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Abstract

Large-scale kernel ridge regression (KRR) is lim-
ited by the need to store a large kernel matrix Kt.
To avoid storing the entire matrix Kt, Nyström
methods subsample a subset of columns of the
kernel matrix, and efficiently find an approximate
KRR solution on the reconstructed K̃t. The cho-
sen subsampling distribution in turn affects the
statistical and computational tradeoffs. For KRR
problems, [16, 1] show that a sampling distri-
bution proportional to the ridge leverage scores
(RLSs) provides strong reconstruction guaran-
tees for K̃t. While exact RLSs are as difficult to
compute as a KRR solution, we may be able to
approximate them well enough. In this paper, we
study KRR problems in a sequential setting and
introduce the INK-ESTIMATE algorithm, that in-
crementally computes the RLSs estimates. INK-
ESTIMATE maintains a small sketch of Kt, that at
each step is used to compute an intermediate es-
timate of the RLSs. First, our sketch update does
not require access to previously seen columns,
and therefore a single pass over the kernel ma-
trix is sufficient. Second, the algorithm requires
a fixed, small space budget to run dependent only
on the effective dimension of the kernel matrix.
Finally, our sketch provides strong approxima-
tion guarantees on the distance ‖Kt− K̃t‖2, and
on the statistical risk of the approximate KRR
solution at any time, because all our guarantees
hold at any intermediate step.

1 INTRODUCTION

Kernel ridge regression [17, 18] (KRR) is a common non-
parametric regression method with well studied theoreti-
cal advantages. Its main drawback is that, for n samples,
storing and manipulating the kernel regression matrix Kn

requires O(n2) space, and can become quickly intractable

when n grows. This includes batch large scale KRR, and
online KRR, where the size of the dataset t grows over time
as new samples are added to the problem. For this purpose,
many different methods [23, 4, 10, 14, 11, 24] attempt to re-
duce the memory required to store the kernel matrix, while
still producing an accurate solution.

For the batch case, the Nyström family of algorithms ran-
domly selects a subset of m columns from the kernel ma-
trix Kn that are used to construct a low rank approximation
K̃t that requires only O(nm) space to store. The low-rank
matrix is then used to find an approximate solution to the
KRR problem. The quality of the approximate solution is
strongly affected by the sampling distribution and the num-
ber of columns selected [16]. For example, uniform sam-
pling is an approach with little computational overhead, but
does not work well for datasets with high coherence [7],
where the columns are weakly correlated. In particular,
Bach [2] shows that the number of columns m necessary
for a good approximation when sampling uniformly scales
linearly with the maximum degree of freedoms of the ker-
nel matrix. In linear regression, the notion of coherence is
strongly related to the definition of leverage points or lever-
age scores of the dataset [6], where points with high (statis-
tical) leverage score are more influential in the regression
problem. For KRR, Alaoui and Mahoney [1] introduce a
similar concept of ridge leverage scores (RLSs) of a square
matrix, and shows that Nyström approximations sampled
according to RLS have strong reconstruction guarantees of
the form ‖Kn − K̃n‖2, that translate into good guarantees
for the approximate KRR solution [1, 16]. Compared to
the uniform distribution, a distribution based on RLSs bet-
ter captures non-uniformities in the data, and can achieve
good approximations using only a number of columns m,
proportional to the average degrees of freedom of the ma-
trix, called the effective dimension of the problem. The dis-
advantage of RLSs compared to uniform sampling is the
high computational cost of exact RLSs, which is compa-
rable to solving KRR itself. Alaoui and Mahoney [1] re-
duces this problem by showing that a distribution based on
approximate RLSs can also provide the same strong guar-
antees, if the RLSs are approximated up to a constant er-



ror factor. They provide a fast method to compute these
RLSs, but, unlike our approach, requires multiple passes
over data. Another disadvantage of their approach, that we
address, is the inverse dependence on the minimal eigen-
value of the kernel matrix in the error bound of Alaoui and
Mahoney [1], which can be significant.

While Nyström methods are a typical choice in a batch set-
ting, online kernel sparsification (OKS) [4, 5] examines
each sample in the dataset sequentially. OKS maintains
a small dictionary of relevant samples. Whenever a new
sample arrive, if the dictionary is not able to accurately rep-
resent the new sample as a combination of the samples al-
ready stored, the dictionary is updated. This dictionary can
be used to approximate KRR incrementally. OKS decides
whether to include a sample using the correlation between
samples in the dictionary and the new sample. This can
measured using approximate linear dependency (ALD) [5],
coherence [15], or the surprise criterion [12].

Generalization properties of online kernel sparsification
were studied by Engel et al. [5], but depend on the em-
pirical error and are not compared with an exact KRR so-
lution on the whole dataset. Online kernel regression with
the ALD rule was analyzed by Sun et al. [19], under the as-
sumption that, asymptotically in n, the eigenvalues of the
kernel matrix decay exponentially fast. Sun et al. [19] show
that in this case the size of the dictionary grows sublinearly
in t, or in other words that, asymptotically in n, the dic-
tionary size converge to a fraction of n that will be small
whenever the eigenvalues decay fast enough. This space
guarantee is weaker than the fixed space requirements of
Nyström methods, one of the reasons is that these methods
(unlike ours) cannot remove a sample from the dictionary
after inclusion. Furthermore, Van Vaerenbergh et al. [22]
studies variants of online kernel regression with a forget-
ting factor for time-varying series, but these methods are
not well studied in the normal KRR setting. Unlike in the
batch setting, in the sequential setting we often require the
guarantees not only at the end but also in the intermediate
steps and this is our objective. Inspired by the advances
in the analyses of the Nyström methods, in this paper, we
focus on finding a space efficient algorithm capable of solv-
ing KRR problems in the sequential setting but that would
be also equipped with generalization guarantees.

