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Abstract

Binary classification (rain or shine, disease or
not, increase or decrease) is a fundamental prob-
lem in machine learning. We present an algo-
rithm that can take any standard online binary
classification algorithm and provably improve
its performance under very weak assumptions,
given the right to refuse to make predictions in
certain cases. The extent of improvement will de-
pend on the data size, stability of the algorithm,
and room for improvement in the algorithms per-
formance. Our experiments on standard ma-
chine learning data sets and standard algorithms
(k-nearest neighbors and random forests) show
the effectiveness of our approach, even beyond
what is possible using previous work on confor-
mal predictors upon which our approach is based.
Though we focus on binary classification, our
theory could be extended to multiway classifica-
tion. Our code and data are available upon re-
quest.

1 INTRODUCTION

Reacting intelligently to incoming data lies at the heart of
forecasting, trading, and many other applications. The sim-
plest decision one has to make is binary (go/stop, buy/sell).
However, in many cases one needs to assess the risk of a
decision and refuse to make a decision at all if one is not
confident enough. One of the well known methodologies
for this task is using confidence predictors and declining
to make a decision on ambiguous data points (Vovk, Gam-
merman, & Shafer, 2005). Intuitively, conformal predictors
look at how previous predictions worked out for similar in-
put data and let those results shape first whether to make a
prediction at all and if so, which one to make. We extend
existing conformal prediction approaches by permitting the
use of multidimensional test statistics to provide more flex-
ibility while keeping the theoretical guarantees of the orig-

inal predictors. We apply this extended framework to the
binary classification problem and show that our methods
improve the performance of previous conformal predictors.

1.1 Related Work

Forecasting the upcoming data point in a data stream has
been studied in econometrics, meteorology, finance, com-
puter science, and many other disciplines (Box, Jenkins,
Reinsel, & Ljung, 2015). In confidence predictors, the goal
is to create a set of possible candidate outcomes such that
the probability that the real outcome is not one of these
candidates is less than a predetermined tolerance level.
Some examples for the uses of confidence predictions in-
clude signal denoising (Ryabko & Ryabko, 2013), growth
estimation for planning (Meade & Islam, 1995), among
many similar forecast problems that requires bounds for
the predicted values (Chatfield, 1993). Though most of the
confidence prediction literature considers either parametric
models or asymptotic results, Vovk, Gammerman and Shaf-
fer (Vovk et al., 2005) introduced the conformal prediction
framework, which provides exact finite-sample guarantees
for exchangeable data sequences.

Binary classification problems where the classifier is al-
lowed to decline making a decision has been studied both
in online and offline settings. Optimal error-rejection trade-
offs are investigated under the names selective classifi-
cation (El-Yaniv & Wiener, 2010, 2012), (Chaudhuri &
Zhang, 2013) and classification with reject option (Denis &
Hebiri, 2015), (Chow, 1970), (Herbei & Wegkamp, 2006).

Following this work, we focus on the conformal prediction
approach to the online binary classification with reject op-
tion, and propose an extended framework to decrease the
number of rejects while guaranteeing a small probability of
error on the classified points.

1.2 Outline & Contributions

In Section 2, we describe our problem formally and pro-
vide some background information on online confidence



prediction and conformal prediction. In Section 3, we ex-
tend the conformal prediction framework to multiple di-
mensions and then show how to preserve the theoretical er-
ror guarantees provided by the conformal framework, while
rejecting less often.

The flexibility provided by this multidimensional frame-
work is demonstrated in Section 4, where we introduce the
notion of conjugate conformal prediction. Formally, a con-
jugate conformal predictor is a two dimensional conformal
predictor derived from any given traditional conformal pre-
dictor. Intuitively, conjugate predictors not only compare
the test point with the previous ones, but also compare the
test point with its conjugate, i.e. the same point with its la-
bel flipped, to be able to make more aggressive predictions
- not only when we have high confidence to accept the test
point but also when we have high confidence to reject the
conjugate point.

In Section 4.1, we define conjugate conformal predictors
formally and prove their efficiency under mild stability as-
sumptions on the set statistics used in the original predictor.
Lastly, in Section 4.2. we present experimental results for
classical conformal and conjugate conformal predictors on
standard machine learning data sets from UCI ML Reposi-
tory (Lichman, 2013) and standard machine learning algo-
rithms (k nearest neighbors and random forests).

Finally, in Section 5 we conclude with a brief discussion of
our results and planned future work.

