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Abstract

Finding efficient and provable methods to solve
non-convex optimization problems is an out-
standing challenge in machine learning and op-
timization theory. A popular approach used to
tackle non-convex problems is to use convex re-
laxation techniques to find a convex surrogate
for the problem. Unfortunately, convex relax-
ations typically must be found on a problem-
by-problem basis. Thus, providing a general-
purpose strategy to estimate a convex relaxation
would have a wide reaching impact. Here, we in-
troduce Convex Relaxation Regression (CoRR),
an approach for learning convex relaxations for a
class of smooth functions. The idea behind our
approach is to estimate the convex envelope of
a function f by evaluating f at a set of T ran-
dom points and then fitting a convex function to
these function evaluations. We prove that with
probability greater than 1− δ, the solution of our
algorithm converges to the global optimizer of f
with error O

(( log(1/δ)
T

)α)
for some α > 0. Our

approach enables the use of convex optimization
tools to solve non-convex optimization problems.

1 Introduction

Modern machine learning relies heavily on optimization
techniques to extract information from large and noisy
datasets (Friedman et al., 2001). Convex optimization
methods are widely used in machine learning applications,
due to fact that convex problems can be solved efficiently,
often with a first order method such as gradient descent
(Shalev-Shwartz and Ben-David, 2014; Sra et al., 2012;
Boyd and Vandenberghe, 2004). A wide class of prob-
lems can be cast as convex optimization problems; how-
ever, many important learning problems, including binary
classification with 0-1 loss, sparse and low-rank matrix re-

covery, and training multi-layer neural networks, are non-
convex.

In many cases, non-convex optimization problems can be
solved by first relaxing the problem: convex relaxation
techniques find a convex function that approximates the
original objective function (Tropp, 2006; Candès and Tao,
2010; Chandrasekaran et al., 2012). A convex relaxation
is considered tight when it provides a tight lower bound to
the original objective function. Examples of problems for
which tight convex relaxations are known include binary
classification (Cox, 1958), sparse and low-rank approxi-
mation (Tibshirani, 1996; Recht et al., 2010). The recent
success of both sparse and low rank matrix recovery has
demonstrated the power of convex relaxation for solving
high-dimensional machine learning problems.

When a tight convex relaxation is known, then the under-
lying non-convex problem can often be solved by optimiz-
ing its convex surrogate in lieu of the non-convex problem.
However, there are important classes of machine learning
problems for which no such relaxation is known. These in-
clude a wide range of machine learning problems such as
training deep neural nets, estimating latent variable models
(mixture density models), optimal control, reinforcement
learning, and hyper-parameter optimization. Thus, meth-
ods for finding convex relaxations of arbitrary non-convex
functions would have wide reaching impacts throughout
machine learning and the computational sciences.

Here we introduce a principled approach for black-box
(zero-order) global optimization that is based on learning a
convex relaxation to a non-convex function of interest (Sec.
3). To motivate our approach, consider the problem of esti-
mating the convex envelope of the function f , i.e., the tight-
est convex lower bound of the function (Grotzinger, 1985;
Falk, 1969; Kleibohm, 1967). In this case, we know that
the envelope’s minimum coincides with the minimum of
the original non-convex function (Kleibohm, 1967). Unfor-
tunately, finding the exact convex envelope of a non-convex
function can be at least as hard as solving the original op-
timization problem. This is due to the fact that the prob-
lem of finding the convex envelope of a function is equiv-



alent to the problem of computing its Legendre-Fenchel
bi-conjugate (Rockafellar, 1997; Falk, 1969), which is in
general as hard as optimizing f . Despite this result, we
show that for a class of smooth (non-convex) functions, it
is possible to accurately and efficiently estimate the convex
envelope from a set of function evaluations.

The main idea behind our approach, Convex Relaxation Re-
gression (CoRR), is to estimate the convex envelope of f
and then optimize the resulting empirical convex envelope.
We do this by solving a constrained `1 regression problem
which estimates the convex envelope by a linear combina-
tion of a set of convex functions (basis vectors). As our
approach only requires samples from the function, it can
be used to solve optimization problems where gradient in-
formation is unknown. Whereas most methods for global
optimization rely on local search strategies which find a
new search direction to explore, CoRR takes a global per-
spective: it aims to form a global estimate of the function to
“fill in the gaps” between samples. Thus CoRR provides an
efficient strategy for global minimization through the use of
convex optimization tools.

One of the main theoretical contributions of this work is
the development of guarantees that CoRR can find accurate
convex relaxations for a broad class of non-convex func-
tions (Sec. 4). We prove in Thm. 1 that with probability
greater than 1−δ, we can approximate the global minimizer
with error of O

(( log(1/δ)
T

)α)
, where T is the number of

function evaluations and α > 0 depends upon the exponent
of the Hölder-continuity bound on f(x) − f∗. This result
assumes that the true convex envelope lies in the function
class used to form a convex approximation. In Thm. 2, we
extend this result for the case where the convex envelope is
in the proximity of this set of functions. Our results may
also translated to a bound with polynomial dependence on
the dimension (Sec. 4.2.4).