Main contributions We propose the INK-ESTIMATE al-
gorithm that processes a datasetD of size n in a single pass.
It requires only a small, fixed space budget, q proportional
to the effective dimension of the problem and on the accu-
racy required. The algorithm maintains a Nyström approx-
imation K̃t, of the kernel matrix at time t, Kt, based on
RLSs estimates. At each step, it uses only the approxima-
tion and the newly received sample to incrementally update
the RLSs estimate, and to compute K̃t+1. Unlike in the
batch Nyström setting, our challenge is to track RLSs and

an effective dimension that changes over time. Sampling
distributions based on RLSs can become obsolete and bi-
ased, but we show how to update them over time without
necessity of accessing previously seen samples outside of
the ones contained in K̃t. Our space budget q scales with
the average degree of freedom of the matrix, and not the
larger maximum degree of freedom (as by Bach [2]), and
does not imposes assumptions on the ridge regularization
parameter, or on the smallest eigenvalue of the problem as
the result of Alaoui and Mahoney [1]. However, we provide
the same strong guarantees as batch RLSs based Nyström
methods on ‖Kn − K̃n‖2 and on the risk of the approxi-
mate KRR solution. In addition to batch Nyström methods,
all of these guarantees hold at any intermediate step t, and
therefore the algorithm can output accurate intermediate
solutions, or it can be interrupted at any time and return a
solution with guarantees. Finally, it operates in a sequential
setting, requiring only a single pass over the data.

If we compare INK-ESTIMATE to other online kernel re-
gression methods (such as OKS), our algorithm provides
generalization guarantees with respect to the exact KRR
solution. Furthermore, it provides a new criteria for in-
clusion of a sample in the dictionary, in particular the ridge
leverage scores. This criterion gives us a procedure that not
only randomly includes samples in the dictionary, but that
also randomly discards them to satisfy space constraints not
only asymptotically, but at every step.

2 BACKGROUND

In this section we introduce the notation used through the
paper and we introduce the kernel ridge regression prob-
lem [17] and Nyström approximation of the kernel matrix
with ridge leverage scores.

Notation. We use curly capital letters A for collections.
We use upper-case bold letters A for matrices, lower-case
bold letters a for vectors, and lower-case letters a for
scalars. We denote by [A]ij and [a]i the (i, j) element of
a matrix and ith element of a vector respectively. We de-
note by In ∈ Rn×n the identity matrix of dimension n and
by Diag(a) ∈ Rn×n the diagonal matrix with the vector
a ∈ Rn on the diagonal. We use ei,n ∈ Rn to denote the
indicator vector for element i of dimension n. When the di-
mensionality of I and ei is clear from the context, we omit
the n. We use A � B to indicate that A−B is a PSD ma-
trix. Finally, the set of integers between 1 and n is denoted
by [n] := {1, . . . , n}.

2.1 Exact Kernel Ridge Regression

Kernel regression. We consider a regression dataset D =
{(xt, yt)}nt=1, with input xt ∈ X ⊆ Rd and output yt ∈
R. We denote by K : X × X → R a positive definite
kernel function and by ϕ : X → RD the corresponding



feature map,1 so that the kernel is obtained as K(x,x′) =
ϕ(x)Tϕ(x′). Given the dataset D, we define the kernel
matrix Kt ∈ Rt×t constructed on the first t samples as
the application of the kernel function on all pairs of input
values, i.e., [Kt]ij = K(xi,xj) for any i, j ∈ [t] and we
denote by yt ∈ Rt the vector with components yi, i ∈ [t].
We also define the feature vectors φt = ϕ(xt) ∈ RD and
after introducing the feature matrix

Φt =
[
φ1 φ2 . . . φt

]
∈ RD×t,

we can rewrite the kernel matrix as Kt = ΦT
t Φt. When-

ever a new point xt+1 arrives, the kernel matrix Kt+1 ∈
Rt+1×t+1 is obtained by bordering Kt as

Kt+1 =

[
Kt kt+1

k
T

t+1 kt+1

]
(1)

where kt+1 ∈ Rt is such that [kt+1]i = K(xt+1,xi)
for any i ∈ [t] and kt+1 = K(xt+1,xt+1). According
to the definition of the feature matrix Φt, we also have
kt+1 = ΦT

t φt+1.

At any time t, the objective of sequential kernel regression
is to find the vector ŵt ∈ Rt that minimizes the regularized
quadratic loss

ŵt = arg min
w

‖yt −Ktw‖2 + µ‖w‖2, (2)

where µ ∈ R is a regularization parameter. This objective
admits the closed form solution

ŵt = (Kt + µI)−1yt. (3)

In the following, we use Kµ
t as a short-hand for (Kt+µI).

In batch regression, ŵn is computed only once when all
the samples of D are available, solving the linear system
in Eq. 3 with Kn. In the fixed-design kernel regression,
the accuracy of resulting solution ŵn is measured by the
prediction error on the input set from D. More precisely,
the prediction of the estimator ŵn in each point is obtained
as [Knŵn]i, while the outputs yi in the dataset are assumed
to be a noisy observation of an unknown target function
f∗ : X → R, evaluated in xi i.e., for any i ∈ [n],

yi = f∗(xi) + ηi,

where ηi is a zero-mean i.i.d. noise with bounded vari-
ance σ2. Let f∗ ∈ Rn be the vector with components
f∗(xi), then the risk of ŵn is measured as

R(ŵn) = Eη
[
||f∗ −Knŵn||22

]
. (4)

If the regularization parameter µ is properly tuned, it is
possible to show that ŵn has near-optimal risk guaran-
tees (in a minmax sense). Nonetheless, the computation of
ŵn requires O(n3) time and O(n2) space, which becomes
rapidly unfeasible for large datasets.