2 PROBLEM SETUP & CONFORMAL
PREDICTION

2.1 Data Model & Notation

In this work, we assume data points are revealed to the al-
gorithm, one data point at a time. A data point generated at
time t, consists of a feature vector xt, which takes values
from a feature space X , and a label yt, which takes values
from a label space Y . For the sake of brevity, we represent
a data point with zt = (xt, yt) ∈ X × Y . We refer to the
space Z = X × Y as the data space.

The only statistical assumption about the data generating
process is the exchangeability of the data points, that is: for
any positive integer N , the probability of observing a data
sequence z1, . . . , zN is invariant under any permutation of
the data points, π, i.e.

Pr (z1, . . . , zN ) = Pr
(
zπ(1), . . . , zπ(N)

)
.

Many processes (or variants of these processes) satisfy this
assumption. For example, stock price histories are not ex-
changeable, but stock price returns (percentage up or down
over a given time period) are. Echangeability can be con-
sidered as a generalization of the more common i.i.d as-
sumption. We refer the reader to (Schervish, 2012) and

(Kallenberg, 2006) for a thorough discussion of this as-
sumption.

In addition, we also make use of a source of randomness:
uniform random variables τ1, τ2, . . . on the unit interval,
which are independent of the data. This will be used to
randomize the prediction algorithms in such a way as to
achieve validity guarantees.

Lastly, we use multi-sets throughout the paper. In other
words, each set may contain the same element multiple
times, in particular, we denote the (multi-)set of the first
t data points as σt = {z1, . . . , zt} and we don’t require the
data points to be distinct. In addition, we use the following
variations of σt for the sake of brevity of exposition:

• σ(i)
t = {z1, . . . , zi−1, zi+1, . . . , zt} stands for the set

of first t data points except the ith one for any i =
1, . . . , t.
• σt/y = {z1, . . . , zt−1, (xt, y)} represents the set of

first t data points assuming the tth label is equal to y,
for any y ∈ Y .
• σ(i)

t/y is the set of data points in σt/y with the exception
of the ith one, for i = 1, . . . , t and y ∈ Y .

2.2 Online Prediction of Confidence

For the confidence prediction task, we assume the feature
vector xt is revealed at time t, but the corresponding label
yt is revealed only after the prediction is made and before
the next feature vector xt+1 is revealed.

The task of the predictor is to predict a subset of the label
space that contains the unseen label yt with probability at
least 1 − ε, for a given error tolerance level ε ∈ (0, 1). We
denote the prediction set generated at time t as Γεt . Because
Γεt is a set, we may be making a prediction of the form “the
answer may be 1, 4, or 5”. Formally:

Workflow for Online Confidence Prediction The fewer
the errors, the more valid; the smaller the prediction set, the
more efficient.

1: for t = 1, 2, . . . and given ε ∈ (0, 1) do
2: Nature reveals xt.
3: Predictor calculates a prediction set Γεt ⊆ Y .
4: Nature reveals yt and declares an error if yt /∈ Γεt .

There are two main properties one expects from a good
confidence predictor. The first is that the predictor should
be valid (intuitively, the label value falls within the predic-
tion set Γεt , fraction 1 − ε of the time) and the other is that
it is efficient (intuitively, |Γεt| is at least one but small).

The literature contains various ways of defining efficiency
and validity measures, see (Vovk et al., 2014) for a detailed
list. We use the following definitions:



• We call a confidence predictor exactly valid if the er-
ror events associated with its predictions occurs inde-
pendently with probability ε. Additionally, we say a
predictor is conservatively valid or simply valid, if it
makes errors only on the data points on which some
other exactly valid predictor makes errors. For further
implications of this definition, see (Vovk et al., 2005).

• Since our results in Section 4 are focused on binary
predictions, we use the cardinality of the predicted set,
|Γεt|, as a measure of efficiency. Particularly, we say
the prediction at time t is efficient if |Γεt| = 1. In bi-
nary classification setup, as in Section 4, an inefficient
prediction at time t implies that the predictor chooses
both possible values or none, effectively refusing to
make a decision at t.

Furthermore, we say a first predictor is more efficient
than a second predictor at time t, if the first refuses
to make a decision only if the second also refuses to
make a decision at time t. Note that, such a compari-
son makes sense when both of the predictors are valid
and have the same tolerance parameter, ε.

