MDPs tend to be extraordinarily complex and hard
not only to interpret but also to implement. Instead, as in
our case, one may want to compute a best possible policy
that depends only on the currently viewed product. This
would entail computing item to item recommendations that
consider the customer dynamics, a policy which falls into a
class of POMDPs that are not complex.

To motivate the need for interpretable policies, consider
optimizing dynamic online product recommendations. As
a user interacts with a website, their preferences become
clear over time. However, the interactions themselves in-
fluence user behavior [33, 30, 27, 23]. Consider a scenario
with two customer types A and B and two products X and
Y where the percentages of customer types A and B in-
terested in products X and Y are 90%/10% and 40%/60%,
respectively. If a customer of type A is recommended and
clicks on product Y, the distribution of the types of cus-
tomers looking at the two products will change, and our
model accounts for such dynamics.

Our main contribution in this paper is a novel model for
computing interpretable policies as described above, or
stated differently, a model for computing policies for MDPs
which are constrained to take the same action in subsets
of states. We show connections with several other mod-
els considered in the context of reinforcement learning and
POMDPs and use the relationship to show that the optimal
interpretable policies may be stochastic and are NP hard to
compute. We then propose a new and simpler nonlinear
Mixed Integer Linear Program (MILP) formulation. While
these models can also be hard to compute, we show that we
can learn optimal interpretable deterministic policies.

We also contribute to the area of recommendation engines
with a framework for making recommendations that ac-
count for the changing dynamics of the system. While
we do not model these dynamics directly, our framework
does account for more general dynamics by introducing
unobservable dynamics into the model. In other words,

our model assumes that customers are changing states but
also assumes that we cannot directly observe the manner in
which they are changing.

Furthermore, we establish a connection between several
apparently unrelated areas of optimization. The underly-
ing model is a Markov decision process with constraints
on actions, and is related to several other streams of work.
Similar models are studied using aggregation in reinforce-
ment learning, where the motivation is somewhat different.
Aggregation is used because the models are too large to be
solved or even enumerated. As we discuss in more detail
later, the interpretable MDP model is also related to finite
state controller optimization on POMDPs (e.g. [2]). Fi-
nally, policy search methods from reinforcement learning
have been used to compute interpretable policies.

The remainder of the paper proceeds as follows. Section
2 next discusses more related work to our notion of inter-
pretability. Section 3 then formalizes the concept of inter-
pretability and discusses the application to recommender
systems, followed by mathematical programming formula-
tions used to learn interpretable policies in Section 4, and
corresponding complexity results in Section 5. Our frame-
work is evaluated on data from a major European tour op-
erator in Section 6, where a significant improvement over
several practical benchmarks is demonstrated. A final dis-
cussion of our findings is given in Section 7.

2 Related Work

In this section, we summarize the existing related work and
draw new connections. While there has been little work di-
rectly on interpretable policies, it turns out that our model
of policy interpretability is closely related to previous re-
sults in other fields.

Recent work on interpretable policies in reinforcement
learning [17] proposes to use policy search methods. Pol-
icy search is a general method that can be leveraged to find
policies that are parameterized in ways that make them in-
terpretable. While this is a very natural approach and is
demonstrated to work well, it does not study any new meth-
ods for computing these interpretable policy. In compari-
son, our focus is on a simpler model that allows us to more
deeply study the computational problems.

The most closely related method to our formulation (dis-
cussed in Section 4.1) is state aggregation in reinforcement
learning, which is a very simple and classic method (e.g.,
[25, 19, 28, 3, 10]). The motivation in our work is quite dif-
ferent from that in state aggregation. The main reason for
state aggregation is to address a problem that is very large
and often cannot be enumerated, and therefore, very little
focus has been put on how to compute good policies for
an aggregation. Indeed, most work has rather focused on
methods for choosing which states should be aggregated.
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Since we deal with a smaller number of states, we can de-
velop better methods for computing interpretable policies,
and will adapt methods used for state aggregation to this
setting.

Our model of interpretability can be also seen as a special
case of Partially Observable Markov Decision Processes
(POMDPs). POMDPs generalize MDPs to the case where
observations do not contain exact information about the
current state, and in general, the optimal policy to POMDPs
are complex. There do exist certain classes of POMDPs
that result in simpler optimal policies, and this space is
where our model lies. In the other direction, it can also
be shown that our interpretable policy problem generalizes
one of these simpler classes of POMDPs, termed optimal
finite state controllers in the MDP literature. Hence, we
proceed as with general POMDPs, and constrain polices by
introducing a concept of observations in the next section.

Another closely related area of work to interpretability is
that of implementability of policies. The goal is not to
have the policy be understood by humans, but instead re-
quires that. The term implementable policy in the context
of MDPs was introduced in [29]. However, the problem is
a special case of finding memoryless policies (i.e., policies
that depend only on the current state and not on any history)
for POMDPs.

Finally, the analysis of policy optimality in some special-
ized domains, such as inventory management, queueing,
and energy storage is tangentially related to our setting.
One can show that the optimal policies in these domains
are interpretable; indeed, for example, the optimal policy
in inventory optimization domains will be independent of
the current inventory. This leads to policies that are easy to
interpret and also typically easy to solve. Unlike these set-
tings, we deal with cases in which the optimal policy may
not be interpretable, which introduces an additional layer
of computational difficulties.

3 Interpretable Policies in MDPs

In this section, we formally define the model and illustrate
its application to the dynamic recommendation problem
described in the introduction. For the remainder of the pa-
per, we define the following notations. Denote by ∆𝑑 the
non-negative simplex in 𝑑 dimensions, i.e., the set of valid
distributions defined by {𝑥 ∈ R𝑑 :

∑︀
𝑖 𝑥𝑖 = 1, 𝑥 ≥ 0}. For

a matrix 𝑋 , we define 𝑋(𝑠, ·) as row 𝑠 of 𝑋 .

The interpretable model is based on a Markov decision pro-
cess (MDP) (e.g., [22]). An interpretable MDP is a tu-
ple (𝒮,𝒜, 𝑃, 𝑟, 𝑝0,𝒪, 𝜃). Here, 𝒮 is a finite set of states,
𝑝0 ∈ ∆|𝒮| is the initial distribution, 𝒜 is a finite set of
actions, each of which can be taken in all states. The tran-
sition probability matrix for each 𝑎 ∈ 𝒜 is denoted 𝑃𝑎 ∈
R|𝒮|×|𝒮| and each row lies in the simplex: 𝑃𝑎(𝑠, ·) ∈ ∆|𝒮|

for all 𝑠 ∈ 𝒮. The rewards vector for each action 𝑎 ∈ 𝒜 is
denoted 𝑟𝑎 ∈ R|𝒮|.

As discussed in the introduction, we assume that inter-
pretability of a policy depends on a small number of simple
state properties. To capture this property, we augment the
model by a set of observations 𝒪 and an observation func-
tion 𝜃 : 𝒮 → 𝒪 that defines a partitioning of states to
observations.

A solution to an MDP is a randomized stationary policy
from Π𝑅 : {𝒮 → ∆𝒜} or deterministic stationary policy
from Π𝑅 : {𝒮 → 𝒜}. The set of interpretable policies Π𝐼

is defined as:

Π𝐼 = {𝜋 ∈ Π𝑅 : 𝜃(𝑠1) = 𝜃(𝑠2)⇒ 𝜋(𝑠1) = 𝜋(𝑠2)} .

In other words, if two states share the same observation
then an interpretable policy must take actions with identical
probabilities in these states.

Our objective is to compute a policy that maximizes the
infinite-horizon 𝛾-discounted return 𝜌(𝜋) by solving

max
𝜋∈Π𝐼

𝜌(𝜋), (3.1)

where 𝜌(𝜋) can be expressed as

𝜌(𝜋) =

∞∑︁

𝑡=0

𝛾𝑡𝑝T0𝑃
𝑡
𝜋𝑟𝜋.

It is important to note that the constraints imposed by in-
terpretable policies are quite different from the constraints
in constrained MDPs [1]. The optimal solution to Eq. (3.1)
can be obtained through other formulations. In particular,
we offer a Mixed Integer Linear Programming formulation
in Section 4.2, and equivalence is given there by Propo-
sition 4.1. Eq. (3.1) offers an easy interpretation for our
objective when designing a policy.

To illustrate the concept of interpretability, the following
example describes how our model can be used to repre-
sent the recommender system formulation from the intro-
duction. This is a simplified version of the model that we
use later in the paper for empirical evaluation.

Example 3.1 (Dynamic Product Recommendations). Con-
sider the online product recommendation setting described
in the introduction. Let ℳ be a set of available prod-
ucts and let 𝒲 be a set of customer segments. Assum-
ing that customer segments are known in advance, their
browsing behavior and response can be modeled as the
following MDP. States 𝒮 = 𝒲 × ℳ represent the cus-
tomer type and current product displayed. Actions repre-
sent the product sets to recommend during a page view:
𝒜 = {𝑎 ∈ 2ℳ : |𝑎| ≤ 𝑘}. Here, 𝑘 is the maximum num-
ber of products to recommend. Transition probabilities are
based on whether a customer chooses to follow a product
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recommendation, purchases the currently displayed prod-
uct, or abandons the purchase. Rewards are accrued by
customers purchasing items.

This recommendation MDP can be solved rather easily,
however the policy is likely to be hard to implement. This
is because the customer type is not observable, particularly
if only a short history of customer interactions is avail-
able. Another direction, solving this problem as a POMDP,
would yield a complex policy that is hard to interpret and
implement in a real-time system. This leads to applying
our model of interpretability.

The simplest and most interpretable online product recom-
mendation policy are item-to-item recommendations, and
capturing the desire for such a policy in our setting is sim-
ple. Let the set of observations be equal to the available
products (𝒪 = ℳ) and define the observation mapping
function as 𝜃(𝑤,𝑚) = 𝑚 for 𝑤 ∈ 𝒲,𝑚 ∈ ℳ so that
observations are independent of the customer type. Typ-
ically, item-to-item recommendations are computed based
on the customers that typically visit the given product page,
i.e, the distribution of customers. However, the recommen-
dations themselves influence this distribution. The MDP
implementation with interpretable policies accounts for the
change in the distribution, and we formulate and analyze
this approach in more detail below.

4 Interpretable MDP Formulations

In this section, we formulate the mathematical programs
for learning the MDPs of interest, beginning with a clas-
sical MDP formulation, adding interpretability constraints,
and then relaxing nonlinearities to obtain a mixed integer
linear programming (MILP) formulation that approximates
the exact problem.

4.1 Basic Formulation

While it is possible to adapt nonlinear optimization formu-
lations from the POMDP literature, for example [2], we
derive a simpler nonlinear formulation first. We first adapt
the standard linear program formulation for a Markov de-
cision process. The classic MDP linear program learns a
policy that maximizes the expected reward of the system
subject to constraints that model the transitions allowed in
the system.

First define the following variables. Let 𝑢 ∈ R|𝒮|×|𝒜| rep-
resent the policy we are trying to learn, which is defined in
every state as 𝑢(𝑠, ·)/∑︀𝑎 𝑢(𝑠, 𝑎) ∈ ∆|𝒜|. Note that, for
variable 𝑢, we denote 𝑢(𝑠, 𝑎) as the (𝑠, 𝑎) entry of matrix 𝑢
in the following formulations, along with similar notation
for other variables. Summations over 𝑠 or 𝑎 are meant as
shorthand for 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜. Then, in formal terms,
a deterministic policy means that 𝑢(𝑠, 𝑎) = 1 for a single

𝑎 ∈ 𝒜 for each 𝑠 ∈ 𝒮, whereas a randomized policy simply
means that

∑︀
𝑎 𝑢(𝑠, 𝑎) = 1 for each 𝑠 ∈ 𝒮.

Given our notation, the linear programming formulation for
the classic MDP is

max
𝑢

∑︁

𝑠,𝑎

𝑢(𝑠, 𝑎)𝑟(𝑠, 𝑎)

s.t.
∑︁

𝑎

𝑢(𝑠, 𝑎)

= 𝑝0(𝑠) +
∑︁

𝑠′,𝑎

𝛾𝑃𝑎(𝑠, 𝑠′)𝑢(𝑠′, 𝑎) ∀𝑠 ∈ 𝒮

𝑢(𝑠, 𝑎) ≥ 0 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜.
(4.1)

The summation in the objective is the expected reward for
a policy given by 𝑢. Note that 𝑢 can also be interpreted
as a state-action occupancy measure (e.g. [4]) which is the
cumulative visitation probability over all state-action pairs
when the discount (for computing the current value of fu-
ture rewards) is interpreted as a probability of leaving the
system. Then the first set of constraints can be seen as a
form of the Bellman equations in terms of a state-action
occupancy measure rather than state value. It is known that
an optimal policy must satisfy these equations. The final
inequalities are needed since measures must be nonnega-
tive. For the optimal solution, these values represent the
optimal policy.

We next want to adapt Problem 4.1 in order to enforce in-
terpretability. Interpretability constraints can be directly
added by introducing a new optimization variable, 𝜓 ∈
R|𝒪|×|𝒜|, which defines the interpretable policy for each
observation as 𝜓(𝑜, ·) ∈ ∆|𝒜|. The new formulation is

max
𝑢,𝜓

∑︁

𝑠,𝑎

𝑢(𝑠, 𝑎)𝑟(𝑠, 𝑎)

s.t. 𝑢(𝑠, 𝑎) = 𝜓(𝜃(𝑠), 𝑎)
∑︁

𝑎′

𝑢(𝑠, 𝑎′) ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
∑︁

𝑎

𝑢(𝑠, 𝑎)

= 𝑝0(𝑠) +
∑︁

𝑠′,𝑎

𝛾 𝑃𝑎(𝑠′, 𝑠)𝑢(𝑠′, 𝑎) ∀𝑠 ∈ 𝒮

𝑢(𝑠, 𝑎) ≥ 0 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
∑︁

𝑎

𝜓(𝑜, 𝑎) = 1 ∀𝑜 ∈ 𝒪.

(4.2)

In this formulation, we interpret 𝑢 as a state-action occu-
pancy measure (as defined above). The first set of con-
straints dictates that the interpretable policy is equivalent
to a normalized state-action occupancy measure (as is the
policy in the classic MDP above) and furthermore that the
policy at states in the same observation is the same. The
second and third set of constraints remains the same. The
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last set of constraints puts the interpretable policy at each
observation in the simplex (since nonnegative is already
implied by nonnegativity of 𝑢).

The optimal policy is directly constructed from the optimal
𝜓 for (4.2). The following proposition shows its correct-
ness.

Proposition 4.1. The optimal solution to (4.2) is also opti-
mal in (3.1).

Proof. Follows from the equivalence in Theorem 6.9.1 in
[22], the optimality in Theorem 6.9.4 in [22], and the equiv-
alence of return in terms of the occupancy frequency. The
constraint on 𝑢 from 𝜓 is correct due to the construction of
the policy from 𝑢.

Note that formulation (4.2) is no longer linear or convex
because of the terms 𝜓(𝜃(𝑠), 𝑎)𝑢(𝑠, 𝑎′) in the first set of
constraints. It could be solved using a non-linear solver,
such as IPOPT. We take a different approach, which can
guarantee solution optimality, in the next subsection.

4.2 Mixed Integer Linear Program

This section describes a new mixed integer linear program-
ming (MILP) formulation for learning an interpretable pol-
icy within the MDP framework. A recent paper describes
a MILP formulation for finite state controllers [9], how-
ever, our formulation is simpler and our derivation is more
straightforward.

As we have defined a state-action occupancy frequency
𝑢(𝑠, 𝑎) above, we can similarly define a state occupancy
frequency 𝑑 ∈ R|𝒮| by 𝑑(𝑠) =

∑︀
𝑎 𝑢(𝑠, 𝑎) for each state

𝑠 ∈ 𝒮. From a modeling viewpoint, including 𝑑 gives a
new interpretation of state-action occupancy frequency as
the fraction of state occupancy frequency determined by the
optimal interpretable policy. From an optimization view-
point, including 𝑑 greatly reduces the number of nonlinear
functions in the first set of constraints in a trade-off for |𝒮|
additional equality constraints. This trade-off is important
regarding the relaxation below that we use to get an MILP
formulation. Introducing the state occupancy frequency to
the formulation results in the problem

max
𝑢,𝑑,𝜓

∑︁

𝑠,𝑎

𝑢(𝑠, 𝑎)𝑟(𝑠, 𝑎)

s.t. 𝑢(𝑠, 𝑎) = 𝜓(𝜃(𝑠), 𝑎)𝑑(𝑠) ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
𝑑(𝑠) = 𝑝0(𝑠) +

∑︁

𝑠′,𝑎

𝛾 𝑃𝑎(𝑠′, 𝑠)𝑢(𝑠′, 𝑎) ∀𝑠 ∈ 𝒮

𝑑(𝑠) =
∑︁

𝑎

𝑢(𝑠, 𝑎) ∀𝑠 ∈ 𝒮

𝑢(𝑠, 𝑎) ≥ 0 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
∑︁

𝑎

𝜓(𝑜, 𝑎) = 1 ∀𝑜 ∈ 𝒪.

(4.3)

Note that the third set of constraints are the |𝒮| new equality
constraints, and that the number of nonlinear terms in the
first set of constraints has been reduced from |𝒮| · |𝒜|2 to
|𝒮| · |𝒜| nonlinear terms.

While we can try to solve the nonlinear optimization prob-
lem (4.3), any solution we get will have no guarantee of op-
timality. We now develop a mixed integer linear program
formulation based on the so-called McCormick inequali-
ties. This approach relaxes the constraints in (4.3). The
idea is to bound the terms 𝜓(𝜃(𝑠), 𝑎)𝑑(𝑠) for all 𝑠 ∈ 𝒮, 𝑎 ∈
𝒜 by making use of upper and lower bounds on 𝜓(𝜃(𝑠), 𝑎)
and 𝑑(𝑠). McCormick inequalities are defined in the lemma
below.

Lemma 4.2 (McCormick Inequalities, e.g., [13]). Assume
that 𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑈 and 𝑏𝐿 ≤ 𝑏 ≤ 𝑏𝑈 . Then:

𝑎 𝑏𝐿 − 𝑎𝐿 𝑏𝐿 + 𝑎𝐿 𝑏 ≤ 𝑎 𝑏 ≤ 𝑎 𝑏𝑈 − 𝑎𝐿 𝑏𝑈 + 𝑎𝐿 𝑏

𝑎 𝑏𝑈 − 𝑎𝑈 𝑏𝑈 + 𝑎𝑈 𝑏 ≤ 𝑎 𝑏 ≤ 𝑎 𝑏𝐿 − 𝑎𝑈 𝑏𝐿 + 𝑎𝑈 𝑏

It is important to note that the equalities are attained for
the extreme points of the intervals (for either one of the two
variables).

The McCormick inequalities are easy to derive; for exam-
ple, the first lower bound on 𝑎𝑏 is attained by multiplying
the bounds 𝑎−𝑎𝐿 ≥ 0 and 𝑏−𝑏𝐿 ≥ 0. The MILP can then
be constructed as follows. The constraints on 𝜓 are box
constraints of the form 0 ≤ 𝜓(𝜃(𝑠), 𝑎) ≤ 1 and the bounds
on state occupancy frequencies are 0 ≤ 𝑑(𝑠) ≤ 𝑑(𝑠) where
𝑑(𝑠) must be estimated. Therefore, we can relax the non-
linear equality 𝑢(𝑠, 𝑎) = 𝜓(𝜃(𝑠), 𝑎)𝑑(𝑠) in problem 4.3 by
the following inequalities

𝑑(𝑠) (𝜓(𝜃(𝑠), 𝑎)− 1) + 𝑑(𝑠) ≤ 𝑢(𝑠, 𝑎) ≤ 𝑑(𝑠)𝜓(𝜃𝑠, 𝑎)

Note that all four McCormick inequalities are implied by
these two constraints.

The relaxed optimization problem becomes:

max
𝑑,𝑢,𝜓

∑︁

𝑠,𝑎

𝑢(𝑠, 𝑎) 𝑟(𝑠, 𝑎)

s.t. 𝑑(𝑠) (𝜓(𝜃(𝑠), 𝑎)− 1) + 𝑑(𝑠)

≤ 𝑢(𝑠, 𝑎) ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
𝑢(𝑠, 𝑎) ≤ 𝑑(𝑠)𝜓(𝜃(𝑠), 𝑎) ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
𝑑(𝑠) = 𝑝0(𝑠) +

∑︁

𝑠′,𝑎

𝛾 𝑃 (𝑠′, 𝑎, 𝑠)𝑢(𝑠′, 𝑎) ∀𝑠 ∈ 𝒮

𝑑(𝑠) =
∑︁

𝑎

𝑢(𝑠, 𝑎) ∀𝑠 ∈ 𝒮
∑︁

𝑎

𝜓(𝑜, 𝑎) = 1 ∀𝑜 ∈ 𝒪

𝑢(𝑠, 𝑎) ≥ 0 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
𝜓(𝑜, 𝑎) ∈ {0, 1} ∀𝑜 ∈ 𝒪, 𝑎 ∈ 𝒜

(4.4)
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We next note that the last statement of Lemma 4.2 implies
that we can compute an optimal deterministic policy (under
interpretability constraints) as well as an optimality gap for
suboptimal policies, which is summarized in the following
proposition.

Proposition 4.3. Optimal solution to (4.4) is also an opti-
mal solution to (3.1).

Proof. Since the McCormick inequalities are tight for
𝜓(𝑜, 𝑎) ∈ {0, 1}, the optimal solution to this MILP prob-
lem will be the optimal deterministic implementable policy
for the problem.

It may be also possible to solve (4.4) without the integral-
ity constraints, which means optimizing over randomized
policies. In that case, this is simply a linear program which
can be easily solved, however, the solution may not be very
good due to the relaxation given by the McCormick in-
equalities.
Remark 4.4. As we hinted, there is a connection between
finite state controllers and the interpretability constraints.
Consider a POMDP with 𝑚 states, 𝑎 actions, 𝑜 observa-
tions, and computing a finite state controller with 𝑛 nodes.
[9] shows that their MILP formulation has 𝑛 · 𝑎 + 𝑛2�̇� in-
tegral variables. It can be readily seen that applying our
formulation would have 𝑛2 · 𝑎 · 𝑜. This is more than [9].
The number of variables can reduced in a setting such as
the finite state controller in which the action set can be de-
composed as follows. Assume that 𝒜 = 𝒜1 × 𝒜2. Then
introduce additional variables 𝜓𝑖 : 𝒪 × 𝒜𝑖 → {0, 1} for
𝑖 = 1, 2. We add constraints

∑︀
𝑎∈𝒜𝑖

𝜓(𝑜, 𝑎𝑖) = 1 and
𝜓(𝑜, (𝑎1, 𝑎2)) ≤ min{𝜓1(𝑜, 𝑎1), 𝜓(𝑜, 𝑎2)}.

5 Properties of Optimal
Interpretable Policies

In this section, we prove basic properties of optimal inter-
pretable policies. Recall that an interpretable policy takes
the same action for all states within a single observation
and is computed by solving problem (3.1).

We first address the computational complexity of comput-
ing an optimal interpretable policy.

Proposition 5.1. Solving (3.1) for either randomized or de-
terministic policies is NP hard, and is in NP as well for
deterministic policies.

Proof. Hardness is proven by a reduction from computing
a memoryless policy for a POMDP [14] (which is known to
be NP-hard to compute). The construction is simple and we
only outline it here. Consider a POMDP with states 𝒮 and
observations �̄�. Then construct a cross-product MDP (e.g.
[2]) for a finite node controller with �̄� nodes. The state

space of the cross-product MDP will have 𝒮 = 𝒮 × �̄�.
The set of actions in the cross-product MDP is the same
as the actions in the POMDP. The transitions in the cross-
product MDP are a product of the POMDP state transition
according to the action taken and the observation observed.
Consider an interpretable policy for this problem in which
the observations depend on �̄� and the observation mapping
is 𝜃((𝑠, 𝑜)) = 𝑜. It can be now readily seen that computing
such an interpretable policy will correspond to a memo-
ryless policy in the POMDP and vice versa. An optimal
interpretable policy for this problem will therefore be also
an optimal memoryless policy in the POMDP. The hard-
ness for stochastic policies follows similarly from [34]. It
follows that solving (3.1) for deterministic policies also in
NP since the set of deterministic policies can be enumer-
ated.

The problem of solving (3.1) over randomized policies is
not known to be in NP and there is evidence that the prob-
lem may in fact be harder [34].

We next study the structure of optimal policies. It can be
readily seen that the optimal policy to an MDP with inter-
pretability constraints may be history dependent. See, for
example, the MDP in Fig. 1 in which the optimal policy
will be 𝑎2, 𝑎1, 𝑎2, . . .. No deterministic interpretable pol-
icy can achieve such a return. However, we are interested
in finding a stationary policy. The following proposition
shows that the optimal policy may need to be randomized.

Proposition 5.2. There may be no optimal deterministic
interpretable policy.

We prove Proposition 5.2 by an example in which a ran-
domized policy can be arbitrarily better than the best deter-
ministic policy.

Example 5.3. Consider an example MDP depicted in
Fig. 2 in which the optimal policy will be randomized. One
possible interpretation in the context of product recommen-
dations is as follows. States of the MDP represent a cus-
tomer state. In particular, 𝑠1 means that the customer is not
yet interested in a product, and action 𝑎1 represents a good
recommendation. Taking this action moves the customer
to state 𝑠2 which means considering a product they are in-
terested in. Taking action 𝑎2 will cause the customer to
consider another interesting product. Action 𝑎2 represents
suggesting an irrelevant product. In state 𝑠1, the customer
remains uninterested, but in 𝑠2 the customer is already con-
sidering an interesting product and since the recommenda-
tion is not useful, they will simply purchase the product and
a reward is received. Since we do not observe the internal
customer state, 𝑠1 and 𝑠2 share the same observation and
the interpretable policy will have to take the same action in
both states. Clearly, any deterministic policy will receive
return 0 (since the system starts in state 𝑠1), while a policy
that randomizes 𝑎1 and 𝑎2 with equal probability will re-
ceive return of at least 𝛾0.5 for discount factor 𝛾. Looking
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𝑜1

𝑠1start 𝑠2𝑎2, 1

𝑎1, 1

𝑎1, 0 𝑎2, 0

𝑎3,
1
3 𝑎3,

1
3

Figure 1: Markov decision process in Example 5.3. Shaded
areas show states that share the same observation. Edge
labels denote action name and the reward.

𝑜2𝑜1

𝑠1start 𝑠2 𝑠3
𝑎1, 0

𝑎2, 0

𝑎2, 1

𝑎1, 0 {𝑎1, 𝑎2}, 0

Figure 2: Markov decision process in Example 5.3. Shaded
areas show states that share the same observation. Edge
labels denote action name and the reward.

back at Fig. 1, we have an even simpler example in which
the optimal policy will be randomized.

Note that our MILP formulation (4.4) only learns deter-
ministic policies, and that the binary constraints need to
be relaxed in order to learn randomized policies. Initial ex-
periments showed poor performance with this relaxation,
likely due to the McCormick inequalities being too loose
an approximation to the other nonlinearities.

6 Case Study: Interpretable Product
Recommendations

In this section, we describe the experimental evaluation of
our interpretable MDP model in an online product recom-
mendation setting. As mentioned above, most research on
recommender systems has focused on developing methods
for fitting a customer preference model to data. We, in
contrast, study optimization methods that use the customer
preference model to make better recommendations.

The motivating business case for this application was to
improve customer experience and promote conversions for
a major European tour operator. For the purposes of this
experimental study, we apply the tools of this paper to de-
sign a recommendation engine that targets conversions, i.e.,
customer purchases.

6.1 Customer Model

To evaluate the quality of recommendations, we simulate
customer purchase behavior and interactions with an on-

line catalog. Our focus is on simulating online sessions in
which customers browses different products and at some
point either make a purchase or abandon the session.

Customer behavior is modeled using a mixed logit cus-
tomer choice model [31] with 10 discrete segments. The
logit model is used to predict customer behavior during a
product purchase session. In particular, the model decides
whether a customer purchases the currently viewed prod-
uct, takes a recommendation, or abandons the search.

The logit model assumes that customers from any segment
𝑐 assign some value, denoted 𝜂(𝑐, 𝑝), to product 𝑝. This
represents the value gained by purchasing the product and
is used to determine the probability of purchasing the given
product. As a baseline, we denote by 𝜂𝑁 (𝑐) the value of
no purchase, which is the standard approach. We describe
how the values 𝜂(𝑐, 𝑝), for each segment and product, and
𝜂𝑁 (𝑐), for each segment, translate to probabilities below.

We fit the parameters of the logit model to data which
comes from an adventure travel brand of a major Euro-
pean tour operator that specializes on sailboat rentals. Our
dataset, which is a subset of the entire clickstream, consists
of 22803 individual website visits, 1100 individual cus-
tomers, and 75 products. Customer segments are identified
using a standard low-rank matrix decomposition method
and logit parameters are fit to maximize likelihood.

The MDP that models the interaction of customers with
the online system is defined as follows. The state set is
𝒮 = 𝒞 × 𝒫 , where 𝒞 is the set of customer segments, and
𝒫 is the set of products. In other words, the state repre-
sents a customer and a product currently being considered.
Assume that the goal is to recommend 𝑛 products. Action
set 𝒜 = {(𝑝1, . . . , 𝑝𝑛) : 𝑝𝑖 ∈ 𝒫} determines the set of
recommended products in a given state.

The transition probabilities in the MDP for some state
(𝑐, 𝑝) and products (𝑝1, . . . , 𝑝𝑛) are given according to
the mixed logit choice model as follows. In particu-
lar, let 𝛼 = exp (𝜂(𝑐, 𝑝)) + ·∑︀𝑛

𝑗=1 exp (𝜅𝑅 · 𝜂(𝑐, 𝑝𝑗)) +∑︀
𝑝′∈𝒫 exp (𝜅𝑁 · 𝜂(𝑐, 𝑝′)) + exp (𝜂𝑁 (𝑐)) be a normaliza-

tion constant. Here, 𝜅𝑅 ≤ 1 represents the propensity
for taking a recommendation and 𝜅𝑁 ≤ 1 represents the
propensity of choosing another product directly from the
catalog.

Given the normalization constant 𝛼, the probability of
a customer purchasing a product is exp (𝜂(𝑐, 𝑝)) /𝛼,
the probability of taking recommendation 𝑝𝑗 is
exp (𝜅𝑅 · 𝜂(𝑐, 𝑝𝑗)) /𝛼, the probability of using the menu
to choose another product 𝑝′ is exp (𝜅𝑁 · 𝜂(𝑐, 𝑝′)) /𝛼,
and finally the probability of abandoning the session is
exp (𝜂𝑁 (𝑐)) /𝛼. The rewards in the MDP model are 1
when a purchase is made and 0 otherwise. This essentially
assumes that the margins are constant, but the model could
be easily extended to weighted margins.
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Note that the states in the MDP above describe both the
product and customer segment. While such an MDP can be
solved the policy cannot be implemented because the cus-
tomer segment is not observed. This problem could also be
solved using POMDP techniques; however, as suggested in
the Introduction, the final solution would be hard to inter-
pret and also difficult to implement in a real-time setting.
Instead, we seek to find good interpretable policies.

Perhaps the simplest interpretable policy in the product rec-
ommendation setting is the so-called product-to-product
recommendation. In this setting, recommendations are
static and are solely a function of the currently viewed
product. The simplicity of this method makes it popular
in practice and is a good fit with our model of interpretable
policies. It can be readily seen that the set of policies can
be constrained to product-to-product policies by defining
observations as 𝒪 = 𝒫 and 𝜃(𝑐,𝑝) = 𝑝, i.e., the action is
independent of the customer.

6.2 Simulation Results

The goal of the empirical evaluation is to determine the
possible benefit from using interpretable policies in mak-
ing product recommendation as compared with more tradi-
tional product-to-product recommendations.

We compare three methods: Static, Iterated, IMDP. The
static method is the simplest one and entails simply making
the recommendation that is most likely to be appreciated by
types of people looking at the current product. These stan-
dard methods—as described in the introduction—reflect
how recommendations for other products can impact the
distribution of customers considering the current prod-
uct. The iterated method expands on this idea by re-
optimizing the recommendations three times (i.e., imple-
menting static recommendations using simulation, recom-
puting customer distributions, and repeating three times).
The IMDP method uses the MILP formulation to compute
an interpretable policy for the MDP described above. As
solvers for MILP can be quite computationally expensive,
we apply two versions of IMDP: Methods IMDP(3) and
IMDP(50) represent results after 3 and 50 minutes of com-
putation using CPLEX on an AMD Phenom II X6 machine.

To determine the improvement, we compare these product
recommendation methods on several randomly generated
scenarios, each of which is restricted to 25 randomly se-
lected products and a single product recommendation. To
make the results comparable across scenarios, we normal-
ize them using lower (baseline) and upper bounds on the
conversion rate. Our baseline is a policy that makes no rec-
ommendations, and the upper bound is a clairvoyant policy.
The clairvoyant assumes that the precise customer types are
known, solves the MDP, and implements that policy.

Table 1 depicts the normalized experimental results. The

# Static Iterated IMDP(3) IMDP(50)

1 56.8% 56.8% 72.9% 72.9%
2 19.8% 10.0% 43.9% 45.9%
3 24.2% 16.2% 54.3% 55.2%
4 31.6% 25.0% 65.9% 66.2%
5 17.0% 17.8% 54.0% 54.2%
6 44.5% 44.5% 75.2% 75.2%
7 32.7% 39.7% 73.1% 73.2%
8 66.7% 66.7% 55.8% 57.3%
9 25.0% 25.0% 62.9% 63.0%

10 19.4% 16.0% 53.2% 53.6%

Table 1: Percentage of improvement in conversion rate over
no recommendation compared with clairvoyant policy for
10 problem instances.
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Figure 3: Average percentage improvement in conversion
rate with 95% confidence interval.

percentages are computed as follows. Let 𝑙 be the conver-
sion rate of the baseline policy, 𝑢 be the conversion rate
of the clairvoyant policy, and 𝑞 be the conversion rate of
the tested policy. Then the improvement is computed as:
(𝑞 − 𝑙)/(𝑢 − 𝑙). Fig. 3 depicts the average improvement
over 50 runs of the three methods.

There are several interesting observations that can be in-
ferred from our results. First, IMDP significantly outper-
forms the standard recommendation techniques. At least in
our scenario, considering the affected distribution of cus-
tomers appears to be very important. Second, surprisingly,
iterating the recommendations often not only does not in-
crease the conversion rates, but actually decreases them
(i.e., the Static method sometimes outperforms the Iterated
method). Finally, while 3 minutes are not enough to com-
pute an optimal MILP solution, our results indicate that the
interpretable policy achieves over 50% of the benefit of a
clairvoyant policy while being much simpler.

We also investigated recommending more than a single
product. Unfortunately, the number of integer variables in
our formulation scales exponentially with the number of
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products. It can be readily seen, however, that the action
constraints can be decomposed in a manner that is similar
to the discussion in Remark 4.4. This reduces the num-
ber of variables to be linear in the number of products, but
our empirical results indicate that this approach does not
significantly reduce the computation time. Regardless, our
experiments with a single recommendation already demon-
strate the usefulness of our notion of interpretability.

7 Concluding Remarks

In this paper, we have derived and implemented a novel
framework for making dynamic product recommendations.
The key insight is that modeling customer states is often
quite challenging due to lack of knowledge about the cus-
tomer, but that underlying dynamics (i.e., customers chang-
ing their state) can still be accounted for by using a concept
of interpretability. Namely, recommendations are restricted
to being identical for customers that are in the same ob-
servation, where each observation is a union of customer
states that are not observable. Restricting the recommen-
dations in this manner makes the recommendation policy
interpretable (i.e., not complex and easily understandable).
We use tools from Mixed Integer Nonlinear Programming
in conjunction with a relaxation using McCormick inequal-
ities to learn interpretable policies, but there are other di-
rections not pursued in this work, such as combining a
semidefinite programming (SDP) relaxation with Reformu-
lation Linearization Technique (RLT) inequalities (which
generalize McCormick inequalities) used to tighten (rather
than relax) the SDP relaxation.

As noted above, regarding scalability, there is much room
for improvement since the number of binary variables in
our MILP formulation grows exponentially with the num-
ber of products recommended (i.e., the dimension of the
actions). Aside from the decomposition described above,
a different direction is a heuristic that fixes all but one of
the recommendation action dimensions and iteratively op-
timizes over individual recommendations. This alternat-
ing minimization scheme has efficient iterations (which we
have already demonstrated with our single product recom-
mendations above), so performance depends on the number
of iterations required for a good solution.

Note also that uncertainty in the model parameters, rewards
and transition matrices, have an important impact on pol-
icy performance. While we have not addressed such uncer-
tainty here, it is an important topic for future work. Finally,
there are several dynamics to the model that we have not yet
addressed. For example, reviews written by customers and
product ratings affect the distribution of customers looking
at products.
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Abstract

Learning the structure of sum-product networks
(SPNs) – arithmetic circuits over latent and ob-
served variables – has been the subject of much
recent research. These networks admit linear
time exact inference, and thus help alleviate one
of the chief disadvantages of probabilistic graph-
ical models: accurate probabilistic inference al-
gorithms are often computationally expensive.
Although, algorithms for inducing their structure
from data have come quite far and often outper-
form algorithms that induce probabilistic graphi-
cal models, a key issue with existing approaches
is that they induce tree SPNs, a small, inefficient
sub-class of SPNs. In this paper, we address
this limitation by developing post-processing ap-
proaches that induce graph SPNs from tree SPNs
by merging similar sub-structures. The key
benefits of graph SPNs over tree SPNs include
smaller computational complexity which facili-
tates faster online inference, and better general-
ization accuracy because of reduced variance, at
the cost of slight increase in the learning time.
We demonstrate experimentally that our merging
techniques significantly improve the accuracy
of tree SPNs, achieving state-of-the-art perfor-
mance on several real world benchmark datasets.

1 INTRODUCTION

Probabilistic graphical models [8, 17] such as Bayesian and
Markov networks are routinely used in a wide variety of
application domains such as computer vision and natural
language understanding for modeling and reasoning about
uncertainty. However, exact inference in them – the task of
answering queries given a model – is NP-hard in general
and computationally intractable for most real-world mod-
els. As a result, approximate inference algorithms such as
loopy belief propagation and Gibbs sampling are widely

used in practice. However, they can often yield highly in-
accurate and high variance estimates, leading to poor pre-
dictive performance.

One approach to tackle the inaccuracy and unreliability of
approximate inference is to learn so-called tractable mod-
els from data. Examples of such models include thin junc-
tion trees [2], arithmetic circuits (ACs) [7], cutset net-
works [25], probabilistic sentential decision diagrams [16],
AND/OR decision diagrams [9, 21] and sum-product net-
works [23]. Inference in these models is polynomial (often
linear) in the size of the model and therefore the complex-
ity and accuracy of inference is no longer an issue. In other
words, once an accurate model is learned from data, pre-
dictions are guaranteed to be accurate.

In this paper, we focus on the NP-hard problem of learning
both the structure and parameters of sum-product networks
(SPNs) from data. At a high level, an SPN is a rooted di-
rected acyclic graph that represents a joint probability dis-
tribution over a large number of random variables, both
observed and latent. It has two types of internal nodes:
sum-nodes which express conditioning or splitting over la-
tent or observed variables and product nodes which repre-
sent decomposition of variables into independent compo-
nents. Leaf nodes represent simple distributions over ob-
served variables (e.g., uniform distribution, univariate dis-
tributions, etc.). The key advantage of SPNs and other
equivalent representations such as ACs 1 over thin-junction
trees is that they can be much compact and never larger
than the latter. This is because they take advantage of vari-
ous fine-grained structural properties such as determinism,
context-specific independence, dynamic variable orderings
and caching (cf. [7, 9, 4, 13]). For instance, in some cases,
they can represent high-treewidth junction trees using only
a handful of sum and product nodes [23].

The literature abounds with algorithms for learning the
structure of SPNs and ACs from data, starting with the

1The equivalence between ACs and SPNs was shown by
Rooshenas and Lowd [26]. Thus, algorithms for learning ACs
can be used to learn SPNs and vice versa.
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work of Lowd and Domingos [19] who proposed to learn
ACs over observed variables by using the AC size as a
learning (inductive) bias within a Bayesian network struc-
ture learning algorithm, and then compiling the induced
Bayesian network to an AC. Later Lowd and Rooshenas
[20] extended this algorithm to learn a Markov network
having small AC size. The latter performs much better in
terms of test set log likelihood score than the former be-
cause of the increased flexibility afforded by the undirected
Markov network structure.

A limitation of the two aforementioned approaches for
learning ACs is that they do not use latent variables; it
turns out that their accuracy can be greatly improved us-
ing latent variables. Unfortunately, the parameter learning
problem (a sub-step in structure learning) – the problem of
learning the weights or probabilities of a given SPN struc-
ture – is much harder in presence of latent variables. In
particular, the optimization problem is non-convex, which
necessitates the use of algorithms such as gradient descent
and expectation maximization that only converge to a local
minima. However, since learning is often an offline pro-
cess, this increase in complexity is often not a big issue.

The first approach for learning the structure of SPNs hav-
ing both latent and observed variables is due to Gens and
Domingos [11]. An issue with this approach is that it learns
only directed trees instead of (directed acyclic) graphs and
as a result is unable to fully exploit the power and flexibil-
ity of SPNs. To address this limitation, Rahman et al. [25],
Vergari et al. [28] and Rooshenas and Lowd [26] proposed
to learn a graph SPN over observed variables while Dennis
and Ventura [10] proposed to learn a graph SPN over latent
variables. A drawback of these approaches is that they are
unable to learn a graph SPN over both observed and latent
variables. In this paper, we address this limitation.

The main idea in our approach is as follows. We first learn
a tree SPN over latent and observed nodes using standard
algorithms, and then convert the tree SPN to a graph SPN
by processing the SPN in a bottom-up fashion, merging two
sub-SPNs if the distributions represented by them are sim-
ilar and defined over the same variables. To convert this
idea into a general-purpose algorithm, we have to solve two
problems: (1) how to find similar sub-SPNs, and (2) how to
merge them into one sub-SPN. Both problems are compu-
tationally expensive to solve and therefore we develop ap-
proximate algorithms for solving them, which is the main
contribution of this paper.

The second contribution of this paper is a thorough exper-
imental evaluation of our proposed merging algorithms on
20 benchmark datasets, all of which were used in several
previous studies. Our experiments clearly show that merg-
ing always improves the performance of tree SPNs, mea-
sured in terms of test-set log-likelihood score and predic-
tion time. We also experimentally compared bagged en-

sembles of graph SPNs with state-of-the-art approaches
such as ensembles of cutset networks [24], sum-product
networks with direct and indirect interactions [26], sum-
product networks learned via the SVD-based approach[1],
arithmetic circuits with Markov networks [20], and mix-
tures of cutset networks [25] on the same datasets, and
found that our new approach yields better test-set log like-
lihood score on 8 out of the 20 datasets with two ties. This
clearly demonstrates the power of our new merging algo-
rithms.

The rest of the paper is organized as follows. In the next
section, we present background on SPNs, related work as
well as a generic algorithm for learning tree SPNs. Section
3 describes powerful merging approaches for converting an
arbitrary tree SPN to a graph SPN. Experimental results are
presented in section 4 and we conclude in section 5.

2 BACKGROUND

Any (discrete) probability distribution over a set of vari-
ables V can be expressed using an arithmetic circuit (AC)
[7] or a sum-product network (SPN) [23].2 The key ben-
efit of SPNs over conventional uncertainty representations
such as Bayesian and Markov networks is that in SPNs,
common probabilistic inference tasks such as maximum-
a-posteriori (MAP) and posterior marginal (MAR) estima-
tion can be solved in time and space that scales linearly
with the size of the representation. In Bayesian and Markov
networks, these tasks are known to be NP-hard in general
(cf. [27]). The caveat is that SPNs can be exponentially
larger than Bayesian and Markov networks; they are of-
ten compiled from the latter by running exact probabilistic
inference techniques such as variable elimination [4] and
AND/OR search [21], in order to facilitate faster online in-
ference. Formally,

Definition 1. An SPN [23] is recursively defined as fol-
lows:

1. A tractable univariate distribution is an SPN;

2. A product of SPNs defined over different variables is
an SPN; and

3. A weighted sum of SPNs with the same scope vari-
ables is an SPN.

An SPN can be expressed as a rooted directed acyclic graph
with univariate distributions as leaves, sums and products
as internal nodes, and the edges from a sum node to its

2SPNs used in this paper are equivalent to ACs (as well as
AND/OR decision diagrams [21]) defined over latent and ob-
served variables. However, in order to be consistent, we will use
the term SPNs throughout the paper. We will distinguish between
two types of SPNs: SPNs defined over only observed variables
and SPNs defined over both observed and latent variables.
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Figure 1: Three example SPNs over variables {V1, V2, V3, V4}. We are assuming that all variables are binary and take
values from the domain {0, 1}. Leaf nodes express univariate distributions. For example, the node V2 : 0.6 expresses the
probability distribution P (V2 = 1) = 0.6. Sum nodes are labeled either by a variable which denotes conditioning over
the variable or by a + sign which denotes that the sum node is latent. All left (right) arcs emanating from a sum node
correspond to an assignment of 1 (0) to the labeled variable. Product nodes are labeled by ×. (a) Tree SPN (SPN which is
a rooted directed acyclic tree) that decomposes according to a tree Markov network V4−V3−V1−V2. (b) Graph SPN that
is equivalent to the tree SPN given in (a) obtained by merging identical sub-trees. (c) Graph SPN over latent and observed
variables.

children labeled with the corresponding weights. An SPN
represents a (normalized) probability distribution when the
weights attached to each sum node sum to one. Any unnor-
malized SPN can be normalized in linear time.

As mentioned earlier, we will distinguish between two
types of SPNs: SPNs defined only over observed variables
and SPNs defined over both latent and observed variables.
The two have different representation powers with the lat-
ter being more general and therefore more powerful than
the former. For SPNs having only observed variables, each
sum node represents a split (conditioning) over a variable
and is therefore labeled by the corresponding variable. For
SPNs having both latent and observed variables, each sum
node can represent either a split over an observed or a latent
variable. The splits over the observed variables are repre-
sented the usual way while sum nodes that split over the
latent variables are labeled by the “+” sign.

Example 2.1. Fig. 1 shows three SPNs over four variables
{V1, V2, V3, V4}. The two SPNs on the left are defined over
only observed variables while the SPN on the right is de-
fined over both latent and observed variables. The graph
SPN shown in Fig. 1(b) is obtained from the tree SPN
shown in Fig. 1(a) by merging identical sub-SPNs.

2.1 LEARNING SPNs

In this paper, we focus on top-down approaches that di-
rectly learn the structure of SPNs from data. Instead of
learning Bayesian and Markov networks and then compil-
ing them into SPNs (this is the approach used in [19, 20]),
the key advantage of this direct approach is that the size
of the SPN can be controlled in a straight-forward manner,
which is typically bounded from above by the data size.

Algorithm 1 shows a generic recursive learning algorithm
for learning tree SPNs from data, which is loosely based

Algorithm 1: LEARNSPN(T,V)
Input: Set of Training Instances T and set of variables V
Output: An SPN representing a distribution over V
begin

// 1. Base Case
if conditions for inducing the base models are satisfied

then return LEARNBASEMODEL(T,V)
// 2. Decomposition Step
if V can be partitioned into subsets Vj

then return
∏
j LEARNSPN(T,Vj)

// 3. Splitting Step
Partition T into subsets of similar instances Ti

return
∑
i
|Ti|
|T| LEARNSPN(Ti,V)

end

on the algorithm proposed by Gens and Domingos [11].
The algorithm has three steps: base case, decomposition
and splitting. In the base case, if the conditions for learn-
ing the base model are satisfied, for example, when the
size of the training data is small or only one variable re-
mains, then the algorithm learns the corresponding trivial
distribution and terminates the recursion. In the decom-
position step, the algorithm tries to partition the variables
into roughly independent components Vj ⊆ V such that
P (V) =

∏
j P (Vj) and recurses on each component, in-

ducing a product node. If neither the base case nor the con-
ditions for the decomposition step are satisfied, then the
algorithm partitions the training instances into clusters of
multiple instances, inducing a sum node, and recurses on
each part.

Several techniques proposed in literature for learning SPNs
(and equivalently ACs) can be understood as special cases
of Algorithm 1, with the difference between them being the
approaches used at the three steps. Table 1 gives examples
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Reference Base Case Decomposition Splitting
Gens and Domingos [11] Univariate distribution Independence tests Latent Variables

Gogate et al. [15] Univariate distribution Independence assumption Conjunctive fixed-length features
Cutset networks (CNets)[25] Tree Markov networks not used Observed variables

Ensembles of CNets[24] Tree Markov networks not used Observed and Latent variables
Vergari et al. [28] Tree Markov networks Independence tests Latent Variables

Rooshenas and Lowd [26] Tractable Arithmetic Circuits Independence tests Latent variables

Table 1: Examples of SPN structure learning approaches in the literature that follow the prescription given in Algorithm 1.
Base case is the stopping criteria for the recursive algorithm. [11, 15] stop when only one variable remains and induce a
univariate distribution; [25, 28, 24] stop when the entropy of the data is small or use a Bayesian criteria, and induce an SPN
corresponding to a tree Markov network at the leaves using the Chow-Liu algorithm [5] (this algorithm runs in polynomial
time and yields an optimal tree Markov network according to the maximum likelihood criteria). [26] learns an SPN over
observed variables in the base case using the algorithm described in [19]. In the decomposition step, [11, 26, 28] use
pair-wise variable independence tests (e.g., the G-test) for inducing the product nodes; [15] uses no independence tests and
instead assume that each split decomposes the variables into multiple components; while [25, 24] ignore the decomposition
step inducing only sum nodes. [11, 26, 28] split only over latent variables, [15, 25] split only over observed variables or
their features, while [24] split over both latent and observed variables.

of techniques from the SPN literature that are based on Al-
gorithm 1 and briefly describes how they differ.

Although, the structure learning problem is NP-hard in
SPNs having only observed variables as well as in SPNs
having both observed and latent variables, the parameter
(weight) learning problem is easier in the former than the
latter. In particular, parameter learning can be done in
closed form when the SPN has only observed variables.
On the other hand, the optimization problem is non-convex
in the presence of latent variables and one has to use itera-
tive algorithms having high computational complexity such
as hard and soft EM to solve the non-convex problem (cf.
[23, 22, 24]). Thus, although latent variables help yield a
more powerful representation, they often significantly in-
crease the learning time.

3 CONVERTING TREE SPNs TO GRAPH
SPNs

A key problem with existing methods for learning SPNs is
that they induce tree models, except at the leaves. It is well
known in the probabilistic inference literature [9, 7, 6] that
tree SPNs can be exponentially larger than graph SPNs,
which are obtained from the former by merging identical
sub-SPNs (see Fig.1(a) and (b)). Thus, converting tree
SPNs to graph SPNs is a good idea because they can sig-
nificantly improve the time required to make predictions.

From a learning point of view, graph SPNs can potentially
improve the generalization performance by addressing the
following issue associated with the LEARNSPN algorithm:
as the depth of the node increases,3 the number of train-

3The depth of a node equals the number of sum nodes from
the root to the node.

ing examples available for learning a sub-SPN rooted at the
node decreases exponentially. Merging increases the num-
ber of examples available at a node, since examples from all
directed paths from the root to the node can be combined.
This reduces the variance of the parameter estimates while
having no effect on their bias. Since the mean-squared error
of the model equals bias squared plus the variance, graph
SPNs are likely to be more accurate than tree SPNs. The
following proposition formalizes this intuition:
Proposition 1. Let S1, S2 and S1,2 be three (sub-)SPNs
having the same structure and defined over the same vari-
ables but whose parameters are estimated from training ex-
amples T1, T2 and T1,2 = T1 ∪ T2 respectively. Then as-
suming that the datasets are generated uniformly at random
from a distribution whose structure decomposes according
to S1 (and thus S2 and S1,2), the sample variance of S1,2 is
smaller than S1 and S2.

Proof. The sample variance of S1, S2 and S1,2 is given
by V ar(S1)/|T1|, V ar(S2)/|T2| and V ar(S1,2)/|T1 ∪T2|
respectively where V ar(S1), V ar(S2) and V ar(S1,2) is
the (population) variance of the distributions induced by
S1, S2 and S1,2. Since V ar(S1) = V ar(S2) = V ar(S1,2)
(our assumption), |T1 ∪ T2| ≥ |T1| and |T1 ∪ T2| ≥ |T2|,
the proof follows.

3.1 OUR APPROACH

The main idea in our approach is to relax the identical sub-
SPN requirement and merge similar sub-SPNs. We use this
relaxation because the sub-SPNs are estimated from data
and the likelihood that they will be identical is slim to none.
In this context, we develop methods for answering the fol-
lowing two questions: which sub-SPNs to merge and how
to merge them.
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Figure 2: Figure demonstrating why distance computations are hard. (a) and (b): Two tree Markov networks over five
variables {V1, . . . , V5}. The treewidth of these networks is 1 and therefore the complexity of performing inference over
them is O(d2) where d is the number of values in the domain of each variable. (c): Markov network obtained by taking the
union of the edges of the tree Markov networks given in (a) and (b). Computing the distance (e.g., KL divergence) between
the probability distributions represented by the two Markov networks in (a) and (b) is exponential in the treewidth of the
Markov network given in (c). The treewidth of this network is 3 and therefore the complexity of computing the distance is
O(d4), an exponential increase over O(d2).

One approach for selecting candidate sub-SPNs for merg-
ing is to compare the distance between the distributions
represented by the two sub-SPNs, given that they are de-
fined over the same variables, and check if the distance is
smaller than a threshold. However, computing the distance
between two sub-SPNs can be quite hard. For instance,
assume that the two sub-SPNs represent Markov networks
(MNs) and the junction tree or AND/OR graph search algo-
rithm [9] is used for computing the KL divergence between
the probability distributions represented by the two MNs.
In this case, the time and space complexity of computation
is exponential in the treewidth of the graph obtained by tak-
ing a union of the edges of the two MNs. The treewidth of
this graph can be quite large (see Fig. 2 for an example).
Therefore, we propose to use the following mean-field style
approximation [29] of the distance between the two distri-
butions:

D(P ||Q) ≈ 1

|V|
∑

Vi∈V

D(P (Vi)||Q(Vi))

where P and Q are two distributions over V and D is
a distance function (e.g., KL divergence, relative error,
Hellinger distance, etc.). Since single-variable marginal
distributions in each sub-SPN can be computed in time
that is linear in the number of nodes of the sub-SPN (and
in practice can be pre-computed), our proposed distance
method is also linear time.

Next, we describe our greedy, bottom-up approach for
merging similar sub-SPNs of a given SPN S (see Algo-
rithm 2). The algorithm begins by initializing S′ to S and
repeats the following steps until convergence. For all sub-
SPNs Si of S′ that are defined over exactly i variables, it
partitions the sub-SPNs based on their scopes such that all
sub-SPNs having the same scope are in the same cell (part)
ρj of the partition ρ. Then, in each cell ρj , ensuring that S′

Algorithm 2: MERGE(S,V,ε)
Input: SPN S
Output: Merged SPN S′

begin
S′ = S
repeat

for i = 1 to |V| do
Si = sub-SPNs in S′ having exactly i
variables in their scope
ρ = Partition Si into cells having identical
scopes

for each cell ρj of ρ do
Merge all sub-SPNs in ρj such that the
distance between them is bounded by ε
and S′ is a DAG

end
end

until convergence;
return S′

end

remains a DAG, it merges all sub-SPNs such that the dis-
tance between them is bounded by ε, a user-defined con-
stant that can be set using a validation set. Another option
is to merge two sub-SPNs if the accuracy on the validation
set improves, thereby using a greedy strategy (in our ex-
periments, we used both strategies). Note that the for-loop
of the algorithm operates in a bottom-up fashion similar to
reduced-error pruning in decision trees. The loop starts at
the leaves, which are sub-SPNs having just one variable in
their scope (i = 1), and then proceeds towards the root
which includes all variables in its scope (i = |V|). The
algorithm is guaranteed to converge in finite number of it-
erations because at each iteration, the size of the SPN can
only decrease or remain the same.
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(a) Merge child nodes of observed sum node

+
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⇒
S1,2

(b) Merge child nodes of latent sum node

Figure 3: Figure demonstrating how to simplify and thus reduce the size of the SPN after merging. As before, sum nodes
are labeled either by a variable which denotes conditioning over the variable or by a + sign which denotes that the sum
node is latent. All left (right) arcs emanating from a sum node correspond to an assignment of 1 (0) to the labeled variable.
Product nodes are labeled by ×. S1,2 is an SPN obtained by merging SPNs S1 and S2. (a): shows how the SPN can
be reduced when the two child nodes of an observed sum node are merged. The node Vi : 0.3 represents a univariate
probability distribution over Vi with P (Vi = 1) = 0.3. (b): shows how the SPN can be reduced when the two child nodes
of a latent sum node are merged.

3.2 PRACTICAL MERGING STRATEGIES

We complete the description of the algorithm by describing
how to merge two similar sub-SPNs S1 and S2. A straight-
forward method is to merge the datasets at the two sub-
SPNs and then learn a new graph sub-SPN, say S1,2 from
the new dataset. An issue with this approach is that since
our basic algorithm (see Algorithm 1) learns tree SPNs, we
have to call Algorithm 2 again to convert the newly created
tree SPN to a graph SPN. This may yield a self-recursive
algorithm with infinite loops that may not terminate. To
overcome this computational difficulty, we propose to not
relearn the structure, but only update the weights. In partic-
ular, we use the following approach. We consider two can-
didate structures for the merged sub-SPN; the first structure
is identical to S1 and the second to S2. Then, we learn the
weights of the two candidate sub-SPNs using the merged
dataset and choose the one that yields the maximum im-
provement in accuracy (log-likelihood score) over the vali-
dation set.

There are two types of merging that require special atten-
tion. The first type is when the two sub-SPNs are children
of the same sum node. In this case, if the sum node cor-
responds to splitting over an observed variable, we can re-
place the sum-node by a product node having two children
as depicted in Fig. 3(a). On the other hand, if the sum node
is a latent node then the sum node can be deleted without
changing the underlying distribution. This is depicted in
Fig. 3(b). This type of merging is useful because it sub-
stantially simplifies the model, allowing us to either prune
sub-SPNs (see Fig. 3(b)) or take advantage of problem de-
composition (see Fig. 3(a)). This yields better generaliza-
tion and faster inference.

A second type of merging that requires special attention is
when the two sub-SPNs to be merged correspond to tree
Markov (or Bayesian) networks over the observed vari-
ables. In this case, unlike in the general case, we propose
to learn both the structure and parameters of the merged

sub-SPN (using the merged dataset). This is because both
the structure and parameter learning problem in such SPNs
can be solved in polynomial time using the Chow-Liu al-
gorithm [5].

4 EXPERIMENTS

4.1 SETUP

We evaluated the impact of merging SPNs on 20 real world
benchmark datasets presented in Table 3. These datasets
have been used in numerous previous studies for evaluating
the performance of a wide variety of tractable probabilistic
graphical model learners (cf. [18, 11, 26, 25, 1, 24]). All
datasets are defined over binary variables that take values
from the set {0, 1}. The number of the variables in them
range from 16 to 1556 and the number of training instances
range from 1600 to 291326. All of our experiments were
performed on a quad-core Intel i7 2.7 GHz machines with
16 GB RAM. Each algorithm was given a time bound of 48
hours, after which the algorithm was terminated.

4.2 ALGORITHMS EVALUATED

We implemented two variants of SPNs: SPNs in which sum
nodes split over value assignments to a latent variable and
SPNs in which sum nodes split over value assignments to
a heuristically chosen observed variable. Henceforth we
will call the two SPNs L-SPNs and O-SPNs respectively.
We learned tree versions of both SPNs using Algorithm 1.
We used tree Markov networks (MNs) as base models in
both SPNs; as mentioned earlier tree MNs can be learned
in polynomial time using the Chow-Liu algorithm.

To learn sum nodes in L-SPNs, following Gens and
Domingos [11], we employed hard EM over a naive Bayes
mixture model with three random restarts for 15 iterations
to split the training instances into two clusters, i.e. we only
considered binary splits for latent sum nodes for better reg-
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Table 2: Table showing the impact of merging on the average test-set log likelihood, time complexity and prediction time
of L-SPNs and O-SPNs (all values rounded to two decimal places). We use the following notation: (1) T-LL: Average
test-set log likelihood for the tree SPNs; (2) G-LL: average test-set log likelihood for the graph SPN obtained from the
tree SPN by merging similar sub-SPNs; (3) |T|: number of parameters in the tree SPN; (4) |G|: number of parameters in
the graph SPN; (5) CR:=Compression Ratio = |T |

|G| ; (6) T-Time: Tree SPN learning time in seconds and (7) G-Time: Time
in seconds required by the merging algorithm (thus the total learning time for graph SPNs is T-time+G-time seconds). In
each row, bold values indicate the best score for each of the two SPN categories: L-SPN and O-SPN.

Datasets L-SPN O-SPN
T-LL G-LL |T| |G| CR T-time G-time T-LL G-LL |T| |G| CR T-time G-time

NLTCS -6.03 -6.04 5498 3988 1.38 5.37 396.69 -6.04 -6.05 1406 1152 1.22 0.98 4.69
MSNBC -6.46 -6.46 2780 2440 1.14 109.38 53.49 -6.09 -6.08 20032 9478 2.11 6.36 1245.62
KDD -2.14 -2.14 11516 6670 1.73 199.13 15119.05 -2.22 -2.19 34328 16608 2.07 91.38 59.54
Plants -12.80 -12.69 65132 47802 1.36 68.44 17775.76 -13.83 -13.49 86530 36960 2.34 9.56 14.12
Audio -40.11 -40.02 12798 10804 1.18 68.30 1995.94 -42.06 -42.06 6142 6142 1.00 10.74 3.90
Jester -53.12 -52.97 12798 10002 1.28 39.09 20.89 -55.38 -55.36 6142 4996 1.23 6.51 2.39
Netflix -56.71 -56.64 12798 11604 1.10 62.64 2287.78 -58.64 -58.64 6142 6142 1.00 19.95 2.35
Accidents -30.09 -30.01 14206 13322 1.07 58.23 2089.49 -30.83 -30.83 6846 6846 1.00 14.13 3.90
Retail -10.88 -10.87 3238 2162 1.50 51.15 75.25 -11.02 -10.95 6302 3158 2.00 32.69 15.06
Pumsb star -24.17 -24.10 19558 17604 1.11 66.05 2314.47 -24.42 -24.34 20222 18338 1.10 20.6 14.93
DNA -85.90 -85.51 5758 4320 1.33 8.26 11.26 -90.43 -87.49 11262 1430 7.88 3.76 9.48
Kosarek -10.62 -10.62 5318 5318 1.00 219.01 200.11 -11.10 -10.98 11902 6712 1.77 79.55 46.66
MSWeb -9.95 -9.90 32926 16484 2.00 490.12 29482.04 -10.07 -10.06 15086 12770 1.18 209.54 21.07
Book -34.80 -34.76 15998 11998 1.33 220.56 129.98 -38.60 -37.44 31740 11916 2.66 387.75 10.75
EachMovie -52.07 -52.07 15998 15998 1.00 94.92 91.31 -59.99 -58.05 31745 19846 1.60 176.95 6.18
WebKB -154.86 -153.55 26846 20134 1.33 157.89 78.64 -172.08 -161.17 53438 10046 5.32 287.01 249.27
Reuters-52 -84.70 -83.90 56894 46232 1.23 478.65 1331.38 -90.43 -87.49 56638 28334 2.0 485.6 428.4
20NewsGrp. -154.35 -154.67 58238 43684 1.33 913.81 3457.07 -163.35 -161.46 57982 29016 2.0 827.71 705.53
BBC -256.05 -253.45 33854 21160 1.60 98.55 53.93 -272.98 -260.59 63242 8454 7.48 163.47 142.89
Ad -16.77 -16.77 49790 49790 1.00 244.44 155.53 -17.37 -15.39 62098 31070 2.00 953.70 832.40

ularization and faster learning as in [28]. To learn sum
nodes in O-SPNs, we employed two heuristics proposed
in our previous work [25, 24]. The first heuristic selects
an observed variable that has the highest information gain.
The second heuristic selects an observed variable based on
the following mutual information based criteria: given a set
of variables V and training data T , we score each variable
Vi ∈ V using Score(Vi) =

∑
Vj∈V\Vi

IT (Vi, Vj) where
IT (Vi, Vj) is the mutual information between Vi and Vj
according to T and choose a variable having the highest
score. Variables having high mutual information score are
likely to yield better decompositions, which in turn will
likely yield small depth SPNs having high generalization
accuracy.

In both L-SPNs and O-SPNs, we learn product nodes
using the technique described in Gens and Domingos
[11]. We first compute the mutual information graph
given data (similar to the Chow-Liu algorithm). This
graph is a complete weighted graph over all variables, in
which each edge is weighted by the mutual information be-
tween the two corresponding variables. Then, we prune
weak edges from the graph using a threshold chosen from

β: {0.001, 0.0015, 0.01, 0.5}. Finally, we find connected
components of the pruned graph, and recursively learn a
sub-SPN over variables and data in each connected compo-
nent.

We varied the depth h of SPNs from {4, 5, 6, 7, 10}.4 We
use the following stopping criteria for learning the base
model (tree Markov network): stop when the number of
samples n at a node is less than 10 or the maximum depth
is reached. All parameters in the model were smoothed us-
ing 1-Laplace smoothing.

For each possible configuration of h and β we learned both
a tree L-SPN and a tree O-SPN. In case of O-SPNs, we
also varied the heuristic to choose an observed variable.
The best tree SPN in each category was chosen according
to the average log-likelihood score achieved on the valida-
tion set and provided as the input to the merging algorithm
(see Algorithm 2). Then, we applied practical merging
and simplification strategies described in section 3.2 on the

4Note that the overall depth of the SPN is h plus the depth
of the SPN corresponding to the tree Markov network (our base
model). Thus, the overall depth can be quite large (> 30 in most
cases).
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merged SPN and report the test set log-likelihood score of
the merged model that achieved the highest log-likelihood
score on validation set.5 We used Manhattan distance to
measure the distance between two candidate sub-SPNs and
chose a threshold (ε) from {0.0001, 0.001, 0.01, 0.1} us-
ing the validation set. Finally, after each merge we per-
formed the following sanity/model complexity check. If
the merged sub-SPN had smaller log-likelihood than a tree
Markov network on the validation set, we replaced the
merged sub-SPN by the latter.

4.3 IMPACT OF MERGING ON TEST
LOG-LIKELIHOOD

Table 2 shows the results of our experiments for evaluating
the impact of merging on the accuracy, time complexity
and prediction time of L-SPNs and O-SPNs. In terms of
learning time, we see that for L-SPNs, merging requires a
significant amount of time. This is to be expected because
parameter learning is computationally expensive in pres-
ence of latent variables. To update the parameters of candi-
date sub-SPNs, we ran hard EM with the merged dataset for
20 iterations or until convergence. For some L-SPNs (e.g.
Plants), merging was a factor of 200 slower than learning
tree models. The reason for this anomaly is that the cor-
responding tree L-SPNs have large number of latent sum
nodes. On the other hand, merging is significantly faster in
O-SPNs than L-SPNs because the parameters are updated
in closed-form, by making only one pass over the data as
well as the model.

We measure the prediction time by the number of edges
attached to the sum nodes (see columns |T|, |G| and CR in
Table 2) since the prediction time is linearly proportional in
the number of these weights. We see that in general merg-
ing yields reductions in complexity of inference by reduc-
ing the size of the network in majority of cases.

In terms of accuracy, we see from Table 2 that merging
improves the test set log-likelihood score for the major-
ity of datasets, clearly demonstrating our intuition that it
will yield better generalization, primarily because it signifi-
cantly reduces the variance at the cost of slightly increasing
the bias.

4.4 COMPARISON WITH STATE-OF-THE-ART

Finally, we demonstrate that we can achieve state-of-the-art
performance using our merging algorithm. For this, follow-
ing our previous work [24, 28], we learn bagged ensemble
of tree SPNs and graph SPNs. It was shown in previous
studies that bagged ensembles of tree SPNs (especially la-
tent SPNs) achieves state-of-the-art results. In our evalua-

5Our experiments showed that merging sub-SPNs that are
rooted at child nodes of the same sum node (the cases given in Fig.
3(a) and (b)) was often more beneficial as compared to merging
sub-SPNs that are child nodes of two different sum nodes.

tion, we wanted to see whether we would be able to match
or exceed these results using bagged ensemble of graph
SPNs. As a strong baseline, we also compare with five
other state-of-the-art tractable model learners: (1) learn-
ing sum-product networks with direct and indirect variable
interactions (ID-SPN) [26], learning Markov networks us-
ing arithmetic circuits (ACMN) [20], learning mixtures of
cutset networks (MCNet) [25], learning sum-product net-
works via SVD based algorithm (SPN-SVD) [1] and learn-
ing ensembles of cutset networks (ECNet) [24].

In our experiments, we fixed the number of bags to 40
following [24]. Instead of performing a grid search, we
performed random search [3] to create a configuration for
the models in the ensemble. Each component model was
then weighted according to its likelihood on the training
set. To get better accuracy, we treated the bagged ensemble
of L-SPNs and O-SPNs as an SPN having one latent sum
node as the root and each independent component (bag) as
its child sub-SPN. The benefit of this approach is that in-
stead of optimizing the local log-likelihood scores of indi-
vidual SPNs, while merging, we can directly optimize the
global log-likelihood.

Table 3 shows the bagged ensemble scores of L-SPNs and
O-SPNs before and after merging as well as the best log-
likelihood score obtained to date using the competing ap-
proaches mentioned above. Bagged graph SPNs, especially
L-SPNs, performed significantly better than the state-of-
the-art on all of the high dimensional datasets with very
competitive scores on the others. This suggests that merg-
ing is especially useful for accurately modeling relation-
ships in high-dimensional data (see also Table 2).

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel algorithm for learning
graph SPNs from tree SPNs by merging similar sub-SPNs
in the tree SPN. Our proposed algorithm for finding and
merging similar sub-SPNs is general enough to serve as
a template for incorporating suitable functions that mea-
sure similarity between sub-SPNs as well as for performing
arbitrary mergings. Our experimental evaluation clearly
shows that graph SPNs can significantly boost the accuracy
and prediction time of tree SPNs by substantially reduc-
ing the number of parameters that the learning algorithm
needs to induce from data. We also investigated the merit
of learning ensembles of graph SPNs, building on our pre-
vious work on learning ensembles of tree SPNs, for a va-
riety of high dimensional real world datasets, and compar-
ing them to other state-of-the-art tractable model learners.
Our experimental results showed that ensembles of graph
SPNs significantly outperformed the state-of-the-art learn-
ers, clearly demonstrating the efficacy of our proposed ap-
proach.

Future work includes: developing relational merging ap-
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Table 3: Average test set log-likelihood comparison with state-of-the-art tractable model learners. Bold values indicate
the winning score for the corresponding dataset. T-LL: Bagged LL of tree SPNs and G-LL: Bagged LL of graph SPNs.
Column “Best-LL to date” gives the best log-likelihood score to date for each dataset obtained using the following
competing approaches: ID-SPN [26], ACMN [20], MCNet [25], SPN-SVD [1], and ECNet [24].

Datasets |Var| |Train| |Valid| |Test| L-SPN O-SPN Best-LL to dateT-LL G-LL T-LL G-LL
NLTCS 16 16181 2157 3236 -6.01 -6.00 -6.01 -6.00 -6.00
MSNBC 17 291326 38843 58265 -6.45 -6.39 -6.10 -6.10 -6.04
KDD 64 180092 19907 34955 -2.13 -2.12 -2.14 -2.13 -2.12
Plants 69 17412 2321 3482 -12.31 -12.03 -12.25 -12.21 -11.99
Audio 100 15000 2000 3000 -39.57 -39.49 -40.35 -40.31 -39.67
Jester 100 9000 1000 4116 -52.65 -52.47 -53.56 -53.13 -41.11
Netflix 100 15000 2000 3000 -55.92 -55.84 -56.69 -56.65 -56.13
Accidents 111 12758 1700 2551 -29.41 -29.32 -29.81 -29.82 -24.87
Retail 135 22041 2938 4408 -10.85 -10.82 -10.87 -10.85 -10.60
Pumsb star 163 12262 1635 2452 -23.82 -23.67 -23.85 -23.81 -22.40
DNA 180 1600 400 1186 -86.63 -80.89 -85.97 -84.79 -80.03
Kosarek 190 33375 4450 6675 -10.71 -10.55 -10.85 -10.74 -10.54
MSWeb 294 29441 32750 5000 -9.84 -9.78 -9.77 -9.76 -9.22
Book 500 8700 1159 1739 -36.49 -34.25 -36.35 -35.89 -30.18
EachMovie 500 4524 1002 591 -54.70 -50.72 -55.82 -53.07 -51.14
WebKB 839 2803 558 838 -170.27 -150.04 -166.65 -152.82 -150.10
Reuters-52 889 6532 1028 1540 -84.32 -80.66 -86.00 -82.66 -82.10
20NewsGrp. 910 11293 3764 3764 -151.48 -150.80 -158.40 -154.28 -151.47
BBC 1058 1670 225 330 -265.89 -233.26 -244.12 -238.61 -236.82
Ad 1556 2461 327 491 -16.33 -14.58 -15.69 -14.34 -14.36

proaches that search for similarities in sub-SPNs having
different (even disjoint) scopes (cf. [12, 14]); analyzing
contexts – assignment to variables on the path from the
root – of merged sub-SPNs for finding symmetric contexts;
directly inducing graph SPNs from data rather than using
post-processing schemes; and extending the approach pre-
sented in the paper to hybrid domains having both discrete
and continuous variables.
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Abstract

We formalize decision-making problems in
robotics and automated control using continuous
MDPs and actions that take place over contin-
uous time intervals. We then approximate the
continuous MDP using finer and finer discretiza-
tions. Doing this results in a family of sys-
tems, each of which has an extremely large ac-
tion space, although only a few actions are “in-
teresting”. We can view the decision maker as
being unaware of which actions are “interesting”.
We an model this using MDPUs, MDPs with
unawareness, where the action space is much
smaller. As we show, MDPUs can be used as
a general framework for learning tasks in robotic
problems. We prove results on the difficulty of
learning a near-optimal policy in an an MDPU
for a continuous task. We apply these ideas to
the problem of having a humanoid robot learn on
its own how to walk.

1 INTRODUCTION

Markov decision processes (MDPs) are widely used for
modeling decision making problems in robotics and au-
tomated control. Traditional MDPs assume that the deci-
sion maker (DM) knows all states and actions. However,
in many robotics applications, the space of states and ac-
tions is continuous. To find appropriate policies, we typ-
ically discretize both states and actions. However, we do
not know in advance what level of discretization is good
enough for getting a good policy. Moreover, in the dis-
cretized space, the set of actions is huge. However, rela-
tively few of the actions are “interesting”. For example,
when flying a robotic helicopter, only a small set of actions
lead to useful flying techniques; an autonomous helicopter
must learn these techniques. Similarly, a humanoid robot
needs to learn various maneuvers (e.g., walking or running)
that enable it to move around, but the space of potential ac-
tions that it must search to find a successful gait is huge,

while most actions result in the robot losing control and
falling down.

Halpern, Rong, and Saxena [2010] (HRS from now
on) defined MDPs with unawareness (MDPUs), where a
decision-maker (DM) can be unaware of the actions in an
MDP. In the robotics applications in which we are inter-
ested, we can think of the DM (e.g., a humanoid robot) as
being unaware of which actions are the useful actions, and
thus can model what is going on using an MDPU.

In this paper, we apply MDPUs to continuous problems.
We model such problems using continuous MDPs, where
actions are performed over a continuous duration of time.
Although many problems fit naturally in our continuous
MDP framework, and there has been a great deal of work
on continuous-time MDPs, our approach seems new, and of
independent interest. (See the discussion in Section 5.) It
is hard to find near-optimal policies in continuous MDPs.
A standard approach is to use discretization. We use dis-
cretization as well, but our discrete models are MDPUs,
rather than MDPs, which allows us both to use relatively
few actions (the “interesting actions”), while taking into ac-
count the possibility of there being interesting actions that
the DM has not yet discovered. We would like to find a dis-
cretization level for which the optimal policy in the MDP
underlying the approximating MDPU provides a good ap-
proximation to the optimal policy in the continuous MDP
that accurately describes the problem, and then find a near-
optimal policy in that discretized MDPU.

HRS gave a complete characterization of when it is possi-
ble to learn to play near-optimally in an MDPU, extending
earlier work [Brafman and Tennenholtz 2002; Kearns and
Singh 2002] showing that it is always possible to learn to
play near-optimally in an MDP. We extend and generalize
these results so as to apply them to the continuous prob-
lems of interest to us. We characterize when brute-force
exploration can be used to find a near-optimal policy in
our setting, and show that a variant of the URMAX algo-
rithm presented by HRS can find a near-optimal policy. We
also characterize the complexity of learning to play near-
optimally in continuous problems, when more “guided” ex-
ploration is used. Finally, we discuss how MDPUs can be
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used to solve a real robotic problem: to enable a humanoid
robot to learn walking on its own. In our experiment, the
robot learned various gaits at multiple discretization levels,
including both forward and backward gaits; both efficient
and inefficient gaits; and both gaits that resemble human
walking, and those that do not.

2 MDPU: A REVIEW

Describing a situation by a standard MDP misses out on
some important features. In general, an agent may not be
aware of all the actions that can be performed. For exam-
ple, an agent playing a video game may not be aware of all
actions that can be performed in a given state. Our model
is compatible with a number of interpretations of unaware-
ness. In the robotics setting, we take a particular concrete
interpretation. Here, the number of actions is typically ex-
tremely large, but only a few of these actions are actually
useful. For example, although an autonomous helicopter
can have a huge number of actions, only a few are useful
for flying the helicopter, whereas the rest simply result in
a crash. We can abstract what is going on by defining a
set of “useful actions”. The DM may initial be unaware of
many or even most of the useful actions. A DM may be-
come aware of a useful action (and thus, can safely perform
it) by performing a special action called the explore action,
denoted a0. Playing the explore action results in the DM
learning about new actions with some probability.

We thus take an MDPU to be a tuple M =
(S,A,A0, g, a0, g0, P,D,R),1 where the tuple
(S,A, g, P,R) is a standard MDP—that is, S is a set
of states, A is a set of actions, g(s) is the set of actions
available at state s, for each tuple (s, s′, a) ∈ S × S × A,
P (s, s′, a) gives the probability of making a transition
from s to s′ if action a is performed, and R(s, s′, a) gives
the reward earned by the DM if this transition is taken;
A0 ⊆ A is the set of actions that the DM initially knows
to be useful; a0 is the special explore action; g(s) ⊆ A
is the set of actions that can be performed at state s;
g0(s) ⊆ A0 ∩ g(s) is the set of actions that the DM is
aware of at state s; finally, D is the discovery probability
function. D(j, t, s) is the probability of discovering a
useful action given that there are j useful actions to be
discovered at state s, and a0 has already been played t− 1
times without discovering a useful action. Intuitively,
D describes how quickly the DM can discover a useful
action. We assume that D(j, t, s) is non-decreasing as
a function of j: the more useful actions there are to be
found, the easier we can find one. How D(j, t, s) varies
with t depends on the problem. In the sequel, we assume
for ease of exposition that D(j, t, s) is independent of s, so

1The MDPU model in HRS also includes R+
i and R−

i , which
are the reward (resp., penalty) functions for playing a0 and dis-
covering (resp., not discovering) a useful action. We omit them
here; they play no role in the theorems that we are citing, and
would only clutter our later presentation.

we write D(j, t) rather than D(j, t, s). M ′ = (S,A, P,R)
is called the MDP underlying M .

Kearns and Singh [2002] and Brafman and Tennenholtz
[2002] have studied the problem of learning how to play
near-optimally in an MDP. Roughly speaking, to play near-
optimally means that, for all ε > 0 and δ > 0, we can
find a policy that obtains expected reward ε-close to that
of the optimal policy with probability at least 1 − δ. HRS
completely characterize the difficulty of learning to play
near-optimally in an MDPU. We briefly review the relevant
results here. Despite initially being unaware of some use-
ful actions, we want the DM to learn a policy that is near-
optimal in the underlying MDP. HRS showed that whether
a DM can learn to play optimally and how long it takes de-
pend on the value of D(1, t)—the probability of discover-
ing a new action given that there is a new action to discover
and the DM has tried t − 1 times in the past to discover a
new action.

The first result characterizes when it is impossible to learn
to play near-optimally. To make it precise, we recall the
notion of mixing time. Formally, the ε-return mixing time
of an MDP M is the least T such that an optimal policy for
M guarantees an expected payoff within ε of the optimal
reward after running for at least time T . (See [Kearns and
Singh 2002] for more details and motivation.) The follow-
ing theorem shows that if the discovery probability is suf-
ficiently low, where “sufficiently low” means D(1, t) < 1
for all t and

∑∞
t=1D(1, t) <∞, then the DM cannot learn

to play near-optimally. We define Ψ(T ) =
∑T
t=1D(1, t).

Theorem 2.1 If D(1, t) < 1 for all t and Ψ(∞) < ∞,
then there exists a constant c such that no algorithm can
obtain a reward that is guaranteed to be within c of optimal
for an MDPU M = (S,A,A0, G, aog0, P,D,R), even if
S, |A|, and a bound on the optimal reward are known.

Theorem 2.1 says that when Ψ(∞) < ∞, it is impossible
for the DM to learn an optimal policy. On the other hand,
if Ψ(∞) = ∞, then it is possible to learn to play near-
optimally. HRS present an algorithm called URMAX, a
variant of the RMAX algorithm [Brafman and Tennenholtz
2002], that learns near-optimal play.

Theorem 2.2 If Ψ(∞) = ∞, then the URMAX algorithm
computes a near-optimal policy.

In fact, we can say even more. If Ψ(∞) = ∞, then the ef-
ficiency of the best algorithm for determining near-optimal
play depends on how quickly Ψ(∞) diverges. HRS char-
acterize the running time of URMAX in terms of the func-
tion Ψ, and give lower bounds on the time required to learn
near-optimally in terms of Ψ. These results show that UR-
MAX learns to play near-optimally almost as quickly as
possible. Specifically, it learns a policy with an expected
reward ε-close to the optimal reward with probability 1− δ
in time polynomial in |S|, |A|, 1/ε, 1/δ, a bound Rmax on
the optimal reward, the ε-return mixing time, and the small-
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est T such that Ψ(T ) ≥ ln(4N/δ), whenever it is possible
to do so. The polynomial-time results are summarized in
the next result.

Theorem 2.3 It is possible to learn to play near-optimally
in polynomial time iff there exist constantsm1 andm2 such
that Ψ(T ) ≥ m1 ln(T ) + m2 for all T > 0. Moreover, if
it is possible to learn to play near-optimally in polynomial
time, URMAX does so.

3 ANALYZING ROBOTIC PROBLEMS
AS MDPUS

As we said in the introduction, we apply the MDPU frame-
work to robotic problems such as having a humanoid robot
learn to walk. For such problems, we typically have a
continuous space of states and actions, where actions take
place in continuous time, and actions have a nontrivial du-
ration.

Suppose that the original continuous problem can be char-
acterized by a continuous MDP M∞ (defined formally be-
low). We would like to find a “good” discretization M of
M∞. “Good” in this setting means that an optimal pol-
icy for M is ε-optimal for M∞, for some appropriate ε.2

Clearly the level of discretization matters. Too coarse a dis-
cretization results in an MDP whose optimal policy is not ε-
optimal forM∞; on the other hand, too fine a discretization
results in the problem size becoming unmanageably large.
For example, in order to turn a car on a smooth curve (with-
out drifting), the optimal policy is to slowly turn the steer-
ing wheel to the left and back, in which the action varies
smoothly over time. This can be simulated using a rela-
tively coarse discretization of time. However, in order to
make a sharp turn using advanced driving techniques like
drifting, the steering wheel needs to be turned at precise
points in time, or else the car will go into an uncontrollable
spin. In this case, a fine discretization in time is needed.

Unfortunately, it is often not clear what discretization level
to use in a specific problem. Part of the DM’s problem is to
find the “right” level of discretization. Thus, we describe
the problem in terms of a continuous MDP M∞ and a se-
quence ((M1,M

′
1), (M2,M

′
2), . . .), whereMi is an MDPU

with underlying MDP M ′i , for i = 1, 2, . . .. Intuitively,
(M ′1,M

′
2,M

′
3, . . .) represents a sequence of finer and finer

approximations to M∞.

Continuous Time MDP with Continuous Actions over
Time: To make this precise, we start by defin-
ing our model of continuous MDPs. Let M∞ =
(S∞, A∞, g∞, P∞, R∞). S∞ is a continuous state space,
which we identify with a compact subset of IRn for some
integer n > 0; that is, each state can be represented by a
vector (s1, · · · , sn) of real numbers. For example, for a hu-

2A policy π is ε-optimal for an MDP M if the expected aver-
age reward for a policy for M is no more than ε greater than the
expected average reward of π.

manoid robot, the state space can be described by a vector
which includes the robot’s (x, y, z) position, and the cur-
rent positions of its movable joints.

Actions: Describing A∞ requires a little care. We assume
that there is an underlying set of basic actions AB , which
can be identified with a compact subset of IRm for some
m > 0; that is, each basic action can be represented by a
vector (a1, · · · , am) of real numbers. For example, for a
humanoid robot, the basic actions can be characterized by
a tuple that contains the targeted positions for its movable
joints. However, we do not take A∞ to consist of basic
actions. Rather, an action is a path of basic actions over
time. Formally, an action in A∞ is a piecewise continuous
function from a domain of the form (0, t] for some t > 0
to basic actions. Thus, there exist time points t0 < t1 <
. . . < tk with t0 = 0 and tk = t such that a is continuous
in the interval (tj , tj+1] for all j < k. The number t is the
length of the action a, denoted |a|. We use left-open right-
closed intervals here; we think of the action in the interval
(tj , tj+1] as describing what the DM does right after time
tj until time tj+1. By analogy with the finite case, g∞(s)
is the set of actions in A∞ available at s.

Reward and Transition Functions: We now define R∞
and P∞, the reward and transition functions. In a discrete
MDP, the transition function P and reward function R take
as arguments a pair of states and an action. Thus, for ex-
ample, P (s1, s2, a) is the probability of transitioning from
s1 to s2 using action a, and R(s1, s2, a) is the reward the
agent gets if a transition from s1 to s2 is taken using ac-
tion a. In our setting, what matters is the path taken by
a transition according to a. Thus, we take the arguments
to P∞ and R∞ to be tuples of the form (s1, sc, a), where
s1 is a state, a is an action in A∞ of length t, and sc is
a piecewise continuous function from (0, t] to S∞. Intu-
itively, sc describes a possible path of states that the DM
goes through when performing action a, such that before a
starts, the DM was at s1.3 Note that we do not require that
limt→0+ sc(t) = s1. Intuitively, this means that there can
be a discrete change in state at the beginning of an inter-
val. This allows us to capture the types of discrete changes
considered in semi-MDPs [Puterman 1994].

We think of R∞(s1, sc, a) as the reward for transitioning
from s1 according to state path sc via action a. We assume
that R∞ is bounded: specifically, there exists a constant
c such that R∞(s1, sc, a) < c · |a|. For s1 ∈ S∞ and
a ∈ A∞, we take P∞(s1, ·, a) to be a probability density
function over state paths of length |a| starting at s1. P∞ is
not defined for transitions starting at terminal states.

We require R∞ and P∞ to be continuous functions,
so that if (si, s

i
c, ai) approaches (s, sc, a) (where all the

state sequences and actions have the same length t), then
R∞(si, s

i
c, ai) approachesR∞(s, sc, a) and P∞(si, s

i
c, ai)

3We are thus implicitly assuming that the result of perform-
ing a piecewise continuous action must be a piecewise continuous
state path.
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approaches P∞(s, sc, a). To make the notion of “ap-
proaches” precise, we need to consider the distance
between state paths and the distance between actions.
Since we have identified both states (resp., basic ac-
tions) with subsets of IRn (resp., IRm), this is straight-
forward. For definiteness, we define the distance be-
tween two vectors in IRn using the L1 norm, so that
d(~p, ~q) =

∑n
1 |pi − qi|. For actions a and a′ in A∞ of

the same length, define d(a, a′) =
∫ |a|
t=0

d(a(t), a′(t))dt.
For state paths sc and s′c of the same length, de-
fine d(sc, s

′
c) =

∫ |sc|
t=0

d(sc(t), s
′
c(t))dt. Finally, define

d((sc, a), (s′c, a
′)) = d(sc, s

′
c)+d(a, a′). This definition of

distance allows us to formalize the notion of continuity for
R∞ and P∞. The key point of the continuity assumption is
that it allows us to work with discretizations, knowing that
they really do approximate the continuous MDP.

Constraints on Actions: We typically do not want to take
A∞ to consist of all possible piecewise continuous func-
tions. For one thing, some hardware and software restric-
tions will make certain functions infeasible. For example,
turning a steering wheel back and forth 1020 times in one
second can certainly be described by a continuous function,
but is obviously infeasible in practice. But we may want to
impose further constraints on A∞ and g∞(s).

In the discussion above, we did not place any constraints
on the length of actions. When we analyze problems of
interest, there is typically an upper bound on the length of
actions of interest. For example, when playing table ten-
nis using a robotic arm, the basic actions can be viewed as
tuples, describing the direction of movement of the racket,
the rotation of the racket, and the force being applied to
the racket; actions are intuitively all possible control se-
quences of racket movements that are feasible according to
the robot’s hardware and software constraints; this includes
slight movements of the racket, strokes, and prefixes of
strokes. An example of a piecewise continuous action here
would be to move the racket forward with a fixed force for
some amount of time, and then to suddenly stop applying
the force when the racket is close to the ball. We can bound
the length of actions of interest to the time that a ball can
be in the air between consecutive turns. We assume that,
in any case, there is an upper bound T on the length of all
actions. This seems to be a reasonable assumption for all
the applications of interest to us here.

Awareness: Even with the constraints discussed above,
A∞ is typically extremely large. Of course, not all actions
in A∞ are “useful”. For instance, in the helicopter exam-
ple, most actions would crash the helicopter. We thus con-
sider potentially useful actions. (We sometimes call them
just useful actions.) Informally, an action is potentially use-
ful if it is not useless. A useless action is one that either
destroys the robot, or leaves it in an uncontrollable state,
or does not change the state. For example, when flying a
helicopter, actions that lead to a crash are useless, as are ac-
tions that make the helicopter lose control. More formally,

given a state s, the set of useful actions at state s are the
actions that transit to a different state in which the robot
is neither destroyed nor uncontrollable. Note that an ac-
tion that crashes the helicopter in one state may not cause
a crash in a different state. For robotics applications, we
say that a robot is aware of an action if it identifies that
action as a potentially useful action, either because it has
been preprogrammed with the action (we are implicitly as-
suming that the robot understands all actions with which it
has been programmed) or it has simulated the action. For
example, a humanoid robot that has been pre-programmed
with only simple walking actions, and has never tried run-
ning or simulated running before, would be unaware of run-
ning actions. Let Ā∞ denote the useful actions in A∞, and
let Ā∞0 denote the useful actions that the robot is initially
aware of. (These are usually the actions that the robot has
been pre-programmed with.)

Discretization: We now consider the discretization of
M∞. We assume that, for each discretization level i, S∞ is
discretized into a finite state space Si andAB is discretized
into a finite basic action space ABi, where |S1| ≤ |S2| ≤
. . . and |AB1| ≤ |AB2| ≤ . . .. We further assume that,
for all i, there exists di > 0, with di → 0, such that for
all states s ∈ S∞ and basic actions aB ∈ AB , there ex-
ists a state s′ ∈ Si and a basic action aB′ ∈ ABi such
that d(s, s′) ≤ di, and d(aB , a

′
B) ≤ di. Thus, we are as-

suming that the discretizations can give closer and closer
approximations to all states and basic actions. At level i,
we also discretize time into time slices of length ti, where
T ≥ t1 > t2 > . . ..Thus, actions at discretization level
i are sequences of constant actions of length ti, where a
constant action is a constant function from (0, ti] to a sin-
gle basic action.4 In other words, the action lengths at dis-
cretization level i are multiples of ti. Thus, at discretization
level i, there are

∑bT/tic
l=1 |ABi|l possible actions. Let A′i

consist of this set of actions. (Note that some actions in A′i
may not be in A∞, since certain action sequences might be
infeasible due to hardware and software constraints.) Let
Ai ⊆ A′i be the set of useful actions at level i.

Let Mi be the MDPU where Si and Ai are defined above;
A∞0 is the set of useful actions that the DM is initially
aware of; g(s) is the set of useful actions at state s; g0(s)
is the set of useful actions that the DM is aware of at
state s; and the reward function Ri is just the restric-
tion of R∞ to Ai and Si. For s1 ∈ Si and a ∈ Ai,
we take Pi(s1, ·, a) to be a probability distribution over
Q
|a|
i , the set of state paths of length |a| that are piece-

wise constant and each constant section has a length that
is a multiple of ti. For a state path sc ∈ Q

|a|
i , let

Pi(s1, sc, a) be the normalized probability of traversing a
state sequence that is within distance di of state sequence
sc when playing action a starting from state s1. Formally,

4Note that we are not assuming that the action space Ai+1

is a refinement of Ai (which would further require ti+1 to be a
multiple of ti).
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Pi(s1, sc, a) = (
∫
{s′c:d(sc,s′c)≤di}

dP∞(s1, ·, a))/c, where
c =

∑
sc∈Q|a|i

∫
{s′c:d(sc,s′c)≤di}

dP∞(s1, ·, a) is a normal-
ization constant. Since the robot is not assumed to know all
useful actions at any specific discretization level, it needs
to explore for the useful actions it wasn’t aware of. Finally,
given a specific exploration strategy, Di(j, t) describes the
probability of discovering a new useful action at discretiza-
tion level i, given that there are j undiscovered useful ac-
tions at level i, and the robot has explored t times without
finding a useful action. We model exploration using a0;
every time the robot explores, it is playing a0.

It remains to define the discretization of an action in A0. In
order to do this, for a ∈ A∞, define ai ∈ Ai to be a best ap-
proximation to a in level i if |ai| is the largest multiple of ti
that is less than or equal to |a|, and

∫ (|ai|)
0

d(a(t), ai(t))dt
is minimal among actions a′ ∈ A of length |ai|. Intuitively,
ai is an action in Ai whose length is as close as possible to
that of a and, among actions of that length, is closest in dis-
tance to a. The action ai is not unique. For a ∈ A0, define
its discretization at level i to be a best approximation to a
at that level. When there are several best approximations,
we choose any one of them.

Policies: As usual, a policy π inMi is a function from Si to
Ai. We want to computeUMi

(s, π, t), the expected average
reward over time t of π started in state s ∈ Si. Let aj ∈ Ai
and scj be a state sequence in Q

|aj |
i , for j = 0, . . . , l.

Say that a sequence ((a0, sc0), (a1, sc1), · · · , (al, scl)) is a
path compatible with policy π starting at s if π(s) = a0
and π(scj(|aj |)) = aj+1 for all 0 ≤ j ≤ l − 1. Let
Iπs,t consist of all paths ((a0, sc0), (a1, sc1), · · · , (al, scl))
starting at s compatible with π such that

∑l
j=0 |aj | ≤

t <
∑l+1
j=0 |aj |, where al+1 = π(scl(|al|)). Essentially,

when computing UMi(s, π, t), we consider the expected re-
ward over all maximally long paths that have total length
at most t. Thus, UMi

(s, π, t) =
∑
p∈Iπs,t P

∗
i (p)

R∗i (p)
t ,

where, given a path p = ((a0, sc0), (a1, sc1), · · · , (al, scl)),
P ∗i (p) = Πl

j=0Pi(scj(0), scj , aj), and R∗i (p) =∑l
j=0Ri(scj(0), scj , aj).

Now that we have defined the average reward of a policy
at discretization level i, we can define the average reward
of a policy in M∞. Given a discretization level i, let πi
be a projection of π∞ at level i, defined as follows: for
each si ∈ Si, define πi(si) to be an action ai ∈ Ai such
that ai is a best approximation to π(si) at level i, as de-
fined above. As mentioned, there might be several best
approximations; ai is not unique. Thus, the projection is
not unique. Nevertheless, we define UM∞(s, π∞, t) to be
limi→∞ UMi(s, πi, t), where πi is a projection of π to dis-
cretization level i. The continuity of the transition and re-
ward functions guarantees that the limit exists and is inde-
pendent of the choice of projections.

We now consider how the URMAX algorithm of Section 2
can be applied to learn near-optimal policies. We use

URMAX at each discretization level. Note that URMAX
never terminates; however, it eventually learns to play near-
optimally (although we may not know exactly when). The
time it takes to learn to play near-optimally depends on
the exploration strategy. The next theorem consider brute-
force searching, where, at discretization level i, at each dis-
cretization level i, all actions in A′i are exhaustively exam-
ined to find useful actions. (The proof of this and all other
theorems can be found in the supplementary material.)

Theorem 3.1 Using brute-force exploration, given α > 0
and 0 < δ < 1, we can find an α-optimal policy in M∞
with probability at least 1− δ in time polynomial in l, |A′l|,
|Sl|, 1/α, 1/δ,Rlmax, and T l, where l is the least i such that
the optimal policy for M ′i is (α/2)-optimal for M∞, Rlmax

is the maximum reward that can be obtained by a transition
in M ′l , and T l is the ε-return mixing time for M ′l .

Although brute-force exploration always learns a near-
optimal policy, the method can be very inefficient, since
it exhaustively checks all possible actions to find the use-
ful ones. Thus, at discretization level i, it needs to check∑bT/tic
l=1 |ABi|l actions, and as i grows, the method soon

becomes impractical. On the other hand, the result is of
some interest, since it shows that even when there are in-
finitely many possible levels of discretizations, a method as
simple as brute-force exploration suffices.

When the number of possible actions is huge, the probabil-
ity of finding a potentially useful action can be very low.
In this case, making use of an expert’s knowledge or imi-
tating a teacher’s demonstration can often greatly increase
the probability of finding a useful action. We abstract the
presence of an expert or a teacher by assuming that there is
some constant β > 0 such that D(1, t) ≥ β for all t. In-
tuitively, the presence of a teacher or an expert guarantees
that there is a minimal probability β such that, if there is a
new action to be found at all, then the probability of finding
it is at least β, no matter how many earlier failed attempts
there have been at finding a useful action.

Using apprentice learning lets us improve Theorem 3.1 by
replacing the |A′l| component of the running time by |Al|;
thus, with apprentice learning, the running time depends
only on the number of useful actions, not the total number
of potential actions. The savings can be huge.

Theorem 3.2 Using an exploration method where
Di(1, t) ≥ β for all i, t > 0 (where β ∈ (0, 1) is a
constant), for all α > 0 and 0 < δ < 1, we can find an
α-optimal policy in M∞ with probability at least 1 − δ in
time polynomial in l, |Al|, |Sl|, 1/β, 1/α, 1/δ, Rmax, and
T l, where l is the smallest i such that the optimal policy
for M ′i is (α/2)-optimal to M∞, Rlmax is the maximum
reward that can be obtained by a transition in M ′l , and T l

is the ε-return mixing time for M ′l .
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Figure 1: The arena with the robot at the center; and the
robot.

4 HUMANOID ROBOT WALKING

We consider the problem of a humanoid robot with 20 joint
motors (which we sometimes call just “joints”) learning to
walk on its own. More precisely, we require the robot to
move from the center of an arena to its boundary; we take
any reasonable motion to be “walking”. (Figure 1 shows
the robot and the arena in which it must walk.)

4.1 The continuous MDP

We start by defining a continuous M∞ for the robot prob-
lem. A state s ∈ S∞ is of the form s = (w1, · · · , w23) ∈
IR23, where (w1, w2, w3) give the position of the robot’s
center of mass and (w4, · · · , w23) are the current positions
of the robot’s 20 joint motors. We define the domain of
each dimension as follows: since the radius of the arena
is 5 meters, w1, w2 ∈ [−5, 5]; since the robot’s height is
0.454 meters, w3 ∈ [0, 0.4] (we do not expect the robot’s
center of mass to be higher than 0.4). Each joint mo-
tor has its specific range of mobility, which determines
the domain of the corresponding dimension. For example,
w5 ∈ [−3.14, 2.85] represents the current position of the
robot’s left shoulder. The mobility range for all joint mo-
tors are intervals in [−π, π].

The basic actions a ∈ AB are of the form a =
(v1, · · · , v20) ∈ IR20, where vi is the target position for
the robot’s ith joint motor. The domain of each dimension
is the mobility range for the corresponding joint motor. For
example, v2, which corresponds to the left shoulder, has
mobility range [−3.14, 2.85]; v2 = 2.85 means to move
the robot’s left shoulder forward as far as possible. Since
walking is composed of repeated short movements that are
typically no longer than half a second, we set T = 0.512
seconds. Thus, A∞, the set of useful actions, consists of
piecewise continuous functions that map from time to basic
actions and comply with the robot’s hardware and software
limitations, of length t < 0.512 seconds.

We now define R∞ and P∞. Intuitively, the robot
obtains a reward for gaining distance from the cen-
ter of the arena. If the coordinates of the center
of the arena are given by s0 = (s0[1], s0[2]), then
R∞(s1, sc, a) = dis(s0, sc(|a|)) − dis(s0, s1), where
dis(s0, s1) =

√
(s0[1]− s1[1])2 + (s0[2]− s1[2])2 is the

L2-norm distance between s0 and s1 on the (x, y)-plane.
The reward could be negative, for example, if the robot
moves back towards the center of the arena.

By definition, P∞(s1, ·, a) is a probability distribution over
state sequences of length |a| starting at s1. For example, if
the robot slowly moves its right leg forward while staying
balanced, the state path taken by the robot is a determin-
istic path. On the other hand, if a is the action of turn-
ing around quickly, P∞(s, ·, a) is distribution over various
ways of falling down.

4.2 Discretizations

We now define Mi and M ′i . In our experiments we con-
sidered only levels 2 and 3 (level 1 is uninteresting since
it has just one state and one action), so these are the only
levels that we describe in detail here. (These turn out to
suffice to get interesting walking behaviors.) At these lev-
els, we discretized more finely the joints corresponding to
the left and right upper and lower leg joints and the left and
right ankle joints, since these turn out to be more critical
for walking. (These are components (w14, · · · , w19) in the
state tuples and (v11, · · · , v16) in basic-actions tuples.) We
call these the relevant dimensions. We assume that the six
relevant state and actions components have i possible val-
ues at level i, for i = 2, 3, as does w3, since this describes
how high off the ground the robot is (and thus, whether or
not it has fallen). All other dimensions take just one value.
We took t2 = t3 to be 128ms. Since T = 0.512s, an action
contains at most bT/tic = 4 basic actions.

A∞0 is the set of preprogrammed actions. We preprogram
the robot with a simple sitting action that lets the robot
slowly return to its initial sitting gesture. When we con-
sider apprenticeship learning, we also assume that the robot
is preprogrammed with a “stand-up” action, that enables it
to stand up from its initial sitting position. (Intuitively, we
are assuming that the expert taught the robot how to stand
up, since this is useful after it has fallen.)

A′i is the set of potential actions at level i. Given our
assumptions, for i = 2, 3, at level i, there are (i6)4

potential actions (there are i possible values for each
of the six relevant dimensions, and each action is a se-
quence of four basic actions). Thus, at level 3, there are
(36)4 =282,429,536,481 potential actions. As we men-
tioned, a useful action is an action that moves the robot
without making it lose control. Here, an action is useful
if it moves the robot without resulting in the robot falling
down. At both levels 2 and 3, more than 80 useful actions
were found in our experiments. The most efficient action
found at level 3 was one where the right leg moves back-
wards, immediately followed by the left leg, in such a way
that the robot maintains its balance at all times. By way
of contrast, turning the body quickly makes the robot lose
control and fall down, so is useless.

For s1 ∈ Si, a ∈ Ai, and sc ∈ Q
|a|
i , Pi(s1, sc, a) is the
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normalized probability of traversing a state sequence that
is di close to sc, a sequence of states in Si, where we de-
fine di = 12π

i + 28π + 20.4. So di decreases in i, and dis-
cretizations at a higher level better approximate the contin-
uous problem. All basic actions in AB are within distance
di of a basic action in ABi and all states in S are within di
of a state in Si. Let s ∈ S, and let si be the closest state to
s in Si. It is easy to check that d(s, si) ≤ di for i = 2, 3.

The Di function depends on the exploration method used
to discover new actions. In our experiment, we used
two exploration methods: brute-force exploration and
apprenticeship-learning exploration.

At discretization level i, using brute-force exploration, we
have Di(|Ai|, t) = |Ai|

|A′
i
| , since there are |Ai| useful actions

and |A′i| potential actions, and we test an action at random.
With apprenticeship learning, we used following hints from
a human expert to increase the probability of discovering
new actions: (a) a sequence of moving directions that, ac-
cording to the human expert, resembles human walking;5

(b) a preprogrammed stand-up action; (c) the information
that an action that is symmetric to a useful action is also
likely to be useful (two actions are symmetric if they are ex-
actly the same except that the target values for the left joints
and those for the right joints are switched). We also use a
different discretization: the ankle joint was discretized into
10 values. The human expert suggests more values in the
ankle joints because whether or not the robot falls depends
critically on the exact ankle joint position. These hints were
provided before the policy starts running; the discretization
levels are set then too. There were no further human-robot
interactions.

4.3 Experiments

For our experiments, we simulated DARwIn OP, a com-
mercially available humanoid robot. The simulations were
conducted on Webots PRO platform 8.2.1 using a Mac-
Book Pro with 2.8GHz Intel Core i7 Processor, 16GB 1600
MHz DDR3 memory, 0.5TB Flash Storage Mac HD, on OS
X Yosemite 10.10.5. We modeled the robot walking prob-
lem as an MDPU, and implemented the URMAX algorithm
using programming language Python 2.7.7.

As we said, given the number of actions involved, we con-
ducted experiments only for discretization level 2 and 3.
Both sufficed to enable the robot to learn to walk, using a
generous notion of “walk”—more precisely, they sufficed
to enable the robot to learn to locomote to the boundary of
the arena. As mentioned, two exploration methods were
used: brute-force exploration and apprenticeship-learning
exploration. One trial was run for brute-force exploration at
each of levels 2 and 3, and one trial was run for apprentice-
ship learning at level 2. Each trial took 24 hours. More than

5The sequence gives directions only for certain joints, with-
out specific target values, leaving the movement remaining joints
open for experimentation.

Brute-force
(level 2)

Brute-force
(level 3)

Apprenticeship
learning (level 2)

|Si| 130 1460 3200
|ABi| 64 729 1600
|Ai| 16777216 282429536481 6553600000000
ti (ms) 124 124 124
Length of
action (ms) 496 496 496

Execution
time (hours) 24 24 24

Best avg rwd
(m/action) 0.043486 0.067599 0.083711

Num of useful
actions found 131 89 180

Table 1: Performance comparisons.

Figure 2: A backward gait (from left to right).

15 stable gaits were found in total, where a gait is stable if
it enables the robot to move from the center of the arena to
the boundary without falling. In addition, more than 400
useful actions were found. The best gait among all stable
gaits achieved a velocity of 0.084m/s, which seems reason-
able, given that the best known walking speed of DARwIn-
OP is 0.341m/s [Budden et al. 2013]. Given more time to
experiment, we would expect the performance to improve
further.

The robot successfully learned gaits of various styles, in-
cluding both forward and backward gaits (see Figures 2 and
3), both efficient and inefficient gaits, gaits that resemble
human walking and the ones that do not. Somewhat sur-
prisingly, the best gait actually walks backwards. (Videos
of some of the gaits and a demo of the learning process
can be found at https://youtu.be/qW51iInpdV0.) As shown
in Table 1, as the discretization level increases, both the
velocity of the best gait and the number of useful actions
found increase. This agrees with the expectation that finer
discretization better approximates the continuous problem,
and thus gets an expected reward closer to the optimal re-
ward of the continuous problem. Apprenticeship learning
resulted in more useful actions than the brute-force explo-
ration and in gaits with a higher average reward. Again,
this is hardly surprising; the hints provided by the human
expert increases the probability of finding useful actions.
On the other hand, when the expert gives “bad” hints, the

Figure 3: A forward gait (from left to right).
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robot performs worse than with brute-force exploration.

With regard to comparisons under the same setting, we
implemented two baseline comparisons for bipedal walk-
ing. The first tries random sequences of actions; the sec-
ond searches for useful actions and then repeats each use-
ful action in an attempt to find stable gaits. (The motiva-
tion for repeating actions is that human-like walking is in
fact a rhythmic/cyclic movement of a repeated action.) Us-
ing the same setting as our experiments with URMAX, the
first baseline found no stable gait in 24 hours, and the max-
imum distance the robot travelled before falling down was
0.342 meters; the second baseline found one stable gait in
24 hours, and the maximum distance travelled was 5 me-
ters (the maximum distance possible from the center of the
arena to the boundary) with a speed of 0.0058 m/s. Our
appraoch found several stable gaits at each discretization
level and the distance travelled using each stable gait is 5
meters with a maximum speed of 0.083m/s (10 times better
than the second baseline).

Our approach, using MDPUs, requires no knowledge on
the kinematics of the robot other than the number of joints
and the moving range of each joint. Moreover, it makes no
assumptions about the moving pattern of the resulting gait;
for example, we do not assume that a gait must be cyclic,
or symmetric between left and right joints, nor do we spec-
ify the length of a gait. Although we do specify the length
of a useful action, a gait could be composed of a single or
multiple useful actions. Given the few assumptions and lit-
tle prior knowledge assumed, the performance of the robot
seems quite reasonable. More importantly, the experiment
proves that the use of MDPUs enables the robot to learn
useful new maneuvers (walking, in this case) by itself, with
minimum human input.

5 RELATED WORK

There has been work on optimal policy learning in MDPs
using computational resources. Kearns and Singh’s [2002]
E3 algorithm guarantees polynomial bounds on the re-
sources required to achieve near-optimal return in gen-
eral MDPs; variants and extensions of this work can be
found in [Brafman and Tennenholtz 2002; Kakade et al.
2003; Kearns and Koller 1999]. However, algorithms such
as E3 usually require the exploration of the entire MDP
state/action space. This becomes impractical in our setting,
where the number of actions is extremely large. In such
cases, several exploration methods have been employed
to help find useful actions. For example, Abbeel and Ng
[2005] utilize a teacher demonstration of the desired task
to guide the exploration; Dearden et al. [1999] utilize the
value of information to determine the sequence of explo-
ration. Other papers (e.g., [Dean et al. 1998; Hauskrecht
et al. 1998]) consider MDPs with large action spaces.

We are far from the first to consider MDPs with continuous
time. For example, semi-MDPs (SMPDs) and continuous-

time MDPs have continuous time [Puterman 1994]. How-
ever, these models have discrete actions that can be taken
instantaneously, and do not consider continuous actions
taken over some duration of time. In Markov decision drift
processes [Hordijk and Van der Duyn Schouten 1984], the
state does not have to stay constant between successive ac-
tions (unlike an SMDP), and can evolve in a determinis-
tic way according to what is called a drift function. But
Markov decision drift processes do not have actions with
probabilistic outcomes that take place over an interval of
time. They make significant use of discrete approxima-
tions to compute optimal policies, just as we do. There
has also been work on MDPs with continuous state space
and action space (e.g., [Antos and Munos 2007; Feng et al.
2004]), but with discrete time. For our applications, we
need time, space, and actions to be continuous; this adds
new complications. In control theory, there are methods
for controlling continuous time systems where system tran-
sitions are linear function of state and time [Zinober 1989].
These can be extended to non-linear systems [Khalil 2002].
However, the transitions in these systems are usually de-
terministic, and they do not deal with rewards or policies.
Sutton, Precup, and Singh [1999] consider high-level ac-
tions (which they call options) that are taken over a du-
ration of time (such as “opening a door”), but they view
time as discrete, which significantly simplifies the model.
Rachelson, Garcia, and Fabiani [2008] consider continu-
ous actions over some time interval, however, they assume
there are decision epochs, which are the only time points
where rewards are considered. In our model, the rewards
depend on the entire state sequence that the system tra-
verses through while an action is taken. While this makes
the model more complicated, it seems more appropriate for
the problems of interest to us.

There has also been a great deal of work on bipedal robot
walking, since it is a fundamental motor task for which bi-
ological systems significantly outperform current robotic
systems [Tedrake et al. 2005]. There have been three main
approaches for solving the task:

• The first approach describes the kinematics of the
robot in detail using non-linear and linear equation
systems, then solves these systems to obtain desirable
trajectories. See, for example, [Huang et al. 2001;
Gonalves and Zampieri 2006; Kajita et al. 2003; Kim
et al. 2007; Strom et al. 2010; Xue et al. 2012].

• The second approach uses genetic algorithms [Cheng
and Lin 1997; Hasegawa et al. 2000; Picado et al.
2009]. The traits describing a gait are taken to be
the genes in a genetic algorithm. Different gaits (i.e.,
settings of the parameters) are evaluated in terms of
features such as stability and velocity; The most suc-
cessful gaits are retained, and used to produce the next
generation of gaits through selection, mutation, inver-
sion, and crossover of their genes.

• The third approach uses gradient learning, which

634



starts with either a working gait or a randomly ini-
tialized gait. It then improves the gait’s performance
by changing its parameters, using machine-learning
methods (such as neural networks) to find the most
profitable set of changes in the parameters. See, for
example, [Budden et al. 2013; Kim and Uther 2003;
Schulman et al. 2015; Tedrake et al. 2005].

Since the first approach requires a full description of the
robot’s kinematics, as well as composing and solving a
non-linear system, it requires a great deal of human in-
put. Moreover, its application is limited to walking prob-
lems. The approach is unable to produce gaits other than
those specified by human (e.g., to walk forward by step-
ping forward the left and the right legs in turn under a spe-
cific speed). Both the second and the third approach require
little human input (when starting from random gaits), and
may produce a variety of gaits. Both also have the potential
to be generalized to problems other than bipedal walking.
However, both are heuristic search algorithms, and have
no theoretical guarantee on their performance. In contrast,
our method produces a variety of gaits, provides a general
framework for solving robotic problems, and produces a
near-optimal policy in the limit. Moreover, our method re-
quires minimum human input, although, as the experiments
show, it does better with more human input.

A comparison of our method and the genetic algorithm may
provide insights into both methods. Although the two ap-
proaches seem different, the searching process made pos-
sible by selection, mutation, inversion, and crossover in a
genetic algorithm can be viewed as a special case of the
explore action in an MDPU. Conversely, the explore ac-
tion in an MDPU for the robot can be roughly viewed as
searching for a set of genes of unknown length (since a gait
can be understood as a continuous action over an uncertain
amount of time, composed of one or more shorter actions,
where each shorter action is described by a set of parame-
ters). Our approach can be viewed as being more flexible
than a genetic algorithm; in a genetic algorithm, the length
of the chromosome (i.e., the number of parameters that de-
scribe the gait) is fixed; only their values that give the best
performance are unknown.