The main contributions of this work are as follows. We in-
troduce CoRR, a method for black-box optimization that
learns a convex relaxation of a function from a set of ran-
dom function evaluations (Sec. 3). Following this, we pro-
vide performance guarantees which show that as the num-
ber of function evaluations T grows, the error decreases
polynomially in T (Sec. 4). In Thm. 1 we provide a gen-
eral result for the case where the true convex envelope fc
lies in the function class H and extend this result to the
approximate setting where fc /∈ H in Thm. 2. Finally, we
study the performance of CoRR on several multi-modal test
functions and compare it with a number of widely used ap-
proaches for global optimization (Sec. 5). These results
suggest that CoRR can accurately find a tight convex lower
bound for a wide class of non-convex functions.

2 Problem Setup

We now introduce relevant notation, setup our problem,
and then provide background on global optimization of
non-convex functions.

2.1 Preliminaries

Let n be a positive integer. For every x ∈ Rn, its `2-norm
is denoted by ‖x‖, where ‖x‖2 := 〈x, x〉 and 〈x, y〉 de-
notes the inner product between two vectors x ∈ Rn and
y ∈ Rn. We denote the `2 metric by d2 and the set of `2-
normed bounded vectors in Rn by B(Rn), where for every
x ∈ B(Rn) we assume that there exists some finite scalar
C such that ‖x‖ < C. Let (X , d) be a metric space, where
X ∈ B(Rn) is a convex set of bounded vectors and d(., x)
is convex w.r.t. its first argument for every x ∈ B(Rn).1 We
denote the set of all bounded functions on X by B(X ,R),
such that for every f ∈ B(X ,R) and x ∈ X there exists
some finite scalar C > 0 such that |f(x)| ≤ C. Finally,
we denote the set of all convex bounded functions on X
by C(X ,R) ⊂ B(X ,R). Also for every Y ⊆ B(Rn), we
denote the convex hull of Y by conv(Y). Let B(x0, r) de-
note an open ball of radius r centered at x0. Let 1 denote a
vector of ones.

The convex envelope of function f : X → R is denoted
by fc : X → R. Let H̃ be the set of all convex functions
defined over X such that h(x) ≤ f(x) for all x ∈ X . The
function fc is the convex envelope of f if for every x ∈
X (a) fc(x) ≤ f(x), (b) for every h ∈ H̃ the inequality
h(x) ≤ fc(x) holds. Convex envelopes are also related
to the concepts of the convex hull and the epigraph of a
function. For every function f : X → R the epigraph
is defined as epif = {(ξ, x) : ξ ≥ f(x), x ∈ X}. One
can then show that the convex envelope of f is obtained by
fc(x) = inf{ξ : (ξ, x) ∈ conv(epif)}, ∀x ∈ X .

In the sequel, we will generate a set of function evaluations
from f by evaluating the function over i.i.d. samples from
ρ, where ρ denotes a probability distribution onX such that
ρ(x) > 0 for all x ∈ X . In addition, we approximate the
convex envelope using a function class H that contains a
set of convex functions h(·; θ) ∈ H parametrized by θ ∈
Θ ⊆ B(Rp). We also assume that every h ∈ H can be
expressed as a linear combination of a set of basis φ : X →
B(Rp), that is, h(x; θ) = 〈θ, φ(x)〉 for every h(·; θ) ∈ H
and x ∈ X .

2.2 Black-box Global Optimization Setting

We consider a black-box (zero-order) global optimization
setting, where we assume that we do not have access to

1This also implies that d(x, .) is convex w.r.t. its second ar-
gument argument for every x ∈ B(Rn) due to the fact that the
metric d by definition is symmetric.



information about the gradient of the function that we want
to optimize. More formally, let F ⊆ B(X ,R) be a class
of bounded functions, where the image of every f ∈ F
is bounded by R and X is a convex set. We consider the
problem of finding the global minimum of the function f ,

f∗ := min
x∈X

f(x). (1)

We denote the set of minimizers of f by X ∗f ⊆ X .

In the black-box setting, the optimizer has only access to
the inputs and outputs of the function f . In this case, we
assume that our optimization algorithm is provided with
a set of input points X̂ = {x1, x2, . . . , xT } in X and a
sequence of outputs [f ]X̂ = {f(x1), f(x2), . . . , f(xT )}.
Based upon this information, the goal is to find an estimate
x̂ ∈ X , such that the error f(x̂) − f∗ becomes as small as
possible.

2.3 Methods for Black-box Optimization

Standard tools that are used in convex optimization, cannot
be readily applied to solve non-convex problems as they
only converge to local minimizers of the function. Thus, ef-
fective global optimization approaches must have a mech-
anism to avoid getting trapped in local minima. In low-
dimensional settings, performing an exhaustive grid search
or drawing random samples from the function can be suffi-
cient (Bergstra and Bengio, 2012). However, as the dimen-
sion grows, smarter methods for searching for the global
minimizer are required.

Non-adaptive search strategies. A wide range of global
optimization methods are build upon the idea of iteratively
creating a deterministic set (pattern) of points at each it-
eration, evaluating the function over all points in the set,
and selecting the point with the minimum value as the next
seed for the following iteration (Hooke and Jeeves, 1961;
Lewis and Torczon, 1999). Deterministic pattern search
strategies can be extended by introducing some random-
ness into the pattern generation step. For instance, simu-
lated annealing (Kirkpatrick et al., 1983) (SA) and genetic
algorithms (Bäck, 1996) both use randomized search direc-
tions to determine the next place that they will search. The
idea behind introducing some noise into the pattern, is that
the method can jump out of local minima that determinis-
tic pattern search methods can get stuck in. While many of
these search methods work well in low dimensions, as the
dimension of problem grows, these algorithms often be-
come extremely slow due to the curse of dimensionality.