For continuous label spaces, one can refer to the vol-
ume or size of the the prediction sets as a measure of
efficiency (Lei, Robbins, & Wasserman, 2011).

2.3 Conformal Prediction

The main idea behind conformal predictors is to define a
nonconformity score at time t between a candidate point
z = (xt, y) for a candidate label y ∈ Y and the rest of the
data z1, . . . , zt−1, and to use it as a test statistic to decide
whether a particular candidate label y will be included in
the prediction set (candidate outcomes) or not. Intuitively,
if data points similar to xt have often mapped to y in the
past, then y should belong to the prediction set for xt.

The test statistic should take on smaller values the more
probable the y is. One can create a non-conformity score
based on a machine learning algorithm. Say that we em-
ploy the given algorithm, f , train it on the set σt−1 and
predict ŷt = fσt−1

(xt) as an estimate of yt. Then we can
derive a non-conformity score (also called the test statis-
tic) to use at time t as At(σt−1, zt) = φ

(
fσt−1 (xt) , yt

)
,

where φ is any properly chosen loss function.

Because of the exchangeability assumption on the data, the
conformity scores should be invariant to the order of data
points in the training set σt−1. Therefore, the set of first t
data points, σt, constitutes a complete sufficient statistic on
the test statistic At (σt−1, zt). In our context, this means
we can compute the exact probability distribution of the
test statistic conditioned on σt. For a more detailed anal-
ysis of test statistics and how to compute their distribution
under exchangeability, see Chapters 3.2 and 6.2 of (Cox &
Hinkley, 1974).

Exploiting this idea leads to the following algorithm: cal-
culate the non-conformity scores for each data point zi that
precedes t, based on the rest of the data preceding t plus the
assumption that yt = y (the algorithm will do this one at a
time for each label y for time t). We then calculate a confi-
dence value, pyt , for the candidate label y as the fraction of
the data points with greater non-conformity scores than the
score of the last one (xt, y). We will accept y into the con-
fidence set provided this confidence value is greater than or
equal to ε. Vovk (2005) has shown that, after some smooth-
ing (using the additional source of randomness mentioned
in section 2.1, the uniform random variable τt), this confi-
dence value has a uniform distribution on [0, 1] if the label
yt is really equal to y. The uniformity implies therefore
that refusing to include y as a candidate point if its confi-
dence value is less than ε would cause an error only with
probability ε. The pseudocode is given in Algorithm 1, and
further details are given in (Vovk et al., 2005).

Algorithm 1 (Smoothed) Conformal Prediction: The goal
is to create a set of predicted values Γεt which covers the
true label with probability 1 − ε, based on a confidence
value pyt calculated from a given non-conformity measure
At. In particular, pyt computes the fraction of data points
with a larger non-conformity score than αyt , where τt is
used to break the ties. The detailed definitions are in the
text.

1: for t = 1, 2, . . . do
2: Γεt ← ∅
3: for y ∈ Y do
4: yt ← y
5: for i = 1, . . . , t do
6: αyi ← At

(
σ

(i)
t/y, zi

)
7: pyt = (|{i : αyi > αyt , }|+ τt|{i : αyi = αyt }|) /t
8: if pyt ≥ ε then
9: Γεt ← Γεt

⋃
{y}.

To appreciate the strength of the conformal predictors one
can refer to the following results (Schafer & Vovk, 2008):

i. All (smoothed) conformal predictors are exactly valid
(i.e. the error event at any time point is independent
from others and occurs with probability ε) under the
exchangeability assumption.

ii. If the data space is a Borel space, any given valid con-
fidence predictor which is invariant to the order of the
previous data points, there exists a conformal predic-
tor that generates prediction sets not larger than the
prediction sets generated by the given confidence pre-
dictor.



3 MULTIDIMENSIONAL CONFORMAL
PREDICTION

In this section we will generalize the conformal predic-
tion framework to multidimensional statistics and propose
a principled extension to the algorithm presented above.
This generalization is both simple and improves the effi-
ciency of the formal prediction framework thus achieving
practical improvements to standard algorithms.

The idea of the extension is to use non-conformity scores
that take vector values instead of scalar ones, i.e. the range
of At is Rd for some positive integer d. Such an approach
may be helpful when we have several possible sets of data
that may bear on a prediction. In such a scenario, one can
use the non-conformity score of the candidate point to each
of the several sets as components of a non-conformity vec-
tor.