1where D can be very large or infinite (e.g. gaussian kernel)

2.2 Nyström Approximation with Ridge Leverage
Scores

A common approach to reduce the complexity of kernel
regression is to (randomly) select a subset of m samples
out of D, and compute the kernel between two points only
when one of them is in the selected subset. This is equiv-
alent to selecting a subset of columns of the Kn matrix.
More formally, given the n samples inD, a probability dis-
tribution pn = [p1,n, . . . , pn,n] is defined over all columns
of Kn and m ≤ n columns are randomly sampled with
replacement according to pn. We define by In the se-
quence of m indices i ∈ [n] selected by the sampling pro-
cedure. From In, we construct the corresponding selection
matrix Sn ∈ Rn×m, where each column [Sn]:,t ∈ Rn is
all-zero except from the entry corresponding to the t-th el-
ement in In (i.e., [S]ij is non-zero if at trial j the element
i is selected). Whenever the non-zero entries of Sn are set
to 1, sampling m columns from matrix Kn is equivalent
to computing KnSn ∈ Rn×m. More generally, the non-
zero entries of Sn could be set to some arbitrary weight
[S]ij = bij . The resulting regularized Nyström approxima-
tion of the original kernel Kn is defined as

K̃n = KnSn(ST
nKnSn + γIm)−1ST

nKn, (5)

where γ is a regularization term (possibly different from
µ). At this point, K̃n can be used to solve Eq. 3. Let W =
(ST
nKnSn + γIm)−1 ∈ Rm×m and C = KnSnW1/2 ∈

Rn×m, applying the Woodbury inversion formula [8] we
have

w̃n =(K̃n + µIn)−1yn = (CImCT + µIn)−1yn

=

(
1

µ
In −

1

µ2
InC

(
Im +

1

µ
CTC

)−1
CTIn

)
yn

=
1

µ

(
yn −C

(
CTC + µIm

)−1
CTyn

)
. (6)

Computing W1/2 and C takes O(m3) and O(nm2) time
using a singular value decomposition, and so does solv-
ing the linear system. All the operations require to store
at most an n × m matrix. Therefore the final complexity
is reduced from O(n3) to O(nm2 + m3) time, and from
O(n2) to O(nm) space. Rudi et al. [16] recently showed
that in random design, the risk of the resulting solution w̃n

strongly depends on the choice of m and the column sam-
pling distribution pn. Early methods sampled columns uni-
formly, and Bach [2] shows that the using this distribution
can provide a good approximation when the maximum di-
agonal entry of Kn(Kn + µI)−1 is small. Following on
this approach, Alaoui and Mahoney [1] propose a distribu-
tion proportional to these diagonal entries and calls them
γ-Ridge Leverage Scores. We now restate their definition
of RLS, corresponding sampling distribution, and the ef-
fective dimension.



Definition 1. Given a kernel matrix Kn ∈ Rn×n, the γ-
ridge leverage score (RLS) of column i ∈ [n] is

τi,n(γ) = kT
i,n(Kn + γIm)−1ei,n, (7)

where ki,n = Knei,n. Furthermore, the effective dimen-
sion deff(γ)n of the kernel is defined as

deff(γ)n =

n∑
i=1

τi,n(γ) = Tr
(
Kn(Kn + γIn)−1

)
. (8)

The corresponding sampling distribution pn is defined as

[pn]i = pi,n =
τi,n(γ)∑n
j=1 τi,n(γ)

=
τi,n

deff(γ)n
. (9)

The RLSs are directly related to the structure of the ker-
nel matrix and the regularized regression. If we perform
an eigendecomposition of the kernel matrix as Kn =
UnΛnUT

n, then the RLS of a column i ∈ [n] is

τi,n(γ) =

n∑
j=1

λj
λj + γ

[U]2i,j , (10)

which shows how the RLS is a weighted version of the stan-
dard leverage scores (i.e.,

∑
j [U ]2i,j), where the weights

depend on both the spectrum of Kn and the regulariza-
tion γ, which plays the role of a soft threshold on the rank
of Kn. Similar to the standard leverage scores [3], the
RLSs measure the relevance of each point xi for the over-
all kernel regression problem. Another interesting prop-
erty of the RLSs is that their sum is the effective dimension
deff(γ)n, which measures the intrinsic capacity of the ker-
nel Kn when its spectrum is soft-thresholded by a regular-
ization γ.2 We refer to the overall Nyström method using
RLS and sampling according to to pn in Eq. 9 as BATCH-
EXACT, which is illustrated in Alg. 1. We single out the
DIRECT-SAMPLE subroutine (which simply draws m inde-
pendent samples from the multinomial distribution pn) to
ease the introduction of our incremental algorithm in the
next section.

With the following claim, Alaoui and Mahoney [1] prove
that the regularized Nyström approximation K̃n obtained
from Eq. 5 guarantees an accurate reconstruction of the
original kernel matrix Kn, and the risk of the associated
solution w̃n is close to the risk of the exact solution ŵn.

