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In this document, we derive several results omitted from the main paper due to space limitations.
We have numbered the sections in this document according to the section numbers in the main
paper.

3.1 Efficient Calculations for Sparse A

To compute the MR rule efficiently for sparse A, we need to store and update the residuals
ri = (aTi x

k − bi) for all i. If we initialize with x0 = 0, then the initial values of the residuals
are simply the corresponding bi values. Given the initial residuals, we can construct a max-heap
structure on these residuals in O(m) time. The max-heap structure lets us compute the MR rule
in O(1) time. After an iteration of the Kaczmarz method, we can update the max-heap efficiently
as follows:

For each j where xk+1
j 6= xkj :

• For each i with aij 6= 0:

– Update ri using ri ← ri − aijxkj + aijx
k+1
j .

– Update max-heap using the new value of |ri|.

The cost of each update to an ri is O(1) and the cost of each heap update is O(logm). If each
row of A has at most r non-zeroes and each column has at most c non-zeroes, then the outer loop
is run at most r times while the inner loop is run at most c times for each outer loop iteration.
Thus, in the worst case the total cost is O(cr logm), although it might be much faster if we have
particularly sparse rows or columns. Thus, if c and r are sufficiently small, the MR rule is not
much more expensive than non-uniform random selection which costs O(logm). For the MD rule,
the cost is the same except there is an extra one-time cost to pre-compute the row norms ‖ai‖.
Now consider the case where A may be dense but each row is orthogonal to all but at most g other
rows. In this setting it would be too slow to implement the above update of the residuals, since the
cost would be O(mn log(m)). In this setting, it makes more sense to use the following alternative
approach to update the max-heap after we’ve updated row ik:

For each i that is a neighbour of ik in the orthogonality graph:
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• Compute the residual ri = aTi x
k − bi.

• Update max-heap using the new value of |ri|.
We can find the set of neighbours for each node in constant time by keeping a list of each node’s
neighbours. This loop would run at most g times and the cost of each iteration would be O(n) to
update the residual and O(logm) to update the heap. Thus, the cost to track the residuals using
this alternative approach would be O(gn+ g log(m)) or the faster O(gr+ g log(m)) if each row has
at most r non-zeros.

4.1 Randomized and Maximum Residual

In this section, we provide details of the convergence rate derivations for the non-uniform and
maximum residual (MR) selection rules. All the convergence rates we discuss use the following
relationship,

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2

= ‖xk − x∗‖2 −
∥∥∥∥(bi − aTi xk)
‖ai‖2

· ai
∥∥∥∥2

= ‖xk − x∗‖2 −
(
aTi x

k − bi
)2

‖ai‖2
, (1)

which is equation (5) in the main paper.

Non-Uniform

We review the steps discussed by Vishnoi (2013) that can be used to derive the convergence rate
bound of Strohmer and Vershynin (2009) for non-uniform random selection when row i is chosen
according to the probability distribution determined by ‖ai‖/‖A‖F . Taking the expectation of (1)
with respect to i, we have

E[‖xk+1 − x∗‖2] = ‖xk − x∗‖2 − E
[

(aTi x
k − bi)2
‖ai‖2

]
= ‖xk − x∗‖2 −

m∑
i=1

‖ai‖2
‖A‖2F

(a>i (xk − x∗))2
‖ai‖2

= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2
‖A‖2F

≤
(

1− σ(A, 2)2

‖A‖2F

)
‖xk − x∗‖2, (2)

where σ(A, 2) is the Hoffman (1952) constant, which can be defined as the largest value such that
for any x that is not a solution to the linear system we have

σ(A, 2)‖x− x∗‖ ≤ ‖A(x− x∗)‖, (3)

where x∗ is the projection of x onto the set of solutions S. In other words, we can write it as

σ(A, 2) := inf
x 6∈S

‖A(x− x∗)‖
‖x− x∗‖ .
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Strohmer and Vershynin (2009) consider the special case where A has independent columns, and
this result yields their rate in this special case since under this assumption σ(A, 2) is given by the
nth singular value of A. For general matrices, σ(A, 2) is given by the smallest non-zero singular
value of A.

Maximum Residual

We use a similar analysis to prove a convergence rate bound for the MR rule,

ik = argmax
i

|aTi xk − bi|. (4)

Assuming that i is selected according to (4), then starting from (1) we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −max
i

(aTi x
k − bi)2
‖ai‖2

≤ ‖xk − x∗‖2 − 1

‖A‖2∞,2
max
i

(aTi (xk − x∗))2

= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2∞
‖A‖2∞,2

≤
(

1− σ(A,∞)2

‖A‖2∞,2

)
‖xk − x∗‖2, (5)

where ‖A‖2∞,2 := maxi{‖ai‖2} and σ(A,∞) is the largest value such that

σ(A,∞)‖x− x∗‖ ≤ ‖A(x− x∗)‖∞, (6)

or equivalently

σ(A,∞) := inf
x 6∈S

‖A(x− x∗)‖∞
‖x− x∗‖ .

The existence of such a Hoffman-like constant follows from the existence of the Hoffman constant
and the equivalence between norms. Applying the norm equivalence ‖ · ‖∞ ≥ 1√

m
‖ · ‖ to equation

(3) we have
σ(A, 2)‖x− x∗‖ ≤ ‖A(x− x∗)‖ ≤ √m‖A(x− x∗)‖∞,

which implies that σ(A, 2)/
√
m ≤ σ(A,∞). Similarly, applying ‖ · ‖∞ ≤ ‖ · ‖ to (6) we have

σ(A,∞)‖x− x∗‖ ≤ ‖A(x− x∗)‖∞ ≤ ‖A(x− x∗)‖,

which implies that σ(A,∞) cannot be larger than σ(A, 2). Thus, σ(A,∞) satisfies the relationship

σ(A, 2)√
m
≤ σ(A,∞) ≤ σ(A, 2). (7)

4.2 Tighter Uniform and MR Analysis

To avoid using the inequality ‖ai‖ ≤ ‖A‖∞,2 for all i, we want to ‘absorb’ the individual row norms
into the bound. We start with uniform selection.
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Uniform

Consider the diagonal matrix D = diag(‖a1‖2, ‖a2‖2, . . . , ‖am‖2). By taking the expectation of (1),
we have

E[‖xk+1 − x∗‖2] = ‖xk − x∗‖2 − E

[(
aTi x

k − bi
)2

‖ai‖2

]

= ‖xk − x∗‖2 −
m∑
i=1

1

m

(aTi x
k − bi)2
‖ai‖2

= ‖xk − x∗‖2 − 1

m

m∑
i=1

([
ai
‖ai‖

]T
(xk − x∗)

)2

= ‖xk − x∗‖2 − ‖D
−1A(xk − x∗)‖2

m

≤
(

1− σ(Ā, 2)2

m

)
‖xk − x∗‖2, (8)

where we used that Ax = b and Āx = b have the same solution set.