Adaptive and model-based search. In higher dimen-
sions, adaptive and model-based search strategies can be
used to further steer the optimizer in good search direc-
tions (Mockus et al., 1978; Hutter, 2009). For instance,
recent results in Sequential Model-Based Global Optimiza-
tion (SMBO) have shown that Gaussian processes are use-
ful priors for global optimization (Mockus et al., 1978;

Bergstra et al., 2011). In these settings, each search direc-
tion is driven by a model (Gaussian process) and updated
based upon the local structure of the function. These tech-
niques, while useful in low-dimension problems, become
inefficient in high-dimensional settings.

Hierarchical search methods take a different approach in
exploiting the structure of the data to find the global mini-
mizer (Munos, 2014; Bubeck et al., 2011; Azar et al., 2014;
Munos, 2011). The idea behind hierarchical search meth-
ods is to identify regions of the space with small func-
tion evaluations to sample further (exploitation), as well as
generate new samples in unexplored regions (exploration).
One can show that it is possible to find the global optimum
with a finite number of function evaluations using hierar-
chical search; however, the number of samples needed to
achieve a small error increases exponentially with the di-
mension. For this reason, hierarchical search methods are
often not efficient for high-dimensional problems.

Graduated optimization. Graduated optimization meth-
ods (Blake and Zisserman, 1987; Yuille, 1989), are another
class of methods for non-convex optimization which have
received much attention in recent years (Chapelle and Wu,
2010; Dvijotham et al., 2014; Hazan et al., 2015; Mobahi
and III, 2015). These methods work by locally smooth-
ing the problem, descending along this smoothed objective,
and then gradually sharpening the resolution to hone in on
the true global minimizer. Recently Hazan et al. (2015)
introduced a graduated optimization approach that can be
applied in the black-box optimization setting. In this case,
they prove that for a class of functions referred to as σ-
nice functions, their approach is guaranteed to converge to
an ε-accurate estimate of the global minimizer at a rate of
O(n2/ε4). To the best of our knowledge, this result repre-
sents the state-of-the-art in terms of theoretical results for
global black-box optimization.

3 Algorithm

In this section, we introduce Convex Relaxation Regression
(CoRR), a black-box optimization approach for global min-
imization of a bounded function f .

3.1 Overview

The main idea behind our approach is to estimate the con-
vex envelope fc of a function and minimize this surrogate
in place of our original function. The following result guar-
antees that the minimizer of f coincides with the minimizer
of fc.

Proposition 1 (Kleibohm 1967). Let fc be the convex en-
velope of f : X → R. Then (a) minx∈X fc(x) = f∗ and
(b) X ∗f ⊆ X ∗fc .

This result suggests that one can find the minimizer of f by



optimizing its convex envelope. Unfortunately, finding the
exact convex envelope of a function is difficult in general.
However, we will show that, for a certain class of functions,
it is possible to estimate the convex envelope accurately
from a set of function evaluations. Our aim is to estimate
the convex envelope by fitting a convex function to these
function evaluations.

The idea of fitting a convex approximation to samples from
f is quite simple and intuitive. However, the best uncon-
strained convex fit to f does not necessarily coincide with
fc. Determining whether there exists a set of convex con-
straints under which the best convex fit to f coincides with
fc is an open problem. The following lemma, which is key
to efficient optimization of f with CoRR, provides a solu-
tion. This lemma transforms our original non-convex opti-
mization problem to a least-absolute-error regression prob-
lem with a convex constraint, which can be solved using
convex optimization tools.
Lemma 1. Let every h ∈ H and f be λ-Lipschitz for some
λ > 0. Let L(θ) = E[|h(x; θ) − f(x)|] be the expected
loss, where the expectation is taken with respect to the dis-
tribution ρ. Assume that there exists Θc ⊆ Θ such that for
every θ ∈ Θc, h(x; θ) = fc(x) for all x ∈ X . Consider the
following optimization problem:

θµ = arg min
θ∈Θ

L(θ) s.t. E[h(x; θ)] = µ. (2)

Then there exists a scalar µ ∈ [−R,R] for which θc ∈ Θc.
In particular, θc ∈ Θc when µ = E(fc(x)).

The formal proof of this lemma is provided in the Supp.
Materials. We prove this lemma by showing that for ev-
ery θ ∈ Θ where E[h(x; θ)] = E[fc(x)], and for every
θc ∈ Θc, the loss L(θ) ≥ L(θc). Equality is attained only
when θ ∈ Θc. Thus, fc is the only minimizer of L(θ) that
satisfies the constraint E[h(x; θ)] = E[fc(x)].

Optimizing µ. Lem. 1 implies that, for a certain choice of
µ, Eqn. 2 provides us with the convex envelope fc. How-
ever, finding the exact value of µ for which this result holds
is difficult, as it requires knowledge of the envelope not
available to the learner. Here we use an alternative ap-
proach to find µ which guarantees that the optimizer of
h(·; θµ) lies in the set of true optimizers X ∗f . Let xµ denote
the minimizer of h(·; θµ). We find a µ which minimizes
f(xµ):

µ∗ = arg min
µ∈[−R,R]

f(xµ). (3)

Interestingly, one can show that xµ∗ lies in the set X ∗f . To
prove this, we use the fact that the minimizers of the convex
envelope fc and f coincide.This implies that f(xµc) = f∗,
where µc := E(fc(x)). It then follows that f∗ = f(xµc) ≥
minµ∈[−R,R] f(xµ) = f(xµ∗). This combined with the
fact that f∗ is the minimizer of f implies that f(xµ∗) = f∗

and thus xµ∗ ∈ X ∗.