Proposition 1 (Alaoui and Mahoney [1], App. A, Lem. 1).
Let γ ≥ 1, let Kn be the full kernel matrix (t = n), and
let τi,n, deff(γ)n, pi,n be defined according to Definition 1.
For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if we run Alg. 1 using
DIRECT-SAMPLE (Subroutine 1) with sampling budget m,

m ≥
(

2deff(γ)

ε2

)
log
(n
δ

)
,

2Notice that indeed we have deff(γ)n ≤ Rank(Kn).

Algorithm 1 BATCH-EXACT algorithm
Input: D, regularization parameter γ, sampling budget m

and probabilities pn (Eq. 9)
Output: Nyström approximation K̃n, matrix Sn

1: Compute In using DIRECT-SAMPLE(pn,m)
2: Compute Sn using In and weights 1/

√
mpi,n

3: Compute K̃n using Sn and Equation 5

Subroutine 1 DIRECT-SAMPLE(pn,m)→ In
Input: probabilities pn, sampling budget m
Output: subsampled column indices In

1: for j = {1, . . . ,m} do
2: Sample i ∼M(p1,n, . . . , pn,n)
3: Add i to In
4: end for

to compute matrix Sn, then with probability 1−δ the corre-
sponding Nyström approximation K̃n in Eq. 5 satisfies the
condition

0 � Kn − K̃n �
γ

1− ε
Kn(Kn + γIn)−1 � γ

1− ε
In.

(11)

Furthermore, replacing Kn by K̃n in Eq. 3 gives an ap-
proximation solution w̃n such that

R(w̃n) ≤
(

1 +
γ

µ

1

1− ε

)2

R(ŵn).

Discussion This result directly relates the number of
columns selected m with the accuracy of the approxima-
tion of the kernel matrix. In particular, the inequalities in
Eq. 11 show that the distance ‖Kn − K̃n‖2 is smaller than
γ/(1− ε). This level of accuracy is then sufficient to guar-
antee that, when γ is properly tuned, the prediction error
of w̃n is only a factor (1 + 2ε)2 away from the error of
the exact solution ŵ. As it was shown in [1], using K̃n in
place of Kn introduces a bias in the solution w̃n of order γ.
For appropriate choices of γ this bias is dominated by the
ridge regularization bias controlled by µ. As a result, w̃n

can indeed achieve almost the same risk as ŵn and, at
the same time, ignore all directions that are whitened by
the regularization and only approximate those that are more
relevant for ridge regression, thus reducing both time and
space complexity. The RLSs quantify how important each
column is to approximate these relevant directions but com-
puting exact RLSs τi,n(γ) using Eq. 7 is as hard as solving
the regression problem itself. Fortunately, in many cases
it is computationally feasible to find an approximation of
the RLSs. Alaoui and Mahoney [1] explore this possibil-
ity, showing that the accuracy and space guarantees are ro-
bust to perturbations in the distribution pn, and provide a
two-pass method to compute such approximations. Unfor-
tunately, the accuracy of their RLSs approximation is pro-
portional to the smallest eigenvalue λmin(Kn), which in



Algorithm 2 The INK-ORACLE algorithm
Input: DatasetD, regularization γ, sampling budget q and

(α, β)-ORACLE

Output: K̃n, Sn

1: Initialize I0 as empty, p̃1,0 = 1, b1,0 = 1, budget q
2: for t = 0, . . . , n− 1 do
3: Receive new column kt+1 and scalar kt+1

4: Receive α-leverage scores τ̃i,t+1 for any i ∈ It ∪
{t+ 1} from (α, β)-ORACLE

5: Receive β-approximate d̃eff(γ)t+1 from (α, β)-
ORACLE

6: Set p̃i,t+1 = min{τ̃i,t+1/d̃eff(γ)t+1, p̃i,t}
7: It+1,bt+1 = SHRINK-EXPAND(It, p̃t+1,bt, q)

8: Compute St+1 using It+1 and weights
√
bi,t+1

9: Compute K̃t+1 using St+1 and Equation 5
10: end for
11: Return K̃n and Sn

some cases can be very small. In the rest of the paper, we
propose an incremental approach that requires only a single
pass over the data and, at the same time, does not depend
on λmin(Kn) to be large as in [1], or on maxi τi,n to be
small as in [2].

3 INCREMENTAL ORACLE KERNEL
APPROXIMATION WITH
SEQUENTIAL SAMPLING

Our main goal is to extend the known ridge leverage score
sampling to the sequential setting. This comes with several
challenges that needs to be addressed simultaneously:

1. The RLSs change when a new sample arrives. We not
only need to estimate them, but to update this estimate
over iterations.

2. The effective dimension d̃eff(γ)t, necessary to normal-
ize the leverage scores for the sampling distribution
pn, depends on the interactions of all columns, includ-
ing the ones that we decided not to keep.

3. Due to changes in RLSs, our sampling distribution p̃t
changes over time. We need to update to dictionary
to reflect these changes, or it will quickly become bi-
ased, but once we completely drop a column, we can-
not sample it again.

In this section, we address the third challenge of incremen-
tal updates of the columns with an algorithm for the ap-
proximation of the kernel matrix Kn, assuming that the
first and second issue are addressed by an oracle giving

Subroutine 2 SHRINK-EXPAND(It, p̃t+1,bt, q)

Input: It, app. pr. {(p̃i,t+1, bi,t) : i ∈ It}, p̃t+1,t+1, q
Output: It+1

1: for all j ∈ {1, . . . , t} do .SHRINK

2: bi,t+1 = bi,t

3: while bi,t+1p̃i,t+1 ≤ 1/q and bi,t 6= 0 do
4: Sample a random Bernoulli B

(
bi,t+1

bi,t+1+1

)
5: On success set bi,t+1 = bi,t+1 + 1

6: On failure set bi,t+1 = 0

7: end while
8: end for
9: bt+1,t+1 = 1 .EXPAND

10: while bt+1,t+1p̃t+1,t+1 ≤ 1/q and bt+1,t+1 6= 0 do
11: Sample a random Bernoulli B

(
bt+1,t+1

bt+1,t+1+1

)
12: On success set bt+1,t+1 = bt+1,t+1 + 1

13: On failure set bt+1,t+1 = 0

14: end while
15: Add to It+1 all columns with bi,t+1 6= 0

both good approximations of leverage scores and the effec-
tive dimension.