Maximum Residual

For the tighter analysis of the MR rule we do not want to alter the selection rule. Thus, we first
evaluate the MR rule and then divide by the corresponding ‖aik‖2 for the selected ik at iteration
k. Starting from (1), this gives us

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −max
i

(aTi x
k − bi)2
‖ai‖2

= ‖xk − x∗‖2 − 1

‖aik‖2
max
i

(aTi (xk − x∗))2

= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2∞
‖aik‖2

≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2. (9)

Applying this recursively over all k iterations yields the rate

‖xk − x∗‖2 ≤
k∏
j=1

(
1− σ(A,∞)2

‖aij‖2
)
‖x0 − x∗‖2. (10)

4.3 Maximum Distance Rule

If we can only perform one iteration of the Kaczmarz method, the optimal rule with respect to
iterate progress is the maximum distance (MD) rule,

ik = argmax
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ . (11)
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Starting again from (1) and using D as defined in the tight analysis for the U rule, we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −max
i

(
aTi x

k − bi
‖ai‖

)2

= ‖xk − x∗‖2 −max
i

([
ai
‖ai‖

]T
(xk − x∗)

)2

= ‖xk − x∗‖2 − ‖D−1A(xk − x∗)‖2∞
≤
(
1− σ(Ā,∞)2

)
‖xk − x∗‖2. (12)

We now show that

max

{
σ(Ā, 2)√

m
,
σ(A, 2)

‖A‖F
,
σ(A,∞)

‖A‖∞,2

}
≤ σ(Ā,∞) ≤ σ(Ā, 2). (13)

To derive the upper bound on σ(Ā,∞), and to derive the lower bound in terms of σ(Ā, 2), we can
use norm equivalence arguments as we did for σ(A,∞). This yields

σ(Ā, 2)√
m
≤ σ(Ā,∞) ≤ σ(Ā, 2).

The last argument in the maximum in (13), corresponding to the MR∞ rate, holds because
‖A‖∞,2 ≥ ‖ai‖ for all i so we have

σ(A,∞)

‖A‖∞,2
‖x−x∗‖ ≤ ‖A(x− x∗)‖∞

‖A‖∞,2
= max

i

{ |aTi (x− x∗)|
‖A‖∞,2

}
≤ max

i

{ |aTi (x− x∗)|
‖ai‖

}
= ‖Ā(x−x∗)‖∞.

For the second argument in the maximum in (13), the NU rate, we have

σ(A, 2)2

‖A‖2F
‖x− x∗‖2 ≤ ‖A(x− x∗)‖2

‖A‖2F
=

∑
i(a

T
i (x− x∗))2∑
i ‖ai‖2

≤ max
i

{
(aTi (x− x∗))2
‖ai‖2

}
= ‖Ā(x− x∗)‖∞.

The second inequality is true by noting that it is equivalent to the inequality

1 ≤ max
i

{
(aTi (x− x∗)2/∑j(a

T
j (x− x∗))2

‖ai‖2/
∑

j ‖aj‖2

}
,

and this true because the maximum ratio between two probability mass functions must be at least
1,

1 ≤ max
i

pi/
∑

j pj

qi/
∑

j qj
, with all pi ≥ 0, qi ≥ 0.

Finally, we note that the MD rule obtains the tightest bound in terms of performing one step. This
follows from (1),

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2 = ‖xk − x∗‖2 −
(
aTi x

k − bi
)2

‖ai‖2
,

and noting that the MD rule maximizes ‖xk+1 − xk‖ and thus it maximizes how much smaller
‖xk+1 − x∗‖ is than ‖xk − x∗‖.
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Figure 1: Comparison of Kaczmarz and Coordinate Descent.

5 Kaczmarz and Coordinate Descent

Consider the Kaczmarz update:

xk+1 = xk − (aTi x
k − bi)
‖ai‖2

ai.

This update is equivalent to one step of coordinate descent (CD) with step length 1/‖ai‖2 applied
to the dual problem,

min
y

1

2
‖AT y‖2 − bT y, (14)

see Wright (2015). Using the primal-dual relationship AT y = x, we can show the relationship
between the greedy Kaczmarz selection rules and applying greedy coordinate descent rules to this
dual problem. Consider the gradient of the dual problem,

∇f(y) = AAT y − b.
The Gauss-Southwell (GS) rule for CD on the dual problem is equivalent to the MR rule for
Kaczmarz on the primal problem since

ik = argmax
i
|∇if(yk)|︸ ︷︷ ︸

Gauss-Southwell rule

= argmax
i
|aTi (AT yk)− bi| = argmax

i
|aTi xk − bi|

where aTi is the ith row of A. Similarly, the Gauss-Southwell-Lipschitz (GSL) rule (Nutini et al.,
2015) applied to the dual is equivalent to applying a Kaczmarz iteration with the MD rule,

ik = argmax
i

|∇if(yk)|√
Li︸ ︷︷ ︸

Gauss-Southwell-Lipschitz rule

= argmax
i

|aTi (AT yk)− bi|
‖ai‖

= argmax
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ ,
as the Lipschitz constants for the dual problem are Li = ‖ai‖2.