The recent work of Mordatch et al [2016] also provides a
general approach for reinforcement learning in robot tasks.
Like us, they require prior knowledge only of the mobility
range of each of the robot’s joints, and not their kinemat-
ics; they also model the problem as an MDP. Their goal
is to find an optimal trajectory (i.e., a sequence of states),
such that when followed, performs a desired task (such as
reaching out the robot’s hand to a desired position) with
minimal cost. They use neural networks to solve the cost-
minimization problem. Thus, their approach does not have
any guarantees of (approximate) optimality of the perfor-
mance. Moreover, the complexity of their approach grows
quickly as the length of the trajectory grows (while ours is
polynomial in the number of useful actions, states visited,

and the difficulty of discovering new actions, and thus is not
significantly affected by the length of the trajectory). That
said, Mordatch et al.’s method has successfully learned a
few relatively simple tasks on a physical DARwIn OP2
robot, including hand reaching and leaning the robot’s torso
to a desired position [Mordatch et al. 2016], although it has
not yet been applied to walking.

6 CONCLUSION

We have provided a general approach that allows robots to
learn new tasks on their own. We make no assumptions on
the structure of the tasks to be learned. We proved that in
the limit, the method gives a near-optimal policy. The ap-
proach can be easily applied to various robotic tasks. We il-
lustrated this by applying it to the problem of bipedal walk-
ing. Using the approach, a humanoid robot, DARwIn OP,
was able to learn various walking gaits via simulations (see
https://youtu.be/qW51iInpdV0 for a video). We plan to ap-
ply our approach to more robotic tasks, such as learning to
run and to walk up and down stairs. We believe the process
will be quite instructive in terms of adding useful learn-
ing heuristics to our approach, both specific to these tasks
and to more general robotic tasks. We are also interested
in having the robot simulate learning to walk in the same
way a baby does, for example, by limiting the robot’s abil-
ities initially, so that it must crawl before it walks. Part of
our interest lies in seeing if such initial limitations actually
make learning more efficient.
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Abstract

We apply a wild bootstrap method to the Lan-
caster three-variable interaction measure in or-
der to detect factorisation of the joint distribution
on three variables forming a stationary random
process, for which the existing permutation boot-
strap method fails. As in the i.i.d. case, the Lan-
caster test is found to outperform existing tests in
cases for which two independent variables indi-
vidually have a weak influence on a third, but that
when considered jointly the influence is strong.
The main contributions of this paper are twofold:
first, we prove that the Lancaster statistic satis-
fies the conditions required to estimate the quan-
tiles of the null distribution using the wild boot-
strap; second, the manner in which this is proved
is novel, simpler than existing methods, and can
further be applied to other statistics.

1 INTRODUCTION

Nonparametric testing of independence or interaction be-
tween random variables is a core staple of machine learn-
ing and statistics. The majority of nonparametric sta-
tistical tests of independence for continuous-valued ran-
dom variables rely on the assumption that the observed
data are drawn i.i.d. Feuerverger [1993], Gretton et al.
[2007], Székely et al. [2007], Gretton and Gyorfi [2010],
Heller et al. [2013]. The same assumption applies to
tests of conditional dependence, and of multivariate inter-
action between variables Zhang et al. [2011], Kankainen
and Ushakov [1998], Fukumizu et al. [2008], Sejdinovic
et al. [2013], Patra et al. [2015]. For many applications
in finance, medicine, and audio signal analysis, however,
the i.i.d. assumption is unrealistic and overly restrictive.
While many approaches exist for testing interactions be-
tween time series under strong parametric assumptions
Kirchgässner et al. [2012], Ledford and Tawn [1996], the
problem of testing for general, nonlinear interactions has

seen far less analysis: tests of pairwise dependence have
been proposed by Gaisser et al. [2010], Besserve et al.
[2013], Chwialkowski et al. [2014], Chwialkowski and
Gretton [2014], where the first publication also addresses
mutual independence of more than two univariate time se-
ries. The two final works use as their statistic the Hilbert-
Schmidt Indepenence Criterion, a general nonparametric
measure of dependence [Gretton et al., 2005], which ap-
plies even for multivariate or non-Euclidean variables (such
as strings and groups). The asymptotic behaviour and cor-
responding test threshold are derived using particular as-
sumptions on the mixing properties of the processes from
which the observations are drawn. These kernel approaches
apply only to pairs of random processes, however.

The Lancaster interaction is a signed measure that can be
used to construct a test statistic capable of detecting depen-
dence between three random variables [Lancaster, 1969,
Sejdinovic et al., 2013]. If the joint distribution on the
three variables factorises in some way into a product of a
marginal and a pairwise marginal, the Lancaster interaction
is zero everywhere. Given observations, this can be used to
construct a statistical test, the null hypothesis of which is
that the joint distribution factorises thus. In the i.i.d. case,
the null distribution of the test statistic can be estimated
using a permutation bootstrap technique: this amounts to
shuffling the indices of one or more of the variables and re-
calculating the test statistic on this bootstrapped data set.
When our samples instead exhibit temporal dependence,
shuffling the time indices destroys this dependence and thus
doing so does not correspond to a valid resample of the test
statistic.

Provided that our data-generating process satisfies some
technical conditions on the forms of temporal dependence,
recent work by Leucht and Neumann [2013], building on
the work of Shao [2010], can come to our rescue. The wild
bootstrap is a method that correctly resamples from the null
distribution of a test statistic, subject to certain conditions
on both the test statistic and the processes from which the
observations have been drawn.

In this paper we show that the Lancaster interaction test
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statistic satisfies the conditions required to apply the wild
bootstrap procedure; moreover, the manner in which we
prove this is significantly simpler than existing proofs in the
literature of the same property for other kernel test statis-
tics [Chwialkowski et al., 2014, Chwialkowski and Gretton,
2014]. Previous proofs have relied on the classical theory
of V -statistics to analyse the asymptotic distribution of the
kernel statistic. In particular, the Hoeffding decomposition
gives an expression for the kernel test statistic as a sum of
other V -statistics. Understanding the asymptotic properties
of the components of this decomposition is then conceptu-
ally tractable, but algebraically extremely painful. More-
over, as the complexity of the test statistic under analysis
grows, the number of terms that must be considered in this
approach grows factorially.1 We conjecture that such anal-
ysis of interaction statistics of 4 or more variables would in
practice be unfeasible without automatic theorem provers
due to the sheer number of terms in the resulting computa-
tions.

In contrast, in the approach taken in this paper we explic-
itly consider our test statistic to be the norm of a Hilbert
space operator. We exploit a Central Limit Theorem for
Hilbert space valued random variables Dehling et al. [2015]
to show that our test statistic converges in probability to
the norm of a related population-centred Hilbert space op-
erator, for which the asymptotic analysis is much simpler.
Our approach is novel; previous analyses have not, to our
knowledge, leveraged the Hilbert space geometry in the
context of statistical hypothesis testing using kernel V -
statistics in this way.

We propose that our method may in future be applied to
the asymptotic analysis of other kernel statistics. In the
appendix, we provide an application of this method to the
Hilbert Schmidt Independence Criterion (HSIC) test statis-
tic, giving a significantly shorter and simpler proof than
that given in Chwialkowski and Gretton [2014]

The Central Limit Theorem that we use in this paper makes
certain assumptions on the mixing properties of the ran-
dom processes from which our data are drawn; as further
progress is made, this may be substituted for more up-to-
date theorems that make weaker mixing assumptions.

OUTLINE: In Section 2, we detail the Lancaster interac-
tion test and provide our main results. These results justify
use of the wild bootstrap to understand the null distribu-
tion of the test statistic. In Section 3, we provide more
detail about the wild bootstrap, prove that its use correctly
controls Type I error and give a consistency result. In Sec-

1See for example Lemma 8 in Supplementary material A.3
of Chwialkowski and Gretton [2014]. The proof of this lemma
requires keeping track of 4! terms; an equivalent approach for the
Lancaster test would have 6! terms. Depending on the precise
structure of the statistic, this approach applied to a test involving
4 variables could require as many as 8! = 40320 terms.

tion 4, we evaluate the Lancaster test on synthetic data to
identify cases in which it outperforms existing methods, as
well as cases in which it is outperformed. In Section 6, we
provide proofs of the main results of this paper, in particu-
lar the aforementioned novel proof. Further proofs may be
found in the Supplementary material.

2 LANCASTER INTERACTION TEST

2.1 KERNEL NOTATION

Throughout this paper we will assume that the kernels
k, l,m, defined on the domains X , Y and Z respectively,
are characteristic [Sriperumbudur et al., 2011], bounded
and Lipschitz continuous. We describe some notation rel-
evant to the kernel k; similar notation holds for l and m.
Recall that µX := EXk(X, ·) ∈ Fk is the mean embed-
ding [Smola et al., 2007] of the random variable X . Given
observations Xi, an estimate of the mean embedding is
µ̃X = 1

n

∑n
i=1 k(Xi, ·). Two modifications of k are used

in this work:

k̄(x, x′) = 〈k(x, ·)− µX , k(x′, ·)− µX〉, (1)

k̃(x, x′) = 〈k(x, ·)− µ̃X , k(x′, ·)− µ̃X〉 (2)

These are called the population centered kernel and empir-
ically centered kernel respectively.

2.2 LANCASTER INTERACTION

The Lancaster interaction on the triple of random vari-
ables (X,Y, Z) is defined as the signed measure ∆LP =
PXY Z −PXY PZ −PXZPY −PXPY Z + 2PXPY PZ . This
measure can be used to detect three-variable interactions.
It is straightforward to show that if any variable is indepen-
dent of the other two (equivalently, if the joint distribution
PXY Z factorises into a product of marginals in any way),
then ∆LP = 0. That is, writingHX = {X ⊥⊥ (Y,Z)} and
similar forHY andHZ , we have that

HX ∨ HY ∨ HZ ⇒ ∆LP = 0 (3)

The reverse implication does not hold, and thus no con-
clusion about the veracity of the H· can be drawn when
∆LP = 0. Following Sejdinovic et al. [2013], we can con-
sider the mean embedding of this measure:

µL =

∫
k(x, ·)l(y, ·)m(z, ·)∆LP (4)

Given an i.i.d. sample (Xi, Yi, Zi)
n
i=1, the norm of the

mean embedding µL can be empirically estimated using
empirically centered kernel matrices. For example, for the
kernel k with kernel matrix Kij = k(Xi, Xj), the empiri-
cally centered kernel matrix K̃ is given by

K̃ij = 〈k(Xi, ·)− µ̃X , k(Xj , ·)− µ̃X〉,
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By Sejdinovic et al. [2013], an estimator of the norm of the
mean embedding of the Lancaster interaction for i.i.d. sam-
ples is

‖µ̂L‖2 =
1

n2

(
K̃ ◦ L̃ ◦ M̃

)
++

(5)

where ◦ is the Hadamard (element-wise) product and
A++ =

∑
ij Aij , for a matrix A.

2.3 TESTING PROCEDURE

In this paper, we construct a statistical test for three-
variable interaction, using n‖µ̂L‖2 as the test statistic to
distinguish between the following hypotheses:

H0 : HX ∨ HY ∨ HZ
H1 : PXY Z does not factorise in any way

The null hypothesis H0 is a composite of the three ‘sub-
hypotheses’ HX , HY and HZ . We test H0 by testing each
of the sub-hypotheses separately and we reject if and only if
we reject each ofHX ,HY andHZ . Hereafter we describe
the procedure for testing HZ ; similar results hold for HX
andHY .

Sejdinovic et al. [2013] show that, underHZ , n‖µ̂L‖2 con-
verges to an infinite sum of weighted χ-squared random
variables. By leveraging the i.i.d. assumption of the sam-
ples, any given quantile of this distribution can be estimated
using simple permutation bootstrap, and so a test procedure
is proposed.

In the time series setting this approach does not work. Tem-
poral dependence within the samples makes study of the
asymptotic distribution of n‖µ̂L‖2 difficult; in Section 4.2
we verify experimentally that the permutation bootstrap
used in the i.i.d case fails. To construct a test in this set-
ting we will use asymptotic and bootstrap results for mix-
ing processes.

Mixing formalises the notion of the temporal structure
within a process, and can be thought of as the rate at which
the process forgets about its past. For example, for Gaus-
sian processes this rate can be captured by the autocorrela-
tion function; for general processes, generalisations of au-
tocorrelation are used. The exact assumptions we make
about the mixing properties of processes in this paper are
discussed in Supplementary material A.7. For brevity in
statements of results throughout this paper, however, we
define sufficient suitable mixing assumptions in Section 3.

2.4 MAIN RESULTS

It is straightforward to show that the norm of the mean em-
bedding (5) can also be written as

‖µ̂L‖2 =
1

n2

(
˜̃K ◦ L̃ ◦ M̃

)

++

Our first contribution is to show that the (difficult) study of
the asymptotic null distribution of ‖µ̂L‖2 can be reduced to
studying population centered kernels

‖µ̂(Z)
L,2‖2 =

1

n2

(
K ◦ L ◦M

)
++

where e.g.

Kij = 〈k(Xi, ·)− µX , k(Xj , ·)− µX〉,

Specifically, we prove the following:

Theorem 1. Suppose that (Xi, Yi, Zi)
n
i=1 are drawn from

a random process satisfying suitable mixing assumptions.
Under HZ , limn→∞(n‖µ̂(Z)

L,2‖2 − n‖µ̂L‖2) = 0 in proba-
bility.

Our proof of Theorem 1 relies crucially on the following
Lemma which we prove in Supplementary material A.1

Lemma 1. Suppose that (Xi)
n
i=1 is drawn from a random

process satisfying suitable mixing assumptions and that k
is a bounded kernel on X . Then ‖µ̂X−µX‖k = OP (n−

1
2 )

Proof. (Theorem 1) We provide a short sketch of the proof
here; for a full proof, see Section 6.

The key idea is to note that we can rewrite n‖µ̂L‖2 in terms
of the population centred kernel matrices K, L and M .
Each of the resulting terms can in turn be converted to an
inner product between quantities of the form µ̂− µ, where
µ̂ is an empirical estimator of µ, and each µ is a mean em-
bedding or covariance operator.

By applying Lemma 1 to the µ̂ − µ, we show that most of
these terms converge in probability to 0, with the residual
terms equaling n‖µ̂(Z)

L,2‖2.

As discussed in Section 1, the essential idea of this proof
is novel and the resulting proof is significantly more con-
cise than previous approaches [Chwialkowski and Gretton,
2014, Chwialkowski et al., 2014].

Theorem 1 is useful because the statistic ‖µ̂(Z)
L,2‖2 is much

easier to study under the non-i.i.d. assumption than ‖µ̂L‖2.
Indeed, it can expressed as a V -statistic (see Section 3.2)

Vn =
1

n2

∑

1≤i,j≤n

k ⊗ l ⊗m(Si, Sj)

where Si = (Xi, Yi, Zi). The crucial observation is that

h := k ⊗ l ⊗m

is well behaved in the following sense.

Theorem 2. Suppose that k, l andm are bounded, symmet-
ric, Lipschitz continuous kernels. Then h is also bounded
symmetric and Lipschitz continuous, and is moreover de-
generate underHZ i.e ESh(S, s) = 0 for any fixed s.
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Algorithm 1 TestHZ with Wild Bootstrap

Input: K̃, L̃, M̃ , each size n × n, N= number of boot-
straps, α = p-value threshold

n‖µ̂L‖2 = 1
n

(
˜(
K̃ ◦ L̃

)
◦ M̃

)

++
samples = zeros(1,N)
for i = 1 to N do

Draw random vector W according to Equation 6

samples[i] = 1
nW

ᵀ
(

˜(
K̃ ◦ L̃

)
◦ M̃

)
W (∗)

end for
if sum(n‖µ̂L‖2 > samples)> α

N then
RejectHZ

else
Do not rejectHZ

end if

Proof. See Section 6

The asymptotic analysis of such a V -statistic for non-
i.i.d. data is still complex, but we can appeal to prior work:
Leucht and Neumann [2013] showed a way to estimate any
given quantile of such a V -statistic under the null hypothe-
sis using a method called the wild bootstrap (introduced in
Section 3). This, combined with analysis of the V -statistic
under the alternative hypothesis provided in Theorem 2
of Chwialkowski et al. [2014]2, results in a statistical test
given in Algorithm 1. The wild bootstrap is used in line (∗)
to generate samples of the null distribution.

In Section 3 we discuss the wild bootstrap and provide re-
sults regarding consistency and Type I error control.

2.5 MULTIPLE TESTING CORRECTION

In the Lancaster test, we reject the composite null hypoth-
esis H0 if and only if we reject all three of the compo-
nents. In Sejdinovic et al. [2013], it is suggested that the
Holm-Bonferroni correction be used to account for multi-
ple testing [Holm, 1979]. We show here that more relaxed
conditions on the p-values can be used while still bounding
the Type I error, thus increasing test power.

Denote by A∗ the event thatH∗ is rejected. Then

P(A0) = P(AX ∧ AY ∧ AZ)

≤ min{P(AX),P(AY ),P(AZ)}

IfH0 is true, then so must one of the components. Without
loss of generality assume thatHX is true. If we use signifi-
cance levels of α in each test individually then P(AX) ≤ α
and thus P(A0) ≤ α.

2Note that similar results are presented in Leucht and Neu-
mann [2013] as specific cases.

Therefore rejecting H0 in the event that each test has p-
value less than α individually guarantees a Type I error
overall of at most α. In contrast, the Holm-Bonferonni
method requires that the sorted p-values be lower than
[α3 ,

α
2 , α] in order to reject the null hypothesis overall. It

is therefore more conservative than necessary and thus has
worse test power compared to the ‘simple correction’ pro-
posed here. This is experimentally verified in Section 4.

3 THE WILD BOOTSTRAP

In this section we discuss the wild bootstrap and provide
consistency and Type I error results for the proposed Lan-
caster test.

3.1 TEMPORAL DEPENDENCE

There are various formalisations of memory or ‘mixing’ of
a random process [Doukhan, 1994, Bradley et al., 2005,
Dedecker et al., 2007]; of relevance to this paper is the fol-
lowing :

Definition 1. A process (Xt)t is β-mixing (also known as
absolutely regular) if β(m) −→ 0 as m −→∞, where

β(m) =
1

2
sup
n

sup

I∑

i=1

J∑

j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|

where the second supremum is taken over all finite par-
titions {A1, . . . , AI} and {B1, . . . , BJ} of the sample
space such that Ai ∈ Fn1 and Bj ∈ F∞n+m and Fcb =
σ(Xb, Xb+1, . . . , Xc)

SUITABLE MIXING ASSUMPTIONS

We assume that the random process Si = (Xi, Yi, Zi)
is β mixing with mixing coefficients satisfying β(m) =
o(m−6). Throughout this paper we refer to this assump-
tion as suitable mixing assumptions. For a more in depth
discussion of the mixing assumptions made in this paper,
see Supplementary materials A.7.

3.2 V -STATISTICS

A V -statistic of a 2-argument, symmetric function h given
observations Sn = {S1, . . . , Sn} is [Serfling, 2009]:

Vn =
1

n2

∑

1≤i,j≤n

h(Si, Sj)

We call nVn a normalised V -statistic. We call h the
core of V and we say that h is degenerate if, for any s1,
ES2∼P[h(s1, S2)] = 0, in which case we say that V is a
degenerate V -statistic. Many kernel test statistics can be
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viewed as normalised V -statistics which, under the null hy-
pothesis, are degenerate. As mentioned in the previous sec-
tion, ‖µ̂(Z)

L,2‖2 is a V -statistic. Theorems 1 and 2 together
imply that, under HZ , it can be treated as a degenerate V -
statistic.

3.3 WILD BOOTSTRAP

If the test statistic has the form of a normalised V -statistic,
then provided certain extra conditions are met, the wild
bootstrap of Leucht and Neumann [2013] is a method to
directly resample the test statistic under the null hypothe-
sis. These conditions can be categorised as concerning: (1)
appropriate mixing of the process from which our observa-
tions are drawn; (2) the core of the V -statistic.

The condition on the core that is of crucial importance to
this paper is that it must be degenerate. Theorem 2 justifies
our use of the wild bootstrap in the Lancaster interaction
test.

Given the statistic nVn, Leucht and Neumann [2013] tells
us that a random vector W of length n can be drawn such
that the bootstrapped statistic3

nVb =
1

n

∑

i,j

Wih(Si, Sj)Wj

is distributed according to the null distribution of nVn.

By generating many such W and calculating nVb for each,
we can estimate the quantiles of nV .

3.4 GENERATING W

The process generating W must satisfy conditions (B2)
given on page 6 of Leucht and Neumann [2013] for nVb to
correctly resample from the null distribution of nVn. For
brevity, we provide here only an example of such a pro-
cess; the interested reader should consult Leucht and Neu-
mann [2013] or Appedix A of Chwialkowski et al. [2014]
for a more detailed discussion of the bootstrapping process.
The following bootstrapping process was used in the exper-
iments in Section 4:

Wt = e−1/lnWt−1 +
√

1− e−2/lnεt (6)

whereW1, ε1, . . . , εt are independentN (0, 1) random vari-
ables. ln should be taken from a sequence {ln} such that
limn−→∞ ln = ∞; in practice we used ln = 20 for all of
the experiments since the values of n were roughly compa-
rable in each case.

3.5 CONTROL OF TYPE I ERROR

The following theorem shows that by estimating the quan-
tiles of the wild bootstrapped statistic nVb we correctly

3Note that for fixed Sn, nVb is a random variable through the
randomness introduced by W

control the Type I error when testingHZ .

Theorem 3. Suppose that (Xi, Yi, Zi)
n
i=1 are drawn from

a random process satisfying suitable mixing conditions,
and that W is drawn from a process satisfying (B2) in
Leucht and Neumann [2013]. Then asymptotically, the
quantiles of

nVb =
1

n
W ᵀ

((
K̄ ◦ L̄

)
◦ M̄

)
W

converge to those of n‖µ̂L‖2.

Proof. See Supplementary material A.3

3.6 (SEMI-)CONSISTENCY OF TESTING
PROCEDURE

Note that in order to achieve consistency for this test, we
would need that H0 ⇐⇒ ∆LP = 0. Unfortunately
this does not hold - in Sejdinovic et al. [2013] examples
are given of distributions for which H0 is false, and yet
∆LP = 0.

However, the following result does hold:

Theorem 4. Suppose that ∆LP 6= 0. Then as n −→ ∞,
the probability of correctly rejectingH0 converges to 1.

Proof. See Supplementary material A.4

At the time of writing, a characterisation of distributions
for which H0 is false yet ∆LP = 0 is unknown. There-
fore, if we rejectH0 then we conclude that the distribution
does not factorise; if we fail to reject H0 then we cannot
conclude that the distribution factorises.

4 EXPERIMENTS

The Lancaster test described above amounts to a method to
test each of the sub-hypotheses HX ,HY ,HZ . Rather than
using the Lancaster test statistic with wild bootstrap to test
each of these, we could instead use HSIC. For example, by
considering the pair of variables (X,Y ) and Z with ker-
nels k ⊗ l and m respectively, HSIC can be used to test
HZ . Similar grouping of the variables can be used to test
HX and HY . Applying the same multiple testing correc-
tion as in the Lancaster test, we derive an alternative test of
dependence between three variables. We refer to this HSIC
based procedure as 3-way HSIC.

In the case of i.i.d. observations, it was shown in Sejdinovic
et al. [2013] that Lancaster statistical test is more sensi-
tive to dependence between three random variables than the
above HSIC-based test when pairwise interaction is weak
but joint interaction is strong. In this section, we demon-
strate that the same is true in the time series case on syn-
thetic data.
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4.1 WEAK PAIRWISE INTERACTION, STRONG
JOINT INTERACTION

This experiment demonstrates that the Lancaster test has
greater power than 3-way HSIC when the pairwise interac-
tion is weak, but joint interaction is strong.

Synthetic data were generated from autoregressive pro-
cesses X , Y and Z according to:

Xt =
1

2
Xt−1 + εt

Yt =
1

2
Yt−1 + ηt

Zt =
1

2
Zt−1 + d|θt|sign(XtYt) + ζt

whereX0, Y0, Z0, εt, ηt, θt and ζt are i.i.d.N (0, 1) random
variables and d ∈ R, called the dependence coefficient, de-
termines the extent to which the process (Zt)t is dependent
on (Xt, Yt)t.

Data were generated with varying values of d. For each
value of d, 300 datasets were generated, each consisting
of 1200 consecutive observations of the variables. Gaus-
sian kernels with bandwidth parameter 1 were used on each
variable, and 250 bootstrapping procedures were used for
each test on each dataset.

Observe that the random variables are pairwise indepen-
dent but jointly dependent. Both the Lancaster and 3-way
HSIC tests should be able to detect the dependence and
therefore reject the null hypothesis in the limit of infinite
data. In the finite data regime, the value of d affects dras-
tically how hard it is to detect the dependence. The results
of this experiment are presented in Figure 1, which shows
that the Lancaster test achieves very high test power with
weak dependence coefficients compared to 3-way HSIC.
Note also that when using the simple multiple testing cor-
rection a higher test power is achieved than with the Holm-
Bonferroni correction.

4.2 FALSE POSITIVE RATES

This experiment demonstrates that in the time series case,
existing permutation bootstrap methods fail to control the
Type I error, while the wild bootstrap correctly identifies
test statistic thresholds and appropriately controls Type I
error.

Synthetic data were generated from autoregressive pro-
cesses X , Y and Z according to:

Xt = aXt−1 + εt

Yt = aYt−1 + ηt

Zt = aZt−1 + ζt

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dependence coefficient

P
ow

er

Power of HSIC and Lancaster joint factorisation tests

 

 

Lancaster (S)
Lancaster (HB)
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Figure 1: Results of experiment in Section 4.1. (S) refers
to the simple multiple correction; (HB) refers to Holm-
Bonferroni. The Lancaster test is more sensitive to de-
pendence than 3-way HSIC, and test power for both tests
is higher when using the simple correction rather than the
Holm-Bonferroni multiple testing correction.

where X0, Y0, Z0, εt, ηt and ζt are i.i.d. N (0, 1) random
variables and a, called the dependence coefficient, deter-
mines how temporally dependent the processes are. The
null hypothesis in this example is true as each process is
independent of the others.

The Lancaster test was performed using both the Wild
Bootstrap and the simple permutation bootstrap (used in the
i.i.d. case) in order to sample from the null distributions of
the test statistic. We used a fixed desired false positive rate
α = 0.05 with sample of size 1000, with 200 experiments
run for each value of a. Figure 2 shows the false positive
rates for these two methods for varying a. It shows that
as the processes become more dependent, the false positive
rate for the permutation method becomes very large, and is
not bounded by the fixed α, whereas the false positive rate
for the Wild Bootstrap method is bounded by α.

4.3 STRONG PAIRWISE INTERACTION

This experiment demonstrates a limitation of the Lancaster
test. When pairwise interaction is strong, 3-way HSIC has
greater test power than Lancaster.

Synthetic data were generated from autoregressive pro-
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Figure 2: Results of experiment in section 4.2. Whereas
the wild bootstrap succeeds in controlling the Type I error
across all values of the dependence coefficient, the permu-
tation bootstrap fails to control the Type I error as it does
not sample from the correct null distribution as temporal
dependence between samples increases.

cesses X , Y and Z according to:

Xt =
1

2
Xt−1 + εt

Yt =
1

2
Yt−1 + ηt

Zt =
1

2
Zt−1 + d(Xt + Yt) + ζt

where X0, Y0, Z0, εt, ηt and ζt are i.i.d. N (0, 1) random
variables and d ∈ R, called the dependence coefficient, de-
termines the extent to which the process (Zt)t is dependent
on Xt and Yt.

Data were generated with varying values for the depen-
dence coefficient. For each value of d, 300 datasets were
generated, each consisting of 1200 consecutive observa-
tions of the variables. Gaussian kernels with bandwidth
parameter 1 were used on each variable, and 250 bootstrap-
ping procedures were used for each test on each dataset.

In this case Zt is pairwise-dependent on both of Xt and Yt,
in addition to all three variables being jointly dependent.
Both the Lancaster and 3-way HSIC tests should be capable
of detecting the dependence and therefore reject the null
hypothesis in the limit of infinite data. The results of this
experiment are presented in Figure 3, which demonstrates
that in this case the 3-way HSIC test is more sensitive to
the dependence than the Lancaster test.
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Figure 3: Results of experiment in Section 4.3. (S) refers
to the simple multiple correction; (HB) refers to Holm-
Bonferroni. The Lancaster test is less sensitive to depen-
dence than 3-way HSIC, and test power in both cases is
higher when using the simple correction rather than the
Holm-Bonferroni multiple testing correction.

4.4 FOREX DATA

Exchange rates between three currencies (GBP, USD,
EUR) at 5 minute intervals over 7 consecutive trading days
were obtained. The data were processed by taking the re-
turns (difference between consecutive terms within each
time series, xrt = xt − xt−1) which were then normalised
(divided by standard deviation). We performed the Lan-
caster test, 3-way HSIC and pairwise HSIC on using the
first 800 entries of each processed series. All tests rejected
the null hypothesis. The Lancaster and 3-way HSIC tests
both returned p-values of 0 for each of HX , HY and HZ
with 10000 bootstrapping procedures.

We then shifted one of the time series and repeated the tests
(i.e. we used entries 1 to 800 of two of the processed series
and entries 801 to 1600 of the third). In this case, pairwise
HSIC still detected dependence between the two unshifted
time series, and both Lancaster and 3-way HSIC did not re-
ject the null hypothesis that the joint distribution factorises.
The Lancaster test returned p-values of 0.2708, 0.2725 and
0.1975 for HX , HY and HZ respectively. 3-way HSIC
resturn p-values of 0.3133, 0.0000 and 0.0000 respectively.

In both cases, the Lancaster test behaves as expected. Due
to arbitrage, any two exchange rates should determine the
third and the Lancaster test correctly identifies a joint de-
pendence in the returns. However, when we shift one of
the time series, we break the dependence between it and
the other series. Lancaster correctly identifies here that the
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underlying distribution does factorise.

5 DISCUSSION AND FUTURE
RESEARCH

We demonstrated that the Lancaster test is more sensitive
than 3-way HSIC when pairwise interaction is weak, but
that the opposite is true when pairwise interaction is strong.
It is curious that the two tests have different strengths in
this manner, particularly when considering the very similar
forms of the statistics in each case. Indeed, to testHZ using
the Lancaster statistic, we bootstrap the following:

n‖∆LP̂‖2 =
1

n

(
˜(
K̃ ◦ L̃

)
◦ M̃

)

++

while for the 3-way HSIC test we bootstrap:

nHSICb =
1

n

(
˜(K ◦ L) ◦ M̃

)
++

These two quantities differ only in the centring ofK and L,
amounting to constant shifts in the respective feature spaces
of the kernels k and l. This difference has the consequence
of quite drastically changing the types of dependency to
which each statistic is sensitive. A formal characterisation
of the cases in which the Lancaster statistic is more sensi-
tive than 3-way HSIC would be desirable.

6 PROOFS

An outline of the proof of Theorem 1 was given in Sec-
tion 2; here we provide the full proof, as well as a proof of
Theorem 2.

Proof. (Theorem 1)

By observing that

φX(Xi)−
1

n

∑

k

φX(Xk)

= (φX(Xi)− µX)− 1

n

∑

k

(φX(Xk)− µX)

= φ̄X(Xi)−
1

n

∑

k

φ̄X(Xk)

we can therefore expand K̃ in terms of K̄ as

K̃ij

= 〈φX(Xi)−
1

n

∑

k

φX(Xk), φX(Xj)−
1

n

∑

k

φX(Xk)〉

= 〈φ̄X(Xi)−
1

n

∑

k

φ̄X(Xk), φ̄X(Xj)−
1

n

∑

k

φ̄X(Xk)〉

= K̄ij −
1

n

∑

k

K̄ik −
1

n

∑

k

K̄jk +
1

n2

∑

kl

K̄kl

and expanding L̃ and M̃ in a similar way, we can rewrite
the Lancaster test statistic as

n‖µ̂L‖2 =
1

n
(K̄ ◦ L̄ ◦ M̄)++ − 2

n2
((K̄ ◦ L̄)M̄)++

− 2

n2
((K̄ ◦ M̄)L̄)++ − 2

n2
((M̄ ◦ L̄)K̄)++

+
1

n3
(K̄ ◦ L̄)++M̄++ +

1

n3
(K̄ ◦ M̄)++L̄++

+
1

n3
(L̄ ◦ M̄)++K̄++ +

2

n3
(M̄K̄L̄)++

+
2

n3
(K̄L̄M̄)++ +

2

n3
(K̄M̄L̄)++

+
4

n3
tr(K̄+ ◦ L̄+ ◦ M̄+) − 4

n4
(K̄L̄)++M̄++

− 4

n4
(K̄M̄)++L̄++ − 4

n4
(L̄M̄)++K̄++

+
4

n5
K̄++L̄++M̄++

We denote by CXY Z = EXY Z [φ̄X(X)⊗ φ̄Y (Y )⊗ φ̄Z(Z)]
the population centred covariance operator with empirical
estimate C̄XY Z = 1

n

∑
i φ̄X(Xi)⊗ φ̄Y (Yi)⊗ φ̄Z(Zi). We

define similarly the quantities CXY , CY ZX , . . . with cor-
responding empirical counterparts C̄XY , C̄Y ZX , . . . where
for example CY Z = EY Z [φ̄Y (Y )⊗ φ̄Z(Z)]

Each of the terms in the above expression for n‖µ̂L‖2 can
be expressed as inner products between empirical estimates
of population centred covariance operators and tensor prod-
ucts of mean embeddings. Rewriting them as such yields:

n‖µ̂L‖2 = n〈C̄XY Z , C̄XY Z〉
− 2n〈C̄XY Z , C̄XY ⊗ µ̄Z〉
− 2n〈C̄XZY , C̄XZ ⊗ µ̄Y 〉
− 2n〈C̄Y ZX , C̄Y Z ⊗ µ̄X〉
+ n〈C̄XY ⊗ µ̄Z , C̄XY ⊗ µ̄Z〉
+ n〈C̄XZ ⊗ µ̄Y , C̄XZ ⊗ µ̄Y 〉
+ n〈C̄Y Z ⊗ µ̄X , C̄Y Z ⊗ µ̄X〉
+ 2n〈µ̄Z ⊗ C̄XY , C̄ZX ⊗ µ̄Y 〉
...
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+ 2n〈µ̄X ⊗ C̄Y Z , C̄XY ⊗ µ̄Z〉
+ 2n〈µ̄X ⊗ C̄ZY , C̄XZ ⊗ µ̄Y 〉
+ 4n〈C̄XY Z , µ̄X ⊗ µ̄Y ⊗ µ̄Z〉
− 4n〈C̄XY ⊗ µ̄Z , µ̄X ⊗ µ̄Y ⊗ µ̄Z〉
− 4n〈C̄XZ ⊗ µ̄Y , µ̄X ⊗ µ̄Z ⊗ µ̄Y 〉
− 4n〈C̄Y Z ⊗ µ̄X , µ̄Y ⊗ µ̄Z ⊗ µ̄X〉
+ 4n〈µ̄X ⊗ µ̄Y ⊗ µ̄Z , µ̄X ⊗ µ̄Y ⊗ µ̄Z〉

By assumption, PXY Z = PXY PZ and thus the expecta-
tion operator also factorises similarly. As a consequence,
CXY Z = 0. Indeed, given any A ∈ FX ⊗ FY ⊗ FZ , we
can consider A to be a bounded linear operator FZ −→
FX ⊗FY . It follows that4

EXY Z〈A, C̄XY Z〉

=
1

n

∑

i

EXY EZ〈A, φ̄X(Xi)⊗ φ̄Y (Yi)⊗ φ̄Z(Zi)〉

=
1

n

∑

i

EXY EZ〈φ̄X(Xi)⊗ φ̄Y (Yi), Aφ̄Z(Zi)〉FX⊗FY

=
1

n

∑

i

EXY 〈φ̄X(Xi)⊗ φ̄Y (Yi), AEZ φ̄Z(Zi)〉FX⊗FY

= 0

We conclude that CXY Z = EXY ZC̄XY Z = 0.

Similarly, CXZY , CY ZX , CXZ , CY Z are all 0 in their re-
spective Hilbert spaces. Lemma 2 tells us that each sub-
process of (Xi, Yi, Zi) satisfies the same β-mixing condi-
tions as (Xi, Yi, Zi), thus by applying Lemma 1 it follows
that ‖C̄XZY ‖, ‖C̄Y ZX‖, ‖C̄XZ‖, ‖C̄Y Z‖, ‖µ̄X‖, ‖µ̄Y ‖,
‖µ̄Z‖ = OP

(
n−

1
2

)
. Therefore

n‖µ̂L‖2
OP (n−

1
2 )−−−−−−→ n〈C̄XY Z , C̄XY Z〉

− 2n〈C̄XY Z , C̄XY ⊗ µ̄Z〉 − 2n〈C̄XZY , C̄XZ ⊗ µ̄Y 〉

=
1

n
((K̄ ◦ L̄) ◦ M̄)++

− 2

n2
((K̄ ◦ L̄)M̄)++ +

1

n3
(K̄ ◦ L̄)++M̄++

since all the other terms decay at least as quickly as
OP ( 1√

n
). This is shown here for n〈µ̄X⊗C̄Y Z , C̄XY ⊗µ̄Z〉;

the proofs for the other terms are similar.

n〈µ̄X ⊗ C̄Y Z , C̄XY ⊗ µ̄Z〉
≤ n‖µ̄X ⊗ C̄Y Z‖‖C̄XY ⊗ µ̄Z‖

= n
√
〈µ̄X ⊗ C̄Y Z , µ̄X ⊗ C̄Y Z〉

√
〈C̄XY ⊗ µ̄Z , C̄XY ⊗ µ̄Z〉

4We can bring the EZ inside the inner product in the penulti-
mate line due to the Bochner integrability of φ̄Z(Z), which fol-
lows from the conditions required for µZ to exist [Steinwart and
Christmann, 2008].

= n
√
〈µ̄X , µ̄X〉〈C̄Y Z , C̄Y Z〉

√
〈C̄XY , C̄XY 〉〈µ̄Z , µ̄Z〉

= n‖µ̄X‖‖C̄Y Z‖‖C̄XY ‖‖µ̄Z‖
= nOP

(
1√
n

)
OP

(
1√
n

)
OP (1)OP

(
1√
n

)
= OP

(
1√
n

)

It can be shown that K̄ ◦ L̄ in the above expression can be
replaced with K̄ ◦ L̄ while preserving equality. That is, we
can equivalently write

n‖∆LP̂‖2 −→
1

n
((K̄ ◦ L̄) ◦ M̄)++

− 2

n2
((K̄ ◦ L̄)M̄)++ +

1

n3
(K̄ ◦ L̄)++M̄++

This is equivalent to treating k̄⊗ l̄ as a kernel on the single
variable T := (X,Y ) and performing another recentering
trick as we did at the beginning of this proof. By rewrit-
ing the above expression in terms of the operator C̄TZ and
mean embeddings µT and µZ , it can be shown by a simi-
lar argument to before that the latter two terms tend to 0 at
least as OP (n−

1
2 ), and thus, substituting for the definition

of ‖µ̂(Z)
L,2‖2,

n‖µ̂L‖2
OP ( 1√

n
)

−−−−−→ n‖µ̂(Z)
L,2‖2

as required.

Proof. (Theorem 2)

Note that EXY Z = EXY EZ under HZ . Therefore, fixing
any sj = (xj , yj , zj) we have that

ESi
h(Si, sj) = EXiYi

EZi
k̄ ⊗ l̄ ⊗ m̄(Si, sj)

= 〈EXiYi
φ̄(Xi)⊗ φ̄(Yi)− CXY , φ̄(xj)⊗ φ̄(yj)− CXY 〉
× 〈EZi

φ̄(Zi), φ̄(zj)〉
= 〈0, φ̄(xj)⊗ φ̄(yj)− CXY 〉

× 〈0, φ̄(zj)〉 = 0

Therefore h is degenerate. Symmetry follows from the
symmetry of the Hilbert space inner product.

For boundedness and Lipschitz continuity, it suffices to
show the two following rules for constructing new kernels
from old preserve both properties (see Supplementary ma-
terials A.5 for proof):

• k 7→ k̄

• (k, l) 7→ k ⊗ l

It then follows that h = k̄ ⊗ l̄ ⊗ m̄ is bounded and Lips-
chitz continuous since it can be constructed from k, l and
m using the two above rules.
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Abstract

We introduce overdispersed black-box varia-
tional inference, a method to reduce the variance
of the Monte Carlo estimator of the gradient in
black-box variational inference. Instead of tak-
ing samples from the variational distribution, we
use importance sampling to take samples from an
overdispersed distribution in the same exponen-
tial family as the variational approximation. Our
approach is general since it can be readily applied
to any exponential family distribution, which is
the typical choice for the variational approxima-
tion. We run experiments on two non-conjugate
probabilistic models to show that our method ef-
fectively reduces the variance, and the overhead
introduced by the computation of the proposal
parameters and the importance weights is neg-
ligible. We find that our overdispersed impor-
tance sampling scheme provides lower variance
than black-box variational inference, even when
the latter uses twice the number of samples. This
results in faster convergence of the black-box in-
ference procedure.

1 INTRODUCTION

Generative probabilistic modeling is an effective approach
for understanding real-world data in many areas of science
(Bishop, 2006; Murphy, 2012). A probabilistic model de-
scribes a data-generating process through a joint distribu-
tion of observed data and latent (unobserved) variables.
With a model in place, the investigator uses an inference
algorithm to calculate or approximate the posterior, i.e.,
the conditional distribution of the latent variables given the
available observations. It is through the posterior that the
investigator explores the latent structure in the data and
forms a predictive distribution of future data. Approxi-
mating the posterior is the central algorithmic problem for
probabilistic modeling.

One of the most widely used methods to approximate the
posterior distribution is variational inference (Wainwright
and Jordan, 2008; Jordan et al., 1999). Variational in-
ference aims to approximate the posterior with a simpler
distribution, fitting that distribution to be close to the ex-
act posterior, where closeness is measured in terms of
Kullback-Leibler (KL) divergence. In minimizing the KL,
variational inference converts the problem of approximat-
ing the posterior into an optimization problem.

Traditional variational inference uses coordinate ascent to
optimize its objective. This works well for models in which
each conditional distribution is easy to compute (Ghahra-
mani and Beal, 2001), but is difficult to use in more com-
plex models where the variational objective involves in-
tractable expectations. Recent innovations in variational
inference have addressed this with stochastic optimization,
forming noisy gradients with Monte Carlo approximation.
This strategy expands the scope of variational inference be-
yond traditional models, e.g., to non-conjugate probabilis-
tic models (Carbonetto et al., 2009; Paisley et al., 2012; Sal-
imans and Knowles, 2013; Ranganath et al., 2014; Titsias
and Lázaro-Gredilla, 2014), deep neural networks (Neal,
1992; Hinton et al., 1995; Mnih and Gregor, 2014; Kingma
and Welling, 2014; Ranganath et al., 2015), and probabilis-
tic programming (Wingate and Weber, 2013; Kucukelbir
et al., 2015). Some of these techniques find their roots in
classical policy search algorithms for reinforcement learn-
ing (Williams, 1992; van de Meent et al., 2016).

These approaches must address a core problem with Monte
Carlo estimates of the gradient, which is that they suffer
from high variance. The estimated gradient can signifi-
cantly differ from the truth and this leads to slow con-
vergence of the optimization. There are several strategies
to reduce the variance of the gradients, including Rao-
Blackwellization (Casella and Robert, 1996; Ranganath
et al., 2014), control variates (Ross, 2002; Paisley et al.,
2012; Ranganath et al., 2014; Gu et al., 2016), reparameter-
ization (Price, 1958; Bonnet, 1964; Salimans and Knowles,
2013; Kingma and Welling, 2014; Rezende et al., 2014;
Kucukelbir et al., 2015), and local expectations (Titsias and
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Lázaro-Gredilla, 2015).

In this paper we develop overdispersed black-box vari-
ational inference (O-BBVI), a new method for reducing
the variance of Monte Carlo gradients in variational in-
ference. The main idea is to use importance sampling to
estimate the gradient, in order to construct a good pro-
posal distribution that is matched to the variational prob-
lem. We show that O-BBVI applies more generally than
methods such as reparameterization and local expectations,
and it further improves the profile of gradients that use Rao-
Blackwellization and control variates.

We demonstrate O-BBVI on two complex models: a non-
conjugate time series model (Ranganath et al., 2014) and
Poisson-based deep exponential families (DEFs) (Ran-
ganath et al., 2015). Our study shows that O-BBVI reduces
the variance of the original black-box variational inference
(BBVI) estimates (Ranganath et al., 2014), even when us-
ing only half the number of Monte Carlo samples. This
provides significant savings in run-time complexity.

Technical summary. Consider a probabilistic model
p.x; z/, where z are the latent variables and x are the obser-
vations. Variational inference sets up a parameterized dis-
tribution of the latent variables q.zI�/ and finds the param-
eter �? that minimizes the KL divergence between q.zI�/
and the posterior p.z j x/. We then use q.zI�?/ as a proxy
for the posterior.

We build on BBVI, which solves this problem with a
stochastic optimization procedure that uses Monte Carlo
estimates of the gradient (Ranganath et al., 2014). Let
L.�/ be the variational objective, which is the (negative)
KL divergence up to an additive constant. BBVI uses sam-
ples from q.zI�/ to approximate its gradient,

r�L D Eq.zI�/ Œf .z/� ; (1)

where

f .z/ D r� log q.zI�/ .logp.x; z/ � log q.zI�// : (2)

The resulting Monte Carlo estimator, based on sam-
pling from q.zI�/, only requires evaluating the log-
joint distribution logp.z; x/, the log-variational distribu-
tion log q.zI�/, and the score functionr� log q.zI�/. Cal-
culations about q.zI�/ can be derived once and stored in
a library and, as a consequence, BBVI can be easily ap-
plied to a large class of models. However, as we mentioned
above, Monte Carlo estimates of this gradient usually have
high variance. Ranganath et al. (2014) correct for this with
Rao-Blackwellization and control variates.

We expand on this idea by approximating the gradient with
importance sampling. We introduce a proposal distribution
r.zI�; �/, which depends on both the variational parame-
ters and an additional parameter. (We discuss the additional

parameter below.) We then write the gradient as

r�L D Er.zI�;�/

�
f .z/

q.zI�/
r.zI�; �/

�
; (3)

and form noisy estimates with samples from the proposal.

The key idea behind our method is that the optimal pro-
posal distribution (in terms of minimizing the variance
of the resulting estimator) is not the original distribution
q.zI�/ (Owen, 2013, Chapter 9). Rather, the optimal pro-
posal is a skewed version of that distribution with heav-
ier tails. Unfortunately, this distribution is not available to
us—it involves an intractable normalization constant. But
we use this insight to set a proposal with heavier tails than
the variational distribution, thus making it closer to the op-
timal proposal. Note this is an unconventional use of im-
portance sampling, which is usually employed to approxi-
mate expectations. Instead, we use importance sampling to
improve the characteristics of a Monte Carlo estimator by
sampling from a different distribution.

In detail, we first assume that the variational distribution is
in the exponential family. (This is not an assumption about
the model; most applications of variational inference use
exponential family variational distributions.) We then set
the proposal distribution to be in the corresponding overdis-
persed exponential family (Jørgensen, 1987), where � is the
dispersion parameter. We show that the corresponding es-
timator has lower variance than the BBVI estimator, we put
forward a method to adapt the dispersion parameter during
optimization, and we demonstrate that this method is more
efficient than BBVI. We call our approach overdispersed
black-box variational inference (O-BBVI).

Organization. The rest of the paper is organized as fol-
lows. We review BBVI in Section 2. We develop O-BBVI
in Section 3, describing both the basic algorithm and its
extensions to adaptive proposals and high-dimensional set-
tings. Section 4 reports on our empirical study of two non-
conjugate models. We conclude the paper in Section 5.

2 BLACK-BOX VARIATIONAL
INFERENCE

Consider a probabilistic model p.x; z/ and a variational
family q.zI�/ which is in the exponential family, i.e.,

q.zI�/ D g.z/ exp
˚
�>t .z/ � A.�/

	
; (4)

where g.z/ is the base measure, � are the natural parame-
ters, t .z/ are the sufficient statistics, and A.�/ is the log-
normalizer. We are interested in a variational approxima-
tion to the intractable posterior p.z j x/, i.e., we aim to min-
imize the KL divergence DKL .q.zI�/ k p.z j x// with re-
spect to � (Jordan et al., 1999). This is equivalent to maxi-
mizing the evidence lower bound (ELBO),

L.�/ D Eq.zI�/ Œlogp.x; z/ � log q.zI�/� ; (5)
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which is a lower bound on the log of the marginal proba-
bility of the observations, logp.x/.

With a tractable variational family (e.g., the mean-field
family) and a conditionally conjugate model,1 the expec-
tations in Eq. 5 can be computed in closed form and we
can use coordinate-ascent variational inference (Ghahra-
mani and Beal, 2001). However, many models of interest
are not conditionally conjugate. For these models, we need
alternative methods to optimize the ELBO. One approach
is BBVI, which uses Monte Carlo estimates of the gradient
and requires few model-specific calculations (Ranganath
et al., 2014). Thus, BBVI is a variational inference algo-
rithm that can be applied to a large class of models.

BBVI relies on the “log-derivative trick,” also called RE-
INFORCE or score function method (Williams, 1992; Klei-
jnen and Rubinstein, 1996; Glynn, 1990), to obtain Monte
Carlo estimates of the gradient. In detail, we recover the
Monte Carlo estimate driven by Eqs. 1 and 2 by taking the
gradient of (5) with respect to the variational parameters �,
and then applying the following two identities:

r�q.zI�/ D q.zI�/r� log q.zI�/; (6)
Eq.zI�/ Œr� log q.zI�/� D 0: (7)

Eq. 1 enables noisy gradients of the ELBO by taking sam-
ples from q.zI�/. However, the resulting estimator may
have high variance. This is especially the case when the
variational distribution q.zI�/ is a poor fit to the posterior
p.z j x/, which is typical in early iterations of optimization.

In order to reduce the variance of the estimator, BBVI uses
two strategies: control variates and Rao-Blackwellization.
Because we will also use these ideas in our algorithm, we
briefly discuss them here.

Control variates. A control variate is a random vari-
able that is included in the estimator, preserving its ex-
pectation but reducing its variance (Ross, 2002). Al-
though there are many possible choices for control variates,
Ranganath et al. (2014) advocate for the weighted score
function because it is not model-dependent. Denote the
score function by h.z/ D r� log q.zI�/, and note again
that its expected value is zero. With this function, each
component n of the gradient in (1) can be rewritten as
Eq.zI�/ Œfn.z/ � anhn.z/� where an is a constant and f .z/
is defined in (2). (Here, fn.z/ and hn.z/ denote the n-th
component of f .z/ and h.z/, respectively.) We can set each
element an to minimize the variance of the Monte Carlo es-
timates of this expectation,

an D
Cov.fn.z/; hn.z//

Var.hn.z//
: (8)

1A conditionally conjugate model is a model for which all the
complete conditionals (i.e., the posterior distribution of each hid-
den variable conditioned on the observations and the rest of hid-
den variables) are in the same exponential family as the prior.

In BBVI, a separate set of samples from q.zI�/ is used to
estimate an (otherwise, the estimator would be biased).

Rao-Blackwellization. Rao-Blackwellization (Casella
and Robert, 1996) reduces the variance of a random vari-
able by replacing it with its conditional expectation, given
a subset of other variables. In BBVI, each component of
the gradient is Rao-Blackwellized with respect to variables
outside of the Markov blanket of the involved hidden vari-
able. More precisely, assume a mean-field2 variational dis-
tribution q.zI�/ D

Q
n q.znI�n/. We can equivalently

rewrite the expectation of each element in Eq. 1 as

r�nL D Eq.z.n/I�.n//
�
r�n log q.znI�n/
�
�
logpn.x; z.n// � log q.znI�n/

� �
;

(9)

where z.n/ denotes the variable zn together with all latent
variables in its Markov blanket, q.z.n/I�.n// denotes the
variational distribution on z.n/, and logpn.x; z.n// contains
all terms of the log-joint distribution that depend on z.n/.
The Monte Carlo estimate based on the Rao-Blackwellized
expectation has significantly smaller variance than the esti-
mator driven by Eq. 1.

3 OVERDISPERSED BLACK-BOX
VARIATIONAL INFERENCE

We have described BBVI and its two strategies for re-
ducing the variance of the noisy gradient. We now des-
cribe O-BBVI, a method for further reducing the variance.
The main idea is to use importance sampling (Robert and
Casella, 2005) to estimate the gradient. We first describe
O-BBVI and the proposal distribution it uses. We then
show that this reduces variance, discuss several important
implementation details, and present the full algorithm.

O-BBVI does not sample from the variational distribution
q.zI�/ to estimate the expectation Eq.zI�/ Œf .z/�. Rather,
it takes samples from a proposal distribution r.zI�; �/ and
constructs estimates of the gradient in Eq. 3, where the
importance weights are w.z/ D q.zI�/=r.zI�; �/. This
guarantees that the resulting estimator is unbiased. The
proposal distribution involves the current setting of the
variational parameters � and an additional parameter � .

The optimal proposal. The particular proposal that O-
BBVI uses is inspired by a result from the importance sam-
pling literature (Robert and Casella, 2005; Owen, 2013).
This result states that the optimal proposal distribution,
which minimizes the variance of the estimator, is not the
variational distribution q.zI�/. Rather, the optimal pro-

2A structured variational approach is also amenable to Rao-
Blackwellization, but we assume a fully factorized variational dis-
tribution for simplicity.
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posal is

r?n .z/ / q.zI�/jfn.z/j; (10)

for each component n of the gradient. (Recall that f .z/ is
a vector of the same length as �.)

While interesting, the optimal proposal distribution is not
tractable in general—it involves normalizing a complex
product—and is not “black box” in the sense that it depends
on the model via f .z/. In O-BBVI, we build an alternative
proposal based on overdispersed exponential families (Jør-
gensen, 1987). We will argue that this proposal is closer
to the (intractable) optimal r�.z/ than the variational distri-
bution q.zI�/, and that it is still practical in the context of
stochastic optimization of the variational objective. Note
that approximating the optimal proposal in stochastic opti-
mization was also explored in Bouchard et al. (2015).

The overdispersed proposal. Our motivation for using
overdispersed exponential families is that the optimal dis-
tribution of Eq. 10 assigns higher probability density to the
tails of q.zI�/. There are two reasons for this fact. First,
consider settings of the variational parameters where the
variational distribution is a poor fit to the posterior. For
these parameters, there are values of z for which the poste-
rior is high but the variational distribution is small. While
the optimal proposal would sample configurations of z for
which fn.z/ is large, these realizations are in the tails of
the variational distribution.

The second reason has to do with the score function. The
score function hn.z/ vanishes for values of z for which the
n-th sufficient statistic tn.z/ equals its expected value, and
this pushes probability mass (in the optimal proposal) to
the tails of q.zI�/. To see this, recall the exponential fam-
ily form of the variational distribution given in Eq. 4. For
any exponential family distribution, the score function is
hn.z/ D tn.z/ � Eq.zI�/ Œtn.z/�. (This result follows from
simple properties of exponential families.3) For values of
z for which tn.z/ is close to its expectation, hn.z/ becomes
very close to zero. This zeros out fn.z/ in Eq. 10, which
pushes mass to other parts of q.zI�/. As an example, in the
case where q.zI�/ is a Gaussian distribution, the optimal
proposal distribution places zero mass on the mean of that
Gaussian and hence more probability mass on its tails.

Thus, we design a proposal distribution r.zI�; �/ that as-
signs higher mass to the tails of q.zI�/. Specifically, we
use an overdispersed distribution in the same exponential
family as q.zI�/. The proposal is

r.zI�; �/ D g.z; �/ exp
�

�>t .z/ � A.�/
�

�
; (11)

3The gradient of the log-normalizer (with respect to the na-
tural parameters) equals the first-order moment of the sufficient
statistics, i.e., r�A.�/ D Eq.zI�/ Œt .z/�.

where � � 1 is the dispersion coefficient of the overdis-
persed distribution (Jørgensen, 1987). Hence, the O-BBVI
estimator of the gradient can be expressed as

brO-BB
� L D

1

S

X
s

f .z.s//
q.z.s/I�/
r.z.s//

; z.s/ iid
� r.zI�; �/;

(12)
where S is the number of samples of the Monte Carlo ap-
proximation.

This choice of r.zI�; �/ has several desired properties for
a proposal distribution. First, it is easy to sample from,
since for fixed values of � it belongs to the same exponen-
tial family as q.zI�/. Second, as for the optimal proposal,
it is adaptive, since it explicitly depends on the parame-
ters � which we are optimizing. Finally, by definition, it
assigns higher mass to the tails of q.zI�/, which was our
motivation for choosing it.

The dispersion coefficient � can be itself adaptive to better
match the optimal proposal at each iteration of the varia-
tional optimization procedure. We put forward a method to
update the value of � in Section 3.2.

Note that our approach differs from importance weighted
autoencoders (Burda et al., 2016), which also make use of
importance sampling but with the goal of deriving a tighter
log-likelihood lower bound in the context of the variational
autoencoder (Kingma and Welling, 2014). In contrast, we
use importance sampling to reduce the variance of the esti-
mator of the gradient.

3.1 Variance reduction

Here, we compare the variance of the O-BBVI estimatorbrO-BB
�

L given in Eq. 12 with the variance of the original
BBVI estimator brBB

�
L, which samples from q.zI�/:

brBB
� L D

1

S

X
s

f .z.s//; z.s/ iid
� q.zI�/: (13)

After some algebra, we can express the variance of the
BBVI estimator as

V
hbrBB

� L
i
D
1

S
Eq.zI�/

�
f 2.z/

�
�
1

S
.r�L/2; (14)

and we can also express the variance of the O-BBVI esti-
mator in terms of an expectation with respect to the varia-
tional distribution as

V
hbrO-BB

� L
i
D
1

S
Er.zI�;�/

�
f 2.z/

q2.zI�/
r2.zI�; �/

�
�
1

S
.r�L/2

D
1

S
Eq.zI�/

�
f 2.z/

q.zI�/
r.zI�; �/

�
�
1

S
.r�L/2:

(15)

Variance reduction for the O-BBVI approach is achieved
when V

hbrO-BB
�

L
i
� V

hbrBB
�

L
i

or, equivalently,

Eq.zI�/

�
f 2.z/

q.zI�/
r.zI�; �/

�
� Eq.zI�/

�
f 2.z/

�
: (16)
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This inequality is trivially satisfied when we set r.z/ to
the optimal proposal distribution, r?.z/. However, it is in-
tractable to compute in general; moreover, it depends on
the model through f .z/. While the bound in Eq. 16 results
intractable, it gives us some intuition on why the use of
an overdispersed proposal distribution can reduce the vari-
ance, since r.zI�; �/ will be larger than q.zI�/ for those
values of z for which the product q.zI�/f 2.z/ is highest,
i.e., in the tails of q.zI�/. Our experimental results in Sec-
tion 4 demonstrate that the variance is effectively reduced
when we use our O-BBVI.

3.2 Implementation

We now discuss several extensions of O-BBVI that make it
more suitable for real applications.

High dimensionality. Previously, we defined the pro-
posal distribution r.zI�; �/ as an overdispersed version
of the variational distribution q.zI�/. However, impor-
tance sampling is known to fail when the dimensional-
ity of the hidden space is moderately high, due to the
high resulting variance of the importance weights w.z/ D
q.zI�/=r.zI�; �/. To address this, we rely on the fact that
hidden variable zn is the variable with the highest influence
on the estimator of the n-th component of the gradient. We
exploit this idea, which was also considered by Titsias and
Lázaro-Gredilla (2015) in their algorithm based on local
expectations.

More precisely, for the variational parameters of variable
zn, we first write the gradient as

r�nL D Eq.znI�n/
�
Eq.z:nI�:n/ Œfn.z/�

�
D Er.znI�n;�n/

�
w.zn/Eq.z:nI�:n/ Œfn.z/�

�
;

(17)

where r.znI�n; �n/ is the overdispersed version of
q.znI�n/ with dispersion coefficient �n, z:n denotes all
hidden variables in the model except zn, and similarly for
�:n. Thus, the corresponding importance weights in (17)
for each component of the gradient depend only on variable
zn, i.e.,

w.zn/ D
q.znI�n/

r.znI�n; �n/
: (18)

We use a single sample from q.z:nI�:n/ to estimate
the inner expectation in (17), and S samples of zn from
r.znI�n; �n/ to estimate the outer expectation.

Adaptation of the dispersion coefficients. Our algo-
rithm requires setting the value of the dispersion param-
eters �n; we would like to automate this procedure. Here,
we develop a method to learn these coefficients during opti-
mization by minimizing the variance of the estimator. More
precisely, we introduce stochastic gradient descent steps for
�n that minimize the variance. The exact derivative of the

(negative) variance with respect to �n is

�

@V
hbrO-BB

�n
L
i

@�n
D
1

S
Er.znI�n;�n/

"
Eq.z:nI�:n/ Œfn.z/�

2

� w2.zn/
@ log r.znI�n; �n/

@�n

#
; (19)

where we have applied the log-derivative trick once again,
as well as the extension to high dimensionality detailed
above. Now a Monte Carlo estimate of this derivative can
be obtained by using the same set of S samples used in
the update of �n. The resulting procedure is fast, with lit-
tle extra overhead, since both fn.z/ and w.zn/ have been
pre-computed.

Thus, we perform gradient steps of the form

� .t/n D �
.t�1/
n � ˛n

@V
hbrO-BB

�n
L
i

@�n
; (20)

where �n is constrained as �n � 1 and the derivatives are es-
timated via Monte Carlo approximation. Since the deriva-
tives in Eq. 20 can be several orders of magnitude greater
than �n, we opt for a simple approach to choose an appro-
priate step size ˛n. In particular, we ignore the magnitude
of the derivative in (20) and take a small gradient step in
the direction given by its sign. Note that we do not need to
satisfy the Robbins-Monro conditions here (Robbins and
Monro, 1951), because the adaptation of �n only defines
the proposal distribution and it is not part of the original
stochastic optimization procedure.

Eq. 20 can still be applied even if �n is a vector; it only
requires replacing the derivative of the variance with the
summation of the derivatives for all components of �n.

Multiple importance sampling. It may be more stable
(in terms of the variance of the importance weights) to con-
sider a set of J dispersion coefficients, �n1; : : : ; �nJ , in-
stead of a single coefficient �n. We propose to use a mixture
with equal weights to build the proposal as follows:

r.znI�n; �n1; : : : ; �nJ / D
1

J

JX
jD1

r.znI�n; �nj /; (21)

where each term in the mixture is given by r.znI�n; �nj / D

g.zn; �nj / exp
n
�>
n t.zn/�A.�n/

�nj

o
. In the importance sam-

pling literature, this is known as multiple importance sam-
pling (MIS), as multiple proposals are used (Veach and
Guibas, 1995). Within the MIS methods, we opt for full de-
terministic multiple importance sampling (DMIS) because
it is the approach that presents lowest variance (Hesterberg,
1995; Owen and Zhou, 2000; Elvira et al., 2015). In DMIS,
the number of samples S of the Monte Carlo estimator must
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be an integer multiple of the number of mixture compo-
nents J , and S=J samples are deterministically assigned
to each proposal r.znI�n; �nj /. However, the importance
weights are obtained as if the samples had been actually
drawn from the mixture, i.e.,

w.zn/ D
q.znI�n/

1
J

PJ
jD1 r.znI�n; �nj /

: (22)

This choice of the importance weights yields an unbiased
estimator with smaller variance than the standard MIS ap-
proach (Owen and Zhou, 2000; Elvira et al., 2015).

In the experiments in Section 4 we investigate the per-
formance of two-component proposal distributions, where
J D 2, and compare it against our initial algorithm that
uses a unique proposal, which corresponds to J D 1.
We have also conducted some additional experiments (not
shown in the paper) with mixtures with higher number of
components, with no significant improvements.

3.3 Full algorithm

We now present our full algorithm for O-BBVI. It makes
use of control variates, Rao-Blackwellization, and overdis-
persed importance sampling with adaptation of the disper-
sion coefficients. At each iteration, we draw a single sam-
ple z.0/ from the variational distribution, as well as S sam-
ples z.s/n from the overdispersed proposal for each n (using
DMIS in this step). We obtain the score function as

hn.z
.s/
n / D r�n log q.z.s/n I�n/; (23)

and the argument of the expectation in (9) as

fn.z.s// D hn.z.s/n /.logpn.x; z.s/n ; z.0/:n/� log q.z.s/n I�n//;
(24)

where pn indicates that we use Rao-Blackwellization. Fi-
nally, the estimator of the gradient is obtained as

br�nL D
1

S

X
s

�
f w
n .z.s// � anhw

n.z
.s/
n /

�
; (25)

where the superscript “w” stands for “weighted,” i.e.,

f w
n .z.s// D w.z.s/n /fn.z.s//; (26)

hw
n.z

.s/
n / D w.z.s/n /hn.z

.s/
n /: (27)

Following Eq. 8, we use a separate set of samples to esti-
mate the optimal an as

an D
bCov.f w

n ; h
w
n/cVar.hw

n/
: (28)

We use AdaGrad (Duchi et al., 2011) to obtain adaptive
learning rates that ensure convergence of the stochastic op-
timization procedure, although other schedules can be used
instead as long as they satisfy the standard Robbins-Monro

Algorithm 1: Overdispersed black-box variational infer-
ence (O-BBVI)
input : data x, joint distribution p.x; z/, mean-field

variational family q.zI�/
output: variational parameters �

Initialize �

Initialize the dispersion coefficients �nj
while algorithm has not converged do

/* draw samples */

Draw a single sample z.0/ � q.zI�/
for n D 1 to N do

Draw S samples z.s/n � r.znI�n; f�nj g/ (DMIS)
Compute the importance weights w.z.s/n / (Eq. 22)

end
/* estimate gradient */
for n D 1 to N do

For each sample s, compute hn.z
.s/
n / (Eq. 23)

For each sample s, compute fn.z.s// (Eq. 24)
Compute the weighted f w

n .z.s// (Eq. 26)
Compute the weighted hw

n.z
.s/
n / (Eq. 27)

Estimate the optimal an (Eq. 28)
Estimate the gradient br�nL (Eq. 25)

end
/* update dispersion coefficients */
for n D 1 to N do

Estimate the derivatives @V Œr�nL�
@�nj

(Eq. 19)

Take a gradient step for �nj (Eq. 20)
end
/* take gradient step */
Set the step size �t (Eq. 29)
Take a gradient step for � (Eq. 30)

end

conditions (Robbins and Monro, 1951). In AdaGrad, the
learning rate is obtained as

�t D � diag .Gt /
�1=2 ; (29)

where Gt is a matrix that contains the sum across the first
t iterations of the outer products of the gradient, and � is a
constant. Thus, the stochastic gradient step is given by

�.t/ D �.t�1/ C �t ı br�L; (30)

where ‘ı’ denotes the element-wise (Hadamard) product.
Algorithm 1 summarizes the full procedure.

4 EMPIRICAL STUDY

We study our method with two non-conjugate probabilis-
tic models: the gamma-normal time series model (GN-
TS) and the Poisson deep exponential family (DEF). We
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found that overdispersed black-box variational inference
(O-BBVI) reduces the variance of the black-box variational
inference (BBVI) estimator and leads to faster convergence.

4.1 Description of the experiments

Models description and datasets. The GN-TS model
(Ranganath et al., 2014) is a non-conjugate state-space
model for sequential data that was used to showcase BBVI.
The model is described by

wkd � N .0; �2w/;

ond � N .0; �2o /;

zn1k � GammaE.�z ; �z/;
zntk � GammaE.zn.t�1/k ; �z/;

xndt � N

 
ond C

X
k

zntkwkd ; �
2
x

!
:

(31)

The indices n, t , d and k denote observations, time in-
stants, observation dimensions, and latent factors, respec-
tively. The distribution GammaE denotes the expecta-
tion/variance parameterization of the gamma distribution.
The model explains each datapoint xndt with a latent fac-
tor model. For each time instant t , the mean of xndt de-
pends on the inner product

P
k zntkwkd , where zntk varies

smoothly across time. The variables ond are an intercept
that capture the baseline in the observations.

We set the hyperparameters to be �2w D 1, �2o D 1, �z D 1,
and �2x D 0:01. We use a synthetic dataset of N D 900

time sequences of length T D 30 and dimensionality D D
20. We use K D 30 latent factors, leading to 828; 600
hidden variables.

The Poisson DEF (Ranganath et al., 2015) is a multi-
layered latent variable model of discrete data, such as text.
The model is described by

w
.0/

kv
� Gamma.˛w ; ˇw/;

w
.`/

kk0 � Gamma.˛w ; ˇw/;

z
.L/

dk
� Poisson.�z/;

z
.`/

dk
� Poisson

 X
k0

z
.`C1/

dk0 w
.`/

k0k

!
;

xdv � Poisson

 X
k0

z
.1/

dk0w
.0/

k0v

!
:

(32)

The indices d , v, k and ` denote documents, vocabulary
words, latent factors, and hidden layers, respectively. This
model captures a hierarchy of dependencies between latent
variables similar to the hidden structure in deep neural net-
works. In detail, the number of times that word v appears in
document d is xdv . It has a Poisson distribution with rate
given by an inner product of gamma-distributed weights
and Poisson-distributed hidden variables from layer 1. The

Poisson-distributed hidden variables depend, in turn, on an-
other set of weights and another layer of hidden Poisson-
distributed variables. This structure repeats for a specified
number of layers.

We set the prior shape and rate as ˛w D 0:1 and ˇw D 0:3,
and the prior mean for the top level of the Poisson DEF as
�z D 0:1. We use L D 3 layers withK D 50 latent factors
each. We model the papers at the Neural Information Pro-
cessing Systems (NIPS) 2011 conference. This is a data set
with D D 305 documents, 612; 508 words, and V D 5715
vocabulary words (after removing stop words). This leads
to a model with 336; 500 hidden variables.

Evaluation. We compare O-BBVI with BBVI (Ranganath
et al., 2014). For a fair comparison, we use the same num-
ber of samples in both methods and estimate the inner ex-
pectation in Eq. 17 with only one sample. For the outer ex-
pectation, we use 8 samples to estimate the gradient itself
and 8 separate samples to estimate the optimal coefficient
an for the control variates. For BBVI, we also doubled the
number of samples to 16 C 16; this is marked as “BBVI
(�2)” in the plots.

For O-BBVI, we study both a single proposal and a mixture
proposal with two components, respectively labeled as “O-
BBVI (single proposal)” and “O-BBVI (mixture).” For the
latter, we fix the dispersion coefficients �n1 D 1 for all n,
and we run stochastic gradient descent steps for �n2. See
the Supplement for some figures showing the evolution of
the dispersion coefficient.

At each iteration (and for each method) we evaluate sev-
eral quantities: the evidence lower bound (ELBO), the av-
eraged sample variance of the estimator of the gradient,
and a model-specific performance metric on the test set.
The estimation of the ELBO is based on a single sample
of the variational distribution q.zI�/ for all methods. For
the GN-TS model, we compute the average log-likelihood
(up to a constant term) on the test set, which is generated
with one additional time instant in all sequences. For the
Poisson DEF, we compute the average held-out perplexity,

exp

 
�
P
d

P
w2doc.d/ logp.w j #held out in d/

#held out words

!
; (33)

where the held-out data contains 25% randomly selected
words of all documents.

Experimental setup. For each method, we initialize the
variational parameters to the same point and run each algo-
rithm with a fixed computational budget (of CPU time).

We use AdaGrad (Duchi et al., 2011) for the learning rate.
We set the parameter � in Eq. 29 to � D 0:5 for the GN-TS
model and � D 1 for the Poisson DEF. When optimiz-
ing the O-BBVI dispersion coefficients �n, we take steps
of length 0:1 in the direction of the (negative) gradient. We
initialize the dispersion coefficients as �n D 2 for the single
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proposal and �n2 D 3 for the two-component mixture.

We parameterize the normal distribution in terms of its
mean and variance, the gamma in terms of its shape and
mean, and the Poisson in terms of its mean parameter. In
order to avoid constrained optimization, we apply the trans-
formation �0 D log.exp.�/�1/ to those variational param-
eters that are constrained to be positive and take stochastic
gradient steps with respect to �0.

Overdispersed exponential families. For a fixed disper-
sion coefficient � , the overdispersed exponential family of
the Gaussian distribution with mean � and variance �2 is a
Gaussian distribution with mean � and variance ��2. The
overdispersed gamma distribution with shape s and rate r
is given by a new gamma distribution with shape sC��1

�

and rate r
�

. The overdispersed Poisson.�/ distribution is a
Poisson.�1=� / distribution.

4.2 Results

Figures 1 and 2 show the evolution of the ELBO, the predic-
tive performance, and the average sample variance of the
estimator for both models and all methods. We plot these
metrics as a function of running time, and each method is
run with the same computational budget.

For the GN-TS model, Figure 1a shows that the variance of
O-BBVI is significantly lower than BBVI and BBVI with
twice the number of samples. Additionally, Figures 1b and
1c show that O-BBVI outperforms vanilla BBVI in terms
of both ELBO and held-out likelihood. According to these
figures, using a single or mixture proposal does not seem
to significantly affect performance. In these plots, we can
also see that BBVI (�2) converges slower than BBVI; this
is because the x-axis represents running time instead of it-
erations. (When the number of samples increases, the con-
vergence is faster but each iteration takes more time.)

The results on the Poisson DEF are similar (Figure 2). Fig-
ure 2a shows the average sample variance of the estimator;
again, O-BBVI outperforms both BBVI algorithms. Fig-
ures 2b and 2c show the evolution of the ELBO and the
held-out perplexity, respectively, where O-BBVI also out-
performs BBVI. Here, the two-component mixture pro-
posal performs slightly better than the single proposal. This
is consistent with Figure 2a, which indicates that the mix-
ture proposal gives more stable estimates.

Finally, for the GN-TS model only, we also apply the lo-
cal expectations algorithm of Titsias and Lázaro-Gredilla
(2015), which relies on exact or numerical integration to
reduce the variance of the estimator. We form noisy gra-
dients using numerical quadratures for the Gaussian ran-
dom variables and standard BBVI for the gamma variables
(these results are not plotted in the paper). We found that
local expectations accurately approximate the gradient for
the Gaussian distributions. It converges slightly faster at the
beginning of the run, although O-BBVI quickly reaches the
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Figure 1: Results for the GN-TS model. Both versions of
O-BBVI converge faster than BBVI.

same performance. (We conjecture that it is faster because
the local expectations algorithm does not require the use
of control variates. This saves evaluations of the log-joint
probability of the model and thus it can run more iterations
in the same period of time.)

However, we emphasize that O-BBVI is a more general al-
gorithm than local expectations. The local expectations of
Titsias and Lázaro-Gredilla (2015) are only available for
discrete distributions with finite support and for continuous
distributions for which numerical quadratures are accurate
(such as Gaussian distributions). They fail to approximate
the expectations for other exponential family distributions
(e.g., gamma,4 Poisson, and others). For example, they
cannot handle the Poisson DEF.

4Although the univariate gamma distribution is amenable to
numerical integration, we have found that the approximation is
not accurate when the shape parameter of the gamma distribution
is below 1, due to the singularity at 0.

654



0 10 20 30 40 50 60 70 80
10

0

10
10

10
20

10
30

Time (h)

V
ar

ia
nc

e 
(a

vg
)

 

 
BBVI (x2)
BBVI
O−BBVI (single proposal)
O−BBVI (mixture)

(a) Averaged sample variance of the estimator.

0 10 20 30 40 50 60 70 80
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2
x 10

6

Time (h)

E
LB

O

 

 

BBVI (x2)
BBVI
O−BBVI (single proposal)
O−BBVI (mixture)

(b) Traceplot of the ELBO.

0 10 20 30 40 50 60 70 80
1500

2000

2500

3000

3500

Time (h)

H
el

d−
ou

t p
er

pl
ex

ity

 

 
BBVI (x2)
BBVI
O−BBVI (single proposal)
O−BBVI (mixture)

(c) Predictive performance (lower is better).

Figure 2: Results for the Poisson DEF model. Both ver-
sions of O-BBVI converge faster than BBVI.

5 CONCLUSIONS

We have developed overdispersed black-box variational in-
ference (O-BBVI), a method that relies on importance sam-
pling to reduce the variance of the stochastic gradients in
black-box variational inference (BBVI). O-BBVI uses an
importance sampling proposal distribution that has heav-
ier tails than the actual variational distribution. In particu-
lar, we choose the proposal as an overdispersed distribution
in the same exponential family as the variational distribu-
tion. Like BBVI, our approach is amenable to mean field or
structured variational inference, as well as variational mod-
els (Ranganath et al., 2016; Tran et al., 2016).

We have studied the performance of our method on two
complex probabilistic models. Our results show that BBVI
effectively benefits from the use of overdispersed impor-
tance sampling, and O-BBVI leads to faster convergence in
the resulting stochastic optimization procedure.

There are several avenues for future work. First, we can ex-
plore other proposal distributions to provide a better fit to
the optimal ones while still maintaining computational effi-
ciency. Further theoretical research on the bound in Eq. 16
may be helpful for that purpose. Second, we can apply
quasi-Monte Carlo methods to further decrease the sam-
pling variance, as already suggested by Ranganath et al.
(2014). Finally, we can combine the reparameterization
trick with overdispersed proposals to explore whether vari-
ance is further reduced.
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Abstract

In this paper we propose a novel application of
Gaussian processes (GPs) to financial asset allo-
cation. Our approach is deeply rooted in Stochas-
tic Portfolio Theory (SPT), a stochastic analysis
framework introduced by Robert Fernholz that
aims at flexibly analysing the performance of cer-
tain investment strategies in stock markets rel-
ative to benchmark indices. In particular, SPT
has exhibited some investment strategies based
on company sizes that, under realistic assump-
tions, outperform benchmark indices with proba-
bility 1 over certain time horizons. Galvanised by
this result, we consider the inverse problem that
consists of learning (from historical data) an opti-
mal investment strategy based on any given set of
trading characteristics, and using a user-specified
optimality criterion that may go beyond outper-
forming a benchmark index. Although this in-
verse problem is of the utmost interest to invest-
ment management practitioners, it can hardly be
tackled using the SPT framework. We show that
our machine learning approach learns investment
strategies that considerably outperform existing
SPT strategies in the US stock market.

1 INTRODUCTION

Stochastic Portfolio Theory (SPT) is a relatively new
stream in financial mathematics, initiated and largely devel-
oped by Robert Fernholz [2002]. For surveys of the field,
see Fernholz and Karatzas [2009] and Vervuurt [2015].
Among many other things, SPT offers an alternative ap-
proach to portfolio selection, taking as its selection cri-
terion to outperform the market index (for instance, the
S&P 500 index) with probability one. Investment strate-
gies which achieve this are called relative arbitrages, and
have been constructed in certain classes of market models.
The almost-sure comparison between the performance of

certain portfolios and that of the market is facilitated by
Fernholz’s ‘master equation’, a pathwise decomposition of
this relative performance which is free from stochastic in-
tegrals. The foregoing master equation is the main strength
of SPT portfolio selection, as it allows one to circumvent
the challenges of explicit model postulation and calibra-
tion, as well as the (normative) no-arbitrage assumption,
that are encountered in the classical approaches to portfo-
lio optimisation. However, there remain several problems
in and limitations to the SPT framework as it stands.

First of all, the task of finding relative arbitrages under rea-
sonable assumptions on the market model is difficult, since
it is an inverse problem (this has also been noted by Wong
[2015]). Namely, given an investment strategy and market
assumptions, one can check whether this strategy is a rela-
tive arbitrage (although this quickly becomes very hard for
more complicated strategies), but the theory itself does not
suggest such strategies. As such, the number of relative ar-
bitrages that have been constructed explicitly remains very
small. In a practical setting it would be preferable to invert
the problem, and learn investment strategies from data us-
ing a user-specified performance criterion. In effect, most
established investment managers will likely have a strong
view on: i) what performance metric to use to evaluate their
strategies, and ii) what values for the chosen metric they re-
gard as being exceptional. The chosen performance metric
may depart from the excess return relative to the market
index, for instance by adjusting for the risk taken. Simi-
larly, outperforming the market index over a certain time
horizon [0, T ] with probability 1 might not be good enough
for some practitioners, as investors might pull out follow-
ing disappointing initial performances, leaving the invest-
ment manager unable to realise the long-term optimality.
Whence, ideally one should aim at learning from market
data what investment strategy is likely to perform excep-
tionally as per the user’s view.

Secondly, several market imperfections are ignored in SPT;
most notably, the possibility of bankruptcy is excluded.
Since the constructed investment strategies typically invest
heavily in small-capitalisation stocks, this poses a strong
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limitation on the real-world implementability of these port-
folios. However, learning optimal investment strategies
from the data copes well with bankruptcies as strategies
investing in stocks that eventually fail will naturally be re-
jected as suboptimal. It also allows for the incorporation
of transaction costs, which is theoretically challenging and
has not yet been addressed in SPT.

Lastly, the SPT set-up has thus far been developed almost
exclusively for investment strategies that are driven only
by market capitalisations — there have not yet been any
constructions of relative arbitrages driven by other factors.
Although this simplification eases theoretical analysis, it is
a clear restriction as practitioners do consider many more
market characteristics in order to exploit market inefficien-
cies.

We address all of these issues by adopting a Bayesian non-
parametric approach. We consider a broad range of invest-
ment strategies driven by a function defined on an arbitrary
space of trading characteristics (such as the market cap-
italisation), on which we place a Gaussian process (GP)
prior. For a given strategy, the likelihood of it being ‘excep-
tional’ is derived from a user-defined performance metric
(e.g. excess return to the market index, Sharpe ratio, etc)
and values thereof that the practitioner considers ‘excep-
tional’. We then sample from the posterior of the GP driv-
ing the ‘exceptional’ strategy using Monte Carlo Markov
Chain (MCMC).

The rest of the paper is structured as follows. In section 2
we provide a background on SPT. In section 3 we present
our model, and we illustrate that our approach learns strate-
gies that outperform SPT alternatives in section 4. Finally,
we discuss our findings and make suggestions for future
research in section 5.

2 BACKGROUND

We give a brief introduction to SPT, defining the gen-
eral class of market models within which its results hold,
what the portfolio selection criterion is, and how strategies
achieving this criterion are constructed.

2.1 THE MODEL

In SPT, the stock capitalisations are modelled as Itô pro-
cesses.1 Namely, the dynamics of the n positive stock cap-
italisation processes Xi(·), i = 1, . . . , n are described by
the following system of SDEs:

dXi(t) = Xi(t)

(
bi(t) dt+

d∑

ν=1

σiν(t) dWν(t)

)
, (1)

1In the recent work Karatzas and Ruf [2016], it has been
shown that this can be weakened to a semimartingale model that
even allows for defaults.

for t ≥ 0 and i = 1, . . . , n. Here, W1(·), . . . ,Wd(·) are
independent standard Brownian motions with d ≥ n, and
Xi(0) > 0, i = 1, . . . , n are the initial capitalisations. We
assume all processes to be defined on a probability space
(Ω,F ,P), and adapted to a filtration F = {F(t)}0≤t<∞
that satisfies the usual conditions and contains the filtration
generated by the “driving” Brownian motions. We refer
the reader to Karatzas and Shreve [1988] for a reference on
stochastic calculus.

The rates of return bi(·), i = 1, . . . , n and volatilities
σ(·) = (σiν(·))1≤i≤n,1≤ν≤d , are some unspecified F-
progressively measurable processes and are assumed to sat-
isfy the integrability condition

n∑

i=1

∫ T

0

(
|bi(t)|+

d∑

ν=1

(σiν(t))2
)

dt <∞, P-a.s., (2)

for all T ∈ (0,∞), and the non-degeneracy condition

∃ ε > 0 : ξTσ(t)σT (t)ξ ≥ ε||ξ||2, (NDε)

for all ξ ∈ Rn and t ≥ 0, P-almost surely.

2.2 RELATIVE ARBITRAGE

In this context, one studies investments in the equity mar-
ket described by (1) using portfolios. These are Rn-
valued and F-progressively measurable processes π(·) =(
π1(·), · · · , πn(·)

)T
, where πi(t) stands for the proportion

of wealth invested in stock i at time t.

We restrict ourselves to long-only portfolios. These invest
solely in the stocks, namely, they take values in the closure
∆n

+ of the set

∆n
+ =

{
x ∈ Rn : x1 + . . .+ xn = 1,

0 < xi < 1, i = 1, . . . , n
}

; (3)

in particular, there is no money market. Assuming without
loss of generality that the number of outstanding shares of
each firm is 1, the corresponding wealth process V π(·) of
an investor implementing π(·) is seen to evolve as follows
(we normalise the initial wealth to 1):

dV π(t)

V π(t)
=

n∑

i=1

πi(t)
dXi(t)

Xi(t)
, V π(0) = 1. (4)

In SPT one measures performance, for the most part, with
respect to the market index. This is the wealth process
V µ(·) that results from a buy-and-hold portfolio, given by
the vector process µ(·) =

(
µ1(·), · · · , µn(·)

)T
of market

weights

µi(t) :=
Xi(t)

X1(t) + . . .+Xn(t)
. (5)
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Definition 1. Let T > 0. A strong relative arbitrage with
respect to the market over the time-horizon [0, T ] is a port-
folio π(·) such that

P
(
V π(T ) > V µ(T )

)
= 1. (6)

An equivalent way to express this notion, is to say that
the portfolio π(·) strongly outperforms µ(·) over the time-
horizon [0, T ].

Contrast the SPT approach to portfolio selection with other
methods such as mean-variance optimisation (originally in-
troduced by Markowitz [1952]) and expected utility max-
imisation (see for instance Rogers [2013]), where the opti-
misation of a certain performance criterion determines the
portfolio. In SPT, any portfolio that outperforms the market
in the sense of (6) is a relative arbitrage, and the amount by
which it outperforms the market is theoretically irrelevant.

In practice, one clearly desires this relative outperformance
to be as large as possible. Attempts at optimisation over the
class of strategies that satisfy (6) have been made by Fern-
holz and Karatzas [2010], Fernholz and Karatzas [2011],
Ruf [2011], Ruf [2013], and Wong [2015]. However, these
results are highly theoretical and very difficult to imple-
ment. Our data-driven approach circumvents these theo-
retical complications by optimising a user-defined criterion
over the class of functionally-generated portfolios, which
we introduce below.

2.3 FUNCTIONALLY-GENERATED PORTFOLIOS

A particular class of portfolios, called functionally-
generated portfolios (or FGPs for short), was introduced
and studied by Fernholz [1999].

Consider a function G ∈ C2(U,R+), where U is an open
neighbourhood of ∆n

+ and such that x 7→ xiDi logG(x) is
bounded on ∆n

+ for i = 1, . . . , n. Then G is said to be the
generating function of the functionally-generated portfolio
π(·), given, for i = 1, . . . , n , by

πi(t)

µi(t)
=

DiG(µ(t))

G(µ(t))
+ 1−

n∑

j=1

µj(t)
DjG(µ(t))

G(µ(t))
. (7)

Here, we write Di for the partial derivative with respect to
the ith variable, and we will write D2

ij for the second partial
derivative with respect to the ith and jth variables. Theo-
rem 3.1 of Fernholz [1999] asserts that the performance of
the wealth process corresponding to π(·), when measured
relative to the market, satisfies the P-almost sure decompo-
sition (often referred to as “Fernholz’s master equation”)

log

(
V π(T )

V µ(T )

)
= log

(
G(µ(T ))

G(µ(0))

)
+

∫ T

0

g(t) dt , (8)

where the quantity

g(t) := −
n∑

i,j=1

D2
ijG(µ(t))

2G(µ(t))
µi(t)µj(t)τ

µ
ij(t) (9)

is called the drift process of the portfolio π(·). Here, we
have written τµij(·) for the relative covariances; denoting
by ei the ith unit vector in Rn, these are defined for 1 ≤
i, j ≤ n as

τµij(t) :=
(
µ(t)− ei

)T
σ(t)σT (t)

(
µ(t)− ej

)
. (10)

Under suitable conditions on the market model (1), the left
hand side of master equation (8) can be bounded away from
zero for sufficiently large T > 0, thus proving that π(·)
is an arbitrage relative to the market over [0, T ]. Several
FGPs have been shown to outperform the market this way
— see Fernholz [2002], Fernholz et al. [2005], Fernholz
and Karatzas [2005], Banner and Fernholz [2008], Fern-
holz and Karatzas [2009], Picková [2014], and Vervuurt
and Karatzas [2015]. In fact, Pal and Wong [2014] prove
that any relative arbitrage with respect to the market is nec-
essarily of the form (7), if one restricts π(·) to be a func-
tional of the current market weights only.

Strong [2014] proves a generalisation of (8) for portfo-
lios which are deterministic functions not only of the mar-
ket capitalisations, but also of other observable quantities.
Namely, let x(t) = (µ(t), F )T , with F a continuous, Rk-
valued, F-progressively measurable process of finite varia-
tion, and let H ∈ C2,1(Rn × Rk,R+). By an application
of Theorem 3.1 of Strong [2014], for any portfolio

πi(t)

µi(t)
=

DiH(x(t))

H(x(t))
+ 1−

n∑

j=1

µj(t)
DjH(x(t))

H(x(t))
, (11)

for i = 1, . . . , n, the following master equation holds:

log

(
V π(T )

V µ(T )

)
= log

(H(x(T ))

H(x(0))

)
+

∫ T

0

g̃(t) dt (12)

−
∫ T

0

k∑

l=1

Dn+l logH(x(t)) dFl(t) .

Here (compare with (8) and (9))

g̃(t) := −
n∑

i,j=1

D2
ijH(x(t))

2H(x(t))
µi(t)µj(t)τ

µ
ij(t) . (13)

Although explicit in its decomposition, the modified master
equation (12) has so far not been applied in the literature.
It is very difficult and unclear how to postulate in what way
such ‘extended generating functions’ H should depend on
market information, and what additional covariates to use.
It is thus of interest to develop a methodology that makes
suggestions for what functions H to use, and extracts from
market data which signals are significant.

2.4 DIVERSITY-WEIGHTED PORTFOLIOS

One of the most-studied FGPs is the diversity-weighted
portfolio (DWP) with parameter p ∈ R, defined in (4.4)
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of Fernholz et al. [2005] as

π
(p)
i (t) :=

(µi(t))
p

∑n
j=1(µj(t))p

, i = 1, . . . , n. (14)

In Eq. (4.5) of Fernholz et al. [2005] it was shown that this
portfolio is a relative arbitrage with respect to µ(·) over
[0, T ] for any p ∈ (0, 1) and T > 2 log n/(εδp), under
the condition (NDε), and that of diversity (Dδ), introduced
below. The latter says that no single company’s capitalisa-
tion can take up more than a certain proportion of the entire
market, which can be observed to hold in real markets;

∃ δ ∈ (0, 1) : P
(

max
1≤i≤n
t∈[0,T ]

µi(t) < 1− δ
)

= 1 . (Dδ)

In Vervuurt and Karatzas [2015], this result was extended
to the DWP with negative parameter p, and several varia-
tions of this portfolio were shown to outperform the mar-
ket over sufficiently long time horizons and under suitable
market assumptions. A simulation using real market data
supported the claim that these portfolios have the potential
to outperform the market index, as well as their positive-
parameter counterparts. Our results strongly confirm this
finding, as well as computing the optimal parameter p —
see section 4.

3 SOLVING THE INVERSE PROBLEM

We consider solving the inverse problem of SPT: given
some investment objective, how to go about learning a suit-
able trading strategy from the data? In doing so, we aim for
a method that:

1. Learns from a large class of candidate investment
strategies to uncover possibly intricate strategies from
the data, typically by making use of non-parametric
generative models for the generating functions;

2. Leverages additional sources of information beyond
market capitalisations to uncover better investment
strategies;

3. Works irrespective of the practitioner’s investment ob-
jective (e.g. achieving a high Sharpe Ratio, outper-
forming alternative benchmark indices, etc).

3.1 MODEL SPECIFICATION

Let X ⊂ Rd be a set of trading characteristics, for some
d ≥ 1. We consider long-only portfolios of the form

πfi (t) =
f (xi(t))∑n
j=1 f (xj(t))

, i = 1 . . . , n, (15)

for some continuous function f : X → R+.

The idea behind this choice of investment portfolios is
grounded in the fact that in practice, an investment manager
will often have a predefined set of characteristics that he
uses to compare stocks, for instance company size, balance
sheet variables, credit ratings, sector, momentum, market
vs. book value, return on assets, management team, on-
line sentiment, technical indicators, ‘beta’, etc. The invest-
ment manager will typically choose trading characteristics
so that they are informative enough to unveil market ineffi-
ciencies. Moreover, two stocks that have ‘similar’ charac-
teristics will receive ‘similar’ weights.

This approach includes as special cases all functionally-
generated portfolios in the SPT framework, and in partic-
ular the diversity-, entropy- and equally-weighted, as well
as market, portfolios. Our more general setting allows for
any set of trading characteristics.

The trading opportunities in our framework are revealed
through the time evolving trading characteristics xi(t), and
the investment map f fully determines how to go about
seizing these opportunities. Whence, learning an invest-
ment strategy in our framework is equivalent to learning an
investment map f . To do so, we consider two families of
functions. Firstly, galvanised by the theoretical results of
SPT, we consider the case where X = R+ is the set of
market weights, and we take f to be of the parametric form

f : µ 7→ µp, (16)

for p ∈ R, which corresponds to the diversity-weighted
portfolio (DWP, see section 2.4). Secondly, in order to cap-
ture more intricate trading patterns, and to allow for a more
general set of trading characteristics X ⊂ Rd, we also con-
sider an alternative non-parametric approach in which we
take log f to be a path of a mean-zero Gaussian process
with covariance function k

log f ∼ GP(0, k(·, ·)). (17)

To learn ‘good’ investment maps, we need to introduce an
optimality criterion that encodes the user’s investment ob-
jective. To do so, we consider a performance functionalPD
that maps the logarithm of a candidate investment map to
the historical performance PD(log f) of the portfolio πf (·)
as in Eq. (15) over some finite time horizon, given his-
torical data D. An example performance functional is the
annualised Sharpe Ratio, defined as

SR(π) =
√
B

Ê ({r(1), . . . , r(T )})
Ŝ ({r(1), . . . , r(T )})

, (18)

where r(t) =
∑n
i=1 ri(t)π

f
i (t) is the return of our port-

folio between time t − 1 and time t, ri(t) is the return of
the i-th asset between time t − 1 and time t, B represents
the number of units of time in a business year (e.g. 252 if
the returns are daily), and Ê (resp. Ŝ) denote the sample
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mean (resp. sample standard deviation). Another example
of a performance functional is the excess return relative to
a benchmark portfolio π∗

ER
(
πf |π∗

)
=

T∏

t=1

(
1 +

n∑

i=1

ri(t)π
f
i (t)

)

−
T∏

t=1

(
1 +

n∑

i=1

ri(t)π
∗
i (t)

)
. (19)

The nature of PD (Sharpe ratio, excess return, etc) depends
on the portfolio manager; we impose no theoretical restric-
tion.

In the parametric case (Eq. (16)), PD(log f) is effectively
a function of one single variable p, and we can easily learn
the optimal p using standard optimisation techniques.

In many cases, however, it might be preferable to reason
under uncertainty and be Bayesian. To do so, we express
the investment manager’s view as to what is a good perfor-
mance through a likelihood model p(D

∣∣ log f), which we
may choose to be a probability distribution on PD(log f)

L (PD(log f)) := p
(
D
∣∣ log f

)
. (20)

This is perhaps the most important step of the learning pro-
cess. Indeed, the Bayesian methods we will develop in the
next section aim at learning investment maps that provide
an appropriate trade-off between how likely the map is in
light of training data, and how consistent it is with prior
beliefs. This will only lead to a profitable investment map
if ‘likely’ maps satisfy the manager’s investment objective
in-sample and vice-versa. If one chooses the likelihood
model such that likely maps are strategies that lose money,
then our learning machines will learn strategies that lose
money!

Fortunately, it is very straightforward to express that likely
investment maps are the ones that match a desired invest-
ment objective. For instance, we may use as likelihood
model that, given a candidate investment map f , the ex-
tent to which it is good, or equivalently the extent to which
it is ‘likely’ to be the function driving the strategy we are
interested in learning, is the same as the extent to which the
Sharpe Ratio it generates in-sample comes from a Gamma
distribution with mean 2.0 and standard deviation 0.5. The
positive support of the Gamma distribution renders func-
tions leading to negative in-sample Sharpe ratios of no in-
terest, while the concentration of the distribution over the
Sharpe Ratio around 2.0 reflects both our target perfor-
mance and some tolerance around it. The choice of mean
(2.0) and standard deviation (0.5) of the Gamma reflects
the risk appetite of the investment manager, while the van-
ishing tails properly reflect the fact that too high a perfor-
mancePD(log f) would likely raise suspicions and too low
a performance would not be good enough.

To complete our Bayesian model specification, in the para-
metric case we place on p a uniform prior on [−8, 8].

3.2 INFERENCE

Throughout the rest of this paper we will use as perfor-
mance functional the total excess — transaction cost ad-
justed — return (as defined in (19)) relative to the equally
weighted portfolio (EWP), which has constant weights

πEWP
i (t) =

1

n
, i = 1, . . . , n , ∀ t ≥ 0. (21)

over the whole training period

PD(log f) = ER(πf |EWP). (22)

We assume a 10bps transaction cost upon rebalancing
(i.e. we incur a cost of 0.1% of the notional for each
transaction). It is well known to algorithmic (execution)
trading practitioners that a good rule of thumb is to ex-
pect to pay 10bps when executing an order whose size is
10% of the average daily traded volume (ADV) on liq-
uid stocks. Whence, this assumption is reasonable so long
as the wealth invested in each stock does not exceed 10%
ADV. When needed, we use as likelihood model

L (PD(log f)) = γ (PD(log f); a, b) , (23)

where we denote γ(.; a, b) the probability density function
of the Gamma distribution with mean a and standard devia-
tion b. As previously discussed, a and b need not be learned
as they reflect the investment manager’s risk appetite. In the
experiments of the following section, we use a = 7.0 and
b = 0.5. In other words, we postulate that the ideal invest-
ment strategy should be such that, starting with a unit of
wealth, the terminal wealth over the training period should
be on average 7.0 units of wealth higher than the terminal
wealth achieved by the equally weighted portfolio over the
same trading horizon — this is purposely greedy.

Frequentist parametric: The first method of inference we
consider consists of directly learning the optimal parameter
of the DWP by maximising PD(log f) for p ∈ [−8, 8]. As
a comparison, the typical range of p considered in the SPT
literature is [−1, 1]. To avoid any issue with local maxima,
we proceed with brute force maximisation on the uniform
grid with mesh size 0.05.2

Bayesian parametric: The second method of inference we
consider consists of using the Metropolis-Hastings algo-
rithm (Hastings [1970]) to sample from the posterior dis-
tribution over the exponent p in the DWP case,

p(p|D) ∝ L (PD(p))× 1 (p ∈ [−8, 8]) , (24)

where we have rewritten L (PD(log f)) as L (PD(p)) to
make the dependency in p explicit. We sample a proposal

2This took no longer than a couple of seconds in every exper-
iment that we ran.
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update p∗ from a Gaussian centred at the current exponent
p and with standard deviation 0.5. The acceptance proba-
bility is easily found to be

r = min

(
1,
L (PD(p∗))
L (PD(p))

1 (p∗ ∈ [−8, 8])

)
. (25)

We note in particular that so long as p is initialised within
[−8, 8], the indicator function in Eq. (24) will not cause
problems to the Markov chain. We typically run 10, 000
MH iterations and discard the first 5, 000 as ‘burn-in’. We
use the posterior mean exponent learned on training data
to trade in our testing horizon following the corresponding
DWP

f̂(µ) = µE(p|D). (26)

Bayesian non-parametric: The third method of inference
we consider is Bayesian and non-parametric. We place a
Gaussian process prior on log f

log f ∼ GP(0, k(·, ·)). (27)

Given the sizes of datasets we consider in our experiments
(more than 3 million training inputs — 500 assets over a
25-year period), we approximate the latent function over
a Cartesian grid. This approximation fits nicely with the
quantised nature of financial data. We use as covariance
function a separable product of Rational Quadratic (RQ)
kernels

k(x, y) = k20

d∏

i=1

(
1 +

(x[i]− y[i])2

2αil2i

)−αi

, (28)

where the hyper-parameters k0, li, αi > 0, on which we
place independent log-normal priors are all to be inferred.
We found the RQ kernel to be a better choice than the Gaus-
sian kernel as it allows for ‘varying length scales’. Denot-
ing by f the values of the investment map over the input
grid, we prefer to work with the equivalent whitened repre-
sentation

log f = LX, X ∼ N (0, I), (29)

where I is the identity matrix, K = [k(xi,xj)]i,j≤N is
the Gram matrix over all N input points, K = UDUT

is the Singular Value Decomposition (SVD) of K and
L = UD

1
2 . We use a Blocked Gibbs sampler (Geman and

Geman [1984]) to sample from the posterior

p (logX, log k0, {log li, logαi}i≤d|D) ∝ L (PD(LX))

× p(logX)p(log k0)
d∏

i=1

p(log li)p(logαi) , (30)

where we have rewritten L (PD(log f)) as L (PD(LX)) to
emphasise that the likelihood is fully defined by f = LX.
The whitened representation has two primary advantages.

First, it is robust to ill conditioning as we may always com-
pute L, even when K is singular. Second, it creates a hard
link between function values and hyper-parameters, so that
updating the latter affects the likelihood L (PD(log f)),
and therefore directly contributes towards improving the
training performance PD(log f): we found this to improve
mixing of the Markov chain. Our Blocked Gibbs sampler
alternates between updating logX conditional on hyper-
parameters, and updating the hyper-parameters (and conse-
quently L) conditional on logX. For both steps we use the
elliptical slice sampling algorithm (Murray et al. [2010]).
The computational bottleneck of our sampler is the com-
putation of the SVD of K, which we may do very effi-
ciently by exploiting the separability of our kernel and the
grid structure of the input space using standard Kronecker
techniques (see for instance Saatchi [2011]).

4 EXPERIMENTS

The universe of stocks we consider in our experiments
are the constituents of the S&P 500 index, accounting for
changes in index constituents. We rebalance our portfolios
on a daily basis. At the end of each trading day, we deter-
mine our target portfolio for the next day, which is acquired
at the open of the next trading day. When the constituents
of the index are due to change on day t, our target portfolio
at the end of day t−1 relates to the constituents of the index
on day t (which would indeed be known to the market on
day t − 1). As previously discussed, we assume that each
transaction incurs a charge of 0.1% of its notional value.
The returns we use account for corporate events such as
dividends, defaults, M&A’s, etc. Our data sources are the
CRSP and Compustat databases, and we use data from 1
January 1992 to 31 December 2014.

In our first experiment, we aim to illustrate that the ap-
proaches we propose in this paper consistently and con-
siderably outperform SPT alternatives over a wide range
of market conditions. We consider learning optimal invest-
ment strategies as described in the previous section using
10 consecutive years worth of data and testing on the fol-
lowing 5 years. We begin on 1st January 1992 for the first
training dataset, and roll both training and testing datasets
by one year, which leads to a total of 9 pairs of training and
testing subsets. We compare the equally-weighted portfolio
(EWP), the market portfolio, the diversity-weighted port-
folio where the exponent p is learned by maximising the
evaluation functional (DWP*), the diversity-weighted port-
folio where the exponent p is learned with MCMC (DWP),
the Gaussian process approach using as trading character-
istic the logarithm of the market weights (CAP), and the
Gaussian process approach using as trading characteristics
both the logarithm of the market weights and the return-on-
assets (CAP+ROA). The return-on-assets (ROA) on day t
is defined as the ratio between the last net income reported
by the company and last total assets reported by the com-
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pany known on day t — we note that this quantity may not
change on a daily basis but this does not affect our analysis.
The rationale behind using the ROA as additional charac-
teristics is to capture not only how big a company is, but
also how well it performs relative to its size.

Table 1 summarises the average over the 9 scenarios of the
yearly in-sample and out-of-sample returns plus-minus two
standard errors. It can be seen that all learned strategies do
indeed outperform the benchmark (EWP) in-sample and
out-of-sample. Moreover, the performance is greatly im-
proved by considering non-parametric models, even when
the only characteristic considered is the market weight.
Analysing such families of strategies within the SPT frame-
work would simply be mathematically intractable. Fi-
nally, it can be seen that adding more trading characteristics
does indeed add value. Crucially, the CAP+ROA portfolio
considerably and consistently outperforms the benchmark
(EWP), both in-sample and out-of-sample.

Table 1: Results of our first experiment on the consistency
of our learning algorithms to varying market conditions. IS
RET (resp. OOS RET) are in-sample (resp. out-of-sample)
average (over the 9 runs in the experiment) yearly returns
in % ± two standard errors.

PORTFOLIO IS RET (%) OOS RET (%)

MARKET 8.56±1.62 6.23±2.07
EWP 10.56±1.67 8.99±1.85
DWP* 11.94±2.01 12.51±1.12
DWP 11.91±1.99 12.50±1.11
CAP 26.54±2.38 22.05±2.89
CAP+ROA 56.18±7.35 25.14±2.58

In our second experiment, we aim to illustrate that our ap-
proaches are robust to financial crises. To do so, we train
our model using data from 1 January 1992 to 31 Decem-
ber 2005, and test the learned strategy between 1 January
2006 and 31 December 2014, which includes the 2008 fi-
nancial crisis. We compare the same investment strategies
as before. The posterior distribution over the exponent p
in the Bayesian parametric method is illustrated in Figure
1. The learned posterior mean investment maps are illus-
trated in Figure 3. In Table 2 we provide in-sample and out-
of-sample average yearly returns as well as out-of-sample
Sharpe ratios. Once again, it can be seen that: i) all learned
portfolios do indeed outperform the benchmark (EWP) in-
sample and out-of-sample, ii) non-parametric methods out-
perform parametric methods, and iii) adding the ROA as
an additional characteristic does indeed add value. These
conclusions hold true not only in absolute terms (returns)
but also after adjusting for risk (Sharpe Ratio). A more
granular illustration of how our method performs during
the 2008 financial crisis can be seen in the time series of
total wealth provided in Figure 2. It turns out that the ROA

does not only improve the return out-of-sample, but it also
has a ‘stabilising effect’ in that the volatility of the wealth
process is considerably reduced.

Finally, it is also worth stressing that the shape of the
learned investment map in the two-dimensional case (Fig-
ure 3) suggests that the investment strategy uncovered by
our Bayesian nonparametric approach can hardly be repli-
cated with a parametric model. Once again, it would be
near impossible to derive analytical results pertaining to
such a portfolio within the SPT framework.

Figure 1: Posterior distribution of the parameter p of the
diversity-weighted portfolio in our second experiment. The
model was trained with market data between 1st January
1992 to 31st December 2005.

Table 2: Results of our second experiment on the robust-
ness of the proposed approaches to financial crises. Re-
turns (RET) are yearly equivalents (in %) of the total re-
turns over the whole testing period. The annualised Sharpe
Ratio (SR) is as per Eq. (18). IS (resp. OOS) stands for
in-sample (resp. out-of-sample).

PORTFOLIO IS RET (%) OOS RET (%) OOS SR

MARKET 9.60 7.90 0.47
EWP 13.46 9.60 0.51
DWP* 14.62 11.74 0.56
DWP 14.62 11.38 0.55
CAP 16.49 18.01 0.60
CAP+ROA 37.54 18.33 0.72

5 CONCLUSION & DISCUSSION

The inverse problem of stochastic portfolio theory (SPT) is
the following problem: given a user-defined portfolio se-
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Figure 2: Time series of out-of-sample wealth processes in
our second experiment. Models were trained with market
data between 1st January 1992 to 31st December 2005, and
tested from 1st January 2006 to 31st December 2014.

lection criterion, how does one go about constructing suit-
able investment strategies that meet the desired investment
objective? This problem is extremely challenging to solve
within the SPT framework. We propose the first solution to
the inverse SPT problem and we demonstrate empirically
that the proposed methods consistently and considerably
outperform standard benchmarks, and are robust to finan-
cial crises.

Unlike the SPT framework, our methods are based solely
on historical data rather than stochastic calculus. This al-
lows us to consider a very broad class of candidate invest-
ment strategies that includes all SPT strategies as special
cases, but crucially contains many investment strategies
that cannot be analysed in the SPT framework. Unlike the
SPT framework, which almost exclusively considers out-
performing the market portfolio using investment strate-
gies that are solely based on market weights, our proposed
approach can cope with virtually any user-defined invest-
ment objective and can exploit any arbitrary set of trading
characteristics. We empirically demonstrate that this added
flexibility allows us to uncover more subtle patterns in fi-
nancial markets, which results in greatly improved perfor-
mance.

Although the Gaussian process in our model was approxi-
mated to be piecewise constant on a grid, there is no the-
oretical or practical obstacle in using an alternative ap-
proximation such as sparse Gaussian processes (Quiñonero
Candela and Rasmussen [2005]) or string Gaussian pro-
cesses (Kom Samo and Roberts [2015b]). Our method
may be extended to learn even subtler patterns using the
non-stationary general purpose kernels of Kom Samo and
Roberts [2015a]. Our work may also be extended to al-

Figure 3: Learned logarithm investment maps of the CAP
portfolio (top) and the CAP+ROA portfolio (bottom) in our
second experiment. In the case of the CAP portfolio, the
credible band corresponds to ± 2 posterior standard devia-
tions.

low for long-short investment strategies (i.e. strategies that
allow short-selling). Finally, it would be interesting to de-
velop an online extension of our work that would capture
temporal changes in market dynamics.

Acknowledgements

Yves-Laurent is a Google Fellow in Machine Learning
and would like to acknowledge support from the Oxford-
Man Institute of Quantitative Finance. Alexander grate-
fully acknowledges PhD studentships from the Engineer-
ing and Physical Sciences Research Council, Nomura, and
the Oxford-Man Institute of Quantitative Finance. Whar-
ton Research Data Services (WRDS) was used in preparing
the data for this paper. This service and the data available
thereon constitute valuable intellectual property and trade
secrets of WRDS and/or its third-party suppliers.

664



References

Adrian D. Banner and Daniel Fernholz. Short-term relative
arbitrage in volatility-stabilized markets. Ann. Finance,
4:445–454, 2008.

Daniel Fernholz and Ioannis Karatzas. On optimal arbi-
trage. Ann. Appl. Probab., 20(4):1179–1204, 2010.

Daniel Fernholz and Ioannis Karatzas. Optimal arbitrage
under model uncertainty. Ann. Appl. Probab., 21(6):
2191–2225, 2011.

Robert Fernholz. Portfolio generating functions. Quan-
titative Analysis in Financial Markets, River Edge, NJ.
World Scientific, 1999.

Robert Fernholz. Stochastic Portfolio Theory. Springer,
2002.

Robert Fernholz and Ioannis Karatzas. Relative arbitrage in
volatility-stabilized markets. Ann. Finance, 1:149–177,
2005.

Robert Fernholz and Ioannis Karatzas. Stochastic portfo-
lio theory: A survey. In Alain Bensoussan and Qiang
Zhang, editors, Handbook of Numerical Analysis. Vol.
XV. Special volume: mathematical modeling and numer-
ical methods in finance, volume 15 of Handbook of Nu-
merical Analysis. Elsevier/North-Holland, Amsterdam,
2009.

Robert Fernholz, Ioannis Karatzas, and Constantinos Kar-
daras. Diversity and relative arbitrage in equity markets.
Finance Stoch., 9(1):1–27, 2005.

Stuart Geman and Donald Geman. Stochastic relaxation,
gibbs distributions, and the bayesian restoration of im-
ages. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6:721–741, 1984.

W. K. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 24:
97–109, 1970.

Ioannis Karatzas and Johannes Ruf. Trading strate-
gies generated by Lyapunov functions. arXiv preprint
arXiv:1603.08245, 2016.

Ioannis Karatzas and Steven Shreve. Brownian Motion and
Stochastic Calculus. Volume 113 in the series Proba-
bility and its Applications (New York). Springer-Verlag,
New York, 1988.

Yves-Laurent Kom Samo and Stephen Roberts. General-
ized spectral kernels. arXiv preprint arXiv:1506.02236,
2015a.

Yves-Laurent Kom Samo and Stephen Roberts. String
Gaussian processes. arXiv preprint arXiv:1507.06977,
2015b.

Harry Markowitz. Portfolio selection. The journal of fi-
nance, 7(1):77–91, 1952.

Iain Murray, Ryan Prescott Adams, and David J. C.
MacKay. Elliptical slice sampling. JMLR: W&CP, 9:
541–548, 2010.

Soumik Pal and Ting-Kam Leonard Wong. The geometry
of relative arbitrage. Mathematics and Financial Eco-
nomics, pages 1–31, 2014.
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Abstract

We consider the sensitivity of causal identification
to small perturbations in the input. A long line of
work culminating in papers by Shpitser and Pearl
(2006) and Huang and Valtorta (2008) led to a
complete procedure for the causal identification
problem. In our main result in this paper, we
show that the identification function computed
by these procedures is in some cases extremely
unstable numerically. Specifically, the “condition
number” of causal identification can be of the
order of Ω(exp(n0.49)) on an identifiable semi-
Markovian model with n visible nodes. That is,
in order to give an output accurate to d bits, the
empirical probabilities of the observable events
need to be obtained to accuracy d +Ω(n0.49) bits.

1 INTRODUCTION

The gold standard for estimating the causal effect of one
part of a system on another is the controlled experiment:
the experimenter controls, or intervenes with, the stimulus
variables in a way such that they are not affected by any
non-measurable confounding factors, and then observes
the distribution of the response variables as the stimuli are
varied. Unfortunately, in a variety of important applications,
the controlled experiment is not available as a method for
reasons of ethics or practicality: a popular example of such
a scenario is the question of whether a lifestyle choice such
as smoking causes lung cancer. It can be argued (and in
this particular case, has been argued! (Ohlemeyer, 1999))
that the strong observed correlations may be due to hidden
confounding factors (here environmental or genetic).