Definition 2. At any step t, an (α, β)-oracle returns an α-
approximate ridge leverage scores τ̃i,t which satisfy

1

α
τi,t(γ) ≤ τ̃i,t ≤ τi,t(γ),

for any i ∈ [t] and and a β-approximate effective dimen-
sion d̃eff(γ)t which satisfy

deff(γ)t ≤ d̃eff(γ)t ≤ βdeff(γ)t.

We address the first and second challenge in Sect. 4 with
an efficient implementation and (α, β)-oracle. In the fol-
lowing we give the incremental INK-ORACLE algorithm
equipped with an (α, β)-oracle that after n steps it returns
a kernel approximation with the same properties as if an
(α, β)-oracle was used directly at time n.

3.1 The INK-ORACLE Algorithm

Apart from an (α, β)-ORACLE and the dataset D, INK-
ORACLE (Alg. 2) receives as input the regularization pa-
rameter γ used in constructing the final Nyström approx-
imation and a sampling budget q. It initializes the index
dictionary I0 of stored columns as empty, and the estimated
probabilities as p̃i,0 = 1. Finally it initializes a set of inte-
ger weights bi,0 = 1. These weights will represent a dis-
cretized approximation of 1/p̃i,t (the inverse of the prob-
abilities). At each time step t, it receives a new column
kt+1 and kt+1. This can be implemented either by hav-



ing a separate algorithm, constructing each column sequen-
tially and stream it to INK-ORACLE, or by having INK-
ORACLE store just the samples (for an additional O(td)
space complexity) and independently compute the column
once. The algorithm invokes the (α, β)-oracle to com-
pute approximate probabilities p̃i,t+1 = τ̃i,t+1/d̃eff(γ)t+1,
and then takes the minimum min{p̃i,t+1, p̃i,t} for the sam-
pling probability. As our analysis will reveal, this step is
necessary to ensure that the SHRINK-EXPAND operation
remains well defined, since the true probabilities pi,t de-
crease over time. It is important to notice that differently
from the batch sampling setting, the approximate proba-
bilities do not necessarily sum to one, but it is guaranteed
that

∑t
i=1 p̃i,t ≤ 1. The SHRINK-EXPAND procedure is

composed of two steps. In the SHRINK step, we update the
weights of the columns already in our dictionary. To decide
whether a weight should be increased or not, the product of
the weight at the preceding step bi,t−1 and the new estimate
p̃i,t is compared to a threshold. If the product is above the
threshold, it means the probability did not change much,
and no action is necessary. If the product falls below the
threshold, it means the decrease of p̃i,t is significant, and
the old weight is not representative anymore and should be
increased. To increase the weight (e.g. from k to k+1), we
draw a Bernoulli random variable B( k

k+1 ), and if it suc-
ceeds we increase the weight to k + 1, while if it fails we
set the weight to 0. The more p̃i,t decrease over time, the
higher the chanches that bi,t+1 is set to zero, and the index
i (and the associated column ki,t+1) is completely dropped
from the dictionary. Therefore, the SHRINK step randomly
reduces the size of the dictionary to reflect the evolution of
the probabilities. Conversely, the EXPAND step introduces
the new column in the dictionary, and quickly updates its
weight bt,t to reflect p̃t,t. Depending on the relevance (en-
coded by the RLS) of the new column, this means that it
is possible that the new column is discarded at the same
iteration as it is introduced. For a whole pass over the
dataset, INK-ORACLE queries the oracle for each RLS at
least once, but it never asks again for the RLS of a columns
dropped from It. As we will see in the next section, this
greatly simplifies the construction of the oracle. Finally,
after updating the dictionary, we use the updated weights√
bi,t to update the approximation K̃t, that can be used at

any time and not only in the end.

3.2 Analysis of INK-ORACLE

The main result of this section is the lower bound on the
number of columns required to be kept in order to guaran-
tee a γ/(1− ε) approximation of Kt.
Theorem 1. Let γ > 1. Given access to an (α, β)-oracle,
for 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, if we run Alg. 2 with
parameter q

q ≥
(

28αβdeff(γ)t
ε2

)
log

(
4t

δ

)
,

to compute a sequence of random matrices St with a ran-
dom number of columnsQt, then with probability 1−δ, for
all t the corresponding Nyström approximation K̃t (Eq. 5)
satisfies condition in Eq. 11,

0 � Kt − K̃t �
γ

1− ε
Kt(Kt + γI)−1 � γ

1− ε
I.

and the number of columns selected Qt is such that

Qt ≤ 8q.