Figure 1 shows the results of running Kaczmarz compared to using CD (on the least-squares primal
problem) for our 3 datasets from Section 10 of the main paper. In this figure we measure the
performance in terms of the number of “effective passes” through the data (one “effective” pass
would be the number of iterations needed for the cyclic variant of the algorithm to visit the entire
dataset). In the first experiment Kaczmarz and CD methods perform similarly, while Kaczmarz
methods work better in the second experiment and CD methods work better in the third experiment.
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6 Example: Diagonal A

Consider a square diagonal matrix A with aii > 0 for all i. In this case, the diagonal entries are
the eigenvalues λi of the A and σ(A, 2) = λmin. We give the convergence rate constants for such a
diagonal A in Table 1, and in this section we show how to arrive at these rates. We use U∞ for

Table 1: Convergence Rate Constants for Diagonal A

Rule Rate Diagonal A

U∞

(
1− σ(A, 2)2

m‖A‖2∞,2

) (
1− λ2min

mλ2max

)
U

(
1− σ(Ā, 2)2

m

) (
1− 1

m

)
NU

(
1− σ(A, 2)2

‖A‖2F

) (
1− λ2min∑

i λ
2
i

)
MR∞

(
1− σ(A,∞)2

‖A‖2∞,2

) 1− 1

λ21

[∑
i

1

λ2i

]−1
MR

(
1− σ(A,∞)2

‖aik‖2
) 1− 1

λ2ik

[∑
i

1

λ2i

]−1
MD

(
1− σ(Ā,∞)2

) (
1− 1

m

)
the slower uniform rate to differentiate from U (tight uniform) for rate (8), and we use MR∞ for
rate (5) to differentiate it from MR (tight) rate (9).

For U∞, the rate follows straight from ‖A‖∞,2 = maxi ‖ai‖ = maxi λi = λmax. For U, we note
that the weighted matrix Ā := D−1A is simply the identity matrix. The NU rate uses that
‖A‖2F =

∑
i λ

2
i . For both MR∞ and MR, we have

σ(A,∞)2 := inf
y 6=z

‖A(y − z)‖2∞
‖y − z‖2 = inf

‖w‖=1
‖Aw‖2∞.

Consider the equivalent problem

min
w∈IRm,y∈R

y

s.t. − y ≤ λ2iw2
i ≤ y for all i,

‖w‖ = 1,

From the first inequality, we get

− y

λ2i
≤ w2

i ≤
y

λ2i
∀i ⇒ (wi)

2 ≤ y

λ2i
∀i.
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It follows that

‖w‖2 =
m∑
i=1

w2
i ≤

m∑
i=1

y

λ2i
,

which is equivalent to

y ≥ ‖w‖2∑m
i=1

1
λ2i

.

Because we are minimizing y this must hold with equality at a solution, and because of the con-
straints ‖w‖ = 1 we have

σ(A,∞)2 =

(∑
i

1

λ2i

)−1
.

For the MR∞ rate, we divide σ(A,∞)2 by the maximum eigenvalue squared. For the MR rate, we
divide by the specific λ2ik corresponding to the row ik selected at iteration k.

For the MD rule, following the argument we did to derive σ(A,∞)2 and using that Ā = I gives us

σ(Ā,∞)2 =
1

m
.

7.1 Multiplicative Error

Suppose we have approximated the MR selection rule such that there is a multiplicative error in
our selection of ik,

|aTikx
k − bik | ≥ max

i
|aTi xk − bi|(1− εk),

for some εk ∈ [0, 1). In this scenario, we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 1

‖aik‖2
(∣∣∣aTikxk − bik ∣∣∣2)

≤ ‖xk − x∗‖2 − 1

‖aik‖2
(

max
i

∣∣∣aTi xk − bi∣∣∣ (1− εk))2

= ‖xk − x∗‖2 − (1− εk)2
‖aik‖2

‖A(xk − x∗)‖2∞

≤
(

1− (1− εk)2σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2.

We define a multiplicative approximation to the MD rule as an ik satisfying∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣ ≥ max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ (1− ε̄k),
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for some ε̄k ∈ [0, 1). With such a rule we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −

∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2


≤ ‖xk − x∗‖2 −
(

max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣ (1− ε̄k))2

= ‖xk − x∗‖2 − (1− ε̄k)2 max
i

∣∣∣∣aTi (xk − x∗)
‖ai‖

∣∣∣∣2
= ‖xk − x∗‖2 − (1− ε̄k)2‖D−1A(xk − x∗)‖2∞

≤
(

1− (1− ε̄k)2σ(Ā,∞)2
)
‖xk − x∗‖2.

7.2 Additive Error

Suppose we select ik using an approximate MR rule where

|aTikx
k − bik |2 ≥ max

i
|aTi xk − bi|2 − εk,

for some εk ≥ 0. Then we have the following convergence rate,

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 1

‖aik‖2
∣∣∣aTikxk − bik ∣∣∣2

≤ ‖xk − x∗‖2 − 1

‖aik‖2
(

max
i

∣∣∣aTi xk − bi∣∣∣2 − εk)
= ‖xk − x∗‖2 − ‖A(xk − x∗)‖2∞

‖aik‖2
+

εk
‖aik‖2

≤
(

1− σ(A,∞)2

‖aik‖2
)
‖xk − x∗‖2 +

εk
‖aik‖2

.

For the MD rule with additive error, ik is selected such that∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2

≥ max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣2 − ε̄k,
for some ε̄k ≥ 0. Then we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −
∣∣∣∣∣aTikxk − bik‖aik‖

∣∣∣∣∣
2

≤ ‖xk − x∗‖2 −
(

max
i

∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣2 − ε̄k
)

= ‖xk − x∗‖2 − ‖D−1A(xk − x∗)‖2∞ + ε̄k

≤
(
1− σ(Ā,∞)2

)
‖xk − x∗‖2 + ε̄k.
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7.3 Comparison of Rates for the Maximum Distance Rule and the Randomized
Kaczmarz via Johnson-Lindenstrauss Method

In Eldar and Needell (2011), the authors assume that the rows of A are normalized and that we
are dealing with a homogeneous system (Ax = 0), which is not particularly interesting since we can
solve it in O(1) by setting x = 0. Their main convergence result is stated in Theorem 1. Note that
RKJL stands for Randomized Kaczmarz via Johnson-Lindenstrauss, which is a hybrid technique
using both random selection and an approximate MD rule using the dimensionality reduction tech-
nique of Johnson and Lindenstrauss (1984). In their work they give the result below.