3.2 Optimization Protocol

We now describe how we use the ideas presented in Sec. 3.1
to implement CoRR (see Alg. 1 for pseudocode). Our ap-
proach for black-box optimization requires two main ingre-
dients: (1) samples from the function f and (2) a function
class H from which we can form a convex approximation
h. In practice, CoRR is initialized by first drawing two sets
of T samples X̂1 and X̂2 from the domain X ⊆ B(Rn)
and evaluating f over both of these sets. With these sets
of function evaluations (samples) and a function class H
in hand, our aim is to learn an approximation h(x; θ) to
the convex envelope of f . Thus for a fixed value of µ, we
solve the following constrained optimization problem (see
the OPT procedure in Alg. 1):

θ̂c = arg min
θ∈Θ

Ê1

[
|h(x; θ)− f(x)|

]
s.t. Ê2

[
h(x; θ)

]
= µ,

(4)
where the empirical expectation Êi[g(x)] :=
1/T

∑
x∈X̂i

g(x), for every g ∈ B(X ,R) and i ∈ {1, 2}.
We provide pseudocode for optimizing Eqn. 4 in the OPT
procedure of Alg. 1.

The optimization problem of Eqn. 4 is an empirical approx-
imation of the optimization problem in Eqn. 2. However,
unlike Eqn. 2, in which L(θ) is not easy to evaluate and op-
timize, the empirical loss can be optimized efficiently using
standard convex optimization techniques. In addition, one
can establish bounds on the error |L(θ̂c)− L(θc)| in terms
of the sample size T using standard results from the liter-
ature on stochastic convex optimization (see, e.g., Thm. 1
in Shalev-Shwartz et al., 2009). Optimizing the empirical
loss provides us with an accurate estimate of the convex
envelope as the number of function evaluations increases.

The search for the best µ (Step 2 in Alg. 1) can be done
by solving Eqn. 3. As µ is a scalar with known upper
and lower bounds, we can employ a number of hyper-
parameter search algorithms (Munos, 2011; Bergstra et al.,
2011) to solve this 1D optimization problem. These algo-
rithms guarantee fast convergence to the global minimizer
in low dimensions and thus can be used to efficiently search
for the solution to Eqn. 3. Let µ̂ denote the final estimate
of µ obtained in Step 2 of Alg. 1 and let h(·; θµ̂) denote our
final convex approximation to fc. The final solution x̂µ̂ is
then obtained by optimizing h(·; θµ̂) (Step 2 of OPT).

To provide further insight into how CoRR works, we point
the reader to Fig. 1. Here, we show examples of the convex
surrogate obtained by OPT for different values of µ. We ob-
serve that as we vary µ, the minimum error is attained for
µ ≈ 0.47. However, when we analytically compute the em-
pirical expectation of convex envelope (Ê2[fc(x)] = 0.33)
and use this value for µ, this produces a larger function
evaluation. This may seem surprising, as we know that if
we set µ = E(fc(x)), then the solution of Eqn. 2 should
provide us the exact convex envelope with the same opti-



Algorithm 1 Convex Relaxation Regression (CoRR)
Input: A black-box function f which returns a sample

f(x) when evaluated at a point x. The number of sam-
ples N to draw from f . A class H ⊆ B(X ,R) of con-
vex functions in X (parametrized by θ), a scalar R for
which ‖f‖∞ ≤ R, a sampling distribution ρ supported
over X .

1: Random function evaluations. Draw 2N i.i.d. sam-
ples according to the distribution ρ and partition them
into two sets, X̂ = {X̂1, X̂2}. Generate samples [f ]X̂1

and [f ]X̂2
, where [f ]X̂i

= {f(x) : x ∈ X̂i}, i =
{1, 2}}. Denote [f ]X̂ = {[f ]X̂1

, [f ]X̂2
}

2: Optimize for µ. Solve the 1D optimization problem

µ̂ = arg min
µ∈[−R,R]

f(OPT(µ, [f ]X̂ )),

Output: x̂µ̂ =OPT(µ̂, [f ]X̂ ) .

Procedure OPT(µ, [f ]X̂ )
1: Estimate the convex envelope. Estimate f̂c =
h(·; θ̂µ) by solving Eqn. 4.

2: Optimize the empirical convex envelope. Find an
optimizer x̂µ for f̂c by solving

x̂µ = min
x∈X

f̂c(x),

return x̂µ

mizer as f . This discrepancy can be explained by the ap-
proximation error introduced through solving the empirical
version of Eqn. 2. This figure also highlights the stability
of our approach for different values of µ. Our results sug-
gest that our method is robust to the choice of µ, as a wide
range of values of µ produce minimizers close to the true
global minimum. Thus CoRR provides an accurate and ro-
bust approach for finding the global optimizer of f .

4 Theoretical Results

In this section, we provide our main theoretical results. We
show that as the number of function evaluations T grows,
the solution of CoRR converges to the global minimum of
f with a polynomial rate. We also discuss the scalability of
our result to high-dimensional settings.

4.1 Assumptions

We begin by introducing the assumptions required to state
our results. The first assumption provides the necessary
constraint on the candidate function class H and the set of
all points in X that are minimizers for the function f .