In a series of seminal papers starting with (Pearl, 1995),
Judea Pearl and others proposed and analyzed a framework
for computing causal effects of hypothetical interventions
solely from passively observed (i.e., non-experimental) data.
The starting point of this framework is a model of the system

as a directed graphical model with hidden nodes represent-
ing the non-measurable confounding variables. The goal is
to take as input the joint distribution of the observed nodes
in the model, and to deduce from them the intervention dis-
tributions that would result if an hypothetical controlled ex-
periment were to be performed. A long line of work (Pearl,
1995; Pearl and Robins, 1995; Kuroki and Miyakawa, 1999;
Halpern, 2000; Tian, 2002) on this framework culminated in
papers by Shpitser and Pearl (2006) and Huang and Valtorta
(2008) which gave a complete characterization of models
in which this is achievable: in particular, they provided an
algorithm which on input a directed graphical model and the
set of stimulus and response variables outputs either a pro-
cedure that will compute the intervention distribution given
the joint distributions of the observed nodes, or a certificate
that the intervention distribution is not determined uniquely
by the observed joint distribution. In the former case, the
causal effect of the stimuli upon the response variables is
said to be identifiable in the model.

This paper is concerned with the numerical properties of
the identification problem. Note that an inference process
such as causal identification as described above will always
run on empirical inputs. We therefore ask: when the causal
effect is identifiable, how sensitive is it to small inaccuracies
either in the knowledge of the model, or of the observed
distribution? Our main result (Theorem 1.2) in fact shows
that causal inference can in fact be extremely sensitive to
small errors: we give example of models on n nodes where
any numerical algorithm for computing the intervention
distribution from the observed distribution will lose roughly
Θ(
√

n) bits of precision. This sets an extraordinary demand
on the accuracy of the input data of such a system.

As we discuss in more detail in Section 1.2, there are several
natural sources of errors in the input to a causal identification
problem: these include errors incurred in measurements of
the observed distribution; round-off; and as we observe in
Section 1.2.1, inexact descriptions of models. Our results
therefore point to a new line of investigation concerning the
classification of graphical models based on the sensitivity
of causal identification to such perturbations in the input.
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We begin in the next subsection by formalizing first the iden-
tification question, then the appropriate notion of stability
for causal identification.

1.1 PEARL’S NOTION OF CAUSAL
IDENTIFIABILITY

In Pearl’s framework, the system being studied is mod-
eled as a semi-Markovian graphical model. A semi-
Markovian graphical model is a directed acyclic graph
G = (V, E,U, H), which has observed nodes and edges
V and E, and hidden nodes and edges U and H, and is
constrained so that the observed edges E lie between the
observed vertices V , while the hidden edges in H go from a
hidden vertex in U to an observed vertex in V .

The observed nodes V of the model are identified with the
measurable components of the system, while the hidden
nodes in G represent confounding variables that are not ac-
cessible to measurement. The edges model dependencies
between these random variables: every variable is inde-
pendent of its ancestors in G conditioned on its immediate
predecessors. A probability distribution that satisfies this
constraint is said to respect G. Equivalently, a probability
distribution P respects G if it factorizes as

P (V1 = v1, . . . ,Vn = vn,U = u)

= P (U = u)
∏

Vi ∈V
P

(
Vi = vi | pa(Vi) = vpa(Vi )

)
,

where pa(S) is the set of parents of the node S.

However, since the hidden nodes in U are not measurable,
any measurement can only estimate the observed marginal

P (V = v)

=
∑

u∈Ω(U )

P (U = u)
∏

Vi ∈V
P

(
Vi = vi | pa(Vi) = vpa(Vi )

)
,

where Ω(U) denotes the range of the set U of hidden vari-
ables.

Pearl (1995) proposed that a natural representation of an
experimental intervention on some subset X of observed
variables is to remove from them any effect of their an-
cestors. Formally, the intervention distribution, denoted
P (V − X | do(X = x)), of the nodes in V − X under the
intervention X = x can therefore be defined as follows:

P (V − X = vV−X | do(X = x))

=
∑

u∈Ω(U )

P (U = u)
∏

Vi ∈V−X
P

(
Vi = vi | pa(Vi) = vpa(Vi )

)
.

(1)

The marginals of the above distribution define the distribu-
tion P (· | do(X = x)) on all subsets of V − X .

Directly computing the intervention distribution using
eq. (1) requires knowledge of the distributions of the hid-
den variables, as well as their effect on the observed nodes.
These are, of course, not measurable in practice. This leads
to the question: when is the intervention distribution in
eq. (1) efficiently computable (or identifiable) from a knowl-
edge of only the observed statistics? More formally, given
a semi-Markovian graph G = (V, E,U, H) and disjoint sub-
sets X,Y of V , P (Y | do X ) is said to be identifiable in G if
and only if there exists a function

ID(G, X,Y ) : P(V ) 7→ P(Y | do X )

which maps observed distributions P(V ) to intervention
distributions P(Y | do X ). The question then is to decide,
given G, X , and Y , whether such a map exists, and if yes, to
compute it.

As expected, the answer to the question is not always pos-
itive. For example, in the graph in fig. 1a (where u is a
hidden node), it is not possible to express P (y | do(x)) in
terms of the marginal distribution P (x, y). This is intuitive,
since any observed correlation between X and Y is equally
well attributable as being due to the hidden variable U as
due to a causal effect of X of Y . However, in the similar

x

u

y

(a) A Simple Unidentifiable Case

x

u

z

y

(b) A Simple Identifiable Case

Figure 1: Simple Graphical Models

model in fig. 1b, which has just one more observed node,
the distribution P (y | do(x)) is identifiable.

The algorithms of Shpitser and Pearl (2006) and Huang and
Valtorta (2008), on input G, X , and Y as in the above dis-
cussion, either output a description of the map ID(G, X,Y ),
or give a certificate that the causal effect of X on Y is not
identifiable in G. Here we study the stability of the map
ID(G, X,Y ) when it exists; we also show how identification
can be applied when the map “almost” exists.

1.2 RESULTS

Before embarking on our study of the sensitivity of the map
ID(G, X,Y ) to errors in the input, we make a few comments
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about the sources of such errors. Conventionally, two such
sources are considered: errors introduced due to limitations
in measuring the input, and errors introduced due to round-
ing off the input to a fixed finite floating point precision.
These sources of errors are fairly generic and apply to al-
most any function, hence we defer their discussion in the
context of the ID map to Remark 1.1. Here, we discuss
another kind of error in the input specific to the problem
of causal inference: error arising from inaccuracies in the
knowledge of the graphical model of the system under study.
We start by analyzing such errors in Section 1.2.1. Finally, in
Section 1.2.2, we formalize the notion of the condition num-
ber which captures all the three forms of errors described
above and then state our results in terms of this notion.

1.2.1 Errors in the Model Description

We now consider the effect of ignoring some edges in the
input graphical model. Let G = (V, E,U, H) be a semi-
Markovian graph with observed nodes and edges V and
E, and hidden nodes and edges U and H respectively. Let
X,Y be disjoint subsets of V , and suppose that P (Y | do X )
is not identifiable in G, but identifiable in the subgraph
G′ = (V, E,U, H − {e}) in which a certain edge e has been
removed. Another way to frame the situation is that we
start with the model G′ in which the requisite intervention is
identifiable, and then consider the effect of adding the edge
e to the model which destroys identifiability.

In particular, we wish to quantify the non-identifiability in-
duced by the addition of the edge e to G′, as a function of
some measure of the “strength” of the edge e. A natural
measure of the strength of an edge (A, B) is the amount by
which it can affect the conditional probability at its child ver-
tex B, when all the other parents of B are held fixed. More
formally, we propose the following measure of strength:

Definition 1.1 (ε-weak edge). Let e = (A, B) be any edge
in a semi-Markovian graph G = (V, E,U, H) and let P be a
model respecting G. Let Ξ(B) denote the set of parents of
B in (V ∪U) \ {A}. We say that e is ε-weak with respect to
G and P if for every setting b of B and ξ of Ξ(B), and any
two values a and a′ in the range of A, we have

−ε ≤ log
P(B = b | Ξ(B) = ξ, A = a)
P(B = b | Ξ(B) = ξ, A = a′)

≤ ε .

Now suppose that e = (A, B) ∈ E ∪ H is an ε-weak edge in
G = (V, E,U, H). We ask: given an observed distribution
P, what is the error incurred if we perform causal inference
in G′ instead of G? We answer this in:

Proposition 1.1. Consider a semi-Markovian graph G =
(V, E,U, H) and a distribution P(V,U) respecting it. Let
R = {ei = (Ai,Vi) | 1 ≤ i ≤ q} be a set of k edges in E ∪ H
such that ei is ε i-weak, with ε ··= ∑k

i=1 ε i . Suppose that
X , Y are disjoint subsets of V for which P (Y | do X ) is not
identifiable in G, but identifiable in G′ = (V, E\R,U, H \R).

Then there exists a distribution P̃(V,U) respecting G′ such
that

−ε ≤ log
P̃(V )
P(V )

≤ ε, and − ε ≤ log
P̃(Y | do X )
P(Y | do X )

≤ ε .

Note that P̃(Y | do X ) is computable (by the algorithms of
Shpitser and Pearl (2006) and Huang and Valtorta (2008))
given P̃(V ), but P(Y | do X ) is not even uniquely deter-
mined given only the observed marginal P(V ).

The proof of this proposition can be found in the attached
supplementary text.1

1.2.2 Uncertainty in the Input Distribution

Proposition 1.1 shows that there exists a distribution P̃ on
the subgraph G′ for which the intervention distribution is
both close to that of P, and also computable only from the
projection of P̃ to the observed nodes. On the other hand,
the proposition does not provide a method to produce such
a P̃ given the projection of P to the observed variables in
G (or G′). However, it does guarantee that the observed
marginals of P and P̃ are ε-close in the following sense:
Definition 1.2 (ε-close distributions). Two probability dis-
tributions P and Q on the same domain Ω are said to be
ε-close, denoted P ε∼ Q, to each other if for every ω ∈ Ω,

−ε ≤ log
P(ω)
Q(ω)

≤ ε .

We therefore want to study the effect of doing causal infer-
ence with observed marginals that are only ε-close to the
actual observed marginal. Our statistical stability question
then is the following:
Question 1. Suppose G, X,Y are such that the map
ID(G, X,Y ) exists. How sensitive is the map ID(G, X,Y ) to
uncertainties in the input P?

The standard solution concept for studying such a question
is the notion of the condition number of the map (see, e.g.,
(Bürgisser and Cucker, 2013, Overture)). We specialize
here to the so-called “componentwise condition number”.
Definition 1.3 (Condition number). Let f : Rk → R` be
an arbitrary vector valued function. The condition number
of f at a ∈ Rk , denoted κ f (a), is defined as

κ f (a) ··= lim
δ↓0

sup
a′∈Rk

Rel(a,a′)≤δ

Rel( f (a), f (a′))
Rel(a, a′)

,

where for real vectors a, a′ in the Euclidean space Rt , the

relative error Rel(a, a′) is defined as max1≤i≤t
|ai−a′i |
|ai | . The

condition number of f over a domain D, denoted as κ f
when D is clear from the context, is supa∈D κ f (a).

1A version of this paper including the supplementary text is also
available from http://www.caltech.edu/~piyushs/
docs/condition.pdf.
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Note that the condition number is a property of the function
f , and not of a particular algorithm for numerically com-
puting f . In particular, κ f (a) can informally be construed
as a derivative of the coordinate-wise logarithm of f as a
function of the coordinate-wise logarithm of a.

Armed with the definition of the condition number, we can
now further refine our earlier Question 1.

Question 2. What is the condition number of the map
ID(G, X,Y ) for a given G and subsets X,Y , provided in
the first place that this map exists?

Remark 1.1. A few remarks about the sources of errors are
in order. First, note that Proposition 1.1 already provides a
natural setting in which the “error model” used in the defini-
tion of the condition number is the right one: in the notation
of that proposition, if we computed the intervention distribu-
tions in G′ by applying the map ID(G′, X,Y ) to P instead
of P̃, the worst case relative error in the output will be lower
bounded by roughly ε · κID(G′,X,Y ) (P̃), independent of the
algorithm used for computation. However, we point out that
there is another—arguably even more natural—source of
errors that is best captured in terms of relative errors: errors
introduced due to rounding in fixed precision floating point
systems. We refer the reader to, e.g., the textbook by Bür-
gisser and Cucker (2013, Section O.3) for a formalization
of such systems.

The final type of errors that we discuss here are sampling er-
rors arising due to the finiteness of the sampling procedures
used to estimate the observed marginals that are fed as input
to the map ID. These sampling errors are more likely to be
additive (as opposed to relative) in nature. When the input
coordinates are elements of the interval [0, 1] (as is the case
in our application) an additive error of a given magnitude
ε always corresponds to a relative error that is at least as
large as ε in magnitude. Hence, upper bounds imposed on
the relative error in the output using an upper bound on the
condition number can only worsen if the error guarantees on
the input are only additive. In particular, if we show that the
condition number defined with respect to relative errors is
large, the instability of the problem with respect to additive
errors in the input also follows.

Our first result regarding statistical stability demonstrates
that the condition number can in fact be sub-exponentially
large in the size of the model.

Theorem 1.2. For every 0 < α < 1/2, there exists
an infinite sequence of semi-Markovian graphs GN =

(VN, EN,UN, HN ) with |VN | = N , and disjoint subsets SN

and TN of VN such that

κID(GN ,TN ,SN ) = Ω(exp
(
Nα) ).

The proof of this theorem appears in Section 2. We now iso-
late one important class of special cases where the condition
number is not so bad.

Proposition 1.3. Let G = (V, E,U, H) be a semi-
Markovian graph, and let X be a node in V such that it
is not possible to reach a child of X from X using only the
edges in H (with their directions ignored). Then, for any
subset S of V not containing X .

κID(G,X,S) = O(|V |).

The hypothesis of the above proposition has appeared
earlier as a sufficient condition for the identifiability of
P(S | do X ) in the early work of Tian and Pearl (2002).
While this condition is not necessary for identifiability, we
show that it carries a distinct advantage: when it holds, the
condition number of the identification function is relatively
small. The proof of Proposition 1.3 appears in Section 3.

2 ILL-CONDITIONED EXAMPLES

In this section, we prove Theorem 1.2. We begin with a
brief outline of our general strategy.

Our main object of study will be semi-Markovian models
Gk
n indexed by positive integers n and k, such that Gk

n has
Θ(nk) visible nodes, and Θ(n + k) hidden nodes. The
maximum degree of Gk

n will beΘ(k) for the observed nodes,
and Θ(n) for the hidden nodes.

Let U and V denote the hidden nodes and the observed
nodes, respectively, of Gk

n . In our construction, the variables
in both U and V will be binary valued. The crux of our proof
is a construction of two probability distributions: the first
of these, Q, will be a distribution on the states of the nodes
in U ∪ V which respects Gk

n . The second, Q̃, will be a
distribution only on the states of V , such that it is ε-close
to the marginal of Q on V . Q and Q̃ will be designed to
ensure that when k is chosen to be an appropriate function
of n, the values of a certain intervention distribution on Gk

n

computed according to Q̃ differ from the correct answer
(i.e., the one computed according to Q) by a factor of 1 ± ε ′
where ε ′ is larger then ε by a factor Ω(exp (Nα)) (for any
α < 1/2), for N = nk + n − 1, the size of Gk

n .

2.1 THE GADGET

We now define the semi-Markovian graph Gk
n formally. The

visible nodes V of the graph partition into three classes: the
“X” nodes, of which there are k − 1, the S nodes, of which
there are n, and the “Y” nodes, of which there are (n − 1)k,
arranged in n − 1 “towers” of k each (see fig. 2). Formally,
we have

V ··= {Xi | 2 ≤ i ≤ k} ∪ {Si | 1 ≤ i ≤ n}
∪
{
Yi, j | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ k

}
.

We now describe the visible edges. First, each S node is a
child of each of the Y nodes in the tower immediately to
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its left. Each Y node is a child of the Y node immediately
below it in its tower, of the S node immediately to the left
of its tower, and, if it is in the leftmost tower, of the X node
at the same “level” as itself (see fig. 2). Formally,

E ··= {
(Xi,Y1,i) | 2 ≤ i ≤ k

}

∪
{
(Si,Yi, j ) | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ k

}
∪
{
(Yi, j, Si+1) | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ k

}
∪
{
(Yi, j,Yi, j+1) | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ k − 1

}
.

Our final task is to describe the hidden nodes and variables:
the structure of these defines the C-components of the model,
and hence they will dictate the sequence of operations in the
Shpitser-Pearl algorithm for causal identification applied to
Gk
n .2 In order to make sure that the S nodes are always in the

same C-component, we stipulate an unnamed hidden vari-
able for each adjacent pair of the Si , which has both of the
elements of the pair in question as its children. In addition,
we have further (named) hidden variables {Ui | 2 ≤ i ≤ k},
such that Ui has as children all the S nodes, the nodes Xi ,
and all the X and Y nodes at “levels”strictly below i. For-
mally, the hidden edges incident on these named hidden
nodes are:

H ··=
{
(Ui, X j ) | 2 ≤ i ≤ k, 2 ≤ j ≤ i

}
∪
{
(Ui, Sj ) | 2 ≤ i ≤ k, 1 ≤ j ≤ n

}
∪ {

(Ui,Ys,t ) | 2 ≤ i ≤ k, 1 ≤ s ≤ n − 1, 1 ≤ t < i
}
.

See fig. 2 for a depiction of the gadget G4
6 . In the figure, the

named hidden variables Ui and their edges are not included
for clarity. Instead, the hyperedges depicting the hidden
variables Ui are depicted by the different shaded regions: the
lowest region includes all the visible nodes that are children
of U2, the next higher region includes all the visible nodes
that are children of U3 and the topmost region includes all
the visible nodes that are children of U4.

S1

Y1,1

S2

Y1,2X2

Y1,3X3

Y1,4X4

Y2,1

S3

Y2,2

Y2,3

Y2,4

Y3,1

S4

Y3,2

Y3,3

Y3,4

Y4,1

S5

Y4,2

Y4,3

Y4,4

Y5,1

S6

Y5,2

Y5,3

Y5,4

Figure 2: The Graph G4
6 .

2A C-component is a maximal set of visible vertices which are
reachable from each other through paths consisting only of hidden
edges (the directions of the hidden edges are ignored). See, e.g.,
Shpitser and Pearl (2006) for a discussion of the importance of
C-components to causal identification.

2.2 IDENTIFICATION ON Gk
n : THE PEEL-OFF

OPERATOR

Notation. For any set S of indices, and a symbol A, we
denote by AS the set {Ai | i ∈ S} of indexed symbols. Simi-
larly, for sets S and T of indices, we denote by AS,T the set{

Ai, j | i ∈ S, j ∈ T
}
. For integers a ≤ b, [a, b] denotes the

set of integers between a and b, inclusive. For a positive
integer a, we use [a] as a shorthand for the set [1, a]. We
also denote vectors of values by boldface fonts; in particular,
1[l] denotes a vector of length l all whose entries are 1.

Consider now the computation of the following intervention
distribution in Gk

n :

P
(
S[n] = 1[n] | do

(
X[2,k] = 1[k−1],Y[n−1],[k] = 1[(n−1)k]

))
.

(2)

The gadget is defined so as to make the Shpitser-Pearl algo-
rithm iterate a sequence of “multiplication” and “marginal-
ization” steps alternately in the computation of this distribu-
tion: our goal ultimately is to amplify errors in the multipli-
cation step, and to attempt to preserve the amplification in
the marginalization step. However, before seeing how this
can be done, we first abstract the operation of the Shpitser-
Pearl algorithm on Gk

n in terms of a peel-off operator which
clubs the alternating “multiplication” and “marginalization”
steps.

We begin by noting that the gadget Gk−1
n can be viewed as a

subgraph of the gadget Gk
n in a canonical manner by iden-

tifying the vertices present in the both the gadgets. These
“identified” vertices include all the hidden and visible ver-
tices of Gk

n except Xk , Uk and
{
Yi,k | 1 ≤ i ≤ n − 1

}
. Let

Pk
n denote the set of probability distributions on states of

the observed variables of Gk
n . We define an operator π that

acts on a distribution in Pk
n by “peeling off” the top layer

of variables and produces an object in Pk−1
n as the output.

Although the action of the operator depends upon the values
of n and k, we drop its dependence upon these parameters
for ease of notation.

Definition 2.1 (Operator π). Given a probability distribu-
tion P ∈ Pk

n the probability distribution π(P) ∈ Pk−1
n is

defined as

π(P)
(
X[2,k−1], S[n],Y[n−1],[k−1]

)

··=
∑

x

P
(
Xk = x, X[2,k−1]

)

·
n−1∏

i=1
P(Si,Yi,[k−1] | Xk = x,Y[i−1],k = 1i−1,

X[2,k−1], S[i−1],Y[i−1],[k−1])
· P(Sn | Xk = x,Y[n−1],k = 1n−1,

X[2,k−1], S[n−1],Y[n−1],[k−1]),

where x ranges over all possible values of the Xk , and 1 is
assumed to be in the range of Yi,k for all i ∈ [n − 1].
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Remark 2.1. Note that the above definition is valid only
for k ≥ 2. However, we can extend it to the case k =
1 by “ignoring” the summation over x when k = 1 (or
equivalently, by assuming that there exists a variable X1
with no incident edges).

The algorithm of Shpitser and Pearl (2006) for computing
the intervention distribution in eq. (2) then amounts to it-
erating the operator π k times on the observed distribution
P:

P
(
S[n] = 1n | do

(
X[2,k] = 1k−1,Y[n−1],[k] = 1k (n−1)

))

= πk (P)
(
S[n] = 1n

)
.

Our high level strategy is to take advantage of the multipli-
cation in the definition of π to amplify errors in each step.
Intuitively, if each factor in the product in the definition of
π(P) has an error factor of (1 + ε ), then we might expect
the error in π(P) to be of the order of (1 + Θ(n)ε ). We
might then expect such an effect to propagate through the k
levels so that the final error is of the order of (1 + Θ(nk )ε ).
However, the marginalization over x can destroy this propa-
gation effect, and we will need to be careful to get around
this. This will be done by biasing the distribution Q away
from being a uniform distribution, using the bias function
defined below (see also Remark 2.2).

2.3 THE ADVERSARIAL MODEL

Our goal now is to define a model Q on Gk
n and a “perturbed”

version Q̃ of the observed marginal Q, such that for every
observation ξ, Q and Q̃ are ε-close to each other.To show
lower bounds on the condition number of causality, we will
need to show that even when Q and Q̃ are ε-close, it is
possible to arrange matters so that (in the limit ε ↓ 0)

log
(
πk (Q̃)

(
S[n] = 1n

)

πk (Q)
(
S[n] = 1n

)
)
= log(1 + ε ) · Ω

(( n
ck

)k )
, (3)

for some positive constant c independent of n and k.

For ease of exposition, we work directly with some
marginals of the distributions Q and Q̃. We defer the con-
struction of Q and Q̃ achieving these marginals to a later
section. For further ease of notation, we denote the set of
vertices S[i] ∪ Y[i],[j] as Ai j : in terms of fig. 2, this is the set
of vertices of height up to j in the first i “towers” (if we
also consider each of the S vertices to be part of the “tower”
of Y vertices immediately to their right; see fig. 3 for an
illustration of the set A3,2). We further use Ai j = 1 as a
shorthand for the conditioning Si = 1i,Y[i−1],[k] = 1(i−1)k .
We now describe the marginals of Q required in our proof, in
terms of a bias function as defined below. Only conditional
expectations of the form described below will be required
in the recursive computation of πk (Q)

(
S[n] = 1n

)
.
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Figure 3: The Set A3,2

Definition 2.2 (Bias function). The bias function b :
{0, 1} → [0, 1] is defined as

b (x) =


3
2 x = 1,
1 x = 0.

Q(X[2,k] = ·) = 1
2k−1 ,

Q(Si = 1 | Ai−1,k = 1, X[2,k]) =
1
2
· b (X2) , for i ∈ [n],

Q(Si = 1,Yi,[j] = 1j | Ai−1,k = 1, X[2,k])

=
1

2j+1 · b
(
X j+2

)
, for i ∈ [n − 1], j ∈ [k − 2],

Q(Si = 1,Yi,[k−1] = 1k−1 | Ai−1,k = 1, X[2,k])

=
1
2k
, for i ∈ [n − 1].

After one application of π, we have the following expres-
sions for conditional expectations of the above form:

π(Q)(X[2,k−1] = ·) = 1
2k−2 ,

π(Q)(Si = 1 | Ai−1,k−1 = 1, X[2,k−1])

=
1
2
· b (X2) , for i ∈ [n],

π(Q)(Si = 1,Yi,[j] = 1j | Ai−1,k−1 = 1, X[2,k−1])

=
1

2j+1 · b
(
X j+2

)
for i ∈ [n − 1], j ∈ [k − 3],

π(Q)(Si = 1,Yi,[k−2] = 1k−2 | Ai−1,k−1 = 1, X[2,k−1])

=
1

2k−1 ·
b(0) + b(1)

2
, for i ∈ [n − 1].

This process can be continued, and we finally obtain

πk−1(Q)(Si = 1 | S[i−1] = 1i−1,Y[i−1],1 = 1i−1)

=
1
2
· b(0) + b(1)

2
=

5
8

, for i ∈ [n],

so that

πk (Q)(S[n] = 1n) =
(
5
8

)n
.
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We will now list our requirements for the conditionals of
the perturbed distribution Q̃. The construction of a Q̃ that
achieves these marginals and that is ε-close to Q can be
found in Section 2.3.1. Here, we only note that the con-
struction will be such that Q̃ will differ from Q only in the
probabilities of those observations in which all the Xi are
simultaneously equal to 1.

Q̃(X[2,k] = ·) = 1
2k−1 ,

Q̃(Si = 1 | Ai−1,k = 1, X[2,k]) =
1
2
· b (X2) , for i ∈ [n],

Q̃(Si = 1,Yi,[j] = 1j | Ai−1,k = 1, X[2,k])

=
1

2j+1 · b
(
X j+2

)
, for i ∈ [n − 1], j ∈ [k − 2],

Q̃(Si = 1,Yi,[k−1] = 1k−1 | Ai−1,k = 1, X[2,k])

=
1
2k
·


(1 + ε/2) X[2,k] = 1k−1

1 X[2,k] , 1k−1
, for i ∈ [n − 1].

We now compute the relevant iterated applications of π on
Q̃ using the above marginals.To simplify notation, define:

ν ··= (1 + ε/2).

We now compute the corresponding expressions for π(Q̃).
It will also be convenient to use the following “error-
propagator” function.

Definition 2.3 (Error propagator). Given a bias func-
tion b as defined above, the error propagator function ηb
(abbreviated to η when b is clear from the context) is
η (x) = ηb (x) ··= b(0)+xb(1)

1+x .

We are now ready to describe π(Q̃):

π(Q̃)(X[2,k−1] = ·) = 1
2k−2 ,

π(Q̃)(Si = 1 | Ai−1,k−1 = 1, X[2,k−1])

=
1
2
· b (X2) , for i ∈ [n],

π(Q̃)(Si = 1,Yi,[j] = 1j | Ai−1,k−1 = 1, X[2,k−1])

=
1

2j+1 · b
(
X j+2

)
for i ∈ [n − 1], j ∈ [k − 3],

π(Q̃)(Si = 1,Yi,[k−2] = 1k−2 | Ai−1,k−1 = 1, X[2,k−1])

=
1

2k−1 ·

η

(
νi−1

)
X[2,k−1] = 1k−2

η (1) X[2,k−1] , 1k−2
, for i ∈ [n − 1].

Note that only the last of these expressions differs from the
case of Q, and it differs only for those observations in which
all the remaining Xi nodes are set to 1. This pattern persists
for further iterates of π.

Remark 2.2. We can now make precise how the bias func-
tion allows propagation of errors through π in spite of the
marginalization step. Note that if we had no bias, i.e.,

b (x) ≡ 1, then the discrepancy from π(Q) in the last line in
the definition of π(Q̃) will not arise at all.

In order to describe the evolution of this discrepancy, we
define the quantities νl,i as ratios between the intermediate
marginals computed from Q̃ and Q respectively after l ap-
plications of ν; the formal definition of νl,i appears in fig. 4.
From the base case of Q̃ and the definition of operator π,
we then have

ν0,i = ν = (1 + ε/2), for i ∈ [n − 1]
νl,n = 1 for 0 ≤ l ≤ k − 1

νl,i =
η

(∏i−1
j=1 νl−1, j

)

η (1)
, for 1 ≤ l ≤ k − 1, i ∈ [n − 1].

Note that we have

πk (Q̃)(S[n] = 1n)
πk (Q)(S[n] = 1n)

=

n−1∏

i=1
νk−1,i, (4)

so that we only need to upper bound the νl,i appropriately.
In order to do this, we will use the following lemma:
Lemma 2.1. There exists a δ > 0 such that for x ∈ [1, 1+δ),
η(x)
η(1) ≥ x1/11. The parameter δ can be chosen to be at least
1.

Proof. The claim of the lemma is equivalent to the existence
of a positive δ such that

f (x) ··= 5x12/11 + 5x1/11 − 6x − 4 ≤ 0 for x ∈ [1, 1 + δ).

To prove the latter fact, we observe that f (1) = 0, and that
f ′(1) =

[
60
11 x1/11 + 5

11 x−10/11 − 6
]
x=1
= − 1

11 < 0. Indeed,
a direct computation shows that δ can be chosen to be 1,
since f (2) < 0 and f is convex in [1, 2). �

We will now use the above lemma to prove by induction the
following lower bound on the νl,i .
Lemma 2.2. Suppose that for 1 ≤ i ≤ n − 1 and 0 ≤ l ≤
k − 1, we have νl,i ≥ 1 and 1

11l−1

(
i−1
l

)
log ν < log 2. Then,

for such l and i, log νl,i ≥ 1
11l

(
i−1
l

)
log ν.

Proof. The base case l = 0 is true by the definition of the
νl,i . For the induction, l ≥ 1, and we start with the recursive
definition of νl,i (for i ≤ n − 1) in terms of νl−1, j :

νl,i =
1

η (1)
· η *.,

i−1∏

j=1
νl−1, j

+/-
≥ 1
η (1)

· η *.,
i−1∏

j=1
exp

(
1

11l−1

(
j − 1
l − 1

)
log ν

)+/- (5)

=
1

η (1)
· η

(
exp

(
1

11l−1

(
i − 1

l

)
log ν

))
(6)

≥ exp
(

1
11l

(
i − 1

l

)
log ν

)
, (7)
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νl,i ··=
πl (Q̃)(Si = 1,Yi,[k−l−1] = 1k−l−1 | Ai−1,k−l = 1, X[2,k−l] = 1k−l−1)
πl (Q)(Si = 1,Yi,[k−l−1] = 1k−l−1 | Ai−1,k−l = 1, X[2,k−l] = 1k−l−1)

.

Figure 4: The Quantities νl,i

where eq. (5) uses the induction hypothesis and the fact that
η is an increasing function, eq. (6) employs the elementary
combinatorial identity

∑i−1
j=1

(
j−1
l−1

)
=

(
i−1
l

)
, and eq. (7) uses

the hypotheses of the lemma to apply Lemma 2.1. �

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Substituting the bounds on the νl,i
from Lemma 2.2 in eq. (4), we get

πk (Q̃)(S[n] = 1n)
πk (Q)(S[n] = 1n)

=

n−1∏

i=1
νk−1,i (8)

≥ exp *,
log ν
11k−1

n−1∑

i=1

(
i − 1
k − 1

)+- (9)

= exp
(

log ν
11k−1

(
n − 1

k

))
(10)

≥ exp *,11 log ν
(

n − 1
11k

)k+- , (11)

where eq. (9) uses Lemma 2.2, eq. (10) is again based on
the elementary identity used in eq. (6), and eq. (11) is an

application of the standard inequality
(
a
b

)
≥

(
a
b

)b
. Now, let

k = (n − 1)α
′
/11 for α′ ∈ [0, 1), and set M ··= 11(n − 1)k.

Note that M = O(N ) where N is the number of visible
nodes in Gk

n . We then have

πk (Q̃)(S[n] = 1n)
πk (Q)(S[n] = 1n)

≥ exp
(
11 log ν exp

(
(1 − α′)Mα′/(α′+1) log(n − 1)

11

))
.

Choosing α = α′/(α′ + 1) completes the proof. �

2.3.1 Definitions of Q and Q̃

We now supply the promised definitions of Q and Q̃. We
first define Q by providing the appropriate conditional dis-
tributions of the bits at different nodes in the graph. For the
sake of brevity, we only specify the conditional distributions
which are not uniform: all the unspecified distributions are
assumed to be uniform over {0, 1}. We recall the definition
of the bias function used earlier:

Definition 2.4 (Bias function). The bias function b :
{0, 1} → [0, 1] is defined as

b (x) =


3
2 x = 1,
1 x = 0.

Q is now defined as follows:

Q(Xi = Ui | Ui) = 1, for 2 ≤ i ≤ k,
Q(Si = 1 | Yi−1,[k] = 1k,U[2,k])

=
1
2
· b (U2) for i ∈ [n],

Q(Yi, j = 1 | Si = 1,Yi, j−1 = 1,U[j+1,k])

=
1
2
·


b
(
Uj+2

)
Uj+1 = 0,

1
b(1−Uj+2) Uj+1 = 1

for i ∈ [n − 1], j ∈ [k − 2].
Q(Yi,k−1 = 1 | Si = 1,Yi,k−2 = 1,Uk )

=
1
2
· 1

b (Uk )
, for i ∈ [n − 1].

The above construction of Q leads, in particular, to the
following observed conditional distributions for Q:

Q(X[2,k] = ·) = 1
2k−1

Q(Si = 1 | Ai−1,k = 1, X[2,k])

=
1
2
· b (X2) , for i ∈ [n],

Q(Yi, j = 1 | Si = 1,Yi,[j−1] = 1j−1, Ai−1,k = 1, X[2,k])

=
1
2
·


b
(
X j+2

)
X j+1 = 0,

1
b(1−Xj+2) X j+1 = 1,

for i ∈ [n − 1], j ∈ [k − 2].
Q(Yi,k−1 = 1 | Si = 1,Yi,[k−2] = 1k−2, Ai−1,k = 1, X[2,k])

=
1
2
· 1

b (Xk )
, for i ∈ [n − 1].

The Perturbed Distribution The perturbation Q̃ of Q
used in our proof is defined in fig. 5. We only specify those
entries of Q̃ which are different from those of Q.

3 A WELL-CONDITIONED CLASS

In this section we provide a counterpoint to our main re-
sult: we exhibit a useful class of well-conditioned causal
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Q̃(X[2,k] = 1k−1, Si = 1, Ai−1,k = 1,Yi,[k−2] = 1k−2,Yi,[k−1,k] = 00,?)
Q(X[2,k] = 1k−1, Si = 1, Ai−1,k = 1,Yi,[k−2] = 1k−2,Yi,[k−1,k] = 00,?)

= (1 − ε/2), for i ∈ [n − 1],

Q̃(X[2,k] = 1k−1, Si = 1, Ai−1,k = 1,Yi,[k−2] = 1k−2,Yi,[k−1,k] = 10,?)
Q(X[2,k] = 1k−1, Si = 1, Ai−1,k = 1,Yi,[k−2] = 1k−2,Yi,[k−1,k] = 10,?)

= (1 + ε ), for i ∈ [n − 1].

Figure 5: The Perturbed Distribution Q̃

identification problems, by proving Proposition 1.3. The
proof follows almost immediately from an earlier causal
identification result of Tian and Pearl (2002).

Proof of Proposition 1.3. We restrict our attention to the
condition number of ID(G,V − {X } , X ): since P(S | do X )
can be obtained from P(V − {X } | do X ) by a marginaliza-
tion operation, an upper bound on the condition number for
P(V − {X } | do X ) is also an upper bound on the condition
number of P(S | do X ).

For a sufficiently small ε , let P̃ be a probability distribu-
tion that is ε-close to the actual empirical distribution P.
This implies, in particular, that all conditional probabilities
computed according to P̃ are 2ε-close to the true condi-
tional probabilities computed according to P. Formally, for
any disjoint subsets S and T of V , P(S = s | T = t) and
P̃(S = s | T = t) are 2ε-close: this follows from the fact
that P(S = s | T = t) = P(S = s,T = t)/P(T = t).

Let Z be the set of nodes (except X) in the same C-
component as X . Using the identifiability result of Tian
and Pearl (2002), we have

P(V−{X } = vV−{X } | do(X = x)) = P(v)
∑

x′ H (x ′)
H (x)

, (12)

where x ′ ranges over the domain of X , and H (x ′) is defined
as

H (x ′) = P(X = x ′ | An(X ) = vAn(X))

·
∏

Vi ∈Z
P(Vi = vVi | An(Vi) = vAn(vi )),

where vX = x ′. (Here, for a vertex Vi , An(Vi) is the set of
ancestors of Vi among the observed nodes V ). Since each
H is a product of at most |V | conditional probabilities, and
since conditional probabilities computed according to P and
P̃ are 2ε-close, the values of H (x ′) computed according to
P and P̃ are 2|V |ε-close. Eq. (12) then gives

e−(4 |V |+1)ε ≤ P̃(V − {X } = vV−{X } | do(X = x))
P(V − {X } = vV−{X } | do(X = x))

≤ e(4 |V |+1)ε .

for every v and x. We therefore have

κID(G,V−{X },X) ≤ lim
ε ↓0

e(4 |V |+1)ε − 1
ε

= 4|V | + 1. �

4 CONCLUSION

In this paper, we gave an example of a class of semi-
Markovian models in which the causal inference problem
is highly ill-conditioned. However, Proposition 1.3 shows
that at least some causal identification problems are not too
badly conditioned.

An immediate open question therefore is to find an algorithm
which can compute tight bounds for the condition number of
a causal identification problem in a given semi-Markovian
model. Since such an algorithm would operate only on the
model (and not on the observed data), it can serve a guide
for selecting between competing models which differ, e.g.,
in terms of which covariates are measured, before any data is
collected: all else being equal, a model in which the causal
inference problem to be solved is better conditioned and
hence less susceptible to noise should be preferable.

The roots of causal identification in graphical models can be
traced back to the setting of linear structural equation mod-
els, which were first studied in the seminal papers of Wright
(1921, 1934) (see, e.g., Drton et al. (2011), Foygel et al.
(2012) and Chen and Pearl (2014) for more recent results
on identification in linear structural equation models). Not
surprisingly, in contrast to the purely combinatorial identi-
fication procedures in the discrete case, the identification
procedures for linear structural equation models are able
to exploit the linear algebraic structure of the problem and
often use, in addition to combinatorial considerations, al-
gorithmic primitives from linear algebra and algebraic ge-
ometry as well (see e.g. Foygel et al. (2012) for an exam-
ple). Condition numbers of the primitives themselves have
been studied have been quite extensively, but exploring the
condition number of causal identification in the setting of
linear structural equation models remains open. However,
in this context, we should point out the work of Cornia and
Mooij (2014), who show that when causal effects in a linear
structural equation model are not exactly identifiable, the
uncertainty in estimating them may be unbounded, even in
models with a fixed number of nodes.
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Abstract

We develop Markov beta processes (MBP) as
a model suitable for data which can be rep-
resented by a sparse set of latent features
which evolve over time. Most time evolv-
ing nonparametric latent feature models in
the literature vary feature usage, but main-
tain a constant set of features over time. We
show that being able to model features which
themselves evolve over time results in the
MBP outperforming other beta process based
models. Our construction utilizes Poisson
process operations, which leave each trans-
formed beta process marginally beta process
distributed. This allows one to analytically
marginalize out latent beta processes, ex-
ploiting conjugacy when we couple them with
Bernoulli processes, leading to a surprisingly
elegant Gibbs MCMC scheme considering the
expressiveness of the prior. We apply the
model to the task of denoising and interpolat-
ing noisy image sequences and in predicting
time evolving gene expression data, demon-
strating superior performance to other beta
process based methods.

1 INTRODUCTION

Latent variable models provide an intuitive way
to study the structure of observed data. Pioneer-
ing examples of latent variable models are factor
analyzers [Bartholomew, 1987] and finite mixture
models [MacLachan and Peel, 2000]. Nonparametric
Bayesian priors provide an elegant solution to the
problem of inferring the number of latent features
by sampling over latent feature representations with
varying number of features a posteriori.

Griffiths and Ghahramani [2011] develop the In-

dian buffet process (IBP), a stochastic process on
features which can be thought of as a factorial analog
of the Chinese restaurant process. The IBP is a non-
parametric Bayesian prior on binary matrices with an
unbounded number of columns, which is exchangeable
over the customers (or rows). The underlying measure
which results in this exchangeability is of particular
interest. Thibaux and Jordan [2007] show that
the beta process is the underlying de Finetti mixing
distribution which generates the Indian buffet process.

The beta process (BP) can be drawn as a Pois-
son process (with a particular Lévy measure), which
opens many doors since Poisson processes have been
studied in great depth [Kingman, 1993]. In particular,
there exist operations which one can apply to a
Poisson process draw such that the resultant object
remains a draw from a Poisson process marginally.
This construction has been exploited by Lin et al.
[2010] and Chen et al. [2012] to develop dependent
Dirichlet processes and dependent normalized random
measures more generally.

In this work we apply Poisson process preserv-
ing operations to construct a Markov chain of beta
processes. Each beta process is then used as a base
measure for a sequence of Bernoulli process draws.
Sampling an entire beta process at each ‘time’ step
seems like a daunting task, however, the elegant
consequence of the Poisson process preserving opera-
tions is that each beta process in the chain actually
is marginally a draw from a beta process with an
evolved form of base measure. This fact along with
the conjugacy of the beta and Bernoulli processes
permits us to marginalize over the entire chain of beta
processes analytically.

Whilst previous attempts have been made to encode
dependencies between feature usage i.e. between the
binary matrices over multiple time steps [Williamson
et al., 2010, Foulds et al., 2011], very little work has
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been done on making features themselves evolve over
time. Not only is our model capable of modeling a
vast array of Markov dependencies amongst features,
it permits an elegant Gibbs based inference algorithm
which is efficiently able to learn structure amongst
data. A key insight is that our model permits the
analytic integration of a Dirichlet process used to
model the time evolving features, and the entire
Markov beta process chain. We believe that this is
the first instance of dependent beta process work
where such analytic integration is possible.

We utilize a Markov chain of beta processes for
image denoising and inpainting tasks as well as
for modeling time evolving gene expression data.
Sparse methods have been successfully used for image
analysis and gene data modeling. Our model, a
natural extension of the beta Bernoulli model for
time-evolving datasets, often outperforms other beta
process based models on the tasks we consider.

2 BETA AND BERNOULLI
PROCESSES

In this section, we review the beta, Bernoulli and
Indian buffet processes following Thibaux and Jordan
[2007], and proceed to discuss Poisson process prop-
erties Kingman [1993].

A beta process B ∼ BP(c,B0) is a positive ran-
dom measure on a space Ω, where c is a positive
function on Ω, and B0 is a fixed measure on Ω,
called the base measure. In our work, we assume c is
constant. When B0 is continuous, then a draw B can
be represented as B =

∑∞
k=1 pkωk, where ωk are i.i.d.

draws from B/B(Ω) and pk are independent draws
from a degenerate beta distribution with parameter
c. If B0 is discrete of the form B0 =

∑
k qkδωk , then

B =
∑
k pkδωk , with pk ∼ Beta(cqk, c(1 − qk)) inde-

pendently. When B0 is mixed discrete-continuous, B
is generated as the sum of independent contributions
from the discrete and continuous parts.

We now consider a draw X ∼ BeP(B) from a
Bernoulli process, for measure B on Ω. If B is contin-
uous, then X =

∑K
k=1 δωk , where K ∼ Poisson(B(Ω)),

and ωk are i.i.d. draws from B/B(Ω). If B is discrete
and of the form B =

∑
k pkδωk , then X =

∑
k bkδωk ,

where the bk ∼ Bernoulli(pk) independently.

Now consider the generative process B ∼ BP(c,B0)
and Xi|B ∼ BeP(B), for i = 1, ..., n. The posterior

distribution of B is

B|{Xi}i=1:n ∼ BP
(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑

i=1

Xi

)
.

The BP is the conjugate prior for BeP and we can
therefore integrate out B analytically when we con-
sider sequential draws from the beta Bernoulli process

Xn+1|{Xi}i=1:n ∼ BeP
( c

c+ n
B0 +

1

c+ n

n∑

i=1

Xi

)
.

Note that 1
c+n

∑n
i=1Xi ≡

∑
k
mn,k
c+n δωk , where ωk

represent the unique atoms selected by the first n
data points and mn,k represents how many of the
first n data points selected the kth atom. Note that
Xn+1|{Xi}i=1:n is sampled from the sum of two
contributions: one from BeP( c

c+nB0) and the other

from BeP( 1
c+n

∑n
i=1Xi). This sampling process is

equivalent to that of the Indian buffet process prior
[Griffiths and Ghahramani, 2011].

When B0 is a non-atomic measure, a draw from
a beta process B ∼ BP(c,B0) is equivalent to a
Poisson process (PP) draw with base measure ν,
where

ν(dω, dp) = cp−1(1− p)c−1dpB0(dω). (1)

The Poisson process draw will consist of points of the
form (ωk, pk) ∈ [0, 1] × Ω, which should be used to
define B =

∑
k pkδωk . Poisson process preserving op-

erations are operations one can apply to a draw from a
Poisson process such that the resultant draw remains
marginally a draw from a Poisson process, with a mod-
ified base measure. We utilize such operations to con-
struct dependent beta process, in particular, we con-
sider subsampling, point transition and superposition.
See Kingman [1993] for a review of Poisson process
properties.

3 MARKOV BETA PROCESSES

3.1 CONSTRUCTION

Given a draw from a beta process, we construct a re-
lated beta process by 1) partitioning atoms into clus-
ters, 2) applying stochastic transformations to atoms
in each cluster and 3) recombining all the atoms to
give a new atomic base measure. We shall show that
the transformed beta process draw is marginally a beta
process, by applying the theory of Poisson processes.

Definition 1. A probabilistic transition function is a
function T : Ω→ R+, such that for each ω ∈ Ω, T (ω)
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is a probability measure on Ω. A measure, µ, over Ω
is transformed by T to give measure T [µ], defined as

(T [µ])(A) :=

∫

Ω

T (ω)(A)µ(dω). (2)

for each measurable A ⊆ Ω. We denote a sample from
T (ω) as T (ω).

Our approach is to consider parameteric probabilistic
transition functions, T θ, for parameters θ from
some measurable parameter space Θ. An example
of a probabilistic transition function is a Gaussian
probability density function e.g. T θ(ω) = N (ω; 0, θ).

In order to partition the set of atoms and de-
cide how they should be transitioned, we use a draw
from a Dirichlet process, D =

∑
j λjδθj ∼ DP(α,H),

for a DP concentration parameter α and a base
measure, H, on Θ. The λj are non-negative and
sum to 1. We define the probabilistic transition
T D =

∑
j λjT θj , which we can think of as a convex

combination of probabilistic transition functions. The
probabilities, λj , are used to define a multinomial
distribution which is used to decide to which cluster
each atom would be assigned to. Once clustered,
atoms in cluster j are transitioned using T θj .

Let B0 be a base measure on Ω, and
B1 =

∑
k qkδωk ∼ BP(c,B0). For each k, sam-

ple uk ∼ Mult(1,λ), and Tθuk (ωk) ∼ T θuk
(ωk).

Finally, set B1 =
∑
k qkδTθuk (ωk). We prove that

marginally, B1 is a draw from a beta process.

Lemma 2. If B1 is constructed as above, then
marginally, B1 ∼ BP(c,T ∗[B0]) for measure T ∗[B0]
defined such that for A ⊆ Ω, T ∗[B0](A) ≡∫

(T D[B0])(A)DP(D;α,H)dD

Proof. The distribution of qk remain unchanged. Also
T D[B0](Ω) =

∑
j λjT θj [B0](Ω) = B0(Ω). Integrat-

ing over D and sk, the new location of atom k is
marginally distributed as T ∗[B0]/B0(Ω). Hence B1

is a PP draw with base measure ν̃(dω, dp) = cp−1(1−
p)c−1dpT ∗[B0](dω), making it marginally a beta pro-
cess draw.

Whilst we have not explicitly invoked theorems
regarding Poisson preserving operations, they provide
some intuition as to why the transformed beta
processes are marginally beta process draws. The
operation of clustering the atoms of the original beta
process is analogous to the Poisson process operation
of subsampling. A subsampled Poisson process is
marginally a Poisson process. Point transition is a
Poisson process preserving operation, as is the super-
position of Poisson process draws. The composition of

these three Poisson preserving operations accurately
describes the nature of our construction of dependent
beta processes. An illustration of the formulation is
seen in Figure 1.

Note that the Dirichlet process prior can be re-
placed with other priors without affecting the proof.
We choose a DP in our experiments for its modeling
flexibility.

Repeating the above approach to construct
B2, B3, ... results in a Markov chain of beta pro-
cesses. Define T t

D[B0] to be the measure resulting
in applying T D t times to measure B0. Then
marginally, Bt ∼ BP(c,T t

∗[B0]), where for A ⊆ Ω,
T t
∗[B0](A) =

∫
(T t

D[B0])(A)DP(D;α,H)dD. Hence-
forth we refer to our construction of dependent beta
processes as Markov beta processes. When B1, ..., BT
is a draw from a Markov beta process, we write
B1, ..., BT ,u1, ...,uT |D ∼ MBP(c,B0,D,T , T ).

To the best of out knowledge, our construction
of dependent beta processes is the first to leave each
transformed beta process marginally a beta process
draw. Most existing models all keep features (atoms)
constant but vary the feature probabilities qk over
time or space. We discuss the related models in the
next subsection.

3.2 RELATED DEPENDENT BETA
PROCESS CONSTRUCTIONS

In our construction of Markov dependent beta pro-
cesses, the atom locations evolve over time, whilst the
atom weights remain constant. This is in contrast to
the majority of existing constructions of dependent
beta processes. Existing research has tended to focus
on maintaining a time invariant set of atoms, whilst
varying the weights.

The Markov IBP introduced by Van Gael et al.
[2008] is a model where features remain constant
over time, but feature allocations follow a Markov
chain on the space {0, 1} (1 indicates presence of
a feature and 0 indicates absence). The transition
matrix governing the chain also remains constant over
time, suggesting that the Markov IBP would be unfit
to model non-stationary data. Most importantly,
this model does not have the ability to jointly model
multiple related time series unlike the model we
propose in this work. The authors propose several
inference schemes for the Markov IBP, but comment
that adequate performance is only observed with
more complicated algorithms.

Foulds et al. [2011] use a similar idea to the Markov
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Figure 1: Example illustrating how Bt+1 is constructed from Bt. First the atoms are partitioned or clustered
into, in this case, 3 clusters. Next, atoms undergo probabilistic point transition based on the cluster they belong
to. Finally atoms are superimposed to create Bt+1.

IBP for modeling time evolving social networks.
Their DRIFT model incorporates a Markov process
to decide whether or not features are present at each
time step whilst maintaining constant features over
time. Unlike the Markov IBP, DRIFT is able to
model an arbitrary number of items.

Williamson et al. [2010] construct dependent IBPs
using Gaussian process draws and the stick breaking
construction of the IBP [Teh et al., 2007] to introduce
dependencies between customers for each feature
as well as temporal dependencies. The dIBP has
high flexibility due to the nonparametric temporal
dependence structure, but this comes with a high
computational cost. Features also remain constant
over time in the dIBP model, unlike in our MBP
model.

The kernel beta process [Ren et al., 2011] is a
generalization of the beta process and has the form
Bx =

∑
k πkK(x, x∗|ψ)δωk , where x belongs to a

covariate space X and K is a kernel function on
X × X taking values in [0, 1] for parameters x∗ and
ψ. The use of the kernel allows weights to vary over
a covariate space, whilst the atom locations remain
fixed.

The dependent hierarchical beta process Zhou
et al. [2011] is constructed as a convex combination
of i.i.d. draws from a hierarchical beta process. The
convex weights are made to depend on a kernel over
a covariate space. More specifically, a kernel function
is defined between the covariates (each data point has
one covariate), inducing correlation of feature usage
between data points. The covariate being used is the
location of the patch within the entire image, the idea
being that neighbouring patches are more likely to use

similar dictionary elements for image denoising and
interpolation. The way it has been constructed by
the authors, it would not explicitly be able to model
temporal structure amongst image sequences.

3.3 COLLAPSED GIBBS SAMPLER

None of the models discussed above result in simple
marginal distributions, and consequently each use an
uncollapsed Gibbs sampler to perform posterior infer-
ence. Nonparametric Bayesian priors are usually easy
to sample from, but posterior inference is typically
difficult because of the flexibility of the models and
the presence of poor local optima in the posterior
conditional distributions of the latent variables.
Whilst an uncollapsed Gibbs sampler algorithms are
usually easy to implement, they are prone to get stuck
in poor modes and converge much more slowly than
collapsed samplers [Doshi-Velez and Ghahramani,
2009]. In our Markov beta processes, having marginal
beta process distributions permits a marginalized
posterior sampler which has a better chance of mixing
well and has an elegant restaurant analogy.

At each time step, t, we draw xit|Bt ∼ BeP(Bt)
iid for i = 1, ..., nt. Let Xt ≡ {xit}nti=1. We show how
to sample each xit marginalizing out the Markov beta
process chain in the following lemma and corollary.
For t > 1, we let ωjt denote a sample from (a)
T D(ωjt−1) if j ≤ kt−1, or (b) T t−1

D [B0]/B0(Ω) if
j > kt−1.

Lemma 3. For ct = c+
∑t
s=1 ns,

Bt|D, B0, X1:t ∼ BP

(
ct,

c

ct
T t−1

D [B0] +

kt∑

j=1

mj
t

ct
δωjt

)

Proof. We prove the claim by induction. Note that
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B1|D, B0 ∼ BP(c,T D[B0]) by Lemma 2. By conju-
gacy of the beta and Bernoulli processes, we then have

B1|D, B0, X1 ∼ BP
(
c1,

c
c1
T D[B0] +

∑k1
j=1

mj1
c1
δωj1

)
.

Now let t > 1. By induction and Lemma

2, Bt|D, B0, X1:t−1 ∼ BP
(
ct−1,

c
ct−1

T t−1
D [B0] +

∑kt−1

j=1

mjt−1

ct−1
δωjt

)
. The final result follows from the con-

jugacy of the beta and Bernoulli processes.

Corollary 4.

xnt+1
t |D, B0, X1:t ∼ BeP

(
c

ct
T t−1

D [B0] +

kt∑

j=1

mj
t

ct
δωjt

)

Proof. Since xnt+1
t |Bt ∼ BeP(Bt) and

p(x◦t |D, B0, X1:t) =
∫
p(x◦t |Bt)p(Bt|D, B0, X1:t)dBt,

the result follows from conjugacy and Lemma 3.

The result in Corollary 4 motivates a sampling scheme
with a restaurant analogy similar to the one developed
for the Indian buffet process [Griffiths and Ghahra-
mani, 2011]. On day t = 1, customer i1 = 1 tastes
a number of dishes sampled from Poisson(cB0(Ω)).
He tries dishes in Ω sampled independently from
probability measure B0/B0(Ω). Suppose i1 > 1 and
let mj be the number of people who have tasted
the jth dish so far. Customer i1 tries each of the

existing dishes independently with probability mj

c+i1−1 ,

and samples Poisson
(

c
c+i1−1B0(Ω)

)
new dishes. On

a new day, t > 1, each dish from the previous day
evolves stochastically using the probabilistic transition
function T D. Customer it tries each existing dish

with independent probability mj

ct−1+it−1 , and samples

Poisson
(

c
ct−1+it−1B0(Ω)

)
new dishes independently

from T t−1
D [B0]/B0(Ω).

As is the case for the IBP, dishes which are
popular are more likely to be tried over time. The
key difference in our Markov beta process framework,
is that the dishes evolve stochastically over time,
and the base distribution from which new dishes are
drawn also evolves stochastically over time.

4 TIME EVOLVING DICTIONARY
LEARNING

In this section we illustrate how a draw from a Markov
beta process prior may be used to perform time evolv-
ing dictionary learning. Each ωk ∈ Ω which appears in
a beta process draw is a dictionary element, with each
associated qk being the probability that a data point
uses ωk. We consider the case Ω = RP , and refer to
dictionary element k at time t as a column vector, dkt .

The entire dictionary at time t is a matrix denoted
Dt ≡ [d1

t , ...,d
kt
t ] ∈ RP×kt . We may model datapoint

i at time t, xit, as

xit = Dt(s
i
t ◦ zit) + εit, (3)

where ◦ represents the Hadamard product, sit, ε
i
t ∈ Rkt

and zit ∈ {0, 1}kt . zikt represents whether or not xit
uses dictionary element k and is a draw from
Bernoulli(qk). sikt determines how much of dictionary
element k to use and εit is simply additive noise.

A natural probabilistic transition function in the
case Ω = RP , is a Gaussian distribution. We set
Θ = RP+ and define T θ(d) to be a multivariate
Gaussian probability density function with mean d
and diagonal covariance matrix with diagonal θ−1.

We can generate data from t = 1, ..., T , k = 1, ..., kt
and i = 1, ..., nt as follows,

D =
∑

j

λjδθj ∼ DP(α,H), (4)

D1, ...,DT , q,u1, ...,uT−1|D ∼ MBP(c,B0,D,T , T ),

zikt |qk ∼ Bernoulli(qk),

sikt ∼ N (0, γ−1
s )

xit|Dt, s
i
t, z

i
t ∼ N

(
Dt(s

i
t ◦ zit), γ−1

ε IP
)
,

where H is a measure on Θ = RP+ which is the prod-
uct of P Gamma measures of the form Gamma(1, P )
on each component and B0 is a multivariate Gaussian
measure of the form N

(
0, 1

P I
)
. We place Gamma pri-

ors on γs and γε.

4.1 INFERENCE

We train the model based on a collapsed Gibbs
based MCMC scheme, where the probabilities qk are
marginalized out. The update equations are summa-
rized below.

Update Dt. The posterior density for dkt is

p(dkt |−) ∼ exp
(
− 1

2

P∑

p=1

θukt−1,p

(
dkt,p − dkt−1,p

)2

− 1

2

P∑

p=1

θukt ,p
(
dkt+1 − dkt

)2

− γε
2

N∑

i=1

∥∥ψi,−kt − dkt (si,kt zi,kt )
∥∥2
)
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where ψi,−kt = xit −
∑
k′ 6=k s

ik
t z

ik
t d

k
t .

Hence dkt |− ∼ N (φ,Φ), where

Φ =

(
diag

(
θukt−1

+ θukt

)
+ γε

∑

i:zi,kt =1

si,kt
2
)−1

IP

φ = Φ

(
diag

(
θukt−1

)
dkt−1 + diag

(
θukt

)
dkt+1

+ γε
∑

i:zi,kt =1

si,kt ψ
i,−k
t

)

Update ukt . The posterior density for ukt is

p(ukt = j|−) ∝ λj
P∏

p=1

[√
θj,p exp

(
− 1

2
θj,pδ

k
t,p

2
)]

where δkt,p =
(
dkt+1,p−dkt,p

)
, a multinomial distribution.

Update zi,kt . The posterior odds of zi,kt is

p(zi,kt = 1|−)

p(zi,kt = 0|−)
=

exp
(
− γε

2

∥∥ψi,−kt − si,kt dkt
∥∥2
)
πi,kt

exp
(
− γε

2

∥∥ψi,−kt

∥∥2
)

(1− πi,kt )
,

where

πi,kt =

∑T
s=1

∑ks
j=1 z

i,j
s − zi,kt

c+
∑T
s=1 ns − 1

.

Update si,kt . The posterior density for si,kt is

p(si,kt |−) ∝ exp
(
− γε

2

∥∥ψi,−kt − si,kt dkt
∥∥2 − γs

2
si,kt

2
)
,

hence si,kt ∼ N (ϕ, κ), where

κ =
(
γεd

k
t

>
dkt + γs

)−1

ϕ = κ
(
γεd

k
t

>
ψi,−kt

)
.

Update λ. The posterior distribution of λ is

p(λ|−) ∝
∏

j

λj
α+
∑T−1
s=t

∑ks
k=1 I[ukt=j]−1.

Update θj. The posterior distribution of θj is

p(θj |−) ∝ exp

(
− P

2
θj
>θj

− 1

2

T−1∑

t=1

kt∑

k=1

I[ukt = j]θj
>(δkt ◦ δkt

))
,

hence θj |− ∼ N
(
ςj ,

1
P I
)
, where

ςj =
1

2P

T−1∑

t=1

kt∑

k=1

I[ukt = j]
(
δkt ◦ δkt

)
.

5 EXPERIMENTS

In this section we describe the findings of various ex-
periments we performed using Markov beta processes
to induce a chain of evolving latent features. We in-
vestigated two tasks, the problem of denoising and in-
painting a sequence of images and time evoloving gene
expression data. First we try to answer various ques-
tions with synthetic experiments.

5.1 SYNTHETIC EXPERIMENTS

A key quesion we set out to address in this work is
‘are Markov evolving features more useful for multi-
ple sequence modeling than Markov evolving feature
probabilities?’ When there are no clear task specific
reasons to choose one approach over the other, one
would want to choose the framework that is gener-
ally more reliable to make useful predictions. Set-
ting N = 500, D = 40,K = 50, we generated Synth-
MBP from the MBP prior, and Synth-DRIFT from
the DRIFT model. The MBP, DRIFT and BP models
were trained on these datasets with 10% of the points
randomly chosen and held out for prediction. Table
1 summarizes the test mean squared errors of predici-
tons of the three models.

We initialize features using random subsets of the
observable data and use a k-means initialization for
the clustering of the feature transitions for the MBP
model. The Z and S matrices are subsequently ini-
tialized with a linear least squares estimate given the
features. The same approach is used in all subsequent
experiments.

Both the MBP and DRIFT models outperform the
BP model, suggesting that each of them are able to
learn some level of temporal structure, as we would
have liked. However, it is interesting to see that
the MBP model’s outperformance versus the DRIFT
model on Synth-MBP is much larger than the DRIFT
model’s outperformance versus the MBP model on
Synth-DRIFT. The Dirichlet process transition pro-
cess between features appears to be responsible for the
MBP’s predictive power on the DRIFT-Synth data set.
We replaced the DP with a single Gaussian transition
function for all features, and found the mean squared
errors dropped to 2.04 and 2.11 on MBP-Synth and
DRIFT-Synth respectively.

The fact that we are able to utilize a flexible DP based
transition function using a collapsed Gibbs sampler
which mixes fast is key to the high performance of the
MBP model. Inference in models with complicated
dependencies between binary feature usage variables
is more difficult. Our MBP model is useful because of
the efficient Gibbs based sampler we are able to derive
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t = 1 t = 2 t = 3 t = 4

1

(a) Synthetic data

t = 1 t = 2 t = 3 t = 4

1

(b) Time-evolving features learned by MBP

t = 1 t = 2

1

(c) DRIFT features

Figure 2: Synthetic image data experimental results. (a) Each row represents an image sequence used for the
synthetic image experiment. (b) Time-evolving features learned by the MBP model. (c) Stationary features
learned by the DRIFT model.

Table 1: Mean-squared error results of prediction on
synthetic datasets using MBP, DRIFT and BP models,
with standard deviation of multiple runs in brackets.

MBP DRIFT BP

Synth-MBP
1.03

(0.04)
2.16
(0.08)

2.84
(0.10)

Synth-DRIFT
1.66
(0.05)

1.37
(0.07)

2.45
(0.09)

for modeling expressive transitions between features.

5.2 IMAGE DENOISING AND
INPAINTING

Sequences of grayscale images were considered for this
task, but our method easily extends to color image se-
quences. The baseline model we compare our model to,
is the beta process model of Zhou et al. [2009], mod-
eling each image within the sequence independently.
We implement the Foulds et al. [2011] model to as-
sess the benefit of time-evolving feature usage ver-
sus time-evolving features and finally, we consider the
dHBP [Zhou et al., 2011], which is designed to ex-
ploit intra-image dependencies. Inference in the dIBP
[Williamson et al., 2010] unfortunately scales in N3

which is prohibitive for this task.

Consider a sequence of T images of size Qx ×Qy. We
model overlapping patches of size 8 × 8 as individual
data points, giving a total of N = (Qx− 7)× (Qy − 7)

data points, each with dimension D = 8. Whilst this
breaks the exchangeability assumption of the prior, we
benefit from model averaging, as each final pixel esti-
mate is in fact an average of the estimates of 64 patches
(except for near edge pixels).

Our first experiment involved synthetically generated
data of the form shown in Figure 2a. We formed
N = 500 sequences of images of size 12 × 12. In
each sequence, we observe shapes traverse left to right
in the top half of the images and other shapes tra-
verse right to left. We trained both the MBP and
the DRIFT models on this dataset using K = 75 fea-
tures. The MBP was able to learn interesting struc-
ture amongst features as can be seen in Figure 2b.
The model was able to identify the individual shapes
which traversed left and right across the image over
time. Since the DRIFT model uses a stationary set of
features, it tended to learn features as noisy composi-
tions of various data points 2c, not exhibiting the more
elegant structure we found amongst the MBP features.

Notice that the shapes in the synthetic sequences often
switch from frame to frame; squares become triangles,
crosses become squares, etc. The MBP model is ca-
pable of modeling these transitions because whilst fea-
ture probabilities are stationary, actual feature usage
between time points is conditionally independent given
the feature probabilies. (More succinctly, ztik ⊥⊥ zt

′
ik|πk

for t 6= t′.) On average, the DP transition function
of the MBP model used 16 clusters for the synthetic
image data. This was somewhat crucial in being able
to learn the time-evolving features we see in Figure 2b.
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(a) (b) (c) (d)

Figure 3: Image sequence experiment on horse data. (a) Image 6 of the sequence. (b) Image with 50% of pixels
omitted at random with pixels corrupted with Gaussian noise. Zoomed reconstructions of (c) MBP and (d)
dHBP models.

We ran an experiment restricting the MBP model to
have a single transition function, and noticed that the
model learned features more similar to those learned
by the DRIFT model.

We test the methods on four black and white image
sequences: (i) 8 frames of size 241×241 of a lady riding
a horse in a field [Ochs et al., 2014], (ii) 8 frames of
size 192 × 256 with a set of mountains being panned
about a fixed axis [Porzi et al., 2014], (iii) 8 frames of
size 120× 216 of a rabbit leaping across a living room
[Ochs et al., 2014], and (iv) 10 frames of size 60 × 64
of a hand holding a bowl and rotating it [Wang, 1997].

Pixels in these datasets take integer values in [0, 255].
We added Gaussian noise with standard deviation 15
independently to each pixel. For each image sequence,
we sample a binary matrix, Σ, of size Qx ×Qy, where
each entry is an independent Bernoulli sample. Σ in-
dicates which pixels are used for training by each al-
gorithm for each image sequence. A typical evaluation
metric for image reconstruction is the peak signal-to-
noise ratio (PSNR), defined as

MSE =
T∑

t=1

Qx∑

qx=1

Qy∑

qy=1

(
Πt(qx, qy)− Π̂t(qx, qy)

)2

TQxQy

PSNR = 10 log10

(
2552

MSE

)
, (5)

where Πt is the original Qx ×Qy image at time t and

Π̂t is the estimate of this image. We allow the samplers
to burn-in for 2000 iterations, and then use 500 Gibbs
samples for predictions, using K = 250 features.

The experiments on each set of image sequences were
repeated using 20%, 30% and 50% of the pixels chosen
uniformly at random for training, the results are sum-
marized in Table 2. The MBP approach tends to out-
perform other methods consistently, in particular the
DRIFT model which does encode time evolving fea-

ture usage. The dHBP model, designed particularly
for the task of image denoising and inpainting does
well on most sequence tasks without modeling tempo-
ral dependencies, but on the whole does not perform
as well as the MBP. The MBP does not model the
intra-image dependencies, and we believe that com-
bining the temporal modeling of the MBP with the
intra-image dependencies of the dHBP would lead to
a highly sophisticated image sequence denoising and
inpainting framework. Since our focus in this paper is
on the MBP model and not the specific task of image
sequence analysis, we leave the combined model idea
to future work.

Figure 3 illustrates a situation where the dHBP per-
forms worse than the MBP. The dHBP model uses
patches which are close in Euclidean distances to use
similar sets of features. A consequence of this prop-
erty, is that the area of the image under the body of
the horse, appears to have a uniform color. This is
likely because the bottom section of the horse body
also has uniform color. Conversely the MBP model
is better able to learn features which are separate for
the horse body and the background grass, leading to
a clearer reconstruction. The tail in the dHBP recon-
struction also exhibits more smoothing and less detail
than that of the MBP.

5.3 GENE EXPRESSION DATA

Time-course gene expression data are often mea-
sured to study dynamic biological systems and gene-
regulatory networks. Vast amounts of biological data
are being collected as technology in the field advances.
This is a setting where the number of time points may
be small, but the dimension of the data is large (po-
tentially of the order of 10s of 1000s). Sparse methods
have been successful in modeling genetic data [Car-
valho et al., 2008, Knowles and Ghahramani, 2011],
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Table 2: Results of gray-scale image sequence denois-
ing and interpolation (PSNR) for BP, dHBP, DRIFT
and MBP, using patch size 8 × 8, varying the ratio
of observed pixels. Image pixels have Gaussian white
noise (standard deviation 15).

Ratio Horse
Moun-
tains

Rabbit Hand

20%

BP 25.32 27.68 24.46 30.22

dHBP 26.21 28.91 25.43 31.58

DRIFT 26.04 28.23 24.85 30.74

MBP 26.81 29.09 25.61 31.62

30%

BP 26.58 28.85 25.52 31.43

dHBP 27.09 29.78 26.03 32.56

DRIFT 27.02 29.34 25.94 31.96

MBP 27.47 29.94 26.54 32.51

50%

BP 27.45 29.95 26.38 32.64

dHBP 28.09 30.55 26.84 33.28

DRIFT 28.14 30.50 26.82 33.19

MBP 28.38 30.66 26.92 33.22

and subsequently, using the MBP to model time-
evolving gene data seems an appropriate extension.
Comparisons between the MBP, DRIFT, BP and dIBP
models are made. We consider 2 datasets, discarding
2000 samples to allow the Markov chains to burn-in
and using the following 500 samples for prediction, and
using K = 500 features.

Yeast cell cycle Spellman et al. [1998] measured
the genome-wide mRNA levels for 6108 genes during
2 cell cycles over T = 17 time points. We consider
N = 2 strands, cdc15 and cdc28 and randomly pick
D = 1000 genes randomly from the ones which have
no missing data.

Transcriptome alterations in mice This dataset,
collected by Piechota et al. [2010], consists of readings
from 46632 proteins collected from mice brains under
the infuence of 1 of N = 8 types of drugs over T = 4
time points. We select a random subset of D = 1000
proteins for our experiments.

In each of the experiments we hold out 15% of the
data points uniformly at random for prediction. Re-
sults of the experiments on the 2 gene data sets are
summarized in Table 3. The dIBP performs best on
the yeast cell cycle data set, as the Gaussian process
draws controlling feature usage over time are best able
to pick up the periodic nature of the cell cycle sequence
data. However, the MBP is not far off the accuracy of
the dIBP here. The MBP outperforms other methods
on the mice transcriptome data set, which has fewer
time points. The DP in the MBP inference proce-

Table 3: Mean-squared error results of prediction on
gene datasets using MBP, DRIFT, BP and dIBP.

MBP DRIFT BP dIBP

Yeast 0.92 1.06 1.63 0.88
Mice 1.12 1.42 1.67 1.28

dure used an average of 82 transition functions after
burn-in. Note that the total number of transitions is
K × (T − 1) = 1500, and hence 82 clusters is per-
fectly reasonable. In the yeast cell cycle task, we have
K × (T − 1) = 8000 feature transitions, which is very
large, and illustrates to some extent the requirement
for highly flexible mixture model of transition func-
tions, such as the Dirichlet process mixture we employ.

6 CONCLUSIONS

In this work, we construct a Markov chain of beta
processes for use as a model for learning time evolving
sparse latent representations. Particularly we exploit
the property that the beta process is a type of Pois-
son process. This enables us to invoke well known
operations, which when applied to a Poisson process
draw keep the object marginally Poisson process dis-
tributed. Having marginal beta process objects cru-
cially allows us to develop a simple and fast mixing
Gibbs sampler. To illustrate the power of our model
and inference scheme, we considered image denoising
and inpainting tasks and gene expression data, show-
ing superior performance over other beta process re-
lated models. The high flexibility of our model leads to
a potential drawback when modelling long time series.
Inference may become prohibitively slow as the time
series are made longer, and to compromise, it may be
necessary to replace the DP based transition function
with a small fixed mixture of Gaussians.

Most machine learning problems involve constructing
an appropriate model and then developing an infer-
ence scheme to train the model and use it for predic-
tion. Whilst Bayesian nonparametrics make it simple
to write down a model, the inference often requires
a complicated and slow procedure which significantly
can reduce its applicability to real problems. We hope
is that our exploitation of Poisson process preserving
operations and conjugacy encourages further investi-
gation in how one can develop flexible nonparametric
Bayesian models which are amenable to elegant in-
ference techniques, by exploiting interesting and well
grounded mathematical concepts.
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Abstract

Anomaly detection is a fundamental problem for
which a wide variety of algorithms have been
developed. However, compared to supervised
learning, there has been very little work aimed at
understanding the sample complexity of anomaly
detection. In this paper, we take a step in this di-
rection by introducing a Probably Approximately
Correct (PAC) framework for anomaly detection
based on the identification of rare patterns. In
analogy with the PAC framework for supervised
learning, we develop sample complexity results
that relate the complexity of the pattern space
to the data requirements needed for PAC guaran-
tees. We instantiate the general result for a num-
ber of pattern spaces, some of which are implicit
in current state-of-the-art anomaly detectors. Fi-
nally, we design a new simple anomaly detection
algorithm motivated by our analysis and show
experimentally on several benchmark problems
that it is competitive with a state-of-the-art de-
tector using the same pattern space.

1 INTRODUCTION

The problem of (unsupervised) anomaly detection is to
identify anomalies in (unlabeled) data, where an anomaly
is a data point that is generated by a process that is distinct
from the process that generates “normal” points. This prob-
lem arises in a large number of applications, from security
to data cleaning, and there have been many approaches pro-
posed in the literature [4, 8]. While most applications seek
to identify semantically-interesting anomalies, it is typi-
cally not possible to predefine a functional notion of seman-
tic interestingness. Instead, the vast majority of anomaly
detectors use a surrogate measure of interestingness. For
example, a point may be interesting if it is a statistical out-
lier or if it is far away from other data points. The per-
formance of a given detector in a domain depends on how

well it can optimize the statistical measure and on how well
that measure aligns with the behavior of anomalies in the
application domain.

For moderately high-dimensional data, all data points be-
come far apart from each other, so they are all statisti-
cal outliers in a sense. This suggests that anomaly de-
tection by identifying outliers or distant points should per-
form poorly and degrade to random selection as the dimen-
sionality grows. Empirical results, however, have shown
that state-of-the-art anomaly detectors often perform quite
well [7] even for high-dimensional data. Further, these de-
tectors tend to reach their peak performance with a rel-
atively small amount of training data compared to what
might be expected based on the dimensionality. The pri-
mary goal of this paper is to move toward an understand-
ing of these empirical observations by analyzing the sample
complexity of a certain class of anomaly detectors.

The sample complexity of supervised learning has been
widely studied and is quite well understood via the frame-
work of Probably Approximately Correct (PAC) learning.
However, this is not the case for anomaly detection, where
virtually all published work has focused on algorithms with
good empirical performance (with additional attention to
computational speed, especially on big data sets). A key
step in the development of PAC learning theory was to for-
malize the notion of a hypothesis space and to quantify the
relationship between the complexity of this space and the
amount of training data required to identify a good hypoth-
esis in the space. In this paper, we follow a similar ap-
proach. Our framework is motivated by the observation
that many state-of-the-art anomaly detectors can be viewed
as monitoring the probabilities of certain “patterns” in the
data, where a “pattern” is a subset (typically closed and
compact) of the feature space. Outliers are then identified
based on measures of those probabilities, where points are
ranked as more anomalous if they satisfy lower-probability
patterns. For example, the highly-competitive anomaly
detection algorithm, Isolation Forest [10], finds outliers
by monitoring probabilities in the pattern space of axis-
aligned hyper-rectangles. Section 5 provides additional ex-
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amples of the pattern spaces underlying a number of other
state-of-the-art detectors. In our analysis, a “pattern” will
play the same role as a “hypothesis” in PAC learning, and
the pattern space complexity will determine the number of
training examples required for high accuracy.

A second key step in the development of PAC theory was to
relax the goal of finding the best possible hypothesis. Simi-
larly, we will introduce an error parameter ε that determines
how accurately the algorithm must estimate the probabili-
ties of the patterns in the pattern space. We will then show
that the required sample size scales polynomially in 1/ε (as
well as in several other parameters).

We call our formulation Rare Pattern Anomaly Detection
(RPAD), and an algorithm that provides PAC guarantees
will be referred to as a PAC-RPAD algorithm. We prove
sample complexity results for any algorithm within the
RPAD framework. The framework captures the qualita-
tive essence of many anomaly detection algorithms. Note
that we focus exclusively on sample complexity. Experi-
ence with the supervised PAC analysis has shown that sam-
ple complexity results often give more insight than com-
putational complexity results. Indeed, many computational
problems in PAC learning are NP-Hard and yet practical
approximate algorithms are known. Similarly, we expect
that some of the computational PAC-RPAD problems will
also be NP-Hard, but existing algorithms, such as Isolation
Forest, already provide practical approximate solutions.

Prior work on one-class SVMs [12] and learning minimum
volume sets [13] have also provided sample complexity
analysis relevant to anomaly detection. These approaches,
however, are fundamentally different than RPAD-style ap-
proaches. In particular, these approaches focus on find-
ing a common region/pattern in the input space that cap-
ture the normal points. In contrast, our RPAD frame-
work is based on finding rare regions/patterns for directly
extracting anomaly characteristics. Anomaly detection
benchmarking studies [7] have shown that RPAD-style ap-
proaches tend to significantly outperform “common pat-
tern” approaches such as one-class SVM. Our work is the
first to analyze the sample complexity of the former ap-
proach.

The main contributions of this paper are as follows. First,
we present a formal framework for RPAD (Section 2),
which leads to the definition of PAC-RPAD (Section 3).
Second, we specify a simple generic algorithm, RAREPAT-
TERNDETECT, based on finding rare patterns. We derive
sample complexity results for both finite pattern spaces
and uncountable spaces of bounded complexity (Section 4).
Third, we give a number of applications of the theory to
pattern spaces that underly a number of state-of-the-art
anomaly detection algorithms (Section 5). This, in part,
helps explain why such algorithms consistently perform
much better than random in high-dimensional data. Fourth,

we measure learning curves on several benchmarks and for
pattern spaces of varying complexity for RAREPATTERN-
DETECT and another state-of-the-art anomaly detector over
the same spaces (Section 6). The results show that the
RPAD-based algorithm can be competitive with the state-
of-the-art and that the detectors’ performances converge for
surprisingly small training sets.

2 RARE PATTERN ANOMALY
DETECTION

We consider anomaly detection over a space of possible
data points X ⊆ Rd, which may be finite or infinite. Data
from this space is generated according to an unknown prob-
ability density function P over X . A common assump-
tion in anomaly detection is that P is a mixture of a nor-
mal component, which generates normal data points, and
an anomaly component, which generates anomalous data
points. Further, it is typically assumed that there is a much
higher probability of generating normal data than anoma-
lies. This set of assumptions motivates one approach to
anomaly detection, which we call Anomaly Detection via
Outlier Detection. The idea is to estimate, for each query
point x, the density P(x) based on an (unlabeled) training
sample of the data and assign an anomaly score to x pro-
portional to − logP(x), the “surprise” of x.

There are many problems with this approach. First, the
probability density may not be smooth in the neighborhood
of x, so thatP(x) could be very large and yet be surrounded
by a region of low or zero density (or vice versa). Second,
even under smoothness assumptions, density estimation is
very difficult. For example, the integrated squared error
of kernel density estimation in d-dimensional space (for a
second-order kernel, such as a Gaussian kernel) converges
to zero at a rate of O(N−4/(4+d)) [14]. It follows that the
sample size N required to achieve a target accuracy grows
exponentially in the dimension d.

In this paper, we consider an alternative anomaly detection
framework, which we will refer to as Rare Pattern Anomaly
Detection (RPAD). Informally, the main idea is to judge a
point as anomalous if it exhibits a property, or pattern, that
is rarely exhibited in data generated by P . For example,
in a computer security application, a detector may monitor
various behavior patterns associated with processes access-
ing files. A process that exhibits an access behavior pattern
that has been rarely seen would be considered anomalous.
One attractive feature of the RPAD framework is that the
notion of anomaly is grounded in the estimation of pattern
probabilities, rather than point densities. Pattern probabil-
ity estimation is quite well understood compared to den-
sity estimation. A second attractive feature of the RPAD
framework is that each detected anomaly comes with an
explanation of why it was considered anomalous. Specif-
ically, the explanation can report the rare patterns that the
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anomaly satisfies. Explanation methods have been devel-
oped for density-estimation approaches (e.g. [15]), but they
are less directly tied to the anomaly detection criterion.

Formally, a pattern h is a binary function over X . A pat-
tern spaceH is a set of patterns, which may be finite or infi-
nite. As an example, if X is a finite space of n-dimensional
bit vectors, a corresponding finite pattern space could be
all conjunctions of length up to k. As another exam-
ple, let X = [0, 1]n, the n-dimensional unit cube, and
consider the uncountable pattern space of all axis-aligned
k-dimensional hyper-rectangles in this cube. In this case,
each pattern h is a hyper-rectangle, such that h(x) is true if
x falls inside it. The choice of pattern space is an impor-
tant consideration in the RPAD framework, since, in large
part, this choice controls the semantic types of anomalies
that will be detected.

Each pattern h ∈ H has a probability P (h) =
Pr ({x : h(x) = 1}) of being satisfied by data points gen-
erated according to P . It will be useful to specify the set
of all patterns in H that a point x satisfies, which we will
denote by H[x] = {h ∈ H : h(x) = 1}. One approach
to RPAD is to declare x to be anomalous if there is a pat-
tern h ∈ H[x], such that P (h) ≤ τ . This approach is
sensible when all patterns are approximately of the same
“complexity”. However, when H contains a mix of sim-
ple and complex patterns, this approach can be problem-
atic. In particular, more complex patterns are inherently
less likely to be satisfied by data points than simpler pat-
terns, which makes choosing a single threshold τ difficult.
For this reason, we introduced the normalized pattern prob-
ability f(h) = P (h)/U(h), where U(h) is the probabil-
ity of h being satisfied according to a reference density U
over X . When X is bounded, we typically take U to be
a uniform density function. Thus, a small value of f(h)
indicates that under P , h is significantly more rare than it
would be by chance, which provides a better-calibrated no-
tion of rareness compared to only considering P(h). If X
is unbounded, then an appropriate maximum entropy dis-
tribution (e.g., Gaussian) can be chosen.

We can now define the notion of anomaly under the RPAD
framework. We say that a pattern h is τ -rare if f(h) ≤ τ ,
where τ is a detection threshold specified by the user. A
data point x is a τ -outlier if there exists a τ -rare h in H[x]
and otherwise x is said to be τ -common. Given τ and a
stream of data drawn from P , an optimal detector within
the RPAD framework should detect all τ -outlier points and
reject all τ -common points. That is, we want to detect any
point that satisfies a τ -rare pattern and otherwise reject. An
anomaly detector will make its decisions based on some fi-
nite amount of sampled data, and we expect that the perfor-
mance should improve as the amount of data grows. Fur-
ther, in analogy to supervised learning, we would expect
that the amount of data required to achieve a certain level
of performance should increase as the complexity of the

pattern space increases. We now introduce a formal frame-
work for making these intuitions more precise.

3 PROBABLY APPROXIMATELY
CORRECT FRAMEWORK

To address the sample complexity of RPAD, we consider
a learning protocol that makes the notion of training data
explicit. The protocol first draws a training data set D of
N i.i.d. data points from P . An anomaly detector is pro-
vided with D along with a test instance x that may or may
not be drawn from P . The anomaly detector then outputs
“detect” if the instance is considered to be an anomaly or
“reject” otherwise. Note that the output of a detector is a
random variable due to the randomness of D and any ran-
domization in the algorithm itself. This protocol models a
common use case in many applications of anomaly detec-
tion. For example, in a computer security application, data
from normal system operation will typically be collected
and provided to an anomaly detector before it is activated.

The ideal correctness criterion requires that the test in-
stance x be detected if it is a τ -outlier and rejected other-
wise. However, as we discussed above, this notion of cor-
rectness is too strict for the purpose of sample complexity
analysis. In particular, such a criterion requires distinguish-
ing between pattern probabilities that fall arbitrarily close
to each side of the detection threshold τ , which can require
arbitrarily large training samples. For this reason, we relax
the correctness criterion by introducing a tolerance param-
eter ε > 0. The detector is said to be approximately correct
at level ε if it detects all τ -rare points and rejects all (τ+ε)-
common points. For test points that are neither τ -rare nor
(τ + ε)-common, the detector output can be arbitrary. The
value of ε controls the false positive rate of the detector,
where smaller values of ε will result in fewer false posi-
tives relative to the detection threshold.

We now define the PAC learning objective for RPAD. A
detection algorithm will be considered PAC-RPAD if with
high-probability over draws of the training data it produces
an approximately correct output for any x ∈ X .

Definition 1. (PAC-RPAD) LetA be a detection algorithm
over pattern space H with input parameters 0 < δ < 1,
0 < τ , 0 < ε, and the ability to draw a training setD of any
size N from P . A is a PAC-RPAD algorithm if for any P
and any τ , with probability at least 1−δ (over draws ofD),
A detects all τ -outliers and rejects all (τ + ε)-commons.

The sample complexity of a PAC-RPAD algorithm forH is
a function of the inputsN(δ, ε) that specifies the number of
training examples to draw. We expect that the sample com-
plexity will increase as the complexity of H increase, as
the dimensionality d of points increases, and as the fail-
ure probability δ decreases. Further, we expect that the
sample complexity will increase for smaller values of the
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tolerance parameter ε, since this controls the difficultly of
distinguishing between τ -rare and (τ + ε)-common data
points. Accordingly we say that a PAC-RPAD algorithm is
sample efficient if its sample complexity is polynomial in
d, 1

δ , and 1
ε .

4 FINITE SAMPLE COMPLEXITY OF
RPAD

We now consider a very simple algorithm, called
RAREPATTERNDETECT, which will be shown to be a sam-
ple efficient PAC-RPAD algorithm for bounded complexity
pattern spaces. The algorithm is given in Table 1 and first
draws a training set D of size N(δ, ε). Here N(δ, ε) will
depend on the pattern space complexity and will be speci-
fied later in this section. The training set is used to estimate
the normalized pattern probabilities given by

f̂(h) =
1

|D| · U(h)
|{x ∈ D : h(x) = 1}|.

Here, we assume that U(h) can be computed analytically
or at least closely approximated. For example, when U is
uniform over a bounded space, U(h) is proportional to the
volume of h.

After drawing the training set, RAREPATTERNDETECT
specifies a decision rule that detects any x as anomalous if
and only if it satisfies a pattern with estimated frequency
less than or equal τ + ε/2. This test is done using the
subroutine HASRAREPATTERN(x,D,H, µ), which returns
true if there exists a pattern h in H[x] such that f̂(h) ≤ µ.
For the purposes of sample complexity analysis, we will
assume an oracle for HASRAREPATTERN. For sufficiently
complex pattern spaces, the problem addressed by HAS-
RAREPATTERN will be computational hard. Thus, in prac-
tice, a heuristic approximation will be needed, for example,
based on techniques developed in the rare pattern mining
literature. In practice, we are often interested in having
an anomaly detector return an anomaly ranking over mul-
tiple test data points. In this case, the algorithm can rank
a data point x based on a score equal to the minimum nor-
malized frequency of any pattern that it satisfies, that is,
score(x) = min{f̂(h) : h ∈ H[x]}. It remains to spec-
ify N(δ, ε) in order to ensure that RAREPATTERNDETECT
is PAC-RPAD. Below we do this for two cases: 1) finite
pattern spaces, and 2) pattern spaces with bounded VC-
dimension. Later, in Section 5 we will instantiate these
results for specific pattern spaces that underly several ex-
isting anomaly detection algorithms.

4.1 SAMPLE COMPLEXITY FOR FINITEH

For finite pattern spaces, it is relatively straightforward
to show that as long as log |H| is polynomial in d then
RAREPATTERNDETECT is a sample efficient PAC-RPAD
algorithm.

Table 1: RAREPATTERNDETECT Algorithm

Input: δ, τ , ε

1. Draw a training setD ofN(δ, ε) instances fromP .

2. Decision Rule for any x:
If HASRAREPATTERN(x,D,H, τ + ε/2) then re-
turn “detect”, otherwise return “reject”.

HASRAREPATTERN(x,D,H, µ)

:= {h ∈ H[x] : f̂(h) ≤ µ} 6= ∅

Theorem 1. For any finite pattern space H, RAREPAT-
TERNDETECT is PAC-RPAD with sample complexity
N(δ, ε) = O

(
1
ε2

(
log |H|+ log 1

δ

))
.

Proof. Suppose, X is a Bernoulli random variable with pa-
rameter P (h) for a pattern h, i.e., E[X] = P (h). Let,
Y = X

U(h) , hence, Y is a random variable with E[Y ] =
E[X]
U(h) = P (h)

U(h) = f(h). We also observe that the maximum
value of Y is 1

U(h) . Given N samples x1, x2, ..., xN , each

xi ∼ P , we estimate f̂(h) = 1
N

∑N
i=1

I[xi∈h]
U(h) . We seek

a confidence interval [L(h), R(h)] for f(h) that is narrow
enough that it does not simultaneously contain both τ and
τ + ε. The reason is that if L(h) > τ , then with prob-
ability 1 − δ, f(h) > τ , so h is not a τ -rare pattern. If
R(h) < τ + ε, then with probability 1− δ, h is not a τ + ε-
common pattern, so it is safe to treat it as τ -rare. Hence,
the confidence interval should be [f̂(h)− ε/2, f̂(h) + ε/2],
and its “half width” is ε/2. So, we want to bound (by δ)
the probability that f̂(h) is more than ε

2 away from its true
value f(h). Now, using the Hoeffding bound we have

P
(
|EP [f̂(h)]− f̂(h)| > ε

2

)

⇐⇒ P

(∣∣∣∣∣f(h)− 1

N

N∑

i=1

I[xi ∈ h]

U(h)

∣∣∣∣∣ >
ε

2

)

≤ 2 exp

(
−ε

2

2
U(h)2N

)
.

Since H is finite, we can bound the above probability for
all h ∈ H using the union bound: 2|H| exp

(
− ε22 U2

minN
)

,
where, Umin = minh∈H U(h). We want this quantity to be
less or equal to δ:

2|H| exp

(
−ε

2

2
U2
minN

)
≤ δ

=⇒ N ≥ 2

ε2
1

U2
min

log
2|H|
δ

.

Hence, the sample complexity isO
(

1
ε2

(
log |H|+ log 1

δ

))
.
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4.2 SAMPLE COMPLEXITY FOR INFINITEH

When the sample space X is continuous, it is typically the
case that the corresponding pattern space will be infinite
and hence not covered by the above result. As is standard
in supervised learning, we will characterize the complex-
ity of infinite pattern spaces via the VC-dimension [17],
which we denote by VH. The VC-dimension of H is equal
to the maximum number of points that can be shattered by
patterns in H. Here a set of points D is shattered by H
if for any subset D′ of D there is an h ∈ H such that
h(x) = 1 for all x ∈ D′ and h(x) = 0 for all x ∈ D −D′.
That is, patterns in H can be used to define all possible bi-
partitions of D. For many interesting pattern spaces, the
VC-dimension scales polynomially with the data dimen-
sion d. The following result exploits this property by show-
ing that if a space has VC-dimension that is polynomial in
d, then the space is sample-efficient learnable in the PAC-
RPAD model.
Theorem 2. For any pattern space H with finite VC-
dimension VH, RAREPATTERNDETECT is PAC-RPAD with
sample complexity N(δ, ε) = O

(
1
ε2

(
VH log 1

ε2 + log 1
δ

))
.

Proof. When the pattern space H is in-
finite, we want to bound the probability
P
(

suph∈H |f̂(h)− f(h)| > ε
2

)
, which can be achieved

by bounding P
(

suph∈H |P̂ (h)− P (h)| > ε
2Umin

)
,

where, P̂ (h) is an estimate of P (h) based on sampled data.

Let, εf = ε
2Umin. Using the VC uniform convergence

bound on frequency estimates [6, Thm. 12.5] we have

P

(
sup
h∈H
|P̂ (h)− P (h)| > εf

)
≤ 8SH(N)e−Nε

2
f/32. (1)

where, P̂ (h) is an estimate based on N i.i.d. samples
from P and SH(N) is the Shatter Coefficient, which is the
largest number of subsets that can be formed by intersect-
ing some set of N points with patterns fromH.

Now, for any N > 2VH, we can bound the Shatter Coeffi-
cient as: SH(N) < ( eNVH )VH [6, Thm. 13.3]. Hence, from
Equation 1 we have

P

(
sup
h∈H
|P̂ (h)− P (h)| > εf

)
< 8(

eN

VH
)VHe−Nε

2
f/32. (2)

We want to bound this probability by δ, which yields

N ≥ 32

ε2f

(
VH log(N) + VH log

e

VH
+ log

8

δ

)
. (3)

Using the fact that log(N) ≤ αN − log(α)− 1, where,

N,α > 0 and setting α =
ε2f

64VH , we get

32VH
ε2f

log(N) ≤ 32VH
ε2f

(
ε2f

64VH
N − log

ε2f
64VH

− 1

)

=
N

2
+

32VH
ε2f

log
64VH
ε2fe

. (4)

Applying results from Equation 4 into Equation 3 and sub-
stituting the original value of εf we prove the Theorem 2:

N ≥ 256

ε2
1

U2
min

(
VH log

(
256

ε2
1

U2
min

)
+ log

8

δ

)
.

5 APPLICATION TO SPECIFIC
PATTERN SPACES

Most state-of-the-art anomaly detectors assign an anomaly
score to data points and then detect points based on a score
threshold or present a ranked list to the user. Further,
while not usually explained explicitly, the scores are often
based on frequency estimates of patterns in some space H
with rare patterns leading to higher anomaly scores. While
RAREPATTERNDETECT was designed as a pure implemen-
tation of this principle, it is reasonable to expect that its
sample complexity is related qualitatively to the sample
complexity of other algorithms grounded in pattern fre-
quency estimation.

In this section, we consider a number of pattern spaces un-
derlying existing algorithms and show that the sample com-
plexity of those spaces is small. The spaces are thus all
learnable in the PAC-RPAD framework, which offers some
insight into why existing algorithms often show strong per-
formance even in high-dimensional spaces.

5.1 CONJUNCTIONS

Consider a space X over d Boolean attributes and a pat-
tern space H corresponding to conjunctions of those at-
tributes. This setup is common in the data mining litera-
ture, where each boolean attribute corresponds to an “item”
and a conjunction corresponds to an “item set”, which in-
dicates which items are in the set. Rare pattern mining has
been studied for such spaces and applied to anomaly detec-
tion [1, 16]. In this case, the pattern space has a finite size
2d and thus by Theorem 1 is efficiently PAC-RPAD learn-
able with sample complexity O

(
1
ε2

(
d+ log 1

δ

))
. If we

limit attention to conjunctions of at most k attributes, then
the sample complexity drops to O

(
1
ε2

(
k log(d) + log 1

δ

))
,

which is sub-linear in d.

5.2 HALFSPACES

Given a continuous space X ⊆ <d, a half space pattern
is an oriented d-dimensional hyperplane. A data point sat-
isfies a half space pattern if it is on the positive side of the
hyperplane. The half-space mass algorithm [5] for anomaly
detection operates in this pattern space. Roughly speaking,
the algorithm assigns a score to a point x based on the fre-
quency estimates of random half spaces that contain x. The
VC-dimension of d-dimensional half spaces is well known
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to be d + 1 and hence this space is sample-efficient learn-
able in the PAC-RPAD model.

5.3 AXIS ALIGNED HYPER RECTANGLES

For a continuous space X ⊆ <d, an axis-aligned hyper
rectangle (bounded or unbounded) can be specified as a
conjunction of threshold tests on a subset of the dimen-
sions. The pattern space of axis-aligned rectangles are of-
ten implicit in decision tree algorithms, where each internal
tree node specifies one threshold test.

The state-of-the-art anomaly detection algorithms, Isola-
tion Forest [10] and RS-Forest [18] (among others), are
based on this space. The core idea of these algorithms is to
build a forest of T random decision trees, where each node
specifies a random threshold test. The trees are grown until
either a maximum depth is reached or a leaf node contains
only a single data point. Each leaf corresponds to an axis-
aligned hyper rectangle. Given a point x, the algorithm can
compute the leaf node it reaches in each tree, yielding a
set of T hyper-rectangle patterns. The score for x is then
based on the average score assigned to each pattern, which
is related to the pattern frequency, dimension, and volume.

The VC-dimension of the space of axis parallel hyper rect-
angles in <d is 2d [3]. Thus, the pattern space underlying
Isolation Forest and RS-Forest is sample-efficient learnable
in the PAC-RPAD model.

5.4 STRIPES

A stripe pattern in <d can be thought of as an intersection
of two parallel halfspaces with opposite orientations and
can be defined by the inequalities: a ≤ w>x ≤ a + ∆,
where, w ∈ <d, a and ∆ ∈ < and ∆ represents the width
of the stripe. The stripe pattern space consists of the set of
all such stripes.

The very simple, but effective, anomaly detector,
LODA [11], is based on the stripes pattern space. The main
idea of LODA is to form a set of T sparse random projec-
tions along some random directions in the subspaces of <d
and then estimate a discretized 1D histogram based on the
projected values. Each bin of each histogram can be viewed
as corresponding to a stripe in the original <d space with
orientation defined by the direction of the random projec-
tion and location/width defined by the bin localtion/width.

To the best of our knowledge the VC-dimension of the
stripes pattern space has not been previously derived. A
loose bound can be found by noting that stripes are a spe-
cial case of the more general pattern space of intersec-
tions of half spaces and then applying the general result
for bounding the VC-dimension of intersections [3], which
gives an upper bound on the VC-dimension of stripes of
4 log(6)(d+ 1) = O(d). Hence, stripes are PAC learnable
in the RPAD model.

5.5 ELLIPSOIDS AND SHELLS

Anomaly detectors based on estimating “local densities”
often form estimates based on frequencies observed in el-
lipsoids around query points. In particular, an ellipsoid
pattern in a d dimensional space can be represented by
(x − µ)>A (x − µ) ≤ t, where t ∈ <, µ ∈ <d and
A is a d × d positive definite symmetric matrix. An
upper bound for the VC-dimension of ellipsoids in <d
is (d2 + 3d)/2 [2]. Hence the ellipsoid pattern space is
sample-efficient learnable in the PAC-RPAD model. How-
ever, we see that the complexity is quadratic in d rather than
linear as we saw above for spaces based on hyperplane sep-
arators.

A related pattern space is the space of ellipsoidal shells,
which is the analog of stripes for ellipsoidal patterns. An
ellipsoidal shell in <d can be thought of as the subtrac-
tion of two ellipsoids with the same center and shape, but
different volumes. That is, the shell is a region defined by
t ≤ (x−µ)>A(x−µ) ≤ t+∆, where ∆ ∈ < is the width.
Shells naturally arise as the discretized level sets of multi-
dimensional Gaussian density functions, which are perhaps
the most widely-used densities in anomaly detection. We
are unaware of previous results for the VC-dimensions of
shells and show below that it is also O(d2).
Theorem 3. The VC-dimension of the ellipsoidal shell pat-
tern space in<d is upper bounded by 2 log(6)(d2+3d+2).

Proof. We can represent an ellipsoidal shell in <d as:

t ≤ (x− µ)>A (x− µ) ≤ t+ ∆. (5)

Rewriting the equation of an ellipsoid in <d:

(x− µ)>A (x− µ) ≤ t
=⇒ x>A x− 2x>A µ ≤ t− µ>A µ

=⇒
d∑

i,j=1

Aijxixj −
d∑

i=1

2(Aµ)ixi ≤ t− µ>Aµ

=⇒ w>z ≤ b. (6)

where, w, z ∈ <d(d+1)/2+d. The vector w is a new param-
eter vector constructed from the original parameters. The
matrix A gives d(d + 1)/2 unique parameters, since A is
symmetric, and the vector Aµ gives another d parameters.
The vector z is a new input constructed from the original
input x, and b = t− µ>Aµ.

Now, Applying result of Equation 6 to Equation 5 we get

t− µ>A µ ≤ w>z ≤ t+ ∆− µ>A µ

=⇒ t′ ≤ w>z ≤ t′ + ∆. (7)

The Equation 7 is a representation of a stripe in
<d(d+1)/2+d. So, we apply the same approach from pre-
vious Section 5.4 i.e. the case of two halfspaces, which
gives the upper bound of 4 log(6)(d(d + 1)/2 + d + 1) =
2 log(6)(d2 + 3d+ 2) = O(d2).
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6 EXPERIMENTS

The above results suggest one reason for why state-of-
the-art anomaly detectors often perform significantly bet-
ter than random, even on high-dimensional data. How-
ever, existing empirical work does not go much further in
terms of providing an understanding of learning curves for
anomaly detection. To the best of our knowledge, there has
not been a significant study of how the empirical perfor-
mance of anomaly detectors varies as the amount of train-
ing/reference data increases. Typically empirical perfor-
mance is reported for benchmark data sets without system-
atic variation of training set size, though other factors such
as anomaly percentage are often varied. This is in contrast
to empirical studies in supervised learning, where learning
curves are regularly published, compared, and analyzed.

In this section, we present an initial investigation into em-
pirical learning curves for anomaly detection. We are in-
terested in the following experimental questions: 1) Will
the empirical learning curves demonstrate the fast conver-
gence predicted by the PAC-RPAD framework, and how is
the convergence impacted by the data dimension and pat-
tern space complexity? 2) How does the RPAD approach
compare to a state-of-the-art detector based on the same
pattern space on anomaly detection benchmarks? 3) In
what ways do empirical learning curves for anomaly detec-
tion differ qualitatively from learning curves for supervised
learning? While a complete empirical investigation is be-
yond the scope of this paper, below we provide experiments
that shed light on each of these questions.

6.1 PATTERN SPACE AND ANOMALY
DETECTOR SELECTION

A recent large scale evaluation [7] has shown that the Iso-
lation Forest (IF) is among the top performing anomaly de-
tectors across a wide range of benchmarks. This motivates
us to focus our investigation on IF’s pattern space of axis
aligned hyper rectangles (see above). In order to allow for
the complexity of this pattern space to be varied, we define
REC(k) to be the space of all axis aligned hyper rectangles
defined by at most k threshold tests on feature values.

The first step of IF is to construct a random forest of trees
that are limited to a user-specified maximum leaf depth of
k. Each tree leaf in the forest corresponds to a single pat-
tern in REC(k). Thus, the first step of IF can be viewed
as generating a random pattern space Hk ⊆ REC(k) that
contains all leaf patterns in the forest. IF then operates by
using training data to compute empirical frequencies P̂ (h)
of patterns in Hk and then for any test point x computes
an anomaly score based on those frequencies as follows
(smaller is more anomalous):

IF(x) =
∑

h∈Hk[x]

dh + c(P̂ (h))

where, dh ≤ k is the number of tests in pattern h and c(h)
is a function of the empirical frequency of h.1

In order to directly compare IF to our RPAD approach we
will conduct multiple experiments, each one using a dif-
ferent randomly generated pattern space Hk. We can then
compute the scoring function corresponding to RAREPAT-
TERNDETECT on those pattern spaces and compare to
the performance of the IF scoring function. In particu-
lar, RAREPATTERNDETECT effectively assigns a score to
x based on the minimum frequency pattern as follows:

MIN(x) = min
h∈Hk[x]

f̂(h)

where the normalized frequency estimate f̂(h) is normal-
ized by a uniform density U(h) over a region of bounded
support defined by the training data. This normalizer is
proportional to the volume of h and is easily computed.
We see that compared to the IF scoring function with
sums/averages over functions of each pattern in Hk[x], the
MIN scoring function is only sensitive to the minimum
frequency pattern. In order to provide a baseline in be-
tween these two, we also compare to the following alterna-
tive scoring function that averages normalized frequencies.
This scoring function is given by

AVE(x) =
1

|Hk[x]|
∑

h∈Hk[x]

f̂(h).

AVE is included in order to observe whether averaging is
a more robust approach to using normalized frequencies
compared to MIN.

6.2 LEARNING CURVE GENERATION

We generate learning curves using three existing anomaly
detection benchmarks:
Covertype [18]: d = 10 features, approximately 286k in-
stances 0.9% anomalies.
Particle [7]: d = 50 features, approximately 130k in-
stances with 5% anomalies.
Shuttle [7]: d = 9 features, approximately 58k instances
with 5% anomalies.
These datasets were originally derived from UCI super-
vised learning benchmarks [9] by treating one or more
classes as the anomaly classes and sub-sampling at an ap-
propriate rate to produce benchmarks with certain percent-
ages of anomalies. We have conducted experiments on a
number of additional benchmarks, which are not included

1In particular, c(h) is an estimate of the expected number of
random tests required to completely isolate training data points
that satisfy h, which is a function of the number of training points
that satisfy h [10]. This score is motivated by attempting to esti-
mate the “isolation depth” of x, which is the expected length of a
random path required to isolate a point. Intuitively smaller isola-
tion depths indicate a more anomalous point since it is easier to
separate from other points.
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Figure 1: Learning Curves for the Three Scoring Methods (IF, AVE, MIN) with Varying Pattern Space Complexity k Over
Three Benchmarks (Rows). MIN Represents the Main RPAD Approach Analyzed in this Paper.

for space reasons. These three data sets were selected as
being representative of the qualitative learning curve types
that we have observed. The data sets are divided into three
sets of data: pattern generation data, training data, and
test data for which we ensure that the fraction of anomaly
points in each data set is approximately the same as for the
full benchmark.

Given a benchmark and a specified pattern complexity k,
we generate learning curves for each algorithm as follows.
First, we use IF to generate a random pattern space Hk,
based on the pattern generation data using a forest of 250
random trees. Next for each desired training set size, we
sample a training set of the appropriate size and use that
data to estimate frequencies over Hk, which can be done
efficiently by passing each data point through each tree.
Next, the scores defined above for IF, MIN, and AVE are
computed for each test instance based on the frequency
estimates and the Area Under the Curve (AUC) of those
scores is computed relative to the ground truth anomalies.
This process is repeated 50 times for each training set size
and the resulting AUCs are averaged to produce a final
learning curve.

6.3 RESULTS

Figure 1 gives learning curves for each benchmark (rows)
and each of the anomaly detectors IF, MIN, and AVE
(columns). Recall that MIN represents the main RPAD
approach analyzed in this paper. In each case, four
learning curves are shown for pattern space complexities
k = 1, 4, 7, 10 and training instances range from 16 to 215.

Convergence rate: Each learning curve for each algorithm
and benchmark follows a trajectory starting at 16 training
instances to a converged performance at 215 points. We see
that in all cases, convergence to the final performance oc-
curs very quickly, in particular around 1024 samples. This
convergence rate is not significantly impacted by the di-
mensionality of the data, which can be seen by comparing
the results for Particle with d = 50 to the other data sets
with d = 9 and d = 10. Rather we see that the conver-
gence rate visibly depends on the pattern space complexity
k, though to a relatively small degree. In particular, we see
that the convergence for the simplest space k = 1 tends to
be faster than for k = 10 across our experiments. These ob-
servations agree with our analysis. The VC-dimension of
REC(k), which controls worst case convergence, is dom-
inated by the limiting effect of k. These observations are
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consistent across additional benchmarks not shown here.

Relative Algorithm Performance: Here we focus on
comparing the different detectors, or scoring functions, in
terms of their converged performance. For the Cover and
Shuttle data sets we see that the converged performance
of MIN is better or competitive than the converged perfor-
mance of IF for all values of k. For the Particle data set,
the IF scoring function outperforms MIN consistently by
a small margin. This shows that despite its simplicity the
RPAD approach followed by MIN appears to be competi-
tive with a state-of-the-art detector based on the same pat-
tern space. Experiments on other benchmarks, not shown,
further confirm this observation.

The converged performance of AVE tends to be worse than
both IF and MIN for Covertype and Particle and is slightly
better on Shuttle. It appears that for these data sets (and
others not shown) that averaging is not significantly more
robust than minimizing and can even hurt performance.
One reason for degraded performance is that AVE can be
influenced by the cumulative effect of a large number of
non-rare patterns, which may sometimes overwhelm the
signal provided by rare patterns.

An interesting observation is that for each data set, the best
performing pattern space (i.e. value of k) is usually the
same across the different learning algorithms. For exam-
ple, for Covertype, k = 1 yields the best converged perfor-
mance for all scoring functions. This observation, which
we also frequently observed in other data sets, suggests
that the choice of pattern space can have a performance im-
pact that is as large or larger than the impact of the specific
scoring function used. To understand this, note that the
performance of an anomaly detector depends on both the
convergence of its scoring function and the match between
the scoring function and the semantic notion of anomaly
for the application. The pattern space choice has a large in-
fluence on the this match since it controls the fundamental
distinctions that can be made among data points.

Qualitative Properties: The qualitative behavior of the
learning curves exhibits a couple of nonintuitive properties
compared to supervised learning curves. First, in super-
vised learning, we typically expect and observe that more
complex hypothesis spaces converge to a performance that
is at least as good as simpler spaces, though more complex
spaces may underperform at small sample sizes due to vari-
ance. This does not appear to be the case for anomaly de-
tection learning curves in general. For example, the perfor-
mance of the simplest pattern space (k = 1) on Covertype
converges to better performance than the more complex
spaces. This has also been observed in other data sets and
does not appear to be due to premature termination of the
learning curve. Rather, we hypothesize that this behavior is
due to the mismatch between the anomaly detection scores
and the semantic notion of anomaly in the benchmark. In

particular, rare patterns in REC(1) are apparently a better
indicator of the semantic notion of anomaly than some dis-
tracter rare patterns in REC(10). Indeed, it is straightfor-
ward to construct synthetic examples with such behavior.

Another nonintuitive aspect is that, in at least two cases,
the learning curves consistently decrease in performance,
while typically in supervised learning, ideal learning curves
are non-decreasing. The most striking example is the per-
formance of AVE on Shuttle, where all learning curves
steadily decrease. After further analysis, this type of behav-
ior again appears to be explained by the mismatch between
the semantic notion of anomalies and the scoring function.
In particular, the variance across different trials of the learn-
ing curve for large sample sizes is much smaller than for
small sample sizes. It also turns out that the distribution
of scoring functions generated for the small sample sizes
is skewed toward solutions that better match the ground
truth anomalies compared to the converged scoring func-
tion. Thus, the average performance for small sample sizes
is better. We have observed this decreasing learning curve
behavior in other data sets as well, though it is much more
common for learning curves to increase.

7 SUMMARY

This work is motivated by the observation that many statis-
tical anomaly detection methods perform much better than
random in high dimensions using relatively small amounts
of training data. Our PAC-RPAD framework attempts to
explain these observations by quantifying the sample com-
plexity in terms of the complexity of the pattern spaces un-
derlying such anomaly detectors. Our results mirror those
in supervised learning by showing that the VC-dimension
of the pattern spaces is the dominating factor that controls
sample complexity. We showed that for several state-of-
the-art detectors, the underlying pattern spaces had well-
behaved VC-dimensions with respect to the data dimen-
sionality, which offers a partial explanation for their good
performance. On the empirical side, we investigated for
the first time, to the best of our knowledge, learning curves
for anomaly detection. The experiments confirmed the fast
convergence predicted by the theory. The results also sug-
gest that our simple algorithm, which was shown to be
PAC-RPAD, is competitive with the state-of-the-art algo-
rithm Isolation Forest when using the same pattern space.
Finally, the learning curves showed some interesting qual-
itative differences compared to supervised learning curves.
In particular, the results highlight the importance of select-
ing a pattern space that is likely to be a good match to the
semantic notion required for an application.
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Abstract

Lossy compression fundamentally involves a
decision about what is relevant and what is
not. The information bottleneck (IB) by Tishby,
Pereira, and Bialek formalized this notion as an
information-theoretic optimization problem and
proposed an optimal tradeoff between throwing
away as many bits as possible, and selectively
keeping those that are most important. Here, we
introduce an alternative formulation, the deter-
ministic information bottleneck (DIB), that we
argue better captures this notion of compression.
As suggested by its name, the solution to the DIB
problem is a deterministic encoder, as opposed to
the stochastic encoder that is optimal under the
IB. We then compare the IB and DIB on synthetic
data, showing that the IB and DIB perform sim-
ilarly in terms of the IB cost function, but that
the DIB vastly outperforms the IB in terms of
the DIB cost function. Moreover, the DIB of-
fered a 1-2 order of magnitude speedup over the
IB in our experiments. Our derivation of the DIB
also offers a method for continuously interpolat-
ing between the soft clustering of the IB and the
hard clustering of the DIB.

1 INTRODUCTION

Compression is a ubiquitous task for humans and machines
alike [Cover & Thomas (2006), MacKay (2002)]. For ex-
ample, machines must turn the large pixel grids of color
that form pictures into small files capable of being shared
quickly on the web [Wallace (1991)], humans must com-
press the vast stream of ongoing sensory information they
receive into small changes in the brain that form memories
[Kandel et al (2000)], and data scientists must turn large
amounts of high-dimensional and messy data into more
manageable and interpretable clusters [MacKay (2002)].

Lossy compression involve an implicit decision about what

is relevant and what is not [Cover & Thomas (2006),
MacKay (2002)]. In the example of image compression,
the algorithms we use deem some features essential to rep-
resenting the subject matter well, and others are thrown
away. In the example of human memory, our brains deem
some details important enough to warrant attention, and
others are forgotten. And in the example of data clustering,
information about some features is preserved in the map-
ping from data point to cluster ID, while information about
others is discarded.

In many cases, the criterion for “relevance” can be de-
scribed as information about some other variable(s) of in-
terest. Let’s call X the signal we are compressing, T the
compressed version, Y the other variable of interest, and
I(T ;Y ) the “information” that T has about Y (we will for-
mally define this later). For human memory, X is past sen-
sory input, T the brain’s internal representation (e.g. the
activity of a neural population, or the strengths of a set of
synapses), and Y the features of the future environment that
the brain is interested in predicting, such as extrapolating
the position of a moving object. Thus, I(T ;Y ) represents
the predictive power of the memories formed [Palmer et al
(2015)]. For data clustering, X is the original data, T is the
cluster ID, and Y is the target for prediction, for example
purchasing or ad-clicking behavior in a user segmentation
problem. In summary, a good compression algorithm can
be described as a tradeoff between the compression of a
signal and the selective maintenance of the “relevant” bits
that help predict another signal.