Theorem 1 Fix an estimation xk and denote by xk+1 and xk+1
RK the next estimations using the

RKJL and the standard RK method, respectively. Define γj = |〈aj , xk〉|2 and ordering these so that
γ1 ≥ γ2 ≥ · · · ≥ γm. Then, with δ being a constant affecting the error due to the JL approximation
we have

E‖xk+1 − x∗‖2 ≤ min

E‖xk+1
RK − x‖2 −

m∑
j=1

(
pj −

1

m

)
γj + 2δ, E‖xk+1

RK − x∗‖2
 ,

where

pj =


(m−j
n−1)
(mn)

, j ≤ m− n+ 1

0, j > m− n+ 1

are non-negative values satisfying
∑m

j=1 pj = 1 and p1 ≥ p2 ≥ · · · ≥ pm = 0.

First, we simplify this bound. Applying the nonuniform random rate of Strohmer and Vershynin
(2009) to the result of Theorem 1, we get

E
[
‖xk+1 − x‖2

]
≤ min

E [‖xk+1
RK − x∗‖2

]
−

m∑
j=1

(
pj −

1

m

)
γj + 2δ, E

[
‖xk+1

RK − x∗‖2
]

= min

‖xk − x∗‖2 − 1

‖A‖2F

m∑
j=1

γj −
m∑
j=1

pjγj +
m∑
j=1

1

m
γj + 2δ, ‖xk − x∗‖2 − 1

‖A‖2F

m∑
j=1

γj


= min

‖xk − x∗‖2 − m∑
j=1

pjγj + 2δ, ‖xk − x∗‖2 − 1

m

m∑
j=1

γj

 , (15)

where in the last line we use ‖A‖2F = m for a matrix A with normalized rows (in this case of
normalized rows non-uniform selection is simply uniform random selection). To compare this to
our rate in the setting of an additive error, suppose we define εk such that the ik selected satisfies

γik ≥ max
i
γi − ε̄k.
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Then, noting that ‖ai‖ = 1 for all i, our convergence rate with additive error is based on the bound

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − γik
≤ ‖xk − x∗‖2 −max

i
γi + ε̄k. (16)

Comparing the bounds (15) and (16), we see that our MD bound is always faster in the case of exact
optimization (ε̄k = δ = 0), as the average and the weighted sum of the absolute inner products
squared is less than the maximum inner product squared, max{ 1

m

∑m
j=1 γj ,

∑m
j=1 pjγj} ≤ maxi γi.

If there is error present, then our rate is faster when

max
i
γi − εk ≥ max

 1

m

m∑
j=1

γj ,

m∑
j=1

pjγj − 2δ

 .

We note that even if our approximation is worse than the error resulting from the RKJL method,
εk ≥ 2δ, it is possible that maxi γi is significantly larger than 1

m

∑m
j=1 γj and

∑m
j=1 pjγj and in this

case our rate would be tighter. Further, our rate is more general as it does not specifically assume
the Johnson-Lindenstrauss dimensionality reduction technique, that the rows of A are normalized,
or that the linear system is homogeneous.

8 Systems of Linear Inequalities

Consider the system of linear equalities and inequalities,{
aTi x ≤ bi (i ∈ I≤)

aTi x = bi (i ∈ I=).
(17)

where the disjoint index sets I≤ and I= partition the set {1, 2, . . . ,m}. As presented by Leventhal
and Lewis (2010), a generalization of the Kaczmarz algorithm that accommodates linear inequalities
is given by

βkik =

{
(aTikx

k − bik)+ (ik ∈ I≤)

aTikx
k − bik (ik ∈ I=),

xk+1 = xk −
βkik
‖aik‖2

aik ,

where for x ∈ IRn we define x+ element-wise by

(x+)i = max{xi, 0}.

This leads to the following generalization of the MR and MD rules, respectively,

ik = max
∣∣∣βki ∣∣∣ = ‖βk‖∞, and ik = max

∣∣∣∣ βki‖ai‖
∣∣∣∣ = ‖D−1βk‖∞. (18)

Unlike for equalities where the Kaczmarz method converges to the projection of the initial iterate
x0 onto the intersection of the constraints, for inequalities we can only guarantee that the Kaczmarz
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method converges to a point in the feasible set. Thus, in convergence rates involving inequalities
it is standard to use a bound for the distance from the current iterate xk to the feasible region,

d(x, S) = min
z∈S
‖x− z‖2 = ‖x− PS(x)‖2,

where PS(x) is the projection of x onto S.

Following closely the arguments of Leventhal and Lewis (2010) for systems of inequalities, we
next give the following result which they credit to Hoffman (1952).

Theorem 1 Let (17) be a consistent system of linear equalities and inequalities, then there exists
a constant σ(A,∞) such that

x ∈ IRn and S 6= ∅ ⇒ d(x, S) ≤ 1

σ(A,∞)
‖e(Ax− b)‖∞,

where S is the set of feasible solutions and where the function e : IRm 7→ IRm is defined by

e(y)i =

{
y+i (i ∈ I≤)

yi (i ∈ I=).

From Leventhal and Lewis (2010), combining both cases (ik ∈ I≤ or ik ∈ I=), the following
relationship holds with respect to the distance measure d(x, S),

d(xk+1, S)2 ≤ d(xk, S)−
e(Axk − b)2ik
‖aik‖2

. (19)

Following from this bound and Theorem 1, it is straightforward to derive analogous results for all
greedy selection rates derived in the paper. For example, if we select ik according to the generalized
MR rule (18) then the analogous tight rate for the MR rule is given by

d(xk+1, S)2 ≤ d(xk, S)2 −
e(Axk − b)2ik
‖aik‖2

= d(xk, S)2 − ‖β
k‖2∞

‖aik‖2

≤
(

1− σ(A,∞)2

‖aik‖2
)
d(xk, S)2.

9.1 Multi-Step Maximum Residual Bound

Recall the MR rate (10),

‖xk − x∗‖2 ≤
k∏
i=1

(
1− σ(A,∞)2

‖aik‖2
)
‖x0 − x∗‖2.

