A General Statistical Framework for Designing
Strategy-proof Assignment Mechanisms

Appendix

A Generalization Bounds

For a rule class \mathcal{F}_i with finite Natarajan dimension of at most D, the following result relates the empirical and population 0-1 errors of any rule in \mathcal{F}_i: w.p. at least $1 - \delta$ (over draw of S), for all $f_i \in \mathcal{F}_i$,

$$\left| E_{\theta \sim \mathcal{D}}[1(g_i(\theta) \neq f_i(\theta))] - \frac{1}{N} \sum_{k=1}^{N} 1(y^k \neq f_i(\theta^k)) \right| \leq O\left(\sqrt{\frac{D \ln(m) + \ln(1/\delta)}{N}} \right).$$

(6)

The proof involves a reduction to binary classification, and an application of a VC dimension based generalization bound (see for example proof of Theorem 4 in [21]; also see Eq. (6) in [21]). It is straightforward to extend the above result to a similar bound on the Hamming error metric of an outcome rule $f \in \mathcal{F}$.

Lemma 10. With probability at least $1 - \delta$ (over draw of $S \sim \mathcal{D}^N$), for all $f \in \mathcal{F}$,

$$\left| E_{\theta \sim \mathcal{D}}[\ell(g(\theta), f(\theta))] - \frac{1}{N} \sum_{k=1}^{N} \ell(y^k, f(\theta^k)) \right| \leq O\left(\frac{D \ln(m) + \ln(n/\delta)}{N} \right).$$

Proof. We would like to bound:

$$\sup_{f \in \mathcal{F}} \left| E_{\theta \sim \mathcal{D}}[\ell(g(\theta), f(\theta))] - \frac{1}{N} \sum_{k=1}^{N} \ell(y^k, f(\theta^k)) \right| \leq \frac{1}{n} \sum_{i=1}^{n} \sup_{f \in \mathcal{F}_i} \left| E_{1}[1(g_i(\theta) \neq f_i(\theta))] - \frac{1}{N} \sum_{k=1}^{N} 1(y^k \neq f_i(\theta^k)) \right|.$$

Applying (6) to the above expression, along with a union bound over all i, gives us the desired result.

B Proofs

B.1 Complete Proof of Lemma 5

Proof. For any $f : \Theta \rightarrow \Omega$, define a binary function $G_f : \Theta \rightarrow \{0, 1\}$ as $G_f(\theta) = 1(f_1(\theta) \neq \ldots \neq f_n(\theta))$. Clearly, f is feasible on S iff G_f evaluates to 1 on all type profiles in S, and feasible on all type profiles iff G_f evaluates to 1 on all type profiles.

Treating G_f as a binary classifier, the desired result can be derived using standard VC dimension based learnability results for binary classification [22], with the loss function being the 0-1 loss against a labeling of 1 on all profiles. Let $\mathcal{G} = \{G_f : \Theta \rightarrow \{0, 1\} : f \in \mathcal{F}\}$ be the set of all such binary classifiers. Also, $\epsilon_{\text{infeasible}} = E_{\theta \sim \mathcal{D}}[1(G_f(\theta) \neq 1)]$. We then wish to bound the expected 0-1 error of a classifier G_f from \mathcal{G} that outputs 1 on all type profiles in S.

We first bound the VC dimension of \mathcal{G}. Since each \mathcal{F}_i has a Natarajan dimension of at most D, we have from Lemma 11 in [21] that the maximum number of ways a set of N profiles can be labeled by \mathcal{F}_i with labels $[m]$ is at most $N^D m^{2D}$. Since each G_f is a function solely of the outputs of f_1, \ldots, f_n, the number of ways a set of N profiles can be labeled by \mathcal{G} with labels $[0, 1]$ is at most $(N^D m^{2D})^n$.

The VC dimension of \mathcal{G} is then given by the maximum value of N for which $2^N \leq (Nm^2)^n$. We thus have that the VC dimension is at most $O(nD \ln(nmD))$.