This problem was formalized as the “information bottle-
neck” (IB) by Tishby, Pereira, and Bialek [Tishby (1999)].
In their formulation, compression was measured by the mu-
tual information I(X;T ). This compression metric has its
origins in rate-distortion theory and channel coding, where
I(X;T ) represents the maximal information transfer rate,
or capacity, of the communication channel between X and
T [Cover & Thomas (2006)]. While this approach has its
applications, often one is more interested in directly re-
stricting the amount of resources required to represent T ,
represented by the entropy H(T ). This latter notion comes
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from the source coding literature and implies a restriction
on the representational cost of T . In the case of human
memory, for example, H(T ) would roughly correspond to
the number of neurons or synapses required to represent or
store a sensory signal X . In the case of data clustering,
H(T ) is related to the number of clusters.

In the following paper, we introduce an alternative formula-
tion of the IB, replacing the compression measure I(X;T )
with H(T ), thus emphasizing contraints on representation,
rather than communication. We begin with a general in-
troduction to the IB. Then, we introduce our alternative
formulation, which we call the deterministic information
bottleneck (DIB). Finally, we compare the IB and DIB so-
lutions on synthetic data to help illustrate their differences.

2 THE ORIGINAL INFORMATION
BOTTLENECK (IB)

Given the joint distribution p(x, y), the encoding distribu-
tion q(t | x) is obtained through the following “information
bottleneck” (IB) optimization problem:

min
q(t|x)

L[q(t | x)] = I(X;T )− βI(T ;Y ) , (1)

subject to the Markov constraint T ↔ X ↔ Y .
Here I(X;T ) denotes the mutual information between
X and T , that is I(X;T ) ≡ H(T ) − H(T | X) =∑
x,t p(x, t) log

(
p(x,t)
p(x)p(t)

)
= DKL[p(x, t) | p(x) p(t)],1

where DKL denotes the Kullback-Leibler divergence.2

The first term in the cost function is meant to encourage
compression, while the second relevance. β is a non-
negative free parameter representing the relative impor-
tance of compression and relevance, and our solution will
be a function of it. The Markov constraint simply enforces
the probabilistic graphical structure of the task; the com-
pressed representation T is a (possibly stochastic) function

1Implicit in the summation here, we have assumed that X , Y ,
and T are discrete. We will be keeping this assumption through-
out for convenience of notation, but note that the IB generalizes
naturally toX , Y , and T continuous by simply replacing the sums
with integrals (see, for example, [Chechik et al (2005)]).

2For those unfamiliar with it, mutual information is a very
general measure of how related two variables are. Classic cor-
relation measures typically assume a certain form of the relation-
ship between two variables, say linear, whereas mutual informa-
tion is agnostic as to the details of the relationship. One intu-
itive picture comes from the entropy decomposition: I(X;Y ) ≡
H(X) − H(X | Y ). Since entropy measures uncertainty, mu-
tual information measures the reduction in uncertainty in one
variable when observing the other. Moreover, it is symmet-
ric (I(X;Y ) = I(Y ;X)), so the information is mutual. An-
other intuitive picture comes from the DKL form: I(X;Y ) ≡
DKL[p(x, y) | p(x) p(y)]. Since DKL measures the distance be-
tween two probability distributions, the mutual information quan-
tifies how far the relationship between x and y is from a prob-
abilistically independent one, that is how far the joint p(x, y) is
from the factorized p(x) p(y).

of X and can only get information about Y through X .
Note that we are using p to denote distributions that are
given and fixed, and q to denote distributions that we are
free to change and that are being updated throughout the
optimization process.

Through a standard application of variational calculus (see
Section 7 for a detailed derivation of the solution to a more
general problem introduced below), one finds the formal
solution:3

q(t | x) = q(t)

Z(x, β)
exp[−βDKL[p(y | x) | q(y | t)]] (2)

q(y | t) = 1

q(t)

∑

x

q(t | x) p(x, y) , (3)

where Z(x, β) ≡ exp
[
−λ(x)p(x) − β

∑
y p(y | x) log

p(y|x)
p(y)

]

is a normalization factor, and λ(x) is a Lagrange multi-
plier that enters enforcing normalization of q(t | x).4 To
get an intuition for this solution, it is useful to take a clus-
tering perspective - since we are compressing X into T ,
many X will be mapped to the same T and so we can
think of the IB as “clustering” xs into their cluster labels
t. The solution q(t | x) is then likely to map x to t when
DKL[p(y | x) | q(y | t)] is small, or in other words, when
the distributions p(y | x) and q(y | t) are similar. These
distributions are similar to the extent that x and t provide
similar information about y. In summary, inputs x get
mapped to clusters t that maintain information about y, as
was desired.

This solution is “formal” because the first equation depends
on the second and vice versa. However, [Tishby (1999)]
showed that an iterative approach can be built on the the
above equations which provably converges to a local opti-
mum of the IB cost function (eqn 1).

Starting with some initial distributions q(0)(t | x), q(0)(t),
and q(0)(y | t), the nth update is given by:

d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]
(4)

q(n)(t | x) = q(n−1)(t)
Z(x, β)

exp
[
−βd(n−1)(x, t)

]
(5)

q(n)(t) =
∑

x

p(x) q(n)(t | x) (6)

q(n)(y | t) = 1

q(n)(t)

∑

x

q(n)(t | x) p(x, y) . (7)

3For the reader familiar with rate-distortion theory, eqn 2 can
be viewed as the solution to a rate-distortion problem with distor-
tion measure given by the KL-divergence term in the exponent.

4More explicitly, our cost function L also implicitly includes
a term

∑
x λ(x)

[
1−∑t q(t|x)

]
and this is where λ(x) comes

in to the equation. See Section 7 for details.
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Note that the first pair of equations is the only “meaty” bit;
the rest are just there to enforce consistency with the laws
of probability (e.g. that marginals are related to joints as
they should be). In principle, with no proof of convergence
to a global optimum, it might be possible for the solution
obtained to vary with the initialization, but in practice, the
cost function is “smooth enough” that this does not seem to
happen. This algorithm is summarized in algorithm 1. Note
that while the general solution is iterative, there is at least
one known case in which an analytic solution is possible,
name when X and Y are jointly Gaussian [Chechik et al
(2005)].

Algorithm 1 - The information bottleneck (IB) method.
1: Given p(x, y), β ≥ 0
2: Initialize q(0)(t | x) and set n = 0
3: q(0)(t) =

∑
x p(x) q

(0)(t | x)
4: q(0)(y | t) = 1

q(0)(t)

∑
x p(x, y) q

(0)(t | x)
5: while not converged do
6: n = n+ 1
7: d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]

8: q(n)(t | x) = q(n−1)(t)
Z(x,β) exp

[
−βd(n−1)(x, t)

]

9: q(n)(t) =
∑
x p(x) q

(n)(t | x)
10: q(n)(y | t) = 1

q(n)(t)

∑
x q

(n)(t | x) p(x, y)
11: end while

In summary, given the joint distribution p(x, y), the IB
method extracts a compressive encoder q(t | x) that selec-
tively maintains the bits from X that are informative about
Y . As the encoder is a function of the free parameter β,
we can visualize the entire family of solutions on a curve
(figure 1), showing the tradeoff between compression (on
the x-axis) and relevance (on the y-axis). For small β,
compression is more important than prediction and we find
ourselves at the bottom left of the curve in the high com-
pression, low prediction regime. As β increases, predic-
tion becomes more important relative to compression, and
we see that both I(X;T ) and I(T ;Y ) increase. At some
point, I(T ;Y ) saturates, because there is no more informa-
tion about Y that can be extracted from X (either because
I(T ;Y ) has reached I(X;Y ) or because T has too small
cardinality). Note that the region below the curve is shaded
because this area is feasible; for suboptimal q(t | x), solu-
tions will lie in this region. Optimal solutions will of course
lie on the curve, and no solutions will lie above the curve.

Additional work on the IB has highlighted its relation-
ship with maximum likelihood on a multinomial mixture
model [Slonim & Weiss (2002)] and canonical correla-
tion analysis [Creutzig et al (2009)] (and therefore linear
Gaussian models [Bach & Jordan (2005)] and slow feature
analysis [Turner & Sahani (2007)]). Applications have in-
cluded speech recognition [Hecht & Tishby (2005), Hecht
& Tishby (2008), Hecht et al (2009)], topic modeling

[Slonim & Tishby (2000),Slonim & Tishby (2001),Bekker-
man et al (2001), Bekkerman et al (2003)], and neural cod-
ing [Schneidman et al (2002), Palmer et al (2015)]. Most
recently, the IB has even been proposed as a method for
benchmarking the performance of deep neural networks
[Tishby & Zaslavsky (2015)].

0

I(X,Y)

0 log |T|
I(X;T)

I(
T

;Y
)

Figure 1: An illustrative IB curve. I(T ;Y ) is the rele-
vance term from eqn 1; I(X;T ) is the compression term.
I(X;Y ) is an upper bound on I(T ;Y ) since T only gets its
information about Y via X . log(|T |), where |T | is the car-
dinality of the compression variable, is a bound on I(X;T )
since I(X;T ) = H(T )−H(T | X) ≤ H(T ) ≤ log(|T |).

3 THE DETERMINISTIC
INFORMATION BOTTLENECK (DIB)

Our motivation for introducing an alternative formulation
of the information bottleneck is rooted in the “compression
term” of the IB cost function; there, the minimization of
the mutual information I(X;T ) represents compression.
As discussed above, this measure of compression comes
from the channel coding literature and implies a restriction
on the communication cost between X and T. Here, we
are interested in the source coding notion of compression,
which implies a restriction on the representational cost of
T . For example, in neuroscience, there is a long history of
work on “redundancy reduction” in the brain in the form of
minimizing H(T ) [Barlow (1981), Barlow (2001), Barlow
(2001)].

Let us call the original IB cost function LIB, that is LIB ≡
I(X;T ) − βI(T ;Y ). We now introduce the deterministic
information bottleneck (DIB) cost function:

LDIB[q(t | x)] ≡ H(T )− βI(T ;Y ) , (8)

which is to be minimized over q(t | x) and subject to the
same Markov constraint as the original formulation (eqn 1).
The “deterministic” in its name will become clear below.

To see the distinction between the two cost functions, note
that:

LIB − LDIB = I(X;T )−H(T ) (9)
= −H(T | X) , (10)
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where we have used the decomposition of the mutual infor-
mation I(X;T ) = H(T )−H(T | X). H(T | X) is some-
times called the “noise entropy” and measures the stochas-
ticity in the mapping from X to T . Since we are minimiz-
ing these cost functions, this means that the IB cost func-
tion encourages stochasticity in the encoding distribution
q(t | x) relative to the DIB cost function. In fact, we will
see that by removing this encouragement of stochasticity,
the DIB problem actually produces a deterministic encod-
ing distribution, i.e. an encoding function, hence the “de-
terministic” in its name.

Naively taking the same variational calculus approach as
for the IB problem, one cannot solve the DIB problem.5 To
make this problem tractable, we are going to define a family
of cost functions of which the IB and DIB cost functions are
limiting cases. That family, indexed by α, is defined as:6

Lα ≡ H(T )− αH(T | X)− βI(T ;Y ) . (11)

Clearly, LIB = L1. However, instead of looking at LDIB as
the α = 0 case, we’ll define the DIB solution qDIB(t | x) as
the α → 0 limit of the solution to the generalized problem
qα(t | x):7

qDIB(t | x) ≡ lim
α→0

qα(t | x) . (12)

Taking the variational calculus approach to minimizing Lα
(under the Markov constraint), we get the following so-
lution for the encoding distribution (see Section 7 for the
derivation and explicit form of the normalization factor
Z(x, a, β)):

dα(x, t) ≡ DKL[p(y | x) | qα(y | t)] (13)
`α,β(x, t) ≡ log qα(t)− βdα(x, t) (14)

qα(t | x) =
1

Z(x, α, β)
exp

[
1

α
`α,β(x, t)

]
(15)

qα(y | t) =
1

qα(t)

∑

x

qα(t | x) p(x, y) . (16)

5When you take the variational derivative of LDIB +
Lagrange multiplier term with respect to q(t | x) and set it to
zero, you get no explicit q(t | x) term, and it is therefore not ob-
vious how to solve these equations. We cannot rule that that ap-
proach is possible, of course; we have just here taken a different
route.

6Note that for α < 1, we cannot allow T to be continuous
since H(T ) can become infinitely negative, and the optimal so-
lution in that case will trivially be a delta function over a single
value of T for all X , across all values of β. This is in constrast to
the IB, which can handle continuous T . In any case, we continue
to assume discrete X , Y , and T for convenience.

7Note a subtlety here that we cannot claim that the qDIB is the
solution to LDIB, for although LDIB = limα→0 Lα and qDIB =
limα→0 qα, the solution of the limit need not be equal to the limit
of the solution. It would, however, be surprising if that were not
the case.

Note that the last equation is just eqn 3, since this just fol-
lows from the Markov constraint. With α = 1, we can see
that the other three equations just become the IB solution
from eqn 2, as should be the case.

Before we take the α→ 0 limit, note that we can now write
a generalized IB iterative algorithm (indexed by α) which
includes the original as a special case (α = 1):

d(n−1)α (x, t) ≡ DKL

[
p(y | x) | q(n−1)α (y | t)

]
(17)

`
(n−1)
α,β (x, t) ≡ log q(n−1)α (t)− βd(n−1)α (x, t) (18)

q(n)α (t | x) = 1

Z(x, α, β)
exp

[
1

α
`
(n−1)
α,β (x, t)

]
(19)

q(n)α (t) =
∑

x

p(x) q(n)α (t | x) (20)

q(n)α (y | t) = 1

q
(n)
α (t)

∑

x

q(n)α (t | x) p(x, y) . (21)

This generalized algorithm can be used in its own right,
however we will not discuss that option further here.

For now, we take the limit α → 0 and see that something
interesting happens with qα(t | x) - the argument of the ex-
ponential begins to blow up. For a fixed x, this means that
q(t | x) will collapse into a delta function at the value of t
which maximizes log q(t)−βDKL[p(y | x) | q(y | t)]. That
is:

lim
α→0

qα(t | x) = f : X → T, (22)

where:

f(x) ≡ t∗ = argmax
t

`(x, t) (23)

`(x, t) ≡ log q(t)− βDKL[p(y | x) | q(y | t)] . (24)

So, as anticipated, the solution to the DIB problem is a de-
terministic encoding distribution. The log q(t) above en-
courages that we use as few values of t as possible, via a
“rich-get-richer” scheme that assigns each x preferentially
to a t already with many xs assigned to it. The KL diver-
gence term, as in the original IB problem, just makes sure
we pick ts which retain as much information from x about
y as possible. The parameter β, as in the original problem,
controls the tradeoff between how much we value compres-
sion and prediction.

Also like in the original problem, the solution above is only
a formal solution, since eqn 15 depends on eqn 16 and vice
versa. So we will again need to take an iterative approach;
in analogy to the IB case, we repeat the following updates
to convergence (from some initialization):8

8Note that, if at step m no xs are assigned to a particular t =
t∗, then qm(t∗) = 0 and for all future steps n > m, no xs will
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d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]
(25)

`
(n−1)
β (x, t) ≡ log q(t)− βd(n−1)(x, t) (26)

f (n)(x) = argmax
t

`
(n−1)
β (x, t) (27)

q(n)(t | x) = δ
(
t− f (n)(x)

)
(28)

q(n)(t) =
∑

x

q(n)(t | x) p(x) (29)

=
∑

x:f(n)(x)=t

p(x) (30)

q(n)(y | t) = 1

q(n)(t)

∑

x

q(n)(t | x) p(x, y) (31)

=

∑
x:f(n)(x)=t p(x, y)∑
x:f(n)(x)=t p(x)

. (32)

This process is summarized in algorithm 2.

Like with the IB, the DIB solutions can be plotted as a func-
tion of β. However, in this case, it is more natural to plot
I(T ;Y ) as a function of H(T ), rather than I(X;T ). That
said, in order to compare the IB and DIB, they need to be
plotted in the same plane. When plotting in the I(X;T )
plane, the DIB curve will of course lie below the IB curve,
since in this plane, the IB curve is optimal; the opposite
will be true when plotting in theH(T ) plane. Comparisons
with experimental data can be performed in either plane.

Algorithm 2 - The deterministic information bottleneck
(DIB) method.

1: Given p(x, y), β ≥ 0
2: Initialize f (0)(x) and set n = 0
3: q(0)(t) =

∑
x:f(0)(x)=t p(x)

4: q(0)(y | t) =
∑

x:f(0)(x)=t
p(x,y)

∑
x:f(0)(x)=t

p(x)

5: while not converged do
6: n = n+ 1
7: d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]

8: `
(n−1)
β (x, t) ≡ log q(t)− βd(n−1)(x, t)

9: f (n)(x) = argmax
t

`
(n−1)
β (x, t)

10: q(n)(t) =
∑
x:f(n)(x)=t p(x)

11: q(n)(y | t) =
∑

x:f(n)(x)=t
p(x,y)

∑
x:f(n)(x)=t

p(x)

12: end while

ever again be assigned to t∗ since log qn(t
∗) = −∞. In other

words, the number of ts “in use” can only decrease during the
iterative algorithm above (or remain constant). Thus, it seems
plausible that our solution will not depend on the cardinality of
T , provided it is chosen to be large enough.

4 COMPARISON OF IB AND DIB

To get an idea of how the IB and DIB solutions differ in
practice, we generated a series of random joint distribu-
tions p(x, y), solved for the IB and DIB solutions for each,
and compared them in both the IB and DIB plane. To gen-
erate the p(x, y), we first sampled p(x) from a symmetric
Dirichlet distribution with concentration parameter αx (so
p(x) ∼ Dir[αx]), and then sampled each row of p(y | x)
from another symmetric Dirichlet distribution with concen-
tration parameter αy (so p(y | x) ∼ Dir[αy] , ∀x). Since
the number of clusters in use for both IB and DIB can only
decrease from iteration to iteration (see footnote 8), we al-
ways initialized |T | = |X|.9 For the DIB, we initialized the
cluster assignments to be as even across the cluster as pos-
sible, i.e. each data points belonged to its own cluster. For
IB, we initalized the cluster assignments to a normalized
draw of a uniform random vector.

An illustrative pair of solutions is shown in figure 2. The
key feature to note is that, while performance of the IB and
DIB solutions are very similar in the IB plane, their behav-
ior differs drastically in the DIB plane.

Perhaps most unintuitive is the behavior of the IB solu-
tion in the DIB plane. To understand this behavior, recall
that the IB’s compression term is the mutual information
I(X,T ) = H(T ) − H(T | X). This term is minimized
by any q(t | x) that maps ts independently of xs. Consider
two extremes of such mappings. One is to map all val-
ues of X to a single value of T ; this leads to H(T ) =
H(T | X) = I(X,T ) = 0. The other is to map each
value of X uniformly across all values of T ; this leads to
H(T ) = H(T | X) = log |T | and I(X,T ) = 0. In our ini-
tial studies, the IB consistently took the latter approach.10

Since the DIB cost function favors the former approach
(and indeed the DIB solution follows this approach), the IB
consistently performs poorly by the DIB’s standards. This
difference is especially apparent at small β, where the com-
pression term matters most, and as β increases, the DIB and
IB solutions converge in the DIB plane.

To encourage the IB into more DIB-like behavior, we next
altered our initialization scheme of q(t | x). Originally, we
used a normalized vector of uniform random numbers for
each x. Next, we tried a series of delta-like functions, for
which q(t | x) = p0 for all x and one t, and the rest of
the entries were uniform with a small amount of noise to
break symmetry. The intended effect was to start the IB
closer to solutions in which all data points were mapped to
a single cluster. Results are shown in figure 3. While the
different initialization schemes didn’t change behavior in

9An even more efficient setting might be to set the cardinality
of T based on the entropy of X , say |T | = ceiling(exp(H(X))),
but we didn’t experiment with this.

10Intuitively, this approach is “more random” and is therefore
easier to stumble upon during optimization.
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the IB plane, we can see a gradual shift of the IB towards
DIB-like behavior in the DIB plane as p0 → 1, i.e. the
initialization scheme approaches a true delta. However, the
IB still fails to reach the level of performance of the DIB,
especially for large β, where the effect of the initialization
washes out completely.

To summarize, the IB and DIB perform similarly by the IB
standards, but the DIB tends to outperform the IB dramat-
ically by the DIB’s standards. Careful initialization of the
IB can make up some of the difference, but not all.

It is also worth noting that, across all the datasets we tested,
the DIB took 1-2 orders of magnitude fewer steps and time
to converge, as illustrated in figure 4. About half of IB fits
took at least an hour, while nearly a quarter took at least
five hours. Contrast this with about half of DIB fits taking
only five minutes, and more than 80% finishing within ten
minutes. Put another way, about half of all DIB fits finished
ten times faster than their IB counterpart, while about a
quarter finished fifty times faster.

Note that the computational advantage of the DIB over the
IB may vary by dataset and stopping criteria. In our case,
we defined convergence for both algorithms as a change in
cost function of less than 108 from one step to the next.

5 RELATED WORK

The DIB is not the first hard clustering version of IB.11

Indeed, the agglomerative information bottleneck (AIB)
[Slonim & Tishby (1999)] also produces hard clustering
and was introduced soon after the IB. Thus, it is impor-
tant to distinguish between the two approaches. AIB is a
bottom-up, greedy method which starts with all data points
belonging to their own clusters and iteratively merges clus-
ters in a way which maximizes the gain in relevant informa-
tion. It was explicitly designed to produce a hard cluster-
ing. DIB is a top-down method derived from a cost function
that was not designed to produce a hard clustering. Our
starting point was to alter the IB cost function to match
the source coding notion of compression. The emergence
of hard clustering in DIB is itself a result. Thus, while
AIB does provide a hard clustering version of IB, DIB con-
tributes the following in addition: 1) Our study emphasizes
why a stochastic encoder is optimal for IB, namely due to
the noise entropy term. The optimality of a stochastic en-
coder has been, for many, neither obvious nor necessarily
desirable. 2) Our study provides a principled, top-down
derivation of a hard clustering version of IB, based upon
an intuitive change to the cost function. 3) Our non-trivial
derivation also provides a cost-function and solution which
interpolates between DIB and IB, by adding back the noise

11In fact, even the IB itself produces a hard clustering in the
large β limit. However, it trivially assigns all data points to their
own clusters.

entropy continuously, i.e. with 0 < α < 1. This interpola-
tion may be viewed as adding a regularization term to DIB.
We are in fact currently exploring whether this type of reg-
ularization may be useful in dealing with finitely sampled
data. Another interpretation of the cost function with inter-
mediate α is as a penalty on both the mutual information
between X and T as well as the entropy of the compres-
sion, H(T ). 4) It is likely that DIB offers a computational
advantage to AIB. In the AIB paper, the authors say, “The
main disadvantage of this method is computational, since
it starts from the limit of a cluster per each member of the
set X.” In our experiments, we find that DIB is much more
efficient than IB. Therefore, we expect that DIB will offer a
considerable advantage in efficiency to AIB. However, we
have not yet tested this.

The original IB also provides a deterministic encoding
upon taking the limit β → ∞ that corresponds to the
causal-state partition of histories [Still et al (2010)]. How-
ever, this is the limit of no compression, whereas our ap-
proach allows for an entire family of deterministic encoders
with varying degrees of compression.

6 DISCUSSION

Here we have introduced the deterministic information bot-
tleneck (DIB) as an alternative to the information bottle-
neck (IB) for compression and clustering. We have ar-
gued that the DIB cost function better embodies the goal
of lossy compression of relevant information, and shown
that it leads to a non-trivial deterministic version of the IB.
We have compared the DIB and IB solutions on synthetic
data and found that, in our experiments, the DIB performs
nearly identically to the IB in terms of the IB cost function,
but far superior in terms of its own cost function. We also
noted that the DIB achieved this performance at a compu-
tational efficiency 1-2 orders of magnitude better than the
IB.

Of course, in addition to the studies with synthetic data
here, it is important to compare the DIB and IB on real
world datasets as well to see whether the DIB’s apparent
advantages hold. The linearity of the IB and DIB curves
displayed above are indeed a signature of relatively simple
data with not particularly complicated tradeoffs between
compression and relevance.

One particular application of interest is maximally infor-
mative clustering. Previous work has, for example, offered
a principled way of choosing the number of clusters based
on the finiteness of the data [Still & Bialek (2004)]. Sim-
ilarly interesting results may exist for the DIB, as well as
relationships to other popular clustering algorithms such as
k-means. More generally, there are learning theory results
showing generalization bounds on IB for which an analog
on DIB would be interesting as well [Shamir et al (2010)].
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Figure 2: Example IB and DIB solutions. Left: IB plane. Right: DIB plane. Upper limit of the y-axes is I(X,Y ), since
this is the maximal possible value of I(T ;Y ). Solid vertical line marks log(|T |), since this is the maximal possible value
ofH(T ) and I(X,T ) (the latter being true since I(X,T ) is bounded above by bothH(T ) andH(X), and |T | < |X|). The
dashed vertical line marks H(X), which is both an upper bound for I(X,T ) and a natural comparison for H(T ) (since to
place each data point in its own cluster, we need H(T ) = H(X)). Here, |X| = |Y | = 1024 and |T | = 256.
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Figure 3: Example IB and DIB solutions across different IB initializations. Details identical to figure 2, except colors
represent different initializations for the IB, as described in the text. “IB (random)” denotes the original initialization
scheme of a normalized vector of uniform random numbers.
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Figure 4: Fit times for IB and DIB, as well as their ratios. Left: cumulative distribution of IB fit times. Data shown
here are for the original initialization of IB, though the delta-like initializations lead to nearly identical results. Mean fit
time was 171 minutes. Center: cumulative distribution of DIB fit times. Mean fit time was 6 minutes. Right: cumultative
distribution of ratios of IB to DIB fit times. Ratios are for the bth value of β for DIB and the bth value of β for IB, though
those values of β are not necessarily the same. Both algorithms were fit to the same data. The IB fits are those resulting
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Another potential area of application is modeling the ex-
traction of predictive information in the brain (which is one
particular example in a long line of work on the exploitation
of environmental statistics by the brain [Barlow (1981),
Barlow (2001),Barlow (2001),Atick & Redlich (1992),Ol-
shausen & Field (1996), Olshausen & Field (1997), Si-
moncelli & Olshausen (2001),Olshausen & Field (2004)]).
There, X would be the stimulus at time t, Y the stimulus a
short time in the future t+τ , and T the activity of a popula-
tion of sensory neurons. One could even consider neurons
deeper in the brain by allowing X and Y to correspond
not to an external stimulus, but to the activity of upstream
neurons. An analysis of this nature using retinal data was
recently performed with the IB [Palmer et al (2015)]. It
would be interesting to see if the same data corresponds
better to the behavior of the DIB, particularly in the DIB
plane where the IB and DIB differ dramatically.

7 APPENDIX: DERIVATION OF
GENERALIZED IB SOLUTION

Given p(x, y) and subject to the Markov constraint T ↔
X ↔ Y , the generalized IB problem is:

min
q(t|x)

L[q(t | x)] = H(T )− αH(T | X) (33)

− βI(T ;Y )−
∑

x,t

λ(x) q(t | x) ,

where we have now included the Lagrange multiplier term
(which enforces normalization of q(t | x)) explicitly. The
Markov constraint implies the following factorizations:

q(t | y) =
∑

x

q(t | x) p(x | y) (34)

q(t) =
∑

x

q(t | x) p(x) , (35)

which give us the following useful derivatives:

δq(t | y)
δq(t | x) = p(x | y) (36)

δq(t)

δq(t | x) = p(x) . (37)

Now taking the derivative of the cost function with respect
to the encoding distribution, we get:

δL

δq(t | x) = − δ

δq(t | x)
∑

t

q(t) log q(t) (38)

− δ

δq(t | x)
∑

x,t

λ(x) q(t | x)

+ α
δ

δq(t | x)
∑

x,t

q(t | x) p(x) log q(t | x)

− β δ

δq(t | x)
∑

y,t

q(t | y) p(y) log
[
q(t | y)
q(t)

]

= − log q(t)
δq(t)

δq(t | x) − q(t)
δ log q(t)

δq(t | x) (39)

− λ(x) δq(t | x)
δq(t | x)

+ α

[
p(x) log q(t | x) δq(t | x)

δq(t | x)

+q(t | x) p(x) δ log q(t | x)
δq(t | x)

]

− β
∑

y

[
p(y) log

[
q(t | y)
q(t)

]
δq(t | y)
δq(t | x)

]

+ β
∑

y

[
q(t | y) p(y) δ log q(t | y)

δq(t | x)

+q(t | y) p(y) δ log q(t)
δq(t | x)

]

= −p(x) log q(t)− p(x)− λ(x) (40)
+ α [p(x) log q(t | x) + p(x)]

− β
∑

y

[
p(y) log

[
q(t | y)
q(t)

]
p(x | y)

+p(y) p(x | y)− q(t | y) p(y) p(x)
q(t)

]

= −p(x) log q(t)− p(x)− λ(x) (41)
+ α [p(x) log q(t | x) + p(x)]

− βp(x)
[∑

y

p(y | x) log
[
q(t | y)
q(t)

]

+
∑

y

p(y | x)−
∑

y

q(y | t)
]

= p(x)

[
−1− log q(t)− λ(x)

p(x)
(42)

+ α log q(t | x) + α

−β
[∑

y

p(y | x) log
[
q(t | y)
q(t)

]]]
.
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Setting this to zero implies that:

α log q(t | x) = 1− α+ log q(t) +
λ(x)

p(x)
(43)

+ β

[∑

y

p(y | x) log
[
q(t | y)
q(t)

]]
.

We want to rewrite the β term as a KL diver-
gence. First, we will need that log

[
q(t|y)
q(t)

]
=

log
[
q(t,y)
q(t)p(y)

]
= log

[
q(y|t)
p(y)

]
. Second, we will add and sub-

tract β
∑
y p(y | x) log

[
p(y|x)
p(y)

]
. This gives us:

α log q(t | x) = 1− α+ log q(t) +
λ(x)

p(x)
(44)

+ β
∑

y

p(y | x) log
[
p(y | x)
p(y)

]

− β
[∑

y

p(y | x) log
[
p(y | x)
q(y | t)

]]
.

The second β term is now just DKL[p(y | x) | q(y | t)].
This leaves us with the equation:

log q(t | x) = z(x, α, β) +
1

α
log q(t) (45)

− β

α
DKL[p(y | x) | q(y | t)] ,

where we have divided both sides by α and absorbed all the
terms that don’t depend on t into the factor:

z(x, α, β) ≡ 1

α
− 1 +

λ(x)

αp(x)
(46)

+
β

α

∑

y

p(y | x) log
[
p(y | x)
p(y)

]
.

Exponentiating both sides to solve for q(t | x), we get:

d(x, t) ≡ DKL[p(y | x) | q(y | t)] (47)
`β(x, t) ≡ log q(t)− βd(x, t) (48)

q(t | x) = 1

Z
exp

[
1

α
`β(x, t)

]
(49)

where:

Z(x, α, β) ≡ exp[−z] (50)

is just a normalization factor. Now that we’re done with
the general derivation, let’s add a subscript to the solution
to distinguish it from the special cases of the IB and DIB.

qα(t | x) =
1

Z
exp

[
1

α
`β(x, t)

]
. (51)

The IB solution is then:

qIB(t | x) = qα=1(t | x) (52)

=
q(t)

Z
exp[−βd(x, t)] , (53)

while the DIB solution is:

qDIB(t | x) = lim
α→0

qα(t | x) (54)

= δ(t− t∗(x)) , (55)

with:

t∗(x) = argmax
t

`β(x, t) . (56)
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Abstract

We present the Smoothing Machine (SMACH,
pronounced “smash”), a dynamical system learn-
ing algorithm based on chain Conditional Ran-
dom Fields (CRFs) with latent states. Unlike
previous methods, SMACH is designed to opti-
mize prediction performance when we have in-
formation from both past and future observa-
tions. By leveraging Predictive State Represen-
tations (PSRs), we model beliefs about latent
states through predictive states—an alternative
but equivalent representation that depends di-
rectly on observable quantities. Predictive states
enable the use of well-developed supervised
learning approaches in place of local-optimum-
prone methods like EM: we learn regressors or
classifiers that can approximate message pass-
ing and marginalization in the space of predic-
tive states. We provide theoretical guarantees on
smoothing performance and we empirically ver-
ify the efficacy of SMACH on several dynamical
system benchmarks.

1 INTRODUCTION

In time series, smoothing is the process of inferring a pos-
teriori latent state information given a model as well as
past and future observations. Many applications leverage
smoothing for inference, ranging from machine learning
and robotics to biological science. For example, in a Lin-
ear Dynamical System (LDS), a Kalman smoother is fre-
quently used to compute the posterior distribution of the
system’s states. Similarly, in Optical Character Recogni-
tion (OCR), smoothing is used to predict the word corre-
sponding to a sequence of of handwritten characters.

Chain CRFs [Lafferty et al., 2001] are remarkably success-
ful probabilistic graphical models for these applications.
As a discriminative approach, CRFs can capture detailed

structural properties of the observations and states with
a reasonable number of parameters. (In this context, the
states are often called labels.) Given a parametrization of
the CRF, along with a training data set consisting of pairs
of ground truth labels and observations, we can learn pa-
rameters for the CRF by maximizing the (log) conditional
likelihood of the training labels given the training obser-
vations. For appropriate feature parametrizations, the log-
likelihood objective is convex and one can achieve globally
optimal solutions.

In this work, we are interested in latent chain CRFs, which
generalize CRFs by adding a layer of latent variables be-
tween the labels and observations (Figure 1a). These la-
tent variables increase the expressiveness of the underlying
probabilistic model [Stratos et al., 2013], but also make the
optimization problem more challenging: the log-likelihood
objective becomes non-convex. Iterative approaches such
as Expectation-Maximization (EM) can only compute lo-
cally optimal solutions, making the search for a globally
optimal solution computationally infeasible. Though the
global maximizer of the likelihood can promise good per-
formance if we can find it, the locally optimal solutions that
are found in practice typically do not have any performance
guarantees.

To tackle the problem of local optima, we borrow ideas
from spectral learning methods and Predictive State Repre-
sentations (PSRs). In the last decade, these methods have
been successfully used for learning and inference in la-
tent state space models such as linear dynamical systems
and hidden Markov models [Jaeger, 2000, Hsu et al., 2009,
Boots, 2012, Boots et al., 2011, Song et al., 2010, Boots
et al., 2013, Hefny et al., 2015]. The main idea is that, in-
stead of tracking latent states directly, we track observable
quantities such as expectations of features of future obser-
vations. If the features are selected to be sufficient statistics
of the latent state distribution, knowing the predictive state
is equivalent to knowing the underlying state of the system
[Jaeger, 2000, Hefny et al., 2015, Sun et al., 2016]. Spectral
learning algorithms provide theoretical guarantees: their
estimating equations typically have a unique global solu-

706



tion, which converges to the true model parameters under
the assumption of realizability (no model mismatch). How-
ever, if there is model mismatch, no theoretical guarantees
are available for the learned model or the associated infer-
ence tasks [Kulesza et al., 2014].

To gain the benefits of spectral learning methods even in the
case of model mismatch, we propose a novel algorithm, the
Smoothing Machine (SMACH). Our method builds on re-
cent work on Predictive State Inference Machines (PSIMs)
[Sun et al., 2016, Venkatraman et al., 2016]. Like a PSR, a
PSIM uses predictive states to represent beliefs about latent
states. But, unlike a PSR, a PSIM directly learns a closed-
loop filter as an inference machine that propagates the pre-
dictive state forward in time. By focusing on inference in
predictive state space rather than latent state space, a PSIM
reduces the difficult problem of learning a latent state space
model to supervised learning and achieves guaranteed per-
formance for its inference task (filtering or forward belief
propagation) even in the presence of model mismatch.

A PSIM learns a filter that uses past and current obser-
vations to predict current latent information. Recently,
Venkatraman et al. [2016] applied PSIM to forward mes-
sage passing in a graphical model with partially observable
states. However, this approach is suboptimal for estimating
latent states in an offline setting where future observations
are also available. So, SMACH extends PSIMs by learning
a smoother that takes account of both past and future ob-
servations. Similar to PSIMs and PSRs, SMACH replaces
latent states by predictions of observable quantities. Differ-
ent from classic messages in graphical models, predictive
messages represent the distributions of the sufficient statis-
tics of observable quantities (e.g., labels and observations).

SMACH treats message passing as a sequence of predic-
tions. It directly learns three predictors for approximating
message passing in the predictive state space: one for for-
ward predictive state message passing, another for back-
ward predictive state message passing, and a third for com-
bining messages at a given time step. The first predictor
learns to recursively compute forward messages that en-
code information about past events (all past observations
up to now), while the second predictor learns to compute
backward messages that encode information about future
events (all future observations after now). The last predic-
tor predicts the current label given the local observation and
the corresponding forward and backward predictive states.
At testing time, SMACH uses the first two predictors to
compute the forward and backward predictive states along
the chain, and then uses the last predictor to combine the
forward and backward predictive states with the local ob-
servations to predict the labels.

The main advantages of SMACH are: (1) It leverages pre-
dictive states to reduce the problem of learning latent chain
CRFs to a supervised setting. This reduction enables us

(a) Latent chain CRF (b) Junction Tree

Figure 1: A form of latent chain CRF and its junction
tree. The labels a (double circled) are observable in train-
ing but are latent and need to be inferred during testing.
Latent state s is never observable and x (gray) is always
observable. During testing, given all observations x1:T ,
the inference task is to compute the posterior distribution
P (at | x1:T ) for all t.

to avoid local optima and use well developed theorems of
supervised learning to quantify the smoothing performance
of SMACH. (2) Similar to PSIM, SMACH combines the
two phases of modeling and learning into a siingle task,
to directly optimize the ultimate inference task of smooth-
ing. Hence, no parametrization is needed for an explicit
probabilistic graphical model (e.g., potential functions for
cliques). (3) The learned predictors implicitly encode the
information of the underlying probabilistic models. This
enables the use of arbitrarily powerful regressors or classi-
fiers as predictors for message passing and for the computa-
tion of marginal distributions and hence provides resistance
to model mismatch. Finally, (4) as we will show, our for-
mulation fully generalizes the special case of a chain CRF
without latent states (i.e., removing s from Figure 1a).

2 PRELIMINARIES

In this work we consider a general latent chain CRF struc-
ture, as shown in Figure 1a. The model consists of three
different types of variables: (1) Labels at that can be either
continuous (e.g, positions of a mobile robot) or discrete
(e.g., labels of a hand-written character). We assume that
the ground truth labels are available in the training data,
while the labels are latent at test time and need to be pre-
dicted. (2) Latent states st (either continuous or discrete)
that are hidden both at training and test time. (3) Obser-
vations xt (either continuous or discrete), available both at
training and test time. A sequence of labels and observa-
tions {a1, x1, ..., aT , xT } defines a trajectory τ . In order to
perform the smoothing inference process, we are interested
in computing the posterior distribution of the label at, con-
ditioned on all observations {x1, ..., xT }: P (at | x1:T ),∀t.
To discuss message passing in the latent chain CRF of
Figure 1a, we first need to generate the corresponding
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junction tree representation, as shown in Figure 1b. The
junction tree allows inference algorithms to avoid the in-
ner loops in the original latent CRF model and perform
message passing as follows [Koller and Friedman, 2009].
First, pick the node (a1, s1, a2, s2) as the root and per-
form backward message passing starting from each leaf
(xt, at, st). The message at the separation set (at, st) be-
tween the node (at, st, at+1, st+1) and the node (xt, at, st)
can be represented by P (xt | at, st), where xt is the evi-
dence. We define the backward message at the separation
set (at, st), going from the node (at, st, at+1, st+1) to the
node (at−1, st−1, at, st), as bt ≡ P (at, st | xt:T ), which
we compute recursively as:

bt−1 ∝
∑

atst

P (at−1, st−1 | at, st)P (xt | at, st)bt. (1)

We assume without loss of generality that the (forward)
transition probability P (at+1, st+1 | at, st) is time-
invariant, and we write P (at, st | at+1, st+1) for the cor-
responding backward transition probability. After all back-
ward messages are computed, starting from the root, we
pass messages forward. The forward message at the sep-
aration set (at, st) from the node (at−1, st−1, at, st) to
the node (at, st, at+1, st+1) is represented by P (at, st |
x1:t−1), which we denote b̃t. The forward message is also
computed recursively:

b̃t+1 ∝
∑

st,at

P (at+1, st+1 | at, st)P (xt | at, st)b̃t. (2)

With forward and backward messages, at the node
(at, st, at+1, st+1) the marginal message P (at | x1:T ),
which we denote as b̂t, is computed as:

b̂t ∝
∑

st,at+1,st+1

P (at+1, st+1 | at, st)b̃tP (xt | at, st)bt+1

P (at+1, st+1)
.

(3)

If we assume that P (a, s) is time-invariant, the above equa-
tion can be regarded as a time-invariant, deterministic func-
tion that maps b̃t, bt+1, and the local observation xt to b̂t.

3 OBSERVABILITY AND PREDICTIVE
STATES

To perform message passing as described in Sec. 2, classic
MLE-based approaches first parametrize latent CRFs and
then learn the parametrization from training data. Learning
the parameters of the transition models and the observa-
tions models is hard due to the latent states: the log like-
lihood of the observations and labels is non-convex. As a
consequence, MLE-based approaches need to use iterative
methods such EM, which can only promise local optimality
and therefore lack performance guarantees.

Our approach leverages Predictive State Representations
(PSRs) to overcome the difficulties of dealing with latent
states. PSRs use predictive states, which consist of expec-
tations of observable quantities, as an alternative, equiva-
lent representation of latent belief states. Below, we first
introduce the definition of observability, which extends the
classic observability definition from latent state space mod-
els (e.g., LDS, HMM) to latent chain-CRFs.

3.1 OBSERVABILITY

Let us focus on a particular separation set (at, st) between
the two nodes (at−1, st−1, at, st) and (at, st, at+1, st+1)
on the junction tree modelled in Figure 2. The forward
belief in this separation set is represented as P (at, st |
x1:t−1). We define forward k-observability as follows:

Definition (Forward k-observability) There exists a con-
stant k ∈ N+ such that the relationship between P (at, st |
x1:t−1) and P (at:t+k, xt:t+k−1 | x1:t−1) is bijective.

Intuitively, forward k-observability means that the distribu-
tion of future observable quantities (labels a and observa-
tions x) uniquely determines the latent forward belief, con-
ditioned on the previous observations. We define backward
k-observability similarly:

Definition (Backward k-observability) There exists a con-
stant k ∈ N+ such that the relationship between P (at, st |
xt:T ) and P (at−k:t, xt−k:t−1 | xt:T ) is bijective.

Intuitively, backward k-observability means that the distri-
bution of past observable quantities (labels a and obser-
vations x) uniquely determines the latent backward belief
state, conditioned on future observations.1

In the Appendix, we conduct a case study of observability
on one special form of latent chain-CRF—the Refinement
Hidden Markov Model (RHMM) [Stratos et al., 2013].
Specifically, first we reduce the RHMM to a regular HMM,
and then we leverage the well-defined concept of observ-
ability of HMMs to define the forward and backward ob-
servability of the original RHMM. In fact, when we set k
big enough to cover the entire time windows of past and
future, our definition is actually agrees with the past and
future random variables defined by Stratos et al. [2013].

3.2 PREDICTIVE STATES

The definition of observability provides us with a differ-
ent way to represent the beliefs containing latent states:
we can use the joint distributions of future (past) labels

1In principle, the statistics could depend on the entire se-
quence of observations xt:T (or x1:t). The restriction to a k-step
window of visible variables simplifies the notation and is com-
monly used in practice.
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Figure 2: Illustration of the forward predictive state (blue)
and backward predictive state (green) with k = 2.

and observations to represent the forward (backward) be-
liefs about latent states. Let us define a feature function
φ that computes sufficient statistics of at:t+k, xt:t+k−1,
such that P (at:t+k, xt:t+k−1 | x1:t−1) can be repre-
sented by E[φ(at:t+k, xt:t+k−1) | x1:t−1]. (In many
cases, a good feature function is a kernel mean embed-
ding, which is guaranteed to yield sufficient statistics for
a wide range of distributions.) Similarly we define a
feature function ξ that computes sufficient statistics of
at−k:t, xt−k:t−1, such that P (at−k:t, xt−k:t−1 | xt:T ) can
be represented by E[ξ(at−k:t, xt−k:t−1) | xt:T ]. (In prac-
tice, ξ could be the same as φ.) Under the assumption
that the system is forward k-observable and backward k-
observable, we can now replace the beliefs about latent
states P (at, st | x1:t−1) and P (at, st | xt:T ) with the
predictive messages E[φ(at:t+k, xt:t+k−1) | x1:t−1] and
E[ξ(at−k:t, xt−k:t−1) | xt:T ] respectively. For notational
simplicity, let us define ft = (at:t+k, xt:t+k−1) and ht =
(at−k:t, xt−k:t−1). We define the Forward Predictive State
(FPS) mt at step t, and the Backward Predictive State
(BPS) vt at step t as:

mt = E[φ(ft) | x1:t−1], vt = E[ξ(ht) | xt:T ]. (4)

Note that our formulation fully generalizes the special case
of a chain CRF without latent states (i.e., removing all s
and edges connected to s from Figure 1a). In this case,
by setting k = 0, the forward predictive state mt becomes
E[φ(at) | x1:t−1] and the backward predictive state vt be-
comes E[ξ(at) | xt:T ]. With sufficient feature functions φ
and ξ, mt and vt are then equivalent to P (at | x1:t−1) and
P (at | xt:T ), which are the classic forward and backward
beliefs on a chain CRF.

As we will show in the next section, we can use PSIM to
compute forward and backward predictive states.

4 ALGORITHM

We now present the Smoothing Machines (SMACH) algo-
rithm (Alg. 2). As introduced in the previous section, we
first leverage PSIM to learn stationary filters for the gener-
ation of forward and backward predictive states. The final

Algorithm 1 PSIM with DAgger (Forward Pass)

1: Input: M independent trajectories τi, 1 ≤ i ≤M ;
2: Initialize D0 ← ∅ and initialize F0 ∈ F1;
3: Initialize m̂1 = 1

M

∑M
i=1 φ(f i1)

4: for n = 0 to N do
5: Use Fn to perform belief propagation (Eq. 6) on tra-

jectory τi, 1 ≤ i ≤M
6: For each trajectory τi and each time step t, add the

input zit = (mi,Fn
t , xit) encountered by Fn to D′n+1

as feature variables and the corresponding f it+1 to
D′n+1 as the targets ;

7: Aggregate dataset Dn+1 = Dn ∪D′n+1;
8: Train a new hypothesis Fn+1 ∈ F1 onDn+1 to min-

imize the loss d(F (m,x), f);
9: end for

10: Return: the best hypothesis Ff ∈ {Fn}n on valida-
tion trajectories.

step of SMACH is to combine the forward and backward
predictive states together with observations to learn a pre-
dictor for smoothing. Below we briefly introduce PSIM
and how PSIM can be used for computing predictive states.

4.1 PREDICTIVE STATE INFERENCE
MACHINES

We utilize Predictive State Inference Machines (PSIM)
[Sun et al., 2016] to directly compute the predictive states
mt and vt. PSIM is a discriminative learning approach
that learns a filter (black box represented by any regres-
sors or classifiers) to mimic the predictive message passing
process: by taking the incoming predictive message and
the local observation as inputs, it outputs the next predic-
tive message. Specifically, for forward predictive message
passing, given a trajectory τ = {a1, x1, ..., aT , xT } sam-
pled from the distribution D, PSIM aims at finding a hy-
pothesis Ff ∈ F1 to optimize the following objective:

min
Ff∈F1

Eτ
T∑

t=1

‖m̂τ
t − φ(fτt )‖2; (5)

s.t. m̂τ
t+1 = Ff (m̂τ

t , x
τ
t ). (6)

Namely, PSIM finds a hypothesis that can mimic for-
ward predictive message passing, and the quality of the
computed predictive messages are measured by the loss
‖m̂t − φ(f)t‖2 (i.e., moment matching).

Similar to forward predictive message passing, we can use
PSIM for backward predictive message passing. In this
case, PSIM aims at finding a hypothesis Fb ∈ F2 (F2 and
F1 could either be the same or different hypothesis classes)
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to optimize the backward filtering performance as:

min
Fb∈F2

Eτ
T∑

t=1

‖v̂τt − ξ(hτt )‖2; (7)

s.t. v̂τt = Fb(v̂
τ
t+1, x

τ
t ). (8)

In its original form [Sun et al., 2016], two optimization
approaches are adopted for finding Ff or Fb: one uses
Forward Training [Ross and Bagnell, 2010] to learn a
non-stationary filter, while the other uses Data Aggrega-
tion [Ross et al., 2011b] to learn a stationary filter. How-
ever, as pointed out by the authors, even if the use of
PSIM with Forward Training provably guarantees hypoth-
esis consistency (i.e., the learned filters are equal to the
true underlying filters), this solution is often impractical
due to its data inefficiency. Conversely, PSIM with Data
Aggregation is significantly more data efficient, both in
the sample complexity analysis and in the empirical anal-
ysis [Sun et al., 2016]. Therefore, in this paper, we use
PSIM with Data Aggregation to learn stationary filters for
computing approximated predictive forward messages m̂
and backward messages v̂. The detailed description of the
PSIM with DAgger for computing the hypothesis Ff for
forward predictive message passing is provided in Alg. 1.
The computation of backward predictive states will be sim-
ilar, since we only need to reverse the belief propagation
order (Line 5) using Eq. 7 and replace f, m̂,F1, Ff with
h, v,F2, Fb respectively.

Theoretically, PSIM ensures that the filtering errors result-
ing from the learned Ff and Fb are upper bounded as:2

Eτ
1

T

T∑

t=1

[‖m̂τ
t − φ(ft)‖2] ≤ εm, (9)

Eτ
1

T

T∑

t=1

[‖v̂τt − ξ(ht)‖2] ≤ εv, (10)

where εm and εv are the regression or classification error
on the aggregated dataset [Ross et al., 2011a, Sun et al.,
2016]. In practice, both εm and εv can be small when we
have an expressive hypothesis class and small noise (e.g.,
small Bayes error) [Ross et al., 2011c].

Therefore, by using PSIM, we can learn two operators Ff
and Fb that mimic the forward and backward predictive
state passing procedures. With these two operators, we
can compute the approximated backward predictive state
v̂t and the forward predictive state m̂t for the separation set
(at, st) at any time step t (Figure 2).

2The original PSIM work by Sun et al. [2016] only provides
theoretical bounds for forward message passing. However, for
backward message passing, the same bounds directly apply if we
reverse message passing direction.

Algorithm 2 Smoothing Machines (SMACH)

1: Input: M training trajectories τi = {xit, ait}Tit=1, 1 ≤
i ≤M ; Hypothesis class F1,F2,F3.

2: Run PSIM on {τi}Mt=1 to learn the forward model Ff ∈
F1.

3: Run PSIM on {τi}Mt=1 to learn the backward model
Fb ∈ F2 .

4: Initialize dataset S = ∅.
5: for each τi, 1 ≤ i ≤M do
6: Roll out Ff forward to generate forward predictive

states {m̂τi
t }Tit=1 .

7: Roll out Fb backward to generate backward predic-
tive states {v̂τit }Ti+1

t=2 .
8: Compose input feature ẑτit = (m̂τi

t , v̂
τi
t+1, x

τi
t ) for

1 ≤ t ≤ Ti .
9: Add input and output pair {(ẑτt , aτit )}Tit=1 into S.

10: end for
11: Compute the marginal hypothesis:

Ĝ = arg max
G∈F3

E(z,a)∼S `(G(z), a). (11)

12: Return: Ff , Fb, Ĝ.

4.2 SMOOTHING MACHINES

The SMACH algorithm is presented in Alg. 2. SMACH
first learns a stationary forward filter Ff ∈ F1 and a back-
ward filter Fb ∈ F2: given training data, the SMACH algo-
rithm uses PSIM to learn a hypothesis Ff that can com-
pute and pass the forward predictive states m̂t (Line 2)
and, independently, uses PSIM to learn a hypothesis Fb
that can compute and pass the backward predictive states
v̂t (Line 3). Due to their independence, learning Ff and Fb
can be executed in parallel.

To learn the final message product and marginalization
step, we first generate the predictive states by rolling out
Ff and Fb on the training trajectories (Line 6 and 7). Next,
the algorithm collects the pairs of forward messages m̂t

and backward messages v̂t+1, together with the local ob-
servation xt, as the input feature, with the corresponding
label at as the output. Finally, SMACH learns a classifier
or regressor Ĝ as shown in Eq. 11 (Line 11) by minimizing
a loss function ` that measures the prediction error. When
at is discrete, ` can be a common classification loss, such
as hinge loss, softmax, or cross entropy.

At test time, given a sequence τ , we only have access to
the observations {xτt } and need to predict {aτt }. With
the learned Ff , Fb, Ĝ, we simply roll Ff forward to com-
pute {m̂τ

t } and roll Fb backward to compute {v̂t}, in
parallel. With all the messages available, we then use
Ĝ(m̂τ

t , v̂
τ
t+1, x

τ
t ) to predict the label. This whole process

uses all observations {xτt }t to predict at a posteriori.
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4.3 DISCUSSION

Our learning algorithm shares some similarities with the
well-known Baum-Welch algorithm for HMMs. Baum-
Welch iterates between estimating the posterior distribu-
tions of latent states (using forward and backward pass),
and optimizing the parameters. SMACH also performs a
forward and backward pass to compute the messages rep-
resented by predictive states. The key difference is that we
leverage predictive state representations (PSRs) to reduce
the problem of learning latent chain-CRFs back to the su-
pervised setting, where we can avoid local optimality issues
and give strong theoretical guarantees (Sec. 5).

5 THEORETICAL ANALYSIS

Let us assume that we use PSIM to learn Ff to pass predic-
tive states forward on any given sequences of observations
{x1, ..., xT } from τ as m̂τ

t+1 = Ff (m̂τ
t , x

τ
t ), and learn Fb

to pass predictive states backward as v̂τt = Fb(v̂
τ
t+1, x

τ
t ).

Let us define ∆mτt
= mτ

t − m̂τ
t , and ∆vτt

= vτt − v̂τt , as
the difference between the underlying true predictive states
(equivalent to the original beliefs bt, b̃t due to the existence
of the bijective map) and the predictive states computed
from the learned Ff and Fb, respectively.

Eq. 9 and Eq. 10 quantify the filtering error from the ap-
proximated predictive states computed from the learned
hypothesis Ff and Fb respectively. The ultimate goal of
smoothing is to use both past and future information to
compute the posterior distribution of a label more accu-
rately. As one might expect, if we can exactly compute
the forward and backward messages, namely m̂t = mt and
v̂t+1 = vt+1 for any t and τ , then, in a realizable case,
we can exactly learn a hypothesis that takes m̂t, v̂t and the
local observations as inputs and outputs the posterior dis-
tributions of the labels. However, one may wonder if we
can still achieve strong prediction guarantees on the learned
model even if we can only approximately compute mt and
vt. Moreover, we may be interested in quantifying the per-
formance of the learned model based on the accuracy of the
approximated predictive states (e.g., using ∆mt and ∆vt ).
In order to perform this type of analysis, we first introduce
some lemmas and notation.

The following lemma extends the results for PSIM shown
in Eq. 9 and 10, by explicitly quantifying ∆m̂t and ∆v̂t :

Lemma 5.1. Given Eq. 9 and 10 from PSIM, for ∆m̂t and
∆v̂t , we have:

1

T

T∑

t=1

Eτ [‖∆mτt
‖2] ≤ 2(εm + δm); (12)

1

T

T∑

t=1

Eτ [‖∆vτt
‖2] ≤ 2(εv + δv); (13)

where δm = 1
T

∑T
t=1 Eτ [‖mτ

t − φ(ft)‖2] and δv =
1
T

∑T
t=1 Eτ [‖vτt − ξ(ht)‖2].

Proof for this lemma and the lemmas/theorems in the re-
mainder of this paper are all included in Appendix.

The above lemma states that the size of ∆m (or ∆v) is up-
per bounded by the sum of εm (or εv), which is the risk re-
sulting from the predicted messages, and δm (or δv), which
is the Bayes error resulting from the system itself. Note
that the Bayes error is purely determined by the underly-
ing systems and has nothing to do with the learning algo-
rithms. In general, we cannot guarantee the elimination of
the Bayes errors. This is because when aiming at learning a
stationary Ff (or Fb) for forward (or backward) predictive
message passing, the objective (Eq. 5) that PSIM tries to
optimize is non-convex. Even ideally assuming that PSIM
is risk consistent, i.e., it finds an F that has the same fil-
tering error (risk) as the true underlying filter for predic-
tive states, which is the best we can do for a general non-
convex objective, we still cannot promise that the learned F
is exactly the true underlying filter. Therefore, even if F is
risk consistent with respect to the underlying true filter, we
cannot promise that the approximated predictive state m̂t

generated from F would be exactly equal to the true un-
derlying state mt. More detailed explanation is included in
Appendix. However, as shown in Lemma. 5.1, the smaller
the filtering error from PSIM, the better approximation we
get for the predictive states.

To analyze the performance of the learned marginalization
hypothesis Ĝ, we first assume that the loss function `(·, ·)
that we are using for classification is Lipschitz continuous,
with constantL1 with respect to the first item (G(z)). Com-
monly used classification loss functions have this property
(e.g., hinge loss, logistic loss). Additionally, we assume
that G(·), for any G ∈ F3, is also Lipschitz continuous
with constantL2 with respect to z. This is also a reasonable
assumption for common hypothesis classes such as linear,
quadratic and, in fact, any differentiable hypotheses with
bounded first derivatives.

Let us defineG∗ as the minimizer of the true risk measured
under the true messages (mτ

t , v
τ
t ):

G∗ = arg max
G∈F3

Eτ [`(G(zτt ), aτt )], (14)

where zτt is composed as (mτ
t , v

τ
t+1, x

τ
t ) with the true un-

derlying predictive messages mτ
t , v

τ
t+1 on the sequence τ .

With sufficient feature functions φ and ξ,mτ
t and vτt will be

equivalent to bτt and b̃τt subject to a bijective map. Hence,
in a realizable case, G∗ encodes as much information as
the true underlying marginalization step in the original la-
tent chain-CRF, as shown in Eq. 3. Let us first analyze
the learned model Ĝ under the assumption of infinite many
training trajectories (M →∞):
Theorem 5.2. Assuming Ff and Fb from PSIM gener-
ate the messages m̂t and v̂t satisfying Eq. 12 and 13, the
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marginalization hypothesis Ĝ obtained from Eq. 11 has the
following property:

1

T

T∑

t=1

Eτ∼D[`(Ĝ(ẑτt ), aτt )]

≤ 1

T
Eτ∼D[`(G∗(zτt ), aτt )] +O(εm + εv + δm + δv).

The above theorem shows that if PSIM learns good hypoth-
esis Ff and Fb for estimating messages (e.g., εm and εm
are small) and the underlying noise of the dynamical sys-
tems is not big, the learned hypothesis Ĝ can achieve com-
petitive smoothing performance with respect to G∗—the
global minimizer of the smoothing risk with access to the
true messages (e.g., mτ

t , vτt ).

For Theorem 5.2 we assumed an infinite number of training
sequences, although in practice, we only have a finite num-
ber of sequences. To show the finite sample complexity
of our algorithm, we additionally assume that the training
sequences τ1, ..., τM are separated in two halves. We use
the first half to learn Ff and Fb with PSIM, and the sec-
ond half to generate messages m̂ and v̂ with Ff and Fb,
and then train Ĝ for the marginalization step. This assump-
tion ensures that, at every time step t, the generated mes-
sages {m̂τM/2

t , m̂
τM/2+1

t , ..., m̂τM
t } are i.i.d sampled (note

that Ff is independent with respect to τM/2, ..., τM , and
each τ is i.i.d sampled). Let us define the distribution
d̂t as the distribution of ẑτt = (m̂τ

t , v̂
τ
t+1, x

τ
t ). Note that

{(m̂τi
t , v̂

τi
t+1, x

τi
t )}Mi=M/2 will be i.i.d sampled from d̂t. For

convenience, we assume that we have 2M training se-
quences. We use the first M sequences for PSIM to learn
Ff and Fb and the remaining M for learning Ĝ.

Using the finite sample analysis for PSIM with Data Aggre-
gation as the optimization tool,we first extend Lemma. 5.1
to the corresponding high probability bounds:

Lemma 5.3. Using PSIM with Data Aggregation, with
probability 1− δ, we have:

1

T

T∑

t=1

Eτ [(∆mτt
)] ≤ 2γ̂m + 2ε̂m + 2δm +O(

√
ln(1/δ)

MN
);

1

T

T∑

t=1

Eτ [(∆vτt
)] ≤ 2γ̂v + 2ε̂v + 2δv +O(

√
ln(1/δ)

MN
);

where N is number of iterations PSIM used and γ̂m and
γ̂v converge to zero as N →∞

We present the finite sample analysis using Rademacher
complexity. We define Rt(F3) as the Rademacher num-
ber of the hypothesis class F3 under distribution d̂t, and
R̄(F3) = (R1(F3) + ... + RT (F3))/T , as the average
Rademacher number across T time steps. In our analysis,
we assume we know T or the upper bound of T .

KF EKF KS iEKS SMACH-0 Avg ‖at‖2
Cart-Pole 12.80 2.14 4.13 2.02 0.29 0.65
Bicycle 0.093 0.068 0.091 0.067 0.065 2.01
Helicopter ∼ 2.49 ∼ 2.19 2.17 21.98
Swimmer ∼ 1.90 ∼ 1.72 0.69 9.61

Table 1: Prediction error of different approaches without
latent states (at encodes the exact state of the system).

Theorem 5.4. Given 2M training sequences for Alg. 2, as
N →∞, with probability 1−δ, for anyG∗ ∈ F3, we have:

1

T

T∑

t=1

Eτ∼D[`(Ĝ(ẑτt ), aτt )] ≤ 1

T

T∑

t=1

Eτ∼D[`(G∗(zτt ), aτt )]

+ Õ(

√
ln(1/δ)

M
) +O(R̄(F3) + ε̂m + ε̂v + δv + δm).

6 EXPERIMENTS
We test SMACH on two different types of datasets: (1)
datasets with continuous labels at (SMACH needs to per-
form regression), which are collected from several simu-
lated robotics dynamical systems, and (2) datasets whose
labels at are discrete (SMACH needs to perform classifi-
cation), which are from two domains: Optical Character
Recognition, a sequential image recognition task, and ques-
tions and answers recognition [McCallum et al., 2000], a
Natural Language Processing task.

6.1 REGRESSION TASKS

To show that our approach is able to deal with complicated,
non-linear dynamical models of robotics systems, we test
our approach on four classic simulated dynamics models:
(1) Cart-Pole Balancing, (2) Bicycle Balancing [Ernst et al.,
2005], (3) Helicopter Hover [Abbeel et al., 2005] and (4)
Swimmer [Tassa et al., 2008]. The simulated models are
available from RLPy [Geramifard et al., 2013].

We compare SMACH to classic physics-based algorithms:
the Kalman Filter (KF), the Kalman Smoother (KS), the
Extended Kalman Filter (EKF), and the iterated Extended
Kalman Smoother (iEKS) [Bell, 1994]. We first consider
the chain-CRF structure without latent states (no st in
Fig. 1a). Hence, the label at represents the full state of
the robot, and xt is generated from at through a stochastic
observation model. Since there are no latent states, we set
k = 0. Here, we define the smoothing error as the average
of the prediction errors ‖a− â‖2.

In our setup, we allow KF, KS, EKF, iEKS to access the
real underlying dynamical models and observation models.
For KF and KS, we linearize the real dynamics and obser-
vation model around the balancing state. Note that directly
comparing to KF, KS EKF, and iEKS is not fair since these
approaches have access to the true stochastic dynamical
models, while SMACH only has access to the data gen-
erated from the models. Nevertheless, as we can see from
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Tab. 1, by using Kernel Ridge regression (i.e., F1,F2,Ft
are Reproducing Kernel Hilbert Spaces), SMACH outper-
forms these classic physics-based approaches on all four
testbeds.3 We only tested SMACH-0 here as we do not
have latent states st in the setup here. As we expected, in-
creasing k (using predictive states) does not give noticeable
improvement on the prediction error.

To test the performances of SMACH with latent states, we
separate the full state into two parts: labels at and latent
states st (see Appendix for the detailed components of st
and at). Under this setup, SMACH is never allowed to
access st. Due to the existence of latent states, we set
k ≥ 1 (i.e. we use predictive states). Figure 3a and 3b
show the performance of SMACH as k increases on the bi-
cycle balancing and swimmer datasets. A similar trend is
observed on the other two datasets. Overall, the smooth-
ing performance improves as k increases, which illustrates
that longer predictive states can potentially capture more
information about latent states. Interestingly, SMACH out-
performs iEKS (note that we still give iEKS full access to
the latent states st in order to perform Kalman smoothing,
but we only report smoothing prediction error with respect
to label at). Since iEKS can be understood as applying
the Gauss-Newton algorithm on the log likelihood, which
could be non-convex due to non-linear dynamics and obser-
vation models, it is likely that iEKS will be stuck at locally
optimal solutions.

Since KF, KS, EKF, and iEKS have access to the perfect
stochastic models, this set of experiments also supports one
of our main claims: separately learning the models and
then using the learned models to perform inference may
result in decreased performance. This can happen even if
we can leverage powerful learning algorithms to learn the
perfect models (e.g., using Gaussian Process [Deisenroth
et al., 2012] or Hilbert space embeddings [Nishiyama et al.,
2016] to model dynamics) due to the unavoidable approx-
imations that one usually needs in order to make inference
computationally tractable (e.g., linearize the real/learned
dynamics and observations models as KF, KS, GP-EKF
and GP-EKS [Ko and Fox, 2009] do). These approxima-
tions on the learned/real models may cancel out the benefits
derived from the availability of perfect models. SMACH,
instead, directly learns powerful predictors to optimize the
smoothing performance. Since the predictors operate as
black boxes to directly perform the smoothing operation,
no further approximation is needed for inference.

6.2 CLASSIFICATION TASKS

We evaluate SMACH on classification tasks belonging to
two different domains: Optical Character Recognition and

3Note that, for iEKS, we use the solutions from EKF as ini-
tialization. Simply using random initialization, or the average of
the training trajectories as initialization, does not perform well.

(a) Bicycle (b) Swimmer

Figure 3: Performance of SMACH with respect to k (length
of predictive states) for models with latent states.

questions and answers recognition (FAQ) [McCallum et al.,
2000]. In this case, for fair comparison to previous ap-
proaches, we use standard feature design. We compare
SMACH to two families of algorithms: (1) search-based
prediction algorithms such as SEARN [Daumé III et al.,
2009], DAgger [Ross et al., 2011b], and PSIM [Sun et al.,
2016], (2) CRF [Lafferty et al., 2001] and its extensions,
such as Hidden-unit CRF [van der Maaten et al., 2011] and
NeuroCRFs [Do et al., 2010].

Optical Character Recognition The OCR dataset con-
tains 6877 handwritten words. Each word is represented
as a series of handwritten characters and there are 52152
total characters. Each character is a binary 16 × 8 image,
leading to 128-dimensional binary feature vectors. Each
character is one of the 26 letters in the English alphabet.
We define the binary vector for character at slot t as ct.
The task is to predict the identity of each character, given
a sentence. In our experiments, we use a 7-step time win-
dow: we represent xt as [ct−3, ..., ct, ..., ct+3] and we test
SMACH with different k (SMACH-k).

We first test SMACH on a small experimental setting,
where we separate the dataset into 10 folds and perform
training on one fold while testing on the remaining 9
folds. Table 2 shows the comparison between SMACH
and other closely related approaches.4 SMACH outper-
forms SEARN, DAgger and PSIM, which are the state-
of-art search-based prediction algorithms. Compared to
probabilistic graphical model approaches, SMACH also
has better performance than CRFs. From Table 2, we see
that from DAgger (equivalent to PSIM-0) to PSIM-1 and
PSIM-2 the prediction error decreases when we use, in the
predictive messages, more steps of future/past labels and
observations. This is consistent with the claim from Sun
et al. [2016] that a larger k can lead to more accurate pre-
dictive states. As a result, SMACH-2 surpasses SMACH-
1, since SMACH-2 uses more accurate predictive messages
computed from PSIM-2. This evidence agrees with Theo-

4The results of SVMstruct, SVMstruct, M3N, CRF are
from [Nguyen and Guo, 2007]; SVMstruct2 and CRF2 are from
[Keerthi and Sundararajan, 2007]
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SVMstruct SVMstruct2 M3N SEARN
21.16 19.24 25.08 27.02
CRF CRF2 Hidden unit CRF DAgger
32.30 19.97 18.36 30.02

PSIM-1 PSIM-2 SMACH-1 SMACH-2
26.11 23.89 18.41 16.21

Table 2: Comparison of SMACH with previous related ap-
proaches on the small OCR experimental setting.

Figure 4: Performance of SMACH-k on large OCR task.

rem 5.4: when we have more accurate predictive messages
for the marginal step (e.g., smaller ε), the marginal step has
a smaller generalization error. We also ran SMACH on a
larger setting (training on 9 folds and testing on the remain-
ing one) with different k, reporting the results in Figure 4.5

From the graph, we note that larger k can greatly improve
smoothing performance. SMACH-3 achieves an average
prediction error of 3.5%, while Hidden unit CRF achieves
a 2.0% prediction error. Note, however, that SMACH-2
achieves a smaller error in the small experiment.

Recognizing questions and answers We also test
SMACH on the FAQ dataset from McCallum et al. [2000].
We use the same feature representation from McCallum
et al. [2000], where each sentence is described using a 24-
dimensional binary vector. Each sentence in the FAQ data
set is labeled by one of four labels: (1) question, (2) answer,
(3) header, or (4) footer. We use linear SVM for PSIM
for computing backward and forward predictive states. For
the marginalization step, we use two classifiers: Linear
SVM with Random Fourier feature (RFF-SVM) and Ran-
dom Forest (RF) with 60 trees and maximum depth 30.

From Table 3, we see that both SMACH with RFF-SVM
and SMACH with RF achieve performances which are
comparable to Hidden-unit CRF [van der Maaten et al.,
2011] with Stochastic Gradient Descent as the optimiza-
tion (we note that SMACH performs slightly better than
hidden-unit CRF with other optimizers like Perceptron and
BFGS). SMACH with RF gives slightly better performance
than SMACH with RFF-SVM. This indicates that using a
powerful classifier for the marginal step can potentially en-

5The result of SVM+CRF is from [Hoefel and Elkan, 2008].

Method Error (%)
Linear SVM [Do et al., 2010] 9.87

Linear CRF [Maaten et al., 2011] 6.54
NeuroCRFs [Do et al., 2010] 6.05

Hidden-unit CRF [Maaten et al., 2011] 4.43
DAgger 7.47

SMACH-0 with RFF-SVM 5.10
SMACH-0 with RF 5.01

Table 3: Comparison of SMACH with related approaches
on the FAQ dataset.

hance the performance. We also tested k = 1, leading to a
slightly worse performance than k = 0. Since we are only
allowed to use one file (one sequence) to train the model
and test on all the remaining files in the same group [Mc-
Callum et al., 2000], when we increase k, we may not have
enough training data, since the complexity of the hypothe-
sis classes increases as k becomes larger.

7 CONCLUSION

In this paper we present Smoothing Machines (SMACH),
a data-driven approach that directly optimizes smoothing
performance on time series with latent states. We use
the concepts of predictive states and inference machines
to directly learn functions that mimic forward and back-
ward message passing in our system. Under this setting,
we can achieve strong performance guarantees for the ulti-
mate inference task (i.e., smoothing) in the agnostic setting.
We show that SMACH outperforms classic physics-based
smoothing algorithms on dynamical systems with compli-
cated non-linear transition models. We also show that in the
presence of latent states, using more features (i.e., a longer
time window) can boost the algorithm’s performance. Ad-
ditionally, our experimental results on classification tasks
are promising. We leave the application of SMACH on
more complicated NLP tasks (e.g., Part of Speech Tagging)
as future work.
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Abstract

In many cases, feature selection is often more
complicated than identifying a single subset of
input variables that would together explain the
output. There may be interactions that depend
on contextual information, i.e., variables that re-
veal to be relevant only in some specific circum-
stances. In this setting, the contribution of this
paper is to extend the random forest variable im-
portances framework in order (i) to identify vari-
ables whose relevance is context-dependent and
(ii) to characterize as precisely as possible the ef-
fect of contextual information on these variables.
The usage and the relevance of our framework for
highlighting context-dependent variables is illus-
trated on both artificial and real datasets.

1 MOTIVATION

Supervised learning finds applications in many domains
such as medicine, economics, computer vision, or bioin-
formatics. Given a sample of observations of several in-
puts and one output variable, the goal of supervised learn-
ing is to learn a model for predicting the value of the out-
put variable given any values of the input variables. An-
other common side objective of supervised learning is to
bring as much insight as possible about the relationship
between the inputs and the output variable. One of the
simplest ways to gain such insight is through the use of
feature selection or ranking methods that identify the input
variables that are the most decisive or relevant for predict-
ing the output, either alone or in combination with other
variables. Among feature selection/ranking methods, one
finds variable importance scores derived from random for-
est models that stand out from the literature mainly be-
cause of their multivariate and non parametric nature and
their reasonable computational cost. Although very use-
ful, feature selection/ranking methods however only pro-
vide very limited information about the often very com-

plex input-output relationships that can be modeled by su-
pervised learning methods. There is thus a high interest in
designing new techniques to extract more complete infor-
mation about input-output relationships than a single global
feature subset or feature ranking.

In this paper, we specifically address the problem of the
identification of the input variables whose relevance or ir-
relevance for predicting the output only holds in specific
circumstances, where these circumstances are assumed to
be encoded by a specific context variable. This context
variable can be for example a standard input variable, in
which case, the goal of contextual analyses is to better un-
derstand how this variable interacts with the other inputs
for predicting the output. The context can also be an exter-
nal variable that does not belong to the original inputs but
that may nevertheless affect their relevance with respect to
the output. Practical applications of such contextual anal-
yses are numerous. E.g., one may be interested in finding
variables that are both relevant and independent of the con-
text, as in medical studies (see, e.g., Geissler et al., 2000),
where one is often interested in finding risk factors that are
as independent as possible of external factors, such as the
sex of the patients, their origins or their data cohort. By
contrast, in some other cases, one may be interested in find-
ing variables that are relevant but dependent in some way
on the context. For example, in systems biology, differen-
tial analysis (Ideker and Krogan, 2012) aims at discovering
genes or factors that are relevant only in some specific con-
ditions, tissues, species or environments.

Our contribution in this paper is two-fold. First, starting
from common definitions of feature relevance, we propose
a formal definition of context-dependent variables and pro-
vide a complete characterization of these variables depend-
ing on how their relevance is affected by the context vari-
able. Second, we extend the random forest variable im-
portances framework in order to identify and characterize
variables whose relevance is context-dependent or context-
independent. Building on existing theoretical results for
standard importance scores, we propose asymptotic guar-
antees for the resulting new measures.
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The paper is structured as follows. In Section 2, we first
lay out our formal framework defining context-dependent
variables and describing how the context may change their
relevance. We describe in Section 3 how random forest
variable importances can be used for identifying context-
dependent variables and how the effect of contextual infor-
mation on these variables can be highlighted. Our results
are then illustrated in Section 4 on representative problems.
Finally, conclusions and directions of future works are dis-
cussed in Section 5.

2 CONTEXT-DEPENDENT FEATURE
SELECTION AND CHARACTERIZATION

Context-dependence. Let us consider a set V =
{X1, . . . , Xp} of p input variables and an output Y and let
us denote by V −m the set V \ {Xm}. All input and output
variables are assumed to be categorical, not necessarily bi-
nary1. The standard definitions of relevant, irrelevant, and
marginally relevant variables based on their mutual infor-
mation I are as follows (Kohavi and John, 1997; Guyon
and Elisseeff, 2003):

• A variable Xm is relevant to Y with respect to V iff
there exists a subset B ⊆ V −m (possibly empty) such
that I(Y ;Xm|B) > 0.

• A variable Xm is irrelevant to Y with respect to V iff,
for all B ⊆ V −m, I(Y ;Xm|B) = 0.

• A variable is marginally relevant to Y iff I(Y ;Xm) >
0.

Let us now assume the existence of an additional (ob-
served) context variable Xc /∈ V , also assumed to be
categorical. Inspired by the notion of relevant and irrele-
vant variables, we propose to define context-dependent and
context-independent variables as follows:

Definition 1. A variable Xm ∈ V is context-dependent to
Y with respect to Xc iff there exists a subset B ⊆ V −m

and some values xc and b such that2:

I(Y ;Xm|B = b,Xc = xc) 6= I(Y ;Xm|B = b). (1)

Definition 2. A variable Xm ∈ V is context-independent
to Y with respect to Xc iff for all subsets B ⊆ V −m and
for all values xc and b, we have:

I(Y ;Xm|B = b,Xc = xc) = I(Y ;Xm|B = b). (2)

1Non categorical outputs are discussed in Section 3.5.
2In this definition and all definitions that follow, we assume

that the events on which we are conditioning have a non-zero
probability and that if such event does not exist then the condi-
tion of the definition is not satisfied.

Context-dependent variables are thus the variables for
which there exists a conditioning set B in which the in-
formation they bring about the output is modified by the
context variable. Context-independent variables are the
variables that, in all conditionings B = b, bring the same
amount of information about the output whether the value
of the context is known or not. This definition is meant to
be as general as possible. Other more specific definitions
of context-dependence are as follows:

∃B ⊆ V −m, b, x1c , x
2
c :

I(Y ;Xm|Xc = x1c , B = b) 6= I(Y ;Xm|Xc = x2c , B = b),
(3)

∃B ⊆ V −m, xc :

I(Y ;Xm|Xc = xc, B) 6= I(Y ;Xm|B),
(4)

∃B ⊆ V −m, b :

I(Y ;Xm|Xc, B = b) 6= I(Y ;Xm|B = b),
(5)

∃B ⊆ V −m :

I(Y ;Xm|Xc, B) 6= I(Y ;Xm|B).
(6)

These definitions all imply context-dependence as defined
in Definition 1 but the converse is in general not true. For
example, Definition (3) misses problems where the con-
text makes some otherwise irrelevant variable relevant but
where the information brought by this variable about the
output is exactly the same for all values of the context. A
variable that satisfies Definition (1) but not Definition (4)
is given in example 1. This example can be easily adapted
to show that both Definitions (5) and (6) are more specific
than Definition (1) (by swapping the roles of Xc and X2).

Example 1. This artificial problem is defined by two in-
put variables X1 and X2, an output Y , and a context Xc.
X1, X2, and Xc are binary variables taking their values in
{0, 1}, while Y is a quaternary variable taking its values
in {0, 1, 2, 3}. All combinations of values for X1, X2, and
Xc have the same probability of occurrence 0.125 and the
conditional probability P (Y |X1, X2, XC) is defined by the
two following rules:

• If X2 = Xc then Y = X1 with probability 1.

• If X2 6= Xc then Y = 2 with probability 0.5 and
Y = 3 with probability 0.5.

The corresponding data table is given in Appendix A. For
this problem, it is easy to show that I(Y ;X1|X2 = 0, Xc =
0) = 1 and that I(Y ;X1|X2 = 0) = 0.5, which means
condition (1) is satisfied and X1 is thus context-dependent
to Y with respect to Xc according to our definition. On the
other hand, we can show that:

I(Y ;X1|Xc = xc) = I(Y ;X1) = 0.5

I(Y ;X1|X2, Xc = xc) = I(Y ;X1|X2) = 0.5,

for any xc ∈ {0, 1}, which means that condition (4) can
not be satisfied for X1.
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To simplify the notations, the context variable was assumed
to be a separate variable not belonging to the set of in-
puts V . It can however be considered as an input vari-
able, whose own relevance to Y (with respect to V ∪{Xc})
can be assessed as for any other input. Let us exam-
ine the impact of the nature of this variable on context-
dependence. First, it is interesting to note that the defi-
nition of context-dependence is not symmetric. A variable
Xm being context-dependent to Y with respect to Xc does
not imply that the variable Xc is context-dependent to Y
with respect to Xm.3 Second, the context variable does
not need to be marginally relevant for some variable to be
context-dependent, but it needs however to be relevant to Y
with respect to V . Indeed, we have the following theorem
(proven in Appendix B):

Theorem 1. Xc is irrelevant to Y with respect to V iff all
variables in V are context-independent to Y with respect
to Xc (and V ) and I(Y ;Xc) = 0.

As a consequence of this theorem, there is no interest in
looking for context-dependent variables when the context
itself is not relevant.

Characterizing context-dependent variables. Contex-
tual analyses need to focus only on context-dependent vari-
ables since, by definition, context-independent variables
are unaffected by the context: their relevance status (rel-
evant or irrelevant), as well as the information they contain
about the output, remain indeed unchanged whatever the
context.

Context-dependent variables may be affected in several di-
rections by the context, depending both on the condition-
ing subset B and on the value xc of the context. Given
a context-dependent variable Xm, a subset B and some
values b and xc such that I(Y ;Xm|B = b,Xc = xc) 6=
I(Y ;Xm|B = b), the effect of the context can either be an
increase of the information brought byXm (I(Y ;Xm|B =
b,Xc = xc) > I(Y ;Xm|B = b)) or a decrease of this in-
formation (I(Y ;Xm|B = b,Xc = xc) < I(Y ;Xm|B =
b)). Furthermore, for a given variable Xm, the direction of
the change can differ from one context value xc to another
(at fixed B and b) but also from one conditioning B = b
to another (for a fixed context xc). Example 2 below illus-
trates this latter case. This observation makes a global char-
acterization of the effect of the context on a given context-
dependent variable difficult. Let us nevertheless mention
two situations where such global characterization is possi-
ble:

Definition 3. A context-dependent variable Xm ∈ V is
context-complementary (in a context xc) iff for all B ⊆
V −m and b, we have I(Y ;Xm|B = b,Xc = xc) ≥
I(Y ;Xm|B = b).

Definition 4. A context-dependent variable Xm ∈ V

3But this would be the case if we had adopted definition (6).

is context-redundant (in a context xc) iff for all B ⊆
V −m and b, we have I(Y ;Xm|B = b,Xc = xc) ≤
I(Y ;Xm|B = b).

Context-complementary and redundant variables are vari-
ables that always react in the same direction to the con-
text and thus can be characterized globally without loss
of information. Context-complementary variables are vari-
ables that bring complementary information about the out-
put with respect to the context, while context-redundant
variables are variables that are redundant with the context.
Note that context-dependent variables that are also irrel-
evant to Y are always context-complementary, since the
context can only increase the information they bring about
the output. Context-dependent variables that are relevant to
Y however can be either context-complementary, context-
redundant, or uncharacterized. A context-redundant vari-
able can furthermore become irrelevant to Y as soon as
I(Y ;Xm|B = b,Xc = xc) = 0 for all B, b, and xc.

Example 2. As an illustration, in the problem of Exam-
ple 1, X1 and X2 are both relevant and context-dependent
variables. X1 can not be characterized globally since we
have simultaneously:

I(Y ;X1|X2 = 0, Xc = xc) > I(Y ;X1|X2 = 0)

I(Y ;X1|X2 = 1, Xc = xc) < I(Y ;X1|X2 = 1),

for both xc = 0 and xc = 1. X2 is however context-
complementary as the knowledge of Xc always increases
the information it contains about Y .

Related works. Several authors have studied interactions
between variables in the context of supervised learning.
They have come up with various interaction definitions and
measures, e.g., based on multivariate mutual information
(McGill, 1954; Jakulin and Bratko, 2003), conditional mu-
tual information (Jakulin, 2005; Van de Cruys, 2011), or
variants thereof (Brown, 2009; Brown et al., 2012). There
are several differences between these definitions and ours.
In our case, the context variable has a special status and
as a consequence, our definition is inherently asymmetric,
while most existing variable interaction measures are sym-
metric. In addition, we are interested in detecting any in-
formation difference occurring in a given context (i.e., for
a specific value of Xc) and for any conditioning subset B,
while most interaction analyses are interested in average
and/or unconditional effects. For example, (Jakulin and
Bratko, 2003) propose as a measure of the interaction be-
tween two variables X1 and X2 with respect to an output
Y the multivariate mutual information, which is defined as
I(Y ;X1;X2) = I(Y ;X1) − I(Y ;X1|X2). Unlike our
definition, this measure can be shown to be symmetric with
respect to its arguments. Adopting this measure to define
context-dependence would actually amount at using con-
dition (6) instead of condition (1), which would lead to a
more specific definition as discussed earlier in this section.
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The closest work to ours in this literature is due to Tur-
ney (1996), who proposes a definition of context-sensitivity
that is very similar to our definition of context-dependence.
Using our notations, Turney (1996) defines a variable Xm

as weakly context-sensitive to the variable Xc if there exist
some subset B ⊆ V −m and some values y, xm, b, and xc
such that these two conditions hold:

p(Y = y|Xm = xm, Xc = xc, B = b) 6= p(Y = y|Xm = xm, B = b),

p(Y = y|Xm = xm, Xc = xc, B = b) 6= p(Y = y|Xc = xc, B = b).

Xm is furthermore defined as strongly context-sensitive to
Xc if Xm is weakly sensitive to Xc, Xm is marginally rel-
evant,and Xc is not marginally relevant. These two def-
initions do not exactly coincide with ours and they have
two drawbacks in our opinion. First, they do not con-
sider that a perfect copy of the context is context-sensitive,
which we think is counter-intuitive. Second, while strong
context-sensitivity is asymmetric, the constraints about the
marginal relevance of Xm and Xc seems also unnatural.

Our work is also somehow related to several works in the
graphical model literature that are concerned with context-
specific independences between random variables (see e.g.
Boutilier et al., 1996; Zhang and Poole, 1999). Boutilier
et al. (1996) define two variables Y and Xm as contex-
tually independent given some B ⊆ V −m and a context
value xc as soon as I(Y ;Xm|B,Xc = xc) = 0. When
B ∪ {Xm, Xc} are the parents of node Y in a Bayesian
network, then such context-specific independences can be
exploited to simplify the conditional probability tables of
node Y and to speed up inferences. Boutilier et al. (1996)’s
context-specific independences will be captured by our def-
inition of context-dependence as soon as I(Y ;Xm|B) > 0.
However, our framework is more general as we want to de-
tect any context dependencies, not only those that lead to
perfect independences in some context.

3 CONTEXT ANALYSIS WITH RANDOM
FORESTS

In this section, we show how to use variable importances
derived from Random Forests first to identify context-
dependent variables (Section 3.2) and then to characterize
the effect of the context on the relevance of these vari-
ables (Section 3.3). Derivations in this section are based
on the theoretical characterization of variable importances
provided in (Louppe et al., 2013), which is briefly reminded
in Section 3.1. Section 3.4 discusses practical considera-
tions and Section 3.5 shows how to generalize our results
to other impurity measures.

3.1 Variable importances

Within the random forest framework, Breiman (2001) pro-
posed to evaluate the importance of a variable Xm for pre-

dicting Y by adding up the weighted impurity decreases for
all nodes t where Xm is used, averaged over all NT trees
in the forest:

Imp(Xm) =
1

NT

∑

T

∑

t∈T :v(st)=Xm

p(t)I(Y ;Xm|t) (7)

where v(st) is the variable used in the split st at node t,
p(t) is the proportion of samples reaching t and I is the
mutual information.

According to Louppe et al. (2013), for any ensemble of
fully developed trees in asymptotic learning sample size
conditions, the Mean Decrease Impurity (MDI) impor-
tance (7) can be shown to be equivalent to

Imp(Xm) =

p−1∑

k=0

1

Ckp

1

p− k
∑

B∈Pk(V −m)

I(Y ;Xm|B),

(8)
where Pk(V −m) denotes the set of subsets of V −m of size
k. Most notably, it can be shown (Louppe et al., 2013) that
this measure is zero for a variable Xm iff Xm is irrelevant
to Y with respect to V . It is therefore well suited for iden-
tifying relevant features.

3.2 Identifying context-dependent variables

Theorem 1 shows that if the context variable Xc is irrele-
vant, then it can not interact with the input variables and
thus modify their importances. This observation suggests
to perform, as a preliminary test, a standard random forest
variable importance analysis using all input variables and
the context in order to check the relevance of the latter. If
the context variable does not reveal to be relevant, then,
there is no hope to find context-dependent variables.

Intuitively, identifying context-dependent variables seems
similar to identifying the variables whose importance is
globally modified when the context is known. There-
fore, one first straightforward approach to identify context-
dependent variables is to build a forest per value Xc = xc
of the context variable, i.e., using only the data samples for
which Xc = xc , and also globally, i.e. using all samples
and not including the context among the inputs. Then it
consists in deriving from these models an importance score
for each value of the context, as well as a global importance
score. Context-dependent variables are then the variables
whose global importance score differs from the contextual
importance scores for at least one value of the context.

More precisely, let us denote by Imp(Xm) the global score
of a variable Xm computed using (7) from all samples and
by Imp(Xm|Xc = xc) its importance score as computed
according to (7) using only those samples such that Xc =
xc. With this approach, a variable would be declared as
context-dependent as soon as there exists a value xc such
that Imp(Xm) 6= Imp(Xm|Xc = xc).
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Although straightforward, this approach has several draw-
backs. First, in the asymptotic setting of Section 3.1, it
is not guaranteed to find all context-dependent variables.
Indeed, asymptotically, it is easy to show from (8) that
Imp(Xm)− Imp(Xm|Xc = xc) can be written as:

Impxc(Xm) , Imp(Xm)− Imp(Xm|Xc = xc) (9)

=

p−1∑

k=0

1

Cp
k

1

p− k
∑

B∈Pk(V
−m)

↪→ (I(Y ;Xm|B)− I(Y ;Xm|B,Xc = xc)).

(10)

Example 1 shows that I(Y ;Xm|B) can be equal to
I(Y ;Xm|B,Xc = xc) for a context-dependent variable.
Therefore we have the property that if there exists an xc
such that Impxc(Xm) 6= 0, then the variable is context-
dependent but the opposite is unfortunately not true. An-
other drawback of this approach is that in the finite case, we
do not have the guarantee that the different forests will have
explored the same conditioning sets B and therefore, even
assuming that the learning sample is infinite (and therefore
that all mutual informations are perfectly estimated), we
lose the guarantee that Impxc(Xm) 6= 0 for a given xc
implies context-dependence.

To overcome these issues, we propose the following new
importance score to identify context-dependent variables:

Imp|xc|(Xm) , 1

NT

∑

T

∑

t∈T :v(st)=Xm

p(t)

↪→ |I(Y ;Xm|t)− I(Y ;Xm|t,Xc = xc)|
(11)

This score is meant to be computed from a forest of to-
tally randomized trees built from all samples, not includ-
ing the context variable among the inputs. At each node
t where the variable Xm is used to split, one needs to
compute the absolute value of the difference between the
mutual information between Y and Xm estimated from
all samples reaching that node and the mutual information
between Y and Xm estimated only from the samples for
which Xc = xc. The same forest can then be used to com-
pute Imp|xc|(Xm) for all xc. A variable Xm is then de-
clared context-dependent as soon as there exists an xc such
that Imp|xc|(Xm) > 0.

Let us show that this measure is sound. In asymptotic con-
ditions, i.e., with an infinite number of trees, one can show
from (11) that Imp|xc|(Xm) becomes:

Imp|xc|(Xm) =

p−1∑

k=0

1

Ck
p

1

p− k
∑

B∈Pk(V
−m)

∑

b∈B
P (B = b)

↪→ |I(Y ;Xm|B = b)− I(Y ;Xm|B = b;Xc = xc)| .
Asymptotically, this measure has now the very desirable
property to not miss any context-dependent variable as for-
malized in the next theorem (the proof is in Appendix C).

Theorem 2. A variableXm ∈ V is context-independent to
Y with respect to Xc iff Imp|xc|(Xm) = 0 for all xc.

Given that the absolute differences are computed at each
tree node, this measure also continues to imply context-
dependence in the case of finite forests and infinite learning
sample size. The only difference with the infinite forests
is that only some conditionings B and values b will be
tested and therefore one might miss the conditionings that
are needed to detect some context-dependent variables.

3.3 Characterizing context-dependent variables

Besides identifying context-dependent variables, one
would want to characterize their dependence with the con-
text as precisely as possible. As discussed earlier, irrelevant
variables (i.e, such that Imp(Xm) = 0) that are detected as
context-dependent do not need much effort to be character-
ized since the context can only increase their importance.
All these variables are therefore context-complementary.

Identifying the context-complementary and context-
redundant variables among the relevant variables that
are also context-dependent can in principle be done by
simply comparing the absolute value of Impxc(Xm) with
Imp|xc|(Xm), as formalized in the following theorem
(proven in Appendix D).

Theorem 3. If |Impxc(Xm)| = Imp|xc|(Xm) for a
context-dependent variable Xm, then Xm is context-
complementary if Impxc(Xm) < 0 and context-redundant
if Impxc(Xm) > 0.

This result allows to identify easily the context-
complementary and context-redundant variables. In ad-
dition, if, for a context-redundant variable Xm, we have
Imp|xc|(Xm) = Impxc(Xm) = Imp(Xm), then this
variable is irrelevant in the context xc.

Then it remains to characterize the context-dependent vari-
ables that are neither context-complementary nor context-
redundant. It would be interesting to be able to also char-
acterize them according to some sort of average effect of
the context on these variables. Similarly as the common
use of importance Imp(Xm) to rank variables from the
most to the less important, we propose to use the impor-
tance Impxc(Xm) to characterize the average global effect
of context xc on the variable Xm. Given the asymptotic
formulation of this importance in Equation (10), a negative
value of Impxc(Xm) means that Xm is essentially com-
plementary with the context: in average over all condition-
ings, it brings more information about Y in context xc than
when ignoring the context. Conversely, a positive value of
Impxc(Xm) means that the variable is essentially redun-
dant with the context: in average over all conditionings,
it brings less information about Y than when ignoring the
context. Ranking the context-dependent variables accord-
ing to Impxc(Xm) would then give at the top the variables
that are the most complementary with the context and at the
bottom the variables that are the most redundant.

720



Note that, like Imp|xc|(Xm), it is preferable to estimate
Impxc(Xm) by using the following formula rather than to
estimate it from two forests by subtracting Imp(Xm) and
Imp(Xm|Xc = xc):

Impxc
s (Xm) =

1

NT

∑

T

∑

t∈T :v(st)=Xm

p(t)

↪→ (I(Y ;Xm|t)− I(Y ;Xm|t,Xc = xc))

(12)

This estimation method has the same asymptotic form as
Imp(Xm) − Imp(Xm|Xc = xc) given in Equation (10)
but, in the finite case, it ensures that the same conditionings
are used for both mutual information measures. Note that
in some applications, it is interesting also to have a global
measure of the effect of the context. A natural adaptation
of (12) to obtain such global measure is as follows:

ImpXc(Xm) , 1

NT

∑

T

∑

t∈T :v(st)=Xm

p(t)

↪→ (I(Y ;Xm|t)− I(Y ;Xm|t,Xc))

which, in asymptotic sample and ensemble of trees size
conditions, gives the following formula:

ImpXc(Xm) =

p−1∑

k=0

1

Cpk

1

p− k
∑

B∈Pk(V −m)

↪→ (I(Y ;Xm|B)− I(Y ;Xm|B,Xc)).

If ImpXc(Xm) is negative then the context variable Xc

makes variable Xm globally more informative (Xc and
Xm are complementary with respect to Y and V ). If
ImpXc(Xm) is positive, then the context variable Xc

makes variable Xm globally less informative (Xc and Xm

are redundant with respect to Y and V ).

3.4 In practice

As a recipe when starting a context analysis, we sug-
gest first to build a single forest using all input variables
Xm (but not the context Xc) and then to compute from
this forest all importances defined in the previous sec-
tion: the global importances Imp(Xm) and the different
contextual importances, Impxc

s (Xm), Imp|xc|(Xm), and
ImpXc(Xm), for all variables Xm and context values xc.

Second, variables satisfying the context-dependence crite-
rion, i.e., such that Imp|xc|(Xm) > 0 for at least one xc,
can be identified from the other variables. Among context-
dependent variables, an equality between |Impxc

s (Xm)|
and Imp|xc|(Xm) highlights that the context-dependent
variable Xm is either context-complementary or context-
redundant (in xc) depending on the sign of Impxc

s (Xm).
Finally, the remaining context-dependent variables can be
ranked according to Impxc

s (Xm) (or ImpXc(Xm) for a
more global analysis).

Note that, because mutual informations will be estimated
from finite training sets, they will be generally non zero
even for independent variables, leading to false positives in
the identification of context-dependent variables. In prac-
tice, one could instead identify context-dependent variables
by using a test Imp|xc|(Xm) > ε where ε is some cut-off
value greater than 0. In practice, the determination of this
cut-off can be very difficult. In our experiments, we pro-
pose to turn the importances Imp|xc|(Xm) into p-values by
using random permutations. More precisely, 1000 scores
Imp|xc|(Xm) will be estimated by randomly permuting the
values of the context variable in the original data (so as
to simulate the null hypothesis corresponding to a context
variable fully independent of all other variables). A p-value
will then be estimated by the proportion of these permuta-
tions leading to a score Imp|xc|(Xm) greater than the score
obtained on the original dataset.

Table 1: Problem 1: Values of Xc, X1, X2, X3, Y .

Xc X1 X2 X3 Y
0 0 0 0 2
0 0 0 1 2
0 0 1 0 2
0 0 1 1 2
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 2
1 0 0 1 2
1 0 1 0 2
1 0 1 1 2
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

Table 2: Problem 1: Variable importances as computed ana-
lytically using asymptotic formulas. Note that X1 is context-
independent and X2 and X3 are context-dependent.

X1 X2 X3

Imp(Xm) 1.0 0.125 0.125
Imp(Xm|Xc = 0) 1.0 0.5 0.0
Imp(Xm|Xc = 1) 1.0 0.0 0.5
Imp|0|(Xm) 0.0 0.375 0.125
Imp0(Xm) 0.0 -0.375 0.125
Imp|1|(Xm) 0.0 0.125 0.375
Imp1(Xm) 0.0 0.125 -0.375
ImpXc (Xm) 0.0 -0.125 -0.125

3.5 Generalization to other impurity measures

All our developments so far have assumed a categorical
output Y and the use of Shannon’s entropy as the impu-
rity measure. Our framework however can be carried over
to other impurity measures and thus in particular also to a
numerical output Y . Let us define a generic impurity mea-
sure i(Y |t) ≥ 0 that assesses the impurity of the output Y
at a tree node t. The corresponding impurity decrease at a
tree node is defined as:

G(Y ;Xm|t) = i(Y |t)−
∑

xm∈Xm

p(txm
)i(Y |txm

) (13)
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Table 3: Problem 2: Variable importances as computed analytically using the asymptotic formulas for the different importance measures.
X1 X2 X3 X4 X5 X6 X7 X8

Imp(Xm) 0.5727 0.7514 0.5528 0.687 0.1746 0.0753 0.1073 0.0
Imp(Xm|Xc = 0) 0.4127 0.5815 0.5312 0.5421 0.6566 0.2258 0.372 0.0
Imp(Xm|Xc = 1) 0.6243 0.8057 0.5577 0.7343 0.0 0.0 0.0 0.0
Imp|0|(Xm) 0.2263 0.2431 0.1181 0.2241 0.4139 0.1961 0.2861 0.0
Imp|1|(Xm) 0.0987 0.0611 0.021 0.0736 0.1746 0.0753 0.1073 0.0
Imp0(Xm) 0.2179 0.2422 0.1111 0.2190 -0.3839 -0.1389 -0.2346 0.0
Imp1(Xm) -0.0516 -0.0543 -0.0049 -0.0473 0.1746 0.0753 0.1073 0.0

Table 4: Problem 3: Importances as computed with a forest of 1000 totally randomized trees. The context is defined by the binary
context feature Sex (Sex = 0 denotes female and Sex = 1 denotes male). P-values were estimated using 1000 permutations of the
context variable. Grey cells highlight p-values under the 0.05 threshold.

Imp(Xm) Imp(Xm|Xc = xc) Imp|xc|(Xm) Impxc
s (Xm)

m - xc = 0 xc = 1 xc = 0 pval xc = 1 pval xc = 0 pval xc = 1 pval
0 age 0.2974 0.2942 0.2900 0.1505 0.899 0.1717 0.417 0.0032 0.938 0.0074 0.846
1 histologic-type 0.3513 0.1354 0.4005 0.2265 0.000 0.1183 0.121 0.2159 0.000 -0.0492 0.331
2 degree-of-diffe 0.4415 0.3725 0.4070 0.1827 0.680 0.1724 0.689 0.0690 0.102 0.0345 0.398
3 bone 0.2452 0.2342 0.2220 0.1088 0.396 0.0845 0.904 0.0110 0.717 0.0232 0.410
4 bone-marrow 0.0188 0.0190 0.0131 0.0128 0.892 0.0105 0.980 -0.0001 0.994 0.0057 0.682
5 lung 0.1677 0.1837 0.1420 0.1134 0.448 0.1079 0.397 -0.0160 0.605 0.0257 0.373
6 pleura 0.1474 0.1132 0.1127 0.0613 1.000 0.1026 0.097 0.0342 0.179 0.0348 0.165
7 peritoneum 0.3171 0.2954 0.2084 0.0939 0.968 0.1516 0.000 0.0216 0.710 0.1087 0.000
8 liver 0.2300 0.1844 0.2784 0.0888 0.966 0.1382 0.053 0.0456 0.134 -0.0483 0.100
9 brain 0.0466 0.0334 0.0566 0.0403 0.173 0.0279 0.814 0.0131 0.693 -0.0101 0.751

10 skin 0.0679 0.0310 0.0786 0.0426 0.922 0.0420 0.841 0.0369 0.107 -0.0107 0.663
11 neck 0.2183 0.0774 0.2255 0.1562 0.000 0.0710 0.575 0.1409 0.000 -0.0071 0.764
12 supraclavicular 0.1701 0.1807 0.1344 0.0942 0.379 0.0738 0.884 -0.0106 0.695 0.0357 0.136
13 axillar 0.1339 0.1236 0.0846 0.0748 0.214 0.0663 0.388 0.0103 0.795 0.0493 0.194
14 mediastinum 0.1826 0.1752 0.1613 0.1129 0.266 0.0867 0.853 0.0074 0.767 0.0213 0.404
15 abdominal 0.2558 0.2883 0.1512 0.1419 0.139 0.1526 0.028 -0.0325 0.368 0.1046 0.003

with txm
denoting the successor node of t corresponding to

value xm of Xm. By analogy with conditional entropy and
mutual information, let us define the population based mea-
sures i(Y |B) and G(Y ;Xm|B) for any subset of variables
B ⊆ V as follows:

i(Y |B) =
∑

b

P (B = b)i(Y |B = b)

G(Y ;Xm|B) = i(Y |B)− i(Y |B,Xm),

where the first sum is over all possible combinations b of
values for variables in B. Now, substituting mutual infor-
mation I for the corresponding impurity decrease measure
G, all our results above remain valid, including Theorems
1, 2, and 3 (proofs are omitted for the sake of space). It is
important however to note that this substitution changes the
notions of both variable relevance and context-dependence.
Definition 1 indeed becomes:

Definition 5. A variable Xm ∈ V is context-dependent to
Y with respect to Xc iff there exists a subset B ⊆ V −m

and some values xc and b such that

G(Y ;Xm|B = b,Xc = xc) 6= G(Y ;Xm|B = b).

When Y is numerical, a common impurity measure is
variance, which defines i(Y |t) as the empirical vari-
ance var[Y |t] computed at node t. The corresponding
G(Xm;Y |B = b) and G(Xm;Y |B = b,Xc = xc) in
Definition 5 are thus defined respectively as

var[Y |B = b]− EXm|B=b[var[Y |Xm, B = b]] and

var[Y |B = b,Xc = xc]

↪→ −EXm|B=b,Xc=xc
[var[Y |Xm, B = b,Xc = xc]].

We will illustrate the use of our framework in a regression
setting with this measure in the next section.

4 EXPERIMENTS

Problem 1. The purpose of this first problem is to illus-
trate the different measures introduced earlier. This artifi-
cial problem is defined by three binary input variables X1,
X2, and X3, a ternary output Y , and a binary context Xc.
All samples are enumerated in Table 1 and are supposed to
be equiprobable. By construction, the output Y is defined
as Y = 2 if X1 = 0, Y = X2 if Xc = 0 and X1 = 1, and
Y = X3 if Xc = 1 and X1 = 1.

Table 2 reports all importance scores for the three inputs.
These scores were computed analytically using the asymp-
totic formulas, not from actual experiments. Considering
the global importances Imp(Xm), it turns out that all vari-
ables are relevant, with X1 clearly the most important vari-
able and X2 and X3 of smaller and equal importances. Ac-
cording to Imp|0|(Xm) and Imp|1|(Xm), X1 is a context-
independent variable, while X2 and X3 are two context-
dependent variables. This result is as expected given the
way the output is defined. For X2 and X3, we have fur-
thermore Imp|xc|(Xm) = |Imp|xc|(Xm)| for both val-
ues of xc. X2 is therefore context-complementary when
Xc = 0 and context-redundant when Xc = 1. Conversely,
X3 is context-redundant when Xc = 0 and context-
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complementary when Xc = 1. X2 is furthermore irrele-
vant when Xc = 1 (since Imp1(X2) = Imp|1|(X2) =
Imp(X2)) and X3 is irrelevant when Xc = 0 (since
Imp0(X3) = Imp|0|(X3) = Imp(X3)). The values of
ImpXc(X2) and ImpXc(X3) suggest that these two vari-
ables are in average complementary.

Problem 2. This second experiment is based on an adap-
tation of the digit recognition problem initially proposed
in Breiman et al. (1984) and reused in Louppe et al.
(2013). The original problem contains 7 binary vari-
ables (X1,. . . ,X7) and the output Y takes its values in
{0, 1, . . . , 9}. Each input represents the on-off status of
one lightning segment of a seven-segment indicator and is
determined univocally from Y . To create an artificial (bi-
nary) context, we created two copies of this dataset, the
first one corresponding to Xc = 0 and the second one to
Xc = 1. The first dataset was unchanged, while in the
second one variables X5, X6, and X7 were turned into ir-
relevant variables. In addition, we included a new variable
X8, irrelevant by construction in both contexts. The final
dataset contains 320 samples, 160 in each context.

Table 3 reports possible importance scores for all the in-
puts. Again, these scores were computed analytically using
the asymptotic formulas. As expected, variableX8 has zero
importance in all cases. Also as expected, variables X5,
X6, and X7 are all context-dependent (Imp|xc|(Xm) > 0
for all of them). They are context-redundant (and even ir-
relevant) when Xc = 1 and complementary when Xc = 0.
More surprisingly, variables X1, X2, X3, and X4 are also
context-dependent, even if their distribution is independent
from the context. This is due to the fact that these vari-
ables are complementary with variables X5, X6, and X7

for predicting the output. Their context-dependence is thus
a consequence of the context-dependence of X5, X6, X7.
X1,X2,X3, andX4 are all almost redundant whenXc = 0
and complementary whenXc = 1, which expresses the fact
that they provide more information about the output when
X5, X6 and X7 are irrelevant (Xc = 1) and less when X5,
X6, and X7 are relevant (Xc = 0). Nevertheless, X8 re-
mains irrelevant in every situation.

Problem 3. We now consider bio-medical data from the
Primary tumor dataset. The objective of the corresponding
supervised learning problem is to predict the location of a
primary tumor in patients with metastases. It was down-
loaded from the UCI repository (Lichman, 2013) and was
collected by the University Medical Center in Ljubljana,
Slovenia. We restrict our analysis to 132 samples with-
out missing values. Patients are described by 17 discrete
clinical variables (listed in the first column of Table 4) and
the output is chosen among 22 possible locations. For this
analysis, we use the patient gender as the context variable.

Table 4 reports variable importances computed with 1000

totally randomized trees and their corresponding p-values.
According to the p-values of Imp|xc|(Xm), two variables
are clearly emphasized for each context: importances of
histologic-type and neck both significantly decrease in the
first context (female) and importances of peritoneum and
abdominal both significantly decrease in the second con-
text (male). While the biological relevance of these finding
needs to be verified, such dependences could not have been
highlighted from standard random forests importances.

Note that the same importances computed using the asymp-
totic formulas are provided in Appendix E. Importance val-
ues are very similar, highlighting that finite forests provide
good enough estimates for this problem.

Problem 4. As a last experiment, we consider a pub-
licly available brain cancer gene expression dataset (Ver-
haak et al., 2010). This dataset collects measurements of
mRNA expression levels of 11861 genes in 220 tissue sam-
ples from patients suffering from glioblastoma multiforme
(GBM), the most common form of malignant brain can-
cer in adults. Samples are classified into four GBM sub-
types: Classical, Mesenchymal, Neural and Proneural. The
interest of this dataset is to identify the genes that play a
central role in the development and progression of the can-
cer and thus improve our understanding of this disease. In
our experiment, our aim is to exploit importance scores to
identify interactions between genes that are significantly
affected by the cancer sub-type considered as our context
variable. This dataset was previously exploited by Mohan
et al. (2014), who used it to test a method based on Gaus-
sian graphical models for detecting genes whose global in-
teraction patterns with all the other genes vary significantly
between the subtypes. This latter method can be considered
as gene-based, while our approach is link-based.

Following (Mohan et al., 2014), we normalized the raw
data using Multi-array Average (RMA) normalization.
Then, the data was corrected for batch effects using the
software ComBat (Johnson et al., 2007) and then log2
transformed. Following (Mohan et al., 2014), we focused
our analysis on only two GBM sub-types, Proneural (57
tissue samples) and Mesenchymal (56 tissue samples), and
on a particular set of 32 genes, which are all genes involved
in the TCR signaling pathway as defined in the Reactome
database (Matthews et al., 2009). The final dataset used in
the experiments below thus contains 113 samples, 57 and
56 for both context values respectively, and 32 variables.

To identify gene-gene interactions affected by the context,
we performed a contextual analysis as described in Section
3 for each gene in turn, considering each time a particular
gene as the target variable Y and all other genes as the set
of input variables V . This procedure is similar to the pro-
cedure adopted in the Random forests-based gene network
inference method called GENIE3 (Huynh-Thu et al., 2010),
that was the best performer in the DREAM5 network infer-
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(a) Imp|xc=Mesenchymal| (b) Imp|xc=Proneural| (c) Impxc=Mesenchymal (d) Impxc=Proneural
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max

0
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min

0

Figure 1: Results for Problem 4. Each matrix represents significant context-dependent gene-gene interactions as found using Imp|xc| in
(a)(b) and Impxc in (c)(d), in GBM sub-type Mesenschymal in (a)(c) and Proneural in (b)(d). In (a) and (b), cells are colored according
to Impxc

s . In (c) and (d), cells are colored according to Impxc . Positive (resp negative) values are in blue (resp. red) and highlight
context-redundant (resp. context-complementary) interactions. Higher absolute values are darker.

ence challenge (Marbach et al., 2012). Since gene expres-
sions are numerical targets, we used variance as the impu-
rity measure (see Section 3.5) and we built ensembles of
1000 totally randomized trees in all experiments.

The matrices in Figure 1 highlight context-dependent in-
teractions found using different importance measures (de-
tailed below). A cell (i, j) of these matrices corresponds
to the importance of gene j when gene i is the output
(the diagonal is irrelevant). White cells correspond to non
significant context-dependencies as determined by random
permutations of the context variable, using a significance
level of 0.05. Significant context-dependent interactions
in Figures 1(a) and (b) were determined using the impor-
tance Imp|xc| defined in (11), which is the measure we
advocate in this paper. As a baseline for comparison, Fig-
ures 1(c) and (d) show significant interactions as found us-
ing the more straightforward score Impxc defined in (10).
In Figures 1(a) and (b) (resp. (c) and (d)), significant cells
are colored according to the value of Impxc

s defined in
(12). In Figures 1(c) and (d), they are colored accord-
ing to the value of Impxc in (10) instead. Blue (resp.
red) cells correspond to positive (resp. negative) values
of Impxc or Impxc

s and thus highlight context-redundant
(resp. context-complementary) interactions. The darker the
color, the higher the absolute value of Impxc or Impxc

s .

Respectively 49 and 26 context-dependent interactions are
found in Figures 1(a) and (b). In comparison, only 3 and
4 interactions are found respectively in Figures 1(c) and
(d) using the more straightforward score Impxc . Only
1 interaction is common between Figures 1(a) and (c),
while 3 interactions are common between Figures 1(b) and
(d). The much lower sensitivity of Impxc with respect to
Imp|xc| was expected given the discussions in Section 3.2.
Although more straightforward, the score Impxc(Xm),
defined as the difference Imp(Xm) − Imp(Xm|Xc =
xc), indeed suffers from the fact that Imp(Xm) and

Imp(Xm|Xc = xc) are estimated from different ensem-
bles and thus do not explore the same conditionings in fi-
nite setting. Impxc also does not have the same guarantee
as Imp|xc| to find all context-dependent variables.

5 CONCLUSIONS

In this work, our first contribution is a formal framework
defining and characterizing the dependence to a context
variable of the relationship between the input variables
and the output (Section 2). As a second contribution, we
have proposed several novel adaptations of random forests-
based variable importance scores that implement these def-
initions and characterizations and we have derived perfor-
mance guarantees for these scores in asymptotic settings
(Section 3). The relevance of these measures was illus-
trated on several artificial and real datasets (Section 4).

There remain several limitations to our framework that we
would like to address as future works. All theoretical
derivations in Sections 2 and 3 concern categorical input
variables. It would be interesting to adapt our framework
to continuous input variables, and also, probably with more
difficulty, to continuous context variables. Finally, all the-
oretical derivations are based on forests of totally random-
ized trees (for which we have an asymptotic characteriza-
tion). It would be interesting to also investigate non to-
tally randomized tree algorithms (e.g., Breiman (2001)’s
standard Random Forests method) that could provide bet-
ter trade-offs in finite settings.
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Abstract

There has been growing interest in inferring
implicit social structures using interaction data.
This approach is motivated by the fact that enti-
ties organize themselves into groups having fre-
quent interactions between each other. Unlike
previous approaches that focused on subjectively
declared relationships, the idea is to exploit the
actual evidence at hand to reach conclusions
about group formations, resulting in more ob-
jective data-driven inferences. To this end, [5]
have employed Hawkes processes, and proposed
a Hawkes IRM model to infer social structures
from interaction data. A major factor that en-
courages the use of Hawkes processes is the ca-
pability to model reciprocity in the interaction
between social entities. However, reciprocation
is dynamically conditioned upon two key fac-
tors: the significance of each message sent by
the sender, and the receptivity to each message
received by the receiver. In the model proposed
by [5], reciprocity is not affected by either of
these factors, since the content of each message
is not taken into account. In this paper, we ex-
tend the work of [5] by introducing Gaussian pro-
cesses (GPs) into the Hawkes IRM model: based
on the content of each message, GPs are used to
model the message significance as well as recep-
tivity. This allows us to more accurately capture
the interactions among entities. The application
of GPs also allows us to flexibly model the rates
of reciprocal activities between two entities, al-
lowing asymmetry in reciprocity to be captured
more accurately. This leads to better cluster de-
tection capability. Our model outperforms pre-
vious Hawkes and Poisson process-based models
at predicting verbal, email, and citation activities.