The approach also helps in the application described in the
next section, in which we focus on the case where the label
space is binary, i.e. Y = {0, 1}. In that setting, a one-
dimensional non-conformity score At (σt−1, (xt, y)) and
its conjugateAt (σt−1, (xt, 1− y)) together provide a sub-
stantial improvement to the performance of the prediction
compared to using just one score.

Just as in the one dimensional case, we assume that data
points come from an exchangeable process and each com-
ponent of the conformity vectors is invariant to the order of
the points in the history, thus making the multi-dimensional
conformity vectors exchangeable. Therefore, we can build
a test statistic from them. However, in contrast to the scalar
case, we don’t have a linear order on these vectors, which
complicates the decision of whether to include or exclude
a label in the prediction set.

Instead of calculating a confidence value py for each y ∈ Y
as before, we propose to select some subset of the d dimen-
sional Euclidean space, which we call the acceptance set
and denote it with Syt , for each y. We add the label y to
the prediction set Γεt only if the corresponding nonconfor-
mity vector falls into the acceptance set, i.e. y ∈ Syt . Also,
just as in the calculation of the one dimensional confor-
mal prediction, we apply random smoothing on the bound-
ary points of the acceptance set to guarantee exact validity.
Specifically, we add y into the prediction set if the corre-
sponding non-conformity vector is an interior point of the
acceptance set, but if it is a boundary point of the set we
include y iff τt is less than a specific value that is calibrated
to the targeted error level. In Theorem 3.1 and the follow-
ing Corollary 3.1.1, we provide some sufficient conditions
on the acceptance sets to guarantee the validity of the asso-
ciated predictor.

As an example, for the binary case, we propose to construct
acceptance sets that include the points with smaller non-
conformity scores than their conjugate scores in addition to

some points with small non-conformity scores. This will
satisfy the conditions given in Corollary 3.1.1 (See Figure
1). Such proposed acceptance sets will be investigated in
detail in the next section.

The pseudocode for the described algorithm is given in Al-
gorithm 2 below for generic acceptance sets. The following
notation is used in the presentation of the algorithm to de-
note the acceptance sets:

• Syt : The acceptance set at time t for the prospective
label y.

• int (Syt ): Interior points of the acceptance set.

• int (Syt ): The set of points in the acceptance set, but
not in the interior of it, i.e. Syt /int (Syt ).

• vyi : The non-conformity vector for data point zi, as-
suming yt = y.

• ∆y
t : Set of first t non-conformity vectors for yt = y,

i.e. {vy1 , . . . ,v
y
t }.

Algorithm 2 Multidimensional Conformal Prediction: The
goal is create a set of predicted outcomes Γεt based on d-
dimensional statistics. See the definitions just above.

1: for t = 1, 2, . . . do
2: Γεt ← ∅
3: for y ∈ Y do
4: yt ← y
5: for i = 1, . . . , t do
6: vyi ← At

(
σ

(i)
t/y, zi

)
7: Calculate Syt ⊆ Rd from σt/y
8: if vyt ∈ int (Syt ) then
9: Γεt ← Γεt

⋃
{y}.

10: if vyt ∈ int (Syt ) & τt ≥ |S
y
t ∩∆y

t |−(1−ε)t
|int(Sy

t )∩∆y
t |

then
11: Γεt ← Γεt

⋃
{y}.

The following theorem provides sufficient conditions for a
sequence of acceptance sets using the above algorithm to
guarantee that they lead to valid predictions. These con-
ditions have the following intuitive interpretations: (i) Syt
should not depend on the order of data points to preserve
the exchangeability of the non-conformity vectors, and (ii)
fraction 1−ε of the non-conformity vectors should fall into
the acceptance set, i.e |Syt ∩∆y

t | ' (1− ε) t, to make sure
the probability of error is kept at ε. These requirements
provide a guideline to design acceptance sets. In the next
section, we will see that each conformal predictor can be
represented in terms of acceptance sets satisfying this con-
ditions. Also we will see an example of acceptance sets
tailored for the binary classification problem.

Theorem 3.1 For a given sequence of d dimensional con-
formity scores At, acceptance sets Syt , and smoothing pa-
rameters τt; if for all t = 1, 2, . . . and y ∈ Y:



i. Syt is measurable conditioned on σt/y ,

ii. |int (Syt ) ∩∆y
t | ≤ (1− ε) t ≤ |Syt ∩∆y

t |,

then the multidimensional conformal predictor associated
with these as described in Algorithm 2 is exactly valid.