Since $\mathcal{F}_\emptyset \neq \emptyset$, there always exists a function G_f consistent with a labeling of 1 on all profiles. A standard VC dimension based argument then gives us the following guarantee for the outcome rule \hat{f} that is feasible on sample S: w.p. at least $1 - \delta$ (over draw of S),

$$\epsilon_{\text{infeasible}} = E_{\theta \sim \mathcal{D}}[1(G_f(\theta) \neq 1)] \leq O\left(\frac{nD \ln(nmD) \ln(n) + \ln(1/\delta)}{N} \right),$$

which implies the statement of the lemma.
B.2 Proof of Theorem 7

Proof. Let \(w_i = \left\{ 1, 1, \ldots, 1, -1, -1, \ldots, -1 \right\} \). We first show that the corresponding payments are non-negative.

\[
\hat{t}_i^w(\theta_{-i}, o) = w_i^T \hat{\Psi}_i(\theta_{-i}, o) = \sum_{j \neq i} \sum_{o' = 1}^m v_j(\theta_j, o') - \sum_{j \neq i} v_j(\theta_j, y_j^i) = \sum_{j \neq i} \sum_{o' \neq y_j^i} v_j(\theta_j, o') \geq 0.
\]

We next show that the outcome rule \(f^w \) is feasible, and in particular, outputs a welfare-maximizing assignment. Note that \(f^w_i(\theta) \) can output any one of the following items:

\[
\mathcal{I}_i = \arg\max_{o \in [m]} \left\{ v_i(\theta_i, o) - w_i^T \hat{\Psi}_i(\theta_{-i}, o) \right\} = \arg\max_{o \in [m]} \left\{ v_i(\theta_i, o) + \sum_{j \neq i} v_j(\theta_j, y_j^i) - \sum_{j \neq i} \sum_{o' = 1}^m v_j(\theta_j, o') \right\}
\]

where \(T_{-i} \) is a term independent of agent \(i \)'s valuations and the item \(o \) over which the argmax is taken. If the above max is achieved by more than one item, then the individual functions \(f^w_i \) may not pick distinct items. However, in each of the following feasible assignments, agent \(i \) is assigned an optimal item from \(\mathcal{I}_i \): \(\arg\max_{y \in [m]} \left\{ \sum_{i=1}^m v_i(\theta_i, y_i) \right\} \). Thus \(\hat{f} \) is feasible as long as it uses a tie-breaking scheme that picks an assignment from this set. Such a tie-breaking scheme will not violate the agent-independence condition, as the agents continue to receive an optimal item based on their agent-independent prices.

B.3 Proof for Theorem 8

Proof. For ease of presentation, we omit the subscript \(i \) whenever clear from context. Let \(A \subseteq \Theta \) be a set of \(N \) profiles \(N \)-shattered by \(\hat{F}^\Psi \). Then there exists labelings \(L_1, L_2 : A \rightarrow [m] \) that disagree on all profiles in \(A \) such that for all \(B \subseteq A \), there is a \(w \) with \(f^w(\theta) = L_1(\theta), \forall \theta \in B \) and \(f^w(\theta) = L_2(\theta), \forall \theta \in A \setminus B \).

To bound the Natarajan dimension of \(\hat{F}^\Psi \), define \(\xi^w : \Theta \rightarrow \{0, 1\} \) that for any \(\theta \in \Theta \) outputs 1 if \(f^w(\theta) = L_1(\theta) \) and 0 otherwise. Then for all subsets \(B \) of a \(N \)-shattered set \(A \), there is a \(w \) with \(\xi^w(\theta) = 1, \forall \theta \in B \) and \(\xi^w(\theta) = 0, \forall \theta \in A \setminus B \). This implies that if a set is \(N \)-shattered by \(\hat{F}^\Psi \), it is (binary) shattered by the class \(\{ \xi^w : w \in \mathbb{R}^d \} = \Xi \) (say). Thus the size of the largest set \(N \)-shattered by \(\hat{F}^\Psi \) is no larger than the size of the largest set (binary) shattered by \(\Xi \). The Natarajan dimension of \(\hat{F}^\Psi \) is therefore upper bounded by the VC dimension of \(\Xi \).