Discussion Unlike in the batch setting, where the sam-
pling procedure always returned m samples, the number of
columns Qt selected by INK-ORACLE is a random vari-
able, but with high probability it will be not much larger
than q. Comparing INK-ORACLE to online kernel sparsi-
fication methods [19], we see that the number of columns,
and therefore the space requirement, is guaranteed to be
small not only asymptotically but at each step, and that no
assumption on the spectrum of the matrix is required. In-
stead, the space complexity naturally scales with the effec-
tive dimension of the problem, and old samples that be-
come superfluous are automatically discarded. Comparing
Thm. 1 to Prop.1, INK-ORACLE achieves the same perfor-
mance as its batch counterpart, as long as the space budget
q is large enough. This budget depends on several quanti-
ties that are difficult to estimate, such as the effective di-
mension of the full kernel matrix. In practice, this quan-
tity can be interpreted as the maximum amount of space
that the user can afford for the algorithm to run. If the
actual complexity of the problem exceeds this budget, the
user can choose to run it again with another parameter γ
or a worse accuracy ε. It is important to notice that, as we
show in the proof, the distribution induced by the sampling
procedure of INK-ORACLE is not the same as the distri-
bution obtained by the multinomial sampling of BATCH-
EXACT. Nonetheless, in our analysis we show that the bias
introduced by the different distribution is small, and this
allows INK-ORACLE to match the approximation guaran-
tees given by Alaoui and Mahoney [1].

We give a detailed proof of Thm. 1 in App. B. In the rest of
this section we sketch the proof and give the intuition for
the most relevant parts.

The SHRINK step uses the thresholding condition to guar-
antee that the weight bi,t are good approximations of the
p̃i,t. To make the condition effective, we require that the
approximate probabilities p̃j,t are decreasing. Because the
approximate probabilities follow the true probabilities pi,t,
we first show that this decrease happens for the exact case.

Lemma 1. For any kernel matrix Kt at time t, and its bor-
dering Kt+1 at time t + 1 we have that the probabilities
pi,t are monotonically decreasing over time t,

τi,t+1

deff(γ)t+1
= pi,t+1 ≤ pi,t =

τi,t+1

deff(γ)t
·



Since ridge leverage scores represent the importance of a
column, when a new column arrives, there are two cases
that can happen. If the column is orthogonal to the existing
matrix, none of the previous leverage scores changes. If
the new column can explain part of the previous columns,
the previous columns should be picked less often, and we
expect τi,t to decrease. Contrary to RLS, the effective di-
mension increases when the new sample is orthogonal to
the existing matrix, while it stays the same when the new
sample is a linear combination of the existing ones. In ad-
dition, the presence of γ regularizes both cases. When the
vector is nearly orthogonal, the presence of γI in the in-
verse will still penalize it, while the γ term at the denom-
inator of ∆ will reduce the influence of linearly correlated
samples. Because τi,t decreases over time and deff(γ)i,t
increases, the probabilities pi,t will overall decrease over
time. This result itself is not sufficient to guarantee a well
defined SHRINK step. Due to the (α, β)-approximation, it
is possible that pi,t+1 ≤ pi,t but p̃i,t+1 � p̃i,t. To exclude
this possibility, we adapt the following idea from Kelner
and Levin [9].

Proposition 2 (Kelner and Levin [9]). Given the approxi-
mate probabilities p̃t returned by an (α, β)-oracle at time
t, and the approximate probabilities p̃t+1 returned by an
(α, β)-oracle at time {t + 1}, then the approximate prob-
abilities min3{p̃t, p̃t+1} are also (α, β)-approximate for
{t + 1}. Therefore, without loss of generality, we can as-
sume that p̃i,t+1 ≤ p̃i,t.

Combining Lemma 1 and Proposition 2, we can guarantee
that at each step the p̃i,t-s decrease. Unlike in the batch set-
ting [1], we have to take additional care to consider corre-
lations between iterations, the fact that the inclusion prob-
abilities of Algorithm 2 are different from the multinomial
ones of DIRECT-SAMPLE, and that the number of columns
kept at each iteration is a random quantity Qt. We adapt
the approach of Pachocki [13] to the KRR setting to anal-
yse this process. The key aspect is that the reweighting and
rejection rule on line 3 of Algorithm 2 will only happen
when the probabilities are truly changing. Finally, using a
concentration inequality, we show that the number Qt of
columns selected is with high probability only a constant
factor away from the budget q given to the algorithm.

4 LEVERAGE SCORES AND
EFFECTIVE DIMENSION
ESTIMATION

In the previous section we showed that our incremental
sampling strategy based on (estimated) RLSs has strong
space and approximation guarantees for K̃n. While the
analysis reported in the previous section relied on the exis-
tence of an (α, β)-oracle returning accurate leverage scores

3element-wise mininum

and effective dimension estimates, in this section we show
that such an oracle exists and can be implemented effi-
ciently. This is obtained by two separate estimators for
the RLSs and effective dimension that are updated incre-
mentally and combined together to determine the sampling
probabilities.

4.1 Leverage Scores

We start by constructing an estimator that at each time t,
takes as input an approximate kernel matrix K̃t, and re-
turns α-approximate RLS τ̃i,t+1. The incremental nature
of the estimator lies in the fact that it exploits access to the
columns already in St and the new (exact) column kt+1.
We give the following approximation guarantees.

Lemma 2. We assume that K̃t satisfies Eq. (11), and define
Kt+1 as the matrix bordered with the new row and column

Kt+1 =

[
K̃t kt+1

k
T

t+1 kt+1

]
.

Then

0 � Kt+1 −Kt+1 �
γ

1− ε
I.

Moreover let α = 2−ε
1−ε and

τ̃i,t+1 =
1

αγ

(
ki,i − ki,t+1

(
Kt+1 + αγI

)−1
ki,t+1

)
.

(12)

Then, for all i such that ki,t+1 ∈ It ∪ {t+ 1},

1

α
τi,t+1(γ) ≤ τ̃i,t+1 ≤ τi,t+1(γ).