1 INTRODUCTION

In the social sciences, group dynamics is the study of the
content and dynamics of the complex interactions occur-
ring within a social group or between social groups. The
study of group dynamics helps understand decision making
processes, disease epidemics and develop effective ther-
apeutic/control techniques. Early approaches [12, 19, 4]
have focused on declared relationships between individuals
to infer latent group structures. For example, if three people
declare they like each other but dislike others, it is reason-
able to put them into one group. However, these declared
relationships are not easily accessible, sometimes incorrect
and usually highly subjective. Another limitation of pre-
vious models is their incapability to capture reciprocity in
social interactions. Reciprocity is a common characteristic
in group dynamics. It expresses the fact that social enti-
ties reciprocate in their interaction between each other. For
example, if Alice has sent a message to Bob, it increases
the likelihood of Bob replying back to Alice. Reciprocity
is expected to be more prominent between entities within a
group, and hence it can be used to infer social groups.

To address these issues, recently, there has been a trend
to infer implicit social structures using interaction data.
This approach is motivated by the fact that interactions be-
tween different groups varies in nature and frequency. Un-
like approaches that focused on subjectively declared re-
lationships, the idea is to exploit the actual evidence at
hand to reach conclusions about group formations, mak-
ing this approach is more objective in nature. Recently,
[5] proposed a nonparametric Bayesian model that is built
upon mutually-exciting point processes, known as Hawkes
processes [9, 10], and the Infinite Relational Model (IRM)
[19, 4] to infer social structures from continuous time inter-
action data. Pairs of mutually-exciting Hawkes processes
are able to exploit reciprocity to infer social groups; here
the processes excite one another through their actualized
events.

However, reciprocation is dynamically conditioned upon
two key factors: the significance of each message sent by
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the sender, and the receptiveness of the receiver to each in-
coming message. In real communication, conveying an im-
portant message develops interest in the receiver. Then, if
the receiver finds the message relevant, reciprocation takes
place. Accordingly, reciprocal communication emerges
from the interplay of these two factors. The model pro-
posed by [5] does not take these factors into consideration,
instead assuming that entities reciprocate simply because
they received a message, and giving no consideration to the
content of the message and its effects on the interaction.

In this paper, we extend the work of [5] by introducing
Gaussian processes (GPs) into the Hawkes IRM model.
We use these to account for the content of the messages,
capturing the message significance as well as receptivity.
This allows us to more accurately capture the interactions
among entities. The interaction between a pair of clusters
is modeled as the additive effect of the interactions between
all pairs of nodes in the two clusters, allowing us to iden-
tify the contribution of each pair of nodes, where the actual
communication is taking place, to the interaction between
a pair of clusters. The introduction of GPs also allows us to
flexibly model the rates of reciprocal activities between two
entities, hence the asymmetry in reciprocity can be cap-
tured more accurately. We show how this leads to a better
cluster detection capability. Since our proposed work is a
natural extension of Hawkes IRM, it covers both Poisson
processes and IRM as special cases.

The remainder of the paper is organized as follows: section
2 discusses Poisson and Hawkes processes, with and with-
out IRM. Section 3 describes our extension of the Hawkes
IRM model. Section 4 presents an inference algorithm for
our model, section 5 discusses related work, and section 6
presents experimental results using our model on synthetic,
verbal, email, and citation data.

2 BACKGROUND

We start with a brief description of Poisson processes,
Hawkes processes, and Hawkes IRM model.

2.1 Poisson and Hawkes Processes

Point processes are stochastic processes, realizations of
which are collections of points in time or space. The for-
mer are called temporal point processes, and the latter, spa-
tial point processes. The homogeneous Poisson process is
the simplest example of a point process, have a constant
rate function, while the inhomogeneous Poisson process
has rate function λ varying with, say, time. Both are exam-
ples of completely random measures, where events in dis-
joint sets are independent of each other. Hawkes processes,
on the other hand, are mutually-exciting doubly point pro-
cesses, whose rate function is itself a stochastic process,
depending on events of its own and of other processes.

For both Poisson processes and Hawkes processes, with
conditional rate function λ(t) and event time history
H(0,T ] = {t1, · · · , tn}, the likelihood function can be writ-
ten as

L(λ(t)|H) = exp {−Λ(0, T )}
n∏

i=1

λ(ti) (1)

where Λ(0, T ) =
∫ T
0
λ(t)dt is the cumulative conditional

rate function. When the conditional rate function λ(t) = λ
is a constant, the Poisson process likelihood is simply:

L(λ|H) = exp {−λT}λn (2)

For a Hawkes process, the rate function λ depends on ear-
lier events. Let N(·) and N ′(·) be a pair of mutually-
exciting Hawkes processes. The conditional rate func-
tion λ(t) of N(·), given the event time history HN ′ =
{t′1, · · · , t′n} of N ′, has the form

λ(t) = γ +

∫ t

−∞
g(t− s)dN ′(s) (3)

where γ is the base rate ofN(·), and the triggering function
g(·) is a non-negative function such that

∫∞
0
g(s)ds < 1,

ensuring that N(·) is stationary.

If g(·) = 0 then the process becomes a Poisson process
with rate γ. If the counting measureN ′(·) isN(·) itself, the
process is self- exciting: its current rate only depends on its
own past events. If the two counting measures are different,
the rate is affected by the past events of each other.

2.2 Hawkes Processes with Infinite Relational Model
(HP+IRM)

Amongst the models that use declared relationships to in-
fer group information, the Infinite Relational Model (IRM)
[12] is especially flexible and popular. [5] has combined the
IRM idea with the concept of Hawkes Processes to model
reciprocity in the interaction between entity groups. Let V
denote the vertices of the graph, corresponding to individ-
uals. Then the generative model for a Hawkes process is
defined as follows:

π|α ∼ CRP (α) (4)
λpq(t)|γpq, βpq, τpq = γpqnpnq +

∫ t

−∞
gpq(t− s)dNqp(s) ∀p, q ∈ range(π)

(5)

Npq(·)|λpq ∼ HawkesProcess(λpq) (6)
Nuv(·)|Nπ(u)π(v), π ∼ Thin(Nπ(u)π(v)) ∀u, v ∈ V (7)

Here π is a partition of the vertices V , distributed accord-
ing to the Chinese restaurant process (CRP ) with con-
centration parameter α. We use p and q to index clusters
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of π. We denote the cluster that vertex u belongs to as
π(u). The operator Thin refers to thinning; this means
distributing the atoms of Npq(·) among each Nuv(·), such
that Npq =

∑
u,v Nu,v(·). Any thinning scheme may be

used, such as a uniform thinning, which uniformly picks to
elements of a cluster. The type of reciprocation (parameter-
ized by gpq and gqp, respectively) differs with events from
cluster p to cluster q and events from cluster q to cluster p.
This difference in reciprocity is what the model exploits to
learn about social groups.

3 HAWKES PROCESSES WITH IRM
AND GAUSSIAN PROCESSES (HPGP +
IRM)

We define the Hawkes process conditional rate function as:

λuv(t) = γpq +

∫ t

0

βuve
− t−sτuv dNvu(s) (8)

where p = π−1(u), q = π−1(v) are the clusters individu-
als u and v belong to; and the triggering function guv(·) is
defined as:

guv(δ) = βuve
− δ
τuv (9)

Geometrically, the excitation function βpq is essentially the
“jump size” of the rate function λuv(t) whenever a new
message is received. However, in the above definition, βuv
is not affected by the content of the message; its value does
not change based on the significance and receptivity of the
messages.

We would like to define βuv in a way such that it mea-
sures the significance and receptivity of individual mes-
sages communicated between individuals u and v. The
content measure xvu can be suitably defined according to
the application, for example, it can be a distribution of
words, the length of the message, or the text entropy of
the message, etc. The individual level excitation function
βuv(xvu(s)) = 0 if no message was sent from v to u at
time s, but can be otherwise any non-negative function.

We propose to use two sets of Gaussian Process (GP) pri-
ors to address sources of inhomogeneity of the excitation
functions βuv(·), one for the significance of the message
and one for the receptivity of the message:

βuv(s) =eru(xvu(s))+sv(xvu(s)) (10)

where

ru(·) ∼GP(0, kr) (11)
sv(·) ∼GP(0, ks) (12)

kr and ks are radial basis function (RBF) kernels of the
GPs. The exponential transformation is used to make sure
that βuv(·) is non-negative.

Larger values of ru and sv indicate that an important mes-
sage has been sent by the sender, and receiver is receptive
to the message, these result in larger values for βuv . If ei-
ther ru or sv is small, or both of them have smaller values,
it leads to smaller values of βuv . Application of GP func-
tions also allows us to flexibly model the rates of reciprocal
activities between two entities, allowing the asymmetry in
reciprocity to be captured more accurately. This, as a by-
product, leads to a better cluster detection capability.

The receptivity and significance functions ru and sv may
have different behaviors and hence are designed to come
from two different GPs. One subtle point is that although
ru and sv seem exchangeable in the definition of βuv and
both use message content xvu as input, they are evaluated
from different perspectives: ru evaluates xvu from the re-
ceiver u’s perspective, while sv from the sender v’s per-
spective. One alternative way is to model a single pair
of GPs s(·) and r(·) for all users, instead of this per-user
GP su(·) and rv(·) framework. Experiments have shown
that both the modeling schemes have good performances,
however, we believe that the per-user GP setting can reveal
more interesting user-specific details, and hence in the later
sections, our results are based on the per-user GP frame-
work.

The generative process of our model can be summarized
as:

π|α ∼ CRP (α) (13)
λuv(t)|γpq, βuv(·), τuv = γpq +

∫ t

−∞
βuv(Xvu)e−

t−s
τuv dNvu(s) (14)

Nuv(·)|λuv ∼ HawkesProcess(λuv) (15)

where Xvu = {xvu(s)} is the set of all messages sent from
v to u, and the cluster level excitation function βpq can be
seen as an additive effect of βuv:

βpq(Xqp) =
∑

π(u)=p,π(v)=q

βuv(xvu(s)) (16)

Now, the excitation function βpq is no longer a constant,
as in [5], but a function of the message content in the past
events of the reciprocal process Nqp, taking into account
both the significance and the receptivity of the messages.
Our model is a generalization of the model described in
[5], and if βuv in equation 10 are constants, our model re-
duces to the model described in [5]. Therefore, all the basic
features of the original model are inherited by our model.
Also, in our modeling framework, the individual rate func-
tion λuv is affected by the group initial rate γpq , which, on
the one hand, tends to put similarly behaving individuals
into the same cluster; and on the other hand, if one member
of a group is heavily influenced by a particular message, it
is highly likely that other individuals in the same group will
also be affected.

728



3.1 Stability Conditions of HPGP + IRM

For Hawkes processes with constant excitation functions
βpq , the sufficient condition of stationarity is βpqτpq < 1,
derived from the condition

∫∞
0
β(s)ds < 1. By con-

trast, since our βpq is a function of message contents, the
expectation of λ(t) cannot be time invariant. Therefore,
the stationarity condition no longer holds. However, since
βpq is evaluated at finite locations (in the domain of mes-
sage content x), we can define βMAX

pq to be the maxi-
mum value of βpq across all locations. For our model,
we can still require that βMAX

pq

∫∞
0
e
− u
τpq du < 1. Since

βMAX
pq

∫∞
0
e
− u
τpq du = βMAX

pq τpq , we just need to make
sure that βMAX

pq τpq < 1.

4 HPGP + IRM INFERENCE

We perform posterior inference using Markov chain Monte
Carlo method. In our model there is no conjugacy between
prior and the likelihood, hence we can not marginalize out
parameters and must sample all of them separately. To
infer the partition of individuals π, the concentration pa-
rameter α, the parameters of each Hawkes process θpq =
{γpq, τpq}, the training and test point projections of func-
tions ru and sv , we use Algorithm 5 in [15] to draw samples
from the posterior. We use elliptical slice sampling [14] for
ru and sv , and standard slice sampling [16] for γpq , τpq
and α. In case of τpq we set the upper bound of the slice
sampler to 1

βMAXpq
, to ensure that βMAX

pq τpq < 1.

5 RELATED WORK

The interest of modeling relational data dates back to at
least the work of [11], who introduced the Bayesian formu-
lation of the stochastic block-model. This model was then
extended by [12] to the Infinite Relational Model (IRM).

The IRM typically assumes that there is a fixed graph, de-
scribing the relationship between individuals, which is ob-
served. This idea is used in many proposed works [12, 19].
Our model does not make this assumption, but learns the
relationship among participants’ interactions.

There have also been research works modeling relational
events via latent classes [6]. They assume each event’s
sender, receiver, and action type are conditionally indepen-
dent given the latent class for that event. This strong as-
sumption greatly simplifies the model, but may not reflect
real situations. Our model is not limited to any fixed num-
ber of action types.

Other works [17, 18, 7] are based on temporal Poisson-
processes, where the rate of events on each edge is inde-
pendent of every other edge. Although [18, 7] allow mutu-
ally exciting events to be modeled, they do not use content
information to model dependencies between events. Our

model uses Hawkes processes which are capable of dealing
with interaction and reciprocal events, and also use mes-
sage content information to capture the interactions more
accurately. Our work is also closely related to [13]. They
combine mutually exciting Hawkes process with random
graph models by defining the excitation function, between
a pair of nodes, as a product of a latent binary indicator
variable, indicating the presence or absence of edge, and
weight variable that determines the strength of interaction
between the two nodes. However, unlike our model, their
method does not use side information, such as information
content, and simply relies on time interaction data to in-
fer latent network structures. Lastly, our work extends the
work of [5]. In their paper, the excitation function is not
affected by the information content of the message. By in-
troducing Gaussian processes, we are able to model non ho-
mogeneous excitation functions. In addition to that, since
we use Gaussian processes to model the flexible rates of re-
ciprocal activities between two entities, our model can cap-
ture the asymmetry in reciprocity more accurately. This, as
a by-product, leads to a better cluster detection capability.
The model in [8] does not have this leverage.

6 EXPERIMENTS

We compared our model (HPGP + IRM) to four methods:
1) Poisson Process Model (Poisson), 2) Hawkes Process
Model (HP), 3) Poisson Processes with IRM (Poisson +
IRM), and 4) Hawkes Processes with IRM (HP + IRM).

6.1 Synthetic Data Sets

We tested several synthetic data sets under various condi-
tions to compare different model fittings to the rate func-
tions, as well as their clustering behaviors.

A Simple Case Consists of Two Individuals. To gen-
erate synthetic data set, we need to set parameter values
γuv , and τuv , as well as the functional form of βuv(·) and
message content measure xvu. In figure 1, two mutually-
exciting Hawkes processes are simulated during time inter-
val (0, 10], where γ12 = γ21 = 0.1, τ12 = τ21 = 1.

In part (a), case 1 used a constant message content
x12(ti) = x21(t′i) = 1 for all event times ti and t′i, and a
constant excitation function β12(x) = β21(x) = x = 1 for
all messages. Since this synthetic data set has constant β
values, it is essentially generated from a HP+IRM; we see
that HP+IRM and our model, a generalization to HP+IRM,
both perform well, and are better than other models, in
terms of log-likelihood shown in table 1.

In part (b), case 2 used the same settings as part (a), except
for the introduction of variable message content, where
both x12(ti) and x21(t′i) follow an exponential distribution
exp(0.5), which can be thought of as different message en-
tropy values at different event times ti and t′i. We see that
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the jump sizes of both processes are no longer constant.
This cannot be modeled by a constant β model, but can
only be handled by models like ours, which allow variable
β. The effectiveness of our model in this case can be seen
from the comparison of the log-likelihoods in table 1.

In part (c), case 3 further introduced non-constant
βuv(·), with all other settings being the same as in
case 2, but β12(ti) = e2sin(x21(ti))+1.5log(x21(ti))

and β21(t′i) = e0.1cos(x12(t
′
i))+0.2

√
x12(t′i), where

r1(x21(ti)) = 2sin(x21(ti)), r2(x12(t′i)) =
0.1cos(x12(t′i)), s1(x12(t′i)) = 0.2

√
x12(t′i), and

s2(x21(ti)) = 1.5log(x21(ti)). Again, the jump sizes
for both processes are not constant, and also note that
β21(x) > β12(x),∀x ∈ (0, 10). This suggests that process
2 is excited to respond to any messages received from
process 1, while process 1 is reluctant to respond to
messages sent from process 2. In this case, the difference
in log-likelihoods of different models is pronounced even
more.

Table 1: Log likelihood comparison for the three-case syn-
thetic data set

CASE 1 CASE 2 CASE 3
HPGP+IRM -21.88 -13.41 -10.86

HP+IRM -22.97 -35.53 -82.78
POISSON + IRM -72.31 -89.73 -126.33

HP -129.37 -238.94 -192.78
POISSON -127.83 -182.76 -187.23

Next, we will discuss our modeling preferences based on
the three-case example used in figure 1.

GP Against Simple Parametric Functions. In order to
demonstrate the effectiveness of using GP in our model, we
compared its performances with simple parametric func-
tions. In table 2, we summarize the log likelihood for the
three-case synthetic data set mentioned earlier in figure 1,
using GP and simple polynomials (up to order 3). The
results clearly show the superior performance of GP over
polynomial functions. The coefficients of polynomials are
estimated by sampling from the posterior.

Table 2: Log likelihood comparison between GP and sim-
ple parametric functions

GP CUBIC QUAD LINEAR
CASE 1 -21.88 -38.67 -38.88 -39.18
CASE 2 -13.41 -61.27 -78.17 -89.28
CASE 3 -10.86 -71.26 -72.13 -76.73

Estimate Kernel Width From Data. In our experiment, we
used the RBF (radial basis function) kernel, which has the

form:

k(δ) = exp

(
− δ2

2σ2

)
(17)

where δ is the distance between two data points, and σ
the kernel width. The estimation of the kernel width is
crucial in our modeling framework as it controls the com-
plexity of the underlying receptivity and significance func-
tions. We applied 3 different approaches to estimate σ:
Bayesian, heuristic, and fixed. The Bayesian approach in-
troduces a prior on σ and obtains an estimate using MCMC;
the heuristic way, bearing in mind that sigma largely de-
pends on the maximum distance among the training data,
estimates σ directly from sample data distances; and the
fixed approach manually assigns a fixed value to the kernel
width. It is evident from table 3 that the Bayesian approach
is the best choice for our model in terms of log likelihood.

Table 3: Log likelihood comparison for kernel estimation

BAYESIAN HEURISTIC FIXED
CASE 1 -21.88 -25.12 -39.78
CASE 2 -13.41 -17.16 -18.72
CASE 3 -10.86 -22.13 -24.67

Comparison Between Different Information Metrics. We
compared four strategies to evaluate the information con-
tent of a message: KL divergence of word distribution,
message length, TF-IDF, and message Shannon entropy.
Using length as the measure of information may not be suf-
ficient in practice; the importance of a message is simply
determined by its longevity, without giving any considera-
tion to the content. In case of Shannon entropy, however,
the significance and receptivity of the message are better
captured. TF-IDF has similar behavior and characteristics
as those of message entropy. The best performance in our
experiments were given by using KL divergence of word
distribution and Shannon entropy, and we preferred KL di-
vergence of word distribution over the other measures be-
cause it is more interpretable, and seemed to give consistent
good performances in terms of log-likelihoods as shown in
table 4. However, encoding content information efficiently
is still an open question, and certainly a direction for future
work.

Table 4: Log likelihood comparison for different informa-
tion metrics

WORD KL ENTROPY TF-IDF LENGTH
CASE 1 -21.88 -21.98 -39.38 -128.76
CASE 2 -13.41 -12.78 -28.61 -87.21
CASE 3 -10.86 -12.63 -23.78 -72.13

Next, we will discuss a more detailed example consisting
of three individuals.
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(b) Case 2: x random, β simple function
β = x. The “jump sizes” are not constant.
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(c) Case 3: x random, β non-trivial func-
tion. The “jump sizes” are not constant.

Figure 1: Simulated rate functions of two individuals

A Full Example Consists of Three Individuals. In this
example, we put processes 1 and 2 in one cluster whereas
process 3 is in another cluster, and we also intentionally
made them behave differently to each other.

The settings we used were mij ∼ multinomial(p =
[0.25, 0.25, 0.25, 0.25], n = 4),∀i, j ∈ {1, 2, 3}, which
could represent a dialog consisting of only four words, and
each mij can be thought of as the distribution of these
four words in a message sent from j to i. We define the
message content measure as xij = KL(mij ||m̄i), where
m̄i is the four-word distribution assigned to individual i
(m̄i = (1, 1, 1, 1),∀i in our experiment). For the excitation
functions we have: β12 = β21 = 5 exp(1/x), β23 = β31 =
0.1 exp(1/x), and β13 = β32 = 10 exp(1/x). Note that
β12 = β21, β31 < β13, and β32 > β23.

Figure 2 (a) shows that processes 1 and 2 are frequently
interacting in a similar way, while in part (b), process 3 is
not excited to respond to messages from process 1 but tends
to, suggested in part (c), reply to process 2’s messages more
actively. In figure 2 (g, h, and i), we see that only our model
was able to correctly cluster processes 1 and 2 in the same
cluster and put process 3 in a separate one. On the other
hand, the other models generated redundant clusters. We
have also shown in figure 2 (d, e, and f) that our model
successfully recovered the underlying excitation functions.

6.2 Real Data Sets

We tested our model on various turn-taking data sets, which
include public meetings, private conversations, email com-
munications, and publication citations. Each data set has
several lines of event records, indicated by a quadruplet
(ti, si, ri,mi), where ti is the time when the event took
place, si the index of the sender, ri the index of the recipi-
ent, and mi the message word distribution.

We divided the data set into two parts: the first part con-
sists of the first 90% of the data lines, used as the training

data set; and the second part contains the remaining 10% of
the data lines, used as the testing data set. To compute the
average log probability, we ran our code 10 times with dif-
ferent prior settings and computed the mean and standard
deviation of the 10 values.

Enron email threads The Enron data set (ENRON) con-
tains about half a million email messages sent or received
by about 150 senior managers of the Enron corporation
[2, 3]. We restricted ourselves to “true” conversation emails
(e.g., auto-messages were ignored) sent and received only
from the domain “@enron.com”, and identified the threads
by time, sender, receiver, and the subject line. The longest
email communication was selected.

Santa Barbara Conversation Corpus The Santa Barbara
Corpus [1] data set (SB) contains text and video recordings
for various conversations. The data set used (#33) is a lively
family argument/discussion recorded at a vacation home in
Falmouth, Massachusetts. There are eight participants, all
relatives or close friends. Discussion centers around a dis-
agreement Jennifer (#2) is having with her mother Lisbeth
(#5).

High-energy Physics Theory Citation Network The
Arxiv HEP-TH (high energy physics theory) citation data
set (CITATION) covers all 352807 citations of 27770 pa-
pers published during the time period January 1993 to April
2003 (124 months). We converted paper citation events to
author citation events. For example, if a paper by authors
A and B cited another paper by authors C, D, and E, we
would record six events: A cited C, D, and E; and B cited
C, D, and E. Only the most cited 17 authors and 97 citation
events in the year 2003 were used from this data set.

Results Table 5 and 6 show, for training and test data sets
respectively, the predictive probability results as well as the
most probable predictive number of clusters for competing
methods. We used 10-fold cross-validation to prevent our
model from being over-fitted to training data sets, and the
performances on real data sets suggested a good general-
ization ability of our model.
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Figure 2: Simulated rate functions of three individuals and their cluster configurations

732



Table 5: Average log likelihood for each model with stan-
dard error (TRAINING data sets). N is number of individ-
uals, T is number of events, and C the predicted number of
clusters.

ENRON SB #33 CITATION
(N, T, C) (2, 896, 2) (8, 499, 8) (17, 97, 17)

HPGP + IRM 5612.67 ± 0.13 672.03 ± 0.11 1265.31 ± 0.14
HP + IRM 5513.25 ± 0.12 475.13 ± 0.50 987.34 ± 0.23

POISSON + IRM 2360.37 ± 0.06 572.35 ± 0.11 918.56 ± 0.17

Table 6: Average log predictive likelihood for each model
with standard error (TEST data sets).

ENRON SB #33 CITATION
C 2 2 11

HPGP + IRM 327.13 ± 0.02 126.87 ± 0.05 217.51 ± 0.43
HP + IRM 270.36 ± 0.01 89.05 ± 0.04 127.81 ± 0.32

POISSON + IRM 46.21 ± 0.01 13.08 ± 0.00 97.00 ± 0.41

We also compared our model with HP+IRM in terms of
cluster detection capability. Figure 3 shows the cluster
configurations generated by our model and HP+IRM. This
dataset is a record of a lively family argument/discussion.
There were eight participants, all relatives or close friends,
but the main communication was between Jennifer (#2) and
her mother Lisbeth (#5). For our model, Jennifer and Lis-
beth were put in one cluster, and rest in the other. This
is more consistent with data evidence: Jennifer and Lis-
beth reciprocate each other more frequently, and respond
occasionally to others, despite receiving a lot of messages
from them. Individuals other than #2 and #5 may be further
decomposed into subgroups, but at this level, the best clus-
tering would probably be the one given by our model. The
contrast in the thicknesses of the arrows between the two
clusters correctly reveals this aspect. On the other hand,
the cluster configuration generated by HP+IRM model in-
dicates a high level of reciprocity, indicated by comparable
thicknesses of the two arrows, between clusters {2,5} and
{4,6,7,8} which is inconsistent with data evidence. Addi-
tionally, the model creates an extra cluster,{1,3}, which is
inconsistent with data evidence.

{2, 5}
{1, 3, 4, 6, 7, 8}

(a) HPGP+IRM

{1, 3}
{4, 6, 7, 8}

{2, 5}
(b) HP+IRM

Figure 3: Diagram for data set SB #33. The thickness of
the arrows are proportional to the expectation of the rate
function.

7 CONCLUSION

In this paper, we have presented a non-parametric Bayesian
model that uses Hawkes processes to model reciprocal rela-
tionships. Unlike previous approaches, our model utilizes
the content of the messages to model reciprocity. Based on
the content, our model captures the significance of the mes-
sage sent by the sender, and receptivity to the message re-
ceived by the receiver. This gives us the leverage to model
reciprocity in a more realistic manner and more accurately.
Empirical results suggest that our novel model formulation
can yield improved predictive probability results, and can
reveal clusters more accurately than alternative methods.
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Abstract

A large body of algorithms have been proposed
for multi-task learning. However, the effec-
tiveness of many multi-task learning algorithms
highly depends on the structural regularization,
which incurs bias in the resulting estimators and
leads to slower convergence rate. In this paper,
we aim at developing a multi-task learning al-
gorithm with faster convergence rate. In partic-
ular, we propose a general estimator for multi-
task learning with row sparsity constraint on the
parameter matrix, i.e., the number of nonzero
rows in the parameter matrix being small. The
proposed estimator is a nonconvex optimization
problem. In order to solve it, we develop a for-
ward backward greedy algorithm with provable
guarantee. More specifically, we prove that the
output of the greedy algorithm attains a sharper
estimation error bound than many state-of-the-art
multi-task learning methods. Moreover, our esti-
mator enjoys model selection consistency under
a mild condition. Thorough experiments on both
synthetic and real-world data demonstrate the ef-
fectiveness of our method and back up our the-
ory.

1 INTRODUCTION

Multi-task learning (MTL) (Caruana, 1997) has witnessed
increasing attention in machine learning and statistics in
the past decades. In multi-task learning, one deals with a
number of related learning tasks simultaneously, with the
goal to improve the generalization performance by utiliz-
ing the intrinsic relationship among these tasks. It has been
successfully applied to a wide range of applications includ-
ing object recognition (Caruana, 1997), speech recogni-
tion (Parameswaran and Weinberger, 2010), handwritten
digits recognition (Quadrianto et al., 2010), and disease
progression prediction (Zhou et al., 2011).

The fundamental problem in multi-task learning is how
to characterize the relationship among tasks. Representa-
tive methods include learning hidden units in neural net-
works (Caruana, 1997; Baxter, 2000), sharing prior in hi-
erarchical Bayesian models (Bakker and Heskes, 2003;
Schwaighofer et al., 2004; Yu et al., 2005; Zhang et al.,
2005) and Gaussian processes (Lawrence and Platt, 2004),
learning a shared feature mapping matrix in multiple re-
gression (Ando and Zhang, 2005; Evgeniou and Pontil,
2004). Some other works also proposed to learn the task
relations (Zhang and Yeung, 2012, 2013; Han and Zhang,
2015), to mention a few. In this study, we focus on a large
family of multi-task learning algorithms, which assume
that all tasks share a common set of features (Obozinski
et al., 2006; Argyriou et al., 2008; Negahban and Wain-
wright, 2008; Liu et al., 2009; Lounici et al., 2009; Yang
et al., 2009; Zhang et al., 2010; Lounici et al., 2011), be-
cause they serve as the basis for many other sophisticated
multi-task learning algorithms. Note that our method and
theory can be extended to those sophisticated multi-task
learning settings (Jacob et al., 2009; Kim and Xing, 2010;
Kang et al., 2011; Zhang and Yeung, 2012; Gong et al.,
2012; Zhang and Yeung, 2013; Han and Zhang, 2015)
straightforwardly.

In detail, the multiple task learning setting (Obozinski
et al., 2006; Argyriou et al., 2008; Negahban and Wain-
wright, 2008; Liu et al., 2009; Lounici et al., 2009; Yang
et al., 2009; Zhang et al., 2010) considered in this paper is
as follows: Given a set of observations {X(i),y(i)}, i =

1, · · · ,m from m tasks, where X(i) = [x
(i)
1 , . . . ,x

(i)
ni ]> ∈

Rni×d, i = 1, · · · ,m are the design matrices for each task,
and y(i) = [y

(i)
1 , . . . , y

(i)
ni ]> ∈ Rni , i = 1, · · · ,m are cor-

responding vectors of response variables. It is often useful
to represent the parameters in multiple tasks via a matrix,
where each column corresponds to a task, and each row to a
feature, i.e., Θ∗ = [θ∗1 , · · · ,θ∗m] ∈ Rd×m, where θ∗i ∈ Rd
is the parameter vector of the i-th task. We assume that,
conditioned on the covariate (feature) vector x

(i)
j , the re-

sponse variable y(i)j for each task depends on the same sub-
set of features. In other words, θ∗i ’s are sparse and share the
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same support. This corresponds to the matrix Θ∗ being “
row-sparse”: each row is either all zero or mostly nonzero,
and the number of nonzero rows is relatively small. More
specifically, the number of nonzero rows in Θ∗ is denoted
by s∗ = ‖Θ∗‖0,2. A lot of recent research in this set-
ting used `1,q(q > 1) norm regularizations that encour-
age the parameter matrix to have such row-sparse struc-
ture. Particular examples include the `1,∞ norm regular-
ization (Turlach et al., 2005; Zhang and Huang, 2008; Ne-
gahban and Wainwright, 2008), the `1,2 norm regulariza-
tion (Lounici et al., 2009; Obozinski et al., 2011), and the
mixture of `1,∞ norm and `1,1 norm regularizations (Jalali
et al., 2013).

However, all the methods mentioned above for multi-task
learning are based on convex regularization, i.e., `1,q, q > 1
norm regularization. Recent studies (Fan and Li, 2001;
Zhang, 2010) have shown that convex regularization based
estimators suffer from the bias. To remedy this problem,
one can choose nonconvex regularization alternatively such
as the smoothly clipped absolute deviation (SCAD) penalty
(Fan and Li, 2001) and the mimimax concave penalty
(MCP) (Zhang, 2010). However, the empirical perfor-
mance of nonconvex penalty regularized estimator highly
relies on the parameters of the nonconvex penalty, which
are difficult to tune in practice. One can also use the debias-
ing method proposed in Javanmard and Montanari (2014)
to cancel the bias. However, the debiasing method will re-
sult in a non-sparse estimation result. In order to sparsify
the result, a truncation step is needed, which introduces
an extra tuning parameter. Moreover, the estimation error
bound of debiased estimator is no better than that of convex
relaxation based estimator.

In this paper, we aim at developing a new estimator which
is able to get rid of the bias, attain faster convergence rate,
and easy to implement in practice. In detail, we propose a
general estimator for multi-task learning with row-sparsity
constraint on the parameter matrix. Due to the nonconvex
`0,2 norm constraint, the estimator is a non-convex opti-
mization problem and finding its global optimal solution
is generally NP-hard. We propose a greedy algorithms
to attain an approximate solution with provable guaran-
tee. At the core of the proposed greedy algorithm is a for-
ward backward feature selection strategy. We prove that
the output of our algorithm attains a sharp statistical es-
timation error bound. As a special example of the pro-
posed general estimator, we consider the multivariate lin-
ear regression model y(i) = X(i)θ∗i + ε, where ε is the
zero mean noise vector. We show that its estimation er-
ror bound is O(

√
s∗m/n+

√
s∗ log s∗/n) in terms of the

Frobenius norm with n = mini{ni}, which is sharper than
the state-of-the-art results Jalali et al. (2013); Gong et al.
(2013). Furthermore, in order to achieve model selection
consistency, most existing work for the square loss func-
tion (Jalali et al., 2013; Wainwright, 2009; Zhao and Yu,

2006) relies on the very stringent incoherence condition. In
sharp contrast, our estimator enjoys model selection consis-
tency under a mild condition on the `2 norms of the nonzero
rows in Θ∗. Thorough experiments on both simulated data
and real data show that the proposed method outperforms
the state-of-the-art methods.

The remainder of this paper is organized as follows. In Sec-
tion 2, we propose a general estimator for multi-task learn-
ing with row sparsity constraint, followed by a greedy al-
gorithm with forward-backward feature selection strategy.
In Section 3, we prove the convergence of the greedy al-
gorithm, as well as the statistical estimation error bound
for the output of the greedy algorithm. We report the ex-
perimental results in Section 4 and conclude our work in
Section 5.

Notation We use bold capitals to denote matrices, bold
lowercase letters for vectors, and lowercase letters for
scalars. The j-th natural basis in Rd is denoted as ej .
For matrices A and B with commensurate dimensions,
we use 〈A,B〉 to denote their trace inner product, i.e.
〈A,B〉 = tr(A>B). Given a matrix Θ, its i-th row is
denoted by Θi∗ and its j-th column is denoted by Θ∗j .
The `p,q norm of a matrix Θ is defined as ‖Θ‖p,q ={∑

i[ (
∑
j |Θij |q)1/q ]p

}1/p
, and the Frobenius norm of Θ

is ‖Θ‖F =
√
〈Θ,Θ〉 = ‖Θ‖2,2. For a matrix Θ, we use

F (Θ) to denote the index set of the non-zero rows in Θ.
For a row index set F , we denote by ΘF to be the matrix
that its i-th row is the same as the i-th row of Θ if i ∈ F ,
and its i-th row is a zero vector if i /∈ F .

2 THE PROPOSED METHOD

In this section, we first introduce the underlying model for
multi-task learning, followed by a general estimator. Then
we propose a greedy algorithm to solve the estimator.

2.1 THE MODEL AND ESTIMATOR

Suppose that we have observations
{(X(1),y(1)), . . . , (X(m),y(m))} from m tasks, where
X(i) ∈ Rni×d is the design matrix of the i-th task,
yi ∈ Rni is the vector of response variables for the i-th
task. We assume that the observations in each task are
generated from generalized linear models

P(y
(i)
j |x

(i)
j ,θ∗i , σi) = exp

{
y
(i)
j 〈θ∗i ,x

(i)
j 〉 − Φ(θ∗>i x

(i)
j )

c(σi)

}
,

i = 1, . . . ,m, j = 1, . . . , ni,

where Φ(·) : R → R is a link function, x
(i)
j is the j-th

row of X(i), y(i)j is the j-th coordinate of y(i), θ∗i ∈ Rd
is the parameter of i-th task, and c(σi) ∈ R is fixed and
known scale parameter of the i-th task. A special example

736



of generalized linear model is the linear regression model
where the distribution of the response variable conditioned
on the covariates is a normal distribution. That is, when
c(σ) is chosen as σ2 and Φ(t) = t2. Logistic regression is
another special case of the generalized linear model, where
Φ(t) = log(1 + exp(t)), c(σ) = 1 and y(i)j ∈ {0, 1}.
Our goal is to recover the unknown θ∗i ’s given the obser-
vations from m tasks. A general estimator for multi-task
learning is based on minimizing the negative log likelihood,
under the `0,2 constraint on the parameter matrix Θ. This
gives rise to:

min
Θ∈Rd×m

L(Θ) subject to ‖Θ‖0,2 ≤ s, (2.1)

where s is a tuning parameter which controls the row spar-
sity of Θ, L(Θ) is the sum of the negative log likelihood
over all the tasks, which is given by

L(Θ) = −
m∑

i=1

[
1/(2ni)

ni∑

j=1

y
(i)
j Θ>∗ix

(i)
j + Φ(Θ>∗ix

(i)
j )
]
,

(2.2)

where Θ∗i is the i-th column of Θ. In particular, when
c(σ) = σ2 and Φ(t) = t2, the negative log likelihood func-
tion of the exponential family distribution in (2.2) reduces
to the square loss function, which is shown as follows:

L(Θ) =
m∑

i=1

1

2ni
‖y(i) −X(i)Θ∗i‖22. (2.3)

Note that the square loss function has been used in Obozin-
ski et al. (2006); Argyriou et al. (2008); Negahban and
Wainwright (2008); Lounici et al. (2009); Zhang et al.
(2010) for simplicity.

In addition, the optimization problem in (2.1) is noncon-
vex, because the constraint set ‖Θ‖0,2 ≤ s is nonconvex.
In fact, due to the combinatorial nature of this constraint,
finding its global optimal solution is actually NP-hard. In
the next subsection, we will propose a greedy algorithm to
solve (2.1) approximately, yet with provable guarantee.

2.2 THE PROPOSED ALGORITHM

In order to get a good estimation of Θ∗, a vital problem is
to get the row support of Θ∗. In order to get a good esti-
mation of the row support of Θ∗, we designed the follow-
ing algorithm. The formal description of the algorithm is
summarized in Algorithm 1. In detail, we use the forward-
backward strategy (Zhang, 2009) to select the feature set
iteratively. In particular, we start from an empty feature set.
The proposed algorithm adds the feature that will decrease
the loss function most greatly into the current selected fea-
ture set in each iteration (The “Forward” strategy). Since
the `2 norm of each row of the gradient characterize the de-
crease rate of the loss function, we use the row with largest

`2 norm which is indexed by i(t+1) during the forward step
(The seventh line of Algorithm 1).After each feature set up-
dating, we also update the coefficients for each feature just
as an ordinary regression problem. However, the forward
strategy is too greedy because it only permits the entrance
of new features but prohibits the deletion of irrelevant fea-
tures. Hence we introduce the “Backward” mechanism to
help the algorithm get rid of the bad local optima. That is,
in each iteration, we not only add a new feature but also re-
move one or more irrelevant features from the feature set.
The goodness of a feature is measured by the increase of
the loss function when the feature is removed from the fea-
ture set. Similarly, the coefficient of each selected features
is updated when there is a modification of feature set.

Algorithm 1 Forward Backward Greedy Algorithm for
Multi-Task Learning (MultiFoBa)

1: Require: ε > 0
2: Initialize: Θ(0) = 0, t = 0, F (0) = ∅
3: while TRUE do
4: if ‖∇L(Θ(t))‖∞,2 < ε then
5: break
6: end if
7: i(t+1) = argmaxi/∈F (t)

∥∥∇L(Θ(t))i
∥∥
2

8: F (t+1) = F (t) ∪ {i(t+1)}
9: Θ(t+1) = argminΘi∗=0,i/∈F (t+1) L(Θ)

10: δ(t+1) = L(Θ(t))− L(Θ(t+1))
11: t = t+ 1
12: while TRUE do
13: if mini∈F (t) L(Θ(t)−eiΘ

(t)
i∗ )−L(Θ(t)) ≥ δ(t)/2

then
14: break
15: end if
16: i(t) = argmini∈F (t) L(Θ(t) − eiΘ

(t)
i∗ )

17: F (t−1) = F (t) \ {i(t)}
18: Θ(t−1) = argminΘi∗=0,i/∈F (t−1) L(Θ)
19: t = t− 1
20: end while
21: end while
22: Output: Θ(t)

Note that we only delete those features which cause an in-
crease of loss function by less than δ(t)/2, where δ(t) is
the decrease of the loss function when the last feature is
added. This guarantees that the loss function will not in-
crease when the cardinality of the feature set returns back.
And this implies that the algorithm will not stuck in an infi-
nite loop. In contrast to the forward feature selection algo-
rithm, our algorithm employs a backward feature elimina-
tion step, which is able to help avoid the local optima. As
we will show in the next section, the backward step is es-
sential in achieving the model selection consistency under
mild conditions.

We now analyze the time complexity of the algorithm.
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The main computational overhead in the “forward” step
is the 9-th line in Algorithm 1. For square loss, there ex-
ist a closed-form solution to the optimization problem in
this line. In detail, for the i-th task, the solution is given
by Θ

(t)
∗i =

(
X

(i)>
F (t) X

(i)

F (t)

)−1
X

(i)>
F (t) y

(i). The time com-
plexity is O(|F (t)|2∑m

i=1 ni) in the t-th iteration of the
loop. Similarly, in the “backward” step, the main work-
load falls in the 18-th line and the time complexity is also
O(|F (t)|2∑m

i=1 ni). Since |F (t)| is much smaller than d,
the computational cost is not expensive. Furthermore, we
will prove in Section 3 that Algorithm 1 will terminate after
finite steps. Therefore, the total time complexity of our al-
gorithm is O(|F (t)|2∑m

i=1 ni) times the number of steps.
Overall, Algorithm 1 is efficient.

3 MAIN THEORETICAL RESULTS

In this section we will analyze the practicability of the al-
gorithm and prove the finite-sample statistical rate of the
proposed estimator. The detailed proofs of all the theory
are deferred in the supplemental material.

For the ease of statistical analysis, we consider an ora-
cle estimator Θ̂O which is obtained by restricting the row
support of the estimator onto the row support of the un-
known true parameter matrix Θ∗. More specifically, let
F (Θ) ⊂ {1, 2, . . . , d} denote the index set of nonzero rows
of Θ. Then Θ̂O is the optimal solution to the following
problem:

Θ̂O = argmin
Θ∈Rd×m

L(Θ) subject to F (Θ) = F (Θ∗).

(3.1)

Note that Θ̂O is not a practical estimator but a reference
estimator used for theoretical analysis only. To simplify
notation, let F ∗ ≡ F (Θ∗) = F (Θ̂O) and F (t) ≡ F (Θ(t)).
We use F (t) − F ∗ to denote the set difference. For the
matrix Θ

(t)

F (t)−F∗ ∈ Rd×m, its i-th row is the same as the
i-th row of Θ(t) if i ∈ F (t)−F ∗. For i /∈ F (t)−F ∗, the i-
th row of Θ

(t)

F (t)−F∗ is a zero vector. Note that according to

this definition, Θ
(t)

F (t)−F∗ is equal to [Θ(t) − Θ̂O]F (t)−F∗ .

To concisely characterize the property of L(Θ), we first
introduce the definition of sparse eigenvalues, which is
the extension of sparse eigenvalue for sparse regression
(Zhang, 2009; Jalali et al., 2011; Liu et al., 2013; Rao
et al., 2015). Similar extension has been used in Gong et al.
(2013).

Definition 3.1 (Sparse Eigenvalues). The smallest and

largest s-sparse eigenvalues of∇2L(Θ) are

ρ+(s) = max
1≤i≤m

sup
{
u>∇2

θi
L(Θ)u :

‖u‖0 ≤ s, ‖u‖2 = 1,Θ ∈ Rd×m
}
,

ρ−(s) = min
1≤i≤m

inf
{
u>∇2

θi
L(Θ)u :

‖u‖0 ≤ s, ‖u‖2 = 1,Θ ∈ Rd×m
}
.

Remark 3.2. The definition of ρ−(·) is highly related to
the definition of restricted strong convexity in Negahban
et al. (2009). Previous studies (Zhang et al., 2009; Negah-
ban et al., 2009) have shown that the assumption ρ−(s) > 0
can be satisfied for different forms of L(Θ). This is often
referred to as sparse eigenvalue condition. For example,
Zhang et al. (2009) proved that when the model is a lin-
ear regression model and L(Θ) is a square loss, ∇2

θi
L(Θ)

satisfies the sparse eigenvalue condition with high proba-
bility. Therefore, when we choose square loss in (2.3), it
is easy to show that ρ−(s) > 0 holds with high probabil-
ity analogously. Another example is the generalized linear
model. Negahban et al. (2009) proved that with high prob-
ability the loss function corresponding to generalized linear
model satisfies the restricted strong convexity, which also
implies that ρ−(s) > 0.

Without loss of generality, we make the following assump-
tion on the structure of the loss function L(Θ).
Assumption 3.3 (Decomposable Loss Function). The loss
function can be decomposed into the sum of loss functions
on different tasks. By formulation, we have

L(Θ) =
m∑

i=1

`i(Θ∗i),

where `i is the loss function defined on the i-th task.

Assumption 3.3 can be verified for many types of loss func-
tions, including the loss functions in (2.2) and (2.3).

Combining Assumption 3.3 with the definition of sparse
eigenvalues, it is easy to show that

ρ−(s)

2
‖∆‖2F ≤ L(Θ + ∆)− L(Θ)− 〈∇L(Θ),∆〉

≤ ρ+(s)

2
‖∆‖2F , for all ‖∆‖0,2 ≤ s.

(3.2)

These two inequalities in (3.2) are frequently used in the
proof in order to bound the difference between L(Θ) and
L(Θ + ∆). In fact, it is highly related to the restricted
strong convexity and smoothness condition proposed in
Negahban et al. (2009). The key difference is here the in-
equality holds in the sparse subspace rather than a cone.

The first question we are going to address is whether and
when Algorithm 1 will terminate. The following theorem
guarantees that the proposed algorithm terminates in finite
steps.
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Theorem 3.4. Suppose that the loss function L(Θ) sat-
isfies Assumption 3.3. Let s be any integer satisfying
ρ−(s) > 0 and the following condition:

s ≥
(
s∗ + 1

){[(
√
ρ+(s)

ρ−(s)
+ 1

)√
2ρ+(1)

ρ−(s)

]2
+ 1

}
,

(3.3)

and take ε > 2
√

2
∥∥∇L(Θ̂O)

∥∥
∞,2 ρ+(1)/ρ−(s) in Algo-

rithm 1. Then the algorithm terminates at some t ≤ s− s∗.

Next we will introduce some theoretical results about the
estimation error bounds of the output of Algorithm 1.

Theorem 3.5. Suppose that the loss function L(Θ) satis-
fies Assumption 3.3. Let s be any integer satisfying (3.3)
and ρ−(s) > 0. Take

ε >
2
√

2ρ+(1)

ρ−(s)
‖∇L(Θ̂O)‖∞,2, (3.4)

then the output of Algorithm 1 satisfies

∥∥Θ(t) −Θ∗
∥∥
F
≤ 2
√

2ε

ρ−(s)

√
s∗2 +

2
√
s∗

ρ−(s∗)

∥∥[∇L(Θ∗)]F∗
∥∥
∞,2,

(3.5)

ρ−(s)2

8ρ+(1)2
∣∣F (t) − F ∗

∣∣ ≤
∣∣F ∗ − F (t)

∣∣ ≤ 2s∗2, (3.6)

where s∗2 is defined as

s∗2 :=
∣∣{i ∈ F ∗ − F (t) :

∥∥Θ∗i∗
∥∥
2
< 2
√

2ε/ρ−(s)

+ ‖[Θ̂O −Θ∗]F∗‖∞,2
}∣∣. (3.7)

Note in Theorem 3.5 that s∗2 denotes the number of nonzero
rows in Θ∗ whose `2 norms are small. Those correspond to
the rows which are difficult to recover. It is easy to verify
that if s∗2 = 0, we have |F (t) − F ∗| = |F ∗ − F (t)| = 0 by
(3.6), which implies that F (t) = F ∗.

In the following corollary, we show that if the `2 norms of
all the nonzero rows are sufficiently large, i.e., s∗2 = 0, we
can achieve a sharper estimation error bound, together with
model selection consistency.

Corollary 3.6. Under the same conditions as Theorem 3.5,
if s∗2 = 0, i.e., the `2 norm of each row of Θ̂O is sufficiently
large, then the estimation error of the output of Algorithm
1 is bounded by

∥∥Θ(t) −Θ∗
∥∥
F
≤ 2
√
s∗

ρ−(s∗)

∥∥[∇L(Θ∗)]F∗
∥∥
∞,2, (3.8)

and the model selection consistency can be obtained, i.e.,
F (t) = F ∗.

3.1 HIGH PROBABILITY RESULTS FOR
SQUARE LOSS

In this subsection, we present the high probability result
for a specific example, i.e., the square loss case. Similar
high probability results can be proved for the general loss
function in (2.2) with more involved arguments.

For the sake of simplicity, we assume that every task has
the same number of observations, i.e., n1 = . . . = nm =
n. Then the square loss function in (2.3) can be further
reduced to

L(Θ) =
1

2n

m∑

i=1

‖X(i)θi − y(i)‖22. (3.9)

Our analysis can be easily extended to the general square
loss in (2.3) where different tasks may have different num-
ber of observations.

Without loss of generality, we make the following assump-
tion on the design matrices X(i)’s.

Assumption 3.7. For all columns in X(i), we have
‖X(i)
∗j ‖2 ≤

√
n, where X

(i)
∗j is the j-th column of X(i).

Note that Assumption 3.7 is often made in the analysis of
Lasso estimator (Negahban et al., 2009; Zhang et al., 2009).

The estimation error bound of the output of Algorithm 1 is
shown in the following theorem.

Theorem 3.8. Under the same conditions as Theorem 3.5,
when the loss function is the square loss in (3.9) and sat-
isfies Assumption 3.7, we have with probability at least
1− 1/d− 2/s∗ that

‖Θ(t) −Θ∗‖F ≤
10ρ+(1)σ

ρ2−(s)

√
s∗m
n

+
16ρ+(1)σ

ρ2−(s)

√
s∗2 log d

n

+
4σ

ρ−(s∗)

√
s∗ log s∗

n
, (3.10)

where s∗2 is defined as

s∗2 =

∣∣∣∣
{
i ∈ F ∗ − F (t) :

∥∥Θ∗i∗
∥∥
2
≤

9ρ+(1)σ

ρ2−(s)

(√
m

n
+ 2

√
log d

n

)}∣∣∣∣.

Remark 3.9. Theorem 3.5 suggests that the statistical es-
timation rate of our algorithm is

O

(√
s∗m
n

+

√
s∗ log s∗

n
+

√
s∗2 log d

n

)
,

which is sharper than the statistical rate of convex relax-
ation based methods (Lounici et al., 2009; Obozinski et al.,
2011), i.e., O(

√
s∗m/n +

√
s∗ log d/n), since s∗2 could

be much smaller than s∗, and log s∗ is much smaller than
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log d. From the sample complexity point of view, Theo-
rem 3.5 implies the sample complexity of our algorithm
is O(s∗m + s∗ log s∗ + s∗2 log d). When s∗2 is sufficiently
smaller than s∗, our sample complexity is tighter than the
existing best sample complexity for group sparse signal
recovery (Baraniuk et al., 2010; Rao et al., 2012), i.e.,
O(s∗ log d+ s∗m).
Corollary 3.10. Under the same conditions as Theorem
3.8, when s∗2 = 0, we have with probability at least
1− 1/d− 2/s∗ that

‖Θ(t) −Θ∗‖F ≤
10ρ+(1)σ

ρ2−(s)

√
s∗m
n

+
4σ

ρ−(s∗)

√
s∗ log s∗

n
,

and the model selection consistency can be obtained with
probability at least 1− 1/d− 2/s∗, i.e., F (t) = F ∗.
Remark 3.11. From Corollary 3.10, we know that our al-
gorithm can get a even faster convergence rate in terms of
Frobenius norm as follows

O

(√
s∗m
n

+

√
s∗ log s∗

n

)
. (3.11)

In addition, the sufficient condition for our algorithm to
achieve model selection consistency is as follows

∥∥Θ∗i∗
∥∥
2
&
√
m

n
+

√
log d

n
for all i ∈ F ∗ − F (t),

(3.12)

which is implied by s∗2 = 0. In other words, we need all
non-zero rows of Θ∗ in the row index set F ∗−F (t) are big
enough in terms of `2 norm. This thanks to the `0,2 con-
straint on the parameter matrix, which does not introduce
bias when the nonzero rows of the parameter matrix are of
large magnitude in terms of `2 norm. In fact, our analysis
can be directly applied to the original forward backward
algorithm in Zhang (2009), and delivers a sharper bound
for single task sparse regression. This can be seen as a by-
product of our technical contribution.
Remark 3.12. One may be curious that why our bound in
(3.11) beats the minimax lower bound for group sparse re-
covery Lounici et al. (2011). Note that when s∗2 = 0, our al-
gorithm fully recovers the support of Θ∗, and our estimator
is identical to the multivariate regression estimator that is
restricted on the true supportF ∗ of the parameter matrix. In
this case, our estimator reduces to a multivariate regression
in the classical regime rather than in the high dimensional
regime, i.e., the oracle estimator in (3.1). Therefore, the
minimax lower bound that characterizes the information
theoretic limit is no longer the one in the high dimensional
regime Lounici et al. (2011), but the one for the multivari-
ate regression in the classical regime, i.e., O(

√
s∗m/n).

As we can see, the upper bound in (3.11) achieved by our
algorithm matches the minimax lower bound of multivari-
ate regression in the classical regime up to log(s∗). This is
one of our major contributions in this paper and what we
referred to as “faster rate”.

Remark 3.13. It is interesting to compare our result in
Corollary 3.10 with the main result in Gong et al. (2013).
Gong et al. (2013) proposed multi-stage multi-task learning
method and proved an estimation error bound as follows

‖Θ(t) −Θ∗‖F .
√
s∗m
n

+

√
m log d

n
. (3.13)

The sufficient condition for their method to achieve model
selection consistency is

‖Θ∗i∗‖2 &
√
m(log d+ logm)

n
for all i ∈ F ∗.

(3.14)

By comparing (3.11) with (3.13), it is clear that our estima-
tor attains a much shaper estimation error bound than Gong
et al. (2013).

Furthermore, by comparing (3.12) with (3.14), we can see
that the sufficient condition of model selection consistency
for our algorithm is much milder than their method. In de-
tail, our sufficient condition only takes into account those
dimensions that fall in F ∗−F (t) rather than the whole F ∗.
Moreover, the magnitude condition in (3.12) is also in a
much smaller order than (3.14). This clearly demonstrates
that the sufficient condition of the model selection consis-
tency for our algorithm is substantially milder than Gong
et al. (2013).

4 EXPERIMENTS

In this section, we conduct extensive empirical study on
both synthetic and real-world datasets, to verify the effec-
tiveness of the proposed method.

4.1 COMPARED ALGORITHMS

We present the empirical study by comparing the results
of the following algorithms: Lasso: we apply Lasso (Tib-
shirani, 1996) to each task individually; FoBa: a for-
ward backward algorithm for sparse regression (Zhang,
2009). Similar to Lasso, we apply FoBa to each task
individually; L1,2: multi-task feature learning based on
`2,1-norm regularization (Liu et al., 2009); MSMTFL:
the Multi-Stage Multi-Task learning method proposed
by Gong et al. (2013); DirtyMTL: a dirty statistical
model based multi-task learning algorithm with regular-
izer λ1‖P‖1,1 + λ2‖Q‖1,∞ (Θ = P + Q) (Jalali et al.,
2013); rRMTL: a robust multi-task learning algorithm em-
ploying λ1‖P‖2,1 + λ2‖Q>‖2,1 as the regularizer (Θ =
P + Q) (Gong et al., 2012); MultiFoBa: This is our
proposed algorithm, which employs the forward-backward
strategy to select features under feature set cardinality con-
straint. We implement the proposed algorithm by MAT-
LAB. For other algorithms, we use the implementation in

740



Table 1: The estimation error in terms of Frobenius norm of different algorithms on synthetic datasets.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

Dataset 1 7.61±0.38 5.79±0.39 1.59±0.10 1.80±0.09 6.30±0.19 1.89±0.46 0.72±0.09
Dataset 2 11.14±0.84 7.45±0.85 2.25±0.17 2.77±0.12 8.11±0.75 5.22±1.39 1.04±0.09
Dataset 3 11.35±0.59 9.27±0.59 3.12±0.49 3.36±0.21 8.56±0.74 6.29±1.01 1.66±0.17

Table 2: The F1 scores of support recovery of different algorithms on synthetic datasets.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

Dataset 1 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.02 0.93±0.07 1.00±0.00
Dataset 2 0.60±0.11 1.00±0.00 0.98±0.02 0.99±0.01 0.86±0.11 1.00±0.00 1.00±0.00
Dataset 3 0.54±0.11 0.80±0.00 0.82±0.17 0.96±0.04 0.76±0.08 0.84±0.04 0.95±0.02

the software package MALSAR1 In the experiments, the
quadratic loss function in (3.9) is employed for all the com-
pared algorithms. For MSMTFL, we use the capped-`1 reg-
ularizer. Note that the proposed algorithm has only one pa-
rameter ε, which controls the termination of the algorithm.

4.2 SYNTHETIC DATA

The synthetic data are generated by setting the number of
tasks as m, where each task has n samples and of dimen-
sionality d. Each sample is drawn from a multivariate nor-
mal distribution N(0, I) where I is a d × d identity ma-
trix. Then we normalize all columns of each data matrix
X(i) ∈ Rn×d to length one. Each entry of the underlying
parameter matrix Θ∗ is sampled i.i.d. from the uniform
distribution over the interval [−10, 10]. To simulate spar-
sity, we randomly set d − s∗ rows of Θ∗ to zero vectors.
The response vector is generated by y(i) = X(i)θ∗i + ε(i),
where each entry of ε(i) is drawn i.i.d. from the normal dis-
tribution N(0, σ2

i ). We choose σi = 0.1 for all i. In detail,
we generate two synthetic datasets as follows. The param-
eter settings are d = 256,m = 10, s∗ = 5, n = 100 for
“Dataset 1”; and d = 512,m = 10, s∗ = 10, n = 100 for
“Dataset 2”. In addition, we generate a more challenging
synthetic dataset (“Dataset 3”) to test the support recovery
ability of different algorithms when there are nonzero rows
with small `2 norm in Θ∗. “Dataset 3” is generated differ-
ently. Firstly, we generate a d × m matrix in which each
element is sampled i.i.d. from the uniform distribution in
the interval [−10, 10]. Then we randomly set d − s∗ rows
as zero vectors. Among the other s∗ nonzero rows, we ran-
domly select s∗w rows and divide each element in these rows
by 20 to simulate the small norm. Other procedures of the
data generation are the same as “Dataset 1” and “Dataset
2”. We set d = 512,m = 10, n = 100, s∗ = 15, s∗w = 5
for “Dataset 3”.

All algorithms in the comparative study are employed to es-

1https://github.com/jiayuzhou/MALSAR

timate Θ̂ given X(i)’s and y(i)’s. Since all the algorithms
have one or several parameters, we tune the parameters by
5-fold cross validation on each synthetic data. The esti-
mation error of the parameter matrix in terms of Frobenius
norm ‖Θ(t) −Θ∗‖F is reported in Table 1.

In order to evaluate the support recovery results of different
algorithms, we use F1 score defined as follows

F1 =
2 · precision · recall

precision + recall
,

where precision = |supp(Θ∗)∩supp(Θ̂)|/|supp(Θ̂)| and
recall = |supp(Θ∗) ∩ supp(Θ̂)|/|supp(Θ∗)| . Note that
for some algorithms (such as Dirty and rMTFL) they not
only output the estimator Θ̂, but also output two interme-
diate estimators P̂ and Q̂, where Θ̂ = P̂ + Q̂. By empir-
ical study, we found that the estimator P̂ is more suitable
for support recovery than the estimator Θ̂ (i.e., P̂ achieves
higher F1 score than Θ̂), because in these algorithms P̂ is
a sparse or row-sparse matrix. Hence for Dirty and rMTFL
algorithms, we use P̂ to evaluate the feature selection (i.e.,
support recovery) performance. The F1 score of support
recovery is reported in Table 2.

From Tables 1 and 2, it can be seen that when all nonzero
rows are with large `2 norms (Dataset 1 and 2), our algo-
rithm can exactly recover the supports of Θ∗ and attain a
small estimation error. While some other algorithms can
also recover most supports (with a high F1 score), they suf-
fer from larger estimation error than ours. This is reason-
able because our algorithm employs the support cardinality
constraint, which is unbiased when the supports are recov-
ered correctly. In contrast, many other algorithms employ
some kinds of convex penalties, which lead to biased esti-
mators. In order to recover the support correctly, they have
to use a large penalty parameter λ, which makes the esti-
mators more biased.

When there are nonzero rows with small `2 norm (Dataset
3), our algorithm can still recover the support of Θ∗ with
high accuracy. This is consistent with our theory. In con-
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Table 3: The nMSE of different algorithms on school dataset.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

20% 0.903±0.012 0.832±0.009 0.924±0.022 0.804±0.009 0.803±0.009 0.802±0.010 0.762±0.022
30% 0.859±0.014 0.766±0.013 0.911±0.043 0.765±0.009 0.749±0.009 0.750±0.008 0.727±0.027

Table 4: The nMSE of different algorithms on SARCOS dataset.

Lasso FoBa L1,2 MSMTFL DirtyMTL rMTFL MultiFoBa

50 0.093±0.035 0.083±0.012 0.073±0.012 0.077±0.011 0.082±0.037 0.072±0.010 0.067±0.010
100 0.075±0.013 0.055±0.006 0.055±0.010 0.053±0.005 0.071±0.038 0.050±0.005 0.045±0.003
150 0.068±0.034 0.051±0.005 0.049±0.006 0.047±0.002 0.063±0.037 0.044±0.002 0.040±0.001

trast, the other algorithms achieve even worse recovery re-
sults when nonzero rows with small `2 norms exist.

4.3 REAL DATA

We use the School data2 and the SARCOS data3 to verify
the effectiveness of the proposed algorithm on real datasets.

The School dataset consists of information of students from
139 secondary schools, as well as their exam scores. Each
student is described by their 27 attributes, such as gender
and ethnic group. The student exam score predicting prob-
lem can be cast as a multi-task regression problem: each
school is considered as a task, each task as different num-
ber of data points, the attributes of students are input vari-
ables and their scores are responses. We randomly choose
20% and 30% samples from each task to form the training
set and the rest samples as the test set. We tune the param-
eters of all the algorithms by 5-fold cross validation on the
training data. We use the normalized Mean Square Error
(nMSE), i.e., the mean squared error divided by the vari-
ance of ground-truth output, to measure the performance
of all algorithms. Experiment results averaged over 20 rep-
etitions are reported in Table 3.

The SARCOS data is collected for an inverse dynamic pre-
diction problem for a anthropomorphic arm with 7 degrees
of freedom. The data contains the training part and the test-
ing part. The training part consists of 44,484 samples and
the testing part 4,449 samples. Each sample is described by
21 attributes such as joint positions and velocities. There
are also 7 responses attached to each sample, representing
7 torques. Our goal is predicting the responses based on the
attributes. This problem can be casted as a multi-task re-
gression problem, where the prediction of each response is
regarded as a task, and all tasks share the same design ma-
trix. We randomly choose 50, 100 and 150 samples from
the training data of the original dataset to form 3 training

2http://ttic.uchicago.edu/˜argyriou/code/
3http://www.gaussianprocess.org/gpml/

data/

sets and accordingly select 2000 samples from the testing
data of the original dataset to form 3 testing sets. The ex-
periment results averaged over 20 repetitions are summa-
rized in Table 4.

From both Table 3 and Table 4, we can observe that the pro-
posed algorithm outperforms the other algorithms greatly
under different training/test splits on both datasets. This is
due to the unbiased property of our estimator under mild
conditions, as well as the faster statistical rate of our pro-
posed estimator.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a general estimator for multi-
task learning with row sparsity constraint on the parameter
matrix. In order to solve it, we develop a forward back-
ward greedy algorithm, whose output attains a sharper es-
timation error bound than many state-of-the-art multi-task
learning methods. Moreover, the output of the proposed
greedy algorithm enjoys model selection consistency under
a mild condition. Thorough experiments on both synthetic
and real-world data back up our theory.

We notice that the `0,2 constrained nonconvex optimization
problem in (2.1) can be potentially solved by the extensions
of iterative hard thresholding (Jain et al., 2014) and Frank-
Wolfe algorithms (Jaggi, 2013; Lacoste-Julien and Jaggi,
2013). We will investigate these algorithms in the future.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments. Research was sponsored by Quanquan
Gu’s startup funding at Department of Systems and Infor-
mation Engineering, University of Virginia.

References
ANDO, R. K. and ZHANG, T. (2005). A framework for

learning predictive structures from multiple tasks and

742



unlabeled data. The Journal of Machine Learning Re-
search 6 1817–1853.

ARGYRIOU, A., EVGENIOU, T. and PONTIL, M. (2008).
Convex multi-task feature learning. Machine Learning
73 243–272.

BAKKER, B. and HESKES, T. (2003). Task clustering and
gating for bayesian multitask learning. The Journal of
Machine Learning Research 4 83–99.

BARANIUK, R. G., CEVHER, V., DUARTE, M. F. and
HEGDE, C. (2010). Model-based compressive sensing.
Information Theory, IEEE Transactions on 56 1982–
2001.

BAXTER, J. (2000). A model of inductive bias learning. J.
Artif. Intell. Res.(JAIR) 12 149–198.

BOUCHERON, S., LUGOSI, G. and MASSART, P. (2013).
Concentration inequalities: A nonasymptotic theory of
independence. OUP Oxford.

CARUANA, R. (1997). Multitask learning. Machine learn-
ing 28 41–75.

EVGENIOU, T. and PONTIL, M. (2004). Regularized
multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining. ACM.

FAN, J. and LI, R. (2001). Variable selection via non-
concave penalized likelihood and its oracle properties.
Journal of the American statistical Association 96 1348–
1360.

GONG, P., YE, J. and ZHANG, C. (2012). Robust multi-
task feature learning. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining. ACM.

GONG, P., YE, J. and ZHANG, C. (2013). Multi-stage
multi-task feature learning. The Journal of Machine
Learning Research 14 2979–3010.

HAN, L. and ZHANG, Y. (2015). Learning multi-level task
groups in multi-task learning .

JACOB, L., VERT, J.-P. and BACH, F. R. (2009). Clustered
multi-task learning: A convex formulation. In Advances
in neural information processing systems.

JAGGI, M. (2013). Revisiting frank-wolfe: Projection-free
sparse convex optimization. In Proceedings of the 30th
International Conference on Machine Learning (ICML-
13).

JAIN, P., TEWARI, A. and KAR, P. (2014). On itera-
tive hard thresholding methods for high-dimensional m-
estimation. In Advances in Neural Information Process-
ing Systems.

JALALI, A., JOHNSON, C. C. and RAVIKUMAR, P. K.
(2011). On learning discrete graphical models using
greedy methods. In Advances in Neural Information
Processing Systems.

JALALI, A., RAVIKUMAR, P. and SANGHAVI, S. (2013).
A dirty model for multiple sparse regression. Informa-
tion Theory, IEEE Transactions on 59 7947–7968.

JAVANMARD, A. and MONTANARI, A. (2014). Con-
fidence intervals and hypothesis testing for high-
dimensional regression. The Journal of Machine Learn-
ing Research 15 2869–2909.

KANG, Z., GRAUMAN, K. and SHA, F. (2011). Learn-
ing with whom to share in multi-task feature learning.
In Proceedings of the 28th International Conference on
Machine Learning (ICML-11).

KIM, S. and XING, E. P. (2010). Tree-guided group lasso
for multi-task regression with structured sparsity .

LACOSTE-JULIEN, S. and JAGGI, M. (2013). An affine
invariant linear convergence analysis for frank-wolfe al-
gorithms. arXiv preprint arXiv:1312.7864 .

LAWRENCE, N. D. and PLATT, J. C. (2004). Learning
to learn with the informative vector machine. In Pro-
ceedings of the twenty-first international conference on
Machine learning. ACM.

LIU, J., FUJIMAKI, R. and YE, J. (2013). Forward-
backward greedy algorithms for general convex smooth
functions over a cardinality constraint. arXiv preprint
arXiv:1401.0086 .

LIU, J., JI, S. and YE, J. (2009). Multi-task feature learn-
ing via efficient l 2, 1-norm minimization. In Proceed-
ings of the twenty-fifth conference on uncertainty in arti-
ficial intelligence. AUAI Press.

LOUNICI, K., PONTIL, M., TSYBAKOV, A. B. and VAN
DE GEER, S. (2009). Taking advantage of sparsity in
multi-task learning. arXiv preprint arXiv:0903.1468 .

LOUNICI, K., PONTIL, M., VAN DE GEER, S. and TSY-
BAKOV, A. B. (2011). Oracle inequalities and optimal
inference under group sparsity. The Annals of Statistics
2164–2204.

NEGAHBAN, S. and WAINWRIGHT, M. J. (2008). Joint
support recovery under high-dimensional scaling: Bene-
fits and perils of l1,-regularization. Advances in Neural
Information Processing Systems 21 1161–1168.

NEGAHBAN, S., YU, B., WAINWRIGHT, M. J. and
RAVIKUMAR, P. K. (2009). A unified framework for
high-dimensional analysis of m-estimators with decom-
posable regularizers. In Advances in Neural Information
Processing Systems.

NESTEROV, Y. (2004). Introductory lectures on convex op-
timization, vol. 87. Springer Science & Business Media.

OBOZINSKI, G., TASKAR, B. and JORDAN, M. (2006).
Multi-task feature selection. Statistics Department, UC
Berkeley, Tech. Rep .

OBOZINSKI, G., WAINWRIGHT, M. J. and JORDAN, M. I.
(2011). Support union recovery in high-dimensional
multivariate regression. The Annals of Statistics 1–47.

743



PARAMESWARAN, S. and WEINBERGER, K. Q. (2010).
Large margin multi-task metric learning. In Advances in
neural information processing systems.

QUADRIANTO, N., PETTERSON, J., CAETANO, T. S.,
SMOLA, A. J. and VISHWANATHAN, S. (2010). Mul-
titask learning without label correspondences. In Ad-
vances in Neural Information Processing Systems.

RAO, N., SHAH, P. and WRIGHT, S. (2015). Forward–
backward greedy algorithms for atomic norm regulariza-
tion. Signal Processing, IEEE Transactions on 63 5798–
5811.

RAO, N. S., RECHT, B. and NOWAK, R. D. (2012). Uni-
versal measurement bounds for structured sparse signal
recovery. In International Conference on Artificial Intel-
ligence and Statistics.

SCHWAIGHOFER, A., TRESP, V. and YU, K. (2004).
Learning gaussian process kernels via hierarchical
bayes. In Advances in Neural Information Processing
Systems.

TIBSHIRANI, R. (1996). Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical Soci-
ety. Series B (Methodological) 267–288.

TURLACH, B. A., VENABLES, W. N. and WRIGHT, S. J.
(2005). Simultaneous variable selection. Technometrics
47 349–363.

WAINWRIGHT, M. (2009). Sharp thresholds for noisy
and high-dimensional recovery of sparsity using 1-
constrained quadratic programming (lasso). IEEE Trans-
actions on Information Theory 55 2183–2202.

YANG, X., KIM, S. and XING, E. P. (2009). Heteroge-
neous multitask learning with joint sparsity constraints.
In Advances in neural information processing systems.

YU, K., TRESP, V. and SCHWAIGHOFER, A. (2005).
Learning gaussian processes from multiple tasks. In Pro-
ceedings of the 22nd international conference on Ma-
chine learning. ACM.

ZHANG, C.-H. (2010). Nearly unbiased variable selection
under minimax concave penalty. The Annals of Statistics
894–942.

ZHANG, C.-H. and HUANG, J. (2008). The sparsity and
bias of the lasso selection in high-dimensional linear re-
gression. The Annals of Statistics 1567–1594.

ZHANG, J., GHAHRAMANI, Z. and YANG, Y. (2005).
Learning multiple related tasks using latent independent
component analysis. In Advances in neural information
processing systems.

ZHANG, T. (2009). Adaptive forward-backward greedy al-
gorithm for sparse learning with linear models. In Ad-
vances in Neural Information Processing Systems.

ZHANG, T. ET AL. (2009). Some sharp performance
bounds for least squares regression with l1 regulariza-
tion. The Annals of Statistics 37 2109–2144.

ZHANG, Y. and YEUNG, D.-Y. (2012). A convex formula-
tion for learning task relationships in multi-task learning.
arXiv preprint arXiv:1203.3536 .

ZHANG, Y. and YEUNG, D.-Y. (2013). Learning high-
order task relationships in multi-task learning. In Pro-
ceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence. AAAI Press.

ZHANG, Y., YEUNG, D.-Y. and XU, Q. (2010). Proba-
bilistic multi-task feature selection. In Advances in neu-
ral information processing systems.

ZHAO, P. and YU, B. (2006). On model selection con-
sistency of lasso. The Journal of Machine Learning Re-
search 7 2541–2563.

ZHOU, J., YUAN, L., LIU, J. and YE, J. (2011). A multi-
task learning formulation for predicting disease progres-
sion. In Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining. ACM.

744



Non-parametric Domain Approximation for Scalable Gibbs Sampling in MLNs

Deepak Venugopal
Department of Computer Science

University of Memphis
Memphis, TN 38152, USA
dvngopal@memphis.edu

Somdeb Sarkhel
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080, USA
sxs104721@utdallas.edu

Kyle Cherry
Department of Computer Science

University of Memphis
Memphis, TN 38152, USA
kcherry2@memphis.edu

Abstract

MLNs utilize relational structures that are ubiq-
uitous in real-world situations to represent large
probabilistic graphical models compactly. How-
ever, as is now well-known, inference complex-
ity is one of the main bottlenecks in MLNs.
Recently, several approaches have been pro-
posed that exploit approximate symmetries in the
MLN to reduce inference complexity. These
approaches approximate large domains contain-
ing many objects with much smaller domains
of meta-objects (or cluster-centers), so that in-
ference is considerably faster and more scal-
able. However, a drawback in most of these
approaches is that it is typically very hard to
tune the parameters (e.g., number of clusters)
such that inference is both efficient and accu-
rate. Here, we propose a novel non-parametric
approach that trades-off solution quality with ef-
ficiency to automatically learn the optimal do-
main approximation. Further, we show how to
perform Gibbs sampling effectively in a domain-
approximated MLN by adapting the sampler ac-
cording to the approximation. Our results on sev-
eral benchmarks show that our approach is scal-
able, accurate and converges faster than existing
methods.

1 INTRODUCTION

Markov Logic Networks (MLNs) offer a convenient way
to express uncertain domain knowledge in the form of
weighted first-order formulas. However, probabilistic in-
ference in MLNs is well-known to be a notoriously chal-
lenging problem since the size of the Markov network
underlying an MLN (ground Markov network) typically
grows at an exponential rate as we increase the number of
real-world objects that the MLN is defined over. There-
fore, for MLNs to be practically applicable, controlling in-

ference complexity in large domains is essential.

Efficient inference for MLNs and Statistical Relational
Models, in general, has received a great deal of attention
from the research community. In particular, the idea of
lifting inference over the domain of the MLN such that
we can perform inference over groups of objects instead
of individual objects has been widely explored over the
last few years. The main idea in lifted inference is to re-
duce complexity by taking advantage of exchangeable vari-
ables in the model. Several exact and approximate infer-
ence methods have been proposed over the past few years
starting with the work by Poole [20], including, FOVE [4],
WFOMC [26], Probabilistic Theorem Proving (PTP) [7]
and lifted inference with soft evidence [3]. Popular approx-
imate lifted inference methods include [16, 17, 22, 11, 8,
18, 29, 2, 1].

More recently, it has been understood that lifting even ap-
proximate inference techniques is typically insufficient to
ensure scalability in MLNs. The key problem with most
traditional lifting techniques is their over-reliance on ex-
act symmetries which are either not present in real-world
situations or are known to be broken fairly easily in the
presence of evidence [27]. Therefore, a new class of meth-
ods that utilize approximate symmetries thereby forgoing
strong theoretical guarantees in lieu of scalability have been
proposed making MLNs much more attractive from a prac-
tical perspective. In this work, we develop one such novel
approach by learning the lifting strategy automatically us-
ing non-parametric clustering and integrating a Gibbs sam-
pler that adapts itself with the learned strategy.

The idea of grouping nodes in the input model to reduce
inference complexity has been explored in previous work
such as Kersting et al. [12] who progressively refine a
model in the context of belief propagation and Broeck and
Darwiche [27] who compute an over-symmetric low-rank
boolean matrix approximation of the original MLN that is
more amenable to lifted inference. More recently, Hadiji
and Kersting [10] and Sarkhel et al. [21] apply grouping
strategies in the context of MAP inference to sometimes
obtain orders of magnitude reduction in the size of the
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model. Venugopal and Gogate [30] formulate a cluster-
ing problem based on a distance measure computed with
the help of evidence given to the MLN and use off-the-
shelf clustering methods to approximately lift the MLN.
Specifically, the key idea in their approach is to pre-process
the original model and generate new, smaller domains con-
sisting of meta-objects that implicitly represent a cluster
of objects in the original MLN. However, the main prob-
lem with existing methods is that it is very hard to tune
the parameters (e.g., number of clusters) such that we se-
lect the optimal clustering for an MLN balancing accuracy
with complexity of inference. For example, consider a sim-
ple MLN with just one unit clause, R(x)w, then, it turns out
that given any evidence, the optimal number of clusters re-
quired to represent the complete domain of x accurately is
equal to 3. Specifically, we form one cluster with all atoms
for which the predicate R is known to be true, one cluster
that contains all atoms for which R is known to be false
and a third cluster of the remaining objects. On the other
hand, for a more complex MLN, such as, R(x, y) ∧ R(y,
z) ⇒ R(z, x) w, choosing the correct number of clusters
is not obvious. In this paper, we develop a novel method
that automatically finds the clustering that is in some sense
optimal. Specifically, we make the following contributions.

1. We develop a fully non-parametric approach to ap-
proximate the domain in an MLN with a new domain
of meta-objects that correspond to the optimal cluster-
ing for that domain.

2. We integrate our clustering method with a Gibbs sam-
pler that adapts itself based on the domain approxima-
tion in order to minimize sampling errors.

We perform an evaluation of our approach in terms of both
accuracy and convergence on benchmarks chosen from
Alchemy [13]. Our results clearly illustrate that our ap-
proach is scalable, yields accurate results and importantly
converges quickly on large models.

2 BACKGROUND

2.1 FIRST-ORDER LOGIC

We assume a strict subset of first-order logic, called finite
Herbrand logic. Thus, we assume that we have no function
constants and finitely many object constants. A first-order
knowledge base (KB) is a set of first-order formulas. A
formula in first-order logic is made up of quantifiers (∀ and
∃), logical variables, constants, predicates and logical con-
nectives (∨, ∧, ¬,⇒, and⇔). We denote logical variables
by lower case letters (e.g., x, y, z, etc.) and constants by
strings that begin with an upper case letter (e.g., A, Ana,
Bob, etc.). Constants model objects in the real-world do-
main. A predicate is a relation that takes a specific num-
ber of arguments (called its arity) as input and outputs ei-

ther True (synonymous with 1) or False (synonymous with
0). A term is either a logical variable or a constant. We
denote predicates by strings in typewriter font (e.g., R, S,
Smokes, etc.) followed by a parenthesized list of terms.

A first-order formula is recursively defined as follows:
(i) An atomic formula is a predicate; (ii) Negation of an
atomic formula is a formula; (iii) If f and g are formulas
then connecting them by binary connectives such as ∧ and
∨ yields a formula; and (iv) If f is a formula and x is a log-
ical variable then ∀xf and ∃xf are formulas. We assume
that each argument of each predicate is typed and can only
be assigned to a fixed subset of constants. We refer to a
ground atom as an atom that contains no logical variables,
i.e., all its variables have been substituted by constants. A
possible world, denoted by ω, is a truth assignment to all
possible ground atoms that can be formed from the con-
stants and the predicates.

2.2 MARKOV LOGIC NETWORKS

Markov logic networks (MLNs) combine Markov networks
and first-order logic. Formally, an MLN is a set of pairs
(fi, θi) where fi is a formula in first-order logic and θi is
a real number. Given a set of constants, an MLN repre-
sents a ground Markov network, defined as follows. We
have one binary random variable in the Markov network
for each possible ground atom. We have one propositional
feature for each possible grounding of each first-order for-
mula. The weight associated with the feature is the weight
attached to the corresponding formula. The ground Markov
network represents the following probability distribution:

Pr(ω) =
1

Z
exp

(∑

i

θiNfi(ω)

)
(1)

where Nfi(ω) is the number of groundings of fi that eval-
uate to True given a world ω (assignment to every ground
atom).

Important inference queries in MLNs are computing the
partition function, finding the marginal probability of an
atom given evidence (an assignment to a subset of vari-
ables) and finding the most probable assignment to all
atoms given evidence (MAP inference). Here, we focus
on the marginal inference problem.

2.3 GIBBS SAMPLING

Gibbs sampling [6] is one of the most widely used MCMC
algorithms to date. Gibbs sampling changes one variable at
a time by sampling that variable from its conditional distri-
bution given all other variables as described below.

Given a set of n variables X1 . . . Xn, the Gibbs sam-
pling algorithm begins with a random assignment x(0) to
all variables. Then, for t = 1, . . . , T , it performs the fol-
lowing steps (each step is called a Gibbs iteration). Let
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(X1, . . . , Xn) be an arbitrary ordering of variables inM.
Then, for i = 1 to n, it generates a new value x(t)i for
Xi by sampling a value from the distribution P (Xi|x(t)

−i)

where x
(t)
−i = (xt1, . . . , x

t
i−1, x

(t−1)
i+1 , . . . , x

(t−1)
n ).

Gibbs sampling is typically used to estimate the marginal
probabilities. Typically, the sampler is allowed to run for
some time (called the burn-in time) to allow it to mix which
ensures that it forgets its initialization, and after T samples
from a mixed Gibbs sampler are generated, the 1-variable
marginal probabilities can be estimated using the following
equation.

P̂T (xi) =
1

T

T∑

t=1

P (xi|x(t)
−i) (2)

2.4 DP-MEANS

DP-Means [14] is a non-parametric clustering method that
unifies K-means clustering with Bayesian non-parametric
models. Specifically, Kullis and Jordan showed that modi-
fying the K-means objective with a penalty term is asymp-
totically equivalent to performing Gibbs sampling in a
Dirichlet-process Mixture Model to infer the right number
of clusters. The modified objective is as follows:

min
`c

k∑

c=1

∑

x∈`c
||x−µc||2+λk where µc =

1

|`c|
∑

x∈`c
x (3)

To solve the modified K-means objective, DP-Means cre-
ates new clusters only when points are sufficiently far off
from existing clusters. For completeness sake, we restate
the key aspects of the algorithm in Algorithm 1.

Input: x1, . . . xn;λ
Output: clustering: `1 . . . `k
while converged=false do

for each input point xi do
m = Compute minimum distance of xi w.r.t all
current cluster centers
if m > λ then

Create new cluster and assign xi to new cluster
end
else

Assign xi to its closest cluster
end

end
end

Algorithm 1: DP-Means

Kulis and Jordan showed that Algorithm 1 converges to a
local optimal solution. Depending on the value of λ, we
would converge to solutions that place more (or less) em-
phasis on reducing the overall number of clusters.

Formulas:
R(x) ∨ S(x, y), w
Original Domains:
∆x = {A1, B1, C1, D1}
∆y = {A2, B2, C2, D2}
Domain Approximation:
∆′x = {µ1, µ2}
∆′y = {µ3, µ}

(a)

Meta-Objects:
µ1 = {A1, B1}; µ2 = {C1, D1}
µ3 = {A2, B2}; and µ4 = {C2, D2}

(b)

Meta-Atoms:
R1(µ1) = {R(A1),R(B1)}
R2(µ2) = {R(C1),R(D1)}
S1(µ1, µ2) = {S(A1, C1),S(A1, D1),
S(B1, C1),S(B1, D1)}
. . .

(c)

Figure 1: (a) an example MLNM and a possible domain
approximation for the original domain ofM.M′ contains
meta-objects and meta-atoms, i.e., objects that represent
multiple objects in the original domain and atoms that rep-
resent multiple atoms inM as shown in (b) and (c)

3 NON-PARAMETRIC DOMAIN
APPROXIMATION

It is now quite widely understood that in order to scale
up inference in MLNs, one needs to perform domain lift-
ing [25], i.e., take advantage of symmetries or exchange-
ability of variables in the MLN [19] to perform efficient
inference over groups of objects in the MLN. Following
a similar vein, the idea behind approximate domain lift-
ing is to relax the notion of symmetries or exchangeable
variables such that domain lifting is applicable to a much
larger class of MLNs. One way to find such symmetries is
to treat the problem of domain lifting as an unsupervised
machine learning problem and use clustering algorithms
to learn symmetries based on the structure of the MLN,
the given inference query, and evidence. Specifically, for
marginal inference, ideally, we would like to cluster to-
gether all ground atoms that have similar marginal prob-
abilities. This would then allow us to treat all atoms in
the cluster uniformly without having to explicitly compute
the marginal probabilities separately for every atom in the
cluster. However, it should be noted that clustering at the
ground atom level is a non-trivial problem and one that
is computationally expensive since the number of ground
atoms may themselves be extremely large in MLNs that
encode application domains such as Natural Language Un-
derstanding.
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As an alternative to clustering at the level of ground atoms,
Venugopal and Gogate [30], and Broeck and Darwiche [27]
proposed clustering approaches at the object-level. That
is, given a set of domains D = {D1, . . . DM}, where each
Dj is a set of real-world objects that can be instantiated in
M, and evidence E, we cluster each domain inD indepen-
dently and replace the set of objects with meta-objects, i.e.,
the set of cluster-centers, to generate a new domain D′ =
{D′1, . . . D′k}, where each |D′j | << |Dj |. Replacing the
domain in M with D′ yields a new MLN M′ which we
refer to as the domain-approximated version ofM. InM′,
each ground atom is now a meta-atom since it implicitly
represents a set of ground atoms inM. An example MLN
and its domain approximation is shown in Fig 1.

Clearly, choosing the right domain approximation is crucial
to ensuring the quality of inference results. Therefore, the
key question that we wish to answer here is: GivenM, D
and E, how do we chooseD′1,D′2 . . . D

′
k to obtainM′ that

is in some sense optimal?

3.1 PROBLEM FORMULATION

We learn the approximate domains for an MLN using a
non-parametric approach. Specifically, we use the DP-
means algorithm to find the optimal clustering. Note that
other notable alternatives for non-parametric clustering ex-
ist, such as Dirichlet Process Mixture Models, which uses
the Bayesian non-parametric framework for learning clus-
ters without fixing them apriori. However, it turns out that
DP-means is a much simpler, more scalable approach and
seamlessly integrates Bayesian non-parametrics with the
classical and universally popular K-means clustering algo-
rithm which makes it an ideal model for our problem.

Specifically, we formulate the non-parametric domain ap-
proximation problem for a given MLN as follows:

min
{`cj}

|D′
j
|;M

c=1;j=1

M∑

j=1

|D′
j |∑

c=1

∑

x∈`cj
||x− µcj ||2 + λ|D′j | (4)

where µcj = 1
|`cj |

∑
x∈`cj x, λ is a parameter that controls

the number of clusters created for each domain inM. ||x−
µcj ||2 is the Euclidean distance between the cluster center
µcj and x.

Given a constant λ, it is easy to see that we can decom-
pose Eq. (4) into M independent objective functions and
optimize each objective independently. This will yield the
approximate domains for the input MLNM. However, the
challenging task is to automatically tune the parameter λ
such that M′ is in some way a “good” approximation of
M. We next describe an approach to quantify the error
made byM′ in approximatingM and incorporate this er-
ror to automatically tune λ in Eq. (4).

3.2 DOMAIN APPROXIMATION ERROR

LetM be the original MLN andM′ be the MLN obtained
after approximating each domain in M. Clearly, the dis-
tributions PM and PM′ are defined over spaces with dif-
ferent cardinalities since they have a different number of
possible ground atoms. It turns out computing a valid dis-
tance metric that can directly compare such distributions
is extremely challenging and is shown to be NP-hard [32].
Thus, we need to design approximations that can reason-
ably compare PM and PM′ .

Consider a single meta-atom inM′, X , which corresponds
to a set of ground atoms in M which we denote by X.
Thus, to map P ′M to PM, we need to map a 0/1 assignment
of X to a vector of 0/1 assignments to X. Clearly, there are
2|X| different ways to define this mapping. For each map-
ping, we will end up with a different approximation to PM.
If we fix a specific mapping ρ, clearly, we can convert any
sample x drawn from PM′ to a set of samples ρ(x) in PM.
In this case, the (un-normalized) probability PM′(x) can
be computed by summing over the (un-normalized) proba-
bilities of ρ(x) as follows:

PM′(x) =
∑

y∈ρ(x)
PM(y)

However, computing the above probability is clearly infea-
sible since it involves a summation over the probabilities
in the original space which can be very large and is pre-
cisely the reason to perform domain-approximation in the
first place. Instead, if we choose ρ to be a one-to-one map-
ping, we map each sample in PM′ to exactly one sample in
PM. In other words we assume that all other samples that
x can be mapped to have negligible probabilities. Using
this assumption, the above equation now reduces to

PM′(x) ≈ PM(ρ(x))

Even with the above approximation of one-to-one map-
ping, computing PM′(x) may be hard since we addition-
ally require that PM(ρ(x) should be sufficiently easy to
compute. That is, given x, we should be able to compute
PM(ρ(x) in bounded time/space. Unfortunately, for an ar-
bitrary ρ, this problem requires computing the counts of
satisfied formulas in a sample as its sub-step and is thus
#P -complete [24]. However, consider a special ρ, namely,
given a sample from M′ with meta-atom X assigned to
x, we assign the same value x to all atoms in M that X
corresponds to. We refer to such a mapping as a uniform
assignment mapping and under this mapping, it turns out
that marginal probabilities in PM and P ′M have a direct
relationship. Specifically,

Theorem 1. Given an MLN M and its domain-reduced
approximation M′, under the assumption of uniform as-
signment mapping and no evidence atoms, for any ground
atom X inM′, PM′(X) = PM(X ′), where X ′ ∈X.
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Proof. Let ω′ be a world in M′ and ω be a world in M
obtained by the mapping function ρ.

P (ω′) ∝ exp(
∑

i

Ni(ω
′)θi)

P (ω) ∝ exp(
∑

i

Ni(ω)θi)

Since we assume that ρ is a uniform assignment mapping,
we have that for any formula fi, Ni(ω′) ∝ Ni(ω). Fur-
ther, note that since there is no evidence in the model, ∀ω,
P (ω) > 0. Therefore, P (ω′) ∝ P (ω). Summing over
all worlds, the partition function, Z(M′) ∝ Z(M). Since
marginal probabilities are simply ratios of partition func-
tions, the result of the theorem holds.

The above theorem means that under the assumption of uni-
form assignment mapping, we can perform marginal in-
ference as follows. We approximate the domains in M
and without changing the weights or formulas in M, we
can simply replace the original domain by its domain-
approximation to yield M′. We then generate samples
fromM′ and estimate the marginal probabilities from the
generated samples for each meta-atom X . We can finally
compute the marginal probabilities in M by using P (X)
for all atoms inM that meta-atom X represents.

3.3 ADAPTIVE GIBBS SAMPLING

In the presence of evidence, Theorem 1 no longer holds
since we need to first translate the evidence E observed for
M toM′. Depending on this translation, PM(·|E) may be
very different from PM′(·|E′) even under the assumption
of uniform assignment mapping. Previous approaches such
as [30] have proposed the transformation of evidence based
on majority voting. Specifically, ifX is a meta-atom inM′
that corresponds to X inM,X is assigned as true evidence
inM′ if the number of true evidence atoms in X outweighs
the number of false or unknown atoms. However, consider
sampling from PM′(·|E′), where E′ has been generated
by applying the aforementioned majority voting. Unless
every meta-atom in M′ represents a set of atoms that are
all either evidence or all non-evidence atoms, each sample
derived from PM′(·|E′) when mapped toM using a uni-
form assignment mapping, will have inconsistencies. For
example, let X,Y, Z, U be the ground atoms inM and let
C1 = X,Y, Z and C2 = U be the meta-atoms ofM′. If
X = 1 is given as evidence toM, then no evidence is set
in M′. Therefore, in every sample generated from M′ is
inconsistent with evidence X = 1. Similarly, if Y = 1
is added as evidence, then C1 = 1, and no samples with
Z = 0 are generated. Our main idea is to reduce the ex-
pected number of inconsistencies when we generate sam-
ples fromM′ via Gibbs sampling.

In each iteration of Gibbs sampling, we pick a meta-
atom, say X in M′ and sample an assignment to this

meta-atom from the conditional probability distribution
PM′(X|X−i), whereX−i is the set of all meta-atoms other
than X . The choice of which meta-atom to sample in each
iteration is according to a distribution of selection prob-
abilities. Typically, in random-scan Gibbs sampling, this
selection probability is a uniform distribution over the non-
evidence atoms. However, in general, we can select the
selection probabilities to be non-uniform, i.e. a probability
αi for atom Xi. It has also been shown that as long as the
selection probabilities are not continuously updated (also
called vanishing adaptation), we can show that the Markov
chain remains ergodic (cf. [9])

We now formalize the expected error in a sample drawn
from the Gibbs sampler as follows. Let X1 . . . XK be the
meta-atoms in M′ and let X1 . . . XK be sets of ground
atoms in M where Xi is a meta-atom for all the ground
atoms in Xi. If Xi consists of both evidence and non-
evidence atoms and we sample X , clearly, the sample gen-
erated may be erroneous on every evidence atom in Xi. But
if we choose not sample X at all (i.e., treat it as hard evi-
dence), then we will never sample the non-evidence atoms
in X. The expected error can be formulated as,

EG =

K∑

i=1

αi
∑

X′∈Xi

I(X ′) + (1− αi)

(|Xi| −
∑

X′∈Xi

I(X ′)) (5)

where 0 ≤ αi ≤ 1 is the selection probability for meta-
atom Xi and I(X ′) = 1 if X ′ is an evidence atom and 0
otherwise.

Note that if the amount of evidence corresponding to Xi

is large, EG can be reduced by reducing αi, while, if
the amount of evidence corresponding to Xi is small, EG
can be reduced by increasing αi. Therefore, we set αi
= 1 −

∑
X′∈Xi

I(X′)

|Xi| . At the extreme ends, if Xi corre-
sponds to only evidence atoms, it is never sampled in the
compressed model (αi = 0) while if Xi corresponds to
only non-evidence atoms, it is always sampled in the com-
pressed model (αi = 1).

Next, with the help of a simple example MLN, we illus-
trate that adapting the selection probabilities of meta-atoms
based on the clustering is likely to yield more accurate es-
timates as opposed to randomly choosing a meta-atom to
sample. Here, we considered a simple MLN with three
formulas w1; R(x) ∨ S(x), w2; R(x) and w2; S(x) where x
has 10000 objects. We introduced 25% random evidence
on the ground atoms of R and S. We then randomly di-
vided the objects in x into K clusters to approximate its
domain. Thus, there are 2K meta-atoms with each meta-
atom representing a variable number of original atoms with
varying evidence. We compared the performance of Gibbs
sampling with random selection probabilities which we re-
fer to as cgibbs and our approach where the selection
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Figure 2: Illustrating the effect of adapting the selection probabilities in Gibbs sampling based on the clustering. The
results are shown for w1; R(x) ∨ S(x), w2; R(x) and w2; S(x) with a domain of 10000 objects and randomly generated
evidence. K signifies the number of clusters into which the domain objects were divided. cgibbs denotes Gibbs
sampling without adapting the selection probability and acgibbs denotes Gibbs sampling with adapting the selection
probability. The curves are shown as the average mean square error between the true marginal probabilities and the
marginal probabilities computed by the samples.

probabilities are tied to the clustering, which we refer to
as acgibbs. Specifically, we compared the average er-
ror between marginal probabilities output by cgibbs and
acgibbswith the true marginal probabilities for the MLN
(which we could easily compute due to our choice of the
specific MLN structure). The results are shown in Fig. 2
for varying number of clusters (K). As seen in the figure,
acgibbs generates much more accurate estimates of the
marginal probability by reducing the number of inconsis-
tent samples that were generated. The effect is even more
pronounced when we have fewer but larger clusters, i.e.,
Fig. 2 (c), where since K is small, each meta-atom there-
fore represents a large number of atoms. Here, using ran-
dom scan Gibbs is much worse since the number of incon-
sistencies in each sample is extremely large yielding to less
accurate estimates of marginal probabilities.

3.4 GIBBS SAMPLING EFFICIENCY

If the Gibbs sampler contains N variables, since each vari-
able is sampled one at a time, it roughly takes aboutN sam-
pling steps to change the complete state of the sampler just
once. Thus, supposeM has a million non-evidence atoms,
we need to at least perform a million sampling operations
to sample every variable in the model once which is pro-
hibitively expensive. Further, the mixing time of the Gibbs
sampler is roughly proportional to the number of variables
in the model [15]. Thus, we would like our Gibbs sampler
to have a bounded number of variables for efficiency and
fast mixing. To specify this, givenM′ which is a domain-
approximated version of M, we define the sampling effi-
ciency (SG) ofM′ to be proportional the total number of
meta-atoms inM′.

Input:M, β1, β2, ε
Output:M′
λ = 10000
while converged=false do

// Find the clustering for a fixed λ
for each domain Di inM do

D′i = DP-Means(Di)
end
M′ = Replace-Domains(M, D1, . . .)
EG(λ) = Evaluate Eq (5) forM′
SG(λ) = Number of meta-atoms inM′
if EG(λ) < β1 and SG(λ) < β2 then

converged=true
returnM′

end
else if SG(λ) > β2 then

// Could not find solution
returnM′

end
else

// Reduce λ
λ = ελ

end
end

Algorithm 2: NP-Cluster

3.5 COMPUTING THE OPTIMAL CLUSTERS

We now re-formulate the minimization problem in Eq. (4)
by incorporating the sampling error (EG) and the sampling
efficiency (SG). That is, given constants β1 and β2, our
clustering problem is defined as,

min
{`cj}

|D′
j
|;M

c=1;j=1;λ

M∑

j=1

|D′
j |∑

c=1

∑

x∈`cj
||x− µcj ||2 + λ|D′j | (6)
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where EG(λ) < β1 and SG(λ) < β2

Note that both the sampling error and efficiency depend
upon the parameter λ. That is, if λ is large, then we penal-
ize the number of clusters a lot more, therefore, our solu-
tion will yield very few meta-atoms which results in a large
EG(λ) but small SG(λ). Similarly, smaller λ will yield
solutions that has small EG(λ) but large SG(λ). Jointly

optimizing {`cj}
|D′

j |;M
c=1;j=1;λ is challenging because we need

to consider every possible clustering with every possible
parameter λ. Instead, we use a co-ordinate descent type of
approach where we pick a λ and find the best clusters, and
then fix the clustering and pick the next best λ.

The algorithm for non-parametric clustering of domains is
shown in Algorithm 2. Algorithm 2 starts by fixing λ to
a large constant and computes the optimal clustering for
the domains of the input MLN, at this value of λ. The
DP-Means algorithm is used a sub-step to compute opti-
mal clustering for a given λ. Once, we compute the op-
timal clustering of the domains, we evaluate the sampling
error and efficiency based on the new MLN generated from
the clusters. If we satisfy the constraints on sampling error
bound and efficiency, then the algorithm has reached a lo-
cal optima and we output the domain-approximated MLN.
However, if we fail to satisfy the constraints, we check if
SG(λ) is greater than β2 in which case, we cannot find a so-
lution, else we reduce λ by ε to improveEG(λ) and SG(λ).

4 RELATED WORK

In recent years many methods have been proposed that
use symmetries for improving the scalability both in ex-
act inference [20, 4, 7, 26, 3] as well as approximate in-
ference [22, 11, 8, 18, 29, 2]. Niepert and Broeck [19]
recently showed that most of the earlier work on lifted in-
ference can be connected to the concept of exploiting fi-
nite partial exchangeability in statistics that allows one to
perform inference over groups of exchangeable variables
efficiently. However, lifted inference that only looks for
exact exchangeability tends to work with limited classes of
MLNs as shown in [27]. Previous work that has addressed
this issue in the context of belief propagation include Ker-
sting et al. [12] and Singla et al [23], where scalability
was achieved through message approximation. Broeck and
Darwiche [27] proposed a general over symmetric approx-
imation by adding symmetries to the MLN thereby making
it liftable. Venugopal and Gogate [30] proposed the use
of unsupervised machine learning methods to cluster sim-
ilar domain objects together based on the evidence given
to the MLN. Similar clustering ideas have been used in
MAP inference algorithms and it has been shown that in
some cases one can achieve orders of magnitude reduction
in the size of the MLN network without sacrificing much
accuracy [10, 21]. In the context of sampling based in-
ference algorithms, Broeck and Niepert [28] introduced a

Dataset #Clauses #Atoms #Parameters
WebKB 892 million 20 million 64
Protein 408 million 3.3 million 211

ER 1.7 trillion 5.5 million 15

Table 1: Dataset sizes.

Metropolis-Hastings sampler by utilizing over-symmetric
approximations of MLNs in their proposal distribution, and
Venugopal and Gogate [31] developed an importance sam-
pler by constructing an tractable proposal from the clus-
tered domain objects. However, unlike the aforementioned
approaches which use parametric methods that can be dif-
ficult to tune, here, we propose a fully non-parametric ap-
proach integrated with Gibbs sampling that systematically
trades-off sampling error with efficiency.

5 EXPERIMENTS

We evaluate our approach, which we refer to as
acgibbs, using three benchmark MLNs obtained from
the Alchemy [13] website: Webkb MLN that models the re-
lations between web-page links and topics in the webpage,
Protein MLN that models the interaction between proteins,
and the ER MLN that is used for entity resolution in NLP.
The details of these benchmarks are shown in Table 1. For
each MLN, we randomly set the weights of the individ-
ual formulas between 0 and 1. We evaluate our approach
along two dimensions: accuracy in estimating the marginal
probabilities and convergence of the Markov Chain. We
compare our results with regular Gibbs sampling (Gibbs)
and the approach proposed in Venugopal and Gogate [30]
(cgibbs), where they use clustering algorithms such as
KMeans to derive an approximate MLN and then sample
this MLN using regular Gibbs sampling.

For cgibbs, since we explicitly need to set the number
of clusters for each domain, we set this to be 10% of the
original domain-size. Note that we set this size to be ap-
proximately the same size as the number of clusters that
computed by our non-parametric methods. For acgibbs,
for an approximate MLN, M′, we set the threshold β1
as 0.01% of the number of meta-atoms in M′ and β2 as
10K. For fairness, in both cgibbs and acgibbs, we
used the same features as specified in [30] for computing
the distances. Specifically, for each object in the MLN,
the method proposed in Venugopal and Gogate partially
grounds the MLN with that specific object and approxi-
mately counts the number of true groundings in each for-
mula for the partially ground MLN given evidence. The
approximate counting is performed by generating tractable
SQL queries with a bounded number of joins. The feature
vector for each object is computed with the counts obtained
for each formula in the MLN.

751



0 500 1000 1500 2000
Time (seconds)

0.15

0.20

0.25

0.30

0.35

E
rr

or
cgibbs
acgibbs

0 500 1000 1500 2000
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

or

cgibbs
acgibbs

0 500 1000 1500 2000
Time (seconds)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
rr

or

cgibbs
acgibbs

0 500 1000 1500 2000
Time (seconds)

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

E
rr

or

cgibbs
acgibbs

0 500 1000 1500 2000
Time (seconds)

0.028

0.030

0.032

0.034

0.036

0.038

0.040

E
rr

or

cgibbs
acgibbs

0 500 1000 1500 2000
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

or

cgibbs
acgibbs

Figure 3: Accuracy Plots for various benchmarks. The domain size of each benchmark was reduced to 10% of its original
size to ensure that we get better estimates with gibbs. The plots are shown for the average Hellinger distance between
the marginal probabilities generated by gibbs and that generated by cgibbs and acgibbs respectively. (a) and (b)
correspond to the Protein benchmark with 25% and 50% evidence respectively. Similarly (c) and (d) correspond to the
Webkb benchmark, and (e), (f) correspond to the ER benchmark.

5.1 ACCURACY

We compare the accuracy of cgibbs and acgibbs us-
ing the following approach. We assume that the gibbs
algorithm outputs the true marginal probabilities and com-
pare the results of cgibbs and acgibbs with that of
gibbs. We measure the average Hellinger distance be-
tween the marginal probabilities of the query atoms output
by gibbs with the probabilities output by acgibbs and
cgibbs. We considered all ground atoms not set as ev-
idence to be the query atoms. We measured accuracy on
small MLNs since for larger MLNs the output of gibbs is
not reliable. Specifically, we subsampled the true domain
of the benchmarks and derived smaller MLNs out of the
original benchmarks. Further, we also evaluated the per-
formance of the algorithms in the presence of low as well
as high evidence. Fig. 3 shows the results that we obtained
for our benchmarks. As seen here, for the protein bench-
mark, acgibbs performs much better than cgibbs. For
the Webkb benchmark, the accuracy of acgibbs is again
better than cgibbs. For the ER benchmark, for the low
evidence case, acgibbs was slightly worse than cgibbs
but for the high evidence case, acgibbs was much bet-
ter than cgibbs. One hypothesis for this behavior is that
perhaps gibbs is not very accurate on this benchmark as
shown by the poor convergence property that it exhibits for

this benchmark (see next section). Overall, acgibbs was
seen to be more accurate than cgibbs in our evaluation.

5.2 CONVERGENCE

We compare the mixing time of gibbs, cgibbs and
acgibbs based on the Gelman-Rubin (G-R) Statistic [5].
For a well-mixed sampler, the G-R statistic should ide-
ally decrease over time illustrating that the MCMC chain
has mixed. To compute the G-R statistics, we set up 5
Gibbs samplers from random initialization points and mea-
sure the within chain and across chain variances for the
marginal probabilities for 1000 randomly chosen query
ground atoms. We compute the G-R statistics for each of
the 1000 query atoms and measure the mean G-R statis-
tic. Fig. 4 shows our results on the benchmarks. Note
that, here we consider larger sized MLNs, i.e., we evalu-
ate on the full benchmark without subsampling the MLN
domain. As seen here, for the protein benchmark cgibbs
and acgibbs mix much faster than gibbs which has
an upward trajectory for the G-R statistic indicating that
it has not mixed at all. Among cgibbs and acgibbs,
acgibbs mixes faster than cgibbs because the selec-
tion probability ensures that we spend more resources on
sampling meta-atoms which are less deterministic (there is
less evidence on the atoms that the meta-atom represents)
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Figure 4: Convergence Plots for various benchmarks. The plots are shown for the average Gelman-Rubin statistic com-
puted using 5 runs of the algorithms across 1000 randomly chosen estimates for the marginal probabilities. (a) and (b)
correspond to the Protein benchmark with 25% and 50% evidence respectively. Similarly (c) and (d) correspond to the
Webkb benchmark, and (e), (f) correspond to the ER benchmark.

as compared to meta-atoms which are more deterministic
(more or less all the atoms represented by the meta-atom
are evidence atoms). For the Webkb benchmark, the results
look similar with gibbs not mixing and acgibbsmixing
faster than gibbs. For the ER case, the curve for gibbs
stays flat at almost 0. Due to the large size of the bench-
mark, gibbs is very slow in its iterations and most of the
query atoms remain un-sampled and thus only retain their
initialization values. Even cgibbs and acgibbs though
clearly better than gibbs, have slower mixing times as
compared to the other two benchmarks.

6 CONCLUSION

Exploiting approximate symmetries has been recognized as
a practical approach to obtain scalable inference algorithms
in MLNs. Several inference methods that take advantage
of approximate symmetries have been proposed over the
past few years. However, a major disadvantage of existing
methods is that it is quite difficult to manually tune the pa-
rameters in these approaches to obtain accurate inference
results. Here, we proposed a non-parametric approach that
approximates the domains of an MLN and can systemati-
cally trade-off accuracy with efficiency. Further, we inte-
grated our approach with a Gibbs sampling algorithm that

adapts itself based on the domain-approximation to gen-
erate higher quality samples. Our results on benchmarks
showed the promise of our approach in terms of scalability,
accuracy and convergence.

In future, we would like to explore more complex mapping
functions from meta-atoms to the original atoms, integrate
our approach with variational distances and adapt our ap-
proach for MAP inference algorithms.
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Abstract

Real-world data often includes rich relational in-
formation, which can be leveraged to help pre-
dict unknown variables using a small amount of
observed variables via a propagation effect. We
consider the problem of selecting the best subset
of variables to observe to maximize the overall
prediction accuracy. Under the Bayesian frame-
work, the optimal subset should be chosen to
minimize the Bayesian optimal error rate, which,
unfortunately, is critically challenging to calcu-
late when the variables follow complex and high
dimensional probabilistic distributions such as
graphical models. In this paper, we propose to
use a class of Bayesian lower bounds, includ-
ing Bayesian Cramér Rao bounds as well as a
novel extension of it to discrete graphical mod-
els, as surrogate criteria for optimal subset selec-
tion, providing a set of computationally efficient
algorithms. Extensive experiments are presented
to demonstrate our algorithm on both simulated
and real-world datasets.

1 INTRODUCTION

We consider the following optimal label selection problem:
Given an unknown θ = [θ1, . . . , θn] with posterior distribu-
tion p(θ | X) conditioning on observation X , select a best
subset C ⊂ [n] of size no larger than k on which the true
values of θC are revealed, such that the prediction accuracy
of θ¬C on the remaining set ¬C = [n] \ C is maximized.
We assume p(θ | X) to be a multivariate distribution with
rich correlation structures, such as graphical models, so that
the prediction of θ¬C can largely benefit from knowing θC
via a “propagation effect”.

Problems of this type appear widely in many important
areas, including semi-supervised learning, experiment de-
sign, active learning, as well as application domains such as

optimal sensor placement, and optimal budget allocation in
crowdsourcing (e.g., Zhu et al., 2003; Krause & Guestrin,
2009; Settles, 2010; Bilgic et al., 2010; Liu et al., 2015).

The optimal subset C should be chosen to minimize cer-
tain uncertainty measures of the conditional model p(θ¬C |
θC ; X), and a natural choice is the conditional variance,

R∗(C) = Eθ|X(
∑

i∈¬C
var(θi | θC ; X)),

which equals the mean squared error of the optimal
Bayesian estimator of θ¬C given θC and X . Unfortu-
nately, this objective is notoriously difficult to calculate in
practice; Krause & Guestrin (2009) showed that it is #P-
complete to calculate R∗(C) for general discrete graph-
ical models, even for simple tree structured models in
many cases. Although practical approximations can be
constructed using (approximate) posterior sampling via
Markov chain Monte Carlo (MCMC), the estimation ac-
curacy of the conditional variance can be poor when the
size of C is large because each conditioning case only re-
ceives a small number of samples. Computationally, evalu-
ating R∗(C) requires both unconditioning sampling from
θ ∼ p(θ | X), as well as conditional sampling from
θ¬C ∼ p(θ¬C | θC , X) for each value of θC that appears in
the unconditioning sample; this makes it extremely difficult
to optimize the conditional variance objective in practice,
even when simple greedy search methods are used. Similar
computational difficulty also appears in other uncertainty
measures, such as conditional entropy and mutual infor-
mation (Krause & Guestrin, 2009); what is worse, these
information-theoretic objectives have the additional diffi-
culty of depending on the normalization constant (known
as the partition function) of p(θ | X), which is very chal-
lenging to calculate.

A special case when the computation can be largely simpli-
fied is when p(θ | X) is a multivariate Gaussian distribu-
tion; in this case, the conditional variance reduces a simple
trace function of the inverse of the sub-matrix on ¬C, that
is, R∗(C) = tr(Q[¬C]−1), where Q is the inverse covari-
ance (or the Fisher information) matrix of p(θ | X), and
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Q[¬C] represents the sub-matrix of Q formed by the rows
and columns in ¬C. This objective can be evaluated and
optimized much more efficiently, because Q can be pre-
calculated and the block-wise inversion can be calculated
recursively using the block-wise matrix inversion formula
(Horn & Johnson, 2012).

Contribution In this paper, we propose to solve the sub-
set selection problem using information criteria of form
tr(Q[¬C]−1) for generic, non-Gaussian distribution p(θ |
X), where Q is a generalized “information matrix” of
p(θ | X) that we will define later; this is motivated by
lower bounds of Bayesian risks of form

Eθ|X(‖θ̂¬C − θ¬C‖22) ≥ tr(Q[¬C]−1),

where θ̂¬C = θ̂¬C(θC , X) is any (deterministic or ran-
domized) estimator of θ¬C . Results of this type are the
Bayesian version of the classical frequentist Cramér Rao
bound, which, however, only works for unbiased estima-
tors. For continuous θ with smooth densities, this bound
is based on the van Trees inequality, or known as Bayesian
Cramér Rao bound (Van Trees & Bell, 2007) and Q is a
Bayesian version of the typical frequentist Fisher informa-
tion matrix. For θ with discrete values, we derive a new
form of Q based a new extension of van Trees inequality;
our result appears to be the first bound of this type for dis-
crete graphical models to the best of our knowledge.

Minimizing these Bayesian lower bounds provides new
computationally efficient approaches for observation selec-
tion with complex p(θ | X). We provide extensive empiri-
cal results to demonstrate the advantage of our methods in
two practical application settings, including selecting con-
trol questions in crowdsourcing and label propagation for
graph-based semi-supervised learning.

Related Work Bayesian CR bounds have been widely
used in signal processing and information fusion, but seem
to be less well known in machine learning; we refer to
Van Trees (2004); Van Trees & Bell (2007) for an overview
of its theory and applications. Related to our work,
Williams (2007) used the log-determinant (instead of the
trace) of Bayesian Fisher information as the selection cri-
terion, and studied its sub-modularity.

Outline This paper is organized as follows. Section 2
introduces backgrounds on the observation selection prob-
lem and Bayesian Cramér Rao (CR) bounds. We apply
Bayesian CR bounds to solve the observation selection
problem in Section 3 and propose the extension to discrete
models in Section 4. We then discuss two examples of ap-
plications of our methods in Section 5, and present empir-
ical results in Section 6. The paper is concluded in Sec-
tion 7.

2 BACKGROUND

We introduce backgrounds on the observation selection
problem in Section 2.1, and Bayesian Cramér-Rao bounds
in Section 2.2. We restrict to the case when θ is a contin-
uous variable in this section, and discuss the extension to
discrete variables in Section 4.