The proof is based on the fact that any smoothed conformal
predictor is exactly valid (Appendix of (Shafer & Vovk,
2008)). We simply construct a classical non-conformity
score based on a given multidimensional predictor that sat-
isfies the conditions of the theorem, and show that the asso-
ciated predictors generate exactly the same prediction sets.

Proof: First, consider the acceptance set for label y and
time t, Syt , and assume it satisfies both of the conditions
given in the theorem statement. Then, define the non-
conformity score

Bt

(
σ

(i)
t/y, zi

)
=


2 if vyi /∈ S

y
t

1 if vyi ∈ int (Syt )
i/ (t+ 1) if vyi ∈ int (Syt ) .

Next, we consider three exclusive and exhaustive scenarios
to demonstrate the equivalence of the conformal predictor
associated with Bt and the multidimensional one. Assum-
ing, zt = (xt, y), we calculate the pyt values for the confor-
mal predictor associated with Bt in each scenario:

• If vyt ∈ int (Syt ), then y is included in the prediction
set for the multidimensional predictor. Also note that
the first inequality of the second condition of the the-
orem implies:

pyt =
τt + t− |int (Syt ) ∩∆y

t |
t

≥ ε.

Thus y is included for both of the predictors.

• If vyt /∈ S
y
t , the multidimensional predictor will reject

y at time t, and also if we calculate the confidence
value of y for the conformal predictor, by the second
half of condition ii:

pyt =
τt (t− |Syt ∩∆y

t |)
t

<
t− |Syt ∩∆y

t |
t

≤ ε.

• Lastly, if vyt ∈ boun (Syt ), the corresponding confi-
dence value becomes:

pyt =
t− |Syt ∩∆y

t |+ τt|int (Syt ) ∩∆y
t |

t
,

and this value is greater or equal to ε if and only if the
second condition on the Line 10 of the Algorithm 2
holds.

Since both predictors behave exactly the same for all of
these scenarios, we can declare they are equivalent and

since the conformal predictor is valid, the multidimensional
one also has to be valid.

In addition, we can omit the first half of the second assumed
condition, i.e. |int (Syt ) ∩ ∆y

t | ≤ (1− ε) t, at the cost of
achieving conservative validity instead of exact validity.

This follows from the fact that the inequality |int (Syt ) ∩
∆y
t | ≤ (1− ε) t is used only in the first scenario of the

proof. In that scenario, the multi-dimensional predictor
does not cause an error since the label y is included in the
predicted set. However, the conformal predictor may cause
an error if the inequality is violated. Thus the multidimen-
sional predictor preserves its (conservative) validity. This
argument is summarized in Corollary 3.1.1.

Corollary 3.1.1 The multidimensional conformal predic-
tor described in Algorithm 2 is valid, if Syt is σt-
measurable and |Syt ∩∆y

t | ≥ (1− ε) t.

This section has extended the conformal prediction frame-
work to multiple dimensional non-conformity scores and
has provided some sufficient conditions to achieve the va-
lidity guarantees. However, we haven’t touched the issue
of “How one should choose acceptance sets to obtain ef-
ficient predictions?”. The answer to this question depends
on the choice of the non-conformity scores which will en-
tail a specific design of acceptance sets. In the next sec-
tion, we will present a simple choice of acceptance sets for
2-dimensional non-conformity vectors in the binary classi-
fication setup that achieves more efficient predictions than
the traditional one dimensional conformal predictors under
some stability assumptions.

4 CONJUGATE PREDICTION FOR
BINARY CLASSIFICATION WITH
REJECT OPTION

In this section, we focus on a special case of the confidence
prediction problem, where the label space consists of only
two elements Y = {0, 1}. We propose a simple and effec-
tive way of choosing acceptance sets for two dimensional
conformal predictors based on any given classical confor-
mal predictor.

As mentioned in the introduction, this problem is equiva-
lent to the scenario of binary classification with reject op-
tion (Denis & Hebiri, 2015), where at each time point t
the predictor either makes a point prediction, i.e. 0 or 1,
for yt or refuses (rejects) to make one, i.e. Γεt = {0, 1}.In
this interpretation, validity implies the probability of error
for each prediction is equal to or less than ε and efficiency
implies the reject option is not used frequently. An asymp-
totic analysis of error and reject options for this scenario
when the traditional conformal prediction is employed can
be found at Chapter 3 of (Vovk et al., 2005).