In the worst case this is no faster than the MR∞ rate since we may have ‖aik‖ = ‖A‖∞,2 for all i.
However, this rate is faster if we have ‖aik‖ < ‖A‖∞,2 for any i. In this section we derive a tighter
bound that will typically be much tighter than MR∞ by considering the sequence of ‖aik‖ values
that are possible for problems with a sparse orthogonality graph. To derive an upper bound, we
solve the problem below which was first introduced in Nutini et al. (2015).

12



Problem 1. We are given a graph G = (V,E), a weight Mi associated with each node i, and an
iteration number k. Choose a sequence {it}kt=1 that maximizes the sum of the weights Mit subject
to the following constraint: after each time node i has been chosen, it cannot be chosen again until
after a neighbour of node i has been chosen.

To map this problem to the problem of showing that the ‖aik‖ values are small when we use the

MR rule, we the weights Mik = log
(

1− σ(A,∞)2

‖aik‖
2

)
. The constraint in Problem 1 arises because the

MR rule cannot choose ik on any future iteration until after a neighbour of it is selected in the
orthogonality graph.

Nutini et al. (2015) give a bound on the solution of this problem for the case of chain-structured
graphs. In order to give a bound for general graphs, we first establish some notation.

Notation

We define an optimal sequence for this problem as a sequence with the highest sum of weights. As
the total number of sequences with length k is finite, we know that for each k ≥ 1, Problem 1 has
at least one optimal sequence.

Without loss of generality, assume that the set of nodes is given by V = {1, 2, . . . , |V |}. We
define a binary vector st = (st1, s

t
2, . . . , s

t
|V |) as the state of our structure at time t such that

sti =

{
1 node i is selectable,

0 node i is not selectable.

For an arbitrary finite sequence χ = {xt}bt=a, we define the average weight of the sequence as

M(χ) =

∑b
t=aMxt

(b− a)
.

We define the maximum weight over all nodes by

Mmax = max
v∈V

Mv.

Observe that for any sequence χ of nodes in V , we have

M(χ) ≤Mmax (20)

We denote the number of appearances of a node v in sequence χ by count(χ, v). For two sequences
χ and Υ, we denote the sequence obtained by concatenating the sequence Υ to χ as χΥ.

We define FG as the set of all valid finite sequences of nodes with respect to graph G, where a
sequence is valid if we can begin from some state s and the sequence satisfies the constraints.

We define Ok
G ⊆ FG as the set of all optimal sequences (maximal sum of weights) with length

k that can begin from the state s = 1. We denote the (maximal) average weight for each optimal
sequence Ok ∈ Ok

G by M(Ok) = MOk
G

.
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We define CG ⊆ FG as the set of all valid finite sequences that are cyclical, meaning from some
state s, we can begin and repeat the sequence indefinitely. We’ll assume that the orthogonality
graph has at least one edge, meaning that we have two rows of A that are not orthogonal (if there
are no edges then the problem is solved exactly in most m iterations). Under this assumption that
the orthogonality graph has at least one edge, there must exist a valid cyclic sequence. Restricting
to cyclical sequences, we define the average weight of any cyclic sequence achieving the maximal
average weight by MCmax

G
= maxC∈CG

M(C).

We define Gχ as the sub-graph of G whose nodes are the set {v| count(χ, v) > 0}. The diam-
eter of graph G is denoted by diam(G) and the set of all neighbours of node v in graph G is
denoted by δG(v). For a set U ⊆ V , we define G(U) as the sub-graph of G whose nodes make up
the set U .

Let U2 be the collection of all subsets of nodes such that the resulting sub-graph is connected
and has diameter 1 or 2,

U2 = {U ⊆ V | G(U) is connected, 0 < diam(G(U)) ≤ 2}. (21)

Finally, for any T ⊆ V we define a binary vector eT denoting the membership in T :

eT = (e1, e2, . . . , e|V |), where ei =

{
1 i ∈ T,
0 i 6∈ T.

(22)

Armed with this notation, we proceed to the solution of Problem 1.

Upper Bound

We breakdown the solution of Problem 1 into several important results. The first result shows that
if we have a long sequence A that visits nodes with the same frequencies as a union of sequences,
then at least one of the sequences in the union must have an average weight at least as large as the
long sequence.

Lemma 2 Consider sequences of nodes A and A1,A2, . . . ,Am. If we have for all nodes v that

count(A, v) =
m∑
i=1

count(Ai, v), (23)

then there exists some i such that
M(Ai) ≥M(A). (24)

Proof. Assuming (23) holds for all nodes v, we have

M(A)
m∑
i=1

|Ai| =
m∑
i=1

M(Ai)|Ai| ⇒
m∑
i=1

|Ai| =
m∑
i=1

M(Ai)
M(A)

|Ai|.

Suppose for all i we have M(Ai) < M(A). This yields
∑m

i=1 |Ai| <
∑m

i=1 |Ai|, which is a contra-
diction. Thus, there exists some i such that M(Ai) ≥M(A).

�
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We next characterize how the constraint bounds the number of times a node can be visited in a
sequence A, based on whether it is initially selectable and the number of times its neighbours are
visited in the sequence.

Lemma 3 Suppose A is a valid sequence that can begin from some state s. Then for all nodes
v ∈ V , we have

count(A, v) ≤ sv +
∑

u∈δG(v)

count(A, u).

Proof. We can only increase the count of node v if it is in the “selectable” state. This means each
time we increment the count the node was either selectable from the beginning (sv = 1) or one of
its neighbours (δG(v)) was selected. �

We next give a tighter bound on the counts in the case of cyclic sequences.

Lemma 4 If C is a cyclic sequence then for all nodes v ∈ V we have

count(C, v) ≤
∑

u∈δG(v)

count(C, u). (25)

Proof. Since C ∈ CG is a cyclic sequence, by definition it can be repeated indefinitely. Consider
repeating a sequence C twice, beginning from some state s. We denote this new sequence by C2.
As C2 is a finite sequence, i.e., C2 ∈ FG, then because of Lemma 3, for all nodes v ∈ V we have

count(C2, v) ≤ sv +
∑

u∈δG(v)

count(C2, u).