2.1 OBSERVATION SELECTION

Assume θ = [θ1, . . . , θn] ∈ Rn is a continuous random pa-
rameter of interest with posterior distribution p(θ | X) ∝
p(X | θ)p(θ) conditioning on observed data X . We are in-
terested in the setting when we have the option of revealing
the true value θC of a subset C ⊂ [n] of size no larger than
k, such that we can get the best estimation on the unknown
parameter θ¬C in the remaining set ¬C = [n] \ C. To be
concrete, let θ̂¬C = θ̂¬C(θC , X) be an estimator of θ¬C
based on θC andX , the optimal C should ideally minimize
the mean squared Bayesian risk:

min
C : |C|≤k

{
Rθ̂(C) ≡ Eθ|X(‖θ̂¬C − θ¬C‖22)

}
.

However, this objective depends on the choice of the es-
timator θ̂¬C and is not easy to estimate in practice. Con-
sider the Bayesian estimator θ̂¬C = E(θ¬C | θC , X), then
Rθ̂(C) reduces to the trace of the conditional variance:

R∗(C) = tr(Eθ|X(cov(θ¬C | θC , X))), (1)

which is also the minimum Bayesian risk one can possibly
achieve. This objective function is called the A-optimality
(“average” or trace) in the experiment design literature
(e.g., Chaloner & Verdinelli, 1995).

There also exist other similar objective functions, but with
less direct connection to the mean squared Bayesian risk;
this includes the information-theoretic quantities such as
the conditional entropy H(θ¬C | θC , X) and the mutual
information I(θ¬C , θC | X). The negative of these ob-
jective functions are often shown to be submodular and
monotonic under certain conditions, for which an (1−1/e)
optimality approximation can be obtained using a simple
greedy algorithm, that is, starting with an empty set C = ∅,
and sequentially add the best item i so that R(C ∪ {i}) is
minimized (Nemhauser et al., 1978).

The major challenge in implementing the greedy algorithm
for objectives like (1) is the computational cost of the ob-
jective. Although it is possible to draw approximate sample
from p(θ | X) using MCMC, the estimation quality of the
conditional variance var(θ¬C | θC) can be poor, especially
when the size of C is large, because it requires samples
from θ¬C ∼ p(θ¬C | θC , X) for each value of θC that
appears in the unconditioning sample of p(θ | X). Further,
the Monte Carlo estimates are required for every candidate
C considered, making the optimization algorithm very time
consuming.
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The information-theoretic objective functions, such as con-
ditional entropy and mutual information, also suffer from
the similar difficulty due to the need for estimating the
conditional distribution log p(θ¬C | θC , X); in addition,
they also involve calculating the normalization constant
Z =

∫
p(X | θ)p(θ)dθ, which is known to be critically

difficult (e.g., Chen et al., 2012).

The computation can be largely simplified when p(θ | X)
is a multivariate normal distribution, e.g., N (µ,Σ), in
which case the objective (1) reduces to a matrix function
tr(Q[¬C]−1), where Q = Σ−1 is the inverse covariance
matrix, and the greedy selection can be implemented effi-
ciently based on the recursive relation,

R∗(C ∪ {i}) = R∗(C) +
∑

j∈¬C

σ2
ij

σii
,

where Q[¬C]−1 = {σij} and can also be calculated recur-
sively using the block-wise matrix inversion formula (Horn
& Johnson, 2012).

2.2 BAYESIAN CRAMÉR RAO LOWER BOUND

Bayesian Cramér Rao bounds (Van Trees, 2004), also
known as van Trees inequalities, are lower bounds of
Bayesian risks for any estimator θ̂ in terms of Fisher in-
formation matrix; it is the Bayesian version of the classical
Cramér Rao bound, but does not restrict to unbiased esti-
mators.

Let θ̂ = θ̂(X) be any (randomized or deterministic) es-
timator, then under mild regularity conditions (Van Trees
& Bell, 2007, page 35), the Bayesian Cramér Rao bound
guarantees

Eθ|X [‖θ̂ − θ‖2] ≥ tr(H−1), (2)

where H = −Eθ|X
[
∇2
θ log p(θ | X)

]
and is called the

Bayesian Fisher information matrix; compared to the clas-
sical Fisher information, Bayesian Fisher information takes
expectation on the parameter θ and does not require a true
value θ∗. We note that H can be rewritten into

H = −Eθ[∇2
θ log p(X | θ)]− Eθ[∇2

θ log p(θ)],

where the first term represents the information brought by
the observed data, and the second term is the information
from the prior knowledge.

Nuisance Parameter In many practical cases, there ex-
ist additional nuisance parameters η , {η1, · · · , ηn′} of
no direct interest. Ideally, this can be handled by apply-
ing Bayesian CR bound on the marginalized probability
p(θ | X) =

∫
p(θ, η | X)dη. This, however, can be

difficult to calculate because ∇2
θ log p(θ | X) may have no

closed form and require another Monte Carlo approxima-
tion. A weaker, but more computationally efficient, lower

bound (Van Trees & Bell, 2007, Section 1.2.6) can be

Eθ|X [‖θ̂ − θ‖2] ≥ tr([H−1]θθ), (3)

where [H−1]θθ = (Hθθ − HθηH
−1
ηη Hηθ)

−1 is the θθ-
submatrix of H−1, with H being the joint Bayesian Fisher
information matrix of [θ, η]:

H =

[
Hθθ Hθη

Hηθ Hηη

]
= Eθ,η|X

[
∇θθ` ∇θη`
∇ηθ` ∇ηη`

]
, (4)

where ` = − log p(θ, η | X).

3 BAYESIAN CR BOUND FOR LABEL
SELECTION

We apply Bayesian CR bounds to define an objective func-
tion of form tr(Q[¬C]−1) for the observation selection
problems, allowing more efficient computation.
Proposition 1. For any subset C ⊆ [n] and estimator
θ̂¬C = θ̂¬C(θC , X), assume the conditions for Bayesian
Cramér Rao bound holds, we have

Eθ|X [‖θ̂¬C − θ¬C‖2] ≥ tr(Q[¬C]−1),

where Q[¬C] is the submatrix of a matrix Q with rows
and columns in ¬C and Q can be one of the following two
cases:

1. With no nuisance parameter, Q is the Bayesian Fisher
information of θ, that is, Q = −Eθ|X [∇2

θ log p(θ | X)].

2. With a nuisance parameter η, we have Q = Hθθ −
HθηH

−1
ηη Hηθ and H is the joint Bayesian Fisher informa-

tion of [θ, η] as defined in (4).

Proof. Apply (2) and (3) by treating [θC , X] as the fixed
observation and θ¬C as the random parameter to be esti-
mated.

Remark Because the conditional variance in (1) is the
Bayesian risk obtained by the Bayesian estimator θ̂¬C =
E(θ¬C | θC ; X), it should also be lower bounded by the
Bayesian CR bound, that is,

tr(Eθ|X(cov(θ¬C | θC ; X))) ≥ tr(Q[¬C]−1).

The above result suggests a method for finding the opti-
mal subset C by minimizing the lower bound in Proposi-
tion 1, reducing to the observation selection problem to a
sub-matrix selection problem:

max
C : |C|≤k

{
fQ(C) ≡ −tr(Q[¬C]−1)

}
, (5)

where k is the maximum size of C that defines our budget.

We now introduce conditions under which the objective
function fQ(C) is a monotonically non-increasing and sub-
modular function, so that the simple greedy selection algo-
rithm yields an (1−1/e)-approximation. See Algorithm 1.
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Proposition 2. (i). Assume Q is positive definite. For any
i /∈ C, we have

fQ(C ∪ {i}) = fQ(C) +

∑
j∈¬C σ

2
ij

σii
.

where σij is the ij-element ofQ[¬C]−1, and hence we have
fQ(C) ≥ fQ(C ′) for any C ′ ⊆ C.

(ii). If Q is positive definite and also satisfies Qij ≤ 0 for
i 6= j (i.e.,it is a Stieltjes matrix, equivalently a symmetric
M-matrix), then Σ = Q−1 is element-wise nonnegative,
and fQ(C) is a sub-modular function.

Proof. (1) is an elementary fact, and (2) is a special case of
Friedland & Gaubert (2013, Theorem 3).

Since Σ = Q−1 corresponds to the covariance matrix in the
Gaussian case, Proposition 2(ii) suggests that we need Σ to
be element-wise nonnegative, that is, θi are positive related
to each other (in a rough sense), to make fQ(C) a submod-
ular function. We remark that this element-wise positive
condition is necessary; see Friedland & Gaubert (2013, Ex-
ample 18) for a counter example. Similar “suppressor-free”
conditions also appear when considering the submodularity
of conditional variance functions in other settings (e.g., Das
& Kempe, 2008; Ma et al., 2013).

The greedy algorithm for optimizing (5) is shown in Al-
gorithm 1, in which we use Proposition 2(i) to reduce the
greedy update i∗ = arg maxi fQ(C ∪ {i}) to a simpler
form:

i∗ = arg max
i

{
σii +

∑
j∈¬C,j 6=i σ

2
ij

σii

}
. (6)

Intuitively, the first term of the above selection criterion
corresponds to a local effect, representing the uncertainty
σii of θi itself, while the second term corresponds to a
global effect, representing how much knowing the true
value of θi can help in estimating the remaining parame-
ters. Note that Algorithm 1 also updatesQ[¬C]−1 = {σij}
recursively using the sub-matrix inverse formula (Line 9).

We should point out that evaluating the expectation in
Q = −E[∇2

θ log p(θ | X)] still requires drawing sam-
ples from p(θ | X) (or p(θ, η | X)), but this can be
pre-calculated before the greedy search starts, and is much
more efficient than optimizing the exact conditional vari-
ance objective function, which requires expensive Monte
Carlo or MCMC sampling for each candidate C evaluated
during the optimization process.

4 EXTENSION TO DISCRETE
VARIABLES

The Bayesian CR bound above works only for continuous
random parameters, since it requires to calculate the deriva-
tives and Hessian matrices. In this section, we introduce a

Algorithm 1 Greedy Subset Selection based on Bayesian
CR bound

1: Input: Posterior distribution p(θ, η | X); budget size
k.

2: Denote H(θ, η) = −∇2
[θ,η] log p(θ, η | X).

3: Draw sample [θ`, η`]m`=1 ∼ p(θ, η | X).
4: H = 1

m

∑
`H(θ`, η`) and Q = Hθθ −HθηH

−1
ηη Hηθ.

5: Initialize C = ∅. Σ = Q−1.
6: while |C| < k do
7: i∗ ← arg maxi∈¬C

∑
j∈¬C σ

2
ij/σii .

8: C ← C ∪ {i∗}.
9: σij ← σij − σii∗σi∗j/σi∗i∗ , ∀i, j ∈ ¬C.

10: end while

new class of lower bounds that apply to general discrete
probabilistic graphical models.

Proposition 3. (i). Assume θ = [θ1, . . . , θn] takes values
in a discrete set θ ∈ {a1, . . . , ad}n, and p(θ|X) > 0 for
any θ. Let a∗ be the solution of

∑d
k=1

1
ak−a∗ = 0. Define

si(θ, X) =
1

d(θi − a∗)p(θi | θ¬i ; X)
,

and Q = Eθ|X [ss>], then for any estimator θ̂(X), we have

Eθ|X [‖θ̂(X)− θ‖2] ≥ tr(Q−1).

(ii). For any subset C ⊆ [n] and conditional estimator
θ̂¬C = θ̂¬C(θC , X), we have

Eθ|X [‖θ̂¬C − θ¬C‖2] ≥ tr(Q[¬C]−1),

where Q[¬C] is the submatrix of Q with rows and columns
in ¬C = [n] \ C.

Proof. (i). Denote by δ = θ − θ̂, we have by Cauchy’s
inequality,

Eθ|X [δδ>] � Eθ|X [δs>] · [Eθ|X(ss>)]−1 · Eθ|X [sδ>].

Since ‖θ̂(X) − θ‖2 = tr(δδ>), we just need to show that
Eθ|X [δs>] = Eθ|X [(θ − θ̂)s>] = I where I is the identity
matrix. To see this, note that

Eθ|X [si] =
∑

θ

p(θ¬i | X)

d(θi − a∗)

=
∑

θi

1

d(θi − a∗)
∑

θ¬i

p(θ¬i | X) = 0,

where the last step is because
∑
θi

1
θi−a∗ = 0 by the def-

inition of a∗. Therefore, we have Eθ|X [s] = 0, and hence
Eθ|X [δs>] = Eθ|X [θs>]. Further, note that

Eθ|X [θisi] = Eθ|X [(θi − a∗)si] =
1

d

∑

θ

p(θ¬i | X) = 1,
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Eθ|X [θjsi] =
∑

θ

θj − a∗
d(θi − a∗)

p(θ¬i | X)

=
∑

θi

1

d(θi − a∗)
∑

θ¬i

(θj − a∗)p(θ¬i | X)

= 0 ∀i 6= j.

This gives Eθ|X [θs>] = I and the result follows.

(ii). Apply the result in (ii) by treating θ¬C as the random
parameter and (θC , X) as the observed data.

Note that si depends on p(θ | X) only through the condi-
tional distribution p(θi | θ¬i, X), which is often compu-
tationally tractable since it does not depend on the trouble-
some normalization constant Z =

∑
θ p(X|θ)p(θ).

Example Consider the case of binary parameter θ ∈
{0, 1}n, then solving 1

0−a∗ + 1
1−a∗ = 0 gives a∗ = 1/2.

Therefore, we have si(θ, X) = 1
(2θi−1)p(θi|θ¬i, X) in this

case.

We remark that there exist variants of Bayesian CR bounds
that use finite differences to replace the derivatives, includ-
ing Borrovsky-Zakai bound (Bobrovsky & Zakai, 1975)
and Weiss-Weinstein bound (Weiss & Weinstein, 1985);
these bounds can be naturally applied when θ takes val-
ues in the integer lattice Zn, but does not work well when
θ takes values a finite set due to the boundary problem.

5 APPLICATIONS

The subset selection problem has wide applications in
many important areas. In this section, we describe two
examples of applications that involve continuous and dis-
crete random variables, respectively; empirical results on
real datasets are presented in Section 6.

5.1 CONTINUOUS LABEL SELECTION FOR
CROWDSOURCING

Crowdsourcing has been widely used in data-driven appli-
cations for collecting large amounts of labeled data (Howe,
2006). A major challenge, however, is that the (often
anonymous) crowd labelers tend to give unreliable, even
strongly biased, answers. Probabilistic modeling has been
widely used to estimate the workers’ reliabilities and down-
weight or eliminate the unreliable workers (e.g., Raykar
et al., 2010; Karger et al., 2011; Zhou et al., 2012; Liu et al.,
2012). However, to correct the biases, it is often necessary
to reveal a certain amount of true labels, raising the prob-
lem of deciding which questions should be chosen to reveal
the true labels (e.g., Liu et al., 2013, 2015).

To set up the problem, we follow the setting in Liu et al.
(2013, 2015). Assume we have a set of questions {i}, each
relates to an unknown continuous quantity θi that we want

to estimate (e.g., price, point spreads, GDP). Let {j} be
a set of crowd workers that we hire to estimate {θi}, and
each worker j is characterized by a parameter ηj = [bj , vj ],
where bj and vj represent the bias and variance of worker j,
respectively; we assume the crowd label {xij} of question
i given by worker j is generated by

xij = θi + bj +
√
vjξij , ξij ∼ N (0, 1). (7)

Using a Bayesian approach, we assume Gaussian priors
p(θi) = N (0, σ2

θ), p(bj) = N (0, σ2
b ) on θi and bj , and

an inverse Gamma prior p(vj) = Inv-Gamma(α, β) on vj .
The posterior distribution of θ and η can be written as

p(θ, η | X) ∝
∏

j

exp

[
−
b2j

2σ2
b

]∏

j

v
−α− dj

2 +1
j exp

[
− β
vj

]

∏

i,j

exp

[
− (Xij − θi − bj)2

2vj

]∏

i

exp

[
− θ2i

2σ2
θ

]
.

However, the crowd labels X may not carry enough infor-
mation for predicting θ, and we hence consider the option
of acquiring the ground truth labels of a subset C of ques-
tions (called the control questions), which can be incorpo-
rated into Bayesian inference to help evaluate the bias and
variance of the workers, and hence improve the prediction
of the remaining questions.

We can use Algorithm 1 to select the optimal subset C,
where the greedy update (6) strikes a balance between se-
lecting the most uncertain questions to myopically improve
the overall MSE, and the most “influential” questions (e.g.,
these labeled by a lot of workers) whose ground truth la-
bels can significantly improve the estimation of the work-
ers’ bias and variance, and hence improve the prediction of
the unlabeled questions via a propagation effect.

5.2 DISCRETE LABEL SELECTION ON GRAPHS

Numerous real-world applications produce networked data
with rich relational structures, such as web data and com-
munication networks, and these relational information can
be used to improve the prediction accuracy of unlabeled
data using a small amount of labeled data. Various meth-
ods have been developed to exploit this effect, includ-
ing graph-based semi-supervised learning (e.g., Zhu et al.,
2003; Zhou et al., 2004) and collective, or graph-based,
classification (e.g., Lu & Getoor, 2003). A related impor-
tant question is how to select the best labeling subset to
enable the best prediction on the remaining data.

We set up the problem using undirected graphical models.
Assume G = (V,E) is an undirected graph, and θi is a
discrete label associated with node i ∈ V . It is common to
model the posterior distribution using a pairwise graphical
model,

p(θ) ∝ exp
[ ∑

(i,j)∈E
Jijθiθj +

∑

i∈V
hiθi

]
, (8)
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where Jij represents the correlation between θi and θj and
hi the local information of θi. We are interested in the
problem of selecting the best subset C ⊆ V so that the
prediction accuracy based p(θ¬C | θC) is maximized. In
the semi-supervised learning settings, θi is often assumed
to be a continuous variable, and p(θ) reduces to a simple
Gaussian Markov random field. We instead assume θ to be
discrete labels (e.g., θ ∈ {−1,+1}) which is much more
challenging to deal with. Our bound in Section 4 and Al-
gorithm 1 (but with Q defined in Proposition 3) provide a
novel tool for solving this problem efficiently.

6 EXPERIMENTS

We present experiments to better understand the perfor-
mance of our proposed observation selection methods
based on Bayesian lower bounds. To achieve this, we first
illustrate our method using a toy example based on Gaus-
sian mixture, and then apply our method to the two applica-
tion areas described in Section 5, including selecting opti-
mal control questions in crowdsourcing, as well as discrete
label selection in graph-based classification.

6.1 CONTINUOUS VARIABLES

We test our method in the case when θ is a continuous vari-
able, first on a toy Gaussian mixture model, and then on
the model for selecting control questions in crowdsourc-
ing. We implement our method BayesianCRB(Gibbs)
as shown in Algorithm 1 with the sample [θ`, η`]m`=1 gener-
ated using Gibbs sampler. In addition, the following base-
line selection methods are compared:

Random, in which a random set C of size k is selected
uniformly.

BayesianOpt(Gibbs), which greedily minimizes the
trace of the conditional variance in (1); to estimate the con-
ditional variance we draw [θ`, η`]m`=1 ∼ p(θ, η, |X) using
Gibbs sampler, and then for each candidate set C evaluated
during the greedy search, we further draw [θ`,r¬C , η

`,r]m
′

r=1 ∼
p(θ¬C , η, |θ`C , X) using another Gibbs sampler, and esti-
mate the objective in (1) by

1

m(m′ − 1)

m∑

`=1

m′∑

r=1

∑

i∈¬C
(θ`,ri − θ̄`i )2,

where θ̄`i = 1
m′
∑m′

r=1 θ
`,r
i . This method aims to minimize

the Bayesian optimal risk, but is obviously much more
expensive than our BayesianCRB(Gibbs) because it
needs a large size m′ of MCMC sample to get a good ap-
proximation for evaluating each candidate C, while it tends
to degenerate significantly when m′ is small.

MaxVar(Gibbs), which greedily finds a subset C
with the largest uncertainty in the sense of maximiz-

ing the variance
∑
i∈C var(θi|X), instead of minimiz-

ing the conditional variance. The variance is estimated
by the empirical variance using the MCMC samples
[θ`, η`]m`=1. This algorithm is computationally as fast as
our BayesianCRB(Gibbs), but does not consider the
“propagation effect” that the information in θC can help
improve the inference on θ¬C .

Laplacian, which uses a Laplacian approximation to ap-
proximate the posterior p(θ, η | X) with a multivariate
normal distribution (Liu et al., 2015), under which the ob-
jective (1) reduces to the matrix form in (5). This algo-
rithm is the same as our Algorithm 1, except that the H
in Line 4 is instead estimated by H = H(θ∗, η∗), where
[θ∗, η∗] is the mode of the posterior distribution p(θ, η |
X). Obviously, Laplacian would perform similarly to
BayesianCRB(Gibbs) when the posterior p(θ, η|X) is
close to normal, but would otherwise perform poorly, espe-
cially when p(θ, η | X) is multimodal.

6.1.1 Gaussian Mixture Model

We start with the following toy example of Gaussian mix-
ture model,

p(θ) =
2∑

κ=1

ωκN (θ | µκ,Σκ),

where we ignore the dependence on observed data X . We
draw µκ randomly from a zero-mean normal distribution
with variance 0.1, and set Σκ = 0.1(αDκ−Wκ)−1, where
Wκ corresponds to an adjacency matrix of an undirected
graph and Dκ is a diagonal matrix where Dκ,ii =

∑
jWij

and α is a constant larger than one to enforce L to be pos-
itive definite (we set α = 1.1). We consider two different
graph structures: (1) both W1 and W2 are the 30 by 30
2D grid graph, in which case we set ω = [1, 1]/2; (2) W1

and W2 are scale-free networks of size 30 generated using
the Barabási-Albert (BA) model (Barabási & Albert, 1999),
with average degrees of 1 and 4, respectively, in which case
we set ω = [0.9, 0.1]. We simulate the ground truth of θ by
drawing samples from p(θ | X), and plot the relative MSE
of different algorithms compared to the random selection
baseline in Figure 1(a)-(b); the results are averaged over 50
random trials.

As shown in Figure 1 (a)-(b), BayesianOpt(Gibbs)
achieves the best performance, since it minimizes the con-
ditional variance objective, which is the Bayesian opti-
mal MSE. Laplacian performs the worst because p(θ)
has multiple modes and the Laplacian approximation can
only capture one of the mode. On the other hand,
our BayesianCRB(Gibbs), which takes the advan-
tage of minimizing Bayesian CR bound, and is closer to
BayesianOpt(Gibbs) than all the other methods.

It’s also worth studying the tightness of the Bayesian CR
bound. This is shown in Figure 1(c) where we plot the ratio
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Figure 1: (a-b) Results on the toy Gaussian mixture model; the y-axis are the MSE of different algorithms divided by the
MSE of the random selection algorithm. (c) The ratio between the Bayesian CR lower bound and Bayesian optimal MSE
(the trace of the conditional variance) on both the scale-free and grid graphs.

between the Bayesian optimal MSE (the trace of the condi-
tional variance) and the Bayesian CR lower bound for both
the scale-free and grid graphs; here the bounds are evalu-
ated using the subsets C with different size k, selected by
our BayesianCRB(Gibbs) method. We can see that
the ratios are very close to one (≥ 0.8), suggesting that the
bayesian CR bounds are very tight in these cases. In partic-
ular, we note that the bound is very tight for the grid graph
example (ratio ≈ 1), explaining the good performances of
BayesianCRB(Gibbs) in figure 1(b).

6.1.2 Application to Crowdsourcing

We further apply our method to the problem of selecting the
optimal control questions in crowdsourcing as described in
Section 5. We evaluate our selection algorithms on both
simulated datasets and real-world datasets.

Toy dataset: We first generate a simulated dataset accord-
ing to the Gaussian model described in (7), where θi and bj
are i.i.d drawn from normal distribution with standard de-
viation of 4, and the labelers’ variances vj are generated
from an inverse Gamma distribution Inv-Gamma(1, 1).
The dataset contains 30 questions and 30 labelers, and we
assume the i-th question is answered only by the first i la-
belers; in this way, the first question is answered only by
the first labeler and hence has the most uncertain result,
and the last question is answered by all the 30 workers, and
hence is the most influential, in that knowing its true value
can help evaluate the bias and variance of all the 30 workers
and hence improve the prediction on all the other items.

Figure 2(a) shows the average MSE given by the
different methods. In this case, we can see that
BayesianOpt(Gibbs), BayesianCRB(Gibbs)
and Laplacian tend to perform similarly, all of which
significantly outperform Random and MaxVar(Gibbs).
Note that MaxVar(Gibbs) is even worse than Random
at the beginning, since it myopically selects the most

uncertain questions (the first few questions labeled by
a small number of workers in this case), while much
more significant improvements could be obtained by
selecting the more influential items (these labeled by more
workers). We find that Laplacian performs as well as
BayesianCRB(Gibbs), probably because the posterior
distribution tends to be unimodal in this case. Figure 2
(b) shows the tightness of our lower bound as the size
k of subset C increases, evaluated on the C given by
BayesianCRB(Gibbs), and we can see that the lower
bound is again very tight in this case (ratio ≥ 0.93).

Real-world datasets: We also evaluate our approach on
three real-world datasets:

The PriceUCI dataset (Liu et al., 2013). It consists of 80
household items collected from Internet, and whose prices
are estimated by 155 UCI undergraduate students. As sug-
gested in Liu et al. (2013), a log transform is performed on
the prices before using the Gaussian models.

The national football league (NFL) forecasting dataset used
in Massey et al. (2011). It consists predictions of point dif-
ferences of 245 NFL games given by 386 participants; the
point spreads determined by additional professional book-
makers are used as the ground truth.

The GDP Growth dataset used in Budescu & Chen (2014).
It contains the forecasts of GDP growth nine months ahead
by professional forecasters surveyed by European Central
Bank (ECB). A total of 98 forecasters made forecasts for
50 quarters of GDP growth.

The results on these three real-world datasets are shown
in figure 3(a)-(c). BayesianOpt(Gibbs) is not eval-
uated because it is too slow on these real world datasets.
We can see that both BayesianCRB(Gibbs) and
Laplacian tend to outperform the other methods signif-
icantly. Again, Laplacian tends to perform as well as
BayesianCRB(Gibbs) because the posteriors are very
close to Gaussian distribution in these cases.
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Figure 2: Results on crowdsourcing with simulated data. (a) The MSE given by different selection algorithms as the budget
k increases. (b) The ratio between the Bayesian lower bound and Bayesian optimal MSE. We can see that the lower bound
is very close to the Bayesian optimal MSE (ratio ≥ 0.93), and the tightness tends to increase as the size k of C increases.
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Figure 3: (a)-(c) Results on three real datasets, PriceUCI, NFL and GDP Growth, respectively. The y-axes are the average
MSE on the remaining items as the size of the subset C increases. The error bars show the standard deviation over the
random trials.

6.2 DISCRETE VARIABLES

In this section, we use our algorithm to select optimal sub-
sets on binary Ising graphical models defined in (8) with
θ ∈ {−1,+1}. We use DiscreteLB(Gibbs) to denote
the greedy optimization algorithm on our discrete Bayesian
lower bound (it is the same as Algorithm 1, except with Q
defined in Proposition 3). We again compare our algorithm
with several baselines, including:

CondEnt(LBP), which greedily selects a subset C to
minimum the conditional entropy H(θ¬C | θC , X); it is
equivalent to maximizing the marginal entropy H(θC |
X). The entropy is approximated using loopy belief
propagation (LBP). This algorithm is similar to MaxVar
(Gibbs) for continuous variables, in that both myopi-
cally find the subset with the largest uncertainty, ignoring
the propagation effect that the added true labels can help
predict the remaining unlabeled items (Krause et al., 2008).

MutualInfo(LBP), which maximizes the mutual infor-
mation I(θC ; θ¬C | X); this was proposed by Krause et al.

(2008) to avoid the myopic property of the entropy objec-
tive. The mutual information is again approximated using
loopy belief propagation (LBP).

MinCondVar(Gaussian), which minimizes tr(L−1¬C)
where L = Λ − J , where Λ is a diagonal matrix chosen
to make L positive definite. This method is equivalent to
treating θ as a continuous variable, and hence (8) a multi-
variate Gaussian distribution.

Comparisons are made on both simulated and real-world
datasets:

Simulated data: We set p(θ | X) to be the binary graph-
ical model in (8) (there is no actual observed data X in
this case), with both J and h in (8) drawn from Gaussian
distributions: we draw each element of h from N (0, 0.2),
and set J = 0.1W , where W is an adjacency matrix of an
undirected graph with values drawn from standard normal
distribution. The graph structure is defined to be either a
30 × 30 2D grid, or a scale free network of size 30 gen-
erated using the Barabási-Albert (BA) model (Barabási &
Albert, 1999) with the preferential attachment mechanism.
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Figure 4: Results on binary Ising models with simulated data. (a)-(b) The Relative MSE of different algorithms on
the synthetic datasets simulated from the scale-free and the grid graph, respectively. (c) The ratio between our discrete
Bayesian lower bound and the Bayesian optimal MSE on the simulated dataset; the bounds are evaluated on the subsets C
selected by our DiscreteLB(Gibbs) method.
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Figure 5: Comparison of the relative MSE of different
methods on the PubMed Diabetes dataset. Our algo-
rithm DiscreteLB(Gibbs) achieves similar results as
BayesianOpt(Gibbs), but with much lower computa-
tional cost.

We show the results of different algorithms in Figure 4,
where we find that our DiscreteLB(Gibbs) is compa-
rable with BayesianOpt(Gibbs) which minimizes the
Bayesian optimal error rate, and outperforms all the other
baselines. Both MaxVar(Gibbs) and CondEnt(LBP)
tend to myopically select the most uncertain items first
and hence have similar performance. Figure 4(c) shows
the tightness of our Bayesian lower bound compared to
the Bayesian optimal error; we can see that it is less tight
(ratio ≥ 0.56) compared with the Bayesian CR bound
for continuous variables, but the good performance of
DiscreteLB(Gibbs) seems to suggest that the lower
bound still represents a good surrogate for the Bayesian op-
timal error.

PubMed Diabetes:1 This is a citation graph of scientific
papers from the PubMed database (Sen et al., 2008), in
which each paper is classified into one of three classes:

1 http://linqs.umiacs.umd.edu/projects//projects/lbc/

“Diabetes Mellitus, Experimental”, “Diabetes Mellitus
Type 1”, “Diabetes Mellitus Type 2”. For our experiment,
we select the top 100 nodes with the highest degrees from
class Diabetes Mellitus Type 1 and Type 2, and then took
the largest connected component, with 93 nodes in total
and 376 edges; this gives 43 nodes from class Type 1 and
50 nodes from class Type 2, and a graph with an average
degree of 4. In this case, since we don’t have any prior
knowledge, we set h to be a vector of small random num-
bers, and let J = 0.05W , where W denotes the adjacency
matrix. The results is shown in Figure 5, in which we ob-
serve a similar trend as that in the simulated data.

7 CONCLUSION

The Bayesian optimal risk is the ideal objective function
for optimal subset selection, which, however, is extremely
difficult to calculate and optimize in practice. In this paper,
we proposed to use Bayesian lower bounds as surrogate cri-
teria, and derived a class of computationally more efficient
algorithms for observation selection. We discussed both
continuous and discrete scenarios: for continuous models,
we based our bound on the classical Bayesian Cramér Rao
bound; for discrete models, we derived a new form based
on an novel extension of van Trees inequality. We pre-
sented a number of experiments for both continuous and
discrete models in various practical settings, and showed
that the selection algorithms based on the Bayesian lower
bounds tend to outperform most baseline algorithms, and
are comparable with the selection based on the Bayesian
optimal risk.
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Abstract

We consider binary pairwise graphical models
and provide an exact characterization (necessary
and sufficient conditions observing signs of po-
tentials) of tightness for the LP relaxation on the
triplet-consistent polytope of the MAP inference
problem, by forbidding an odd-K5 (complete
graph on 5 variables with all edges repulsive) as
a signed minor in the signed suspension graph.
This captures signs of both singleton and edge
potentials in a compact and efficiently testable
condition, and improves significantly on earlier
results. We provide other results on tightness of
LP relaxations by forbidding minors, draw con-
nections and suggest paths for future research.

1 INTRODUCTION

Discrete undirected graphical models play a central role
in machine learning, providing a powerful and compact
way to model relationships between variables. A key chal-
lenge is the combinatorial search problem to identify a most
likely configuration of variables, termed maximum a pos-
teriori (MAP) or most probable explanation (MPE) infer-
ence. This has received a great deal of attention from var-
ious communities, where it is sometimes framed as energy
minimization (Kappes et al., 2013) or as solving a valued
constraint satisfaction problem (VCSP, Schiex et al., 1995).

Since the problem is NP-hard, much work has attempted
to identify restricted settings where polynomial-time meth-
ods are feasible. Where possible, we call such settings
tractable and the methods efficient. Two types of restric-
tion have been considered separately, either: (i) structural
constraints on the topology of connections between vari-
ables; or (ii) families of potential functions.

Exploring the first theme, Chandrasekaran et al. (2008)
showed that, if no restriction is placed on types of poten-
tials, then the structural constraint of bounded treewidth is

needed for tractable inference.1 See §2-4 for all definitions.

Recent work (Kolmogorov et al., 2015; Thapper and Živný,
2015) has examined the power of using a linear program-
ming (LP) relaxation of the discrete optimization problem.
An LP attains an optimum at a vertex of the feasible re-
gion; if this vertex is integral, then it provides an exact
solution to the original problem and we say that the LP
is tight. If the LP is performed over the marginal poly-
tope, which enforces global consistency (Wainwright and
Jordan, 2008), then this LP is always tight, but exponen-
tially many constraints are required, hence the method is
not efficient. The marginal polytope is typically relaxed
to the local polytope LOC, which enforces only pairwise
consistency, requiring a number of constraints linear in the
number of edges. Thapper and Živný (2015) showed that,
if no restriction is placed on topology, then for a given fam-
ily of potentials, either LP+LOC is tight, and hence solves
all such problems efficiently, or the problem set is NP-hard.

Here we consider hybrid conditions (Cooper and Živný,
2011), which combine constraints on both structure and
potentials, an exciting field with little prior work. Focus-
ing on the important class of binary pairwise models,2 and
considering each edge to be signed as either attractive or
repulsive, we establish precise hybrid characterizations for
when certain LP relaxations will be tight for all valid poten-
tials. By valid, we mean potentials that observe the signs
(attractive or repulsive) of the edges. We show that these
characterizations may be achieved by forbidding particular
signed minors of the signed graph topology, yielding com-
pact and efficiently testable conditions.

In applications, LP relaxations are widely used for struc-
tured prediction but the most common form, LP+LOC, of-
ten yields a fractional solution, motivating constraints for

1This result makes mild assumptions, specifically the grid-
minor hypothesis (Robertson et al., 1994), and that NP 6⊆P/poly.
See also (Kwisthout et al., 2010).

2Eaton and Ghahramani (2013) showed that any discrete
graphical model may be either exactly represented, or arbitrar-
ily well approximated, by a binary pairwise model, though the
number of variables may increase substantially.
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higher order cluster consistency (Batra et al., 2011). Weller
et al. (2016) considered the LP relaxation over the triplet-
consistent polytope TRI, which is the next level up from
LOC in the hierarchy given by Sherali and Adams (1990)
and is still efficient. Whereas it is known that LP+LOC is
tight for any model which is balanced, Weller et al. (2016)
showed that LP+TRI is tight for any model which is almost
balanced. Further they demonstrated that almost balanced
models may be ‘pasted’ together in certain configurations,
while still guaranteeing tightness of LP+TRI.

The results of Weller et al. (2016) and our stronger charac-
terizations here are very relevant to many problems in com-
puter vision, such as foreground-background image seg-
mentation, where due to contiguity of real objects, learned
edges are mostly attractive, leading to a model which is
‘close to balanced’. For example, on the horses dataset con-
sidered by Domke (2013), LP+LOC is loose but LP+TRI is
often tight. Our work helps to explain this phenomenon.

We consider a refinement by examining the signs not only
of edge potentials, but also of singleton potentials. These
can be neatly incorporated by considering the signed sus-
pension graph of a model, which adds one extra node with
edges to the other variable nodes, each new edge corre-
sponding to a singleton of the original model; see §4.

1.1 MAIN RESULTS

Our strongest result is Theorem 14, which shows that
LP+TRI is tight for all valid potentials, observing signs
of both edge and singleton potentials, iff the signed sus-
pension graph does not contain an odd-K5 (the complete
graph on 5 nodes with all edges odd/repulsive, see §3) as a
signed minor. This is a more powerful, signed version of
an unsigned result, Theorem 13, that follows from the work
of Barahona and Mahjoub (1986), showing that LP+TRI is
tight for all valid unsigned potentials iff the unsigned sus-
pension graph does not contain K5 as an unsigned minor;
see §5. For a sense of the additional power of the signed
version, Theorem 14 allows models with arbitrarily high
treewidth, provided only that there is no odd-K5 minor
(one particular signing of a K5 structure), whereas The-
orem 12 prohibits a K5 minor of any type; see Table 2.

A weaker corollary of Theorem 14, our Theorem 10 shows
that if we are less observant and do not examine single-
ton potentials, then LP+TRI is tight for all valid potentials
(respecting signs of edges only) iff the signed graph topol-
ogy does not contain an odd-K4 as a signed minor.3 This
may be directly compared to the sufficient conditions of
Weller et al. (2016), which similarly do not examine sin-
gleton potentials. We show that Theorem 10 is a significant
improvement: it covers a substantially larger set of models,
provides a compact condition that is both necessary and

3Theorem 14 allows any odd-K4 minor inG provided it is not
part of an odd-K5 in∇G, a much stronger result; see Table 2.

sufficient, and is efficiently testable; see §4.3.

As another consequence of Theorem 14, we obtain a result
that may be of significant practical interest. Theorem 16
shows that in some cases, the number of cycle constraints
needed to enforce integrality for LP+TRI may be dramati-
cally reduced to just the signed cycle constraints; see §5.

We also reframe earlier results on tightness of LP relax-
ations in terms of forbidden minors. This perspective ele-
gantly captures conditions on both structure and potentials,
and reveals fascinating connections which prompt natural
directions to explore in future work. See Table 2 for a sum-
mary and §6 for discussion.

1.2 APPROACH AND RELATED WORK

Characterizing properties by forbidden minors has been a
fruitful theme in graph theory since the fundamental work
of Robertson and Seymour, which builds over more than
20 papers to the graph minor theorem, described by Dies-
tel (2010) as “among the deepest theorems that mathemat-
ics has to offer.” We describe elements of the approach in
§2, its extension to signed graphs, signed minors and odd
minors in §3, and its relevance to LP relaxations in §4.

Odd-minor-free graphs have received attention in theoreti-
cal computer science, for example (Demaine et al., 2010).
However, aside from the characterization by Watanabe
(2011) of when belief propagation has a unique fixed point
in terms of signed minors, to our knowledge there has been
little direct use of this perspective in machine learning.4

To show our results, we connect several earlier themes, for
which we provide relevant background. A key result by
Guenin (2001) showed that a signed graph is weakly bi-
partite, which characterizes integrality of the vertices of a
particular polyhedron, iff it does not contain an odd-K5 mi-
nor; see §3. We draw on connections between: the marginal
polytope of a model, with its LOC and TRI relaxations;
and the corresponding cut polytope of its suspension graph,
with its rooted semimetric RMET and semimetric MET re-
laxations (De Simone, 1990; Deza and Laurent, 1997); see
§5.1. We use a link between MET and the cycle inequali-
ties (Barahona, 1993); see §5.2. We extend these ideas to
signed graph topologies in §5.3. Some of these connections
for the unsigned case were considered by Sontag (2010).

2 GRAPHS AND MINORS

We follow standard definitions and omit some familiar
terms. For more background, see (Diestel, 2010), partic-
ularly §12 for a survey of treewidth and forbidden minors.

4Junction trees (Cowell et al., 1999), treewidth and unsigned
graph minors are closely related. Treewidth was discussed by
Halin but gained popularity through use by Robertson and Sey-
mour (see historical note by Seymour, 2014).
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Figure 1: The left graph is a minor (unsigned) of the right graph,
obtained by deleting the grey dotted edges and resulting isolated
small grey vertex, and contracting the purple wavy edge. See §2.

t Forbidden minors for a graph to have treewidth ≤ t
1 K3

2 K4

3 K5 and 3 others
4 K6 and more than 70 others

Table 1: Characterization of low values of bounded
treewidth by forbidding minors.

A graph G(V,E) is a set of vertices V , and undirected
edgesE, where each edge (i, j) ∈ E connects i and j ∈ V .
The complete graph on n vertices, written Kn, has all

(
n
2

)

edges. A pairwise graphical model topology is always as-
sumed to be a simple graph, that is a vertex may not be
adjacent to itself (no loops) and each pair of vertices may
have at most one edge (no multiple edges). However, when
we consider minors, we allow loops and multiple edges.

A minor of a graphG is obtained fromG by deleting edges
or isolated vertices (as may be done to form a subgraph),
or also by contracting edges. To contract edge (i, j) means
to remove the vertices i and j, and replace them by a new
vertex with edges to all remaining vertices that were previ-
ously adjacent to i or j. See Figure 1 for an example.
For any property P of a graph, we say that P is closed
under taking minors (or minor-closed) if whenever G has
property P and H is a minor of G, then H has P .

A consequence of the graph minor theorem of Robertson
and Seymour is the following deep result.

Theorem 1 (Robertson and Seymour, 2004). If a graph
property P is closed under taking minors then it can be
characterized by a finite set of forbidden minors, i.e. G has
P iff G has none of the finite forbidden set as a minor.

There are important examples of graph properties closed
under taking minors where this finite set has just a few
members. Perhaps the best known is the early result of
Wagner (1937) that a graph G is planar iff G does not con-
tain K5 or K3,3 as a minor (K3,3 is the complete bipartite
graph where each partition has 3 vertices).

Another property closed under taking minors is bounded
treewidth. A definition of treewidth of a graph G that may
be familiar from the junction tree construction is that it is
one less than the minimum possible size of a largest clique
in a triangulation ofG (Wainwright and Jordan, 2008). The

Figure 2: The left graph is a signed minor of the right signed
graph, obtained similarly to Figure 1 except that before contract-
ing the repulsive edge, first flip the vertex at its right end. Solid
blue (dashed red) edges are attractive (repulsive). Grey dotted
edges on the right are deleted and may be of any sign. See §3.2.

forbidden minors are known for low values of bounded
treewidth, see Table 1. For example, a tree has treewidth
1 and cannot contain a K3 minor.

Robertson and Seymour also showed that checking for any
fixed minor may be performed efficiently.

Theorem 2 (Robertson and Seymour, 1995). For any fixed
graph H and a given graph G with n vertices, there is an
O(n3)-time algorithm to determine if H is a minor of G.5

Together, Theorems 1 and 2 show that any minor-closed
graph property may be decided in polynomial-time.

3 SIGNED GRAPHS & SIGNED MINORS

A signed graph (Harary, 1953) is a graph (V,E) together
with one of two possible signs for each edge. This is a
natural structure when considering binary pairwise models,
where we characterize edges as either attractive (or even)
or repulsive (or odd), see §4. Where helpful for clarity,
we refer to the standard graphs of §2 as unsigned graphs.
We shall see that important concepts and results for minors
of unsigned graphs have corresponding results for signed
minors of signed graphs.

In a signed graph, a fundamental property of any cycle is
whether or not it is a frustrated cycle (or odd cycle), i.e.
if it is a cycle with an odd number of repulsive (or odd)
edges. A signed graph is balanced if it contains no frus-
trated cycles. Following Weller (2015), a signed graph is
almost balanced if it contains a vertex such that deleting it
renders the remaining graph balanced.

3.1 FLIPPING/RESIGNING AND ODD GRAPHS

Given a signed graph, a subset of variables S ⊆ V may be
flipped (or switched). This flips the sign of any edge with
exactly one end in S (i.e. flips the edge between attrac-
tive/even and repulsive/odd), and is called a resigning. It is
easily seen that this operation does not change the nature
(frustrated or not) of any cycle. For binary graphical mod-
els, this has a natural interpretation: if the original model
has variables {Xi ∈ {0, 1} : i ∈ V } then consider an

5Kawarabayashi et al. (2012) improved this to O(n2)-time.
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(a) The class containing the fully attractive K4

(these are balanced, LP+LOC is always tight):
1

4
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2
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2
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(b) The class containing a K4 with exactly one repulsive edge
(these are almost balanced, LP+TRI is always tight):
1

4

3

2

1

4

3

2

1
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3

2

1
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(c) The class containing the fully repulsive odd-K4

(LP+TRI is not always tight):
1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

base base+flip 1 base+flip 1,2 base+flip 1,3

Figure 3: Examples of signed K4 graphs. These are complete
graphs on 4 vertices where each edge is either attractive/even
(solid blue) or repulsive/odd (dashed red). Each row illustrates
examples from one of the three signing equivalence classes.
At bottom left is an odd-K4. See §3.

equivalent model with variables {Yi : i ∈ V } given by
Yi = 1 −Xi for i ∈ S, Yi = Xi for i ∈ V \ S, with new
potentials set to match properties of the original model.6

Two signed graphs are signing equivalent (sometimes
called gauge equivalent) if they are isomorphic up to a
resigning (an equivalence relation). We are interested in
signed graphs only up to signing equivalence; see §3.2.

For any unsigned graph G, the signed graph odd-G is the
signed version of G where every edge is odd (or repul-
sive). Figure 3 shows examples of signed K4 graphs, in
their signing equivalence classes. The bottom row shows
an odd-K4 at the left, together with possible resignings.

3.2 SIGNED MINORS

A signed minor of a signed graph is obtained just as for
an unsigned minor of an unsigned graph with the follow-
ing modifications: any resigning operations are permitted
(see §3.1); and contractions are allowed only for attrac-
tive/even edges. Note that a repulsive/odd edge may first
be resigned to an attractive/even edge by flipping either end
vertex (which will also affect its other incident edges) and
then contracted. See Figure 2 for an example, which may
be compared to the unsigned minor example of Figure 1.

A significant project is in progress to try to generalize all of
Robertson and Seymour’s graph minor theory to the much
broader class of Γ-labeled graphs for any finite abelian

6Given the form of potentials (2) we choose in §4, this flips
the signs of {θi : i ∈ S} and {Wij : exactly one of i or j ∈ S}.

group Γ (Geelen et al., 2014), which includes signed graphs
by considering Γ = Z/2Z. An equivalent result to The-
orem 1 is claimed, though the formal write-up is still to
come. An equivalent result to Theorem 2 has been shown.

Theorem 3 (A special case of Theorem 1.1.10 of
Huynh, 2009). For any fixed signed graph H , there is a
polynomial-time algorithm which determines if an input
signed graph G contains H as a signed minor.

3.3 WEAKLY BIPARTITE SIGNED GRAPHS

If a signed graph is balanced, its vertices may be partitioned
into two exhaustive groups s.t. all inter-group edges are odd
and all intra-group edges are even (Harary, 1953); the re-
signing obtained by flipping either group renders all edges
even. With this observation, a signed graph which is bal-
anced is sometimes called bipartite (related, but different,
to the standard meaning of bipartite for unsigned graphs).

Generalizing bipartite signed graphs, a signed graph
G(V,E) with edge signs is weakly bipartite if the follow-
ing polyhedron Q has only integral vertices:

Q=

{
y ∈ R|E|+ :

∑

e∈D
ye ≥ 1,∀ odd cycles D of signed G

}

(1)
Here, odd cyclesD are in the signed sense, i.e. have an odd
number of odd edges. We shall see in §5.3 that Q relates
closely to the triplet-consistent polytope TRI of a graphical
model, if we consider signs of all potentials. We make use
of the following result, which proved a conjecture of Sey-
mour (1977), earning Guenin a Fulkerson prize in 2003.

Theorem 4 (Guenin, 2001). A signed graph is weakly bi-
partite iff it does not contain an odd-K5 as a signed minor.7

4 GRAPHICAL MODELS AND LP
RELAXATIONS

We consider a binary pairwise undirected model with n
variables X1, . . . , Xn ∈ {0, 1}. Let x = (x1, . . . , xn) ∈
{0, 1}n be one complete configuration. The probability
distribution is specified by p(x) ∝ exp[score(x)], where
we choose a symmetric minimal reparameterization (Wain-
wright and Jordan, 2008) such that

score(x) = −
∑

i∈V
θixi −

∑

(i,j)∈E
Wij1[xi 6= xj ], (2)

where 1[·] is the indicator function. The model’s un-
signed topology is the graph G(V,E), with n variables
V = {1, . . . , n} and m = |E| ≤

(
n
2

)
edge relation-

ships between the variables. The n singleton parameters
{θi : i ∈ V } and m edge weights {Wij : (i, j) ∈ E}

7The original proof is long. A shorter proof was provided by
Schrijver (2002). Both proofs rely on a result of Lehman (1990).
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define the potentials, which we allow to take any rational
value (to enable polynomial-time algorithms).

In addition to the unsigned graph G, we shall be interested
in two more informative ways of considering a model’s
topology. The signed graph G assigns edge signs accord-
ing to the signs of edge potentials. If Wij > 0, the edge
(i, j) tends to pull Xi and Xj toward the same value and is
attractive (or even). If Wij < 0, the edge is repulsive (or
odd).

The signed suspension graph∇G(V ′, E′) of a model adds
an extra node 0, that is V ′ = V ∪ {0}. Edges to 0 encode
singletons of the model, with E′ = E ∪ {(0, i) : θi 6= 0}.
With∇G in mind, we have chosen the form of (2) carefully,
using negative signs so Wij > 0 is attractive, and 1[xi 6=
xj ] edge terms in order to facilitate later demonstration of
the equivalence between the MAP problem and a max cut
problem on the edge-weighted suspension graph; see §5.

In ∇G, it may be helpful to consider the added node 0
as being set to the value 0; then regarding (2), the single-
ton potential terms θixi may be viewed as θi1[xi 6= 0],
and hence all singleton and edge potential terms follow the
same sign convention. In particular, the sign of each new
edge (0, i) in ∇G matches that of θi: if θi > 0 then the
added edge is attractive, pulling Xi toward 0; if θi < 0
then (0, i) is repulsive (or odd).

4.1 LINEAR PROGRAMMING FOR MAP

The potential parameters may be concatenated to form a
vector w = (−θ1, . . . ,−θn, . . . ,−Wij , . . . ) ∈ Qd, where
d = n + m. Let yij = 1[xi 6= xj ], and for any configura-
tion x, similarly concatenate the n xi and m yij(x) terms
into a vector z = (x1, . . . , xn, . . . , yij , . . . ) ∈ {0, 1}d.
Now score(x) = w ·z, yielding the following integer linear
programming formulation for MAP inference, to identify

z∗ ∈ arg max
z:x∈{0,1}n

w · z (3)

The convex hull of the 2n possible integer solutions in
[0, 1]d is the marginal polytope M for our choice of single-
ton and edge terms.8 Regarding the convex coefficients as
a probability distribution p over all possible states, M may
be considered the space of all singleton and pairwise mean
marginals that are consistent with some global distribution
p over the 2n states, that is

M = {µ = (µ1, . . . , µn, . . . , µij , . . . ) ∈ [0, 1]d s.t. (4)
∃p : µi = Ep(Xi) ∀i, µij = Ep(1[Xi 6= Xj ]) ∀(i, j) ∈ E}
A standard approach is to relax (3) to a linear program (LP).
Performing this over M remains intractable since the num-

8Our choice of edge term 1[xi 6= xj ] will facilitate later anal-
ysis of∇G in §5. A common alternative choice for edges is to use
xixj , which leads to an equivalent polytope, sometimes called the
Boolean quadric polytope QPn (Padberg, 1989).

ber of linear constraints required grows extremely rapidly
with n (Deza and Laurent, 1997). Hence, a simpler, re-
laxed constraint set is typically employed, yielding an up-
per bound on the original optimum. This set is often chosen
as the local polytope LOC, which enforces only pairwise
consistency (Wainwright and Jordan, 2008). If an optimum
vertex is achieved at an integer solution, then this must be
an optimum of the original discrete problem (3), in which
case we say that the relaxation LP+LOC is tight.

Sherali and Adams (1990) proposed a series of succes-
sively tighter relaxations by enforcing consistency over
progressively larger clusters of variables. At order r, the
Lr polytope enforces consistency over all clusters of vari-
ables of size ≤ r. L2 is the local polytope LOC. Next,
L3 is the triplet-consistent polytope TRI, and so on, with
Ln = M ⊆ Ln−1 ⊆ · · · ⊆ L3 = TRI ⊆ L2 = LOC.
Clearly LP+Ln is always tight. The following result, de-
rived using the junction tree theorem (Cowell et al., 1999),
gives a sufficient condition for tightness at any order.
Theorem 5 (Wainwright and Jordan, 2004). If the graph of
a model has treewidth ≤ r − 1 then LP+Lr is tight.

4.2 RELATION TO MINORS, NEW RESULTS

Theorem 5 provides a sufficient condition that considers
only the treewidth of the unsigned graph G, without any
regard to the potentials. As remarked in §2, the graph prop-
erty of bounded treewidth is minor-closed, hence can be
characterized by excluding a finite set of forbidden minors,
see Table 1 for examples.

We now make the following observation, where “valid po-
tentials” for a graph means any potentials that respect the
graph structure (signed or unsigned accordingly).
Theorem 6. The property P of a graph G that “LP+Lr is
tight for all valid potentials onG” is minor-closed, whether
G is unsigned or signed (if signed then use signed minors).

Proof. The property P is maintained under deletion, con-
traction and (for signed graphs) resigning. To see this for
contraction: if an edge (i, j) of G is contracted to yield G′,
then for any valid model M ′ on G′, consider the model M
on G which has all the same potentials and in addition set
the edge potential for (i, j) to be sufficiently high such that
in M this forces Xi and Xj to take the same value.

Hence, we should expect to be able to characterize LP tight-
ness for all valid potentials, for both unsigned and signed
topologies, by specifying a finite set of forbidden minors
(signed minors in the signed case), see §2 and §3.

From Theorem 5 and Table 1: if we consider only the un-
signed topology G, then LP+LOC (LP+TRI) is tight for all
potentials if the graph G does not contain a K3 (K4, re-
spectively) as a minor. To demonstrate the converse, and as
a result of independent interest, we show the following.

769



All models

G has K4

∇G has K5

G has odd-K4

∇G has odd-K5

problems

Forbidden minors
Sherali-Adams Graph G Suspension graph ∇G

cluster size Unsigned Signed Unsigned Signed
LOC L2 K3 odd-K3

TRI L3 K4 odd-K4 K5 odd-K5

Theorem Thm 8 Thm 10 Thm 13 Thm 14
L4 K5+? odd-K5+? K6+? odd-K6+?

Table 2: Summary of results characterizing tightness of LP relaxations by forbidden minors. All conditions may be checked efficiently.
Right: The section for TRI (shaded blue) contains our main new results: Theorem 10 for signed G; and the stronger Theorem 14 for
signed∇G, which examines singleton and edge potentials. Theorem 14 implies Theorems 13, 10 and 8. Results for L4 are unknown.
Left: Illustration of the model classes for LP+TRI, where problems are models for which LP+TRI is not tight. Theorem 14 is the most
powerful result, showing that all problems lie within the set of models where∇G contains an odd-K5. See discussion in §4.3 and §6.

Theorem 7. LP+Lr is not tight for the fully connected
model on n = r+1 variables with all θi = Wij = −1 ∀i ∈
V, (i, j) ∈ E. Note that this model has signed G which is
an odd-Kr+1, and signed ∇G which is an odd-Kr+2.

Proof. The proof is from first principles. Consider the dis-
tribution for each r-cluster that is uniform over all configu-
rations with b r2c 0s and d r2e 1s. This has higher score than
the best integral configuration of bn2 c 0s and dn2 e 1s.

Applying Theorem 7 for r = 2 and 3 yields the following
result (since if a model contains a Kr+1 minor, then we
may assume potentials such that the model is the Kr+1).
Theorem 8. Considering unsigned topologies: LP+LOC
is tight for all valid potentials iff G does not contain a K3

minor; LP+TRI is tight for all valid potentials iff G does
not contain a K4 minor.

We next provide stronger results by considering the signs
of edge potentials. Intriguingly, both for LOC and TRI, the
forbidden signed minor is exactly the odd version of the
forbidden unsigned minor in Theorem 8.
Theorem 9. LP+LOC is tight for all valid potentials iff the
signed graph G does not contain an odd-K3 signed minor.

Proof. It is easily seen that if the signed graph of a model
does not contain an odd-K3 signed minor, then it is bal-
anced (see §3). Earlier work showed that LP+LOC is
tight for any balanced model (Padberg, 1989; Weller et al.,
2016). Necessity follows from Theorem 7.

Theorem 10. LP+TRI is tight for all valid potentials iff the
signed graph G does not contain an odd-K4 signed minor.

Theorem 10 follows as a corollary of the stronger Theo-
rem 14, which we shall show in §5, which also considers
the signs of singleton potentials by examining the signed
suspension graph ∇G (defined in §4 just before §4.1).

4.3 REMARKS, EARLIER WORK

Taken together, our results in §4.2 employ the framework
of forbidden minors to characterize compactly the tightness

of LP relaxations in an elegant and unifying way. See Table
2 for a summary, which includes later results from §5. Note
the interesting relationships across conditions, all of which
may be checked efficiently by Theorems 2 and 3.

Little was known theoretically about conditions for tight-
ness of LP+TRI before Weller et al. (2016) showed that it
was sufficient for a model to be almost balanced (defined
in §3). They also demonstrated a composition result which
allows almost balanced sub-models to be pasted together
in particular ways, while maintaining tightness. The condi-
tion in Theorem 10 is substantially stronger: the new con-
dition is both necessary and sufficient; it is compact to de-
scribe and it is efficient to check. Further, we next show
that Theorem 10 covers a strict superset of models.

Observe that the property for a signed graph of being al-
most balanced is closed under taking signed minors. An
odd-K4 is clearly not almost balanced, see Figure 3. Hence
almost balanced models ⊆ models whose signed topology
does not contain an odd-K4 minor. Next consider the per-
mitted pasting operation (Weller et al., 2016, Theorem 12),
which allows sub-models to be pasted together either on a
single variable or, in limited settings, on an edge. If each
sub-model is odd-K4-free, then so too is the pasted combi-
nation. Hence, Theorem 10 covers all the models covered
by Weller et al. (2016); we next show that Theorem 10 cov-
ers a significant additional class of models.

Signed graphs that do not contain an odd-K4 minor have
been studied previously (Gerards, 1988; Truemper, 1998).
An important class that is odd-K4-minor-free but not al-
most balanced is planar signed graphs with two odd faces
(i.e. all but exactly two faces have even bounding cycles).
See Figure 4 for an example by J. Carmesin which is 3-
connected, hence there is no way it could be constructed by
pasting almost balanced sub-models on edges or vertices.

5 INCLUDING SINGLETONS,∇G

In this Section, we extend the analysis of §4 to include sin-
gleton potentials, by now considering the suspension graph
∇G rather than just the base graph G. We build to §5.3,
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odd odd

Figure 4: A 3-connected signed graph that is not almost bal-
anced, hence the results of Weller et al. (2016) cannot be used
to show that LP+TRI is tight for such a model; yet it is odd-K4-
minor-free, hence Theorem 10 proves that LP+TRI is tight for
all valid potentials. This is a planar signed graph with two odd
faces (Gerards, 1988, §3.2), with the odd faces indicated (others
are even); see §4.3. Solid blue (dashed red) edges are even (odd).

Potential values for Potential values for
n variables + m edges ↔ n+m edges
Marginal polytope M ↔ CUT polytope of ∇G

TRI relaxation ↔ MET relaxation = CYC
LOC relaxation ↔ RMET relaxation

Table 3: Relations between polytopes; see §5.

where we state and prove our strongest result, Theorem
14, which characterizes tightness of LP+TRI if we examine
the signs of both edge and singleton potentials. We show
that this result implies Theorem 10 from §4, which exam-
ines only edge signs. Our approach relies on Theorem 4
(Guenin’s result), connecting to it by showing relations be-
tween various polytopes.

In §4, we introduced the marginal polytope M, together
with its relaxations TRI and LOC, with M ⊆ TRI ⊆ LOC.
Here, we first show equivalences to the cut polytope CUT
of the suspension graph ∇G, together with its relaxations
MET (the semimetric polytope) and RMET (the rooted
semimetric polytope) with CUT ⊆MET ⊆ RMET, see Ta-
ble 3. In §5.2, we relate MET to the cycle inequalities
(Barahona and Mahjoub, 1986; Barahona, 1993) and pro-
vide Theorem 13, which does not consider signs of poten-
tials. For more background, see (Deza and Laurent, 1997).

In §5.3 we consider signed cycles, then by combining re-
sults, we prove Theorem 14, our strongest new result. In
addition, we are able to show that many typically used cy-
cle inequalities may be redundant for enforcing integrality.

5.1 MARGINAL AND CUT POLYTOPES, AND
THEIR RELAXATIONS

Here we establish many of the equivalences of polytopes
shown in Table 3. Recall the definition of the suspension
graph ∇G(V ′, E′) from §4.

Given a subset S ⊆ V ′ = {0, 1, . . . , n}, let δ(S) ∈
{0, 1}|E′| be the cut vector of edges of ∇G that run be-
tween the vertex partitions S and V ′ \ S, defined by

δ(S)ij = 1 iff i and j are in different partitions.

The cut polytope (Barahona, 1983; Barahona and Mahjoub,
1986) of∇G is the convex hull of all such cut vectors, that
is CUT = conv {δ(S) : S ⊆ V ′}. Although there are
2n+1 choices of S, CUT has 2n vertices since by definition
δ(S) = δ(V ′\S). In fact, there is a linear bijection between
CUT and M, which is particularly simple given the form
we selected for edge marginals in (4).9 Given d ∈ CUT
with entries dij for (i, j) ∈ E′, d maps to µ ∈ M where
µj = d0j for j ∈ V, and µij = dij for (i, j) ∈ E.
To see this, dij may be interpreted as the marginal prob-
ability that i, j ∈ V ′ lie in different partitions. Similarly,
µij ∈ M is the marginal probability that Xi and Xj take
different values; and µi is the probability that Xi 6= 0 (cor-
responding in ∇G to i being in a different partition to 0).

MAP inference for the model on G is now clearly equiva-
lent to the max cut problem for∇G, i.e.10

max
µ∈M

w·µ = max
d∈CUT

w′ ·d, w′ij =

{
−θj i = 0

−Wij (i, j) ∈ E. (5)

The bijection between M and CUT may also be used to map
the LOC and TRI relaxations of M to corresponding re-
laxations of CUT in [0, 1]|E

′|, called the rooted semimetric
polytope RMET and the semimetric polytope MET, respec-
tively, as shown in Table 3. The constraints for the MET
polytope (which corresponds to TRI) take the following
form, sometimes described as unrooted triangle inequali-
ties (Deza and Laurent, 1997, §27.1):

MET ∀i, j, k ∈ V ′, d(i, j)− d(i, k)− d(j, k) ≤ 0 (6)
d(i, j) + d(i, k) + d(j, k) ≤ 2.

Remarkably, the constraints for RMET, the rooted triangle
inequalities, are exactly just those of (6) for which one of
i, j, k is 0, the vertex that was added to yield ∇G. Hence,
RMET may be regarded as MET rooted at 0. Correspond-
ingly, we may consider TRI to be a version of LOC that is
universally rooted (Weller, 2016). See discussion in §6.

5.2 CYCLE INEQUALITIES, CYC POLYTOPE

Here we define the cycle inequalities and provide back-
ground showing how they may be used to characterize
tightness of LP+TRI by forbidding unsigned K5 as a mi-
nor of the unsigned suspension graph∇G(V ′, E′).

For any edge set F ⊆ E′ and x ∈ [0, 1]|E
′|, let x(F ) =∑

e∈F x(e). Let C ⊆ E′ be the edge set of a cycle in ∇G.

9If instead, edge terms of the form xixj are used for the
marginal polytope, as in the Boolean quadric polytope (see foot-
note 8), then the linear bijection required is slightly more complex
and is called the covariance mapping (De Simone, 1990).

10The negative signs before θj and Wij terms are because we
followed the convention that Wij > 0 is an attractive edge, and
made the signs of singleton potentials consistent; see §4.
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At any vertex of CUT, if we traverse C, we must change
partitions an even number of times.

Hence, the following cycle inequalities hold ∀x ∈ CUT:
for any cycle C and any edge subset F ⊆ C with |F | odd,

x(F )− x(C \ F ) ≤ |F | − 1. (7)

Let CYC be the polytope defined by these constraints, i.e.
CYC = {x ∈ [0, 1]|E

′| : x(F )−x(C\F ) ≤ |F |−1 for any
cycle C of ∇G and any F ⊆ C, |F | odd}. The triangle in-
equalities (6) are special cases of (7) with |C| = 3, though
note that those apply in MET to any triplet i, j, k ∈ V ′

without regard to the edges E′, whereas cycle inequalities
apply only to the cycles of ∇G(V ′, E′). Nevertheless, in
fact, the following result holds; see Table 3.

Theorem 11 (Barahona and Mahjoub, 1986; Barahona,
1993). MET = CYC.

Barahona and Mahjoub (1986) established the following
important characterization for when the cycle inequalities
are sufficient for tightness by forbidding a K5 minor.

Theorem 12 (Barahona and Mahjoub, 1986). CUT = CYC
iff unsigned ∇G does not contain K5 as a minor.

Using the equivalences of §5.1 (see (5) and Table 3), The-
orems 11 and 12 together show the following result, which
characterizes when LP+TRI is tight if we examine only the
unsigned suspension graph ∇G.

Theorem 13. LP+TRI is tight for all valid potentials iff
unsigned ∇G does not contain K5 as a minor.

Theorems 11 and 12 of Barahona and Mahjoub (1986) are
often used to show only that LP+TRI is tight for a planar
model with no singleton potentials (which excludes both
K5 and K3,3, see §2), e.g. see Theorem 3.3.2 in (Sontag,
2010). However, Theorem 13 is stronger, and perhaps is
more naturally viewed instead as extending the characteri-
zation of treewidth ≤ 2 as K4-minor-free; see §6.

5.3 SIGNED CYCLES, MISS POLYTOPE

Here we shall prove Theorem 14, a stronger, signed version
of Theorem 13. Theorem 10 will follow as a corollary. For
cycles in ∇G, to avoid confusion, we write C for the edge
set of an unsigned cycle, and D for the signed edge set of a
signed odd cycle (which has an odd number of odd edges).

Given results in §5.1-5.2 (see (5) and Table 3), we have

max
µ∈TRI

w·µ = max
x∈CYC

w′ ·x, w′ij =

{
−θj i = 0

−Wij (i, j) ∈ E. (8)

We shall relate this to Theorem 4 (Guenin’s result on
weakly bipartite graphs from §3.3) to prove the following.

Theorem 14. LP+TRI is tight for all valid potentials, ob-
serving signs of both edge and singleton potentials, iff the

signed suspension graph ∇G does not contain odd-K5 as
a signed minor.

Proof. We first show sufficiency of the condition. Regard-
ing (8), CYC is defined by the inequalities (7), which we
rewrite as |F | − x(F ) + x(C \ F ) ≥ 1, or

∑

e∈F
(1− xe) +

∑

e∈C\F
xe ≥ 1. (9)

The unsigned cycle inequality (9) applies for every cycle C
of ∇G and every F ⊆ C with |F | odd. Aiming to relate
(9) to the definition of a weakly bipartite graph (1), we in-
troduce the following MISS polytope, which is equivalent
to CUT by a reflection that adjusts for the signs of edges
of ∇G(V ′, E′). Recall how these signs are set in §4, and
regarding (8), observe that edge e ∈ E′ is odd iff w′e > 0.

Given a configuration of variables X1, . . . , Xn ∈ {0, 1}n,
the corresponding vertex ∈ {0, 1}|E′| of the CUT polytope
has a 1 for edge (i, j) ∈ E′ iff Xi 6= Xj , taking X0 = 0.

For MISS, instead the corresponding vertexm ∈ {0, 1}|E′|

has a 1 for edge (i, j) ∈ E′ iff mij ‘misses’ the potential
score benefit that the edge offers. That is, take X0 = 0
as before, and now for all (i, j) ∈ E′, assign mij = 1 if
Xi 6= Xj and the edge is even (attractive), or if Xi = Xj

and the edge is odd (repulsive); otherwise mij = 0.

Each of CUT and MISS is formed as the convex hull of
its 2n vertices. MISS is the reflection of CUT across 1

2
in exactly the dimensions for which edges of ∇G are odd.
That is, x ∈ CUT maps bijectively to y ∈ MISS, where
ye = xe for even edges, and ye = 1− xe for odd edges.

Let D be the edge set of an odd cycle of signed∇G (i.e. D
has an odd number of odd edges). Given any configuration
of variables, as we go round D, to return to the same value,
we must ‘miss’ at least one edge. That is, for any vertex
m ∈MISS,

∑
e∈Dme ≥ 1. Hence, what we call the signed

cycle inequalities hold ∀y ∈MISS ⊆ [0, 1]|E
′|:

∑

e∈D
ye ≥ 1, ∀ odd cycles D of signed∇G. (10)

Note the direct correspondence between the signed cycle
inequalities (10) and the inequalities defining the weakly
bipartite polyhedron Q (1). Observe the following.

Lemma 15. Each signed cycle inequality (10) corresponds
to an unsigned cycle inequality (9).

Proof. Given a signed cycle inequality (10), let F be the
odd edges of D, with |F | odd. Let C = D. The equivalent
reflected form of (10) for x ∈ CUT is

∑
e∈F (1 − xe) +∑

e∈C\F xe ≥ 1, which matches (9) as required.

Let CYCR be the polytope CYC reflected in the odd edge
dimensions, just as MISS may be obtained from CUT, so
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MISS ⊆ CYCR as CUT ⊆ CYC. Consider (8), note edge e
is odd⇔ w′e > 0, let x ∈ CYC map to y ∈ CYCR, then

max
µ∈TRI

w · µ = max
y∈CYCR

∑

odd e∈E′

w′e(1− ye) +
∑

even e∈E′

w′eye

= A+ max
y∈CYCR

w′′ · y, (11)

where A =
∑
e:w′

e>0 w
′
e is a constant, and w′′e =

−|w′e| ∀e ∈ E′.
We are now ready to apply Theorem 4. We have {all valid
integer solutions} ⊆ MISS ⊆ CYCR, while (by Lemma
15) CYCR enforces all the signed cycle inequalities (10),
which match the weakly bipartite conditions (1). Further,
in (11) we are maximizing an objective with every coef-
ficient negative, which is needed since Q is a polyhedron
unbounded in the positive directions (1). Finally, no in-
valid integer solutions lie in CYCR. Hence, by Theorem 4,
if signed ∇G does not contain odd-K5 as a signed minor,
then LP+TRI is tight.

For necessity of the condition, if ∇G does contain an odd-
K5 minor, then by choice of potentials, we may assume
signed ∇G(V ′, E′) to be exactly odd-K5. Then Theorem
7 with r = 3 provides an example where LP+TRI is not
tight. This completes the proof of Theorem 14.

Corollaries. Theorem 14 may be used to prove Theorem
10 as follows. First, if signed G does not contain an odd-
K4, then clearly signed ∇G cannot contain an odd-K5,
hence LP+TRI is tight by Theorem 14. Now, if signed G
does contain an odd-K4, then we may select all negative
singleton potentials for those variables, then use the exam-
ple above for odd-K5 in signed∇G.

In practice, LP+TRI is often implemented by enforcing the
(unsigned) cycle constraints (9) rather than all triplet con-
straints (Sontag, 2010). Theorem 14 and Lemma 15 show
the following, which may be useful by dramatically reduc-
ing the number of constraints required for integrality.11

Theorem 16. If a model has signed ∇G that is odd-K5-
minor-free, then integrality of LP+TRI will be achieved by
enforcing only the signed cycle inequalities (10), with the
other unsigned cycle inequalities (9) being redundant.12

6 DISCUSSION, FUTURE WORK

We have drawn connections to powerful results from graph
theory by showing how tightness of LP relaxations may be
elegantly characterized by forbidding certain minors: ei-
ther from the graph topology G, if singleton potentials are

11For implementations which successively add violated cutting
planes, this result may be less useful, though it still dramatically
reduces the search space of possible constraints to add.

12Consider that (9) has no access to edge signs, hence tests all
possible frustrated/odd cycles (10).

not examined; or, with more precision, from the suspen-
sion graph ∇G, if the topology of both edge and single-
ton potentials is considered. We significantly strengthen
results by examining also the signs of the potentials and
forbidding signed minors. All conditions can be tested effi-
ciently (Theorems 2 and 3). Our strongest result, Theorem
14, shows that LP+TRI is tight for all valid potentials, ob-
serving the signed topology of the suspension graph ∇G,
iff signed ∇G is odd-K5-minor-free. Our results go sub-
stantially beyond earlier work (Weller et al., 2016) that pro-
vided only sufficient conditions for a smaller set of models,
without an easy way to test.

Viewing our characterizations together in Table 2, fascinat-
ing patterns emerge. We make the following observations.
(a) In all known cases, it is exactly just the odd versions
of the forbidden unsigned minors which can cause lack of
tightness of the LP relaxation. In future work, we would
like to understand if this pattern extends to other cases.
(b) For unsigned graphs G, given the treewidth result of
Wainwright and Jordan (2004), we can expect that as clus-
ter size increases, the number of forbidden minors could
grow rapidly,13 see Table 1. (c) For TRI, going from G to
the suspension graph ∇G adds one universally connected
vertex to the forbidden minor. Why does this not happen
for LOC, and will it hold for higher cluster sizes? Recall
the observations just before §5.2, where we saw that LOC
has a fixed root whereas TRI is universally rooted. This
is why results for TRI examine the suspension graph ∇G
with complete symmetry for singleton and edge potentials,
whereas for LOC, singleton potentials are different. This
prompts further analysis and may lead to new algorithms
for TRI. It also suggests viewing the forbidden K5 minor
in ∇G not as a strengthened form of planarity (which for-
bids K5 and K3,3), but rather as forbidding K4+1, where
K4 is the treewidth constraint of the base graphG. Further,
it explains why it is possible for LP+TRI to perform worse
as singleton potentials rise within a range, see Appendix.

Theorem 7 shows that for any cluster size r, it is necessary
to forbid Kr+2 as a signed minor of ∇G in order to guar-
antee tightness of LP+Lr. We have placed the appropriate
entries in the L4 row of Table 2. Theorem 5 shows that it is
sufficient to forbid all the treewidth minors in unsigned G.
Must we forbid odd versions of all these in signed G? So
far, we have not been able to find an example where LP+L4

is not tight other than where∇G contains an odd-K6.
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Abstract

Subspace segmentation or clustering can be de-
fined as the process of assigning subspace labels
to a set of data points assumed to lie on the union
of multiple low-dimensional, linear subspaces.
Given that each point can be efficiently expressed
using a linear combination of other points from
the same subspace, a variety of segmentation
algorithms built upon `1, nuclear norm, and
other convex penalties have recently shown state-
of-the-art robustness on multiple benchmarks.
However, what if instead of observing the orig-
inal data points, we instead only have access
to transformed, or ‘twisted’ so to speak, mea-
surements? Here we consider underdetermined
affine transformations that may arise in com-
puter vision applications such as bidirectional re-
flectance distribution function (BRDF) estima-
tion. Unfortunately most existing approaches,
convex or otherwise, do not address this highly
useful generalization. To fill this void, we pro-
ceed by deriving a probabilistic model that si-
multaneously estimates the latent data points and
subspace memberships using simple EM update
rules. Moreover, in certain restricted settings this
approach is guaranteed to produce the correct
clustering. Finally a wide range of corroborat-
ing empirical evidence, including a BRDF esti-
mation task, speaks to the practical efficacy of
this algorithm.

1 Introduction

As a data reduction or analysis tool, principal component
analysis (PCA) is readily applicable whenever observable
points lie on or near a low-dimensional linear subspace.
Richer structures however may not conform to this model,
and often we must consider ways of introducing additional
complexity. For example, a natural extension of PCA is to
consider that our data lie on a union of low-dimensional

subspaces. In this expanded regime we may then consider
the joint problem of estimating these subspaces and assign-
ing each point to the closest one, a process commonly re-
ferred to as either subspace clustering or segmentation. Al-
though unlike classical PCA a closed-form solution via the
SVD is no longer possible, tractable approximations that
succeed with high probability form a core component of
numerous practical application domains. Examples include
the analysis of social graphs (Jalali et al., 2011), network
topology inference (Eriksson et al., 2012), user identifica-
tion in movie rating systems Zhang et al. (2012), and a host
of computer vision tasks such as image representation and
compression, motion segmentation, and face clustering (El-
hamifar & Vidal, 2013; Feng et al., 2014; Liu et al., 2013;
Lu et al., 2012; Rao et al., 2010).

1.1 Problem Description

We define this problem more formally as follows. Let
{Sk}mk=1 denote a collection of m linear subspaces in Rd,
where dim[Sk] = dk < d ∀k = 1, . . . ,m. More-
over, suppose we have drawn nk points from each subspace
forming data matrices Xk ∈ Rd×nk . We then concatenate
the points from each subspace, and the full arrangement of
n =

∑m
k=1 nk points is reordered using an unknown per-

mutation matrix P ∈ Rn×n. Consequently, the entire data
can be expressed as

X , [x1, . . . ,xn] = [X1, . . . ,Xm]P ∈ Rd×n. (1)

Subspace clustering can then be described as the process
of estimating a basis for each Sk as well as the subspace
membership of each point xj .

One of the most robust approaches to obtaining such
accurate data segmentations exploits the so-called self-
expressiveness property of X (Elhamifar & Vidal, 2013),
namely that any xj can be represented as a linear combi-
nation of other data points inX within the same subspace.
Moreover, if we can find such a representation using only
points from the same subspace, then we have extracted vi-
tal information pertaining to the true latent segmentation.
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One way to favor such cluster-aligned decompositions is
by solving

min
Z
‖Z‖0 s.t.X = XZ, diag[Z] = 0, (2)

where ‖Z‖0 is the matrix `0 norm, or a count of the number
of nonzero elements in Z, a penalty function that strongly
favors zero-valued elements or a canonically sparseZ. The
diagonal constraint is required to prevent each point from
using itself in the representation (e.g., the degenerate solu-
tionZ∗ = I), enforcing that we must rely only on others in
the same subspace. If we assume that each individual sub-
space satisfies dk < d for all k, and that sampled points are
sufficiently dense in general position, then the solution to
(2) will be block diagonal and aligned with the true clusters
up to the permutation matrix P , revealing subspace mem-
berships. A final spectral clustering, post-processing step
can further solidify the labels and is adopted by most recent
methods (Elhamifar & Vidal, 2013). Of course solving (2)
is non-convex, discontinuous, and NP-hard, so following
the typical compressive sensing recipe it is desirable to re-
place the troublesome ‖Z‖0 penalty with the convex relax-
ation ‖Z‖1. This substitution is supported by rigorous the-
oretical arguments detailing conditions whereby subspace-
aligned block-diagonal structure is guaranteed when we
minimize ‖Z‖1 over the constraint set (Soltanolkotabi &
Candès, 2012).

Proceeding further, suppose that we are unable to observe
X directly, but instead are only granted access to a mea-
surement matrix Y = [y1, . . . ,yn], where each column yj
is generated via the underdetermined system

yj = Ajxj , ∀j = 1, . . . , n. (3)

Here {Aj}, with Aj ∈ Rpj×d, pj ≤ d indicates a set
of known, possibly overcomplete matrices with problem-
dependent structure that can warp or twist each data
point independently while mapping it onto the lower-
dimensional observation space.1 As described in depth
later, such a situation commonly arises in computer vi-
sion applications such as bidirectional reflectance distribu-
tion function (BRDF) estimation, where each Aj is deter-
mined by lighting conditions and the surface geometry of
an object with unknown BRDF we would like to obtain.
Other possible scenarios include face clustering in subject-
varying transform domains, or motion segmentation using
approximations for perspective cameras. Additionally, if
each Aj can be described as a matrix of zeroes with a sin-
gle one in each row, then the resulting estimation problem
is tantamount to subspace clustering with missing entries
(Candès et al., 2014; Eriksson et al., 2012; Gruber & Weiss,
2004; Yang et al., 2015).

1We frequently use {M j} to abbreviate a set of matrices
{M j : j ∈ J }, where the index set J should be clear from
the context.

1.2 Naive Solutions

Clearly we can no longer directly rely on the original self-
expressiveness property, because once we insert {Aj} into
the pipeline, it no longer follows that each corresponding
yj can be compactly represented using only other points
generated from the same subspace.2 To compensate, sev-
eral strategies immediately come to mind.

For example, suppose we somehow knew the number of
clusters m. Then let the set {Ωk}, with each Ωk ⊂
{1, . . . , n}, denote a partitioning such that

⋃m
k=1 Ωk =

{1, . . . , n} and Ωk ∩ Ωk′ = ∅ for all pairs {k, k′}. Also
let XΩk

represent the columns of matrix X indexed by
Ωk. Now consider the joint optimization over all possible
segmentations and latent points

min
X ,{Ωk}

m∑

k=1

|Ωk|rank(XΩk
) s.t. yj = Ajxj , ∀j = 1, . . . , n.

(4)
Then assuming the true latent X is composed of sufficient
samples per subspace in general position, and thatAj con-
tains a sufficient number of non-degenerate measurements,
the solution to (4) will be such that {Ωk} reflects the cor-
rect segmentation and X will be recovered. Unfortunately
however, minimizing (4) requires an infeasible, combina-
torial search over every possible clustering pattern.

Perhaps the most natural way to circumvent this problem
is to invoke a two-stage procedure inspired by traditional
matrix completion (Candès & Recht, 2008). The basic idea
is to first obtain an estimate of the latentX by solving

min
X

rank[X], s.t. yj = Ajxj , ∀j = 1, . . . , n, (5)

which excludes any combinatorial search over labels. This
represents an affine rank minimization problem that can be
approximately solved by replacing the non-convex rank[X]
penalty with the convex nuclear norm relaxation ‖X‖∗, or
the sum of the singular values of X . Once this solution is
in hand, we may deploy any traditional subspace clustering
algorithm on the resulting X̂ .

The difficulty with this strategy is two-fold. First, un-
like the data from individual subspaces Xk, the matrix X
may be full rank given that it is quite common to have∑
k dk ≥ d. So in this situation we have no chance of

obtaining a meaningful segmentation. However, even if the
global solution to (5) does produce the correct X , the nu-
clear norm relaxation required by a tractable implementa-
tion will be highly sensitive to both the correlation structure
and relative column norm scaling of {Aj}.

2An exception to this occurs when Aj is equal to some fixed
A across all j, in which case the self-expressiveness property
still holds and natural adaptations already exist (Patel et al., 2013;
Wang et al., 2015a).
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In fact existing theoretical guarantees for rank-nuclear
norm equivalence place extremely strong conditions on the
structure of the measurement process, which are unlikely to
hold in practice here since in the problem instances we con-
sider, each Aj is determined by physical properties of the
experimental design. Moreover, unlike typical compres-
sive sensing designs, we cannot even normalize columns of
{Aj}, because if we were to do so then a low-rank solution
will no longer satisfy the constraint set in (5). Therefore
we are left with a challenging NP-hard rank minimization
problem as a required preprocessing step, a clearly unde-
sirable starting point.

As an alternative to the above two-stage procedure, we
could append an additional data fitting constraints to the
canonical sparse subspace clustering objective from above
and solve

min
X ,Z

‖Z‖1 s.t.X = XZ, diag[Z] = 0,yj = Ajxj ∀j.
(6)

Although the penalty is convex inZ and the constraints are
individually convex in X and Z, the overall problem re-
mains highly non-convex and difficult to optimize. More-
over it is unclear whether the global solution, even if some-
how attainable, would guarantee that the correct cluster-
ing could be found. Additionally, in practical environments
with noisy data, relaxing the additional equality constraints
would require the inclusion of an additional trade-off pa-
rameter and application-specific tuning.

1.3 Overview of Contributions

To address the conceptual limitations of naive adaptations
of existing subspace clustering approaches, in Section 2
we derive an alternative Bayesian approach specifically tai-
lored to the proposed latent variable setting and loosely mo-
tivate its effectiveness. Next Section 3 derives expectation
maximization (EM) udpdate rules that accommodate prac-
tical deployment. We then proceed to theoretical analysis
of the underlying objective function in Section 4, followed
by empirical validation in Section 5, practical deployment
in Section 6, and final contextualization in Section 7. Over-
all, our contributions can be summarized as follows:

• We delineate an important generalization of subspace
clustering to accommodate an underdetermined affine
measurement process and derive a Bayesian algorithm
that explicitly circumvents limitations of natural alter-
natives. Unlike existing state-of-the-art segmentation
pipelines, our algorithm does not require a final spec-
tral clustering step.

• We thoroughly unpack the proposed objective func-
tion and its customized mechanism for favoring the
true subspace labels. This includes the exposition
of specific conditions, albeit somewhat idealized,

whereby a unique minimizing solution (global or lo-
cal) will produce the correct segmentation.

• Although not our original intention, we demonstrate
that our model can achieve state-of-the-art perfor-
mance in more specialized domains whenAj displays
certain additional structure. This includes traditional
subspace clustering when each Aj = I for all j, or
subspace clustering with missing entries when each
Aj is an all-zero matrix with a single one in each row.

• We provide strong empirical validation on a practical
BRDF estimation problem that requires the full gen-
erality of the proposed affine observation model.

2 Model Description

We begin by decomposing the latent unobserved data as

X =
m∑

i=1

X̃
(i)
, (7)

where each X̃
(i) ∈ Rd×n can be interpreted as our esti-

mate of the overall signal generated from the i-th subspace.
Although we will eventually arrive at an objective function
that is independent of this decomposition, it nonetheless
serves as a useful tool for constructing hidden data for the
EM algorithm described in Section 3. We next adopt the
Gaussian likelihood function

p

(
Y |{X̃(i)};λ

)
∝ exp


−

∑

j

1
2λ‖yj −Aj

∑

i

x̃
(i)
j ‖22


 ,

(8)
where λ is a noise parameter.3 Additionally, in the limit
as λ → 0 this will enforce the same constraint set as in
(3). Next we define an independent, zero-mean Gaussian

prior distribution for each column of X̃
(i)

, parameterized

as p

(
{X̃(i)}; {Γi},W

)
=

∏

i,j

p(x̃
(i)
j ; Γi, wij) =

∏

i,j

N
(
x̃

(i)
j ; 0, wijΓi

)
, (9)

where each Γi represents a symmetric, positive semi-
definite covariance basis matrix and the scalar coefficients
wij constitute non-negative weighting factors that collec-
tively form a parameter matrix W .4 Strictly speaking

3We could allow for a separate λj for each point which would
ultimately allow us to learn outlier locations, but for space con-
siderations we do not further pursue this direction here.

4Note that (Tipping & Bishop, 1999; Wang et al., 2015b) de-
scribe alternative probabilistic mixture models that can be applied
to clustering; however, the parameterizations and underlying in-
ference algorithms are completely different from ours, do not ap-
ply to the latent affine model we consider, and do not lead to any
of the desired properties discussed herein.
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we should require that each wijΓi factor be positive def-
inite such that the implied matrix inverse included with
this distribution is well-defined. However, we can ad-
just for the semi-definite case with a more refined def-
inition of the prior. First, if some wij = 0, then we
simply define that x̃(i)

j = 0 with probability one. For
the wij > 0 case, without loss of generality assume
that Γi = RiR

>
i for some matrix Rj . We then stipu-

late that p
(
x̃

(i)
j ; Γi, wij

)
= 0 if x̃(i)

j /∈ span[Rj ], and

p
(
x̃

(i)
j ; Γi, wij

)
∝ exp

[
− 1

2 (x̃
(i)
j )>(R>j )†R†jx̃

(i)
j

]
oth-

erwise. These refinements are tacitly assumed in many re-
lated Bayesian models, and can be viewed as a natural lim-
iting case whereby a degenerate covariance enforces that
all probability mass reside in a low-dimensional subspace
of the full ambient space.

Given that both the likelihood function and prior distribu-
tion are Gaussians, the posterior distribution is also a Gaus-
sian with closed-form moments. While expressing these
moments in full is slightly cumbersome from a notational
standpoint, the marginalized posterior of each x̃(i)

j is given
by

p
(
x̃

(i)
j |yj ; Γi, wij , λ

)
=
∏

j

N
(
x

(i)
j ;µ

(i)
j ,Σ

(i)
j

)
(10)

with means and covariances defined by

µ
(i)
j = wijΓiA

>
j

(
λI +AjΨjA

>
j

)−1

yj , (11)

Σ
(i)
j = wijΓi − w2

ijΓiA
>
j

(
λI +AjΨjA

>
j

)−1

AjΓi,

where
Ψj =

∑

i

wijΓi, ∀j = 1, . . . , n, (12)

Although it is easily shown that each x̃(i)
j is independent

across data points j, they may be highly correlated across
the basis index i. However, for purposes of the EM algo-
rithm derived in Section 3, only the moments from (11) will
be required.

The rationale for the chosen parameterization of the prior

p

(
{X̃(i)}; {Γi},W

)
becomes partially evident upon in-

spection of the posterior mean expression from (11). Sup-
pose each Γi spans the k-th unknown subspace we would
like to recover. And moreover, suppose each wj (the j-th
column ofW ) is a vector of zeros with a single nonzero in
the position corresponding with the true subspace member-
ship of xj . Then by virtue of the left multiplication in (11),
xj will have a posterior mean constrained to the correct
subspace, with zero covariance (or posterior mass) leaking
into other, errant subspaces. Hence under the stated con-
ditions a posterior mean estimator will produce minimal
reconstruction error.

Of course all of this is predicated on our ability to actu-
ally obtain a basis set {Γi} and weight matrix W fulfill-
ing the stringent subspace-aware criterion described above.
Hence we have merely shifted our original goal of esti-
mating X and clustering its columns, to the task of learn-
ing subspace-aware covariances {Γi} and a column-sparse
weight matrix W with support aligned with the true sub-
spaces. While certainly not immediately obvious, the re-
mainder of this paper will demonstrate that a standard
marginalization strategy is quite effective for this purpose.

If we treat {Γi} and W as the key parameters of interest

and {X̃(i)} as nuisance latent variables, then a common

Bayesian inference strategy is to marginalize over {X̃(i)}
and then maximize the resulting likelihood function with
respect to remaining unknown parameters (Tipping, 2001;
Wipf et al., 2011; Xin & Wipf, 2015). This involves solving

max
Γi∈H+∀i,W≥0

∫
p(Y |X;λ)p(X; {Ψj})dX, (13)

where H+ denotes the set of positive semi-definite and
symmetric d × d matrices. After a −2 log transformation
and application of a standard convolution-of-Gaussians in-
tegration (Tipping, 2001), solving (13) is equivalent to min-
imizing the cost function

L({Γi},W ) =
∑

j

y>j Σ−1
yj yj + log

∣∣Σyj

∣∣ , (14)

where
Σyj =

∑

i

wijAjΓiA
>
j + λI. (15)

The latter represents the covariance of yj conditioned on
{Γi} and wj .

3 Algorithm Derivation

To optimize L({Γi},W ) we may treat {X̃(i)} as hidden
data and execute a straightforward EM procedure (Demp-
ster et al., 1977) similar to that proposed in (Tipping, 2001).
For the E-step we need only compute the posterior mo-
ments given by (11). For the M-step we must solve

min
{Γi},W

E
[
− log p

(
{X̃(i)},Y ; {Γi},W , λ

)]
, (16)

where the expectation is with respect to

p

(
{X̃(i)}|Y ; {Γ′i},W ′, λ

)
, which represents the

posterior distribution obtained using moments parameter-
ized with fixed values {Ψ′j} and W ′ computed from the
previous iteration. After a few algebraic manipulations,
this is equivalent to solving

min
{Γi},W

∑

i,j

tr
[
E
[
x̃

(i)
j (x̃

(i)
j )>

]
(wijΓi)

−1
]
+log |wijΓi| ,

(17)
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where E
[
x̃

(i)
j (x̃

(i)
j )>

]
= µ

(i)
j

(
µ

(i)
j

)>
+ Σ

(i)
j . Unfortu-

nately (17) has no closed-form solution. However, we can
first optimize over {Γi} with W fixed, and then optimize
over W with {Γi} fixed, both of which have closed-form
solutions. Although these updates could be iterated until
convergence, the EM algorithm does not actually require
full completion of both E and M steps. In fact partial min-
imization, or incremental variants, are adequate to ensure
cost function descent (Neal & Hinton, 1999).5

For the {Γi} update, we can solve for each Γi indepen-
dently via

Γ∗i = arg min
Γi

tr
[
ΘiΓ

−1
i

]
+ n log |Γi| = 1

nΘi (18)

where

Θi =
∑

j

1
wij

tr
[(
µ

(i)
j

(
µ

(i)
j

)>
+ Σ

(i)
j

)]
. (19)

Likewise for W we can solve independently for each ele-
ment using

w∗ij = arg min
Γi

βijw
−1
ij + d logwij = 1

dβij , (20)

where

βij = tr
[(
µ

(i)
j

(
µ

(i)
j

)>
+ Σ

(i)
j

)
Γ−1
i

]
. (21)

To summarize then, we need only iterate (11), (18), and
(20) to descend the objective function (14). With some at-
tention to details, this can be accomplished with updates
that are linear in n andm, the number of points and clusters
respectively), and cubic in d (ambient space dimension).

A final point worth addressing is initialization. Assuming
complete agnosticism regarding subspaces and labels, the
selection Γi = I and wij = 1 for all i and j seems like
the most natural choice. However, we require some small
degree of symmetry breaking randomness to initiate a non-
degenerate descent. We simply use wij ∼ 1 + U

[
0, 10−3

]

for all initializations, although results are not sensitive to
this choice.

4 Cost Function Analysis

While perhaps counterintuitive, the proposed objective
function (14) has a number of desirable attributes that jus-
tify its usage for latent subspace clustering. As motivation

5While technically these updates are guaranteed to reduce
or leave-unchanged the objective function until a fixed point is
reached, to formally guarantee convergence of the EM algorithm
to a local minima requires additional effort, such as the demon-
stration that the conditions of Zangwill’s Global Convergence
Theorem have been satisfied (Zangwill, 1969). We do not pursue
a detailed theoretical investigation to this effect here, although it
is possible to do so.

for this claim, it is helpful to map the arguments of (14) to
a criterion of subspace optimality. More formally, we say
that {{Γ∗i },W ∗} is a subspace optimal solution iff

1. For all i = 1, . . . ,m, span[Γ∗i ] equals some true Sk,
and no two Γ∗i span the same subspace.

2. For all j = 1, . . . , n, ‖w∗j‖0 = 1, with nonzero ele-
ment aligned with the correct subspace.

Such a solution guarantees that an accurate estimate of X
can be obtained via (11), and that the correct subspace la-
bels will be recovered. The remainder of this section will
quantify how such solutions relate to minima of (14).

To begin, using duality arguments from (Wipf et al., 2011),
there is a close association between global minima of (4)
and (14) in terms of the recovered subspaces and labels.
However, none of this is suggestive of why we might prefer
dealing with the latter over say, brute force combinatorial
optimization of the former. For this purpose we need to
actually describe conditions whereby (14) is more likely to
produce subspace optimal solutions without getting stuck
at local optimal. While it is quite challenging to address
this situation in sweeping terms for such a coupled, non-
convex probabilistic model, we will nonetheless describe
at least one scenario where bad local optimal can be fully
eradicated, followed by more general conditions whereby
optimal non-increasing solution paths exist.

For convenience, let {Ω∗k} denote the true partitioning of
X , aligned with the presumed generative subspace labels.
We then have the following:
Theorem 1. Suppose that we have a data matrixX which
follows the model from (1), we observe the affine measure-
ments yj = Ajxj for all j, and that the true latent X is
such that dk = 1 for all subspaces. Furthermore assume
that {Aj} satisfies pj > 1 for all j and ∩j∈Ω∗knull[Aj ] = ∅
for all k. Then any local or global minimizer {{Γ∗i },W ∗}
of (14) in the limit λ→ 0 is subspace optimal.

At least in low-noise/stylized conditions, this result speci-
fies a relatively broad regime whereby no suboptimal min-
ima exist, meaning any minimizer (local or global) will al-
ways return the correct clustering as well as a unique basis
spanning each true subspace.6 And this result is emblem-
atic of a wider range of operating circumstances whereby
subspace optimal solutions are closely aligned with min-
ima of (14). Certainly our empirical evidence provided in
Sections 5 and 6 suggests this to be the case.

Interestingly though, neither of the naive approaches dis-
cussed in Section 1 can satisfy something similar. In fact,

6In the context of affine rank minimization and a single sub-
space, i.e., m = 1, it has been shown that under similar condi-
tions no bad local minima will exist with a probabilistic PCA-like
model (Xin & Wipf, 2015); however, this is a much simpler prob-
lem and the same analysis/proof techniques do not apply.
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under the stated conditions of Theorem 1, (4) can have nu-
merous suboptimal local minima, while (6) can have both
suboptimal local and global minima, both of which can re-
turn incorrect labels and cluster bases.

Likewise, if we replace the rank function with the nuclear
norm in (5), then even with all other theorem specifications
in place, it is still possible that we recover the wrong esti-
mate for X such that no correct clustering is possible via
any secondary step. As an example, it is a simple matter to
design adversarial conditions onAj via simple transforma-
tions such as Aj → AjD, where D is a diagonal scaling
matrix to which the nuclear norm solution will be highly
sensitive. And as stated previously, we cannot negate the
impact ofD via normalization without destroying the low-
rank assumption with which estimatingX is predicated on
to begin with. Moreover, it is also possible to have a full
rank X consistent with the setting of Theorem 1 such that
it is formally unidentifiable even with (5) unaltered.

Moving forward, it is considerably more difficult to guar-
antee that no bad local minima exist under broader condi-
tions, e.g., when dk > 1. However, we can still analyze
non-increasing paths between a family of initializations (or
intermediate points in some optimization trajectory) and
subspace optimal solutions. This simplified analysis cri-
teria yields the following:

Theorem 2. Suppose
∑
i wijΓi = αjUU

> for all
j, where U represents any orthonormal basis spanning⊕m

k=1 Sk and each αj > 0 is a scalar weighting factor.
Then in the limit λ → 0, if each αj is suitably large there
exists a non-increasing path from this point to some sub-
space optimal solution {{Γ∗i },W ∗}.

Corollary 1. In the simplified scenario when Aj = I for
all j (i.e., canonical subspace clustering where the latent
X = Y are now fully observable), Theorem 2 holds with-
out any size restrictions on each αj > 0.

Because we can always choose to initialize with Γi = I for
all i, or more generally Γi equal to some suitable UU>,
then a byproduct of Theorem 2 is the insurance that a path
exists from a computable point to the correct clustering that
is devoid of local minima even whenW is initialized arbi-
trarily. And this result can be generalized with additional
effort to quantify a broader class of locations such that such
paths to optimal solutions exist. Of course obviously a re-
sult of this type is still quite limited in that it does not guar-
antee that such a path can be found, or rule out the existence
of saddle points along the way. But it is nonetheless an-
other indicator of the appropriateness of (14) in addressing
even basic subspace clustering problems for which it was
not initially designed. And similar to previous arguments,
neither of the naive approaches, i.e., solving either (4) or
(6), can satisfy something similar.

5 Simulation Experiments

We now present illustrative synthetic experiments tailored
to showcase generic abilities, with designs and dimensions
inspired by (Soltanolkotabi & Candès, 2012; Yang et al.,
2015).

5.1 Fully Observable Model

We begin by investigating the original subspace cluster-
ing problem where Y = X . In particular, we examine
challenging conditions where there exists a significant de-
gree of subspace overlap similar to an experimental design
from (Soltanolkotabi & Candès, 2012). Data are generated
as follows. Three subspaces of dimension d1 = d2 =
d3 = 20 are embedded in R25, each containing 50 data
points. This is accomplished for each subspace by generat-
ing Xk = UkV

>
k , where Uk ∈ R25×20 and V ∈ R50×20

have iidN (0, 1) elements. With probability one the result-
ing X will be full rank with significantly overlapping sub-
space magisteria. We then normalize each column to have
unit `2 norm, and apply the state-of-the-art `1-norm based
subspace clustering mentioned in Section 1, denoted `1-
SSC, to sort out subspace labels. This algorithm involves
solving (2) with ‖Z‖1 replacing ‖Z‖0, forming the sym-

metric affinity matrix |Ẑ| + |Ẑ>| using the estimated Ẑ,
followed by a separate spectral clustering step with knowl-
edge of the true number of clusters m (Elhamifar & Vidal,
2013). For our algorithm we assign cluster labels based on
the index of the largest value of each estimated wj (typi-
cally though there is only a single entry significantly larger
than zero when the clustering is successful); no spectral
clustering heuristic is required.

We note however that by drawing the data using such iid
Gaussian isotropic sources (as is typically done for ex-
perimental purposes), the data within each subspace will
lack any significant structure or correlation, to which the
`1 norm solution can be highly sensitive. Hence to de-
viate from the relatively easier, isotropic situation, we
gradually experiment with increasing the degree of intra-
subspace correlation by adding a rank-one component
α‖UkV

>
k ‖2akb>k to each subspace, where vectors ak ∈

R25×1 and bk ∈ R50×1 are also iid N(0, 1) and α is a non-
negative scalar that weights the contribution.

Figure 1 displays the clustering errors (percentage of mis-
labeled points) for both `1-SSC and our method averaged
over 10 trials. We observe that when the correlation param-
eter α = 0, both methods perform well, but as soon as α
begins increasing, the quality of `1-SSC solutions degrades
significantly, unlike our algorithm which is stable across all
values. Hence even when no latent affine structure or the
twist is present (the fully observable case with Aj = I),
minimizing (14) represents a principled objective function
for subspace clustering.
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Figure 1: Comparisons using a fully-observable model as
the within-subspace correlation is increased.

5.2 Missing Entries

Next we address the case were we have observed some X
with a certain proportion of missing entries. As discussed
in Section 1, this is equivalent to assuming that each Aj

is a matrix of zeros with a single one per row. For this
particular special case, (Yang et al., 2015) has proposed a
modification of `1-SSC whereby missing entries are set to
zero but partially compensated for using a special projec-
tion step.7 Although this method cannot be extended to
general {Aj}, we can nonetheless evaluate our approach
against this missing entry specialization. For this purpose,
we select the most difficult clustering test from (Yang et al.,
2015), whereby the latentX is full rank and the number of
missing entries grows large.

Following (Yang et al., 2015), we generate m = 5 sub-
spaces, each of dimension 5, embedded in d = 25 dimen-
sional space. Next 50 points are drawn from each sub-
space using the same Gaussian factorization from above
(and α = 0). The fraction of missing entries is then gradu-
ally increased to test performance. Figure 2 displays the
results, including a common baseline nuclear norm esti-
mate ofX followed by `1-SSC subspace clustering. Again
we observe that, even without any spectral clustering step
as used by others, our algorithm outperforms state-of-the-
art existing approaches, including all variety of algorithms
from (Yang et al., 2015) that were specifically designed for
this problem.

5.3 General Affine Model

Finally, we consider our original motivating scenario where
{Aj} can be arbitrary. To this end, we repeat the ex-
periment from above, but with the binary sampling ma-
trices replaced with elements of each Aj drawn iid from
N (0, 1). We also fix the number of measurements per point
to pj = 15 for each j; other dimensions remain unchanged.

7Actually (Yang et al., 2015) presents multiple approaches for
handling missing entries, including another method from (Candès
et al., 2014); however, we compare against the best performing
variant among all of these.
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Figure 2: Comparisons using a partially-observable model
as the number of missing entries is increased.

Figure 3 explores the ability to recover the true latent X
compared to the minimum nuclear norm solution, which
represents the most viable existing alternative. We also
tried minimizing (6); however, the results where quite poor
(much worse than the nuclear norm solution) because of
unavoidable convergence to local minima.

While the true number of clusters is m = 5, we vary
the number of clusters assumed by our algorithm from
m̂ = 1, . . . , 20 and record the normalized MSE given by
〈‖X−X̂‖2F/‖X‖2F 〉 averaged over 10 trials. Moreover, if
we successfully recover X with m̂ 6= m, it is trivial to ei-
ther fuse redundant clusters or split merged clusters using
simple existing subspace clustering approaches to obtain
labels if required.

Note that it is possible to exactly recover X with m̂ 6= m,
provided m̂ is sufficiently large such thatX is identifiable.
More specifically, to even have a chance of recovery for any
possible algorithm, it must be the case that for all clusters k,
the number of degrees-of-freedom in each associated low
rank Xk (the points within cluster k) is less than the num-
ber of measurements of Xk. For example, in the present
case each Xk ∈ R25×50 has 5 × (25 + 50) − 52 = 350
degrees-of-freedom, and we have

∑
j∈Ωk

pj = 15 × 50 =
750 measurements per subspace to work with (more than
double the d.o.f.), which should be sufficient if m̂ = 5.
However, when m̂ < 5, then two or more subspaces must
be merged for estimation purposes leading to at least one
5 + 5 = 10 dimensional subspace with 50 + 50 = 100
points, and 10 × (25 + 100) − 102 = 1150 degrees-of-
freedom, but only 15×100 = 1500 measurements. Even if
we knew the true subspace labels, recoveringX would still
then be extremely challenging given how close the number
of measurements are to the degrees-of-freedom.

But of course we still need to learn the labels as well, com-
pounding the difficulty dramatically such that success by
any possible algorithm is suspect. Therefore we should ex-
pect failure with m̂ < 5 on theoretical grounds, and indeed,
from Figure 3 the error increases monotonically as m̂ is de-
creased below 5. In contrast, for m̂ > 5, we observe that
over-segmentation has minimal effect in disrupting the es-
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timation of X , and our algorithm has dramatically lower
MSE than the nuclear norm solution; it only actually be-
gins to rise appreciably for m̂ > 17. At this point presum-
ably the large degree of superfluous over-segmentation may
increase the risk of local minima as the parameter space be-
comes unnecessarily large.

1 5 10 15 20
0

0.1

0.2

Assumed Number of Clusters

N
or

m
al

iz
ed

 M
S

E

 

 

 Nuclear Norm
 Ours

Figure 3: Comparisons using the general affine model as
the number of assumed clusters is varied. Minimizing (6)
led to a normalized MSE above 1.0 for all cases and initial-
izations we tried (not shown).

6 Application Example: BRDF Estimation

One interesting application of the proposed method is sur-
face reflectance reconstruction. Here surface reflectance
simply refers to how a given surface reflects light. More-
over, if we have access to an accurate estimate, then we can
compute exactly how a given object and material will ap-
pear under any lighting condition and viewing direction,
which is extremely useful in many computer vision and
graphics domains. From a technical standpoint, surface
reflectance properties can be quantified by a spatially vary-
ing bi-directional reflectance distribution function (BRDF),
which encodes the ratio between the incoming radiance
from lighting direction θin and the outgoing radiance to
the viewing direction θout, at each surface point j on some
object or scene of interest. Although the BRDF represents
an inherent property of the underlying materials, it is quite
difficult to acquire since what we actually perceive from an
object is jointly dependent on lighting conditions, viewing
direction, and the BRDF itself.

More concretely, the observed outgoing radiance yj(θout)
at direction θout can be expressed as the product of the sur-
face BRDF ρj(θout, θin) at point j and the incoming radi-
ance r(θin) from direction θin integrated over all lighting
directions D, giving

yj(θout) =

∫

D
ρj(θout, θin)r(θin)dθin. (22)

Moreover, the surface reflectance of each surface pixel can
be expressed, to close approximation, as a linear combina-
tion of basis functions via

ρj(θout, θin) =

21∑

i=1

xijρi(θout, θin), (23)

where xj = [x1j , . . . , x21j ]
> are weights and each

ρi(θout, θin) represents a Cook-Torrance BRDF basis func-
tion for i ∈ {1, . . . , 20} and a Lambertian reflectance func-
tion for i = 21 (Lawrence et al., 2006; Dong et al., 2010;
Chen et al., 2014). Combining with (22) this yields

yj(θout) =

21∑

i=1

xij

∫

D
ρi(θout, θin)r(θin)dθin. (24)

With known lighting conditions and incoming radiance
r(θin), and the fixed known basis ρi(θout, θin), the inte-
gral components of (24) can be pre-computed. Addition-
ally, measurements from multiple viewing directions can
be packed into the vector yj = [yj(θout1), . . . , yj(θoutp)]>

for each point j, and the corresponding integrals of the ba-
sis function can also be packed similarly in to a matrix Aj

with (Aj)ti =
∫
D ρi(θoutt , θin)r(θin)dθin, producing the

affine model yj = Ajxj , which is of course equivalent
to (3). Note that both the viewing and lighting directions
are defined in local coordinates of the surface point j, and
therefore the transformation Aj will necessarily change
with pixel position.

The estimation goal is to recover each latent weight vec-
tor xj for all j, from which we can compute the BRDF
using (23). Here we make the reasonable assumption that
at any given location, the number of unknown materials
is limited to a small number, consistent with many real-
world objects (in fact, it is quite common that only a single
material may be present in many object regions). More-
over, given that the BRDF of each unknown base mate-
rial can be closely approximated using (23) with a fixed
weight vector for each material, it follows that the corre-
sponding unknown weights xj will each lie in a union of
low-dimensional subspaces, conforming with the proposed
subspace clustering model (Lawrence et al., 2006; Dong
et al., 2010; Chen et al., 2014).

We test our algorithm as follows. Data acquisition is ac-
complished using physically-based path-tracing (Wenzel,
2010; Pharr & Humphreys, 2010), which accurately re-
produces the physical capturing process. Importantly, this
gains us access to the ground-truth such that quantitative
comparisons are possible. We prepare two datasets to
evaluate the performance of the proposed algorithm, one
checker dataset, which consists of four different materi-
als positioned in a checker-board pattern, and one blend
dataset, that has four representative materials and each sur-
face point represents a blending between two of the four
possible materials. In both cases we mapped the materials
onto a sphere with known geometry comprised of a total
of n = 104074 points. The lighting was produced using
the Grace Cathedral environment map (Debevec & Ma-
lik, 1997). Finally, we capture images of the object under
5 different view directions, resulting in 5 observations per
visible surface point for a total of 5×n = 520370 measure-
ments. We compare our algorithm against a similar frame-
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Figure 4: Spatially-varying BRDF reconstruction results. Left column: Ground truth reference under novel environmental
lighting. Middle column: Rendering using our model. Right column: Rendering using the nuclear norm. Normalized MSE
and difference maps are also included as an insert for both algorithms. Rendering errors best viewed by zooming.

work built upon the nuclear norm (Chen et al., 2014).

Figure 4 compares the renderings based on the recon-
structed BRDFs under novel environmental lighting con-
ditions (not those used to actually learn the BRDFs). We
observe that with only 5 measurements per surface point,
we can accurately reconstruct the BRDF without produc-
ing any visual artifacts. On the contrary, when using the
nuclear norm Chen et al. (2014), the limited measurements
cannot produce an accurate reconstruction and visual arti-
facts are clearly evident (zoom in for better viewing). The
problem is compounded by the fact that the measurement
matrices {Aj} are highly ill-conditioned as indicated by
Figure 5, which displays the singular values of each Aj

averaged across all j as compared to those from ideal ma-
trices sampled iid fromN (0, 1). The nuclear norm is quite
sensitive to this distinction which likely accounts, at least
in part, for its poor performance. Note that accurate recon-
struction from few measurements is a crucial ingredient of
practical, inexpensive systems because it implies that fewer
cameras are needed and/or a shorter acquisition time.

7 Conclusions

In this paper we have introduced a practically-relevant,
affine twist into the standard subspace clustering pipeline.
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Figure 5: Singular values averaged across all Aj used in
the BRDF estimation experiments. Ideal Gaussian data of
equivalent dimensions is included for comparison. A fast
singular value decay can be highly disruptive to nuclear-
norm-based recovery algorithms.

We then derived a new, Bayesian-inspired algorithm that
accounts for this added confound when necessary, while
still defaulting to a principled state-of-the-art approach
when deployed on existing segmentation problems with
fully observable data, or when missing entries are present.
Our framework, which does not require the typical spectral
clustering post-processing step, is supported both by theo-
retical arguments and a large-scale, real-world application
involving BRDF estimation and subsequent rendering.
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Abstract

We investigate the fairness of Bayesian estima-
tors (BEs) by viewing them as (irresolute) voting
rules and evaluating them by satisfaction of desir-
able social choice axioms. We characterize the
class of BEs that satisfy neutrality by the class
of BEs with neutral structures. We prove that
a BE with a neutral structure is a minimax rule
if it further satisfies parameter connectivity. We
prove that no BE satisfies strict Condorcet crite-
rion. We also propose three new BEs of natural
frameworks and investigate their computational
complexity and satisfaction of monotonicity and
Condorcet criterion.

1 INTRODUCTION

Bayesian estimators have been widely applied in rank ag-
gregation. For example, IMDb uses Bayesian estimators to
aggregate users’ votes to create the top-250 movie list [2].
However, users have complaint that such mechanisms are
“unfair” because the rank of a seemingly good film is not
high [1]. While this particular complaint may not be hard
to address, ideally we would like to use a fair rank aggrega-
tion method with high statistical efficiency. This raises the
following important questions.

Q1. How can we measure fairness in rank aggregation?

Q2. How can we design fair Bayesian estimators?

Same questions arise in many other rank aggregation situ-
ations, especially those where the voting agents are human
beings. For example, in political domains, important public
decisions are made by aggregating citizens’ votes; in low-
stakes voting scenarios, friends vote to decide the place for
dinner; in crowdsourcing, online workers’ noisy answers
are aggregated to estimate the correct answer [22].

Q1 has been partially answered by social choice theory.
Following Arrow’s celebrated impossibility theorem [4],

various kinds of measures on fairness, called axioms, have
been formulated and used to evaluate voting rules in politi-
cal elections. For example, the anonymity axiom states that
the voting rule is insensitive to permutations over agents’
votes, which can be seen as fairness for voters; neutrality is
a fairness condition for the alternatives; and Condorcet cri-
terion (informally) states that an obviously socially strong
alternative should win, which is similar in spirit to the com-
plaint by the IMDb user. The axiomatic approach has gone
beyond political elections to e.g. ranking systems [3], rec-
ommender systems [25], and community detection [9].

While there has been a growing literature on statistical
properties of commonly studied voting rules, there is lit-
tle work in the reverse direction, i.e. studying the sat-
isfaction of social choice axioms for commonly stud-
ied statistical estimators, especially Bayesian estimators.
Recently Azari Soufiani et al. [7] proposed a statistical
decision-theoretic framework (framework for short) to ob-
tain new voting rules as Bayesian estimators, and inves-
tigated the satisfaction of some axioms for two Bayesian
estimators. To the best of our knowledge, there is no gen-
eral characterizations of social choice axioms for Bayesian
estimators.

Our Contributions. We study the satisfaction of axioms
for Bayesian estimators (BEs) under the framework pro-
posed by Azari Soufiani et al. [7]. We answer Q2 for two
well-studied axioms: neutrality and strict Condorcet cri-
terion. We characterize BEs that satisfy neutrality by the
BEs of neutral frameworks. Therefore, to design neutral
BEs we only need to focus on neutral frameworks. We also
prove that no BE satisfies strict Condorcet criterion.

