
Supplement to
“On the Identifiability and Estimation of Functional Causal Models in the

Presence of Outcome-Dependent Selection”

This supplementary material provides the proofs and some details which are omitted in the
submitted paper. The equation numbers in this material are consistent with those in the paper.

S1. An Illustration on the E↵ect of
Output-Dependent Selection Bias on
the Estimation of Functional Causal
Models

If the selection depends solely on the e↵ect, as de-
picted in Figure 1(c), then p

Y |X,S=1

6= p

Y |X , and the
selection bias, if not corrected, will mislead inference.
Consider, for example, a standard assumption in func-
tional causal modeling that the e↵ect Y is a function
of the cause variable X and an noise variable E that
is independent of X. Suppose this assumption holds
in the population. With the outcome-dependent se-
lection, X and E are typically not independent in the
selected sample, as they are typically not independent
conditional on S (which is a descendant of a collider
between X and E, i.e., Y ). Furthermore, even if one
fits a regression model on selected sample, the esti-
mated residual (which is usually di↵erent from the
true noise term in the causal process) is usually not
independent from X; we will get back to this issue in
Section 4.1. An illustration is given in Figure 6, where
data are generated from a linear additive noise model
Y = X + E, with selection on Y . As one can see
from the chart on the right, without correction, the
estimated noise and the cause are not independent.

Theoretical results on this issue are given in Corollary
3, which, roughly speaking, states that if the OSB is
not corrected, one cannot fit a restricted functional
causal model with independent noise on the data.

S2. Proof of Theorem 1

Proof 1 This proof is an adaptation of the proof of
Theorems 1 and 8 in (Zhang & Hyvärinen, 2009).
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obtained.

The next step is to solve the partial di↵erential equa-
tion (7). Compare this equation with (4) in (Zhang &
Hyvärinen, 2009), one can see that the former is ob-
tained by substituting ⌘̃
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for ⌘
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in the latter, whose so-
lution was given in Theorem 8 in (Zhang & Hyvärinen,
2009); see Table 1 there. The solution to (7), given
in Table 1 directly follows from Table 1 in (Zhang &
Hyvärinen, 2009). The only di↵erence is that here we
omit the constraint on ⌘̃

1

and that on h

1
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S3. Proof of Theorem 2
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Figure 6: Illustration of the e↵ect of outcome-dependent selection. The data were generated from a linear
additive noise model Y = X + E with selection on Y . Left: The data distribution on the whole population
(before applying selection bias). Middle: The distribution of selected data (with selection bias). Right: The
distribution of the estimated noise and cause on the selected data: they are clearly not independent.
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Here a, b, and c are some constants.

We consider the above possible solutions one by one.
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S4. Proof of Corollary 3
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S5. Proof of Corollary 4
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S6. Parameterization of the Functions
and Densities

The additive noise model for the data-generating pro-
cess, (9), implies that pF
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rameterize �(y) as the exponential transformation of
a nonlinear function represented by MLP’s (with the
tanh activation function); this automatically guaran-
tees the nonnegativity constraint of �(y), as required
in (17). Furthermore, we represent pF
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of Gaussians, the nonlinear function f
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In our experiments, we set K

1

= 4, K
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S7. More Detail on the Method Based
on Score Matching

The maximum likelihood estimation involves sample-
average approximation to enforce that p

�

XY

is a valid
density. Alternatively, we can estimate the parameters

by score matching (Hyvärinen, 2005), i.e., by minimiz-
ing the expected squared distance between the gra-
dient of the log-density given by the model and the
gradient of the log-density of the observed data. This
procedure aims to match the shape of the density given
by the model and that of the empirical density of the
observed data, and is invariant to the scaling factor of
the model density. As a clear advantage, in the op-
timization procedure one does not need to guarantee
that p�
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is a valid density.
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In particular, here we have  
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;
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down the involved derivatives involved in (28):
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in which the involved parameters are denoted by ✓
1

,
✓

2

, ✓
3

, and ✓
4

, respectively. We use the same regular-
ization term on �(y) as in (16).

We use score matching to estimate the parameters in-
volved in (10). The model parameterization was given



in (27). We estimate the parameters by minimizing
(28) with the proper constraints on ↵
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the constrained nonlinear optimization toolbox (im-
plemented by the function “fmincon” in MATLAB).
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The involved partial derivatives can be calculated ac-
cording to the parameterization (27).

S8. More Results on Real Data

We went through the cause-e↵ect pairs (http://
webdav.tuebingen.mpg.de/cause-effect/) to find
data sets which are likely to su↵er the OSB issue ac-
cording to commonsense or background knowledge. We
select Pairs 25, 40, and 41: Pair 25 is about the rela-
tionship between the age (X) and the concrete com-
pressive strength (Y ) of di↵erent samples of concrete;
Pair 40 is on the relations between the age (X) and di-
astolic blood pressure (Y ) of di↵erent subjects; Pair 41
contains the age (X) of the subjects and their plasma

glucose concentration a 2 hours in an oral glucose tol-
erance test (Y ).

The empirical distribution of the data in Pair 25 sug-
gests that it is very likely for the e↵ect to su↵er from
a PNL distortion. We use a rough way to take into
account both the PNL distortion in the causal process
and the OSB. We first fit the PNL causal model (Zhang
& Hyvärinen, 2009) on the data and correct the data
with the estimated PNL transformation on the hypo-
thetical e↵ect. We then fit the ANM-OSB procedure
on the corrected data. To avoid local optima, we run
the algorithm presented in Section 5.1 five times with
random initializations and choose the one with the
highest likelihood. Figure 7 shows the result on Pair
25. As seen from �̂(y), it seems for some reason, the
samples whose compressive strength is very high were
not selected. The estimated function f̂

GP

M

L seems to
address this issue. For Pair 40, whose results are shown
in Figure 8, �̂(y) suggests that people with relatively
high diastolic blood pressure seem more likely to take
part in the test, which seems natural. The interpreta-
tion on the results on Pair 41 (Figure 9) may require
some domain expertise knowledge.
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Figure 7: Results on pair 25 of the cause-e↵ect pairs.
(a) The scatterplot of the data (after correcting the
nonlinear distortion in the hypothetical cause with the
PNL causal model, the nonlinear regression function
f̂

GP

on the data, and the estimated function f̂

AN

ML

by
the proposed maximum likelihood approach. (b) The
estimated density ratio �(y) for the selection proce-
dure.
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Figure 8: Results on pair 40 (original data without
PNL correction).
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Figure 9: Results on pair 41 (original data without
PNL correction).
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