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Abstract

The counting grid is a grid of microtopics, sparse

word/feature distributions. The generative model

associated with the grid does not use these mi-

crotopics individually. Rather, it groups them in

overlapping rectangular windows and uses these

grouped microtopics as either mixture or admix-

ture components. This paper builds upon the ba-

sic counting grid model and it shows that hier-

archical reasoning helps avoid bad local minima,

produces better classification accuracy and, most

interestingly, allows for extraction of large num-

bers of coherent microtopics even from small

datasets. We evaluate this in terms of consis-

tency, diversity and clarity of the indexed con-

tent, as well as in a user study on word intrusion

tasks. We demonstrate that these models work

well as a technique for embedding raw images

and discuss interesting parallels between hierar-

chical CG models and other deep architectures.

Appendix A - Variational EM for general

hierarchical grids

In the main paper we presented two hierarchical models,

HCG and HCCG; the former is built stacking a CCG and

a CG, the latter stacking two CCGs models. Nevertheless,

deeper models are of course possible and the aim of this

section is to derive a (variational) learning algorithm for a

general hierarchical model.

At first we note that as any other deep architecture,

hierarchical grids are a cascade of many layers where each

layer uses the output from the previous layer as input.

In the specific, as illustrated by Fig. 1, we stack L − 1
Componential Counting Grids and we put a model on the

top, either a Counting Grid or a Componential Counting

Grid, for a total of L layers. The model on the top will

dictate the nature of the final grid. In order to make our

discussion general we allow each layer to have a different

complexity E
(l),W(l). Finally we use h

1 to specify the

set of hidden variables of the model on the top.

The Bayesian network of a generic model is shown in

Fig. 1a, where as illustrated, one can place either a

CG (Fig. 1c) or a CCG (Fig. 1c) on the top yielding

respectively to a Hierarchical Counting Grid , HCG or a

Hierarchical Componential Counting Grid HCCG. As one

would expect, the conditional distributions induced by the

newtwork factorization are inherited by the basic grids.

At the bottom we have the standard obersvation model:

P (wn|k
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n , π(L)) = π

(L)
kn

(wn) (1)

Then, within each layer l, the link between a word and its

window only depends on the current grid complexity
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where U(·) is a pre-set distribution, uniform with a window

of size W
(l). Finally, the link between layer l and l − 1 is

P (ℓ(l)n |k(l−1)
n , π(l−1)) = π

(l−1)

ℓ
(l−1)
n

(k(l)n ) (3)

From the formula above it is evident how lower levels lo-
cations act as observations in the higher level. A Bayesian
network specifies a joint distribution in the following struc-
tured form
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N
∏
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being P (h(1)) the joint probability distribution of the

hidden variables model on the top which also factorizes

[1, 2].
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Figure 1: a) Deep hierarchical grids can be used to avoid

local minima and learn better microtopics. b) The Compo-

nential Counting Grid generative model. c) The Counting

Grid model

The posterior P ({k
(l)
n , ℓ

(l)
n },h1|{wn}, {π

(l)}Ll=2, π
(1)) is

intractable for exact inference and we must resort to varia-
tional EM algorithm [3]. Following the variational recipe,
we firstly introduce a fully factorized posterior q, approxi-
mating the true posterior as

q
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and where qt(h1) is the variational posterior of the model

on the top which again we assume factorized as in [1, 2],

and where each of the q’s is a multinomial over the grids

locations.

Following the standard variational recipe, we bound the

non-constant part of the loglikelihood of the data with the

free energy

logP ({wt
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F t (5)

where the free energy of each t-th sample is
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In the equation above H
(

qt({k
(l)
n , ℓ

(l)
n },h1) is the entropy

of the variational posterior and the last term Fqt(h(1)) de-

pends on the top model: if the model on top is a CG, we
have
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On the other hand, if the top model yet another CCG, we
have
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where the last term in the equation above can be included

in the third term of equation 6 (e.g., add the l = 1-addend

to first sum).

As last step of the variational recipe, we maximize F by
means of the EM algorithm which iterates E- and M-steps
until convergence. The E-step maximizes F wrt to the pos-
terior distributions given the current status of the model,
and in our case reduces to the following updates:
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The last update can be employed for l = 1 if the top model
is a CCG as well as

θ
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n
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In the case we place a CG on the top, the window variable
does not depend on the “token” n and we have

q
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The M step re-estimate the model parameters using these
updated posteriors.

π
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∑
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As seen in the last equation, the top level ℓ-variables do not

appear, therefore the last update can be employed whatever

model we place on top. Variational inference and learning

procedure for counting grid-based models utilizes cumula-

tive sums and is slower than training an individual (C-)CG

layer by a factor proportional to the number of layers.



Appendix B - Details on user study

In this section, we present the qualitative performance

of our models by measuring coherence of micro topics

through a word intrusion task. The word intrusion task

is originally developed to measure the coherence of top-

ics with large scale user study [4], and adopted to various

models measure the coherence of topics [5].

In the original word intrusion task, six randomly ordered

words are presented to a subject. The task of the user is

to find the word which is irrelevant with the others. In or-

der to construct a set of words presented to the subject, we

first randomly select a target topic from the model. Then

we choose the ve most high probability words from that

topic. With these five words, an intruder word is randomly

selected from low probability words of the target topic but

high probability in some other topic. Six words are shuf-

fled and presented to the subject. If the target topic shows

a lack of coherence, the subject will be suffering to choose

the intruder word.