In addition, we prove that if a neutral framework satis-
fies parameter connectivity, then its BE is a minimax rule,
which means that the BE is optimal w.r.t. the worst-case
frequentist expected loss. We believe that this result is of
independent interest.

We also analyze the satisfaction of Condorcet crite-
rion, monotonicity, and computational complexity for four
classes of BEs. Each BE in each class is identified by a
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Anonymity Strict Condorcet Neutrality Minimax Condorcet Monotonicity Comp.
BEs

Y
(trivial)

N
(Thm. 4)

Y/N Y/N Y/N Y/N P/NP-hard

fTop
Ma,ϕ

Y
(Thm. 2)

Y
(Thm. 1)

Y iff ϕ(1−ϕm−1)
1−ϕ ≤ 1

(Thm. 5)
Y [5] NP-hard [25]

fBorda
Co,ϕ

Y iff ϕ ≤ 1
m−1

(Thm. 7)
Y

(Prop. 1)
P

(Thm. 6)

f1
Pair,ϕ

Y iff ϕ ≤ 1
m−1

(Thm. 10)
Y

(Prop. 2)
P

(Thm. 9)
f2

Pair,ϕ
N

(Thm. 10)

Table 1: Main results. m is the number of alternatives.

dispersion value 0 < ϕ < 1. The first class has been stud-
ied [30, 27, 7] while the remaining three classes are new.
The four classes are (1) fTop

Ma,ϕ is the BE of Mallows’ model
with the top loss function. Condorcet criterion has been
studied for fTop

Ma,ϕ for ϕ > 1√
2

but the remaining cases are
open [7]1. (2) fBorda

Co,ϕ is the BE of Condorcet’s model with
the Borda loss function. (3) f1

Pair,ϕ and (4) f2
Pair,ϕ are the

BEs of a new model with different loss functions, where
a parameter can be interpreted as the “strongest pairwise
comparison”. Our results are summarized in Table 1.

The second row in Table 1 are results for general BEs. A
“Y/N” means that some Bayesian estimators satisfy the ax-
iom and some do not. For fTop

Ma,ϕ, we prove a dichotomy
theorem on its satisfaction of Condorcet criterion: it satis-
fies the Condorcet criterion if and only if ϕ(1−ϕm−1)

1−ϕ ≤ 1,
where m is the number of alternatives (Theorem 5). We
also proved similar dichotomy theorems for fBorda

Co,ϕ and
f1

Pair,ϕ, where the threshold is 1
m−1 (Theorem 7 and 10).

We would like to highlight two new classes of BEs: fBorda
Co,ϕ

and f1
Pair,ϕ, because they can satisfy all axioms studied in

this paper (except strict Condorcet criterion, which is not
satisfied by any BE) and can be computed in polynomial
time.

In addition to satisfaction of axioms, we also study the lim-
iting cases of the three new BEs as ϕ → 0 and ϕ → 1.
While all classes converge to refinements of the Borda rule
as ϕ → 1, they converge to refinements of different rules
as ϕ → 0. Interestingly, fBorda

Co,ϕ converges to a refinement
of Copeland0.5 (Theorem 8) and for any ϕ ≤ 1

m−1 , f1
Pair,ϕ

is a refinement of maximin (Theorem 11).

Related Work and Discussions. As discussed above our
theorems on neutrality and strict Condorcet criterion an-
swer Q2 for the two axioms. We are not aware of other
general results on satisfaction of axioms for Bayesian esti-
mators. In particular, Azari Soufiani et al. [7] studied the
satisfaction of some axioms for two classes of BEs but did
not obtain general results for BEs.

1The original paper has a typo on the direction of the inequal-
ity.

Most previous work at the intersection of social choice and
statistics focused on computational aspects of the maxi-
mum likelihood estimators (MLEs) of various ranking mod-
els [14, 10, 15, 17, 29, 20, 24, 27, 5, 6, 16, 19]. The focuses
of our work are different. We focus on Bayesian estima-
tors, which are more general than MLEs, and we focus on
the satisfaction of axioms rather than computation.

Minimax rules for various statistical models with contin-
uous parameter spaces have been characterized by Berger
[8]. Choirat and Seri [12] provided a sufficient condition on
discrete-parameter models for MLEs to be minimax. In the
social choice context, Caragiannis et al. [11] proved that the
uniformly randomized MLE has the least sample complex-
ity w.r.t. Mallows’ model, which is equivalent to minimax-
ity. Our minimaxity proof can be seen as an application of
techniques by Berger [8] to social choice frameworks. As
we will see in Corollary 1, our results can be easily applied
to Mallows’ model and other models.

Our work is also related to statistical justification of com-
monly studied voting rules. Conitzer and Sandholm [14]
studied whether some commonly studied voting rules can
be rationalized as MLEs of some statistical models. They
showed that if a voting rule does not satisfy consistency,
then it cannot be an MLE. Pivato [26] further investigated
voting rules that can be viewed as MLEs, maximum a pos-
teriori estimators, and Bayesian estimators. Our impossi-
bility theorem on strict Condorcet criterion can be used to
prove that a voting rule cannot be justified a Bayesian es-
timator. In Corollary 2, we show that a number of voting
rules including Copeland1 and maximin are not Bayesian
estimators. On the other hand, we prove that as ϕ → 0,
fBorda

Co,ϕ converges to a refinement of Copeland0.5 (Theo-
rem 8), and for all for any ϕ < 1

m−1 , f1
Pair,ϕ is a refinement

of maximin (Theorem 11). Therefore, f1
Pair,ϕ for ϕ < 1

m−1
are desirable refinements of maximin because they can be
justified as BEs. Previously it was only known that a re-
finement of Kemeny is a BE [27] and a refinement of Tide-
man’s rule is a BE [16].
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2 PRELIMINARIES

Let A = {a1, . . . , am} denote a set of m alternatives and
let L(A) denote the set of all linear orders over A. Let n
denote the number of agents. Each agent’s vote is a lin-
ear order in L(A). The collection P of all agents’ votes
is called a profile. An irresolute voting rule r maps each
profile to a non-empty set of winning alternatives. That is,
r :
⋃∞
n=1 L(A)n → (2A \ {∅}).

For example, an irresolute positional scoring rule is char-
acterized by a scoring vector ~s = (s1, . . . , sm) with s1 ≥
s2 ≥ · · · ≥ sm. For any alternative a and any linear or-
der V , we let ~s(V, a) = sj , where j is the rank of a in
V . Given a profile P , an irresolute positional scoring rule
chooses all alternatives a with maximum

∑
V ∈P ~s(V, a),

where P is viewed as a multi-set of votes. The Borda rule
is a positional scoring rule with ~s = (m−1,m−2, . . . , 1).

For any profile P and any pair of alternatives a, b, we let
P (a � b) denote the number of votes in P where a is
preferred to b. The weighted majority graph of P , de-
noted by WMG(P ) is a directed weighted graph where the
weight wP (a, b) on any edge a → b is wP (a, b) = P (a �
b)− P (b � a). Clearly wP (a, b) = −wP (b, a).

Given 0 ≤ α ≤ 1, the Copelandα score of an alternative
a in a profile P is the number of alternatives beaten by
a in head-to-head competitions plus α times the alterna-
tives tied with a. Copelandα chooses all alternatives with
the maximum Copelandα score as the winners. The max-
imin rule chooses all alternatives a with the maximum min-
score. The min-score of a is minb wP (a, b).

We will focus on the following axioms in this paper. An
irresolute r satisfies
• anonymity, if r is insensitive to permutations over agents;
• neutrality, if r is insensitive to permutations over alterna-
tives;
•monotonicity, if for any P , any a ∈ r(P ), and any P ′ that
is obtained from P by only raising the positions of a, we
have a ∈ r(P ′);
• Condorcet criterion, if for any profile P , whenever a
Condorcet winner a exists, it must be the unique winner.
That is, r(P ) = {a}. A Condorcet winner is an alternative
that beats all other alternatives in their head-to-head com-
petitions;
• strict Condorcet criterion [18], if for any profile P ,
whenever the set of weak Condorcet winners is non-empty,
it must be the output of r. A weak Condorcet winner is an
alternative that never loses to any other alternative in their
head-to-head competition.

Azari Soufiani et al. [7] defined a statistical decision-
theoretic framework for social choice (framework for short)
to be a tuple F = (MA,D, L), where A is the set of alter-
natives,MA = (Θ, ~π) is a parametric ranking model, D is
the decision space, and L : Θ×D → R is a loss function.

MA = (Θ, ~π) has two parts: a parameter space Θ and
a set of probability distributions ~π = {πθ : θ ∈ Θ} over
L(A). Agents’ votes are generated i.i.d. according toMA,
which means that the sample space is L(A)n and is omitted
for simplicity. In this paper we focus on frameworks with
finite parameter spaces and finite decision spaces.

We now recall two popular parametric ranking models. For
any pair of linear orders V,W in L(A), let Kd(V,W ) de-
note the Kendall-tau distance between V and W , which is
the total number of pairwise disagreements between V and
W .
Definition 1 (Mallows’ model with fixed dispersion [21]).
Given 0 < ϕ < 1, the Mallows model with fixed dis-
persion ϕ is denoted by MMa,ϕ = (L(A), ~π), where the
parameter space is L(A) and for any V,W ∈ L(A),
πW (V ) = 1

Zϕ
Kd(V,W ), whereZ is the normalization factor

with Z =
∑
V ∈L(A) ϕ

Kd(V,W ).

Let B(A) denote the set of all irreflexive, antisymmetric,
and total binary relations over A. We have L(A) ⊆ B(A)
and the Kendall-tau distance can be easily extended to
B(A) by counting the number of pairwise disagreements.
Definition 2 (Condorcet’s model [13, 30]). Given 0 < ϕ <
1, the Condorcet model is denoted byMCo,ϕ = (B(A), ~π),
where the parameter space is B(A) and for anyW ∈ B(A)
and V ∈ L(A), πW (V ) = 1

Zϕ
Kd(V,W ), where Z is the

normalization factor.

Next, we give three examples of loss functions. When Θ =
D, the 0-1 loss function, denoted by L0-1(θ, d), outputs 0
if θ = d, otherwise it outputs 1. When D = A and Θ is
L(A) or B(A), the top loss function, denoted by Ltop(θ, d),
outputs 0 if for all other alternatives c ∈ A, d � c in θ,
otherwise it outputs 1. The Borda loss function, denoted
by LBorda(θ, d), outputs the number of alternatives that are
preferred to d in θ, that is, LBorda(θ, d) = #{c ∈ A :
c �θ d}. All loss functions can be naturally generalized to
evaluate a subset D of D by computing the average loss of
the decisions inD. More precisely, for anyD ⊆ D and any
θ ∈ Θ, we let L(θ,D) =

∑
d∈D L(θ, d)/|D|.

Given a frameworkF , the Bayesian expected loss of d ∈ D
given a profile P is ELF (d|P ) =

∑
θ∈Θ Pr(θ|P )L(θ, d).

The subscript F is often omitted without introducing con-
fusions. In this paper we focus on the uniform prior.
The Bayesian estimator of F , denoted by BEF , takes a
profile P as input and outputs all decisions with min-
imum expected Bayesian loss. That is, BEF (P ) =
arg mind∈D EL(d|P ).

Let fTop
Ma,ϕ denote the Bayesian estimator of the framework

(MMa,ϕ, Ltop). It was proved by Azari Soufiani et al.
[7] that fTop

Ma,ϕ satisfy anonymity, neutrality, monotonicity,
but fails to satisfy the Condorcet criterion for some ϕ.
Let fBorda

Co,ϕ denote the Bayesian estimator of the framework
(MCo,ϕ, LBorda). We will study the satisfaction of axioms
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for fBorda
Co,ϕ .

Given a framework F , a parameter θ ∈ Θ, n ∈ N, and a
voting rule r, the frequentist loss FLn(θ, r) is the expected
loss of the output of r against θ for randomly generated
profiles of n votes. More precisely,

FLn(θ, r) =
∑
Pn∈L(A)n πθ(Pn)L(θ, r(Pn))

Definition 3 ([8]). Given a framework F =
(MA,D, L), a voting rule r is minimax, if
r ∈ arg minr∗ maxθ∈Θ FLn(θ, r∗).

That is, a minimax rule minimizes the worst-case fre-
quentist loss among all deterministic or randomized rules.
Minimaxity is an important statistical criteria for decision
functions—a minimax rule is the most robust rule against
the adversarial nature who controls the true state of the
world (the parameter). A minimax rule can be seen as hav-
ing the minimum sample complexity [11].

3 NEUTRAL FRAMEWORKS AND
MINIMAXITY

We first define the neutrality of a framework for general de-
cision spaces. Intuitively, a framework F = (MA,D, L)
is neutral if and only all of its three components are neutral
w.r.t. permutations σ over A. Because σ may not be well-
defined for the parameter space and the decision space, we
require the existence of homomorphisms from the permuta-
tion group overA to the permutation groups over Θ andD,
respectively. Formally, we have the following definition.

Definition 4. A framework F = (MA,D, L) where
MA = (Θ, ~π) is neutral, if each permutation σ over A
is mapped to a permutation σΘ over Θ and a permutation
σD over D that satisfy the following conditions.

(i) Homomorphism. For any pair of permutations γ and
β over A, (γ ◦ β)Θ = γΘ ◦ βΘ and (γ ◦ β)D = γD ◦ βD.

(ii) Model neutrality. For any θ ∈ Θ, any V ∈
L(A), and any permutation σ over A, we have πθ(V ) =
πσΘ(θ)(σ(V )).

(iii) Loss function neutrality. For any θ ∈ Θ, any
d ∈ D, and any permutation σ over A, we have L(θ, d) =
L(σΘ(θ), σD(d)).

Example 1. For any 0 < ϕ < 1, (MMa,ϕ,A, Ltop),
(MMa,ϕ,A, LBorda), (MCo,ϕ,A, Ltop), (MCo,ϕ,A, LBorda)
are neutral, where σΘ = σD = σ.

The main theorem of this section states that if a neutral
framework further satisfies the following connectivity con-
dition, then its Bayesian estimator is a minimax rule.

(iv) Parameter connectivity. For any pair θ1, θ2 ∈ Θ,
there exists a permutation σ overA such that σΘ(θ1) = θ2.

Theorem 1. For any neutral framework F that satisfies

parameter connectivity and any n ∈ N, BEF is a minimax
rule.2

Proof: Any deterministic Bayesian estimator BEF can be
seen as a randomized rule that chooses a single decision
uniformly at random from the output of BEF . Our proof is
based on the following lemma.

Lemma 1 (Section 5.3.2 III in [8]). Given a framework
F . Let rπ∗ denote a Bayesian estimator for prior π∗. If
FLn(θ, rπ∗) are equal for all θ ∈ Θ, then rπ∗ is minimax.

Let rU denote the randomized decision rule that outputs all
decisions with the minimum Bayesian expected loss uni-
formly at random. By Lemma 1, it suffices to show that for
all θ ∈ Θ, FLn(θ, rU ) are equal. For any pair of parame-
ters θ1, θ2 ∈ Θ, we let σ(θ1,θ2) denote a permutation overA
such σ(θ1,θ2)

Θ (θ1) = θ2, which is guaranteed by Condition
(iv).

Claim 1. For any profile P of n votes and
any d∗ ∈ D, rU (P )(d∗) > 0 if and only if
rU (σ(θ1,θ2)(P ))(σ

(θ1,θ2)
D (d∗)) > 0.

Proof: To simplify the notation, in this proof we let σ∗

denote σ(θ1,θ2). rU (P ) has positive probability on d∗ if and
only if d∗ minimizes the Bayesian loss at P under uniform
prior, which is equivalent to requiring that for all d′ ∈ D,∑
θ L(θ, d∗) Pr(θ|P ) ≤ ∑

θ L(θ, d′) Pr(θ|P ). We have
the following calculation, where Pr(P |θ) = πθ(P ).

∑
θ
L(θ, d∗) Pr(θ|P ) ≤

∑
θ
L(θ, d′) Pr(θ|P )

⇔
∑

θ
L(θ, d∗) Pr(P |θ) ≤

∑
θ
L(θ, d′) Pr(P |θ) (1)

⇔
∑

θ

L(σ∗Θ(θ), σ∗D(d∗)) Pr(σ∗(P )|σ∗Θ(θ))

≤
∑

θ

L(σ∗Θ(θ), σ∗D(d′)) Pr(σ∗(P )|σ∗Θ(θ)) (2)

⇔
∑

θ

L(θ, σ∗D(d∗)) Pr(σ∗(P )|θ)

≤
∑

θ

L(θ, σ∗D(d′)) Pr(σ∗(P )|θ) (3)

⇔
∑

θ

L(θ, σ∗D(d∗)) Pr(θ|σ∗(P ))

≤
∑

θ

L(θ, σ∗D(d′)) Pr(θ|σ∗(P )) (4)

Therefore, d∗ minimizes the Bayesian loss for P if and
only if σ∗D(d∗) minimizes the Bayesian loss for σ∗(P ),
which means that rU (σ∗(P )) has positive probability on
(σ∗D(d∗)). (1) and (4) are due to Bayes’ rule and the uni-
form prior assumption. (2) is obtained from applying σ∗,
σ∗Θ, and σ∗D on both sides of the inequality and then con-
sidering the neutrality of the framework. (3) is a change of

2A similar result was presented at COMSOC-14 work-
shop [28].
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variable names, which is possible because for any pair of
parameters θ 6= θ′ and any permutation σ over A, we must
have σΘ(θ) 6= σΘ(θ′), because σΘ is a permutation over
Θ. 2

We note that rU chooses a decisions d with rU (P )(d) > 0
uniformly at random. Therefore, by Claim 1, for any
θ1 6= θ2 and any profile P , we have rU (σ(θ1,θ2)(P )) =

σ
(θ1,θ2)
D (rU (P )). By neutrality of F , we have
L(θ1, rU (P )) = L(σ

(θ1,θ2)
Θ (θ1), σ

(θ1,θ2)
D (rU (P ))) =

L(θ2, rU (σ(θ1,θ2)(P ))).

Finally, we have:

FLn(θ1, rU ) =
∑

P

L(θ1, rU (P )) Pr(P |θ1)

=
∑

P

L(θ2, rU (σ(θ1,θ2)(P ))) Pr(σ(θ1,θ2)(P )|θ2)

=FLn(θ2, rU )

By Lemma 1, rU is a minimax rule. We note that for any
θ and any profile P , L(θ, rU (P )) = L(θ,BEF (P )). This
means that BEF is a minimax rule. 2

It is not hard to verify that all models mentioned in Ex-
ample 1 satisfy parameter connectivity. Therefore, their
Bayesian estimators are minimax rules. In particular, fTop

Ma,ϕ
is a minimax rule for (MMa,ϕ, LTop). When the 0-1 loss
function is used, the Bayesian estimator becomes maximum
likelihood estimator (MLE). Therefore, Theorem 1 imme-
diately implies that MLE is minimax.

Corollary 1. For any neutral framework F =
(MA,A, L0-1), its MLE (that outputs all alternatives
with the maximum likelihood) is a minimax rule.

The special case of Corollary 1 for MMa,ϕ was proved
by Caragiannis et al. [11]. We note that in Appendix A
of [11], an example was shown to illustrate that MLE is not
minimax w.r.t. L0-1. This does not contradict Theorem 1
and Corollary 1 because the framework in the example is
not neutral.

As shown in the following example, not all Bayesian esti-
mators of neutral frameworks satisfy minimaxity.

Example 2. Let A = {a, b}. Consider a framework
(M, L) for two alternatives whereM = (Θ, ~π) combines
two Mallows’ models with dispersion parameter 0.6 and
0.7 respectively. Formally, let Θ = {0.6, 0.7} × {a �
b, b � a}. For each (ϕ,W ) ∈ Θ, π(ϕ,W ) is the same
as πW in Mallows’ model with dispersion ϕ. For any
W ∈ L(A) and c ∈ A, we let L((0.6,W ), c) = Ltop(W, c)
and L((0.7,W ), c) = 1− Ltop(W, c).

It can be verified that F is neutral by letting γΘ be a per-
mutation that only applies to the second component of the
parameter (the ranking). Let n = 1. When the vote is
a � b, the posterior distribution is the following.

Parameter (0.6, a � b) (0.6, b � a) (0.7, a � b) (0.7, b � a)
Post. Prob. 1

3.2
0.6
3.2

1
3.4

0.7
3.4

Loss for a 0 1 1 0

Therefore, EL(a|{a � b}) = 0.6
3.2 <

0.7
3.4 = EL(b|{a � b}).

Therefore, BEF (a � b) = a. Similarly BEF (b � a) = b.

When the ground truth parameter is (0.7, a � b), the fre-
quentist expected loss of BEF is 1

1.7 >
1
2 . We note that the

worst-case frequentist loss of the voting rule that always
output A is 1

2 , which means that BEF is not a minimax
rule. 2

4 GENERAL RESULTS ON
SATISFACTION OF AXIOMS

To analyze the satisfaction of axioms of Bayesian estima-
tors, in the rest of this paper we focus on a special class
of frameworks where the decision space is A. We let
F = (MA, L) denote such a framework where the deci-
sion space is omitted. For neutral frameworks, we further
require that σA = σ, where σA is the corresponding per-
mutation over the decision space, which isA in this section.

Theorem 2. The Bayesian estimator of any neutral frame-
work satisfies neutrality.

Proof: Let S(A) denote the set of all permutations over
A. It suffices to prove that the expected loss function is
insensitive to permutations. For any neutral framework F ,
any profile P , any alternative a, and any γ ∈ S(A), we
have

EL(a|P ) =
∑

θ∈Θ

Pr(θ|P )L(θ, a) ∝
∑

θ∈Θ

Pr(P |θ)L(θ, a)

=
∑

θ∈Θ

Pr(γ(P )|γΘ(θ))L(γΘ(θ), γ(a))

∝
∑

θ∈Θ

Pr(γΘ(θ)|γ(P ))L(γΘ(θ), γ(a)) = EL(γ(a)|γ(P ))

2

Theorem 3. If the Bayesian estimator BEF of a framework
F satisfies neutrality then there exists a neutral framework
F∗ such that BEF∗ = BEF .

All missing proofs can be found in the full version on
arXiv.

Theorem 4. No Bayesian estimator satisfies strict Con-
dorcet criterion.

Proof: For the sake of contradiction suppose a Bayesian
estimator r of F = (MA, L) satisfies strict Condorcet cri-
terion whereMA = (Θ, ~π).

We first prove that for any profile P , if alternatives a and
b are tied in their head-to-head competition, then expected
loss for a must be the same as the expected loss for b.
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Lemma 2. Suppose r = BEF satisfies strict Condorcet
criterion. For any profile P and any pair of alternatives
(a, b), if wP (a, b) = 0 then EL(a|P ) = EL(b|P ).

Proof: For any distribution π over Θ, let Sπ =
{S1, . . . , Sp} denote the partition of Θ into equivalent
classes according to π, where p is the number of equiva-
lent classes. That is, for any S ∈ Sπ and any θ1, θ2 ∈ S,
we have π(θ1) = π(θ2). Let Tπ denote the total order over
Sπ such that for any pair S, S′ ∈ Sπ , we have S �Tπ S′ if
and only if the π value of parameters in S is strictly larger
than the π value of parameters in S′.

For any profile P , let SP denote SPr(·|P ). That is, SP
is the partition of Θ according to the posterior distribu-
tion over Θ given P . TP is defined similarly. The next
lemma states that for any profile P and any pair of co-
winners (a, b), the total loss of a and b within each equiva-
lent class in SP must be the same. For any S ⊆ Θ, we let
L(S, a) =

∑
θ∈S L(θ, a).

Lemma 3. Suppose r = BEF satisfies strict Condorcet
criterion. For any profile P and any S ∈ SP , if there
are at least two weak Condorcet winners {a, b} in P , then
L(S, a) = L(S, b).

Proof: For the sake of contradiction suppose the lemma
does not hold for a profile P where {a, b} are two weak
Condorcet winners. Let TP = S1 � S2 � · · · � Sp. Let
Si denote the highest-ranked equivalent class in TP such
that the total loss of a and the total loss of b on Si are differ-
ent. W.l.o.g. suppose L(Si, a) > L(Si, b). For any natural
number k, it follows that a and b are also weak Condorcet
winners in kP , whose weighted majority graph is exactly
WMG(P ) times k. We next show that when k is suffi-
ciently large, EL(a|kP ) > EL(b|kP ). For any i ≤ p, let
θi ∈ Si be an arbitrary parameter in Si.

EL(a|kP ) =
∑

θ∈Θ

Pr(θ|kP )L(θ, a)

∝
∑

θ∈Θ

Pr(θ|P )kL(θ, a) =

p∑

i=1

∑

θ∈Si
Pr(θ|P )kL(θ, a)

=

p∑

i=1

Pr(θi|P )kL(Si, a)

Because for any i′ > i we have Pr(θi|P ) >

Pr(θi′ |P ), there exists k ∈ N such that ( Pr(θi|P )
Pr(θi+1|P ) )k >

∑p
l=i+1(L(Sl,a)−L(Sl,b))

L(Si,a)−L(Si,b)
. Therefore, for such k we have∑p

i=1 Pr(θi|P )kL(Si, a) >
∑p
i=1 Pr(θi|P )kL(Si, b) ∝

EL(b|kP ). This means that b cannot be a co-winner in
r(kP ), which contradicts the assumption that r satisfies
strict Condorcet criterion. 2

For any pair of partitions S1 and S2 of Θ, we let S1 ⊕ S2

denote the coarsest partition of Θ that refines both S1 and

S2. That is,

S1 ⊕ S2 = {S1 ∩ S2 : S1 ∈ S1, S2 ∈ S2} \ {∅}

Lemma 4. For any statistical model and any pair of pro-
files P1, P2, there exists k ∈ N such that SkP1∪P2

=
SP1
⊕ SP2

.

Proof: We let P ∗ = kP1 ∪ P2 for a sufficiently large k
such that the “gap” between two equivalent classes in kP
is large enough that the only effect of P2 is to refine the
equivalent classes in kP . More formally, we choose k ∈
N such that for any θ1, θ2 ∈ Θ, Pr(θ1|P1)k Pr(θ1|P2) >
Pr(θ2|P1)k Pr(θ2|P2) if and only if one of the following
two conditions hold: (1) Pr(θ1|P1) > Pr(θ2|P1), or (2)
Pr(θ1|P1) = Pr(θ1|P2) and Pr(θ1|P2) > Pr(θ2|P2). 2

For any a, b ∈ A, let Lab denote the set of all rankings
where a � b. Let Pab denote the set of all two-agent pro-
files where one vote comes from Lab and the other vote
comes from Lba. That is,

Pab = {{V1, V2} : V1 ∈ Lab, V2 ∈ Lba}

Let Sab denote the finest partition of Θ that refines all parti-
tions induced by profiles in Pab. That is, Sab = ⊕Pab. By
Lemma 4, there exists a profile Pab such that SPab = Sab.
Lemma 5. Suppose r = BEF satisfies strict Condorcet
criterion. For any a, b ∈ A and any S ∈ Sab, we have
L(S, a) = L(S, b).

Proof: Let P ∗ be an arbitrary profile with the following
conditions. (1) wP∗(a, b) = wP∗(b, a) = 0. (2) For any
c 6∈ {a, b}, we have wP∗(a, c) > 0 and wP∗(b, c) > 0.
By Lemma 4, there exists a sufficiently large k ∈ N
such that both conditions still hold for kP ∗ ∪ Pab, and
SkP∗∪Pab = Sab. The latter is because P ∗ can be seen as
the union of |P ∗|/2 profiles inPab, which means that Sab is
a refinement of SkP∗ . The lemma follows after Lemma 3.
2

We note that for any a, b ∈ A, any profile P where
wP (a, b) = 0 can be seen as the union of |P |/2 pro-
files in Pab. This means that Sab is a refinement of
SP . Therefore, any S ∈ SP must be the union
of some equivalent classes in Sab. By Lemma 5 we
have that L(S, a) = L(S, b). We have EL(a|P ) =∑
S∈SP Pr(θS |P )L(S, a) =

∑
S∈SP Pr(θS |P )L(S, b) =

EL(b|P ), where θS denote an arbitrary element in S. This
proves Lemma 2. 2

Consider any profile P where wP (a, b) = wP (b, c) = 0,
wP (a, c) = 2, a and b are the only two weak Condorcet
winners, and c loses to all other alternatives in head-to-
head competitions. Such a profile exists due to McGarvey’s
theorem [23]. By Lemma 2, EL(a|P ) = EL(b|P ) =
EL(c|P ). However, because r satisfies strict Condorcet
criterion, c 6∈ r(P ), which is a contradiction. 2
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A direct corollary is that any voting rule that satisfies strict
Condorcet criterion cannot be the BE of any framework.

Corollary 2. Copeland1, maximin, Black’s function,3

Dodgson’s function, Young’s function, Condorcet’s func-
tion, and Fishburn’s function cannot be the Bayesian esti-
mator of any framework.

5 NEW BAYESIAN ESTIMATORS AS
VOTING RULES

The following theorem solves the open question about the
satisfaction of Condorcet criterion for fTop

Ma,ϕ [7].

Theorem 5. fTop
Ma,ϕ satisfies the Condorcet criterion if and

only if ϕ(1−ϕm−1)
1−ϕ ≤ 1.

Proof: The “if part”: suppose ϕ(1−ϕm−1)
1−ϕ ≤ 1. Let P be a

profile where a is the Condorcet winner. For any c, d ∈ A,
we let A−c = A \ {c} and A−cd = A \ {c, d}. For any
c ∈ A, let Lc denote the set of all rankings where c is
ranked at the top. For any profile P , let P |−a denote its
restriction on A−a.

1− EL(c|P ) =
∑

V ∈Lc
Pr(V |P )

∝
∑

V ∈Lc
Pr(P |V ) ∝

∑

V ∈Lc
ϕKd(P,V )

Fix b 6= a. For any ranking V−ab ∈ L(A−ab), we let
Q(V−ab) denote the set of m − 1 rankings over A \ {a}
obtained by inserting b to V−ab without changing the rela-
tive positions of other alternatives. Let J(V−ab) ∈ L(A−a)
be the ranking in Q(V−ab) with the minimum Kentall-tau
distance from P |−a. If there are multiple such rankings, let
J(V−ab) be the one where b is ranked at the highest posi-
tion.

Let H : Lb → La denote the following mapping. For
any b � V−b ∈ Lb we first look at V−ab and decide the
best position to insert b, then put a at the top, where V−ab
is obtained from V−b by removing a. Formally, H(b �
A−b) = a � J(V−ab).

It follows that for any pair of rankings V,W ∈ Lb, where
the only difference is the position of a, we have H(V ) =
H(W ). Therefore, for any V ∈ H(Lb), H−1(V ) con-
tains exactly m − 1 rankings in Lb that correspond to the
m − 1 positions of a (from the second position to the m-
th position—the first position is occupied by b). For each
2 ≤ i ≤ m, let Wi ∈ H−1(V ) denote the ranking where a

3Definitions of these rules except Copeland and maximin can
be found in [18], where it was proved that they satisfy strict Con-
dorcet criterion.

is ranked at the i-th position.

Kd(P,Wi)

=Kd(P |−a, (Wi)−a) +
∑

d�Wia
P (a � d)

+
∑

a�Wid
P (d � a)

≥Kd(P |−a, J((Wi)−ab)) +
∑

d6=a
P (d � a) + i− 1 (5)

=Kd(P, V ) + i− 1

Inequality (5) is because a is the Condorcet winner, which
means that for any d 6= a we have #P (a � d) ≥ #P (d �
a) + 1. Therefore, for each V ∈ H(Lb) we have

∑

W∈H−1(V )

ϕKd(P,W ) ≤ (ϕ+ · · ·+ ϕm−1)ϕKd(P,V )

=
ϕ(1− ϕm−1)

1− ϕ ϕKd(P,V )

Therefore,

∑

W∈Lb
ϕKd(P,W ) ≤ ϕ(1− ϕm−1)

1− ϕ
∑

V ∈H(Lb)
ϕKd(P,V )

<
ϕ(1− ϕm−1)

1− ϕ
∑

V ∈La
ϕKd(P,V ) ≤

∑

V ∈La
ϕKd(P,V )

Therefore, we have 1 − EL(a|P ) > 1 − EL(b|P ), which
means that EL(a|P ) < EL(b|P ) and a is the unique win-
ner.

The “only if part”: suppose ϕ(1−ϕm−1)
1−ϕ > 1. For any odd

number k ∈ N we consider the a profile Pk whose weighted
majority graph is the same as in Figure 1. The existence
of P ∗ is guaranteed by McGarvey’s theorem [23]. More
precisely, in Figure 1 the weight on the edges from a to all
other alternatives is 1; the weight on the edges from b to all
other alternatives (except a) is k; for any 3 ≤ i1 < i2 < m,
the weight on ai1 → ai2 is k.

a b

a3 ama4 …

k
1

1
11 k k

k

Figure 1: The WMG of Pk for odd k.

Let Va = a � b � a3 � · · · � am and for
each 2 ≤ i ≤ m, let V ib be the ranking obtained
from Va by moving a to the i-th position. It is not

hard to check that limk→∞

∑
V ∈La ϕ

Kd(Pk,V )

ϕKd(Pk,Va)
= 1 and
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limk→∞

∑
V ∈Lb ϕ

Kd(Pk,V )

∑m
i=2 ϕ

Kd(Pk,V ib )
= 1. We note that for each

2 ≤ i ≤ m, Kd(Pk, V
i
b ) = Kd(Pk, Va) + i − 1. This

means that

lim
k→∞

∑
V ∈Lb ϕ

Kd(Pk,V )

∑
V ∈La ϕ

Kd(Pk,V )
= lim
k→∞

∑m
i=2 ϕ

Kd(Pk,V
i
b )

ϕKd(Pk,Va)

=ϕ+ ϕ2 + · · ·ϕm−1 =
ϕ(1− ϕm−1)

1− ϕ > 1

Therefore, there exists odd k ∈ N such that EL(b|Pk) <
EL(a|Pk), which means that a cannot be the winner. Be-
cause a is the Condorcet winner in Pk, fTop

Ma,ϕ does not sat-
isfy Condorcet criterion. 2

Theorem 6. For any profile P , fBorda
Co,ϕ (P ) =

arg maxa∈A
∑
c 6=a

1
1+ϕwP (a,c) .

Proof: For anyW ∈ B(A) and any pair of alternatives a, b,
let IW (a � b) = 1 if a �W b; otherwise IW (a � b) = 0.
It follows that m− 1− LBorda(W,a) =

∑
b 6=a IW (a � b).

Let Ba�b denote the set of all rankings overAwhere a � b.
m− 1− EL(a|P )

=
∑

W∈B(A)

Pr(W |P )(m− 1− LBorda(W,a))

=
∑

W∈B(A)

Pr(W |P )
∑

c6=a
IW (a � c)

=
∑

c6=a

∑
W∈Ba�c

Pr(W |P )

Following similar calculations as in [16, 7], we have
∑

c6=a

∑
W∈Ba�c

Pr(W |P )

∝
∑

c6=a
ϕP (c�a)

∏

{b,d}:{b,d}6={a,c}
(ϕP (b�d) + ϕP (d�b))

∝
∑

c6=a

ϕP (c�a)

ϕP (c�a) + ϕP (a�c) =
∑

c6=a

1

1 + ϕwP (a,c)

Therefore, for any pair of alternatives (a, b),
EL(a|P ) ≤ EL(b|P ) if and only if

∑
c 6=a

1
1+ϕwP (a,c) ≥∑

c 6=b
1

1+ϕwP (b,c) . This proves the theorem. 2

Proposition 1. For all 0 < ϕ < 1, fBorda
Co,ϕ satisfies mono-

tonicity.

Proof: For any profile P , any a ∈ fBorda
Co,ϕ (P ) and

any profile P ′ obtained from P by raising the posi-
tions of a without changing relative positions of other
alternatives. It is not hard to check that for any b 6=
a, wP ′(a, b) > wP (a, b), and the weights of edges
not involving a do not change. Therefore, for any
b 6= a,

∑
c 6=a

1

1+ϕwP ′ (a,c)
>

∑
c6=a

1
1+ϕwP (a,c) ≥

∑
c 6=b

1
1+ϕwP (b,c) >

∑
c6=b

1

1+ϕwP ′ (b,c)
. It follows from

Theorem 6 that a ∈ fBorda
Co,ϕ (P ′). 2

Theorem 7. fBorda
Co,ϕ satisfies the Condorcet criterion if and

only if ϕ ≤ 1
m−1 .

Proof: The “if” part. Let P be any profile where a is
the Condorcet winner. This means that for any c 6= a,
wP (a, c) ≥ 1. By Theorem 6 we have

∑
c 6=a

1
1+ϕwP (a,c) ≥

m−1
1+ϕ . For any b 6= a, we have

∑
c6=a

1
1+ϕwP (a,c) <

1
1+ϕ−1 +m−2. When ϕ ≤ 1

m−1 , we have 1
1+ϕ−1 +m−2 ≤

m−1
1+ϕ . Therefore, a is the unique winner.

The “only if” part is proved by considering the profile Pk
whose WMG is in Figure 1 and let k →∞. 2

Theorem 8. As ϕ→ 0, fBorda
Co,ϕ converges to a refinement of

Copeland0.5. As ϕ → 1, fBorda
Co,ϕ converges to a refinement

of Borda.

Proof: For any profile P any pair of alternatives a, b we
have

limϕ→0
1

1+ϕwP (a,b) =





1 if wP (a, b) > 0
0.5 if wP (a, b) = 0
0 otherwise

Therefore, for any alternative a, limϕ→0

∑
c6=a

1
1+ϕwP (a,c)

is its Copeland0.5 score, which means that the winners must
also be winners under Copeland0.5.

For any k > 0, when ε → 0, we have 1
1+(1−ε)k =

1
2 (1+ kε

2 +o(ε)) and 1
1+(1−ε)−k = 1

2 (1− kε
2 +o(ε)). There-

fore, for any alternative a,
∑
c 6=a

1
1+ϕwP (a,c) = m−1

2 +
1
4 (
∑
c6=a wP (a, c))(1 − ϕ) + o(1 − ϕ). We note that∑

c 6=a wP (a, c) equals to twice the Borda score of a in P
minus n(m − 1). Therefore, as ϕ → 1, all fBorda

Co,ϕ winners
must be Borda winners. 2

We propose a new class of ranking model and framework
as follows.

Definition 5. For any 0 < ϕ < 1 we define MPair,ϕ as
follows. The parameter space Θ = {θbc : b 6= c ∈ A}. For

any V ∈ L(A) we let πθbc(V ) ∝
{

1 if b �V c
ϕ otherwise .

Let L1(θbc, a) =

{
1 if a = c
0 otherwise and

L2(θbc, a) =

{
0 if a = b
1 otherwise .

Let F1
Pair,ϕ = (MPair,ϕ, L1) and F2

Pair,ϕ = (MPair,ϕ, L2).

That is, the parameters in MPair,ϕ correspond to pairwise
comparisons between alternatives. A parameter θbc can be
interpreted as “b � c is the strongest pairwise comparison”.
The first loss function states that the loss of a is 1 if and
only if a is the less preferred alternative in the parameter.
The second loss function states that the loss of a is 0 if and
only if a is the preferred alternative in the parameter.

MPair,ϕ might be of independent interest. In this paper we

792



focus on the satisfaction of axioms for the two Bayesian
estimators and leave further exploration of the model for
future work. We note that given ϕ, the normalization factor
for all θbc are the same.

Theorem 9. The Bayesian estimator f1
Pair,ϕ of F1

Pair,ϕ

is arg mina∈Θ

∑
b6=a ϕ

wP (a,b)/2. The Bayesian estimator
f2

Pair,ϕ of F2
Pair,ϕ is arg maxa∈Θ

∑
b 6=a ϕ

wP (b,a)/2.

It is easy to check that both F1
Pair,ϕ and F2

Pair,ϕ satisfy
neutrality and parameter connectivity. Therefore, their
Bayesian estimators satisfy neutrality and minimaxity.

Corollary 3. f1
Pair,ϕ and f2

Pair,ϕ satisfy neutrality and min-
imaxity (w.r.t. to F1

Pair,ϕ and F2
Pair,ϕ, respectively).

Proposition 2. f1
Pair,ϕ and f2

Pair,ϕ satisfy monotonicity.

Proof: The proof is similar to the proof of Theorem 1. We
note that raising the position of a will increase the weight
on some edges a → b. Weights on other edges do not
change. Monotonicity of both rules can be verified by ap-
plying Theorem 9. 2

Theorem 10. f1
Pair,ϕ satisfies the Condorcet criterion if and

only if ϕ ≤ 1
m−1 . For all 0 < ϕ < 1, f2

Pair,ϕ does not
satisfy Concorcet criterion.

Proof: The “if” part for f1
Pair,ϕ follows after Theorem 11

because when ϕ < 1
m−1 , f1

Pair,ϕ is a refinement of maximin
and any refinement of maximin satisfies the Condorcet cri-
terion.

The “only if” part for f1
Pair,ϕ and the non-satisfaction for

f2
Pair,ϕ are proved by considering the profile Pk whose

weighted majority graph is in Figure 1 and let k → ∞.
2

For any profile P , the maximax rule to chooses all alter-
natives with the maximum weight on at least one outgoing
edge in the weighted majority graph. That is, the rule is
arg maxa maxb wP (a, b).

Theorem 11. For any ϕ ≤ 1
m−1 , f1

Pair,ϕ is a refinement of
maximin, and f2

Pair,ϕ is a refinement of maximax. Asϕ→ 1,
both rules converge to refinements of Borda.

Proof: By Theorem 9, for any ϕ ≤ 1
m−1 , for

any alternative a,
∑
b6=a ϕ

wP (a,b)/2 is mainly deter-
mined by minb 6=a wP (a, b)/2, which is half of a’s min-
score. It follows that all winners under f1

Pair,ϕ must
be maximin winners. Similarly,

∑
b 6=a ϕ

wP (b,a)/2 is de-
termined by minb6=a wP (b, a)/2, which corresponds to
maxb6=a wP (a, b)/2. It follows that the winner under
f2

Pair,ϕ must be maximax winners.

For any ε > 0, we have
∑
b 6=a(1− ε)wP (a,b)/2 = m− 1−

∑
b 6=a

wP (a,b)
2 ε+ o(ε). Similar to the proof of Theorem 8,

the minimizers of this function as ε → 0, which is f1
Pair,ϕ

as ϕ → 1, must be Borda winners. The proof for f2
Pair,ϕ is

similar. 2

6 SUMMARY AND FUTURE WORK

We characterized neutrality and proved an impossibility
theorem about strict Condorcet criterion for Bayesian es-
timators. We also proposed new frameworks to obtain new
BEs and showed that some of them satisfy many desirable
axioms and can be computed in polynomial time.

There are many directions for future work. Can we an-
swer Q2 in the Introduction for other desirable axioms
such as homogeneity? How about axioms for other types
preferences such as ratings? Are there any BEs that are
refinements of other commonly studied rules, especially
Copelandα for α 6∈ {0.5, 1}, STV, and ranked pairs? What
are other natural frameworks and which axioms do their
BEs satisfy?

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under grant IIS-1453542 and a Simons-Berkeley research
fellowship. We thank Felix Brandt, Jean-Francois Laslie,
Bill Zwicker, participants of the Economics and Computa-
tion Program at Simons Institute, and anonymous reviewers
for helpful comments and suggestions.

References

[1] IMDb Votes/Ratings Top Frequently Asked Questions,
2016. URL http://www.imdb.com/help/show leaf?
votestopfaq.

[2] Practical example of bayes estimators, 2016.
URL https://en.wikipedia.org/wiki/Bayes estimator#
Practical example of Bayes estimators.

[3] Alon Altman and Moshe Tennenholtz. An axiomatic ap-
proach to personalized ranking systems. Journal of the
ACM, 57(4), 2010. Article 26.

[4] Kenneth Arrow. Social choice and individual values. New
Haven: Cowles Foundation, 2nd edition, 1963. 1st edition
1951.

[5] Hossein Azari Soufiani, David C. Parkes, and Lirong Xia.
Random utility theory for social choice. In Proceed-
ings of Advances in Neural Information Processing Systems
(NIPS), pages 126–134, Lake Tahoe, NV, USA, 2012.

[6] Hossein Azari Soufiani, David C. Parkes, and Lirong Xia.
Preference Elicitation For General Random Utility Mod-
els. In Proceedings of Uncertainty in Artificial Intelligence
(UAI), Bellevue, Washington, USA, 2013.

[7] Hossein Azari Soufiani, David C. Parkes, and Lirong Xia.
Statistical decision theory approaches to social choice. In
Proceedings of Advances in Neural Information Processing
Systems (NIPS), Montreal, Quebec, Canada, 2014.

[8] James O. Berger. Statistical Decision Theory and Bayesian
Analysis. Springer, 2nd edition, 1985.

793



[9] Christian Borgs, Jennifer Chayes, Adrian Marple, and
Shang-Hua Teng. An Axiomatic Approach to Community
Detection. In Proceedings of ITCS, 2016.

[10] Mark Braverman and Elchanan Mossel. Noisy Sorting With-
out Resampling. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 268–
276, Philadelphia, PA, USA, 2008.

[11] Ioannis Caragiannis, Ariel Procaccia, and Nisarg Shah.
When do noisy votes reveal the truth? In Proceedings of the
ACM Conference on Electronic Commerce (EC), Philadel-
phia, PA, 2013.

[12] Christine Choirat and Raffaello Seri. Estimation in dis-
crete parameter models. Statistical Science, 27(2):278–293,
2012.

[13] Marquis de Condorcet. Essai sur l’application de l’analyse
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Abstract

Matrix-parametrized models (MPMs) are widely
used in machine learning (ML) applications. In
large-scale ML problems, the parameter matrix
of a MPM can grow at an unexpected rate, result-
ing in high communication and parameter syn-
chronization costs. To address this issue, we of-
fer two contributions: first, we develop a com-
putation model for a large family of MPMs,
which share the following property: the param-
eter update computed on each data sample is
a rank-1 matrix, i.e. the outer product of two
“sufficient factors” (SFs). Second, we imple-
ment a decentralized, peer-to-peer system, Suf-
ficient Factor Broadcasting (SFB), which broad-
casts the SFs among worker machines, and re-
constructs the update matrices locally at each
worker. SFB takes advantage of small rank-1
matrix updates and efficient partial broadcasting
strategies to dramatically improve communica-
tion efficiency. We propose a graph optimiza-
tion based partial broadcasting scheme, which
minimizes the delay of information dissemina-
tion under the constraint that each machine only
communicates with a subset rather than all of
machines. Furthermore, we provide theoreti-
cal analysis to show that SFB guarantees con-
vergence of algorithms (under full broadcasting)
without requiring a centralized synchronization
mechanism. Experiments corroborate SFB’s ef-
ficiency on four MPMs.

1 INTRODUCTION
Machine Learning (ML) provides a principled and effec-
tive mechanism for extracting latent structure and patterns
from raw data and making automatic predictions and deci-
sions. The growing prevalence of big data, such as billions
of text pages in the web, hundreds of hours of video up-

loaded to video-sharing sites every minute1, accompanied
by an increasing need of big model, such as neural net-
works (Dean et al., 2012) and topic models (Yuan et al.,
2015) with billions of parameters, has inspired the design
and development of distributed machine learning systems
(Dean and Ghemawat, 2008; Gonzalez et al., 2012; Zaharia
et al., 2012; Li et al., 2014; Xing et al., 2015) running on
research clusters, data center and cloud platforms with 10s-
1000s machines.

For many machine learning (ML) models, such as mul-
ticlass logistic regression (MLR), neural networks (NN)
(Chilimbi et al., 2014), distance metric learning (DML)
(Xing et al., 2002) and sparse coding (SC) (Olshausen and
Field, 1997), their parameters can be represented by a ma-
trix W. For example, in MLR, rows of W represent the
classification coefficient vectors corresponding to different
classes; whereas in SC rows of W correspond to the basis
vectors used for reconstructing the observed data. A learn-
ing algorithm, such as stochastic gradient descent (SGD),
would iteratively compute an update ∆W from data, to be
aggregated with the current version of W. We call such
models matrix-parameterized models (MPMs).

Learning MPMs in large scale ML problems is challeng-
ing: ML application scales have risen dramatically, a good
example being the ImageNet (Deng et al., 2009) com-
pendium with millions of images grouped into tens of thou-
sands of classes. To ensure fast running times when scal-
ing up MPMs to such large problems, it is desirable to
turn to distributed computation; however, a unique chal-
lenge to MPMs is that the parameter matrix grows rapidly
with problem size, causing straightforward parallelization
strategies to perform less ideally. Consider a data-parallel
algorithm, in which every worker uses a subset of the data
to update the parameters — a common paradigm is to
synchronize the full parameter matrix and update matri-
ces amongst all workers (Dean and Ghemawat, 2008; Dean
et al., 2012; Li et al., 2015; Chilimbi et al., 2014; Sind-
hwani and Ghoting, 2012; Gopal and Yang, 2013). How-
ever, this synchronization can quickly become a bottle-

1https://www.youtube.com/yt/press/statistics.html
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neck: take MLR for example, in which the parameter ma-
trix W is of size J ×D, where J is the number of classes
and D is the feature dimensionality. In one application
of MLR to Wikipedia (Partalas et al., 2015), J = 325k
and D > 10, 000, thus W contains several billion entries
(tens of GBs of memory). Because typical computer clus-
ter networks can only transfer a few GBs per second at the
most, inter-machine synchronization of W can dominate
and bottleneck the actual algorithmic computation. In re-
cent years, many distributed frameworks have been devel-
oped for large scale machine learning, including Bulk Syn-
chronous Parallel (BSP) systems such as Hadoop (Dean
and Ghemawat, 2008) and Spark (Zaharia et al., 2012),
graph computation frameworks such as GraphLab (Gon-
zalez et al., 2012), and bounded-asynchronous key-value
stores such as DistBelief(Dean et al., 2012), Petuum-PS
(Ho et al., 2013), Project Adam (Chilimbi et al., 2014)
and (Li et al., 2014). When using these systems to learn
MPMs, it is common to transmit the full parameter ma-
trices W and/or matrix updates ∆W between machines,
usually in a server-client style (Dean and Ghemawat, 2008;
Dean et al., 2012; Sindhwani and Ghoting, 2012; Gopal
and Yang, 2013; Chilimbi et al., 2014; Li et al., 2015).
As the matrices become larger due to increasing problem
sizes, so do communication costs and synchronization de-
lays — hence, reducing such costs is a key priority when
using these frameworks.

We begin by investigating the structure of matrix param-
eterized models, in order to design efficient communica-
tion strategies. We focus on models with a common prop-
erty: when the parameter matrix W of these models is opti-
mized with stochastic gradient descent (SGD) (Dean et al.,
2012; Ho et al., 2013; Chilimbi et al., 2014) or stochastic
dual coordinate ascent (SDCA) (Hsieh et al., 2008; Shalev-
Shwartz and Zhang, 2013), the update4W computed over
one (or a few) data sample(s) is of low-rank, e.g. it can
be written as the outer product of two vectors u and v:
4W = uv>. The vectors u and v are sufficient fac-
tors (SF, meaning that they are sufficient to reconstruct
the update matrix 4W). A rich set of models (Olshausen
and Field, 1997; Lee and Seung, 1999; Xing et al., 2002;
Chilimbi et al., 2014) fall into this family: for instance,
when solving an MLR problem using SGD, the stochastic
gradient is 4W = uv>, where u is the prediction prob-
ability vector and v is the feature vector. Similarly, when
solving an `2 regularized MLR problem using SDCA, the
update matrix 4W also admits such as a structure, where
u is the update vector of a dual variable and v is the feature
vector. Other models include neural networks (Chilimbi
et al., 2014), distance metric learning (Xing et al., 2002),
sparse coding (Olshausen and Field, 1997), non-negative
matrix factorization (Lee and Seung, 1999) and principal
component analysis, to name a few.

Leveraging this property, we propose a system called Suf-

ficient Factor Broadcasting (SFB), whose basic idea is to
send sufficient factors (SFs) between workers, which then
reconstruct matrix updates4W locally, thus greatly reduc-
ing inter-machine parameter communication. This stands
in contrast to the well-established parameter server id-
iom (Chilimbi et al., 2014; Li et al., 2014), a centralized
design where workers maintain a “local” image of the pa-
rameters W, which are synchronized with a central param-
eter image W (stored on the “parameter servers”). In exist-
ing parameter server designs, the (small, low-rank) updates
4W are accumulated into the central parameter server’s
W, and the low-rank structure of each update 4W is lost
in the process. Thus, the parameter server can only trans-
mit the (large, full-rank) matrix W to the workers, in-
ducing extra communication that could be avoided. We
address this issue by designing SFB as a decentralized,
peer-to-peer system, where each worker keeps its own im-
age of the parameters W (either in memory or on local
disk), and sends sufficient factors to only a subset of other
workers, via “partial broadcasting” strategies that avoid the
usual O(P 2) peer-to-peer broadcast communication over
P machines. SFB also exploits ML algorithm tolerance
to bounded-asynchronous execution (Ho et al., 2013), as
supported by both our experiments and a theoretical proof.
SFB is highly communication-efficient; transmission costs
are linear in the dimensions of the parameter matrix, and
the resulting faster communication greatly reduces waiting
time in synchronous systems (e.g. Hadoop and Spark), or
improves parameter freshness in (bounded) asynchronous
systems (e.g. GraphLab, Petuum-PS and (Li et al., 2014)).
SFs have been used to speed up some (but not all) network
communication in deep learning (Chilimbi et al., 2014); our
work differs primarily in that we always transmit SFs, never
full matrices.

The major contributions of this paper are as follows:

• We identify the sufficient factor property of a large
family of matrix-parametrized models when solved
with two popular algorithms: stochastic gradient de-
scent and stochastic dual coordinate ascent.

• In light of the sufficient factor property, we propose
a sufficient factor broadcasting (SFB) model of com-
putation. Through a decentralized, peer-to-peer archi-
tecture with bounded-asynchronous partial broadcast-
ing, SFB greatly reduces communication complexity
while maintaining excellent empirical performance.

• To further reduce communication cost, we investigate
a partial broadcasting scheme and propose a graph-
optimization based approach to determine the topol-
ogy of the communication network.

• We analyze the communication and computation costs
of SFB and provide a convergence guarantee of SFB
based minibatch SGD algorithm, under bulk syn-
chronous and bounded asynchronous executions.
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• We empirically evaluate SFB on four popular mod-
els, and confirm the efficiency and low communica-
tion complexity of SFB.

The rest of the paper is organized as follows. In Sec-
tion 2 and 3, we introduce the sufficient factor property of
matrix-parametrized models and propose the sufficient fac-
tor broadcasting computation model, respectively. Section
4 analyzes the costs and convergence behavior of SFB. Sec-
tion 5 gives experimental results. Section 6 reviews related
works and Section 7 concludes the paper.

2 SUFFICIENT FACTOR PROPERTY OF
MATRIX-PARAMETRIZED MODELS

The core goal of Sufficient Factor Broadcasting (SFB)
is to reduce network communication costs for matrix-
parametrized models; specifically, those that follow an op-
timization formulation

(P) min
W

1
N

N∑
i=1

fi(Wai) + h(W) (1)

where the model is parametrized by a matrix W ∈ RJ×D.
The loss function fi(·) is typically defined over a set of
training samples {(ai,bi)}Ni=1, with the dependence on bi
being suppressed. We allow fi(·) to be either convex or
nonconvex, smooth or nonsmooth (with subgradient every-
where); examples include `2 loss and multiclass logistic
loss, amongst others. The regularizer h(W) is assumed
to admit an efficient proximal operator proxh(·). For ex-
ample, h(·) could be an indicator function of convex con-
straints, `1-, `2-, trace-norm, to name a few. The vectors
ai and bi can represent observed features, supervised in-
formation (e.g., class labels in classification, response val-
ues in regression), or even unobserved auxiliary informa-
tion (such as sparse codes in sparse coding (Olshausen and
Field, 1997)) associated with data sample i. The key prop-
erty we exploit below ranges from the matrix-vector multi-
plication Wai. This optimization problem (P) can be used
to represent a rich set of ML models (Olshausen and Field,
1997; Lee and Seung, 1999; Xing et al., 2002; Chilimbi
et al., 2014), such as the following:

Distance Metric Learning (DML) (Xing et al., 2002) im-
proves the performance of other ML algorithms, by learn-
ing a new distance function that correctly represents similar
and dissimilar pairs of data samples; this distance function
is a matrix W that can have billions of parameters or more,
depending on the data sample dimensionality. The vector
ai is the difference of the feature vectors in the ith data pair
and fi(·) can be either a quadratic function or a hinge loss
function, depending on the similarity/dissimilarity label bi
of the data pair. In both cases, h(·) can be an `1-, `2-, trace-
norm regularizer or simply h(·) = 0 (no regularization).

Sparse Coding (SC) (Olshausen and Field, 1997) learns a
dictionary of basis from data, so that the data can be re-

represented sparsely (and thus efficiently) in terms of the
dictionary. In SC, W is the dictionary matrix, ai are the
sparse codes, bi is the input feature vector and fi(·) is a
quadratic function (Olshausen and Field, 1997). To pre-
vent the entries in W from becoming too large, each col-
umn Wk must satisfy ‖Wk‖2 ≤ 1. In this case, h(W)
is an indicator function which equals 0 if W satisfies the
constraints and equals∞ otherwise.

2.1 OPTIMIZATION VIA PROXIMAL SGD, SDCA

To solve the optimization problem (P), it is common to em-
ploy either (proximal) stochastic gradient descent (SGD)
(Dean et al., 2012; Ho et al., 2013; Chilimbi et al., 2014; Li
et al., 2015) or stochastic dual coordinate ascent (SDCA)
(Hsieh et al., 2008; Shalev-Shwartz and Zhang, 2013), both
of which are popular and well-established parallel opti-
mization techniques.

Proximal SGD: In proximal SGD, a stochastic estimate of
the gradient, 4W, is first computed over one data sam-
ple (or a mini-batch of samples), in order to update W via
W ← W − η 4W (where η is the learning rate). Fol-
lowing this, the proximal operator proxηh(·) is applied to
W. Notably, the stochastic gradient 4W in (P) can be
written as the outer product of two vectors 4W = uv>,
where u = ∂f(Wai,bi)

∂(Wai)
, v = ai, according to the chain

rule. Later, we will show that this low rank structure of
4W can greatly reduce inter-worker communication.

Stochastic DCA: SDCA applies to problems (P) where
fi(·) is convex and h(·) is strongly convex (e.g. when h(·)
contains the squared `2 norm); it solves the dual problem of
(P), via stochastic coordinate ascent on the dual variables.
Introducing the dual matrix U = [u1, . . . ,uN ] ∈ RJ×N
and the data matrix A = [a1, . . . ,aN ] ∈ RD×N , the dual
problem of (P) can be written as

(D) min
U

1
N

N∑
i=1

f∗i (−ui) + h∗( 1
NUA>) (2)

where f∗i (·) and h∗(·) are the Fenchel conjugate functions
of fi(·) and h(·), respectively. The primal-dual matrices
W and U are connected by2 W = ∇h∗(Z), where the
auxiliary matrix Z := 1

NUA>. Algorithmically, we need
to update the dual matrix U, the primal matrix W, and the
auxiliary matrix Z: every iteration, we pick a random data
sample i, and compute the stochastic update 4ui by min-
imizing (D) while holding {uj}j 6=i fixed. The dual vari-
able is updated via ui ← ui − 4ui, the auxiliary vari-
able via Z ← Z − 4uia

>
i , and the primal variable via

W ← ∇h∗(Z). Similar to SGD, the update of Z is also
the outer product of two vectors: 4ui and ai, which can
be exploited to reduce communication cost.

2The strong convexity of h is equivalent to the smoothness of
the conjugate function h∗.
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Sufficient Factor Property in SGD and SDCA: In both
SGD and SDCA, the parameter matrix update can be com-
puted as the outer product of two vectors — we call these
sufficient factors (SFs). This property can be leveraged to
improve the communication efficiency of distributed ML
systems: instead of communicating parameter/update ma-
trices among machines, we can communicate the SFs and
reconstruct the update matrices locally at each machine.
Because the SFs are much smaller in size, synchronization
costs can be dramatically reduced. See Section 4 below for
a detailed analysis.

Low-rank Extensions: More generally, the update matrix
4W may not be exactly rank-1, but still of very low rank.
For example, when each machine uses a mini-batch of size
K,4W is of rank at mostK; in Restricted Boltzmann Ma-
chines, the update of the weight matrix is computed from
four vectors u1,v1,u2,v2 as u1v

>
1 − u2v

>
2 , i.e. rank-2;

for the BFGS algorithm (Bertsekas, 1999), the update of
the inverse Hessian is computed from two vectors u,v as
αuu> − β(uv> + vu>), i.e. rank-3. Even when the up-
date matrix4W is not genuinely low-rank, to reduce com-
munication cost, it might still make sense to send only a
certain low-rank approximation. We intend to investigate
these possibilities in future work.

3 SUFFICIENT FACTOR
BROADCASTING

Leveraging the SF property of the update matrix in
problems (P) and (D), we propose a Sufficient Factor
Broadcasting (SFB) system that supports efficient (low-
communication) distributed learning of the parameter ma-
trix W. We assume a setting with P workers, each of
which holds a data shard and a copy of the parameter ma-
trix3 W. Stochastic updates to W are generated via proxi-
mal SGD or SDCA, and communicated between machines
to ensure parameter consistency. In proximal SGD, on ev-
ery iteration, each worker p computes SFs (up,vp), based
on one data sample xi = (ai,bi) in the worker’s data
shard. The worker then broadcasts (up,vp) to all other
workers; once all P workers have performed their broad-
cast (and have thus received all SFs), they re-construct the
P update matrices (one per data sample) from the P SFs,
and apply them to update their local copy of W. Finally,
each worker applies the proximal operator proxh(·). When
using SDCA, the above procedure is instead used to broad-
cast SFs for the auxiliary matrix Z, which is then used
to obtain the primal matrix W = ∇h∗(Z). Figure 1 il-
lustrates SFB operation: 4 workers compute their respec-
tive SFs (u1,v1), . . . , (u4,v4), which are then broad-

3For simplicity, we assume each worker has enough memory
to hold a full copy of the parameter matrix W. If W is too large,
one can either partition it across multiple machines (Dean et al.,
2012; Li et al., 2014), or use local disk storage (i.e. out of core
operation). We plan to investigate these strategies as future work.
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Figure 1: Sufficient Factor Broadcasting (SFB).

cast to the other 3 workers. Each worker p uses all 4
SFs (u1,v1), . . . , (u4,v4) to exactly reconstruct the up-
date matrices 4Wp = upv

>
p , and update their local copy

of the parameter matrix: Wp ←Wp−
∑4
q=1 uqv

>
q . While

the above description reflects synchronous execution, it is
easy to extend to (bounded) asynchronous execution.

SFB vs Client-Server Architectures: The SFB peer-to-
peer topology can be contrasted with a “full-matrix” client-
server architecture for parameter synchronization, e.g. as
used by Project Adam (Chilimbi et al., 2014) to learn
neural networks: there, a centralized server maintains the
global parameter matrix, and each client keeps a local copy.
Clients compute sufficient factors and send them to the
server, which uses the SFs to update the global parame-
ter matrix; the server then sends the full, updated parame-
ter matrix back to clients. Although client-to-server costs
are reduced (by sending SFs), server-to-client costs are still
expensive because full parameter matrices need to be sent.
In contrast, the peer-to-peer SFB topology never sends full
matrices; only SFs are sent over the network. We also note
that under SFB, the update matrices are reconstructed at
each of the P machines, rather than once at a central server
(for full-matrix architectures). Our experiments show that
the time taken for update reconstruction is empirically neg-
ligible compared to communication and SF computation.

Partial Broadcasting A naive peer-to-peer topology in-
curs a communication cost of O(P 2) (where P is the num-
ber of worker machines), which inhibits scalability to data
center scale clusters where P can reach several thousand
(Dean et al., 2012; Li et al., 2014). Hence, SFB adopts
an (optional) partial broadcasting scheme where each ma-
chine connects with and sends messages to a subset of Q
machines (rather than all other machines), thus reducing
communication costs from O(P 2) to O(PQ). Figure 2
presents an example. In partial broadcasting, an update U tp
generated by machine p at iteration t is sent only to ma-
chines that are directly connected with p (and the update
U tp takes effect at iteration t + 1). The effect of U tp is in-
directly and eventually transmitted to every other machine
q, via the updates generated by machines sitting between
p and q in the topology. This happens at iteration t + τ ,
for some delay τ > 1 that depends on Q and the loca-
tion of p and q in the network topology. Consequently, the
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Figure 2: An Example of Partial Broadcasting.

P machines will not have the exact same parameter im-
age W, even under bulk synchronous parallel execution —
yet surprisingly, this does not empirically (Section 5) com-
promise algorithm accuracy as long as Q is not too small.
We hypothesize that this property is related to the tolerance
of ML algorithms to bounded-asynchronous execution and
random error, and we defer a formal proof to future work.

Determining the “best” topology of partial broadcasting,
i.e., which subset of machines each machine should send
message to, is a challenging issue. Previous studies (Li
et al., 2015) are mostly based on heuristics. While empir-
ically effective, these heuristics lack a mathematically for-
malizable objective. To address this issue, we propose an
optimization-oriented solution, with the goal to achieve fast
dissemination of information: the effect of updates gener-
ated at each machine should be “seen” by all other ma-
chines as quickly as possible. Formally, we aim to reduce
the delay τ . Consider a directed network with P nodes,
where epq = 1 denotes that node p sends message to node
q and epq = 0 otherwise. Let cpq denote the shortest di-
rected path from node p to q. It is easy to see that τ = |cpq|,
where |cpq| is the length of cpq . Letting E = {epq}Pp=1,q 6=p
we can find a network topology that minimizes τ by solving
this optimization problem:

minE
∑P
p=1

∑P
q 6=p |cpq|

s.t.
∑P
q 6=p epq = Q,∀p (3)

which can be efficiently solved by using a Branch and
Bound (Land and Doig, 1960) searching of the graph struc-
ture, in conjunction with an algorithm (Williams, 2014)
finding all-pairs shortest path in directed graphs.

Mini-batch Proximal SGD/SDCA: SFB can also be used
in mini-batch proximal SGD/SDCA; every iteration, each
worker samples a mini-batch of K data points, and com-
putes K pairs of sufficient factors {(ui,vi)}Ki=1. These
K pairs are broadcast to all other workers, which recon-
struct the originating worker’s update matrix as 4W =
1
K

∑K
i=1 uiv

T
i .

Consistency Models SFB supports two consistency
models: Bulk Synchronous Parallel (BSP-SFB) and Stale
Synchronous Parallel (SSP-SFB), and we provide theoreti-
cal convergence guarantees in the next section.

• BSP-SFB: Under BSP (Dean and Ghemawat, 2008; Za-

sfb app mlr ( int J, int D, int staleness )
//SF computation function
function compute sv ( sfb app mlr ):

while ( ! converged ):
X = sample minibatch ()
foreach xi in X:

//sufficient factor ui
pred = predict ( mlr.para mat, xi )
mlr.sv list[i].write u ( pred )
//sufficient factor vi
mlr.sv list[i].write v ( xi )

commit()

Figure 3: Multiclass LR Pseudocode.

haria et al., 2012), an end-of-iteration global barrier en-
sures all workers have completed their work, and syn-
chronized their parameter copies, before proceeding to
the next iteration. BSP is a strong consistency model,
that guarantees the same computational outcome (and
thus algorithm convergence) each time.

• SSP-SFB: BSP can be sensitive to stragglers (slow
workers) (Ho et al., 2013), limiting the distributed sys-
tem to the speed of the slowest worker. Stale Syn-
chronous Parallel (SSP) (Bertsekas and Tsitsiklis, 1989;
Ho et al., 2013) communication model addresses this is-
sue, by allowing workers to advance at different rates,
provided that the difference in iteration number between
the slowest and fastest workers is no more than a user-
provided staleness s. SSP alleviates the straggler issue
while guaranteeing algorithm convergence (Ho et al.,
2013). Under SSP-SFB, each worker p tracks the num-
ber of SF pairs computed by itself, tp, versus the number
τ qp (tp) of SF pairs received from each worker q. If there
exists a worker q such that tp − τ qp (tp) > s (i.e. some
worker q is likely more than s iterations behind worker
p), then worker p pauses until q is no longer s iterations
or more behind.

Programming Interface The SFB programming inter-
face is simple; users need to provide a SF computa-
tion function to specify how to compute the sufficient
factors. To send out SF pairs (u,v), the user adds
them to a buffer object sv list, via: write u(vec u),
write v(vec v), which set i-th SF u or v to vec u or vec v.
All SF pairs are sent out at the end of an iteration, which is
signaled by commit(). Finally, in order to choose between
BSP and SSP consistency, users simply set staleness to an
appropriate value (0 for BSP, > 0 for SSP). SFB automati-
cally updates workers’ local parameter matrix using all SF
pairs — including both locally computed SF pairs added
to sv list, as well as SF pairs received from other work-
ers. Figure 3 shows SFB pseudocode for multiclass logis-

799



tic regression. For proximal SGD/SDCA algorithms, SFB
requires users to write an additional function, prox(mat),
which applies the proximal operator proxh(·) (or the SDCA
dual operator h∗(·)) to the parameter matrix mat.

4 COST ANALYSIS AND THEORY
We now examine the costs and convergence behav-
ior of SFB under synchronous and bounded-async (e.g.
SSP (Bertsekas and Tsitsiklis, 1989; Ho et al., 2013)) con-
sistency, and show that SFB can be preferable to full-matrix
synchronization/communication schemes.

4.1 COST ANALYSIS

Figure 4 compares the communications, space and time (to
apply updates to W) costs of peer-to-peer SFB, against full
matrix synchronization (FMS) under a client-server archi-
tecture (Chilimbi et al., 2014). For SFB with a full broad-
casting scheme, in each minibatch, every worker broad-
casts K SF pairs (u,v) to P − 1 other workers, i.e.
O(P 2K(J + D)) values are sent per iteration — linear in
matrix dimensions J,D, and quadratic in P . For SFB with
a partial broadcasting scheme, every worker communicates
SF pairs with Q < P peers, hence the communication cost
is reduced to O(PQK(J + D)). Because SF pairs can-
not be aggregated before transmission, the cost has a de-
pendency on K. In contrast, the communication cost in
FMS is O(PJD), linear in P , quadratic in matrix dimen-
sions, and independent of K. For both SFB and FMS, the
cost of storing W is O(JD) on every machine. As for the
time taken to update W per iteration, FMS costs O(PJD)
at the server (to aggregate P client update matrices) and
O(PKJD) at the P clients (to aggregate K updates into
one update matrix). By comparison, SFB bears a cost of
O(P 2KJD) under full broadcasting andO(PQKJD) un-
der partial broadcasting due to the additional overhead of
reconstructing each update matrix P or Q times.

Compared with FMS, SFB achieves communication sav-
ings by paying an extra computation cost. In a number of
practical scenarios, such a tradeoff is worthwhile. Consider
large problem scales where min(J,D) ≥ 10000, and mod-
erate minibatch sizes 1 ≤ K ≤ 100 (as studied in this pa-
per); when using a moderate number of machines (around
10-100), theO(P 2K(J+D)) communications cost of SFB
is lower than the O(PJD) cost for FMS, and the rela-
tive benefit of SFB improves as the dimensions J,D of W
grow. In data center scale computing environments with
thousands of machines, we can adopt the partial broadcast-
ing scheme. As for the time needed to apply updates to W,
it turns out that the additional cost of reconstructing each
update matrix P or Q times in SFB is negligible in practice
— we have observed in our experiments that the time spent
computing SFs, as well as communicating SFs over the net-
work, greatly dominates the cost of reconstructing update
matrices using SFs. Overall, the communication savings

dominate the added computational overhead, which we val-
idated in experiments.

4.2 CONVERGENCE ANALYSIS

We study the convergence of minibatch SGD under full
broadcasting SFB (with extensions to proximal-SGD,
SDCA being a topic for future study). Since SFB is a
peer-to-peer decentralized computation model, we need to
show that parameter copies on different workers converge
to the same limiting point without a centralized coordina-
tion, even under delays in communication due to bounded
asynchronous execution. In this respect, we differ from
analyses of centralized parameter server systems (Ho et al.,
2013), which instead show convergence of global parame-
ters on the central server.

We wish to solve the optimization problem minW

∑M
m=1

fm(W), where M is the number of training data mini-
batches, and fm corresponds to the loss function on the
m-th minibatch. Assume the training data minibatches
{1, ...,M} are divided into P disjoint subsets {S1, ..., SP }
with |Sp| denoting the number of minibatches in Sp. De-
note F =

∑M
m=1 fm as the total loss, and for p = 1, . . . , P ,

Fp :=
∑
j∈Sp

fj is the loss on Sp (on the p-th machine).

Consider a distributed system with P machines. Each ma-
chine p keeps a local variable Wp and the training data in
Sp. At each iteration, machine p draws one minibatch Ip
uniformly at random from partition Sp, and computes the
partial gradient

∑
j∈Ip ∇fj(Wp). Each machine updates

its local variable by accumulating partial updates from all
machines. Denote ηc as the learning rate at c-th iteration
on every machine. The partial update generated by ma-
chine p at its c-th iteration is denoted as Up(Wc

p, I
c
p) =

−ηc|Sp|
∑
j∈Icp ∇fj(W

c
p). Note that Icp is random and the

factor |Sp| is to restore unbiasedness in expectation. Then
the local update rule of machine p is

Wc
p = W0 +

∑P
q=1

∑τq
p (c)

t=0 Uq(W
t
q, I

t
q)

0 ≤ (c− 1)− τ qp (c) ≤ s
(4)

where W0 is the common initializer for all P machines,
and τ qp (c) is the number of iterations machine q has trans-
mitted to machine p when machine p conducts its c-th it-
eration. Clearly, τpp (c) = c. Note that we also require
τ qp (c) ≤ c − 1, i.e., machine p will not use any partial
updates of machine q that are too fast forward. This is to
avoid correlation in the theoretical analysis. Hence, ma-
chine p (at its c-th iteration) accumulates updates generated
by machine q up to iteration τ qp (c), which is restricted to be
at most s iterations behind. This formulation, in which s
is the maximum “staleness” allowed between any update
and any worker, covers bulk synchronous parallel (BSP)
full broadcasting (s = 0) and bounded-asynchronous full
broadcasting (s > 0). The following standard assumptions
are needed for our analysis:
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Computational Model Total comms, per iter W storage per machine W update time, per iter
SFB (peer-to-peer, full broad-
casting)

O(P 2K(J +D)) O(JD) O(P 2KJD)

SFB (peer-to-peer, partial
broadcasting)

O(PQK(J +D)) O(JD) O(PQKJD)

FMS (client-server (Chilimbi
et al., 2014))

O(PJD) O(JD) O(PJD) at server,
O(PKJD) at clients

Figure 4: Cost of using SFB versus FMS.K is minibatch size, J,D are dimensions of W, and P is the number of workers.

Assumption 1. (1) For all j, fj is continuously differen-
tiable and F is bounded from below; (2)∇F ,∇Fp are Lip-
schitz continuous with constants LF and Lp, respectively,
and let L =

∑P
p=1 Lp; (3) There exists B, σ2 such that

for all p and c, we have (almost surely) ‖Wc
p‖ ≤ B and

E‖ |Sp|
∑
j∈Ip ∇fj(W)−∇Fp(W) ‖22 ≤ σ2.

Our analysis is based on the following auxiliary update

Wc = W0 +
∑P
q=1

∑c−1
t=0 Uq(W

t
q, I

t
q), (5)

Compare to the local update (4) on machine p, essentially
this auxiliary update accumulates all c − 1 updates gener-
ated by all machines, instead of the τ qp (c) updates that ma-
chine p has access to. We show that all local machine pa-
rameter sequences are asymptotically consistent with this
auxiliary sequence:

Theorem 1. Let {Wc
p}, p = 1, . . . , P , and {Wc} be the

local sequences and the auxiliary sequence generated by
SFB for problem (P) (with h ≡ 0), respectively. Under

Assumption 1 and set the learning rate ηc = O(
√

1
Lσ2Psc ),

then we have

• lim inf
c→∞

E‖∇F (Wc)‖ = 0, hence there exists a subse-

quence of∇F (Wc) that almost surely vanishes;
• lim
c→∞

maxp ‖Wc−Wc
p‖ = 0, i.e. the maximal disagree-

ment between all local sequences and the auxiliary se-
quence converges to 0 (almost surely);

• There exists a common subsequence of {Wc
p} and

{Wc} that converges almost surely to a stationary
point of F , with the rate min

c≤C
E‖∑P

p=1∇Fp(Wc
p)‖22 ≤

O

(√
Lσ2Ps
C

)

Intuitively, Theorem 1 says that, given a properly-chosen
learning rate, all local worker parameters {Wc

p} eventu-
ally converge to stationary points (i.e. local minima) of the
objective function F , despite the fact that SF transmission
can be delayed by up to s iterations. Thus, SFB learning
is robust even under bounded-asynchronous communica-
tion (such as SSP). Our analysis differs from (Bertsekas
and Tsitsiklis, 1989) in two ways: (1) Bertsekas and Tsit-
siklis (1989) explicitly maintains a consensus model which
would require transmitting the parameter matrix among
worker machines — a communication bottleneck that we
were able to avoid; (2) we allow subsampling in each
worker machine. Accordingly, our theoretical guarantee

is probabilistic, instead of the deterministic one in (Bert-
sekas and Tsitsiklis, 1989). In future work, we intend
to extend the analysis to partial broadcasting under BSP
and bounded-asynchronous execution. Partial broadcasting
presents additional challenges, because updates are only
sent to a subset of machines (rather than every machine).

5 EXPERIMENTS
We demonstrate how four popular models can be efficiently
learnt using SFB: (1) multiclass logistic regression (MLR)
and distance metric learning (DML)4 based on SGD; (2)
sparse coding (SC) based on proximal SGD; (3) `2 reg-
ularized multiclass logistic regression (L2-MLR) based on
SDCA. For baselines, we compared with (a) Spark (Zaharia
et al., 2012) for MLR and L2-MLR, and (b) full matrix syn-
chronization (FMS) implemented on open-source parame-
ter servers (Ho et al., 2013; Li et al., 2014) for all four mod-
els. In certain experiments, we made a comparison with
the distributed (L2-)MLR system proposed in (Gopal and
Yang, 2013). In FMS, workers send update matrices to the
central server, which then sends up-to-date parameter ma-
trices to workers5. Due to data sparsity, both the update
matrices and sufficient factors are sparse; we use this fact
to reduce communication and computation costs. The ex-
periments were performed on a cluster where each machine
has 64 2.1GHz AMD cores, 128G memory, and a 10Gbps
network interface. Unless otherwise noted, 12 machines
were used. Some experiments were conducted on 28 ma-
chines.

Datasets and Experimental Setup We used two datasets
for our experiments: (1) ImageNet (Deng et al., 2009) ILS-
FRC2012 dataset, which contains 1.2 million images from
1000 categories; the images are represented with LLC fea-
tures (Wang et al., 2010), whose dimensionality is 172k.
(2) Wikipedia (Partalas et al., 2015) dataset, which con-
tains 2.4 million documents from 325k categories; docu-
ments are represented with term frequency, inverse docu-
ment frequency (tf-idf), with a dimensionality of 20k. We
ran MLR, DML, SC, L2-MLR on the Wikipedia, Ima-

4For DML, we use the parametrization proposed in (Wein-
berger et al., 2005), which is a linear projection matrix L ∈ Rd×k,
where d is the feature dimension and k is the latent dimension.

5This has the same communication complexity as (Chilimbi
et al., 2014), which sends SFs from workers to servers, but sends
matrices from servers to workers; the latter matrix transmission
dominates the total cost.
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Figure 5: Convergence time versus model size for MLR, DML, SC, L2-MLR (left to right), under BSP.
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Figure 6: MLR objective vs runtime (left), #samples vs runtime (middle), objective vs #samples (right).

geNet, ImageNet, Wikipedia datasets respectively, and the
parameter matrices contained up to 6.5b, 8.6b, 8.6b, 6.5b
entries (the largest latent dimension for DML and largest
dictionary size for SC were both 50k). The tradeoff param-
eters in SC and L2-MLR were set to 0.001 and 0.1. We
tuned the minibatch size, and found that K = 100 was
near-ideal for all experiments. All experiments used the
same constant learning rate (tuned in the range [10−5, 1]).
Unless otherwise stated, a full broadcasting scheme is used
for most experiments.

Convergence Speed and Quality Figure 5 shows the
time taken to reach a fixed objective value, for different
model sizes, using BSP consistency (SSP results are in
the supplement), on 12 machines. SFB converges faster
than FMS, as well as Spark v1.3.16. This is because SFB
has lower communication costs, hence a greater propor-
tion of running time gets spent on computation rather than
network waiting. This is shown in Figure 6, which plots
data samples processed per second7 (throughput) and algo-
rithm progress per sample for MLR, under BSP consistency
(SSP results are in the supplement) and varying minibatch
sizes. The middle graph shows that SFB processes far more
samples per second than FMS, while the rightmost graph
shows that SFB and FMS produce exactly the same algo-
rithm progress per sample under BSP. For this experiment,
minibatch sizes between K = 10 and 100 performed the
best as indicated by the leftmost graph. We point out that
larger model sizes should further improve SFB’s advantage
over FMS, because SFB has linear communications cost in
the matrix dimensions, whereas FMS has quadratic costs.
Under a large model size (e.g., 325k classes in MLR), the
communication cost becomes the bottleneck in FMS and
causes prolonged network waiting time and parameter syn-
chronization delays, while the cost is moderate in SFB.

6Spark is about 2x slower than PS (Ho et al., 2013) based C++
implementation of FMS, due to JVM and RDD overheads.

7We use samples per second instead of iterations, so different
minibatch sizes can be compared.

We also evaluated SFB on 28 machines, under BSP and
full broadcasting (Q=27). On MLR (325k classes), SFB
took 2.46 hours to converge while FMS took 10.77 hours.
On L2-MLR (325k classes), the convergence time of SFB
is 2.14 hours while that of FMS is 9.31 hours.

We made a comparison with the distributed (L2-)MLR sys-
tem proposed by (Gopal and Yang, 2013) on 12 machines.
On MLR (325k classes), Gopal and Yang (2013) took 31.7
hours to converge while SFB took 4.5 hours. To converge
on L2-MLR (325k classes), Gopal and Yang (2013) took
28.3 hours while SFB took 3.7 hours.

Scalability In all experiments that follow, we set the
number of (L2-)MLR classes, DML latent dimension, SC
dictionary size to 325k, 50k, 50k. Figure 7 shows SFB scal-
ability with varying machines under BSP (SSP results are
in the supplement), for MLR, DML, SC, L2-MLR, on 12
machines. In general, we observed close to linear (ideal)
speedup, with a slight drop at 12 machines. On 28 ma-
chines, for MLR and L2-MLR, SFB achieved 17.4x and
15.7x speedup over one machine respectively.

Computation Time vs Network Waiting Time Figure
8 shows the total computation and network time required
for SFB and FMS to converge, across a range of SSP stale-
ness values8 — in general, higher communication cost and
lower staleness induce more network waiting. For all stal-
eness values, SFB requires far less network waiting (be-
cause SFs are much smaller than full matrices in FMS).
Computation time for SFB is slightly longer than FMS be-
cause (1) update matrices must be reconstructed on each
SFB worker, and (2) SFB requires a few more iterations for
convergence, because peer-to-peer communication causes
a slightly more parameter inconsistency under staleness.
Overall, the SFB reduction in network waiting time re-
mains far greater than the added computation time, and
outperforms FMS in total time. For both FMS and SFB,

8The Spark implementation does not easily permit this time
breakdown, so we omit it.

802



0

2

4

6

8

10

12

14

3 6 9 12

Sp
e

e
d

u
p

 

# Machines in MLR 

Linear

SFB

0

2

4

6

8

10

12

14

3 6 9 12

Sp
e

e
d

u
p

 

# Machines in DML 

0

2

4

6

8

10

12

14

3 6 9 12

Sp
e

e
d

u
p

 

# Machines in SC 

0

2

4

6

8

10

12

14

3 6 9 12

Sp
e

e
d

u
p

 

# Machines in L2-MLR 

Figure 7: SFB scalability with varying machines under BSP, for MLR, DML, SC, L2-MLR (left to right).
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Figure 8: Computation vs network waiting time for MLR, DML, SC, L2-MLR (left to right).
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Figure 9: Convergence time versus Q in partial broadcast-
ing for MLR (left) and L2-MLR (right), under BSP.

the shortest convergence times are achieved at moderate
staleness values, confirming the importance of bounded-
asynchronous communication.

Partial Broadcasting On 12 machines, we studied in
partial broadcasting how the parameter Q, which is the
number of peers to which each machine sends messages,
affects the convergence speed of SFB. Figure 9 shows the
convergence time of SFB on MLR and L2-MLR versus
varying Q, under BSP (SSP results are given in supple-
ments). First, we observed that SFB under partial broad-
casting (PB) with Q < 11 converges to the same objective
value as under full broadcasting (FB) where Q = 11. This
provides empirical justification that PB preserves correct-
ness and convergence of algorithms. Second, we noted that
the convergence time of PB is affected by Q. As observed
in this figure, a smaller Q incurs longer convergence time.
This is because a smaller Q is more likely to cause the pa-
rameter copies on different workers to be out of synchro-
nization and degrade iteration quality. However, as long as
Q is not too small, the convergence speed of PB is compa-
rable with FB. As shown in the figure, for Q ≥ 4, the con-
vergence time of PB is very close to FB. This demonstrates
that using PB, we can reduce the communication cost from
O(P 2) to O(PQ) with slight sacrifice of the convergence
speed.

6 RELATED WORKS

A number of system and algorithmic solutions have been
proposed to reduce communication cost in distributed ML.
On the system side, Dean et al. (2012) proposed to re-

duce communication overhead by reducing the frequency
of parameter/gradient exchanges between workers and the
server. Li et al. (2014) used filters to select “important”
parameters/updates for transmission to reduce the number
of data entries to be communicated. On the algorithm side,
Tsianos et al. (2012) studied the tradeoffs between commu-
nication and computation in distributed dual averaging and
distributed stochastic dual coordinate ascent respectively.
Shamir et al. (2014) proposed an approximate Newton-
type method to achieve communication efficiency in dis-
tributed optimization. SFB is orthogonal to these existing
approaches and be potentially combined with them to fur-
ther reduce communication cost.

Peer-to-peer, decentralized architectures have been investi-
gated in other distributed ML frameworks (Li et al., 2015).
Our SFB system also adopts such an architecture, but with
the specific purpose of supporting the SFB computation
model, which is not explored by existing peer-to-peer ML
frameworks.

7 CONCLUSIONS

In this paper, we identify the sufficient factor property of
a large set of matrix-parametrized models: when these
models are optimized with stochastic gradient descent or
stochastic dual coordinate ascent, the update matrices are
of low-rank. Leveraging this property, we propose a suffi-
cient factor broadcasting strategy to efficiently handle the
learning of these models with low communication cost. A
partial broadcasting scheme is investigated to alleviate the
overhead of full broadcasting. We analyze the cost and
convergence property of SFB, whose communication ef-
ficiency is demonstrated in empirical evaluations.
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Abstract

A graph-based multi-class classification prob-
lem is typically converted into a collection of
binary classification tasks via the one-vs.-all
strategy, and then tackled by applying proper
binary classification algorithms. Unlike the one-
vs.-all strategy, we suggest a unified frame-
work which operates directly on the multi-class
problem without reducing it to a collection of
binary tasks. Moreover, this framework makes
active learning practically feasible for multi-
class problems, while the one-vs.-all strategy
cannot. Specifically, we employ a novel ran-
domized query technique to prioritize the in-
formative instances. This query technique based
on the hybrid criterion of “margin” and “un-
certainty” can achieve a comparable mistake
bound with its fully supervised counterpart. To
take full advantage of correctly predicted labels
discarded in traditional conservative algorithms,
we propose an aggressive selective sampling
algorithm that can update the model even if no
error occurs. Thanks to the aggressive updating
strategy, the aggressive algorithm attains a lower
mistake bound than its conservative competitors
in expectation. Encouraging experimental results
on real-world graph databases show that the
proposed technique by querying an extremely
small ratio of labels is able to accomplish better
classification accuracy.

I. INTRODUCTION
Graphs, as a family of ubiquitous structures to model
different types of networks, such as social networks (e.g.,
Facebook, Twitter), biological networks [19], [20], and
citation networks [21], have been widely applied in diverse
applications. Particularly, one important task is to classify
graph vertices into multiple classes, e.g., authors in a
citation network can be classified into different domain-

s/classes, such as computer science, biology, physics,
mathematics, economics, etc. To build a classifier, the
desired classification model can be learnt from a set of
vertex-label pairs in both offline [7] and online settings
[16]. Offline algorithms can access the labels of all the
stored vertices in a pool, which increases the storage
requirement. Online learning, on the other hand, obtains
the instances in a sequential order. It allows to access
the label of the current vertex; after updating the model,
the current input will be discarded [18]. Therefore, online
learning is scalable to deal with massive datasets.

Although online classification on graphs has been well
studied, it still remains as a challenging research subject,
which is primarily due to three reasons. First, most online
techniques focus on binary classification problems. Some
approaches [14], [22] address multi-class problems by
using output coding [12]. Such a setting may be inef-
fective and ill-defined since it generalizes multiple binary
classifiers and each classifier is maintained and updated
independently of the others 1. Second, online learning
assumes that the labels of all vertices are provided already.
It is impractical as labeling every sample is expensive and
time-consuming in many real-world applications. Third,
in social networks, data usually arrives in a sequential
order and the network scale can be very large, which
brings a critical challenge to develop efficient and scalable
algorithms for graph classification.

To address the aforementioned challenges, we present a
unified framework to cope with multi-class online clas-
sification on graphs. Specifically, we adapt the graph
Laplacian Regularized Least Squares (LapRLS) model to
the multi-class setting, in which updating one class model
has a global impact on the other classes. However, such
an approach assumes that all labels are available, which
obviously limits its usage to many domains. To minimize
the labeling cost, we propose a new query technique based
on both the “margin” [9] and “uncertainty” criteria, to only
query the labels of the most informative instances. We

1Refer to the comparison between the binary and multi-class
settings in the supplementary material.
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theoretically analyze an online algorithm running on the
selected labels by our query technique, which achieves
a comparable mistake bound with the one that queries
all labels. In addition, to take full advantage of correctly
predicted labels that are discarded in conservative algo-
rithms, we introduce an aggressive version of selective
sampling. It hybrids the conservative update with the
aggressive sampling scheme, which updates the model
even if no error occurs. The theoretical results show that
our aggressive selective sampling algorithm can achieve
better performance than its conservative competitors. Ex-
tensive experiments carried out on several real-world
graph datasets further validate the empirical performance
of the proposed algorithms.

The rest of this paper is organized as follows. Section 2
presents the problem setting of graph classification. The
proposed multi-class online learning and selective sam-
pling algorithms are described in Section 3 and Section 4,
respectively. Section 5 discusses the experimental results.
Section 6 concludes our work.

II. GRAPH CLASSIFICATION
In this section, we first present the notations. Then we
introduce a graph Laplacian regularization that can derive
a linear model for multi-class classification.

A. Notation
In this paper, we will use lower case letters as scalars
(e.g. x), lower case bold letters as vectors (e.g. f ), upper
case letters as elements of a matrix (e.g. Sij) and bold-
face upper letters as matrices (e.g. S). With an appropriate
size, an identity matrix is defined as I and a vector of all
zeros as 0. The transpose of a vector m is denoted as
m⊤, the inverse of a matrix A as A−1, and the pseudo
inverse of A as A†. A diagonal matrix is denoted as
diag(σ1, . . . , σn) with diagonal elements σi, i ∈ [1, n]. In
addition, Euclidean norms are denoted as ∥·∥2, Frobenius
norm as ∥·∥F and the trace of square matrix as tr(·). When
function f(W ) is differentiable, we denote its gradient by
∇f(W ).

We consider the problem of classification in probabilistic
setting: n i.i.d. pais are generated by a probability distri-
bution on X×Y , where yi in a pair of (xi, yi) is the class
of instance xi. We define |Y| = 2 as binary-class setting,
and |Y| > 2 as a multi-class problem.

B. Graph Laplacian Regularization
G = (V, E) is defined as a graph with an vertex set
V = {v1, . . . , vn}, an edge set E = {(vi, vj)|vi, vj ∈ V }
and an adjacency matrix S ∈ Rn×n, where the element
Sij ∈ R+

0 is measured by the affinity of edge (vi, vj).
We assume graph G is connected and undirected in this
work. Given D is the diagonal matrix with Dii =

∑
j Sij ,

graph Laplacian is defined as L = D − S with its
eigenvector V = [v1, . . . ,vn](vi ∈ Rn) and eigenvalue
Λ = diag(λ1, . . . , λn) where 0 = λ1 ≤ . . . ≤ λn.
Intuitively, the objective function incurs a heavy penalty,
if neighboring vertices vi and vj are mapped far apart.
The graph regularization [17] assumes a label smoothness
over the graph,

1

2

n∑

i,j=1

Sij∥fi − fj∥2 = tr
(
F⊤ (D − S)F

)
= tr

(
F⊤LF

)
,

where F = [f1, . . . , fn]⊤ and fi ∈ RK is the prediction
scores of node i on K classes.

In the setting of graph classification, the real-valued
function satisfies: 1) the values of function F for labeled
vertices should be close to the given labels for that
vertices; 2) vertices should satisfy label smoothness on
the whole graph, that is, the points nearby in graph
should have similar labels. In the multi-class scenario, the
generalized LapRLS solves the following function,

min
F
∥F − Y ∥2F + γtr

(
F⊤LF

)
, (1)

where Y = [y1, . . . ,yn]⊤ ∈ Rn×K , yi ∈ RK is the
true label of node i on K classes, and γ > 0 is a
regularized parameter for graph Laplacian. To solve the
problem (1) with a linear model, we consider its dual form.
Using the definition of graph kernel [17], the function
F can be defined, F = L†Φ, where L† is the pseudo
inverse of L and Φ ∈ Rn×K is a parameter matrix.
Assuming that L† = M⊤M =

∑
i

1
λi

viv
⊤
i , where M =

[ 1√
λ1

v1, . . . ,
1√
λn

vn]⊤ ∈ Rn×n and W = MΦ ∈ Rn×K ,
the kernel function F can be reformatted in a linear model
form,

F = M⊤W, (2)
where fi = W⊤mi is essentially a linear regression
model. In the multi-class setting, our linear model and
its prediction margin are defined as follows.
Definition 1. We define a multi-class linear model that
consists of label score of an input mi over the K classes,

fi = [Pmi

W (1), . . . , Pmi

W (K)]
⊤

. (3)

Given the node-label pair (mi, yi), we define the predic-
tion margin of fi,

Pmi

W (yi)−max
j ̸=yi

Pmi

W (j) = fi · yi, (4)

where yi ∈ RK is a label vector of node i with an
entry of +1 for true class yi, −1 for the class j =
argmaxj ̸=yi

Pmi

W (j) and 0 otherwise.

Substituting Eq. (2) into Eq. (1), we obtain,

min
W
∥M⊤W − Y ∥2F + γtr

(
W⊤W

)
.

In this way, we derive a formulation, similar to ridge-
regression, with an additional regularization to shrink the
prediction. It helps us to derive a multi-class online model
with a new data representation for graph vertex.
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C. Low-rank Approximation
Given M = [ 1√

λ1
v1, . . . ,

1√
λn

vn]⊤, the matrix W is
updated with the time complexity O(n2), that is compu-
tationally expensive in large graph datasets. To make our
algorithm scalable to big graphs, we propose a low-rank
approximation M̂ as follows,

M̂ = [
1√
λ1

v1, . . . ,
1√
λd

vd]
⊤ ∈ Rd×n, Ŵ = M̂Φ ∈ Rd×K ,

where d ≪ n and the time complexity of our algorithm
becomes O(d2)≪ O(n2). We analyze the impact of such
low-rank approximation on the function F̂ = M̂⊤Ŵ . We
have F̂ = L̂†Φ, where L̂† = M̂⊤M̂ =

∑d
i=1

1
λi

viv
⊤
i .

Given that 1
λ1
≥ . . . ≥ 1

λn
, L̂† holds the d largest

eigenvalues of L†. In this case, L̂† is the best rank-d
approximation of L† [13], and thus F̂ is the best rank-d
approximation of F . Equipped with M̂ and Ŵ a low-rank
objective function for multi-class online classification can
be rewritten as follows,

arg min
Ŵ

T∑

t=1

∥Ŵ⊤m̂t − yt∥22 + γtr(Ŵ⊤Ŵ ).

III. ONLINE LEARNING
Now we are ready to derive a multi-class online model
on graph. We first present the problem setting of online
learning. Then we derive the online classifier and its
mistake bound.

A. Problem Setting
The purpose of online learning is to minimize
the cumulative loss over the sequential nodes. Let
(m1,y1), . . . , (mT ,yT ) (T ≤ n) be a sequence of
vertices, where mt ∈ Rn is one column of matrix M and
yt ∈ RK is its label vector, an online version of LapRLS
in multi-class setting is derived,

GT (W ) =
T∑

t=1

∥W⊤mt − yt∥22 + γtr
(
W⊤W

)
. (5)

At round t, online algorithm receives an input vertex
mt, and predicts its label with the maximal score among
the K classes, ŷt = argmin

i∈[K]

Pmt

Wt
(i). After prediction,

its actual label yt is revealed, and the algorithm uses it
to update model and then proceeds to the next round.
At each iteration, the performance of the online model
is evaluated by a squared loss, ℓt(W ) = ℓ(yt, ŷt) =
∥yt −W⊤mt∥22 with cumulative loss over T iterations,
LT (W ) =

∑T
t=1 ℓt(W ). Similar, for any U ∈ Rn×K , let

ℓt(U) = ∥U⊤mt − yt∥22 be the instantaneous loss and
LT (U) =

∑T
t=1 ℓt(U) be the cumulative loss. The goal

of online learning is to achieve low regret compared with
the best linear function,

RT =

T∑

t=1

gt(W )− inf
U

T∑

t=1

gt(U),

where GT (W ) =
∑T

t=1 gt(W ) and gt(W ) = ℓt(W ) +
γtr

(
W⊤W

)
is regularized instantaneous loss on round t.

B. Online Learning on Graph
To minimize the regret, we have to minimize the cumu-
lative loss GT (W ) in the following lemma. We start with
the notations,

AT = γI +
T∑

t=1

mtm
⊤
t , BT =

T∑

t=1

mty
⊤
t . (6)

Lemma 1. For all T ≥ 1, GT (W ) = LT (W ) +
γtr(W⊤W ) is minimal at an unique point WT for all
T ≥ 1, given by

WT = A−1
T BT , G(WT ) =

T∑

t=1

∥yt∥2 − tr
(
B⊤

T A−1
T BT

)
.

We leave the proof in supplementary file. In Lemma 1,
we obtain an optimal linear solution WT . Inspired by [2],
we exploit current input to predict its label with ft =
B⊤

t−1A
−1
t mt where At = At−1 + mtm

⊤
t . However, it is

not efficient to perform update in each iteration. To make
it scalable on big graphs, we adopt a conservative strategy
[4] to update model whenever an error occurs (yt ̸= ŷt).
Note that our algorithm is different from [4], since the
solution is a matrix for multi-class classification. We call
our algorithm CMOG, a Conservative Multi-class Online
learning on Graph, and summarize it in algorithm 1.

Although the CMOG is simple, it is the first work of
online learning for solving graph-based multi-class prob-
lem. Below gives theoretical analysis of the CMOG and
we begin with a lemma that facilitates the proof. With
this lemma, we could then derive the mistake bound for
the CMOG. For convenience, we introduce an additional
notation:

rt = m⊤
t A−1

t−1mt. (7)

Then the following notation can be derived using Wood-
bury formula [3],

m⊤
t A−1

t mt
(6)
= m⊤

t

(
At−1 + mtm

⊤
t

)−1
mt

= m⊤
t (A−1

t−1 −
A−1

t−1mtm
⊤
t A−1

t−1

1 + m⊤
t A−1

t−1mt

)mt =
rt

1 + rt
.

Lemma 2. For all t ≥ 1, Gt(U) is the online LapRLS
with any U ∈ Rn×K . Let (m1,y1), . . . , (mT ,yT ) be a
sequence of input vertices, where mt ∈ Rn and yt ∈ RK ,
an online algorithm predicts with ft = B⊤

t−1A
−1
t mt. Then

the following equality holds,

inf
U

Gt(U)− inf
U

Gt−1(U) = ∥yt − ft∥22 −
2rt

1 + rt
+ rt∥ft∥22

We leave the proof in supplementary file. Based on
the above lemma, we prove the following theorem that
bounds the expected mistakes of CMOG. We denote
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M = {t|yt ̸= ŷt} as the set of mistake trials with
|M| = M . For any model U ∈ Rn×K , let UT be the
set of its update trial, and AUT = γI +

∑
t∈UT

mtm
⊤
t .

Its hinge loss on round t is defined,

L(y⊤
t U⊤mt) = [1− (Pmt

U (yt)−max
j ̸=yt

Pmt

U (j))]+.

Theorem 1. Let (m1,y1), . . . , (mT ,yT ) be a sequence
of inputs, where mt ∈ Rn and yt ∈ RK . Then for any
model U ∈ Rn×K and h > 0, the expected mistakes of
CMOG (Alg. 1) on these sequential nodes is bounded by,

E[M ] ≤E[
∑

t

L(y⊤
t U⊤mt)] +

h

2
tr(U⊤E[AUT

]U)

+
1

h
E[

∑

t

rt

1 + rt
].

Remark 2.
∑

t L(y⊤
t U⊤mt) is the cumulative hinge loss

made by U . Besides, for each class prototype ui(i ∈
[K]), u⊤

i AUT
ui lines between minj λj and maxj λj

where λj is an eigenvalue of the matrix AUT
. Thus,

tr(U⊤E[AUT
]U) ≤ K maxj λj . Finally,

∑
t

rt

1+rt
≤

log det(AT )
det(A0)

≤ n log(R2T + 1) given ∥m∥2 ≤ R.

Proof. The CMOG is a conservative algorithm that up-
dates model whenever an error occurs. If there is no
update, Ut = Ut−1 yields infU Gt(U) = infU Gt−1(U).
According to lemma 2, we have,

inf
U

Gt(U)− inf
U

Gt−1(U)

=I{yt ̸= ŷt}(∥yt − ft∥22 −
2rt

1 + rt
+ rt∥ft∥22)

holds for all trial t. Summing over t = 1, . . . , T , we obtain
via expanding the squares and some manipulations,

∑

t∈M
(∥yt∥22 − 2yt · ft + ∥ft∥22 −

2rt

1 + rt
+ rt∥ft∥22)

= inf
U

GT (U)− inf
U

G0(U)

≤
∑

t∈M
(∥yt∥22 − 2yt · U⊤mt) + tr(U⊤(γI +

∑

t∈UT

mtm
⊤
t )U)

holding for any U ∈ Rn×K . We ignore rt∥ft∥22 as it does
not affect upper bound. Given that ŷ = argmax

j ̸=yt

Pmt

WT
(j),

1−yt · U⊤mt ≤ [1− (Pmt

U (yt)− Pmt

U (ŷ))]+

≤ [1− (Pmt

U (yt)−max
j ̸=yi

Pmt

U (j))]+ = L(y⊤
t U⊤mt).

Since U is a random variable, we use hU (h > 0) to
replace U . We add

∑
t 2h on both sides of inequality and

simplify inequality with At and L(·),
∑

t∈M
(∥ft∥22 − 2yt · ft −

2rt

1 + rt
+ 2h)

≤2h
∑

t∈M
L(y⊤

t U⊤mt) + h2tr(U⊤AUT U).
(8)

Algorithm 1 CMOG: Conservative Multi-class Online
model on Graph

1: Input: Adjacency matrix S, and regularization param-
eter γ.

2: Output: WT

3: Compute L = D− S and M from L;
4: Initialize: A0 = γI , B0 = 0 , W0 = 0;
5: for t = 1, . . . , T do
6: Receive mt ∈ Rn;
7: Compute A−1

t = (At−1 + mtm
⊤
t )−1;

8: Predict ft = B⊤
t−1A

−1
t mt;

9: ŷt = arg maxj=1,..,K ft(j);
10: Query the actual label yt;
11: if ŷt ̸= yt then
12: Update At = At−1 + mtm

⊤
t ;

13: Update Bt = Bt−1 + mty
⊤
t ;

14: else
15: At = At−1, Bt = Bt−1;
16: end if
17: end for
18: WT = A−1

T BT ;

When an error occurs (i.e., yt ̸= ŷt), we have that
Pmt

Wt
(yt) ≤ Pmt

Wt
(ŷt) yields −yt · ft = Pmt

Wt
(ŷt) −

Pmt

Wt
(yt) ≥ 0. With the expectation of the inequality, we

bound given by ∥ft∥2 > 0,
∑

t∈M
E[∥ft∥22 − 2yt · ft −

2rt

1 + rt
+ 2h]

≥2hE[M ]− E[
∑

t

2rt

1 + rt
].

(9)

Taking the expectation of Eq. (8) to upper bound the left-
side of Eq. (9), we complete the proof.

IV. SELECTIVE SAMPLING
In this section, we first introduce the setting of selective
sampling. Next, we propose a novel randomized query
approach to select labels and then introduce an aggressive
algorithm that can use correctly predicted labels to opti-
mize the model. We theoretically analyze mistake bound
and query ratio of the proposed techniques. Finally, a low
rank approximation is introduced in our framework.

A. Problem Setting

Unlike online algorithm that queries all labels, selective
sampling has to decide whether to query label or not
for each vertex mt. If a label yt is queried of, the
algorithm can update learner with yt; otherwise, no action
is performed and the learner proceeds next one. Query
and update decisions in trial t are denoted as binary
variables Qt and Zt, respectively. When Qt = 1 iif label
yt is queried of; Qt = 0, no action performed. Update
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decision Zt is under similar setting. Generally, selective
sampling is a semi-supervised online learning algorithm.
Thus, its optimal solution can be derived in a form of
online learning with query/update decision in each trial,
i.e., Wt = A−1

t Bt, where At and Bt can turn to be a
recursive form,

At = At−1 + QtZtmtm
⊤
t , Bt = Bt−1 + QtZtmty

⊤
t .

Since A−1
t is computationally expensive, we derive a non-

inverted recursive form with time complexity O(n2) using
Woodbury formula as in (8).

B. Label Query
The CMOG assumes that all labels are provided, which
is not efficient in many real-world applications. To save
the labeling cost, we propose a novel randomized query
approach in multi-class setting. We begin with additional
quantities of interest:

y∗
t = argmax

i=1,...,K
Pmt

U∗ (i), y
′
t = argmax

i ̸=y∗
t

Pmt

U∗ (i);

ŷt = argmax
i=1,...,K

Pmt

Wt
(i), y

′′
t = argmax

i ̸=ŷt

Pmt

Wt
(i).

In words, y∗
t and y

′
t are the optimal and second-best

classes with respect to U∗ (i.e., the best model in
hindsight), while ŷt and y

′′
t are the estimates of these

classes based on our online learner Wt.

Definition 2. Given an input mt(t ∈ [T ]) and the weight
Wt = A−1

t Bt−1 , an algorithm predicts its label with
ft = W⊤

t mt, and queries the true label with a probability
2h

2h+max(0,Θt)
(h > 0), where Θt is a confidence score

towards current prediction,

Θt = Θ(ft, rt) =
1

2
∆2

t + 2∆t −
Krt

1 + rt
, (10)

where ∆t = Pmt

Wt
(ŷt)− Pmt

Wt
(y

′′
t ).

This query is tuned by a confidence score Θt: a coin with
bias h

h+max(0,Θt)
is flipped; if the coin turns up heads,

then actual label yt is queried; otherwise Qt = 0 and no
query performed. The randomized query has been studied
in previous selective samplings under binary classification
setting [6], [10]. Unlike these methods, we present a new
confidence Θt based on the margin and uncertainty of the
multi-class classification problems.

Intuitively, a query method is effective if it can control
the probability of making a mistake whenever this label is
not queried of. In the following theorem, we prove that an
online algorithm on these selected labels {t|Qt = 1, Qt ∼

2h
2h+max(0,Θt)

} can achieve a comparable mistake bound
with one that queries all labels. Under randomized query,
the mistake trials can be partitioned into two disjoint sets,
S = {t| 2h

2h+max(0,Θt)
< 1} includes trials on which a

stochastic query is conduct, while D = {t| 2h
2h+max(0,Θt)

=

1} includes trials when a deterministic query is issued.
Theorem 3. For all t ≥ 1, the CMOG runs over
an arbitrary node-label sequence (m1,y1), . . . , (mT ,yT )
(mt ∈ Rn and yt ∈ RK) with a query probability
of 2h

2h+max(0,Θt)
(h > 0) on round t, then the following

inequality holds for any U ∈ Rn×K ,

E[M] ≤E[
∑

t

L(y⊤
t U⊤mt)] +

h

2
tr(U⊤E[AUT

]U)

+
1

2h
E[

∑

t∈M∩D

Krt

1 + rt
].

The expectation of queried number is upper bounded by
E[|D|+ ∑

t∈S
2h

2h+Θt
].

Note that labels are selected randomly. Thus, the expecta-
tion occurring in this theorem is w.r.t this randomization.

Proof. In the setting of selective sampling, a model is
updated whenever QtZt = 1. Given that K > 2 in multi-
class setting, we bound as in Eq. (8),

∑

t

QtZt(∥ft∥22 − 2yt · ft −
Krt

1 + rt
+ 2h)

≤2h
∑

t

QtZtL(y⊤
t U⊤mt) + h2tr(U⊤AUT

U).
(11)

If an error occurs (yt ̸= ŷt), Pmt

Wt
(yt) ≤ Pmt

Wt
(y

′′
t ). Thus,

−yt · ft
(4)
= Pmt

Wt
(ŷt)− Pmt

Wt
(yt) ≥ Pmt

Wt
(ŷt)− Pmt

Wt
(y

′′
t ).

Since ∥ft∥22 ≥ 1
2∆2

t and Pmt

Wt
(ŷt) − Pmt

Wt
(y

′′
t ) = ∆t, we

bound,
∑

t

QtZt(∥ft∥22 − 2yt · ft −
Krt

1 + rt
+ 2h)

≥
∑

t

QtZt(
1

2
∆2

t + 2∆t −
Krt

1 + rt
+ 2h)

(10)
=

∑

t

QtZt(Θt + 2h).

When an error occurs at trial t ∈ M, the Θt can be
positive (M ∩ S) or negative (M ∩ D). In the former
case, E[Qt] = 2h

2h+Θt
is a random variable and we bound,

E[QtZt(Θt + 2h)] = E[Zt]E[Qt(Θt + 2h)] = 2hE[Zt];

In the later case, E[Qt] = 1. Given 1
2∆2

t ≥ 0 and ∆t ≥ 0
, we have,

E[
∑

t

QtZt(
1

2
∆2

t + 2∆t −
Krt

1 + rt
+ 2h)]

≥2hE[Zt]− E[
∑

t∈M∩D

Krt

1 + rt
]

In summary,∑

t

QtZt(Θt + 2h)

≥2h(
∑

t∈M∩S
E[Zt] +

∑

t∈M∩D
E[Zt])− E[

∑

t∈M∩D

Krt

1 + rt
]
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With
∑

t∈M Zt = |M| and upper bound (11), we com-
plete our proof.

Remark 4. The mistake bound of the CMOG on randomly
selected labels is comparable with the bound of CMOG
that learns all the labels. Similar to Theorem 1, the CMOG
run on selected labels is bounded by the cumulative hinge
loss suffered by U , log(T ) ( upper bound of

∑
t

rt

1+rt
)

and K maxj λj (upper bound of tr(U⊤AUT
U)). Note that

we use Krt

1+rt
to let data “uncertainty” regularized by the

class number. In addition, the CMOG run on selected
labels can achieve a comparable mistake bound with the
online algorithm OLLGC (i.e. Corollary 5, [14]) in binary
classification, since tr(U⊤AUT

U) ≤∑
t∈M ∥U⊤mt∥22 ≤

αtr(U⊤U) = αtr(F⊤LF ), where α = |M|R2. Noted
that this bound is incomparable with that in [6] since the
Θt is different in two methods. In summary, the theoretical
results present that an online algorithm learning on these
selected labels could perform no worse than its fully-
supervised counterpart. Thus above results theoretically
demonstrate the efficacy of the proposed query method.

C. Aggressive Learning
The CMOG is conservative, i.e., it will only update the
model when an error occurs. To take advantage of the
correctly predicted instances, we propose an aggressive
version of selective sampling. We call our algorithm MSG,
the Multi-class Selective Sampling on Graph, present in
Algorithm 2. After observing a vertex mt at round t, the
MSG predicts its label with Wt = A−1

t Bt−1 and then
queries true label yt with a probability of 2h

2h+max(0,Θt)
.

It yields to stochastic query and deterministic query. When
stochastic query (i.e. 2h

2h+max(0,Θt)
< 1) is issued, it

is conservative to update model when an error occurs
(ŷt ̸= yt). While a deterministic query is issued (i.e.

2h
2h+max(0,Θt)

= 1), we adopt an aggressive learning
strategy, that is, we update even if no error occurs. Note
that our model is different from [8], [1], since we perform
a randomized query based on the predicted results of
multiple classes.

The theoretical results below show the superiority of the
aggressive algorithm compared to its conservative and
fully-supervised counterpart CMOG (i.e. Algorithm 1).
Besides the stochastic query trials S and deterministic
query trials D, we denote by V the set of trials for
which there is an aggressive update but not a mistake (i.e.,
yt = ŷt and Θt < 0) and let V = |V|.
Theorem 5. The algorithm MSG (Algorithm 2) runs on
an arbitrary sequential nodes, then given h > 0, the
following inequality holds for any U ∈ Rn×K ,

E[M ] ≤E[
∑

t

QtZtL(y⊤
t U⊤mt)] +

h

2
tr(U⊤E[AUT ]U)

+
1

h
E[

∑

t∈D

Krt

1 + rt
]− E[V ].

Algorithm 2 MSG: Multiclass Selective Sampling on
Graph

1: Input: sequences of instance-label pair (mt,yt), t =
1, . . . , T , the parameters γ > 0 and h > 0.