For any v, as sv ∈ {0, 1} and count(C2, v) = 2 · count(C, v), then

2 · count(C, v) ≤ 1 +
∑

u∈δG(v)

2 · count(C, u)

< 2 +
∑

u∈δG(v)

2 · count(C, u).

Dividing by 2, we have

count(C, v) < 1 +
∑

u∈δG(v)

count(C, u),

which yields our result, as count(C, u) will always be an integer. �

Lemma 5 Let cv be a non-negative integer associated with each node v ∈ V , and let c =
(c1, c2, . . . , c|V |) be the associated vector. Suppose for all v ∈ V ,

cv ≤
∑

u∈δg(v)

cu. (26)

Let U2 be the set defined in (21) and let eT be the vector defined in (22). Then we can assign a
non-negative integer aT to each T ∈ U2 such that

c =
∑
T∈U2

aTeT . (27)
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Proof. If c = 0, then for all T ∈ U2, we can set aT = 0 to satisfy (27). Thus, we assume c 6= 0.
First we claim that because of (26) there must be an edge {u, v} ∈ E such that cu > 0, cv > 0.
As c 6= 0, there must be a node u such that cu > 0. Now because of (26) for at least one of the
neighbours of u, such as v, we must have cv > 0.

Consider
L =

∑
v∈V

cv. (28)

We use induction on L to prove the lemma.

For L = 2, from our above argument, there are two neighbour nodes u, v ∈ V such that cu > 0 and
cv > 0. By (26) and since L = 2, we must have cu = 1, cv = 1 with all other nodes having a c value
of zero. Let T1 = {u, v} and c = eT1 . As T1 ∈ U2, then (27) holds by setting aT1 = 1 and all other
aT = 0.

Assume the result holds for L = 3, . . . , k − 1. We show the lemma holds for L = k.

For any vector c, we can define a remainder vector r = (r1, r2, . . . , r|V |) such that for all nodes
v ∈ V we have

rv = −cv +
∑

u∈δG(v)

cu.

We can see that (26) is satisfied if and only if for all nodes v ∈ V , we have rv ≥ 0.

Let V1 = {v|cv > 0}. We define rmin = min{rv|v ∈ V1} and divide the problem into different
cases based on the value of rmin. In each case we find some set T1 such that the vector c′ = c− eT1
satisfies the constraint (26). To do this we show that all elements of the corresponding remainder
vector r′ are non-negative, where

c′v =

{
cv v 6∈ T1,
cv − 1 v ∈ T1,

and thus,

r′v =

{
rv − |T1 ∩ δG(v)| v ∈ V − T1,
rv − |T1 ∩ δG(v)|+ 1 v ∈ T1.

(29)

For nodes v with cv = 0, it is clear that r′v ≥ 0 is satisfied. Thus, we consider the nodes in V1.
For nodes v ∈ V1 − T1 that don’t have a neighbour in T1, we have T1 ∩ δG(v) = ∅, so r′v = rv ≥ 0.
Thus, we only need to prove r′ ≥ 0 for the nodes of T1 and neighbours of T1 in V1. We divide the
problem into three cases: rmin = 0, rmin = 1 and rmin ≥ 2.

Case 1 (rmin = 0):
Consider a node x ∈ V1 such that rx = 0. As cx > 0, then because of (26), x should have some
neighbour in V1, say y. Define the set Ny

0 = {v|v ∈ V1 ∩ δG(y), rv = 0}. We choose T1 = {y} ∪Ny
0

which is in U2. Note that x ∈ Ny
0 , so there are nodes other than y in T1.

Claim: For all nodes v ∈ Ny
0 , we have r′v ≥ 0.
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Proof: First we prove that there are no two neighbour nodes u, v ∈ Ny
0 .

By way of contradiction, assume u, v ∈ Ny
0 are neighbours. Since ru = 0 and v ∈ δG(u), we

have cu ≥ cv. Since rv = 0 and u ∈ δG(v), we have cv ≥ cu. So cv = cu, but u, v ∈ δG(y), so we
have rv > 0, ru > 0, which is a contradiction. So there are no two neighbour nodes u, v ∈ Ny

0 .
Thus, for all nodes v ∈ Ny

0 , y is their only neighbour in T1 and we have |T1 ∩ δG(v)| = 1. As
Ny

0 ⊂ T1, based on (29), we have r′v = rv = 0.

Claim: For all nodes v ∈ V1 that have a neighbour in Ny
0 , including y, we have r′v ≥ 0.

Proof: Assume a node v ∈ V1 has a neighbour u ∈ Ny
0 . As r′u = 0, we have c′u ≥ c′v, which by

(29) implies r′v ≥ 0.

Claim: For all neighbours v of y with v 6∈ Ny
0 , we have r′v ≥ 0.

Proof: Note that rv ≥ 1 because if rv = 0, then based on the definition of Ny
0 , we have

v ∈ Ny
0 , which contradicts our assumptions that v 6∈ Ny

0 . We showed in the previous claim
that if v has a neighbour in Ny

0 , then rv ≥ 0. If v is not a neighbour of any nodes in Ny
0 ,

then |T1 ∩ δG(v)| = 1 and because v ∈ V − T1, then based on (29), r′v = rv − 1 and because
rv ≥ 1, we have r′v ≥ 0.

Case 2 (rmin = 1):
We divide this case into different sub-cases.

Case A: There are no two neighbour nodes u, v ∈ V1 such that rv = 1, ru = 1.

Approach: Pick some node x such that rx = 1. Then because of (26), x has some neighbour y
such that cy > 0. We choose T1 = {x, y}, which is in U2. Note that r′x = rx ≥ 0, r′y = ry ≥ 0.
For all nodes outside of T1 that are connected to T1 such as v, if |T1 ∩ δG(v)| = 1, then as
v ∈ V − T1 and rv ≥ rmin = 1, then based on (29) we have r′v ≥ 0. If |T1 ∩ δG(v)| = 2, then
because v is a neighbour of x, then rv ≥ 2; otherwise our assumption will be violated. Thus,
based on (29) we have r′v ≥ 0.