In order to measure the coherence of micro topics, we

slightly modified the standard word intrusion task. First,

we randomly sample the location of micro topic, ℓ, from

grid. Then we sample three words from the topic of se-

lected location, πℓ (1×1), from the averaged topic started

from the selected location to window of size 2 (2×2), and

from the averaged topic started from the selected location

to window of size 2 (3×3), respectively.

To prepare data for human subjects, we train four different

topic models, LDA, CG, HCG, and HCCG, on randomly

crawled 10k Wikipedia articles. Amazon Mechanical Turk

(http://www.mturk.com) is used to perform the word intru-

sion task.

Table 1: P value between models.
1x1 CG HCG HCCG

LDA 8.1E-05 7.7E-03 3.3E-07

CG 2.5E-01 1.1E-16

HCG 1.1E-12

2x2 CG HCG HCCG

LDA 1.5E-04 1.6E-03 3.7E-05

CG 5.6E-01 4.2E-13

HCG 2.7E-11

3x3 CG HCG HCCG

LDA 2.0E-08 2.0E-08 3.7E-01

CG 1.0E+00 2.9E-09

HCG 2.9E-09

Top K CG HCG HCCG

LDA 2.9E-08 4.5E-05 3.4E-02

CG 6.6E-02 1.7E-05

HCG 1.4E-02

Table 2: Number of questions per each bin.

1x1 1 2 3 4 5

CG 496 122 164 173 45

HCG 489 136 160 164 51

HCCG 426 181 158 179 55

2x2 1 2 3 4 5

CG 494 114 153 174 65

HCG 482 127 149 177 65

HCCG 435 177 150 192 46

3x3 1 2 3 4 5

CG 490 129 177 158 46

HCG 488 131 143 184 54

HCCG 424 195 154 172 55

Top K 1 2 3 4 5

CG 496 123 167 163 50

HCG 491 121 163 166 57

HCCG 420 188 141 194 56
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Figure 2: Result of word intrusion task. The significant

levels are denoted by * (p-value, * < 0.1, ** < 0.01)



Appendix C - Topic Coherence

Semantic coherence is a human judged quality that depends

on the semantics of the words, and cannot be measured

by model-based statistical measures that treat the words

as exchangeable tokens. Fortunately, recent work [6] has

demonstrated that it is possible to automatically measure

topic coherence with near-human accuracy using a score

based on point-wise mutual information (PMI). In the topic

model literature, topic coherence is defined as the sum

Coherence =
∑

i<j

Score(wi, wj) (7)

of pairwise scores on the words wi, . . . wk used to de-

scribe the topic; usually the top k words by frequency

p(word|topic)). Pairwise score function is the pointwise

mutual Information (PMI).

To evaluate coherence for the proposed hierarchical learn-

ing algorithms, we considered a corpusD composed of Sci-

ence Magazine reports and scientific articles from the last

20 years. An example embedding of such corpus on the

grid is visible in Fig. 1 of the main paper. As preprocess-

ing step, we removed stop-words and applied the Porters’

stemmer algorithm [7].

We considered grids of size 8×8, 16×16, . . . , 40×40 and

window sizes to 2× 2, 3× 3, 5× 5.

In Fig.3, we show the coherence of CG, HCG and LDA

across the complexities. On the x-axis we have the different

model size, in term of capacity κ, whereas in the y-axis we

reported the coherence. The capacity κ is roughly equiva-

lent to the number of LDA topics as it represents the num-

ber of independent windows that can be fit in the grid and

we compared the with LDA using this parallelism [1, 2].

The same capacity can be obtained with different choices

of E and W therefore we represented the grid size using

gray levels, the lighter the marker the bigger the grid. Fi-

nally, to compute coherence, likewise previous work, we

set k = 10.

Appendix D - Grids of strokes and image

embedding

In this section we report the higher resolution version of

Fig. 4 and 3 in the main paper.

We considered 2000 MNIST digits: As the CG model

works with bags of features, we represented each digit as

a set of pixel locations hit by a virtual photon. If a loca-

tion has intensity 0.8, then it was assumed to have been

hit by 8 photons and this location will appear in the bag 8

times. In other words, the histogram of features is simply

proportional to the unwrapped image, and the individual

distributions π or h can be shown as images by reshaping

the learned histograms.

In Fig.5, We show a portion of a 48 × 48 grid of strokes

π learned using a CG model assuming a 6 × 6 window
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Figure 3: Topic Coherence for CG, HCG and LDA

.

averaging. Due to the componential nature of the model,

h contains rather sparse features (and the features in π

are even sparser - only 3-4 pixels each). However, nearby

features h are highly related to each other as they are the

result of adding up features in overlapping windows over π.

In Fig. 4 we show a full 48 × 48 grid of strokes h learned

from 2000 MNIST digits using a CCG model assuming a

5× 5 window averaging1.

Due to the componential nature of the model, h contains

rather sparse features (and the features in π are even

sparser - only 3-4 pixels each). However, nearby features

h are highly related to each other as they are the result of

adding up features in overlapping windows over π. CCG

is an admixture model, and so each digit indexed by t has

a relatively rich posterior θt over the features in h.

The full CG grid, as well as several other examples of im-

age embedding follow on the next few pages

1we used pixels intensities as features like we explained in the
introduction



Figure 4: Grid-of-strokes. This is the Higher resolution version of Fig. 4a of the main paper

.



a) b)

Figure 5: Grid-of-strokes. a) π, b) h. This is the Higher resolution version of Fig. 2 of the main paper

.



Figure 6: Digits: CG’s π



Figure 7: Digits: CG’s h



Figure 8: 3D heads: CG’s h



Figure 9: Bald eagles: CG’s h



Figure 10: Bold eagles: Example images mapped
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