Assumption 1 (Convexity). Let X ∗f denote the set of min-
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Figure 1: Estimating the convex envelope of f with CoRR.
Here we demonstrate how CoRR learns a convex envelope
by solving Eqn. 3. Along the top, we plot the test func-
tion fS2

(see Sec. 5) and examples of the convex surro-
gates obtained for different values of µ. From left to right,
we display the surrogate obtained for: an underestimate
of µ, the empirical estimate of the convex envelope where
µ ≈ Ê2[fc(x)], the result obtained by CoRR, and an over-
estimate of µ. Below, we display the value of the function
fS2

as we vary µ (solid blue).

imizers of f . We assume that the following three convexity
assumptions hold with regard to every h(·; θ) ∈ H andX ∗f :
(a) h(x; θ) is a convex function for all x ∈ X , (b) h is a
affine function of θ ∈ Θ for all x ∈ X , and (c) X ∗f is a
convex set.

Remark. Assumption 1c does not impose convexity on the
function f . Rather, it requires that the set X ∗f is convex.
This is needed to guarantee that both fc and f have the
same minimizers (see Prop. 1). Assumption 1c holds for
a large class of non-convex functions. For instance, every
continuous function with a unique minimizer satisfies this
assumption (see, e.g., our example functions in Sect. 5).

Assumption 2 establishes the necessary smoothness as-
sumption on the function f and the function classH.
Assumption 2 (Lipschitz continuity). We assume that f
and h are Lipschitz continuous. That is for every (x1, x2) ∈
X 2 we have that |f(x1) − f(x2)| ≤ d(x1, x2). Also for
every x ∈ X and (θ1, θ2) ∈ Θ2 we have that |h(x; θ1) −
h(x; θ2)| ≤ Ud2(θ1, θ2). We also assume that every h ∈ H
is λ-Lipschitz on X w.r.t. the metric d for some λ > 0.

We show that the optimization problem of Eqn. 1 provides
us with the convex envelope fc when the candidate classH
contains fc (see Lem. 1). The following assumption for-
malizes this condition.
Assumption 3 (Capacity of H). We assume that fc ∈ H,
that is, there exist some h ∈ H and Θ ⊆ Θc such that



h(x; θ) = fc(x) for every x ∈ X and θ ∈ Θc.

We also require that the following Hölder-type error
bounds hold for the distances of our empirical estimates
x̂ and θ̂ from X ∗f and Θc, respectively.
Assumption 4 (Hölder-type error bounds). Let Θe :=
{θ|θ ∈ Θ,E(h(x; θ)) = fc(x)}. Also denote L∗ :=
minθ∈Θe L(θ). We assume that there exists some finite pos-
itive scalars γ1, γ2, β1 and β2 such that for every x ∈ X
and θ ∈ Θe: (a) f(x) − f∗ ≥ γ1d(x,X ∗f )1/β1 . (b)
L(θ)− L∗ ≥ γ2d2(θ,Θc)

1/β2 .

Assumption 4 implies that whenever the error terms f(x)−
f∗ and L(θ) − L∗ are small, the distances d(x,X ∗f ) and
d2(θ,Θc) are small as well. To see why Assumption 4 is
required for the analysis of CoRR, we note that the com-
bination of Assumption 4 with Assumption 2 leads to the
following local bi-Hölder inequalities for every x ∈ X and
θ ∈ Θe:

γ1d(x,X ∗f )1/β1 ≤ f(x)− f∗ ≤ d(x,X ∗f )

γ2d2(θ,Θc)
1/β2 ≤ L(θ)− L∗ ≤ Ud2(θ,Θc)

(5)

These inequalities determine the behavior of function f and
L around their minimums as they establish upper and lower
bounds on the errors f(x) − f∗ and L(θ) − L∗. Essen-
tially, Eqn. 5 implies that there is a direct relationship be-
tween d(x,X ∗f ) (d2(θ,Θc)) and f(x)−f∗ (L(θ)−L(Θc)).
Thus, bounds on d(x,X ∗f ) and d2(θ,Θc), respectively, im-
ply bounds on f(x)−f∗ and L(θ)−L(Θc) and vice versa.
These bi-directional bounds are needed due to the fact that
CoRR doest not directly optimize the function. Instead it
optimizes the surrogate loss L(θ) to find the convex enve-
lope and then it optimizes this empirical convex envelope to
estimate the global minima. This implies that the standard
result of optimization theory can only be applied to bound
the error L(θ̂) − L∗. The inequalities of Eqn. 5 are then
required to convert the bound on L(θ̂) − L∗ to a bound
on f(x̂µ̂) − f∗, which ensures that the solution of CoRR
converges to a global minimum as L(θ̂)− L∗ → 0.

It is noteworthy that global error bounds such as those in
Assumption 4 have been extensively analyzed in the litera-
ture of approximation theory and variational analysis (see,
e.g., Azé, 2003; Corvellec and Motreanu, 2008; Azé and
Corvellec, 2004; Fabian et al., 2010). Much of this body
of work can be applied to study convex functions such as
L(θ), where one can make use of the basic properties of
convex functions to prove lower bounds on L(θ) − L∗ in
terms of the distance between θ and Θc (see, e.g., Thm.
1.16 in Azé, 2003). While these results are useful to fur-
ther study the class of functions that satisfy Assumption 4,
providing a direct link between these results and the error
bounds of Assumption 4 is outside the scope of this paper.