The intuitive idea behind conformal prediction is that a
prediction y should be taken if its non-conformity score
(monotonic with the probability of error) takes on small
values with respect to the non-conformity scores of the
other data points. The proposed scheme, which we call
conjugate prediction, says to make a prediction y if its
non-conformity score takes a smaller value than the non-
conformity score of the alternative prediction, namely 1−y.

This approach in some sense tries to find a compromise be-
tween the maximum likelihood and conformal prediction.
Specifically, it will usually choose the most conforming la-
bel, thus enhancing efficiency, while preserving validity by
requiring the acceptance set to be large enough to cover at
least 1 − ε fraction of the data points. In the next section,
we define conjugate predictors rigorously and show their
efficiency. In Section 4.2. we will present the comparison
of conjugate and conformal predictors on standard machine
learning data sets.

4.1 Conjugate Conformal Prediction

Formally, a conjugate predictor associated with a given one
dimensional non-conformity scoreAt is a two-dimensional
conformal predictor with the non-conformity vectors

vyi =

(
αyi
βyi

)
=

 At

(
σ

(i)
t/y, (xi, yi)

)
At

(
σ

(i)
t/y, (xi, 1− yi)

)  ,

and the acceptance sets

Syt = {(α, β) : α < β or α ≤ supLyt },

where Lyt = {γ : |{i : αyi ≤ γ or αi < βyi }| ≤ (1− ε) t}
and sup ∅ = −∞.

For a more intuitive interpretation of the acceptance sets
Syt , one can imagine to start with the set of points above the
α = β line (see Figure 1) and combine it with the region
α ≤ γ where γ starts from −∞ and increase the accep-
tance set until the total number of points in the set equals
(1− ε) t, i.e. α ≤ supLyt , to make sure it satisfies the
conditions given in Corollary 3.1.1.

Similarly, the traditional conformal predictor associated
with At can also be represented as a two dimensional con-
formal predictor with the same non-conformity vectors vyi
and acceptance sets:

S̃yt = {α : α ≤ sup Eyt }

where, Eyt = {γ : |{i : αyi ≤ γ}| ≤ (1− ε) t}.

As you can see in Figure 1, the traditional conformal pre-
dictor satisfies the same intuition as the conjugate predic-
tor: start from γ = −∞ and include points in the accep-
tance set until the number of non-conformity vectors that
satisfy α ≤ γ inequality become equal to (1− ε) t. Note
that this final γ value becomes equal to sup Eyt .

Figure 1: (A Pictorial View of Conjugate Prediction) In
the figure α-β plane is sketched to illustrate the difference
between the conformal and confidence prediction frame-
works. For representative purposes, we choose t = 40 and
ε = 0.2. Each non-conformity vector is presented by a
blue point assuming yt = y, the acceptance set for conju-
gate prediction is on the right side of the red line, and the
acceptance set for the conformal predictor is on the left of
the green line. Assuming the green and red lines are ap-
proximately stable (i.e. they do not change based on an
individual label value y), the conformal predictor declines
to make a prediction if the test point, (xt, y), falls into ei-
ther green or red regions, however the conjugate predictor
declines only on the red region.

In the following theorem, we argue that a conjugate confor-
mal predictor is more efficient than the conformal predictor
associated with the same non-conformity score, if the scor-
ing functions are stable in the following sense. We say a
scoring function At is stable if it changes little when any
single label in the training set flips, i.e. At

(
σ

(i)
t/y, zi

)
'

At

(
σ

(i)
t/1−y, zi

)
for any i < t. The notion of stability

is studied thoroughly in statistical learning theory in the
context of necessary conditions for learnability (Shalev-
Shwartz, Shamir, Srebro, & Sridharan, 2010) (Bousquet &
Elisseeff, 2002). In fact, many of the well-known learning
algorithms, as well as the non-conformity scores derived
from them, are stable to differing degrees, especially as the
number of data points in the training sets increases, i.e. as
t increases (Shave-Taylor & Cristianini, 2004), (Bousquet
& Elisseeff, 2002), (Shalev-Shwartz & Ben-David, 2002).

In the following theorem, we first present a set of condi-
tions in terms of the auxilary sets Lyt and Eyt for relative ef-
ficiency of the conjugate predictors and then intuitively dis-
cuss why the stability of the scoring functions imply these



conditions.