Case B: There are two neighbour nodes x, y ∈ V1 such that rx = 1, ry = 1.

Case (i): For all v ∈ V1 − {x, y} connected to both of x, y, we have rv ≥ 2.

Approach: In this case we choose T1 = {x, y}, which is in U2. We have r′x = rx ≥ 0,
and r′y = ry ≥ 0. For all nodes v connected to one of x, y, as rv ≥ rmin = 1 and
|T1 ∩ δG(v)| = 1, by (29) we have r′v ≥ 0. For nodes v connected to both x, y we have
rv ≥ 2, and as |T1 ∩ δG(v)| = 2, by (29) we have r′v ≥ 0.

– Case (ii): There is some node z ∈ V1−{x, y} connected to both of x, y such that rz = 1.

Approach: In this case, using rx = 1 and

cx = −rx +
∑

u∈δG(x)

cu = −1 + cy + cz +
∑

u∈δG(x)−{y,z}

cu,

as cz > 0, we have cx ≥ cy. Using a similar argument, we have cx ≤ cy, so we have
cx = cy. Similarly we can prove cx = cz. Thus, we have cx = cy = cz.
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We choose T1 = {x, y, z}, which is in U2. We claim that {x, y, z} are not connected
to any other node in V1. For the sake of contradiction, assume that there is a node v
connected to x. So we have

rx = −cx + cy + cz +
∑

u∈δG(x)−{y,z}

cu = cz +
∑

u∈δG(x)−{y,z}

cu. (30)

As v is a neighbour of x, we have ∑
u∈δG(x)−{y,z}

cu > 0,

and as cz > 0, based on (30) we have rx > 1, which is a contradiction. So {x, y, z} has no
neighbour in V1 and based on (29) we have r′x = r′y = r′z = 0 because rx = ry = rz = 1.

Case 3 (rmin ≥ 2):
As argued before, there are two neighbour nodes x, y ∈ V1 because of (26). We choose T1 = {x, y},
which is in U2. Then we have r′x = rx ≥ 0 and r′y = ry ≥ 0. For all other nodes v ∈ V1 − T1, we
have |T1 ∩ δG(v)| ≤ 2. As rv ≥ 2, by (29) we have r′v ≥ 0.

So we proved that all nodes of T1 and neighbours of T1 in V1 have non-negative r′ value. Thus,
we have shown that the vector c′ satisfies the condition of (26). We assumed the lemma was true
for L = 3, . . . , k − 1. As

∑
u∈V c

′
u <

∑
v∈V cv = L, the lemma is true for vector c′, so we have

c′ =
∑

T∈U2
a′TeT . As c = c′ + eT , we have our result. �

Theorem 6 Assume E 6= ∅. There exists an optimal cycle C∗ ∈ Cmax
G such that diam(G(C∗)) ≤ 2,

and for all nodes v ∈ V , we have count(C∗, v) ≤ 1.

Proof. As Cmax
G 6= ∅, there exists some C ∈ Cmax

G ⊆ CG. From Lemma 4, this implies (25).
Construct a vector c = (c1, c2, . . . , c|V |) such that for all nodes v ∈ V , cv = count(C, v). Under this
construction, c satisfies (26) and from Lemma 5 we have (27). Note that for all T ∈ U2 we can
find a valid cyclical sequence CT such that each node of T appears once. So because of (27) we
can find some sequences A1, . . . ,Am such that if we define A = C we have (23), which by Lemma
2 implies there is some Aj such that M(Aj) ≥ M(A). Note that as A ∈ Cmax

G , for all i we have
M(Ai) ≤ M(A), but as M(Aj) ≥ M(A) for some j, we must have M(Aj) = M(A). Note that as
T ∈ U2, we have diam(G(T )) ≤ 2 and thus, for all nodes v ∈ V , we have count(Aj , v) ≤ 1. So
Aj ∈ Cmax

G and the result holds for C∗ = Aj . �

Based on Theorem 6, to find MCmax
G

we search over all sub-graphs of graph G with diameter
less than or equal to 2, and pick the one with the highest average weight. This can be done in
O(|E|+ |V | log |V |) time.

Theorem 7
lim
k→∞

MOk
G

= MCmax
G

. (31)

Proof. Let Ok0 = {it}kt=1 ∈ Ok
G and {st}kt=1 be the corresponding sequence of states, where s1 = 1.

If |Ok0 | > 2|V |, then by the pigeon hole principle, there must be t1 and t2 such that st1 = st2 . Let
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Ak0 = {it}t1−1t=1 , Bk0 = {it}t2−1t=t1
and Ck0 = {it}kt=t2 , so that Ok0 = Ak0Bk0Ck0 . Now because st1 = st2 ,

Ok1 = Ak0Ck0 is a valid sequence. Note that Bk0 = CG, so M(Bk0) ≤MCmax
G

. If |Ok1 | > 2|V |, we repeat

the process and obtain a new sequence Ok2 . As long as |Okj | > 2|V |, we repeat this process until we

obtain a sequence Okm such that
|Okm| ≤ 2|V |. (32)

We denote the omitted sub-sequence from Okj in step j as Bkj . As we argued,

M(Bkj ) ≤MCmax
G

. (33)

We have

M(Ok0) =
1

k

|Okm|M(Okm) +
m−1∑
j=0

|Bkj |M(Bkj )

 . (34)

Combining (32), (33) and (34) with equation (20), we have

M(Ok0) ≤ 1

k

(
2|V |Mmax + kMCmax

G

)
. (35)

Let C∗ be a sequence satisfying the conditions of Theorem 6. We construct the new sequence C∗↓
by sorting the elements of C∗ by their weights in descending order. Because diam(GC∗) ≤ 2, C∗↓ is
also a valid cycle. Now we construct the sequence Z by repeating C∗↓ until we obtain a sequence
with length k. Note that in the last repeat of C∗↓ , all of it’s elements may not be inserted. So

MCmax
G
≤M(Z). (36)

And because Ok0 ∈ Ok
G and |Z| = k, we have

M(Z) ≤M(Ok0). (37)

Combining (35), (36) and (37), we get

MCmax
G
≤M(Ok0) ≤ 1

k

(
2|V |Mmax + kMCmax

G

)
.