Assumptions 3-4 can not be applied directly when fc /∈ H.
When fc /∈ H, we make use of the following generalized

version of these assumptions. We first consider a relaxed
version of Assumption 3, which assumes that fc can be
approximated by some h ∈ H.

Assumption 5 (υ-approachability of fc by H). Let υ be
a positive scalar. Define the distance between the func-
tion classH and fc as dist(fc,H) := infh∈H E[|h(x; θ)−
fc(x)|], where the expectation is taken w.r.t. the distribu-
tion ρ. We then assume that the following inequality holds:
dist(fc,H) ≤ υ.

The next assumption generalizes Assumption 4b to the case
where fc /∈ H:

Assumption 6. Let p̃ be a positive scalar. Assume that
there exists a class of convex functions H̃ ⊆ C(X ,R)

parametrized by θ ∈ Θ̃ ⊂ B(Rp̃) such that: (a) fc ∈ H̃,
(b) every h ∈ H̃ is linear in θ and (c)H ⊆ H̃. Let Θc ⊆ Θ̃
be the set of parameters for which h(x; θ) = fc(x) for
every x ∈ X and θ ∈ Θc. Also define Θ̃e := {θ|θ ∈
Θ̃,E(h(x; θ)) = fc(x)}. We assume that there exists some
finite positive scalars γ2 and β2 such that for every x ∈ X
and θ ∈ Θ̃e

L(θ)− L∗ ≥ γ2d2(θ, Θ̃c)
1/β2 .

Intuitively speaking, Assumption 6 implies that the func-
tion class H is a subset of a larger unknown function class
H̃ which satisfies the global error bound of Assumption 4b.
Note that we do not require access to the class H̃, but we
need that such a function class exists.

4.2 Performance Guarantees

We now present the two main theoretical results of our
work and provide sketches of their proofs (the complete
proofs of our results is provided in the Supp. Material).

4.2.1 Exact Setting

Our first result considers the case where the convex enve-
lope fc ∈ H. In this case, we can guarantee that as the
number of function evaluations grows, the solution of Alg.
1 converges to the optimal solution with a polynomial rate.

Theorem 1. Let δ be a positive scalar. Let Assumptions 1,
2 ,3, and 4 hold. Then Alg. 1 returns x̂ such that with prob-
ability 1− δ

f(x̂)− f∗ = O

[
ξs

(
log(1/δ)

T

)β1β2/2
]
,

where the smoothness coefficient ξs :=
( 1
γ1

)β2( 1
γ2

)β1β2U (1+β2)β1(RB)β2β1 .

Sketch of proof. To prove this result, we first prove bound
on the error L(θ̂) − minθ∈Θe

L(θ) for which we rely on



standard results from stochastic convex optimization. This
combined with the result of Lem. 1 leads to a bound on
L(θ̂) − L∗. The bound on L(θ̂) − L∗ combined with As-
sumption 4 translates to a bound on d(x̂,X ∗f ). The result
then follows by applying the Lipschitz continuity assump-
tion (Assumption 2). �

Thm. 1 guarantees that as the number of function evalua-
tions T grows, the solution of CoRR converges to f∗ with
a polynomial rate. The order of polynomial depends on the
constants β1 and β2. The following corollary, which is an
immediate result of Thm. 1, quantifies the number of func-
tion evaluations T needed to achieve an ε-optimal solution.
Corollary 1. Let Assumptions 1, 2, 3, and 4 hold. Let ε
and δ be some positive scalars. Then Alg. 1 needs T =
( ξsε )2/(β1β2) log(1/δ) function evaluations to return x̂ such
that with probability 1− δ, f(x̂)− f∗ ≤ ε.

This result implies that one can achieve an ε-accurate ap-
proximation of the global optimizer with CoRR with a
polynomial number of function evaluations.

4.2.2 Approximate Setting

Thm. 1 relies on the assumption that the convex envelope
fc lies in the function class H. However, in general, there
is no guarantee that fc belongs to H. When the convex
envelope fc /∈ H, the result of Thm. 1 cannot be applied.
However, one may expect that Alg. 1 still may find a close
approximation of the global minimum as long as the dis-
tance between fc and H is small. To prove that CoRR
finds a near optimal solution in this case, we must show
that f(x̂) − f∗ remains small when the distance between
fc andH is small. We now generalize Thm. 1 to the setting
where the convex envelope fc does not lie inH but is close
to it.
Theorem 2. Let Assumptions 1, 2, 5, and 6 hold. Then
Alg. 1 returns x̂ such that for every ζ > 0 with probability
(w.p.) 1− δ

f(x̂)− f∗ = O

ξs(√ log(1/δ)

T
+ ζ + υ

)β1β2
 .

Sketch of proof. To prove this result, we rely on standard
results from stochastic convex optimization to first prove a
bound on the error L(θ̂)−minθ∈Θe L(θ) when we set µ the
empirical mean of the convex envelope. We then make use
of Assumption 5 as well as Lem. 1 to transform this bound
to a bound on L(θ̂) − L∗. The bound on f(x̂) − f∗ then
follows by combining this result with Assumptions 2 and
6. �

4.2.3 Approximation Error υ vs. Complexity ofH

From function approximation theory, it is known that for
a sufficiently smooth function g, one can achieve an υ-

accurate approximation of g by a linear combination of
p = O(n/υ) bases (Mhaskar, 1996; Girosi and Anzellotti,
1992). These results imply that one can make the error
υ in Thm. 2 arbitrary small by increasing the complexity
of function class H (i.e., increasing the number of convex
bases p). Similar shape preserving results have been es-
tablished for the case when the function and bases are both
convex (see, e.g., Gal, 2010; Konovalový et al., 2010; Shve-
dov, 1981) under some mild assumptions on g. In particu-
lar, Konovalový et al. (2010) have proven that for a rather
general class ofH, the approximation error between a con-
vex function g and classH, can be bounded in terms of the
approximation error between g and H when no convexity
constraint is imposed on H. This implies that existing re-
sults in the approximation theory literature can be used to
bound the approximation error υ in terms of the complexity
of function classH.