What remains is to bound the VC dimension of \(\Xi \). Note that \(\xi^w(\theta) = 1 \) only when \(w^T \Psi_i(\theta_{-i}, L_1(\theta)) \leq 1 \) and \(L_1(\theta) \geq l_o \, \forall o \in \{o' \in [m] : w^T \Psi_i(\theta_{-i}, o' \leq 1) \} \). Also note that when \(\theta \in \Theta \) is fixed, the output of \(\xi^w(\theta) \) for different \(w \in \mathbb{R}^d \) is solely determined by the value of the binary vector \([1(w^T \Psi_i(\theta_{-i}, o \leq 1))_{o=1}^m \in \{0, 1\}^m \). Thus the number of ways a fixed set \(A \subseteq \Theta \) can be labeled by \(\Xi \) cannot be larger than the number of ways \(A \) can be labeled with the binary vectors \([1(w^T \Psi_i(\theta_{-i}, o \leq 1))_{o=1}^m \in \{0, 1\}^m \) for different \(w \in \mathbb{R}^d \).

Each entry of the above binary vector can be seen as a linear separator. Given that the VC dimension of linear separators in \(\mathbb{R}^d \) (with a constant bias term) is \(d \), by Sauer’s lemma, the number of ways a set of \(N \) profiles can be labeled by a single entry \(1(w^T \Psi_i(\theta_{-i}, o \leq 1) \) is at most \((Ne)^d \). The total number of ways the set can be labeled with binary vectors of the above form is at most \((Ne)^{md} \). The VC dimension of \(\Xi \) is then the largest \(N \) for which \(2^N \leq (Ne)^{md} \). We thus get that the VC dimension of \(\Xi \) is at most \(O((md) \ln(md)) \), as desired.
B.4 Proof of Theorem 9

Proof. Fix a priority \(\pi : [n] \rightarrow [n] \) over the agents, where \(\pi(i) \) denotes the priority to agent \(i \) (with 1 indicating the lowest priority, and \(n \) indicating the highest). Define \(w_i \in \mathbb{R}^{n \times m} \) as follows: for \(j \in [n], k \in [m] \),

\[
 w_i[j,k] = \begin{cases}
 2 & \pi(j) > \pi(i), \ k \geq m - n + \pi(j) \\
 0 & \text{otherwise}.
\end{cases}
\]

We show that the resulting outcome rule is a feasible serial dictator style mechanism where the agents are served according to the priority ordering \(\pi \). We show this for the case when \(m = n \). The proof easily extends to the case where this is not true.

Recall that the entry \((j,k)\) for \(j \neq i \) in the feature map \(\hat{\Psi}_i(\theta_{-i}, o) \) is 1 when agent \(j \) assigns a rank of \(k \) to item \(o \), i.e. \(\text{rank}_j(\theta_j, o) = k \). One can then observe that virtual price function, \(t^\text{vir.}_i(\theta_{-i}, o) = w^\top_i \hat{\Psi}_i(\theta_{-i}, o) \geq 2 \) whenever an agent with a higher priority assigns item \(o \) a rank greater or equal to its priority level, i.e. whenever \(\text{rank}_j(\theta_j, o) \geq \pi(j) \) for some \(j \) with \(\pi(j) > \pi(i) \). The item \(o \) is then not affordable to agent \(i \), as the virtual price exceeds a budget of 1.

The resulting outcome rule is similar to a serial dictatorship mechanism and serves the agents according to the priorities \(\pi \): agent \(\pi^{-1}(1) \) affords all items; agent \(\pi^{-1}(2) \) affords all but the item most-preferred by agent \(\pi^{-1}(1) \); agent \(\pi^{-1}(3) \) affords all items except the most-preferred item by agent \(\pi^{-1}(1) \), and the first- and second-most preferred items by agent \(\pi^{-1}(2) \); and so on. Thus the most-preferred affordable item for a given agent is always unaffordable for lower priority agents. Since each agent receives its most-preferred affordable item (and is unassigned if it cannot afford any), there are no conflicts in assignments. \(\square \)