Remark There are two important details that are used in
proof of Lem. 2 (App. C). First, notice that using K̃t to ap-
proximate RLSs directly, would not be accurate enough.
RLSs are defined as τi,t(γ) = eT

i Kt(Kt + γI)−1ei and
while the product (Kt + γI)−1ei can be accurately recon-
structed using (K̃t+γI)−1ei, the multiplication Ktei can-
not be approximated well using K̃t. Since the nullspace of
K̃t can be larger than the one of Kt, it is possible that ei
partially falls into it, thus compromising the accuracy of
the approximation of the RLS. In our approach, we deal
with this problem by using the actual columns ki,t of Kt

to compute the RLS. This way, we preserve as much as
exact information of the matrix as possible, while the ex-
pensive inversion operation is performed on the smaller
approximation K̃t. Since we require access to the stored
columns ki,t, our approach can approximate the RLSs only
for columns present in the dictionary but this is enough,
since we are only interested in accurate probabilities for
columns in the dictionary and for the new column kt+1

(which is available at time t + 1). As a comparison, the



two-pass approach of Alaoui and Mahoney [1] uses the
first pass just to compute an approximation K̃n, and then
approximates all leverage scores with K̃n(K̃n + γI)−1.
This has an impact on their approximation factor α, that
is proportional to (λmin(Kn) − γε). Therefore to have
α ≈ (λmin(Kn) − γε) > 0, it is necessary that γε is of
the order of λmin(Kn), which in some cases can be very
small, and strongly increase the space requirements of the
algorithm. Using the actual columns of the matrix in Eq. 12
allows us to compute an α-approximation independent of
the smallest eigenvalue.

4.2 Effective Dimension

Using Eq. 12, we can estimate all the RLSs that we need
to update St. Nonetheless, to prove that the number of
columns selected is not too large, the proof of Thm. 1 in the
appendix requires that the sum of the probabilities p̃i,t is
smaller than 1. Therefore we not only need to compute the
RLSs, but also a normalization constant. Indeed, a naïve
definition of the probability p̃i,t could be pi,t =

τ̃i,t∑t
j=1 τ̃i,t

·
A major challenge in our setting is that we cannot com-
pute the sum of the approximate RLSs, because we do not
have access to all the columns. Fortunately, we know that∑t
j=1 τ̃i,t ≤

∑t
j=1 τi,t(γ) = deff(γ)t. Therefore, one of

our technical contribution is an estimator d̃eff(γ)t that does
not use the approximate RLSs for the the columns that we
no longer have. We now define this estimator and state its
approximation accuracy.

Lemma 3. Assume K̃t satisfies Eq. 11. Let α =
(

2−ε
1−ε

)
and β =

(
2−ε
1−ε

)2
(1 + ρ) with ρ = λmax(Kn)

γ . Define

d̃eff(γ)t+1 = d̃eff(γ)t + α∆̃t (13)

with

∆̃t =
1

kt+1 + γ − k
T

t+1

(
K̃t + αγI

)−1
kt+1

×
(
kt+1 − k

T

t+1

(
K̃t + αγI

)−1
kt+1

− (1− ε)2

4
γk

T

t+1(K̃t + γI)−2kt+1

)
. (14)

Then

deff(γ)t+1 ≤ d̃eff(γ)t+1 ≤ βdeff(γ)t+1.

Discussion Since we cannot compute accurate RLSs for
columns that are not present in the dictionary, we prefer to
not estimate how each RLSs changes over time, but instead
we directly estimate the increment of their sum. We do
it by updating our estimate d̃eff(γ)t+1 using our previous
estimate d̃eff(γ)t, and ∆̃t. ∆̃t captures directly the interac-
tion of the new sample with the aggregate of the previous

Algorithm 3 The INK-ESTIMATE algorithm
Input: Dataset D, regularization γ, sampling budget q
Output: K̃n, Sn

1: Initialize I0 as empty, p̃1,0 = 1, b1,0 = 1, budget q
2: for t = 0, . . . , n− 1 do
3: Receive new column kt+1 and scalar kt+1

4: Compute α-leverage scores {τ̃i,t+1 : i ∈ It ∪ {t +

1}}, using Kt+1, ki, ki,i, and Eq. (12)
5: Compute β-approximate d̃eff(γ)t+1 using K̃t, kt+1,

kt+1, and Eq. (13)
6: Set p̃i,t+1 = min{τ̃i,t+1/d̃eff(γ)t+1, p̃i,t}
7: It+1,bt+1 = SHRINK-EXPAND(It, p̃t+1,bt, q)

8: Compute St+1 using It+1 and weights
√
bi,t+1

9: Compute K̃t+1 using St+1 and Equation 5
10: end for
11: Return K̃n and Sn

samples, and allows us to estimate the increase in effective
dimension using only the current matrix approximation K̃t,
the new column kt+1 and the scalar kt+1. Differently from
the other terms we studied, the numerator of ∆̃t contains an
additional γk

T

t+1(K̃t + γI)−2kt+1 second order term. The
guarantees provided by Eq. 11 are not straightforward to
extend because in general if (Kt+γI)−1 � (K̃t+αγI)−1,
it is not guaranteed that (Kt + γI)−2 � (K̃t + αγI)−2.
Nonetheless, we show that K̃t is still sufficient to estimate
∆̃t, but, unlike α, the approximation error β is now depen-
dent on the spectrum.

4.3 Analysis of INK-ESTIMATE

With the separate estimates for leverage scores (Sect. 4.1)
and effective dimension (Sect. 4.2), we have the neces-
sary ingredients for the (α, β)-oracle and we are ready to
present the final algorithm INK-ESTIMATE (Alg. 3).