4.2.4 Dependence on Dimension

The results of Thm. 1 and Thm. 2 have no explicit depen-
dence on the dimension n. However, the Lipschitz con-
stant U can, in the worst-case scenario, be of O(

√
p) (due

to the Cauchy-Schwarz inequality). On the other hand to
achieve an approximation error of υ the number of bases p
needs be of O(n/υ) (see Sect. 4.2.3). When we plug this
result in the bound of Thm. 2, this leads to a dependency
ofO(n(1+β2)β1/2) on the dimension n due to the Lipschitz
constant U . In the special case where β2 = β1 = 1, i.e.,
when the error bounds of Assumption 4 are linear, the de-
pendency on n becomes linear. The linear dependency on
n in this case matches the results of the black-box (zero-
order) convex optimization (see, e.g., Duchi et al., 2015).

5 Numerical Results

In this section, we evaluate the performance of CoRR on
several multi-dimensional test functions used for bench-
marking non-convex optimization methods (Jamil and
Yang, 2013).

Evaluation setup. Here we study CoRR’s effectiveness
in finding the global minimizer of the following test func-
tions (Fig. 2a). We assume that all functions are supported
over X = B(0, 2) ⊆ Rn, and otherwise rescale them to
lie within this set. (S1) Salomon function: fS(x) = 1 −
cos(2π‖x‖) + 0.5‖x‖. (S2) Squared Salomon: fS2(x) =
0.1fS(x)2. (SL) Salomon and Langerman combination:
fSL(x) = fS(x) + fL(x) ∀x ∈ B(0, 10) ∩ B(0, 0.2)
and fSL(x) = 0, otherwise (before rescaling the do-
main). (L) Langerman function: fL(x) = − exp(‖x −
α‖22/π) cos(π‖x− α‖22) + 1, ∀x ∈ B(0, 5) (before rescal-
ing the domain). (G) The Griewank function: fG(x) =

0.1
[
1 + 1

4000

∑N
i=1 x(i)2 −

∏N
i=1

cos(x)√
i

]
, ∀x ∈ B(0, 200)

(before rescaling the domain). All of these functions have
their minimum at the origin, except for the Langerman



function which has its minimum at x∗ = c1 for c = 0.5.

All of the aforementioned functions exhibit some amount
of global structure for which the convex envelope can be
approximated by a quadratic basis (Fig. 2a). We thus use
a quadratic basis to construct our function class H. The
basis functions h(x; θ) ∈ H are parameterized by a vec-
tor of coefficients θ = [θ1, θ2, θ3], and can be written as
h(x; θ) = 〈θ1, x

2〉 + 〈θ2, x〉 + θ3. Thus, the number of
parameters that we must estimate to find a convex approx-
imation h equals 2n + 1 (we drop the cross terms in our
construction of the quadratic class ). In practice, we im-
pose a non-negativity constraint on all entries of the vector
θ1 to ensure that our approximation is convex.

Summary of results. To understand the difficulty of find-
ing the minimizers for the test functions above, we compute
the error f(x̂)− f∗ as we increase the number of function
evaluations. Here, we show each of our five test functions
(Fig. 2a) and their average scaling behavior in one dimen-
sion (Fig. 2b), where the error is averaged over 100 trials.
We observe that CoRR quickly converges for all five test
functions, with varying convergence rates. We observe the
smallest initial error (for only 20 samples) for fSL and the
highest error for fS . In addition, fL achieves nearly perfect
reconstruction of the global minimum after only 200 sam-
ples. The good scaling properties of fL and fSL is likely
due the the fact that both of these functions have a wide
basin around their global minimizer. This result provides
nice insight into the scaling of CoRR in low dimensions.

Next, we study the approximation error as we vary the sam-
ple size and dimension for the Salomon function fS (Fig.
2c-d). Just as our theory suggests, there is a clear depen-
dence between the dimension and number of samples re-
quired to obtain small error. In Fig. 2c, we display the
scaling behavior of CoRR as a function of both dimension
and number of function evaluations T . In all of the tested
dimensions, we obtain an error smaller than 1e−5 when
we draw one million samples. In Fig. 2d, we compare the
performance of CoRR (for fixed number of evaluations T )
as we vary the dimension. In contrast, the quasi-Newton
(QN) method and hybrid simulated annealing (SA) method
(Hedar and Fukushima, 2004) recover the global minimizer
for low dimensions but fail in dimensions greater than ten.2

We posit that this is due to the fact the minimizer of the
Salomon function lies at the center of its domain and as
the dimension of the problem grows, drawing an initializa-
tion point (for QN) that is close to the global minimizer
becomes extremely difficult.

2These methods are selected from a long list of candidates in
MATLAB’s global optimization toolbox. We report results for the
methods that gave the best results for our test functions.