Because

lim
k→∞

MCmax
G

= lim
k→∞

1

k

(
2|V |Mmax + kMCmax

G

)
= MCmax

G
,

by the sandwich theorem we have our result. �

We can rewrite Theorem 7 as
MOk

G
= O(MCmax

G
). (38)

Because we are interested in long sequences, and based on the structure of the graph G, the se-
quence {MOk

G
}∞k=1 can have many oscillations, which makes finding the exact values of MOk

G
hard.

Thus, we acquiesce in asymptotic analysis of (31) and (38).

By mapping back to the original problem we obtain the rate stated in the main paper.
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9.2 Faster Randomized Kaczmarz Using the Orthogonality Graph of A

In order for the adaptive methods to be efficient, we must be able to efficiently update the set
of selectable nodes at each iteration. To do this we use a tree structure that keeps track of the
number of selectable children in the tree (for uniform random selection) or the cumulative sums of
the selectable row norms of A (for non-uniform random selection). A similar structure is used in
the non-uniform sampling code of Schmidt et al. (2013).

Recall that the standard inverse-transform approach approach to sampling from a non-uniform
discrete probability distribution over m variables:

1. Compute the cumulative probabilities, ci =
∑i

j=1 pj for each i from 1 to m.

2. Generate a random number u uniformly distributed over [0, 1].

3. Return the smallest i such that ci ≥ u.

We can compute all m values of ci in Step 1 at a cost of O(m) by maintaining the running sum.
We’ll assume that Step 2 costs O(1) and we can implement Step 3 in O(log(m)) using a binary
search. If we are sampling from a fixed distribution, then we only need to perform Step 1 once and
from that point we can generate samples from the distribution at a cost of O(log(m)).

In the adaptive randomized selection rules, the probabilities pj change at each iteration and hence
the ci values also change. This means we can’t skip Step 1 as we can for fixed probabilities.
However, if the orthogonality graph is sparse then it’s still possible to efficiently implement these
strategies. To do this, we consider a binary tree-structure that has the probabilities pj as leaf nodes
while each internal node is the sum of its two descendants (and thus the root node has a value
of 1). Given this structure, we can find the smallest ci ≥ u in O(log(m)) by traversing the tree.
Further, if we update one of the pj values then we can update this data structure in O(log(m))
time since this only requires changing one node at each depth of the tree. If each node has at most
g neighbours in the orthogonality graph, then we need to update g probabilities in the binary tree,
leading to a cost of O(g log(m)) to update the tree structure on each iteration.

Note that the above structure can be modified to work with unnormalized probabilities at the
leaf nodes, since the root node will contain the normalizing constant required to make these un-
normalized probabilities into a valid probability mass function. Using this, we can implement the
adaptive uniform method by setting the leaf nodes to 1 for selectable nodes and 0 for non-selectable
nodes. To implement the adaptive non-uniform method, we set the leaf nodes to 0 for non-selectable
nodes and ‖ai‖2 for selectable nodes.

10 Experiments

Formulating the Semi-Supervised Label Propagation Problem as a Linear System

Our third experiment solves a label propagation problem for semi-supervised learning in the ‘two
moons’ dataset (Zhou et al., 2004). We use a variant of the quadratic labelling criterion of Bengio
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et al. (2006),

min
yi∈S′

f(y) ≡ 1

2

n∑
i=1

n∑
j=1

wij(yi − yj)2,

where y is our label vector (each yi can take one of 2 values), S is the set of labels that we do know,
S′ is the set of labels that we do not know and wij ≥ 0 are the weights assigned to each yi describing
how strongly we want the labels yi and yj to be similar. We assume without loss of generality that
wij = wji for all i, j because the model only depends on these terms through (wij + wji). We
can express this quadratic problem as a linear system that is consistent by construction. In other
words, we can define A and b such that

∇f(y) = 0 ⇐⇒ Ay = b, with y ∈ S′.

Differentiating f with respect to some yk ∈ S′, we have

∇kf(y) =
∑
j 6=k

wkj(yk − yj)︸ ︷︷ ︸
i=k, j 6=k

−
∑
i 6=k

wik(yi − yk)︸ ︷︷ ︸
i 6=k, j=k

+
∑
i=k

wkk(yk − yk)︸ ︷︷ ︸
i=k, j=k

=
n∑
i=1

wki(yk − yi)−
n∑
i=1

wik(yi − yk)

= 2
n∑
i=1

wkiyk − 2
n∑
i=1

wkiyi.

Setting this equal to zero and splitting the summation over S and S′ separately, we have

n∑
i=1

wkiyk −
∑
i∈S′

wkiyi =
∑
i∈S

wkiyi.

Assuming the elements of S′ form the first |S′| elements of the matrix A, the above formulation
yields the |S′| × |S′| matrix

A(k, i) =

{∑n
j=1wkj if i = k,

−wki if i 6= k,

where k and i ∈ S′ and
b(k) =

∑
i∈S

wkiyi.

Time vs. Squared Error and Distance

Figure 2 compares the runtime results for our 3 experiments from the main paper using both squared
error and distance (we made a reasonable effort to make the implementations of all methods as
efficient as possible). We see that in the first experiment the greedy selection rules do not translate
into gains in terms of runtime due to their higher iteration cost, while in the second and third
experiments the greedy rules are still superior in terms of runtime.
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Figure 2: Runtime Comparisons of Kaczmarz Selection Rule.

Hybrid Methods

For the very sparse overdetermined dataset, we see very different performances between the MR
and MD rules with respect to squared error and distance. We see that the MR rule outperforms
the MD rule in the beginning with respect to squared-error and the MD rule outperforms the MR
rule significantly with respect to distance. These observations align with the respective definitions
of each greedy rule. However, if we want a method that converges well with respect to both of these
objectives, then we could consider ‘hybrid’ greedy rule. For example, we could simply alternate
between using the MR rule and the MD rule. As we see in Figure 3, this approach simultaneously
exploits the convergence of the MR rule in terms of squared error and the MD rule in terms of
distance to the solution. However, computationally this approach requires the maintenance of two
max-heap structures.
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