Using the approximation guarantees of Lem. 2 and Lem. 3,
we are ready to state the final result, instantiating the
generic α and β terms of Thm. 2 with the values obtained
in this section.

Theorem 2. Let ρ = λmax(Kt)/γ, α =
(

2−ε
1−ε

)
, β =(

2−ε
1−ε

)2
(1 + ρ), and γ > 1. For any 0 ≤ ε ≤ 1, and

0 ≤ δ ≤ 1, if we run Alg. 3 with parameter q, where

q ≥
(

28αβdeff(γ)t
ε2

)
log

(
4t

δ

)
,

to compute a sequence of random matrices St with a ran-
dom number of columnsQt, then with probability 1−δ, for
all t the corresponding Nyström approximation K̃t (Eq. 5)



satisfies condition 11

0 � Kt − K̃t �
γ

1− ε
Kt(Kt + γI)−1 � γ

1− ε
I.

With the same prob., INK-ESTIMATE requires at most

O(n2q2 + nq3)

≤ O
(
α2β2n2deff(γ)2n + α3β3ndeff(γ)3n

)
= O

(
α4(1 + ρ)2n2deff(γ)2n + α6(1 + ρ)3ndeff(γ)3n

)
time and the space is bounded as

O(nq) ≤ O (αβndeff(γ)n) = O
(
α2(1 + ρ)ndeff(γ)n

)
.

For the space complexity, from Theorem 1 we know we
will not select more than O(q) columns in high probabil-
ity. For the time complexity, at each iteration we need
to solve linear systems involving (Kt+1 + αγI)−1 and
(K̃t + αγI)−1. Approximating the inverse using transfor-
mations similar to Eq. (6) takes O(tq2 + q3) time, again
using a singular value decomposition approach. To com-
pute all leverage scores, we need to first compute an ap-
proximate inverse in O(tq2 + q3) time, and then solve Qt
systems, each using a multiplication costing O(tQt). With
high probability, Qt ≤ 8q, therefore computing all lever-
age scores costsO(tq2 + q3) for the first singular value de-
composition, and O(tq) for each of the O(q) applications.
To update the effective dimension estimate, we only have
to compute another approximate inverse, and that costs
O(tq2 + q3) as well. Finally, we have to sum the costs over
n steps, and from

∑n
t=1 tq

2 ≤ q2n2, we obtain the final
complexity. Even with a significantly different approach,
INK-ESTIMATE achieves the same approximation guaran-
tees as BATCH-EXACT. Consequently, it provides the same
risk guarantees as the known batch version [1], stated in the
following corollary.
Corollary 1. For every t ∈ {1, . . . , n}, let Kt be the ker-
nel matrix at time t. Run Algorithm 3 with regularization
parameter γ and space budget q. Then, at any time t, the
solution w̃t computed using the regularized Nyström ap-
proximation K̃t satisfies

R(w̃t) ≤
(

1 +
γ

µ

1

1− ε

)2

R(ŵt)

=

(
1 +

λmax(Kt)

ρµ

1

1− ε

)2

R(ŵt).

Discussion Thm. 2 combines the generic result of Thm. 1
with the actual implementation of an oracle that we de-
veloped in this section. All the guarantees that hold for
INK-ORACLE are inherited by INK-ESTIMATE, but now
we can quantify the impact of the errors α and β on the
algorithm. As we saw, the α error does not depends on
the time, the spectrum of the kernel matrix or other quan-
tities that increase over time. On the other hand, estimat-
ing the effective dimension without having access to all the

leverage scores is a much harder task, and the β factor de-
pends on the spectrum through the ρ coefficient. The in-
fluence that this coefficient exerts on the space and time
complexity can vary significantly as the relative magnitude
of λmax(Kn), γ and µ changes. If the largest eigenvalue
grows too large without a corresponding increase in γ, the
space and time requirements of INK-ESTIMATE can grow,
but the risk bound, depending on γ/µ remains small. On
the other hand, increasing γ without increasing µ reduces
the computational complexity, but makes the guarantees on
the risk of the solution w̃t much weaker. As an example,
[1, Thm. 3] chooses, µ ≥ λmax(Kn) and γ u µ. If we do
the same, we recover their bound.

5 CONCLUSION

We presented a space-efficient algorithm for sequential
Nyström approximation that requires only a single pass
over the dataset to construct a low-rank matrix K̃n that ac-
curately approximates the kernel matrix Kn, and compute
an approximate KRR solution w̃n whose risk is close to
the exact solution ŵn. All of these guarantees do not hold
only for the final matrix, but are valid for all intermediate
matrices K̃t constructed by the sequential algorithm.

To address the challenges coming from the sequential
setup, we introduced two separate estimators for RLSs
and effective dimension that provide multiplicative error
approximations of these two quantities across iterations.
While the approximation of the RLSs is only a constant
factor away from the exact RLSs, the error of the approx-
imate effective dimension scales with the spectrum of the
matrix through the coefficient ρ. A more careful analysis,
or a different estimator might improve this dependence, and
they can be easily plugged to the general analysis.

Our generalization results apply to the fixed design setting.
An important extension of our work would be to consider
a random design, such as in the work of Rudi et al. [16].
This extension would need even more careful tuning of the
regularization parameter γ, needing to satisfy requirements
of both generalization and the approximation of the (α, β)-
oracle. Finally, the runtime analysis of the algorithm does
not fully exploit the sequential nature of the updates. An
implementation based on decompositions more amenable
to updates (e.g., Cholesky decomposition), or on low-rank
solvers that can exploit hot-start might further improve the
time complexity.
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