6 Discussion and Future Work

This paper introduced CoRR, an approach for learning a
convex relaxation for a wide class of non-convex func-
tions. The idea behind CoRR is to find an empirical es-
timate of the convex envelope of a function from a set of
function evaluations. We demonstrate that CoRR is an effi-
cient strategy for global optimization, both in theory and
in practice. In particular, we provide theoretical results
(Sec. 4) which show that CoRR is guaranteed to produce
a convergent estimate of the convex envelope that exhibits
polynomial dependence on the dimension. In numerical
experiments (Sec. 5), we showed that CoRR provides ac-
curate approximations to the global minimizer of multiple
test functions and appears to scale well with dimension.

Our current instantiation of CoRR finds a convex surrogate
for f based upon a set of samples that are drawn at random
at the onset of the algorithm. In our evaluations, we draw
i.i.d. samples from a uniform distribution over X . How-
ever, the choice of the sampling distribution ρ has a signif-
icant impact on our estimation procedure. As such, select-
ing samples in an intelligent manner would significantly re-
duce the number of samples required to obtain an accurate
estimate. A natural extension of CoRR is to the case where
we can iteratively refine our distribution ρ based upon the
output of the algorithm at previous steps.

An important factor in the success of our algorithm is the
basis that we use to form our approximation. As discussed
in Sec. 4.2.3, we know that a polynomial basis can be used
to form a convex approximation to any convex function
(Gal, 2010). However, finding a concise representation of
the convex envelope using high-degree polynomials is not
an easy task. Thus finding other well-suited bases for this
approximation, such as the exponential basis, may improve
the efficiency of CoRR by reducing the number of bases re-
quired. While outside the scope of this paper, exploring the
use of constrained dictionary learning methods (Yaghoobi
et al., 2009) for finding a good basis for our fitting proce-
dure, is an interesting line for future work.

In our experiments, we observe that CoRR typically pro-
vides a good approximation to the global minimizer. How-
ever, in most cases, we do not obtain machine precision
(like QN for low dimensions). Thus, we can combine
CoRR with a local search method like QN by using the
solution of CoRR as an initialization point for the local
search. When using this hybrid approach, we obtain per-
fect reconstruction of the global minimum for the Salomon
function for all of the dimensions we tested (Fig. 2d). This
suggests that, as long the function does not fluctuate too
rapidly around its global minimum (Asm. 2), CoRR can be
coupled with other local search methods to quickly con-
verge to the absolute global minimizer.

The key innovation behind CoRR is that one can efficiently
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Figure 2: Scaling behavior and performance of CoRR. Along the top row in (a), we plot all five test functions studied in
this paper. In (b), we display the mean approximation error between f(x̂) − f∗ as a function of the number of function
evaluations T for all test functions in 1D. In (c), we display the mean approximation error as a function of the dimension
and number of samples for the Salomon function. In (d), we compare CoRR’s approximation error with other approaches
for non-convex optimization, as we vary the dimension.

approximate the convex envelope of a non-convex func-
tion by solving a constrained regression problem which
balances the approximation error with a constraint on the
empirical expectation of the estimated convex surrogate.
While our method could be improved by using a smart and
adaptive sampling strategy, this paper provides a new way
of thinking about how to relax non-convex problems. As
such, our approach opens up the possibility of using the
myriad of existing tools and solvers for convex optimiza-
tion problems to efficiently solve non-convex problems.
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Konovalový, V., Kopotun, K., and Maiorov, V. (2010).
Convex polynomial and ridge approximation of Lips-
chitz functions in Rd. Rocky Mountains Journal of
Mathematics, 40(3).

Lewis, R. M. and Torczon, V. (1999). Pattern search al-
gorithms for bound constrained minimization. SIAM J
Optimiz, 9(4):1082–1099.

Mhaskar, H. (1996). Neural networks for optimal approx-
imation of smooth and analytic functions. Neural Com-
put, 8(1):164–177.

Mobahi, H. and III, J. W. F. (2015). A theoretical analysis
of the optimization by gaussian continuation. In AAAI.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The appli-
cation of bayesian methods for seeking the extremum.
Towards global optimization, 2(117-129):2.

Munos, R. (2011). Optimistic optimization of deterministic
functions without the knowledge of its smoothness. In
NIPS.

Munos, R. (2014). From bandits to monte-carlo tree search:
The optimistic principle applied to optimization and
planning. Foundations and Trends in Machine Learning,
7(1):1–129.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Review, 52(3):471–
501.

Rockafellar, R. T. (1997). Convex analysis. Princeton Uni-
versity Press.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understand-
ing machine learning: From theory to algorithms. Cam-
bridge University Press.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. (2009). Stochastic convex optimization. In COLT.

Shvedov, A. S. (1981). Orders of coapproximation of func-
tions by algebraic polynomials. Mathematical Notes,
29(1):63–70.

Sra, S., Nowozin, S., and Wright, S. J. (2012). Optimiza-
tion for machine learning. MIT Press.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. J R Stat Soc, pages 267–288.

Tropp, J. A. (2006). Algorithms for simultaneous sparse
approximation. Part II: Convex relaxation. Signal Pro-
cess, 86(3):589–602.

Yaghoobi, M., Blumensath, T., and Davies, M. E. (2009).
Dictionary learning for sparse approximations with the
majorization method. IEEE Trans. Signal Process.,
57(6):2178–2191.

Yuille, A. (1989). Energy functions for early vision and
analog networks. Biol Cybern, 61(2):115–123.