2: Output: WT

3: Initialize: W0 = 0, A0 = γI and B0 = 0.
4: for t = 1, . . . , T do
5: Receive an input mt;
6: Compute A−1

t = (At−1 + mtm
⊤
t )−1;

7: ft = B⊤
t−1A

−1
t mt;

8: Predict ŷt = arg maxj∈[K] P
mt

Wt
(j);

9: if Θt < 0 (Definition 2) then
10: Set Qt = Zt = 1 (i.e. deterministic query) and

Query actual label yt;
11: else
12: Draw a Bernoulli random variable Qt ∈ {0, 1} ∼

2h
2h+max(0,Θt)

;
13: if Qt = 1 then
14: Query actual label yt;
15: Set Zt = 1 if ŷt ̸= yt (Zt = 0, otherwise);
16: end if
17: end if
18: At = At−1 + QtZtmtm

⊤
t ,

19: Bt = Bt−1 + QtZtmty
⊤
t ;

20: end for
21: WT = A−1

T BT ;

In addition, the expected number of queries is upper
bounded by E[|D|+ ∑

t∈S
2h

2h+Θt
].

Proof. The update trials in algorithm 2 could be catego-
rized into three groups,∑

t

Zt = |S ∩M|+ |D ∩M|+ |D ∩ V|.

In the first case where an error occurs in randomized query
with E[Qt] = 2h

2h+Θt
(i.e. S ∩M). Similar as Theorem 3,

E[QtZt(Θt + 2h)] = E[Zt]E[Qt(Θt + 2h)] = E[Zt];

If an error incurs in a deterministic query (i.e. t ∈ D∩M)
with E[Qt] = 1, we bound,

E[QtZt(
1

2
∆2

t + 2∆t −
Krt

1 + rt
+ 2h)] ≥ 2hE[Zt]−

Krt

1 + rt
;

Now we consider the third case where the updates were
performed with no mistake, i.e., Θt ≤ 0, and by definition,

Θt ≤ 0⇒ 0 ≤ ∆t ≤ 2

√
1 +

Krt

2(1 + rt)
− 2. (12)

If no mistake incurs (yt = ŷt), we have yt·ft = Pmt

Wt
(ŷt)−

maxj ̸=ŷt Pmt

Wt
(j) = Pmt

Wt
(ŷt)− Pmt

Wt
(y

′′
t ) = ∆t. Thus,

E[QtZt(
1

2
∆2

t − 2∆t −
Krt

1 + rt
+ 2h)]

=E[Zt(
1

2
∆2

t − 2∆t +
Krt

1 + rt
− 2Krt

1 + rt
+ 2h)]
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Let C(∆t, rt) = 1
2∆2

t −2∆t +
Krt

1+rt
. Whenever Krt

1+rt
≥ 2,

C(∆t, rt) ≥ 0(∀∆t ≥ 0). If Krt

1+rt
< 2, let C(∆t, rt)

be a quadratic equation with two non-negative roots and
a minima, 2 − 2

√
1− Krt

2(1+rt)
. We observe this smaller

root is higher than the upper bound in (12), that makes
C(∆t, rt) ≥ 0 in the trials D ∩ V . Thus, we bound,

E[QtZt(
1

2
∆2

t − 2∆t −
Krt

1 + rt
+ 2h)] ≥ 2hE[Zt]−

2Krt

1 + rt
.

To summarize,

E[
∑

t

QtZt(∆
2
t − 2ft · yt −

Krt

1 + rt
+ 2h)]

≥2h
∑

t∈M
E[Zt] + 2h

∑

t∈D∩V
E[Zt]−

∑

t∈D
E[

2Krt

1 + rt
].

Equipped with upper bound as Eq. (11), we complete the
proof.

Remark 6. The upper bound of the aggressive algorithm
MSG is expected to be lower than CMOG that learns on
all the labels (Theorem 1) and CMOG on the selected
labels (Theorem 3), due to the deduction of E[V] from
the bound. In summary, the theoretical analysis demon-
strate that the MSG, in expectation, can achieve a better
performance than its conservative and fully-supervised
counterparts, which can be regarded as a theoretical
support for the aggressive method.

Discussion: To further understand the aggressive algo-
rithm, we analyze under what condition an aggressive
query will be conducted. An aggressive query is issued
when Θt ≤ 0 (i.e.,Θt ≤ 0 ⇒ ∆t ≤ θ(K, rt) =

2
√

1 + Krt

2(1+rt)
− 2). If the margin ∆t is less than

θ(K, rt), a deterministic query is issued, while ∆t is
above θ(K, rt), a label is queried randomly with a prob-
ability less than 1. We observe that the upper bound
of θ(K, rt) increases with rt. When rt = 0, that is,
current instance is observed before, the label would be
queried deterministically in case its margin is 0 (∆t ≤
θ(K, rt = 0) = 0, i.e., an extreme case that the current
model is unable to predict its label). However, if rt = 1
(i.e., little knowledge to current input), the learner would
query aggressively whenever its margin does not exceed
θ(K, rt = 1) =

√
4 + K − 2, a threshold far from the

boundary.

V. EXPERIMENTAL RESULTS
In this section, we first introduce experimental dataset and
evaluation metrics. Then we present the empirical results
to validate the proposed algorithms. Our experiments are
designed to answer two questions: (i) if the proposed
randomized query is effective to reducing the amount
of labeled data significantly while maintain comparable
performance? (ii) if the aggressive strategy achieves a
better predictive performance at the cost of more queried
number?

A. Data Sets and Evaluation Metrics

Data Sets: Four real-world graph data sets are used in the
experiment to evaluate the approaches.
(a) Coauthor2 extracted from DBLP database is an undi-
rected co-author graph in which 1711 authors are denoted
as vertices while their co-authored relationship are treated
as the edges. The authors are classified in four classes in
terms of research topic: “data mining”, “machine learn-
ing”, “information retrieval” and “databases”. (b) Cora3 is
a citation network including 2485 scientific publications
and 5429 citation links. The publications as vertices
are related to seven domains: “Case based”, “Genetic
Algorithms”, “Rule Learning”, “Probabilistic Methods”,
“Neural Networks”, “Reinforcement Learning”, et al. (c)
IMDB4 is a movie organization that presses up-to-date
movie information. The IMDB links total 17046 movies
with their co-actor associations. The movies as vertices
in graph are categorized into four genres: “Action”, “Ro-
mance”, “Animation” and “Thriller”. (d) PubMed5 is
also a citation graph related to diabetes research. The
PubMed collects 44338 publication citations among 19717
scientific publications and labels the publications with one
of three types of diabetes.
The graph data is supposed to be undirected and con-
nected. If the edges are directed, we transform them into
undirected graphs via S← max(S,S⊤). If the graphs are
disconnected, the biggest connected subgraph is chosen
for study.

Evaluation Measures: We evaluate the performance of
baselines and our algorithms with two measurements:
i) cumulative error rate, reflecting the prediction accuracy
of online algorithm; ii) number of queried labels, reflect-
ing the label efficiency of query method. Note that a small
value of above measures indicates a better performance of
a method. In order to compare these algorithms fairly, we
randomly shuffle the ordering of samples for each dataset.
We repeat each experiment 20 times and calculate the
average results.

Baselines and Parameter Setting: We compare the
proposed algorithms with state-of-the-art baselines. The
algorithms we study and their parameter settings are
summarized as follows. (1) GPA: a first order nonpara-
metric online learning algorithm on graph [15]. Note
that the perceptron algorithm is not affected by the step-
size. (2) BBQ/BBQϵ: The two algorithms are the BBQ
query criterion [5] and its modification version [1]. The
intuition behind this rule is that at the rounds where
the label is not queried, it guaranteed that the regret
bound is at most ϵ. The parameter ϵ is tuned with grid
{10−5, . . . , 10} in our experiment. (3) DGS: This query

2https://snap.stanford.edu/data/com-DBLP.html
3http://www.cs.umd.edu/ sen/lbc-proj/data/
4http://www.imdb.com/
5http://www.cs.umd.edu/projects/linqs/projects/lbc/
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TABLE I
COMPARISON OF THE MULTI-CLASS ALGORITHMS. GPA AND CMOG ARE ONLINE ALGORITHMS.

Algorithm Coauthor Cora
Error rate # Queried nodes Error rate # Queried nodes

GPA 0.5474±2.66e-4 1711 0.5849±2.03e-4 2485
BBQ 0.3013±3.55e-5 1371±168.7 0.1929±1.73e-5 1635.1±294.0

BBQϵ 0.3028±3.03e-5 1711 0.1936±1.95e-5 2485
DGS 0.3096±3.29e-5 1711 0.1941±2.35e-5 2485

CMOG 0.3096±3.29e-5 1711 0.1940±2.33e-5 2485
MSG 0.2956±6.63e-5 870.7±251.9 0.1926±2.34e-5 884.95±289.15

Algorithm IMDB PubMed
Error rate # Queried nodes Error rate # Queried nodes

GPA 0.6870±4.6e-5 17046 0.5795±2.9e-6 19717
BBQ 0.5468±1.69e-6 10033±467.2 0.2217±1.9e-6 10352±2536.4

BBQϵ 0.5068±9.9e-6 16983±801.3 0.2217±3.1e-6 8986.3±838.3
DGS 0.5066±9.1e-6 17046 0.2265±1.46e-6 19717

CMOG 0.5576±6.88e-5 17046 0.2265±1.5e-6 19717
MSG 0.5043±7.46e-5 3750.3±255.1 0.2158±1.07e-5 936.29±210.07

criterion is a nonparametric rule for binary classification
[11] and adapts into multi-class setting in [1]. It takes
both previous covariances and the observed labels into
account. The intuition behind this rule is that on rounds
where the label yt is not queried, it guaranteed that either
ŷt = y∗

t , or the regret is small. (4) CMOG and MSG: two
second-order algorithm in multi-class setting. CMOG is a
conservative online algorithm while MSG is an aggressive
algorithm that queries label with a randomized method.
We set γ = 1 to avoid overfiiting and tune the parameter
h with grid {10−4, . . . , 1} on a held-out random shuffle.

B. Comparison Evaluation
The experimental results are present in Table I. We found
that MSG outperforms all baselines consistently across all
data sets. We also show the results in terms of learning
epoches in Figure 1. In all subfigures, the cumulative error
rate and queried number along the learning epochs are
both averaging over 20 times of shuffling order.

First of all, we observe that the improvement of the
CMOG over GPA are always significant on all data sets.
This is consistent with previous observations in online
learning: second-order algorithms are generally better than
first-order algorithm . The reason is due to the covariance
matrix At which has a spectral structure to correlate
with a best estimator for observed instances [4]. MSG
always enjoys smaller or comparable error rates than
BBQϵ and DGS with much fewer queried number. The
good performance generally is due to two reasons. First,
the proposed randomized query approach improves the
efficiency of the labeling. Second, thanks to the aggressive
learning, the MSG achieves a convergence stage quickly
with informative labels, thus the query rate is reduced
further when learner has sufficient knowledge of data. The
results in figure 1 indicate the MSG queries a small num-
ber of labels while maintains the quality of classification
model.

C. Evaluation on Varied Ratios of Queries

We study the impact of h with respect to query ratio of the
MSG. Basically, the smaller h is, the fewer the number of
queries is. Specifically, we set h to {10−4, 10−3, . . . , 1},
and run MSG for 20 times under each h. We calculate
the average ratio of queried nodes under different values
of h. The comparison results in Figure 2 show that MSG
achieves better or comparable performance consistently
under different ratios of queried labels. This validates the
label-efficiency of our proposed confidence score Θt that
can adaptively prioritize informative labels to optimize the
model. We also observe that the MSG outperforms BBQ
significantly over all query ratios. The reason is that MSG
considering “∆t” will query the vertices close to current
boundary, while these labels are omitted in BBQ. The
better results in figure 2 demonstrate that these “small-
margin” instances are useful to optimize the multi-class
classifier.

D. Evaluation on Low-rank Approximation

The low-rank vertex representation m ∈ Rd is used to
build a scalable online model in our experiments. To study
the impact of low-rank approximation on the proposed
algorithms, we tune the rank d in the grid {10, 100,
250, 500, 750, 1000}. We use Coauthor and Cora as
a case study since similar observations are obtained on
other data sets. The results in Figure 3 present that MSG
achieves a better or comparable performance than other
baselines consistently under different rank approximation.
Obviously with a higher rank, the performance becomes
better in terms of error rate. However, to achieve a better
prediction accuracy, algorithms need a high number of
queries and high-rank inputs, which demands a more
labeling and computational cost. It motivates us to select
a proper rank d to achieve a balance. Therefore, we chose
d = 100 in the rest of experiments, since in this setting

812



200 400 600 800 1000 1200 1400 1600

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of epochs

C
um

ul
at

iv
e 

er
ro

r 
ra

te

CoAuthor

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

500 1000 1500 2000 2500
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of epochs

C
um

ul
at

iv
e 

er
ro

r 
ra

te

Cora

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

0.45

0.5

0.55

0.6

0.65

0.7

Number of epochs

C
um

ul
at

iv
e 

er
ro

r 
ra

te

IMDB

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

0 0.5 1 1.5 2

x 10
4

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Number of epochs

C
um

ul
at

iv
e 

er
ro

r 
ra

te

PubMed

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

Number of epochs

Q
ue

ry
 n

um
be

r

CoAuthor

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Number of epochs

Q
ue

ry
 n

um
be

r

Cora

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of epochs

Q
ue

ry
 n

um
be

r

IMDB

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of epochs

Q
ue

ry
 n

um
be

r

PubMed

MSG

CMOG

DGS

BBQ
ε

BBQ

GPA

Fig. 1. Cumulative error rate and Query number with respective to online learning rounds on four datasets.
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Fig. 2. A comparison among BBQ, BBQϵ and MSG with respect to different ratios of queried nodes.
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Fig. 3. A case study of low rank impact on performance.

the algorithms perform well while number of queries is
small.

VI. CONCLUSIONS
In this paper, we proposed a new framework for multi-
class online learning, leading to a scalable algorithm to
tackle multi-class classification on graphs. To save the
labeling cost, we presented a novel randomized query
technique to prioritize the labels. Besides, we introduced
an aggressive selective sampling algorithm to take full
advantage of these wasted labels in existing conservative
algorithms. The theoretical results demonstrated the effi-
cacy of the proposed algorithms in terms of the expected
mistake bound and query ratio.

The encouraging empirical results on several real-world
datasets also indicated that 1) the MSG is able to achieve

comparable or better predictive performance by querying a
significantly small amount of labeled data; and that 2) the
aggressive selective sampling scheme can further reduce
the query rate, achieving a convergence stage rapidly.
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Abstract

We present adaptive algorithms with strong data-
dependent regret guarantees for the problem of
bandit convex optimization. In the process, we
develop a general framework from which the
main previous results in this setting can be recov-
ered. The key method is the introduction of adap-
tive regularization. By appropriately adapting the
exploration scheme, we show that one can derive
regret guarantees that can be significantly more
favorable than those previously known. More-
over, our analysis also modularizes the problem-
atic quantities in achieving the conjectured min-
imax optimal rates in the most general setting of
the problem.

1 INTRODUCTION

Bandit convex optimization (BCO) is a general scenario for
sequential decision making under uncertainty. In contrast
to the standard full information setting of online convex op-
timization, in the BCO scenario, at each round, the learner
only receives only the value of the loss function and no
other feedback, in particular no information about the func-
tion derivatives.

BCO extends the well-known multi-armed bandit scenario
and is an instance of the exploration-exploitation dilemma
inherent in many online machine learning problems: at
each round, the learner must decide between exploring new
actions and exploiting the best actions determined thus far.

The partial information assumption also captures many
real-world problems where the exact form of the loss func-
tion is not readily available at each step. These include set-
tings such as ad prediction and medical diagnosis. In these
problems, the learner is typically able to see only the value
returned from the current action, as the exact loss function
and its gradients are often quite abstract and complex.

From a theoretical vantage point, bandit convex optimiza-
tion also remains an area of online learning in which ex-
isting regret guarantees in several regimes are known to be
sub-optimal and where optimal methods have still yet to be
discovered.

We now formalize the setting that we consider. Let K ⊂
Rn be a compact convex set, and let {ft}∞t=1 be a sequence
of convex functions. At each round t = 1, 2, . . . , T , the
learner selects a point xt ∈ K and incurs loss ft(xt). The
learner’s objective is to minimize his regret, defined by:

RegT := max
x∈K

T∑

t=1

ft(xt)− ft(x),

that is the difference between his cumulative loss and that
of the best fixed point x∗ ∈ K in hindsight. In contrast to
the standard online learning or online convex optimization
scenarios, in bandit convex optimization, the learner has
access only to the value ft(xt) and not any higher-order in-
formation. This scenario was first studied by Flaxman et al.
(2005), where they proved that for sequences of Lipschitz
functions, one can achieve a regret that is in O(T 3/4). The
seminal work of Abernethy et al. (2008) showed that, for
linear functions, one can attain a regret in O(

√
T ). Agar-

wal et al. (2010) showed that one can improve upon Flax-
man’s bound and attain O(T 2/3) in the strongly convex
setting, and Saha and Tewari (2011) showed that one can
achieveO(T 2/3) in the strongly smooth setting. Hazan and
Levy (2014) showed that when the functions are guaran-
teed to be both strongly smooth and strongly convex, one
can attain O(

√
T ) regret. Most recently, Bubeck and El-

dan (2015) presented a non-constructive proof demonstrat-
ing that a O(

√
T ) bound is also theoretically attainable in

the general setting, albeit with a much heavier dependence
on the dimension of the domain O(n11) than in the other
references mentioned above.

It still remains an open question whether one can efficiently
obtain the desired O(

√
T ) regret in the purely strongly

convex, purely strongly smooth, or purely Lipschitz set-
tings. To make progress in this direction, we will build
upon recent advances in other areas of the online convex
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optimization literature. Specifically, we will draw from the
techniques in adaptive regularization presented in (Bartlett
et al., 2007; Duchi et al., 2010; McMahan and Streeter,
2010) as well as ideas from the “learning faster from easy
data” paradigm studied in (Even-Dar et al., 2007; Bubeck
and Slivkins, 2012; Sani et al., 2014; de Rooij et al., 2014)
to derive two efficient adaptive algorithms with minimal
assumptions on the function’s loss sequence.

Our algorithms will provide strong data-dependent guaran-
tees, so that while their regret will never be worse than that
of previous algorithms in the same setting, they can also
be much better depending on how favorable and “easy” the
actual data is. Moreover, the algorithms we present are any-
time and automatically adjust to the data, so that they can
run without any a priori tuning or unreasonable parameter
specification. Perhaps most importantly, analyzing the re-
sulting bounds provides insight into both whether the con-
jectured optimal bounds are truly achievable as well as how
they might viably be attained.

We will start off by introducing some mathematical nota-
tion for the rest of our paper. Then, in Section 3, we will
describe the general methodology of BCO, and in the pro-
cess, introduce several key concepts and tools as well as
our intuition and contribution to this framework. This will
be formalized in Sections 4, 5, and 6, where we introduce
concrete algorithms and guarantees. Finally, we will high-
light the main implications of our results in Section 7, both
in terms of new regret guarantees as well as added insight
for the general bandit convex optimization setting with only
the Lipschitz loss assumption.

2 NOTATION

In what follows, we will denote by Bn the n-dimensional
unit ball under the Euclidean norm, and Sn = ∂Bn the
(n−1)-dimensional unit sphere. For any sequence of func-
tions {ct}∞t=1, we will write c1:t =

∑t
s=1 ct. Given a func-

tion ft and a point xt, we will denote by gt ∈ ∂ft(xt)
an element of the subgradient of ft at xt, such that for
any y, ft(y) ≥ ft(xt) + g>t (y − xt). Given any norm
‖ · ‖, we will denote its dual by ‖ · ‖∗, so that ‖x‖∗ =
sup‖y‖≤1 x

>y. Moreover, given any symmetric positive
semi-definite (SPSD) matrix A, we define the semi-norm
‖x‖A =

√
x>Ax, and we denote the j-th eigenvalue of A

by λj(A) (in decreasing order).

Definition 1 (Strongly Smooth and Strongly Convex). Let
A be an SPSD matrix. A function f is said to be

• A-strongly smooth if f(x) ≤ f(y)+∇f(y)>(x−y)+
1
2‖x− y‖2A;

• A-strongly convex if f(x) ≥ f(y)+∇f(y)>(x−y)+
1
2‖x− y‖2A.

For a scalar β ∈ R+, f is said to be β-strongly smooth (β-
strongly convex) if it is βI-strongly smooth (respectively
strongly convex). For functions that are not C1, we replace
the gradients by subgradients in these definitions.

3 OVERVIEW OF BANDIT CONVEX
OPTIMIZATION

Bandit convex optimization, and bandit problems in gen-
eral, can be viewed as online learning problems with par-
tial information. In this context, the natural approach is to
estimate the missing data from the full information setting,
and to then apply online learning methods to the problem.

One online learning method that is commonly used in
bandit convex optimization is the Follow-the-Regularized-
Leader (FTRL) (Kalai and Vempala, 2005) algorithm,
which is based on the update:

xt+1 = argmin
x∈K

ηg>1:tx+R(x),

whereR is some regularization function.

However, in bandit convex optimization, the missing data
at each round is the gradient. Since the learner only knows
the value of the loss function at each round, the FTRL algo-
rithm cannot be readily applied (nor can most other online
learning algorithms, which also typically use gradient in-
formation). This is what makes bandit convex optimization
significantly more difficult than standard online onvex op-
timization.

A key step toward addressing this issue has been the in-
sight that by playing an action randomly near the intended
one, it is possible to estimate the gradient of a smoothed
version of the loss function. More formally, given any
f : Rn → R and A ∈ Rn×n an SPSD matrix, we define
f̂(x) = Ev∈Bn [f(x+Av)], the average of f at x over
the ellipsoid generated by A, and ĝt = nf(x+ Au)A−1u,
its one-point gradient estimate. Then the following result
holds:

Lemma 1 (Saha and Tewari (2011)). Eu∼Sn [ĝt] = ∇f̂(x).

For completeness, we provide a proof of this result in Ap-
pendix A.

This implies that by sampling a point x+Av in an ellipsoid
around the intended action, we can estimate the gradient
of a smoothed version of our loss function even if we are
only able to play a single action. Moreover, by playing
these gradient estimates, our regret will be the regret of this
smoothed loss up to the approximation error of smoothing.

In practice, the smoothing ellipsoid is defined by scaling
the inverse Hessian of the regularization function R, i.e.
A = δ∇2R(x)−1/2v. Thus, the choice of regulariza-
tion becomes crucial towards determining how much to
explore and how much approximation error to incur. The
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key work along this direction has been (Abernethy et al.,
2008), which showed that one can use the notion of self-
concordant barrier to find a good tradeoff.

For completeness, we briefly introduce this concept and
summarize the key results that we will use in our analysis.

3.1 BACKGROUND ON SELF-CONCORDANT
FUNCTIONS

The use of self-concordant functions can be traced back
to Nesterov’s work on Newton’s method (see (Nesterov,
2004) for a comprehensive treatment).

Definition 2 (Self-concordant barrier). A C3 function
R : int(K) → R is a ν-self concordant barrier if for any
h ∈ Rn:

1. R approaches infinity for any sequence of points ap-
proaching the boundary of K.

2.
∣∣∇3R(x)[h, h, h]

∣∣ ≤ 2(∇2R(x)[h, h])3/2.

3. |∇R(x)h| ≤ (ν∇2R(x)[h, h])1/2.

Definition 3 (Dikin Ellipsoid). LetR be a self-concordant
function and x ∈ int(K). Then, the Dikin Ellipsoid W1(x)
is the ellipsoid induced by the Hessian ofR at x:

W1(x) = {z ∈ Rn|‖z − x‖∇2R(x) ≤ 1} ⊂ K.

Definition 4 (Newton Decrement). Given any C2 func-
tion R whose Hessian is invertible at a point x, the New-
ton decrement of R at x is defined to be λ(x,R) =
‖∇R(x)‖∇2R(x)−1 .

The following two results can be found in (Nemirovski and
Todd, 2008) and will be the most important properties for
our analysis.

Lemma 2. Let R be a self concordant function and x ∈
int(K) a point such that λ(x,R) ≤ 1

2 . Then, ‖x −
argminuR(u)‖∇2R(x) ≤ 2λ(x,R).

Given x, y ∈ int(K), the Minkowsky function is defined as
πx(y) = inf

{
t ≥ 0 | x+ 1

t (y − x)
}

.

Lemma 3. Let R be a ν-self concordant barrier. Then for
any x, y ∈ int(K): R(y)−R(x) ≤ ν log

(
1

1−πx(y)

)
.

Thus, the current state-of-the-art approach to bandit convex
optimization problem has been to play a FTRL-type algo-
rithm with the update:

xt+1 = argmin
x∈K

ηĝ>1:tx+R(x),

where ĝ = ĝ(δ,∇2R), andR is a self-concordant barrier.

For global σ-strongly convex loss functions, one can also
add an associated quadratic term to the optimization prob-
lem and a σ-ball to the sampling ellipsoid.

In this paper, we extend the above framework with the con-
cept of adapting to the data. Specifically, we will tune the
learning rate and sampling ellipsoid at each step of the al-
gorithm according to the local data that we see. The goal
of this approach is two-fold. On the one hand, we want to
design any-time algorithms with general regret bounds that
recover all existing approaches in a unified manner. Previ-
ous algorithms assumed various levels of global regularity
information, had different sampling schemes for each, and
had to be tuned with a posteriori knowledge. On the other
hand, and perhaps more importantly, we also want to derive
data-dependent guarantees that can reveal new insight into
the difficulties of the problem.

4 ADAPTIVE BANDIT CONVEX
OPTIMIZATION

Using the motivation above, we now present AdaBCO, an
adaptive procedure for bandit convex optimization. Ad-
aBCO is a skeleton algorithm that we will use as a launch-
ing point for our two data-dependent algorithms. As such,
it is not meant to be implemented on its own, and some of
its parameters, such as ηt and δt, are not specified precisely.
These will be selected carefully in Algorithms 2 and 3.

Unlike previous algorithms in the literature, AdaBCO does
not need the learner to specify a priori a fixed level of global
convexity for the entire sequence of loss functions encoun-
tered during learning. This is often an unreasonable re-
quirement, particularly in a truly online setting, and so in-
stead, AdaBCO allows the learner to specify the convexity
of functions as it sees them. The algorithm is designed such
that the regret bound will automatically adapt to this data.
This is achieved via dynamic tuning of the sampling el-
lipsoids and learning rates, which will be prescribed more
explicitly in Algorithms 2 and 3, when we also take into
account the level of function smoothness.

Moreover, it is important to realize that computing param-
eters in real-time is never more difficult than computing
bounds that hold uniformly over all rounds at the start in a
truly online scenario. Thus, AdaBCO is never more diffi-
cult to implement than previous algorithms.

AdaBCO also differs from previous work in that it treats
strong convexity as a matrix parameter instead of a scalar
parameter. This is based on the insight that, for minimiz-
ing regret, convexity of the loss function is closely tied to
convexity of the self-concordant barrier’s Hessian, and that
one can bound regret in terms of the average eigenvalue of
the sum of these matrices as opposed to the minimal eigen-
value. Essentially, the algorithm can “borrow” convexity
from the self-concordant barrier if the convexity of the loss
function is not strong enough to achieve the desired regret.
This becomes particularly useful when the learner is query-
ing points near the decision set’s boundary, and the Hessian

817



ofR has large eigenvalues in the direction of the boundary
(often the case because R ↗ ∞ at ∂K). This will become
more clear with the data-dependent guarantees and discus-
sion in Sections 5, 6, and 7.

We will first show that AdaBCO yields a strong data-
dependent regret bound on the sequence of smoothed loss
functions. The proof technique is based on a few key steps.
We first use convexity of the loss function to change the
problem into bounding the regret of quadratic functions.
Then we use the fact that our original algorithm can be
seen as a Follow-the-Regularized-Leader algorithm played
on this sequence of surrogate loss functions to bound the
regret. From here, we leverage the fact that part of our
loss function is proximal, along with the properties of self-
concordant barriers that we stated, to show that in the local
norm, the incremental update can be bounded by the gradi-
ent of the (smoothed) loss function. Then we can estimate
the gradient in the local norm in terms of the quantities that
we have prescribed. Finally, we use more properties about
self-concordant barriers to bound their growth near the cen-
ter of the domain.

In the process, we will require a few technical lemmas
about the properties of smoothed functions as well as some
results from the general online learning literature. For com-
pleteness, all proofs are provided in Appendix A.

4.1 TECHNICAL LEMMAS

The following result is a mild generalization of Lemma 7
in (Hazan and Levy, 2014) and states that a smoothed loss
function retains the same strong convexity properties as the
original.

Lemma 4. Let A be an SPSD matrix, and let f : Rn → R
be A-strongly convex. Then f̂ is also A-strongly convex.

Next we state a lemma by Zinkevich (2003), which shows
that we can bound the regret of any sequence of loss func-
tions by a lower barrier. This will be useful for switching
between our loss functions and the quadratic lower bounds
induced by their strong convexity.

Lemma 5. Let {ft}∞t=1 be a sequence of functions and
{xt}∞t=1 ⊂ K. Suppose there exists a sequence of lower
barrier functions {ht}∞t=1 such that ht(xt) = ft(xt) and
ht ≤ ft. Then, the following inequality holds:

max
x∈K

T∑

t=1

ft(xt)− ft(x) ≤ max
x∈K

T∑

t=1

ht(xt)− ht(x).

The final technical lemma in this section extends the
well-known “be-the-leader”-based result of follow-the-
regularized-leader type algorithms (originally from (Kalai
and Vempala, 2005), to algorithms with adaptive regular-
ization.

Algorithm 1 AdaBCO
1: Input: η0 = 1

2nC , ν-self concordant barrierR.
2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) +
g>t (x− xt) + 1

2‖x− xt‖2Qt .
5: Define ηt ≤ ηt−1.
6: Set Bt =

[
∇2R(xt) + ηtQ1:t

]−1/2
.

7: Sample u ∼ Sn uniformly.
8: Define δt and set yt = xt+ δtBtu ∈W1(xt) ⊂ K.
9: Play yt and incur loss ft(yt).

10: Compute the estimate ĝt = nft(yt)(δtBt)
−1u.

11: Update xt+1 = argminx∈K ĝ
>
1:tx+ 1

2

∑t
s=1 ‖(x−

xs)‖2Qs + 1
ηt
R(x).

12: end for

Lemma 6. Let {ft}∞t=1 be a sequence of convex func-
tions defined on a closed convex set K, and let {xt}∞t=1

be a sequence of points in K such that the subgradient of
ft at xt is denoted as gt. Let {rt}∞t=1 be a sequence of
non-negative convex functions. Then the update xt+1 =
argminx g

>
1:tx+ r0:t(x) incurs regret at most

T∑

t=1

ft(xt)− ft(x) ≤ r0:T (x) +
T∑

t=1

g>t (xt − xt+1).

We are now able to present the regret guarantee for Algo-
rithm 1:

Theorem 1 (AdaBCO). Let K be a convex set with diame-
terDK, andR a ν-self-concordant barrier overK. Assume
that |f | ≤ C. Then, for 0 < ηt ≤ 1

2nC , the following regret
bound holds for Algorithm 1:

max
w∈K

T∑

t=1

E[f̂t(yt)− f̂t(w)]

≤
T∑

t=1

ηt
δ2t

E
[
(nft(xt + δtBtu))

2 +
1

ηT
ν log(T )

]
.

Proof. We will refer back to the series of lemmas presented
in the prior sections in our analysis.

Let r0 and rt be defined as follows:

r0(x) =
1

η
R(x), rt(x) =

1

2
‖x− xt‖2Qt .

Let h0 = r0, and for t ≥ 1, let ht(x) = ĝ>t x+rt(x). Then,
h0:t(x) = ĝ>1:tx + r0:t(x), and the update in Algorithm 1
can be written as xt+1 = argminh0:t(x).

Now, define bt(x) = ĝ>t (x − xt) + rt(x). By our choice
of Qt and the fact that smoothed functions preserve strong
convexity (Lemma 4), it follows that f̂t(x) ≥ bt(x) +

f̂t(xt) for all x ∈ K, with equality at xt. Thus, if we define
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f̃t(x) = ĝ>t x + rt(x), we can apply Lemma 5 to obtain
maxx

∑T
t=1 f̂t(xt)− f̂t(x) ≤ maxx

∑T
t=1 f̃t(xt)− f̃t(x).

This helps us reduce upper bounding the regret of our
theorem by the regret of quadratic functions plus a self-
concordant barrier.

Note that xt+1 = argmin f̃1:t(x)+ 1
ηt
R(x) is a FTRL-style

update. Thus, by Lemma 6, the following holds:

T∑

t=1

E
[
f̃t(xt)− f̃t(x)

]

≤
T∑

t=1

E
[
∇f̃t(xt)>(xt − xt+1) +

1

ηT
R(x)

]
.

The first term can be bounded by

T∑

t=1

E
[
∇f̃t(xt)>(xt − x)

]

=

T∑

t=1

E
[
ĝ>t (xt − x)

]

≤
T∑

t=1

‖ĝt‖∇2ηth0:t(xt),∗ ‖xt − xt+1‖∇2ηth0:t(xt).

Since xt+1 = argminx ηth0:t(x), Lemma 2 tells
us that if the Newton decrement λ(xt, ηth0:t) =
‖∇ηth0:t(xt)‖(∇2ηth0:t(xt))−1 ≤ 1

2 , then
‖xt − xt+1‖∇2ηth0:t(xt) ≤ 2λ(xt, ηth0:t).
This implies that

∑T
t=1∇f̃t(xt)>(xt − x) ≤∑T

t=1 2ηt‖ĝt‖∇2ηh0:t(xt),∗‖∇h0:t(xt)‖∇2ηth0:t(xt),∗.

At the same time, since

xt = argmin
x

h0:t−1(x),

h0:t−1(x) + rt(x) = h0:t(x)− ĝ>t x,

and xt also minimizes rt, it follows that 0 = ∇(h0:t−1 +
rt)(xt) = ∇h0:t(xt) − ĝt. Thus, the following holds:∑T
t=1∇f̃t(xt)>(xt − x) ≤

∑T
t=1 2ηt‖ĝt‖2∇2ηth0:t(xt),∗.

Putting everything together yields:

T∑

t=1

E
[
f̂t(xt)− f̂t(x)

]

≤
(

T∑

t=1

E
[
2ηt‖ĝt‖2∇2ηth0:t(xt),∗

])
+ E

[
1

ηT
R(x)

]
.

In addition, we know that

E
[
‖ĝt‖2∇2ηth0:t(xt),∗

]

= E
[
‖nft(yt)(δtBt)−1u‖2∇2ηth0:t(xt),∗

]

= E[(nft(yt)(δtBt)−1u)>∇2ηth0:t(xt)
−1

(nft(yt)(δtBt)
−1u)]

≤ E
[
1

δ2t
(nft(xt + δtBtu))

2

]
.

To bound the self-concordant function, Lemma 3 shows
that ifR is any ν-self concordant function over K, then

R(y)−R(x) ≤ ν log
(

1

1− πx(y)

)
, ∀x, y ∈ int(K)

where πK,x(y) = inf{t ≥ 0: x + 1
t (y − x) ∈ K} is the

Minkowsky functional over K at x.

By definition, x1 = argminx∈KR(x). Now, any point
y ∈ K satisfying πK,x1(w) ≤ 1− 1

T must satisfy R(w)−
R(x1) ≤ ν log(T ). SinceR ≥ 0 on K by assumption, this
also means thatR(w) ≤ ν log(T ).
On the other hand, if πK,x1(w) > 1 − 1

T , then the fact
that πK,x1

(w) ≤ 1 implies that there exists 0 < ε ≤ 1
T

such that πK,x1
(w) ≤ 1 − 1

T + ε. Defining z = x1 +

(w − x1) 1− 1
T

1− 1
T +ε

∈ K yields that ‖w − z‖ = ‖ ε
1− 1

T

x1 −
w‖ ≤ O

(
1
T

)
and πK,x1(z) ≤ 1 − 1

T . But R is Lipschitz
on any compact subset of int(K), so we get that R(w) ≤
ν log(T ) + O

(
1
T

)
. Since the last term does not grow as a

function of T , we will ignore it in the regret bound.

Combining the above estimates shows that if
ηt‖ĝt‖∇2R(xt)+ηtQt,∗ ≤ 1

2 (i.e. if ηt ≤ 1
2nC ), then

T∑

t=1

E[f̂t(yt)− f̂t(w)]

≤
T∑

t=1

E
[
ηt
δ2t

(nft(xt + δtBtu))
2 +

1

ηT
ν log(T )

]
.

The extrapolation of the regret bound in Theorem 1 for
smoothed loss functions to a regret bound on the origi-
nal loss requires taking into account some local regular-
ity assumptions. Factoring in local second-order regularity
yields Algorithm 2.

5 AdaBCO FOR SMOOTH FUNCTIONS

The major differences between Algorithm 2 with the previ-
ous algorithm are that we now account for the local smooth-
ness parameter βt and that we also specify precisely the
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Algorithm 2 AdaBCO-Smooth
1: Input: η0 = 1

2nC , ν-self concordant barrier R, C > 0
constant.

2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose a constant βt > 0 such that ft(x) ≤
ft(y) +∇ft(y)>(x− y) + βt

2 ‖x− y‖22.
5: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) +
g>t (x− xt) + 1

2‖x− xt‖2Qt .
6: Define B̃t,s =

(
∇2R(xs) + ηs1{s<t}Q1:s

)−1/2
and

ηt =




t∑

s=1

√√√√4βs
1

n

n∑

j=1

λj(B̃2
t,s)n

2C2



−2/3

(ν log(T ))
2/3

.

7: Let Bt =
[
∇2R(xt) + ηtQ1:t

]−1/2
.

8: Define δt =
(

n3C2ηt
βt
∑n
j=1 λj(B

2
t )

)1/4
.

9: Sample u ∼ Sn uniformly.
10: Set yt = xt + δtBtu ∈W1(xt) ⊂ K.
11: Play yt and incur loss ft(yt).
12: Compute the estimate ĝt = nft(yt)(δtBt)

−1u.
13: Update xt+1 = argminx∈K g

>
1:tx+ 1

2

∑t
s=1 ‖(x−

xs)‖2Qs + 1
ηt
R(x).

14: end for

dynamic learning rate ηt and sampling radius δt. Thus, Al-
gorithm 2 is also an upgrade from previous algorithms in
the literature in the sense that it does not require a priori
assumptions on the global convexity or smoothness of the
loss functions. One can adjust these parameters online, and
the algorithm’s regret will adapt.

The proof of the regret bound relies first on comparing the
true loss function with the smoothed one by using the regu-
larity parameters at each step. In contrast to previous algo-
rithms which used global regularity parameters in a coarse
manner (e.g. (Saha and Tewari, 2011)), we analyze the
random sampling of the ellipsoid in greater depth in order
to produce data-dependent estimates that we can leverage.
This requires some general results about random variables
and sampling that we present in Lemmas 8 and 9. Af-
ter analyzing the approximation error, we use the result of
Theorem 1 to derive a tight data-dependent bound in terms
of all the relevant controllable quantities. From here, the
sampling ellipsoid and learning rate at each iteration are
adjusted dynamically to achieve a tight bound on the re-
gret.

The choice of these ellipsoids and learning rates is fairly
subtle and cannot be done directly due to their interdepen-
dence. The optimal a posteriori learning rate depends on
the sampling ellipsoid, and the radius of the sampling el-

lipsoid depends on the learning rate. To get around this
chicken-and-egg type of phenomenon, we force the learner
to first hallucinate a different set of sampling ellipsoids
based on history from which the learner can determine
good learning rates. From here, the learner is then able to
define an efficient true sampling ellipsoid. Deriving a tight
on-line approximation to the a posteriori optimal param-
eters also involves an abstract calculation on normalized
sums, which we present in Lemma 7.

We first formerly state the technical lemmas that we will
need in this section. Their proofs are provided in Ap-
pendix A.

5.1 TECHNICAL LEMMAS

Lemma 7. Let αt ≥ 0, γ > 0, β > 1, and ηt =

β
1

1+γ (α1:t)
−1
1+γ . Then

(
T∑

t=1

ηγt αt

)
+

β

ηT
≤ (2 + γ)β

γ
1+γ (α1:T )

1
1+γ .

To derive finer estimates on the approximation error, we
will use the following facts about quadratic forms of ran-
dom variables and the statistical properties of sampling
from the unit sphere.

Lemma 8. Let x ∼ D be a random vector and A be a
symmetric matrix. Then, the following identity holds:

Ex∼D[x>Ax] = trace(Acov(x)) + E[x]>AE[x],

where cov(x) = E[xx>] − E[x]E[x]> is the covariance
matrix associated to x.

Lemma 9. Let u ∼ Sn. Then cov(u) = 1
nI and E[u] = 0.

We are now ready to present the regret guarantee of Algo-
rithm 2:

Theorem 2 (AdaBCO using dynamic smoothness bounds).
Let K be a convex set and R a ν-self-concordant barrier
over K. Assume that |f | ≤ C. Then the following regret
bound holds for Algorithm 2:

max
x∈K

T∑

t=1

E[ft(yt)− ft(x)]

≤ E


5
2
(ν log(T ))

1
3




T∑

t=1

√√√√4βtnC2

n∑

j=1

λj(B2
t )




2
3




Proof. We will show first that Algorithm 2 yields regret of
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at most:

T∑

t=1

E[ft(yt)− ft(x)]

≤
T∑

t=1

E


δ2t βt

1

n

n∑

j=1

λj(B
2
t )




+ E

[(
T∑

t=1

ηt
δ2t

(nft(xt +Btu))
2

)
+

1

ηT
ν log(T )

]

for any schedule of {δt}Tt=1 and {ηt}Tt=1.

The expected regret can be decomposed as follows:

E[RegT (w)]

=
T∑

t=1

E[ft(yt)− ft(w)]

=

T∑

t=1

E[ft(yt)− ft(xt)] + E[ft(xt)− f̂t(xt)]

+ E[f̂t(w)− ft(w)] + E[f̂t(xt)− f̂t(w)].

The first three terms reflect the approximation error from
running our algorithm against the true loss functions ver-
sus the smoothed out versions, and the last term can be
bounded via Theorem 1. To bound the first three, we use
the βt-strongly smooth property.

For the first term, we can use the smooothness constant of
the particular loss function along with the results on ran-
dom sampling to derive the following bound:

E[ft(yt)− ft(xt)]
= E

[
Eu∼Sn [ft(xt + δtBtu)− ft(xt)|xt]

]

≤ E
[
Eu∼Sn [∇ft(xt)δtBtu+ βt

2 ‖δtBtu‖22|xt]
]

= E
[
E
[
βt
2 ‖δtBtu‖22|xt

]]

= E
[
βt
2

trace
(
δ2tB

2
t

1

n
I

)]
(by Lemmas 8 and 9)

= E
[
βt
2
δ2t

1

n

n∑

j=1

λj(B
2
t )

]
.

The second term can be bounded using Jensen’s inequality:

E[ft(xt)− f̂t(xt)]
= E [ft(xt)− Ev∼Bn [ft(xt + δtBtv)]]

≤ E [ft(xt)− ft (Ev∼Bn [xt + δtBtv])]

= 0.

The third term can be analyzed in a way similar to the first
term, using the smoothness constant of the particular loss

function as well as the results on random sampling:

E[f̂t(w)− ft(w)]
= E[Ev∼Bn [ft(w + δtBtv)]− ft(w)]

≤ E
[
Ev∼Bn

[
∇ft(w)δtBtv +

βt
2
‖δtBtv‖22

]]

= E
[
βt
2
δ2tEv∼Bn

[
‖Btv‖22

]]

≤ E


βt
2
δ2t

1

n

n∑

j=1

λj(B
2
t )


 (by Lemmas 8 and 9).

By putting together all of the estimates above, we can arrive
at the following intermediate inequality:

T∑

t=1

E[ft(yt)− ft(x)]

≤
T∑

t=1

E


δ2t βt

1

n

n∑

j=1

λj(B
2
t )




+ E

[(
T∑

t=1

ηt
δ2t

(nft(xt +Btu))
2

)
+

1

ηT
ν log(T )

]

≤
T∑

t=1

E


δ2t βt

1

n

n∑

j=1

λj(B
2
t )




+ E

[(
T∑

t=1

ηt
δ2t
n2C2

)
+

1

ηT
ν log(T )

]
,

and by our choice of δt, it follows that

T∑

t=1

E[ft(yt)− ft(x)]

≤ E




T∑

t=1

2

√√√√βtηtnC2

n∑

j=1

λj(B2
t ) +

1

ηT
ν log(T )


 .

Finally, our choice of ηt, the fact that ηt ≤ ηt−1, and
Lemma 7 with γ = 1

2 , αt = 2
√
βtnC2

∑n
j=1 λj(B

2
t ),

β = ν log(T ) yield:

T∑

t=1

E[ft(yt)− ft(x)]

≤ E


5
2
(ν log(T ))

1
3




T∑

t=1

√√√√4βtnC2

n∑

j=1

λj(B2
t )




2
3


 .
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Algorithm 3 AdaBCO-Lipschitz
1: Input: η0 = 1

2nC , ν-self concordant barrier R, C > 0
constant.

2: Initialize: x1 = argminx∈KR(x).
3: for t = 1, . . . , T : do
4: Choose a constant Lt ≥ 0 such that |ft(x) −
ft(y)| ≤ Lt|x− y|.

5: Choose matrix Qt < 0 such that ft(x) ≥ ft(xt) +
g>t (x− xt) + 1

2‖x− xt‖2Qt .
6: Define B̃t,s =

(
∇2R(xs) + (ηs1{s<t})Q1:s

)−1/2
and

ηt =




t∑

s=1

2


2Ls

1

n

n∑

j=1

λj(B̃t,s)n
2C2




1/3



−3/4

(
ν log(T )

2

)3/4

.

7: Let Bt =
[
∇2R(xt) + ηtQ1:t

]−1/2
.

8: Define δt =
(
2 n3C2ηt
Lt
∑n
j=1 λj(Bt)

)1/3
.

9: Sample u ∼ Sn uniformly.
10: Set yt = xt + δtBtu ∈W1(xt) ⊂ K.
11: Play yt and incur loss ft(yt).
12: Compute the estimate ĝt = nft(yt)(δtBt)

−1u.
13: Update xt+1 = argminx∈K g

>
1:tx+ 1

2

∑t
s=1 ‖(x−

xs)‖2Qs + 1
ηt
R(x).

14: end for

6 AdaBCO FOR LIPSCHITZ
FUNCTIONS

Using first-order regularity instead of second motivates the
design of Algorithm 3. Like Algorithm 2, the major differ-
ence here is that we factor in the local Lipschitz constant
Lt and that we specify precisely ηt and δt. In the process,
we also need to hallucinate a separate set of ellipsoids to
circumvent the chicken-and-egg phenomenon.

Using similar techniques as in Theorem 2, one can derive
the following regret bound:

Theorem 3 (AdaBCO using dynamic Lipschitz bounds).
Let K be a convex set and R a ν-self-concordant barrier
over K. Assume that |f | ≤ C. Then Algorithm 2 provides
the regret bound:

max
x∈K

T∑

t=1

E[ft(yt)− ft(x)]

≤ E


5(ν log(T ))

1
4




T∑

t=1


LtnC2

n∑

j=1

λj(B̃t)




1
3




3
4




The proof of this result is similar to that of Theorem 2, and
is provided in Appendix B.

7 APPLICATIONS AND COMPARISON
WITH PREVIOUS RESULTS

The data-dependent nature of Algorithms 2 and 3 provide
two important implications.

The first is that they allow us to easily produce regret
bounds in a variety of new situations, where the learner
experiences loss functions with various levels of local
smoothness and convexity. In particular, we can identify
new scenarios where the optimal Õ(

√
T ) regret is achiev-

able by navigating the relationship between smoothnesss
and convexity.

The second is that these algorithms also automatically
adapt to the smoothness and convexity of these scenar-
ios. These new cases do not require any a priori insight or
tuning. The algorithms presented in this paper adaptively
determine optimal sampling ellipsoids and learning rates,
which lead to strong guarantees.

In particular, they allow the learner to recover existing re-
gret bounds without modifying the algorithms. Proper-
ties such as strong convexity or smoothness are processed
adaptively and online, so that if, e.g., a sequence of loss
functions is found to be approximately strongly convex
(which will become clear in the following results), then the
strongly convex guarantee will apply. If the sequence of
loss functions is better than strongly convex, then the algo-
rithm will give an even better guarantee. Thus, these algo-
rithms are prime examples of algorithms that “learn faster
from easy data”.

We present first the results for Algorithm 2.

Corollary 1 (Power law asymptotics for the dynamically
smooth and strongly convex scenario). Assume that there
exists α ∈ R such that

βtnC
2

n∑

j=1

λj((∇2R(xt) + ηtQ1:t)
−1) = O(tα).

Then the inequality
∑T
t=1 E[ft(yt) − ft(x)] ≤ Õ(T

2+α
3 )

holds.

In particular, Õ(
√
T ) regret is attainable for α ≤ −12 .

Moreover, Õ(T 1/2) regret is adaptively attained for smooth
and strongly convex functions, while Õ(T 2/3) regret is
adaptively attained for smooth functions.

For purely strongly smooth and strongly convex functions,
βt ≡ β > 0, and Qt ≡ Q � 0, such that Q1:t = tQ.
Algorithm 2 then implies that ηt = Õ(t−1/2) (provable via
induction), so that the corollary above applies with α ≤
−1
2 . Thus, we adaptively attain the bound of Õ(

√
T ) in
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(Hazan and Levy, 2014) without a priori knowledge of the
function’s regularity or any extra tuning.

For purely strongly smooth functions, βt ≡ β and in the
worst case Qt ≡ 0. This implies that the expression above
reduces to βnC2

∑n
j=1 λj(∇2R(xt)−1), so that the regret

in t depends entirely on the average eigenvalue of the in-
verse Hessian,

∑n
j=1 λj(R(xt)−1). In the worst case, this

expression is O(1), which gives us the bound of Õ(T 2/3)
in (Saha and Tewari, 2011).

From another perspective, the corollary can be interpreted
as saying that as long as βt � 1

t
∑n
j=1 λj(Q

−1
1:t )
� tγ for

any γ ∈ R, then ηt = Õ( 1√
t
), and a regret of at most

Õ(
√
T ) regret is guaranteed. In other words, we can extend

the result of (Hazan and Levy, 2014) to not just the case
where the smoothness and strong convexity are fixed and
local, but in fact to any setting where the smoothness and
average strong convexity parameters are locally changing
at the same rate.

Moreover, we would like to stress that the above reductions
are worst-case guarantees. The data-dependent nature of
the regret bound above implies that it can do much better
on easier data. We also do not need to know about these
optimistic settings in advance of running the algorithms, as
they will be adaptively and automatically obtained.

In particular, our algorithms factor in and leverage the con-
vexity of the self-concordant barrier, so that the algorithm’s
bounds are much stronger when the algorithm plays points
at which the Hessian of the barrier has large average eigen-
values. For common self-concordant barriers such as the
log-barrier function, this corresponds to being closer to the
boundary of the action set. This insight is actually some-
what surprising, because being further from the boundary
generally implies that the learner will use a wider sam-
pling ellipsoid and be able to explore more. This suggests
that the self-concordant barrier regularization introduced
by Abernethy et al. (2008) might not ellicit the best trade-
off between exploration and exploitation for general con-
vex functions as it does for linear functions. Previous al-
gorithms in bandit convex optimization did not reveal this
phenomenon because they were not adaptive and did not
provide data-dependent guarantees.

We now present the accompanying results for Algorithm 3.
Corollary 2 (Power law asymptotics for the dynamically
Lipschitz and strongly convex scenario). Assume that there
exists α ∈ R such that

LtnC
2

n∑

j=1

λj((∇2R(xt) + ηtQ1:t)
−1/2) = O(tα).

Then the inequality
∑T
t=1 E[ft(yt) − ft(x)] ≤ Õ(T

3+α
4 )

holds.

In particular, Õ(
√
T ) regret is attainable for α ≤ −1.

Moreover, Õ(T 2/3) regret is adaptively attained for
strongly convex functions, and Õ(T 3/4) regret is adaptively
attained for Lipschitz functions.

For purely Lipschitz and strongly convex functions, Lt ≡
L > 0, and Qt ≡ Q � 0, such that Q1:t = tQ. Algo-
rithm 2 then implies that ηt = Õ(t−1/3), so that the corol-
lary above applies with α = −1

3 . Thus, we adaptively attain
the bound of Õ(T 2/3) of (Agarwal et al., 2010) without a
priori knowledge of the regularity or any extra tuning.

For purely Lipschitz functions, Lt ≡ L and in the worst
case Qt ≡ 0. This implies that the expression above re-
duces to LnC2

∑n
j=1 λj(∇2R(xt)−1/2), so that the re-

gret now depends entirely on the average eigenvalue of the
square root of the inverse Hessian,

∑n
j=1 λj(R(xt)−1/2).

In the worst case, this expression is O(1), which gives us
the bound of Õ(T 3/4) in (Flaxman et al., 2005).

Moreover, as long as Lt � 1

t
∑n
j=1 λj(Q

−1/2
1:t )

� tγ for γ ∈
R, it follows that ηt = Õ(t−1/3) and will attain a regret of
at least Õ(T 2/3).

However, as we mentioned before, these bounds can be
more favorable in optimistic settings with easier data, and
our algorithm will automatically adapt to these scenarios.

8 CONCLUSION

We presented two efficient and adaptive algorithms for ban-
dit convex optimization. Unlike previous algorithms, ours
do not require a priori assumptions of global strong con-
vexity or smoothness. Instead, they can process these pa-
rameters locally and online, which is much more suitable
for the setting of online convex optimization.

They also provide data-dependent guarantees, so that on
“easier data”, the algorithms learn faster and the bounds
become tighter. In particular, we present and characterize
many new data-dependent scenarios under which one can
obtain the desired Õ(

√
T ) regret, including in the purely

Lipschitz and purely smooth settings.

Moreover, our algorithms characterize easy data to be sit-
uations where the local smoothness and convexity of our
loss functions grow at the same rate as well as when the
loss function guides the learner to play points closer to the
boundary. This bias in optimal exploration suggests that the
self-concordant barrier may be a sub-optimal regularizer in
the case of general Lipschitz convex functions.
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Abstract

We study the identifiability and estimation
of functional causal models under selection
bias, with a focus on the situation where the
selection depends solely on the e↵ect variable,
which is known as outcome-dependent selec-
tion. We address two questions of identifia-
bility: the identifiability of the causal direc-
tion between two variables in the presence of
selection bias, and, given the causal direction,
the identifiability of the model with outcome-
dependent selection. Regarding the first, we
show that in the framework of post-nonlinear
causal models, once outcome-dependent se-
lection is properly modeled, the causal di-
rection between two variables is generically
identifiable; regarding the second, we identify
some mild conditions under which an additive
noise causal model with outcome-dependent
selection is to a large extent identifiable. We
also propose two methods for estimating an
additive noise model from data that are gen-
erated with outcome-dependent selection.

1 Introduction

Selection bias is an important issue in statistical in-
ference. Ideally, samples should be drawn randomly
from the population of interest. In reality, however,
it is commonplace that the probability of including a
unit in the sample depends on some attributes of the
unit. Such selection bias, if not corrected, often dis-
torts the results of statistical analysis. For example, it
is well known that in a regression analysis, if there is
selection on the dependent variable, the ordinary least
squares estimation of the regression coe�cients will be
biased and inconsistent (Heckman, 1979). The chal-
lenge is even bigger in causal inference; both the task
of learning causal structures from data and the task

of estimating causal mechanisms or parameters given
a causal structure are usually rendered more di�cult
by the presence of selection bias.

In this paper, we are concerned with the approach to
causal inference based on (restricted) functional causal
models (Shimizu et al., 2006; Hoyer et al., 2009; Zhang
& Hyvärinen, 2009), and aim to investigate the extent
to which selection bias can be handled within this ap-
proach. Specifically, we mainly focus on the outcome-
dependent selection bias, where the selection mecha-
nism depends only on the e↵ect, and are interested in
the following two questions:

• Is the causal direction between two random vari-
ables identifiable in the presence of selection bias?

• Is the causal mechanism as represented by a func-
tional causal model identifiable in the presence of
selection bias?

These two questions have to do with the two main
aspects of causal inference, respectively. The for-
mer question is about the inference of causal struc-
ture. In the traditional conditional-independence-
constraint-based approach to learning causal struc-
tures (Spirtes et al., 2001; Pearl, 2000), some methods
have been developed to handle selection bias (Spirtes
et al., 1999; Zhang, 2008; Borboudakis & Tsamardi-
nos, 2015). However, the structural information that
can be learned via the constraint-based approach is
typically limited to a Markov equivalence class. In
particular, the approach cannot distinguish cause from
e↵ect with just two variables. In contrast, a distinc-
tive virtue of the approach based on functional causal
models is that Markov equivalent causal structures can
usually be distinguished. In particular, the direction
between two random variables is generically identifi-
able. Whether this virtue survives the challenge posed
by selection bias is therefore worth investigating.

The latter question is related to the inference of causal
parameters (i.e., parameters or quantities that have
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causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continuous vari-
ables that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not
a unit is included in the sample. Suppose we are in-
terested in the relationship between X and Y , where
X has a causal influence on Y . Let pXY denote the
joint distribution of X and Y in the population. The
selected sample follows pXY |S=1 instead of pXY . In
general, pXY |S=1 6= pXY , and that is how selection
may distort statistical and causal inference. However,
di↵erent kinds of selection engender di↵erent levels of
di�culty. In general, S may depend on any number of
substantive variables, as illustrated in Figure 1, where
X = (X1, X2).

1

1In this paper, we assume that we only know which vari-
ables the selection variable S depends on, but the selection
mechanism is unknown, i.e., the probability of S = 1 given
those variables is unknown. Notice that we do not have
access to the data points that were not selected. This is
very di↵erent from Heckman’s framework to correct the
bias caused by a censored sample (Heckman, 1979), which
assumes access to an i.i.d. sample from the whole popula-
tion, on which the Y values are observable only for the data
points that satisfy the selection criterion (implied by the
selection equation), but other attributes of the “censored”
points are still available, enabling one to directly identify
the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d)

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent
selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
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models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-
fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1, +1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,
with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually

more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 02 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in
PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are
interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
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is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�1

2 (X), Z , f�1
2 (Y ), and function h ,

f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!
XY = �(y)pXE/|f 02| = �f2

(z)pT pE/|f 02g02|,
p XY = v(x)pF 

XY = v(x)pY Ẽ/|g02| = vg2
(t)pZẼ/|f 02g02|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2

(z)

vg2
(t)

pT pE ,

or equivalently

log pZẼ = log �f2
(z)� log vg2

(t) + log pT + log pE

= log �f2
(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2
(t) = ⌘1(t) � log vg2

(t).

Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and
T and the functions f1, f2, g1, g2, and v(x) are
third-order di↵erentiable and that pE is positive on
(�1, +1). The condition (4) implies that for every
point of (X, Y ) satisfying ⌘002h0 6= 0:

⌘̃0001 �
⌘̃001h00

h0
=

⇣⌘02⌘0002
⌘002
� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=
⌘̃001 + ⌘002h02 � ⌘02h00

⌘002h0
. (8)

Further assume that ⌘002h0 6= 0 almost everywhere.
Then in order for (7) to hold, pE and h must satisfy
one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2

1 Gaussian linear
2 log-mix-lin-exp linear
3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 generalized mixture
of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two

exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by

⌘̃1(t) = log pT (t)
vg2

(t) . Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1, +1), one

can always adjust vg2
(t) so that pT (t)

vg2 (t) meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1, +1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the
distribution

p�XY = �(y)pF
XpF

Y |X , (10)

where pF
Y |X is specified by the causal model (9) and

pF
X denotes the distribution of X before applying the
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selection procedure. Note that generally speaking, pF
X

is not identical to p�X . Call the model (F ,�(y)) an
ANM-OSB model.

Suppose that the observed data are generated from an
ANM-OSB (F1,�1(y)). We are interested in whether
another ANM-OSB (F2,�2(y)) can generate the same
data distribution. Suppose it does. The observed data
distribution is then

p�XY = pF1

XY �1(y) = pF2

XY �2(y). (11)

Let �r(y) , �2(y)
�1(y) . Bear in mind that pF1

XY =

p
(1)
X pE1(Y �f (1)(X)) and pF2

XY = p
(2)
X pE2(Y �f (2)(X)).

If (11) holds, we have

��1
r (y)p

(1)
X (x)pE1

(e1) = p
(2)
X (x)pE2

(e2). (12)

Taking the logarithm of both sides gives

�log �r(y)+log p
(1)
X +log pE1

(e1) = log p
(2)
X +log pE2

(e2).
(13)

Now let us see whether it is possible for (13) to
hold and, if yes, what constraints the functions �r(y),

log p
(1)
X , and log pE1

(e1) must satisfy. Denote by

JAN , log p
(2)
X + log pE2(e2). As seen from the RHS,

(13) implies
@2JAN

@x@e2
⌘ 0. (14)

Let l�(y) = log �r(y), ⌘X1
(x) , log p

(1)
X and ⌘E1

(e1) ,
log pE1(e1). By solving (14), we can establish the re-
lationship between the two ANM-OSB models.

4.1 General Results

Interestingly, as stated in the following theorem, if
the noise E1 is non-Gaussian, then f (2)(x) must be a
shifted version of f (1)(x); in other words, the underly-
ing function fAN is identifiable up to a constant. Fur-
thermore, if E1 is non-Gaussian, the selection weight
�(y) can be recovered up to a factor which is an expo-
nential function of y, i.e., �2(y) / �2(y) · ec2y, where
c2 is a constant; accordingly, pE2

/ pE1
· e�c2e1 .

Theorem 2 Let Assumptions A1 and A2 hold true:

A1. p
(1)
X and pE1 are positive on (�1, +1).

A2. ⌘
00
E1

(e1)f
(1)0(x) = 0 only at finite points.2

Then if (11) is true, the following statements hold.

a) If E1 is not Gaussian, then f (2)(x) = f (1)(x)+c1,
and �2(y) = �1(y)�r(y), where �r(y) = ec2y+d1 =

2This excludes the special case where f (1)0 ⌘ 0, i.e.,
where X and Y are independent; in this case clearly the
selection procedure is not identifiable.

ed1 · ec2f(1)(x) · ec2e1 . Accordingly, p
(2)
X / p

(1)
X ·

e�c2f1(x), and pE2
/ pE1

·e�c2e1 . Here c1, c2, and
d1 are constants, and d1 guarantees that �2(y) is
a valid density ratio.

That is, f (2)(x) is equal to f (1)(x) (up to a con-
stant), and with proper scaling, �2(y) equals �1(y)
times an exponential function of y.

b) If E1 is Gaussian, then �2(y) = �1(y)�r(y),

where �r(y) = e
�ab
2 y2+c4y+d4 , and f (2)(x) =

1
1+bf

(1)(x)+d3. Here a, b, c4, d3, and d4 are con-
stants, d4 guarantees that �2(y) is a valid density
ratio, and a 6= 0.

That is, with proper scaling, �2(y) equals �1(y)
times a Gaussian function of y (which includes
the exponential function of y as a special case by
setting b = 0).

An interesting implication of Theorem 2 is that gen-
erally speaking, fitting an ordinary ANM on the data
that were generated by an ANM-OSB will not pro-
duce an independent error term. That is, under
mild assumptions, if one sets �2(y) ⌘ 1, (F2,�2(y))
cannot produce the same distribution over (X, Y ) as
(F1,�1(y)) does, as is given in the following corollary.

Corollary 3 Let Assumptions A1 and A2 hold. Then
under either of the following conditions, there does not
exist an ANM, specified by (9), to generate the same
distribution over (X, Y ) as (F1,�1(y)) does.

a) E1 is not Gaussian and �1(y) is not proportional to
ec0y for any c0.

b) E1 is Gaussian and �1(y) is not proportional to

ea0y2+c0y for any a0 and c0 (i.e., �1(y) is not propor-
tional to an exponential function of any polynomial of
y of degree 1 or 2).

4.2 When the Noise is Gaussian

When pE1
is Gaussian, as stated in b) of Theorem 2,

the function fAN is not identifiable any more: f (2)(x)
and f (1)(x)can di↵er by an a�ne transformation (not
simply a shift). Accordingly, �2(y) can di↵er from
�1(y) in a Gaussian function of y. Compared to the
case where E1 is non-Gaussian, the Gaussian case suf-
fers from more indeterminacies because the product
of two Gaussian functions is still a Gaussian func-
tion. In particular, since ��1

r (y) and pE1
(y � f (1)(x))

(or pF1

Y |X(y|x)) are both Gaussian functions in y, their

product is still a Gaussian function in y. Accordingly,
(12) will hold true, by setting pE2 to another appropri-
ate Gaussian density; in other words, in this case two
additive noise models F1 and F2 can both generate
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the same observed data, by applying the bias selection
procedures �1(y) and �2(y) = �1(y)�r(y), respectively.

More specifically, we can derive the function f (2)(x)

and noise distribution pE2(e2) for the model F2. As
shown above, f (2)(x) = 1

1+bf
(1)(x) + d3. Eq. 12,

combined with (25) and (26), implies that pE2
(e2) /

e
a
2 e2

2+
ab
2 e2

2 = e
a(1+b)

2 e2
2 , while pE1

(e1) / e
a
2 e2

1 .

Figure 2 gives an illustration of this result. Notice
that the identifiability results imply some constraints
on �r(y) = �2(y)/�1(y), not on �1(y), so without loss
of generality, we set �1(y) ⌘ 1, leading to �2(y) =
�r(y). The circles denote the data points generated by
applying the density ratio �1(y) ⌘ 1 on additive noise
model F1: the dash line shows the nonlinear function
f (1)(x), and the red solid line shows the shape of pE1

.
In contrast, additive noise model F2 uses nonlinear
function f (2)(x), which is di↵erent from f (1)(x), and
its noise variance is slightly larger than that in F1.
The crosses denote the data points generated by F2.
Although F1 and F2 are not the same in this case,
applying the density ratio function �r(y) on pF2

XY gives

the same joint distribution as pF1

XY , i.e., �1(y)pF1

XY =

pF1

XY = �r(y)pF2

XY = �2(y)pF2

XY .

Figure 2: Illustration of the non-identifiability of the
additive noise model, especially fAN , when the noise
is Gaussian. Red circles denote data points generated
by the ANM F1, or by the ANM-OSB (F1,�1(y) ⌘
1). The gray crosses denote data generated by the
ANM F2. The two ANM-OSB models, (F2,�r(y)) and
(F1, 1), produce the same distribution of (X, Y ).

4.3 With Further Constraints

Not surprisingly, if we have more knowledge about the
noise distribution pE or the density ratio function �(y),

the ANM model, including the function, the noise dis-
tribution, and the density ratio, can be fully identifi-
able. Below is an example showing that this is the case
if we know that pE is symmetric and non-Gaussian.

Corollary 4 Let the assumptions made in Theorem 2
A1 and A2 hold. Suppose E1 is not Gaussian. Then If
both pE1

and pE2
are symmetric about the origin, then

f (2)(x) = f (1)(x), E1 = E2, pE1(e1) = pE2(e2), and
�r(y) ⌘ 1, i.e., �1(y) = �2(y).

5 Estimation of ANM-OSB

Eq. 10 gives the distribution for the observed data. In
theory, we can then estimate the parameters involved
in �(y), pF

Y |X , as well as pX , by maximum likelihood.
However, when using maximum likelihood, we have to
guarantee that the quantity on the right hand side of
(10) is a valid density. This constraint is notoriously
di�cult to enforce in the optimization procedure. Be-
low we propose two methods to estimate the under-
lying additive noise model and �(y); one is maximum
likelihood with the above constraint enforced approxi-
mately, and the other makes use of the score matching
technique.

5.1 Maximum Likelihood Estimation with a
Sample Approximation Constraint

To estimate the involved functions �(y), pF
X , and pF

Y |X ,

we can maximize the data likelihood:

L =

nX

k=1

log p�
XY (xk, yk)

=

nX

k=1

⇥
log �(yk) + log pF

X(xk) + log pF
Y |X(yk|xk)

⇤
. (15)

According to the theory shown in Section 4, the so-
lution to �y, pF

X , and pF
Y |X su↵ers from some indeter-

minacies, e.g., the solution to �y may di↵er from the
true one by an exponential transformation. To find the
solution for which the biased selection procedure is as
weak as possible, we regularize the likelihood function
with the constraint that log �(y) is close to 0. That is,
we maximize

Lr = L� �r

nX

k=1

p
(log �(yk))2 + r, (16)

where the regularization parameter �r was set to 10�3

in our experiments, and r is a small positive number
and was set to 0.02.

Now we have two issues to consider. One is how to
parameterize the involved functions. The other is how

to enforce that p�XY , specified in (10), corresponds to
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a valid density. More specifically, the constraint is

�(y)pF
XpF

Y |X > 0, or equivalently �(y) > 0, and (17)
Z
�(y)pF

XpF
Y |Xdxdy = 1. (18)

Without constraint (18), the scale of p�XY will go to
infinity during the process of maximizing (15).

Parameterization The additive noise model for the
data-generating process, (9), implies that pF

Y |X =

pE(y � fAN (x)). We parameterize �(y) as the expo-
nential transformation of a nonlinear function repre-
sented by MLP’s (with the tanh activation function);
this automatically guarantees the nonnegativity con-
straint of �(y), as required in (17). Furthermore, we
represent pF

X with a mixture of Gaussians, the nonlin-
ear function fAN with MLP’s (with the tanh activa-
tion function), and pE with another mixture of Gaus-
sians.

Enforcing p�XY to Be a Valid Density We present
a sample-average approximation scheme to approxi-
mately enforce the condition that the right hand side of
(10) corresponds to a valid distribution, or more specif-
ically, to impose the constraint (18). Notice that the

given data points {xk, yk}n
k=1 were drawn from p�XY .

As a matter of fact, we have

Z
�(y)pF

XpF
Y |X =

Z
po

XY

�(y)pF
XpF

Y |X
po

XY

dxdy (19)

⇡ 1

n

nX

k=1

�(yk)pF
X(xk)pF

Y |X(yk|xk)

po
XY (xk, yk)

(20)

⇡ 1

n

nX

k=1

�(yk)pF
X(xk)pF

Y |X(yk|xk)

p̂o
XY (xk, yk)

, (21)

where po
XY denotes the data distribution of (X, Y ),

and p̂o
XY (xk, yk) denotes its estimate at point (xk, yk).

Here the expression in (20) is an empirical estimate of
(19) on the sample drawn from the distribution po

XY ;
furthermore, (20) replaces the density po

XY (xk, yk)
with its empirical estimate p̂o

XY (xk, yk). As a con-
sequence, the constraint (18) can be (approximately)
achieved by enforcing

1

n

nX

k=1

�(yk)pF
X(xk)pF

Y |X(yk|xk)

p̂o
XY (xk, yk)

= 1. (22)

In our experiments, we used kernel density estima-
tion with a Gaussian kernel for p̂o

XY (xk, yk); for each
dimension, we set the kernel width to the median dis-
tance between points in the sample, as in (Gretton
et al., 2007).

Under the parameterization given in (27) and with the
above approach to guarantee that po

XY is (approxi-
mately) a valid density, one can then maximize the

likelihood function given in (15) to estimate the func-
tion fAN , the noise distribution, and �(y).

5.2 With Score Matching

Alternatively, we can estimate the parameters by score
matching (Hyvärinen, 2005), i.e., by minimizing the
expected squared distance between the gradient of the
log-density given by the model and the gradient of the
log-density of the observed data. This procedure aims
to match the shape of the density given by the model
and that of the empirical density of the observed data,
and is invariant to the scaling factor of the model den-
sity. As a clear advantage, in the optimization pro-
cedure one does not need to guarantee that p�XY is a
valid density.

Given any model density pZ(z; ✓) of a m-dimensional
random vector Z, the score function is the gra-
dient of the log-density w.r.t. the data vec-
tor, i.e.,  (z; ✓) = ( 1(z; ✓), ..., m(z; ✓))| =

(@ log pZ(z;✓)
@z1

, ..., @ log pZ(z;✓)
@zm

)|. Note that the score
function is invariant to scale transformations in
pZ(z), i.e., it is invariant to the normalization con-
stant for a valid density. One can then estimate
model parameters by minimize the expected squared
distance between the model score function  (·; ✓)
and the data score function  Z(·; ✓), i.e., minimize
1
2

R
z2Rm pZ(z)|| (z; ✓)� Z(z)||2dz. It has been shown

in (Hyvärinen, 2005) that minimizing the above
squared distance is equivalent to minimizing

JSM (✓) =

Z

z2Rm

pZ(z)
mX

i=1

⇥
 ̃i(z; ✓) +

1

2
 2

i (z; ✓)
⇤
dz,

where  ̃i(z; ✓) = @ i(z;✓)
@zi

. The sample version of

JSM (✓) over the sample z1, ..., zn is

ĴSM (✓) =
1

n

nX

k=1

mX

i=1

⇥
 ̃i(zk; ✓) +

1

2
 2

i (zk; ✓)
⇤
. (23)

In particular, here we have  1 =  X and  2 =  Y ;
noting that pF

Y |X = pE(y � fAN (x)), we can write

down the involved derivatives involved in (28), and
then minimize the regularized score function (with the
same regularization term as in Eq. 16) to estimate the
involved parameter.

6 Experiments

Simulations The simulated data are generated by
applying the biased selection procedure on the data
generated by a additive noise model with function
fAN , i.e., by (9) and (10). As shown in Section 4,
the function fAN is identifiable up to some shift when
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the noise is non-Gaussian. We shall study the esti-
mation quality of the regression function fAN under
di↵erent settings.
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Figure 3: Simulation settings and results. (a) shows
the density ratio functions for OSB, �1(y), �2(y), and
�3(y), which are used in settings 1-4, 5-8, and 9-12,
respectively. (b), (c), and (d) show the pairwise MSE
of the estimated function for the proposed methods
against GP regression on the given sample, in settings
1-4, 5-8, and 9-12, respectively. The dashed line marks
the threshold where the proposed methods and GP
regression on the given sample perform equally well.

We consider three settings for OSB, by setting �(y)
(see Eq. 10) to di↵erent functions. As shown in Fig-
ure 3(a), �(1)(y) is a piecewise linear function, �(2)(y)
is a (scaled) Gaussian function with mean -1 and stan-
dard deviation 2, and �(3)(y) corresponding to a hard
biased selection procedure: it drops all data points
corresponding to the 10% largest values of Y .

We use two ways to generate the distributions of X and
E; one is the uniform distribution, and the other the
mixture of three Gaussians with random coe�cients.
The function fAN is a mixture of the linear, tanh, and
cubic function with random coe�cients (the coe�cient
for the cubic function is constrained to be small to
avoid extreme values in Y ).

In total there are 2 ⇥ 2 ⇥ 3 simulation settings. For
each setting we repeat the experiment with 15 random
replications. We use the methods proposed in Sec-
tion 5 to recover this function. Denote by f̂AN

ML the esti-
mate given by the (approximate) maximum likelihood

method, and by f̂AN
SM that given by the score match-

ing method. The estimation performance is evaluated
by the mean square error (MSE) between the estimate

and the true function, 1
n

Pn
i=1(f̂

AN (xi) � fAN (xi))
2.

We compare the estimates produced by our methods
with that estimated by Gaussian process (GP) regres-

sion on the given sample, denoted by f̂GP . Figure 3(b-

d) compares the estimation quality of f̂AN
ML and f̂AN

SM

against f̂GP ; note that they are plotted on a log scale.

X
-1 0 1

Y

-2

0

2

4

Generated by ANM

fAN

X
-1 0 1

Y

-2

0

2

4

y
-5 0 5

lo
g
(β

y
)

-2

0

2

4

6

-2 -1 0 1
-6

-4

-2

0

2

log(p̂X)

log(p̂E)

Selected points

f̂AN
ML f̂GP

fAN

Figure 4: Results of a typical run estimated by the
maximum likelihood approach. The four subfigures
show the data produced by the ANM, the selected
sample and the estimates of fAN , the estimate of �(y),
and the estimates of pX and pE , respectively.

As one can see from Figure 3(b-d), the proposed meth-
ods may converge to unwanted solutions, as shown by
the few points above the dashed lines. However, in
most cases the proposed method provides a better es-
timate of the function fAN . As suggested by (Demšar,
2006), we use the Wilcoxon signed ranks test to check

whether MSE(f̂AN , fAN ) is significantly better than

MSE(f̂GP , fAN ) under all the three settings for �(y).
It is a nonparametric test to detect shifts in popula-
tions given a number of paired samples. Under the null
hypothesis the distribution of di↵erences between the
two populations is symmetric about 0. We find that
under all the three sets of settings, for the score match-
ing method, the null hypothesis is always rejected at
the 0.01 level (the p-values are 6⇥10�7, 2⇥10�6, and
8 ⇥ 10�5, respectively). For the maximum likelihood
method, the null is rejected in settings 1-4 and 5-9 (the
p-values are 2⇥ 10�7, and 8⇥ 10�5, respectively); we
fail to reject the null in settings 5-8 (with the p-value
0.22): this seems to be caused by local optima, which
will be discussed below. This means that the proposed
method outperforms the method that fits GP regres-
sion on the observed data, in terms of the estimation
quality of the true function.

Figure 4 gives the result of a typical run (with �3(y))
produced by maximum likelihood. Interestingly, one
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can see that compared to the true �(t), which is �3(y)

in Figure 3(a), �̂(y) contains an additional factor of
the form ec2y with some constant c2. The estimates of
pX and pE are also skewed accordingly. This verifies
the statements given in Theorem 2(a).

As seen from Figure 3, both algorithms may get stuck
in local optima. Let us have a closer look at the re-
sults given by maximum likelihood. We found that
for each simulation setting, in all runs where the func-
tion fAN was not accurately recovered, or more specif-
ically, where MSE(f̂AN

ML, fAN ) > MSE(f̂GP , fAN ),
the corresponding likelihood values are among the low-
est across all 15 runs. That is, the attained likelihood
value suggests whether the algorithm converges to a
local optimum. Therefore, in practice one may run
the algorithms multiple times with random initializa-
tions and choose the one which gives the best model
fit (e.g., the highest likelihood). However, this is not
the case for the score matching-based approach: we
did not find that the unwanted solutions always corre-
spond to relatively large score distances. The precise
reason for this phenomenon is still under investigation.
Hence, below we only report the results given by the
(approximate) maximum likelihood approach.

Experiments on Real Data We went through the
cause-e↵ect pairs (http://webdav.tuebingen.mpg.
de/cause-effect/) to find data sets which are likely
to su↵er the OSB issue according to commonsense or
background knowledge. We selected Pairs 25, 40, and
41. Here to save space, we only report the results on
Pair 25; it is about the relationship between the age
(X) and the concrete compressive strength (Y ) of dif-
ferent samples of concrete.

The empirical distribution of the data in Pair 25 sug-
gests that it is very likely for the e↵ect to su↵er from
a PNL distortion. We use a rough way to take into
account both the PNL distortion in the causal process
and the OSB. We first fit the PNL causal model (Zhang
& Hyvärinen, 2009) on the data and correct the data
with the estimated PNL transformation on Y . We
then fit the ANM-OSB procedure on the corrected
data. To avoid local optima, we run the (approxi-
mate) maximum likelihood algorithm presented in Sec-
tion 5.1 five times with random initializations and
choose the one with the highest likelihood. Figure 7
shows the result on Pair 25. As seen from �̂(y), it
seems for some reason, the samples whose compressive
strength is very high were not selected. The estimated
function f̂GP

ML seems to address this issue.

7 Conclusion and Discussions

As we have shown, in the presence of outcome-
dependent selection, the causal direction is still generi-
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Figure 5: Results on pair 25 of the cause-e↵ect pairs.
(a) The scatterplot of the data (after correcting the
nonlinear distortion in Y with the PNL causal model),

the nonlinear regression function f̂GP on the data, and
the estimated function f̂AN

ML by the maximum likeli-
hood approach. (b) The estimated density ratio �(y).

cally identifiable if the causal relationship can be mod-
eled by a post-nonlinear causal model. Moreover, in
the case of an additive noise model, the causal mech-
anism as represented by the function in the model
is identifiable up to a constant if the noise term is
non-Gaussian (and completely identified if the noise
term follows a symmetric, non-Gaussian distribution).
However, due to the selection bias, the estimation re-
quires more care than standard methods for fitting
such models, and we developed two estimation pro-
cedures in this paper.

This is a first step towards a better understanding of
the bearing of selection bias on the identifiability and
estimation of functional causal models. There are sev-
eral interesting problems for future work. First, the
identifiability result on additive noise models can be
generalized to post-nonlinear models, but it will take
more work to put the more general result in a su�-
ciently simple form. Second, our positive results here
are confined to outcome-dependent selection. Thanks
to this restriction, our results do not rely on any sub-
stantial assumption on the selection mechanism. For
more complex structures of selection, such as when
the selection depends on both cause and e↵ect, iden-
tifiability will require more specifications of the selec-
tion model. Third, our result on the identification of
causal direction is confined to the two-variable case
without latent confounders; how to handle selection
in multi-variable structural learning, with or without
latent confounders, remains an open problem.
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Abstract

Most recommender systems recommend a list of
items. The user examines the list, from the first
item to the last, and often chooses the first attrac-
tive item and does not examine the rest. This type
of user behavior can be modeled by the cascade
model. In this work, we study cascading bandits,
an online learning variant of the cascade model
where the goal is to recommend K most attrac-
tive items from a large set of L candidate items.
We propose two algorithms for solving this prob-
lem, which are based on the idea of linear gener-
alization. The key idea in our solutions is that we
learn a predictor of the attraction probabilities of
items from their features, as opposing to learning
the attraction probability of each item indepen-
dently as in the existing work. This results in
practical learning algorithms whose regret does
not depend on the number of items L. We bound
the regret of one algorithm and comprehensively
evaluate the other on a range of recommendation
problems. The algorithm performs well and out-
performs all baselines.

1 INTRODUCTION

Most recommender systems recommended a list of K
items, such as restaurants, songs, or movies. The user
examines the recommended list from the first item to the

last, and typically clicks on the first item that attracts the
user. The cascade model [10] is a popular model to formu-
late this kind of user behavior. The items before the first
clicked item are not attractive, because the user examines
these items but does not click on them. The items after the
first attractive item are unobserved, because the user never
examines these items. The key assumption in the cascade
model is that each item attracts the user independently of
the other items. Under this assumption, the optimal solu-
tion in the cascade model, the list of K items that maxi-
mizes the probability that the user finds an attractive item,
are K most attractive items. The cascade model is sim-
ple, intuitive, and surprisingly effective in explaining user
behavior [7].

In this paper, we study on an online learning variant of the
cascade model, which is known as cascading bandits [15].
In this model, the learning agent does not know the pref-
erences of the user over recommended items and the goal
is to learn them by interacting with the user. At time t, the
agent recommends to the user a list of K items out of L
candidate items and observes the click of the user. If the
user clicks on an item, the agent receives a reward of one.
If the user does not click on any item, the agent receives a
reward of zero. The performance of the learning agent is
evaluated by its cumulative reward in n steps, which is the
total number of clicks in n steps. The goal of the agent is
to maximize it.

Kveton et al. [15] proposed two computationally and sam-
ple efficient algorithms for cascading bandits. They also
proved a ⌦(L−K) lower bound on the regret in cascading
bandits, which shows that the regret grows linearly with the
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number of candidate items L. Therefore, cascading bandits
are impractical for learning when L is large. Unfortunately,
this setting is common practice. For instance, consider the
problem of learning a personalized recommender system
for K = 10 movies from the ground set of L = 100k
movies. In this setting, each movie would have to be shown
to the user at least once, which means at least 10k inter-
actions with the recommender system, before the system
starts behaving intelligently. Such a system would clearly
be impractical. The main contribution of our work is that
we propose linear cascading bandits, an online learning
framework that makes learning in cascading bandits practi-
cal at scale. The key step in our approach is that we assume
that the attraction probabilities of items can be predicted
from the features of items. Features are often available in
practice or can be easily derived.

To the best of our knowledge, this is the first work that
studies a top-K recommender problem in the bandit set-
ting with cascading feedback and context. Specifically,
we make four contributions. First, we propose linear cas-
cading bandits, a variant of cascading bandits where we
make an additional assumption that the attraction proba-
bilities of items are a linear function of the features of
items. This assumption is the key step in designing a sam-
ple efficient learning algorithm for our problem. Second,
we propose two computationally efficient learning algo-
rithms, CascadeLinTS and CascadeLinUCB, which are
motivated by Thompson sampling (TS) [23, 3] and linear
UCB [1, 24], We believe this is the first application of lin-
ear generalization in the cascade model under partial mon-
itoring feedback. Third, we derive an upper bound on the
regret of CascadeLinUCB and discuss why a similar upper
bound should hold for CascadeLinTS. Finally, we eval-
uate CascadeLinTS on a range of recommendation prob-
lems; in the domains of restaurant, music, and movie rec-
ommendations; and demonstrate that it performs well even
when our modeling assumptions are violated.

Our paper is organized as follows. In Section 2, we
review the cascade model and cascading bandits. In
Section 3, we present linear cascading bandits; propose
CascadeLinTS and CascadeLinUCB; and bound the re-
gret of CascadeLinUCB. In Section 4, we evaluate
CascadeLinTS on several recommendation problems. We
review related work in Section 5 and conclude in Section 6.

To simplify exposition, we denote random variables by
boldface letter. We define [n] = {1, . . . , n} and denote
the cardinality of set A by |A|.

2 BACKGROUND

In this section, we review the cascade model [10] and cas-
cading bandits [15].

2.1 Cascade Model

The cascade model [10] is a popular model of user be-
havior. In this model, the user is recommended a list of
K items A = (a1, . . . , aK) 2 ⇧K(E), where ⇧K(E) is
the set of all K-permutations of some ground set E =
[L], which is the set of all possibly recommended items.
The model is parameterized by L attraction probabilities
w̄ 2 [0, 1]E and the user scans the list A sequentially from
the first item a1 to the last aK . After the user examines
item ak, the item attracts the user with probability w̄(ak),
independently of the other items. If the user is attracted
by item ak, the user clicks on it and stop examining the
remaining items. If the user is not attracted by item ak,
the user examines the next recommended item ak+1. It is
easy to see that the probability that item ak is examined
is

Qk−1
i=1 (1 − w̄(ai)), and that the probability that at least

one item in A is attractive is 1 − QK
i=1(1 − w̄(ai)). This

objective is maximized by K most attractive items.

The cascade model is surprising effective in explaining how
users scan lists of items [7]. The reason is that lower ranked
items typically do not get clicked because the user is at-
tracted by higher ranked items, and never examines the rest
of the recommended list.

2.2 Cascading Bandits

Kveton et al. [15] proposed a learning variant of the cas-
cading model, which is known as a cascading bandit. For-
mally, a cascading bandit is a tuple B = (E, P, K), where
E = [L] is a ground set of L items, P is a probability dis-
tribution over a binary hypercube {0, 1}E , and K  L is
the number of recommended items.

The learning agent interacts with our problem as follows.
Let (wt)

n
t=1 be an i.i.d. sequence of n weights drawn from

P , where wt 2 {0, 1}E and wt(e) is the preference of the
user for item e at time t. More precisely, wt(e) = 1 if
and only if item e attracts the user at time t. At time t, the
agent recommends a list of K items At = (at

1, . . . ,a
t
K) 2

⇧K(E). The list is a function of the observations of the
agent up to time t. The user examines the list, from the
first item at

1 to the last at
K , and clicks on the first attractive

item. If the user is not attracted by any item, the user does
not click on any item. Then time increases to t + 1.

The reward of the agent at time t is one if and only if the
user is attracted by at least one item in At. Formally, the re-
ward at time t can be expressed as rt = f(At,wt), where
f : ⇧K(E) ⇥ [0, 1]E ! [0, 1] is a reward function and we
define it as:

f(A, w) = 1 −
KY

k=1

(1 − w(ak))

for any A = (a1, . . . , aK) 2 ⇧K(E) and w 2 [0, 1]E . The
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agent at time t receives feedback:

Ct = min
�
k 2 [K] : wt(a

t
k) = 1

 
,

where we assume that min ; = 1. The feedback Ct is
the click of the user. If Ct  K, the user clicks on item
Ct. If Ct = 1, the user does not click on any item. Since
the user clicks on the first attractive item in the list, the
observed weights of all recommended items at time t can
be expressed as a function of Ct:

wt(a
t
k) = 1{Ct = k} k = 1, . . . ,min {Ct, K} . (1)

Accordingly, we say that item e is observed at time t if
e = at

k for some k 2 [min {Ct, K}].

Let the attraction weights of items in the ground set E be
distributed independently as:

P (w) =
Y

e2E

Ber(w(e); w̄(e)) ,

where Ber(·; ✓) is a Bernoulli distribution with mean ✓.
Then the expected reward for list A 2 ⇧K(E), the prob-
ability that at least one item in A is satisfactory, can be
expressed as E [f(A,w)] = f(A, w̄), and depends only on
the attraction probabilities of individual items in A. There-
fore, it is sufficient to learn a good approximation to w̄ to
act optimally.

The agent’s policy is evaluated by its expected cumulative
regret:

R(n) = E

"
nX

t=1

R(At,wt)

#
, (2)

where R(At,wt) = f(A⇤,wt) − f(At,wt) is the instan-
taneous stochastic regret of the agent at time t and:

A⇤ = arg max
A2⇧K(E)

f(A, w̄)

is the optimal list of items, the list that maximizes the re-
ward at any time t. For simplicity of exposition, we assume
that the optimal solution, as a set, is unique.

2.3 Algorithm CascadeUCB1

Kveton et al. [15] proposed and analyzed two learn-
ing algorithms for cascading bandits, CascadeUCB1 and
CascadeKL-UCB. In this section, we review CascadeUCB1.

CascadeUCB1 belongs to the family of UCB algorithms.
The algorithm operates in three stages. First, it computes
the upper confidence bounds (UCBs) Ut 2 [0, 1]E on the
attraction probabilities of all items in E. The UCB of item
e at time t is:

Ut(e) = ŵTt1(e)(e) + ct−1,Tt1(e) , (3)

where ŵs(e) is the average of s observed attraction weights
of item e, Tt(e) is the number of times that item e is ob-
served in t steps, and:

ct,s =
p

(1.5 log t)/s

is the radius of a confidence interval around ŵs(e) after t
steps such that w̄(e) 2 [ŵs(e) − ct,s, ŵs(e) + ct,s] holds
with high probability. Second, CascadeUCB1 recommends
a list of K items with largest UCBs:

At = arg max
A2⇧K(E)

f(A,Ut) .

Finally, after the user provides feedback Ct, the algorithm
updates its estimates of the attraction probabilities w̄(e)
based on the observed weights of items, which are defined
in (1) for all e = at

k such that k  Ct.

3 LINEAR CASCADING BANDITS

Kveton et al. [15] showed that the n-step regret of
CascadeUCB1 is O((L − K)(1/∆) log n), where L is the
number of items in ground set E; K is the number of
recommended items; and ∆ is the gap, which measures
the sample complexity. This means that the regret in-
creases linearly with the number of items L. As a result,
CascadeUCB1 is not practical when L is large. Unfortu-
nately, this setting is common practice. For instance, con-
sider the problem of learning a personalized recommender
for 10 movies from the ground set of 100k movies. To
learn, CascadeUCB1 would need to show each movie to the
user at least once, which means that the algorithm would
require at least 10k interactions with the user to start be-
having intelligently. This is clearly impractical.

In this work, we propose practical algorithms for large-
scale cascading bandits, in the setting where L is large.
The key assumption, which allows us to learn efficiently, is
that we assume that the attraction probability of each item
e, w̄(e), can be approximated by a linear combination of
some known d-dimensional feature vector xe 2 Rd⇥1 and
an unknown d-dimensional parameter vector of ✓⇤ 2 Rd⇥1,
which is shared among all items. More precisely, we as-
sume that there exists ✓⇤ 2 ⇥ such that:

w̄(e) ⇡ xT

e✓
⇤ (4)

for any e 2 E. The features are problem specific and we
discuss how to construct them in Section 4.3. We pro-
pose two learning algorithms, which we call cascading
linear Thompson sampling (CascadeLinTS) and cascad-
ing linear UCB (CascadeLinUCB). We prove that when
the above linear generalization is perfect, the regret of
CascadeLinUCB is independent of L and sublinear in n.
Therefore, CascadeLinUCB is suitable for learning to rec-
ommend from large ground sets E. We also discuss why
a similar regret bound should hold for CascadeLinTS,
though we do not prove this bound formally.
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Algorithm 1 CascadeLinTS

Inputs: Variance σ2

// Initialization
M0  Id and B0  0

for all t = 1, . . . , n do
✓̄t−1  σ−2M−1

t−1Bt−1

✓t ⇠ N (✓̄t−1,M
−1
t−1)

// Recommend a list of K items and get feedback
for all k = 1, . . . , K do

at
k  arg max e2[L]−{at

1,...,at
k1} xT

e✓t

At  (at
1, . . . ,a

t
K)

Observe click Ct 2 {1, . . . , K, 1}
Update statistics using Algorithm 3

3.1 Algorithms

Our learning algorithms are based on the ideas of Thomp-
son sampling [23, 3] and linear UCB [1], and motivated by
the recent work of Wen et al. [24], which proposes com-
putationally and sample efficient algorithms for large-scale
stochastic combinatorial semi-bandits. The pseudocode of
both algorithms is in Algorithms 1 and 2, and we outline
them below.

Both CascadeLinTS and CascadeLinUCB represent their
past observations as a positive-definite matrix Mt 2 Rd⇥d

and a vector Bt 2 Rd⇥1. Specifically, let Xt be a matrix
whose rows are the feature vectors of all observed items in
t steps and Yt be a column vector of all observed attraction
weights in t steps. Then:

Mt = σ−2XT

tXt + Id

is the gram matrix in t steps and:

Bt = XT

tYt ,

where Id is a d ⇥ d identity matrix and σ > 0 is parameter
that controls the learning rate.1

Both CascadeLinTS and CascadeLinUCB operate in three
stages. First, they estimated the expected weight of each
item e based on their model of the world. CascadeLinTS
randomly samples parameter vector ✓t from a normal dis-
tribution, which approximates its posterior on ✓⇤, and then
estimates the expected weight as xT

e✓t. CascadeLinUCB

computes an upper confidence bound Ut(e) for each item
e. Second, both algorithms choose the optimal list At with
respect to their estimates. Finally, they receive feedback,
and update Mt and Bt using Algorithm 3.

1Ideally, 2 should be the variance of the observation noises.
However, based on recent literature [24], we believe that both al-
gorithms will perform well for a wide range of 2.

Algorithm 2 CascadeLinUCB

Inputs: Variance σ2, constant c (Section 3.2)

// Initialization
M0  Id and B0  0

for all t = 1, . . . , n do
✓̄t−1  σ−2M−1

t−1Bt−1

for all e 2 E do
Ut(e)  min

⇢
xT

e✓̄t−1 + c
q

xT
eM

−1
t−1xe, 1

�

// Recommend a list of K items and get feedback
for all k = 1, . . . , K do

at
k  arg max e2[L]−{at

1,...,at
k1} Ut(e)

At  (at
1, . . . ,a

t
K)

Observe click Ct 2 {1, . . . , K, 1}
Update statistics using Algorithm 3

Algorithm 3 Update of statistics in Algorithms 1 and 2
Mt  Mt−1

Bt  Bt−1

for all k = 1, . . . ,min {Ct, K} do
e  at

k

Mt  Mt + σ−2xex
T
e

Bt  Bt + xe1{Ct = k}

We would like to emphasize that both CascadeLinTS and
CascadeLinUCB are computationally efficient. In practice,
we would update M−1

t instead of Mt. In particular, note
that:

Mt  Mt + σ−2xex
T

e

can be equivalently updated as:

M−1
t  M−1

t − M−1
t xex

T
eM

−1
t

xT
eM

−1
t xe + σ2

,

and hence M−1
t can be updated incrementally and compu-

tationally efficiently in O(d2) time. It is easy to to see that
the per-step time complexities of both CascadeLinTS and
CascadeLinUCB are O(L(d2 + K)).

3.2 Analysis and Discussion

We first derive a regret bound on CascadeLinUCB, under
the assumptions that (1) w̄(e) = xT

e✓
⇤ for all e 2 E and

(2) kxek2  1 for all e 2 E. Note that condition (2) can
be always ensured by rescaling feature vectors. The regret
bound is detailed below.

Theorem 1. Under the above assumptions, for any σ > 0
and any

c ≥ 1

σ

s
d log

✓
1 +

nK

dσ2

◆
+ 2 log (nK) + k✓⇤k2,
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if we run CascadeLinUCB with parameters σ and c, then

R(n)  2cK

s
dn log

⇥
1 + nK

dσ2

⇤

log
�
1 + 1

σ2

� + 1.

Note that if we choose σ = 1 and

c =

s
d log

✓
1 +

nK

d

◆
+ 2 log (nK) + ⌘,

for some constant ⌘ ≥ k✓⇤k2, then R(n)  Õ (Kd
p

n)
where the Õ notation hides logarithmic factors.

The proof is in Appendix and we outline it below. First,
we define event Gt,k = {item at

k is examined in step t} for
any time t and k 2 [K], and bound the n-step regret as

R(n)  E

"
nX

t=1

KX

k=1

1{Gt,k} [w̄(a⇤,t
k ) − w̄(at

k)]

#
,

where a⇤,t
k is an optimal item in A⇤ matched to item at

k in
step t. Second, we define an event

E =
n��xT

e (✓̄t−1 − ✓⇤)
��  ckxekM1

t1
8t  n, 8e 2 E

o
,

where kxekM1
t1

=
q

xT
eM

−1
t−1xe. Then we prove a high-

probability bound P (E) ≥ 1−1/nK for any c that satisfies
the condition of Theorem 1. Finally, we show that by con-
ditioning on E , we have

nX

t=1

KX

k=1

1{Gt,k} [w̄(a⇤,t
k ) − w̄(at

k)]

 2c
nX

t=1

KX

k=1

1{Gt,k} kxat
k
kM1

t1

 2cK

s
dn log

⇥
1 + nK

dσ2

⇤

log
�
1 + 1

σ2

� ,

where the first inequality follows from the definition of E
and the second inequality follows from a worst-case bound.
The bound in Theorem 1 follows from putting the above
results together.

Recent work [21, 24] demonstrated close relationships be-
tween UCB-like algorithms and Thompson sampling algo-
rithms in related bandit problems. Therefore, we believe
that a similar regret bound to that in Theorem 1 also holds
for CascadeLinTS. However, it is highly non-trivial to
derive a regret bound for CascadeLinTS. Unlike in [24],
CascadeLinTS cannot be analyzed from the Bayesian per-
spective because the Gaussian posterior is inconsistent with
the fact that w̄(e) is bounded in [0, 1]. Moreover, a sub-
tle statistical dependence between partial monitoring and
Thompson sampling prevents a frequentist analysis simi-
lar to that in [4]. Therefore, we leave the formal analysis

of CascadeLinTS for future work. It is well known that
Thompson sampling tends to outperform UCB-like algo-
rithms in practice [3]. Therefore, we only empirically eval-
uate CascadeLinTS.

4 EXPERIMENTS

We validate CascadeLinTS on several problems of vari-
ous sizes and from various domains. In each problem, we
conduct several experiments that demonstrate that our ap-
proach is scalable and stable with respect to its tunable pa-
rameters, the number of recommended items K and the
number of features d.

Our experimental section is organized as follows. In Sec-
tion 4.1, we outline the experiments that are conducted on
each dataset. In Section 4.2, we introduce our metrics and
baselines. In Section 4.3, we describe how we construct the
features of items E. We present our empirical results in the
rest of the section.

4.1 Experimental Setting

All of our learning problems can be viewed as follows. The
feedback of users is a matrix W 2 {0, 1}m⇥L, where row
i corresponds to user i 2 [m] and column j corresponds to
item j 2 E. Entry (i, j) of W , Wi,j 2 {0, 1}, indicates
that user i is attracted by item j. The user at time t, the row
of W , is chosen at random from the pool of all users. Our
goal is to learn the list of items A⇤, the columns of W , that
maximizes the probability that the user at time t is attracted
by at least one recommended item.

In each of our problems, we conduct a set of experiments.
In the first experiment, we compare CascadeLinTS to
baselines (Section 4.2) and also evaluate its scalability. We
experiment with three variants of our problems: L = 16
items, L = 256 items, and the maximum possible value
of L in a given experiment. The number of recommended
items is K = 4 and the number of features is d = 20.

In the second experiment, we show that the performance
of CascadeLinTS is robust with respect to the number of
features d, in the sense that d affects the performance but
CascadeLinTS performs reasonably well for all settings
of d. We experiment with three settings for the number of
features: d = 10, d = 20, and d = 40. The ground set
contains L = 256 items and the number of recommended
items is K = 4.

In the third experiment, we evaluate CascadeLinTS on an
interesting subset of each dataset, such as Rock Songs. The
setting of this experiment is identical to the second exper-
iment. This experiment validates that CascadeLinTS can
also learn to recommend items in the context, of a subset
of the dataset.

In the last experiment, we evaluate how the performance of
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CascadeLinTS varies with the number of recommended
items K. We experiment with three settings for the number
of recommended items: K = 4, K = 8, and K = 12.
The ground set contains L = 256 items and the number of
features is d = 20.

All experiments are conducted for n = 100k steps and av-
eraged over 10 randomly initialized runs. The tunable pa-
rameter σ in CascadeLinTS is set to 1.

4.2 Metrics and Baselines

The performance of CascadeLinTS is evaluated by its ex-
pected cumulative regret, which is defined in (2). In most
of our experiments, our modeling assumptions are violated.
In particular, the items are not guaranteed to attract users
independently because the attraction indicators wt(e) are
correlated across items e. The result is that:

A⇤ = arg max
A2⇧K(E)

E [f(A,w)] > arg max
A2⇧K(E)

f(A, w̄) .

It is NP-hard to find A⇤, because E [f(A,w)] does not de-
compose into the product of expectations as we assume in
our model (Section 2.2). However, since E [f(A,w)] is
submodular and monotone in A, a (1 − 1/e) approxima-
tion to A⇤ can be computed greedily, by iteratively adding
items that attract most users that are not attracted by any
previously added item. We denote this approximation by
A⇤ and use it instead of the optimal solution.

We compare CascadeLinTS to two baselines. The first
baseline is CascadeUCB1 (Section 2.3). This baseline does
not leverage the structure of our problem and learns the at-
traction probability of each item e independently. The sec-
ond baseline is RankedLinTS (Algorithm 4). This baseline
is a variant of ranked bandits (Section 5), where the base
bandit algorithm is LinTS. This base algorithm is the same
as in CascadeLinTS. Therefore, any observed difference
in the performance of cascading and ranked bandits must
be due to the efficiency of using the base algorithm, and
not the algorithm itself. In this sense, our comparison of
CascadeLinTS and RankedLinTS is fair. The tunable pa-
rameter σ in RankedLinTS is also set to 1.

4.3 Features

In most recommender problems, good features of items are
rarely available. Thus, they are typically learned from data
[14]. As an example, in movie recommendations, all state
of the art approaches are based on collaborative filtering
rather than on the features of movies, such as movie genres.

Motivated by the successes of collaborative filtering in rec-
ommender systems, we derive the features of our items us-
ing low-rank matrix factorization. In particular, let W 2
{0, 1}m⇥L be our feedback matrix for m users and L
items. We randomly divide the rows of W into two matri-
ces, training matrix Wtrain 2 {0, 1}(m/2)⇥L and test matrix

Algorithm 4 Ranked bandits with linear TS.
Inputs: Variance σ2

// Initialization
8k 2 [K] : Mk

0  Id and Bk
0  0

for all t = 1, . . . , n do
for all k = 1, . . . , K do

✓̄k
t−1  σ−2(Mk

t−1)
−1Bk

t−1

✓k
t ⇠ N (✓̄k

t−1, (M
k
t−1)

−1)
at

k  arg max e2[L]−{at
1,...,at

k1} xT
e✓

k
t

// Recommend a list of K items and get feedback
At  (at

1, . . . ,a
t
K)

Observe click Ct 2 {1, . . . , K, 1}

// Update statistics
8k 2 [K] : Mk

t  Mk
t−1

8k 2 [K] : Bk
t  Bk

t−1

for all k = 1, . . . ,min {Ct, K} do
e  at

k

Mk
t  Mk

t + σ−2xex
T
e

Bk
t  Bk

t + xe1{Ct = k}

Wtest 2 {0, 1}(m/2)⇥L. We use Wtrain to learn the features
of items and Wtest in place of W to evaluate our learning al-
gorithms. Most existing real-world recommender systems
already have some data about their users. Such data can be
used to construct Wtrain.

Let Wtrain ⇡ U⌃V T be rank-d truncated SVD of Wtrain,
where U 2 R(m/2)⇥d, ⌃ 2 Rd⇥d, and V 2 RL⇥d. Then
the features of items are the rows of V ⌃. Specifically, for
each item e 2 E and feature i 2 [d], xe(i) = Ve,i⌃i,i.

4.4 Restaurant Recommendations

Our dataset is from Yelp Dataset Challenge2. This dataset
has five parts, including business information, checkin in-
formation, review information, tip information, and user
information. We only consider the business and review
information. The dataset contains 78k businesses, out of
which 11k are restaurants; and 2.2M reviews written by
550k users. We extract L = 3k most reviewed restaurants
and m = 20k most reviewing users.

Our objective is to maximize the probability that the user
is attracted by at least one recommended restaurant. We
build the model of users from past review data and assume
that the user is attracted by the restaurant if the user re-
viewed this restaurant before. This indicates that the user
visited the restaurant at some point in time, likely because
the restaurant attracted the user at that time.

2https://www.yelp.com/dataset_challenge
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Figure 1: The n-step regret of CascadeUCB1, CascadeLinTS and RankedLinTS on three problems. We vary the number
of items in the ground set E, from L = 16 to the maximum value in each problem.

4.4.1 Results

The results of our first experiment are reported in Fig. 1.
When the ground set is small, L = 16, all compared
methods perform similarly. In particular, the regret of
CascadeLinTS is similar to that of RankedLinTS. The re-
gret of CascadeUCB1 is about two times larger than that of
CascadeLinTS. As the size of the ground set increases,
the gap between CascadeLinTS and the other methods
increases. In particular, when L = 3k, the regret of
CascadeUCB1 is orders of magnitude larger than that of
CascadeLinTS, and the regret of RankedLinTS is almost
three times larger.

In the second experiment (Fig. 2a), we observe that
CascadeLinTS performs well for all settings of d. When
the number of features doubles to d = 40, the regret
roughly doubles. When the number of features is halved
to d = 10, the regret improves and is roughly halved.

In the third experiment (Fig. 2b), CascadeLinTS is eval-
uated on the subset of American Restaurants. This is the
largest restaurant category in our dataset. We observe that
CascadeLinTS can learn for any number of features d,
similarly to Fig. 2a.

In the last experiment (Fig. 2c), we observe that the re-
gret of CascadeLinTS increases with the number of rec-
ommended items, from K = 4 to K = 8. This result is
surprising and seems to contradict to Kveton et al. [15],
who find both theoretically and empirically that the regret
in cascading bandits decreases with the number of recom-

mended items K. We investigate this further and plot the
cumulative reward of CascadeLinTS in Fig. 2d. The re-
ward increases with K, which is expected and validates that
CascadeLinTS learns better policies for larger K. There-
fore, the increase in the regret in Fig. 2c must be due to
the fact that the expected reward of the optimal solution,
f(A⇤, w̄), increases faster with K than that of the learned
policies. We believe that the optimal solutions for larger
K are harder to learn because our modeling assumptions
are violated. In particular, the linear generalization in (4) is
imperfect and the items in E are not guaranteed to attract
users independently.

4.5 Million Song Recommendation

Million Song Dataset3 is a collection of audio features and
metadata for a million contemporary pop songs. Instead of
storing any audio, the dataset consists of features derived
from the audio, user-song profile data, and genres of songs.
We extract L = 10k most popular songs from this dataset,
as measured by the number of song-listening events; and
m = 400k most active users, as measured by the number
of song-listening events.

Our objective is to maximize the probability that the user
is attracted with at least one recommended song and plays
it. We build the model of users from their past listening
patterns and assume that the user is attracted by the song if
the user listened to this song before. This indicates that the

3http://labrosa.ee.columbia.edu/
millionsong/
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Figure 2: a. The n-step regret of CascadeLinTS for varying number of features d. b. The n-step regret of CascadeLinTS
in a subset of each dataset for varying number of features d. c. The n-step regret of CascadeLinTS for varying number of
recommended items K. d. The n-step reward of CascadeLinTS for varying number of recommended items K.

user was attracted by the song at some point in time.

4.5.1 Results

The results of our first experiment are reported in Fig. 1.
Similarly to Section 4.4, we observe that when the ground
set is small, L = 16, the regret of all compared meth-
ods is similar. As the size of the ground set increases, the
gap between CascadeUCB1 and the rest of the methods in-
creases, and the regret of CascadeUCB1 is orders of mag-
nitude larger than that of CascadeLinTS. The regret of
CascadeLinTS is similar to that of RankedLinTS for all
settings of L.

We report the regret of CascadeLinTS for various num-
bers of features d, on the whole dataset and its subset of
Rock Songs, in Fig. 2a and 2b, respectively. Similarly to
Section 4.4, we observe that CascadeLinTS performs well
for all settings of d. The lowest regret in both experiments
is achieved at d = 10.

In the last experiment (Fig. 2c), we observe that the re-
gret of CascadeLinTS increases with the number of rec-
ommended items K. As in Section 4.4, we observe that the
cumulative reward of our learned policies increases with
K. Therefore, the increase in the regret must be due to
the fact that the expected reward of the optimal solution,
f(A⇤, w̄), increases faster with K than that of the learned
policies. This is due to the mismatch between our model
and real-world data.

4.6 Movie Recommendation

MovieLens datasets4 contain the ratings of users for movies
from the MovieLens website. The datasets come in dif-
ferent sizes and we choose MovieLens 1M for our experi-
ments. This dataset contains 1M anonymous ratings of 4k
movies by 6k users who joined MovieLens in 2000.

We build the model of users from their historical ratings.
The ratings are on a 5-star scale and we assume the user
is attracted by a movie if the user rates it with more than
3 stars. Thus, the feedback matrix is defined as Wi,j =
1{user i rates movie j with more than 3 stars}. Our goal is
to maximize the probability of recommending at least one
attractive movie.

4.6.1 Results

The results of our first experiment are reported in Fig. 1.
Similarly to Section 4.4, we observe that the regret of
all compared methods is similar when the ground set is
small, L = 16. The gap between CascadeUCB1 and the
rest of the methods increases when the size of the ground
set increases. In particular, the regret of CascadeUCB1

is orders of magnitude larger than that of CascadeLinTS.
The regret of CascadeLinTS is always lower than that of
RankedLinTS for all settings of L.

We report the regret of CascadeLinTS for various num-

4http://grouplens.org/datasets/movielens/
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bers of features d, on the whole dataset and its subset of
Adventures, in Fig. 2a and 2b, respectively. Similarly to
Sections 4.4 and 4.5, we observe that CascadeLinTS per-
forms well for all settings of d. The lowest regret in both
experiments is achieved at d = 20.

In the last experiment (Fig. 2c), we observe that the re-
gret of CascadeLinTS increases with the number of rec-
ommended items K. As in Sections 4.4 and 4.5, the cu-
mulative reward of our learned policies increases with K.
Therefore, the increase in the regret must be due to the fact
that the expected reward of the optimal solution, f(A⇤, w̄),
increases faster with K than that of the learned policies.

5 RELATED WORK

Our work is closely related to cascading bandits [15, 8],
which are learning variants of the cascade model of user
behavior [10]. The key difference is that we assume that the
attraction weights of items are a linear function of known
feature vectors, which are associated with each item; and an
unknown parameter vector, which is learned. This leads to
very efficient learning algorithms whose regret is sublinear
in the number of items L. We compare CascadeLinTS to
CascadeUCB1, one of the proposed algorithms by Kveton
et al. [15], in Section 4.

Ranked bandits [20] are a popular approach in learning to
rank. The key idea in ranked bandits is to model each po-
sition in the recommended list as an independent bandit
problem, which is then solved by a base bandit algorithm.
The solutions in ranked bandits are (1 − 1/e) approximate
and their regret grows linearly with the number of recom-
mended items K. On the other hand, ranked bandits do not
assume that items attract the user independently. Slivkins
et al. [22] proposed contextual ranked bandits. We com-
pare CascadeLinTS to contextual ranked bandits with lin-
ear generalization in Section 4.

Our learning problem is a partial monitoring problem
where we do not observe the attraction weights of all rec-
ommended items. Bartok et al. [5] studied general partial
monitoring problems. The algorithm of Bartok et al. [5]
scales at least linearly with the number of actions, which is�

L
K

�
in our setting. Therefore, the algorithm is impractical

for large L and moderate K. Agrawal et al. [2] studied a
variant of partial monitoring where the reward is observed.
The algorithm of Agrawal et al. [2] cannot be applied to our
problem because the algorithm assumes a finite parameter
set. Lin et al. [19] and Kveton et al. [17] studied combi-
natorial partial monitoring. Our feedback model is similar
to that of Kveton et al. [17]. Therefore, we believe that our
algorithm and analysis can be relatively easily generalized
to combinatorial action sets.

Our learning problem is combinatorial as we learn K most
attractive items out of L candidate items. In this sense, our
work is related to stochastic combinatorial bandits, which

are frequently studied with a linear reward function and
semi-bandit feedback [11, 6, 16, 18, 24, 9]. Our work
differs from these approaches in both the reward function
and feedback. Our reward function is a non-linear function
of unknown parameters. Our feedback model is less than
semi-bandit, because the learning agent does not observe
the attraction weights of all recommended items.

6 CONCLUSIONS

In this work, we propose linear cascading bandits, a frame-
work for learning to recommend in the cascade model at
scale. The key assumption in linear cascading bandits is
that the attraction probabilities of items are a linear func-
tion of the features of items, which are known; and an un-
known parameter vector, which is unknown and we learn
it. We design two algorithms for solving our problem,
CascadeLinTS and CascadeLinUCB. We bound the regret
of CascadeLinUCB and suggest that a similar regret bound
can be proved for CascadeLinTS. We comprehensively
evaluate CascadeLinTS on a range of recommendation
problems and compare it to several baselines. We report or-
ders of magnitude improvements over learning algorithms
that do not leverage the structure of our problem, the fea-
tures of items. We observe empirically that CascadeLinTS
performs very well.

We leave open several questions of interest. For instance,
we only bound the regret of CascadeLinUCB. Based on the
existing work [24], we believe that a similar regret bound
can be proved for CascadeLinTS. Moreover, note that our
analysis of CascadeLinUCB is under the assumption that
items attract the user independently and that the linear gen-
eralization is perfect. Both of these assumptions tend to be
violated in practice. Our current analysis cannot explain
this behavior and we leave it for future work.

The main limitation of the cascade model [10] is that the
user clicks on at most one item. This assumption is often
violated in practice. Recently, Katariya et al. [13] proposed
a generalization of cascading bandits to multiple clicks, by
proposing a learning variant of the dependent click model
[12]. We strongly believe that our results can be general-
ized to this setting and leave this for future work.
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