Theorem 4.1 Let scoring functions At and tolerance level
ε ∈ [0, 1] be given. Also assume the auxilary sets Lyt and
Eyt are defined as:

Eyt = {γ : |{i : αyi ≤ γ}| ≤ (1− ε) t} and

Lyt = {γ : |{i : αyi ≤ γ or αyi < βyi }| ≤ (1− ε) t}.

If supLyt ≤ sup E1−y
t for both y ∈ {0, 1}, then the

conjugate predictor associated with At is more efficient
than the conformal predictor associated with the same non-
conformity score at time t.

Proof: In the proof, we ignore the tie-breaking issues for
the sake of brevity, but one can show, with a similar analy-
sis, that the result holds as long as both the conjugate and
conformal predictors use the same smoothing value, τt.

We start by assuming that the conjugate predictor declines
to make a decision at time t, i.e. |Γεt| = 2, which im-
plies the non-conformity vector corresponding to the tth

data point is included in the acceptance set regardless of
the value of y, i.e. vyt ∈ S

y
t for both y ∈ {0, 1}.

The definition of the non-conformity vector vyt = (αyt , β
y
t ),

implies the equality αyt = β1−y
t for all y ∈ {0, 1}. Hence,

the conditions for the rejection at time t can be written for
any y as:

vyt ∈ {(α, β) : (α < β or α ≤ supLyt )

and (α < β or α ≤ supL1−y
t )}

⊆ {(α, β) : max{α, β} ≤ max
y∈{0,1}

supLyt }.

To simplify this last statement further, note supLyt ≤
sup Eyt from the definitions of the auxiliary sets Lyt and
Eyt . Combining this inequality with the hypothesis of the
theorem, i.e. supLyt ≤ sup E1−y

t , we obtain:

max
y∈{0,1}

supLyt ≤ min
y∈{0,1}

sup Eyt .

Plugging this inequality in the previous statement:

vyt ∈ {(α, β) : max{α, β} ≤ min
y∈{0,1}

sup Eyt },

which implies vyt ∈ S̃yt and vyt ∈ S̃1−y
t . Therefore, the

conformal predictor associated with At also declines to
make a prediction.

Because the conformal predictor will decline to predict
whenever the conjugate predictor will, the conjugate pre-
dictor is at least as efficient as the conformal predictor. Fur-
ther, there are many cases where the conjugate predictor
might predict even though the conformal predictor doesn’t,
for example if the test point fall into the green region in
Figure 1.

Intuitively, the conditions given in the theorem hold for sta-
ble enough non-conformity scores, since stability implies
sup Eyt ' sup E1−y

t , and as mentioned before supLyt ≤
sup Eyt follows directly from the definition of these sets.

The theorem says the conjugate predictor performs at least
as efficiently as the original conformal predictor under
these stability conditions. The validity of the conjugate pre-
dictors follows from Corollary 3.1.1.

In the next subsection, we investigate the relative perfor-
mance of the conformal and conjugate predictors by com-
paring the error and rejection rates for different choices of
non-conformity scores and datasets. Our main observation
is that the conjugate predictors provide two type of gains.
First, it reduces the rejection rate due to the extra informa-
tion provided by the conjugate scores. Second, even if the
conjugate score does not provide any extra information (i.e.
the βyt can be calculated as a function of αyt ), it reduces the
error rate for a given rejection rate, by being more decisive
about its choices on easy samples.

4.2 Empirical Results

In this section, we show the results of applying our algo-
rithm and corresponding conformal predictor on some real
data-sets from UCI Machine Learning Repository (Lich-
man, 2013). The details of the used non-conformity scores
and the datasets are given in the following two subsections
and the numerical results are given at the last subsection.

4.2.1 Experiments

Our experiments use two different non-conformity scores:
one based on random forests and the other is based on near-
est neighbor classifiers. The reason to choose these two ex-
ample scores is to illustrate the effect of the conjugate pre-
dictor when the conjugate score providing new information
about the data (as in the nearest neighbor case), or not (as
in the random forests).

1. Out-of-bag Score in Random Forests: At each time t,
we train a random forest consist of 100 randomized
decision trees on σt/y . Randomization entails taking
a bootstrap of the samples for training and restricting
the optimization at the decision nodes to random sub-
sets of the features as described in (Breiman, 2001).
We used the Statistics and Machine Learning Tool-
box’s (MATLAB, 2013) under the default settings,
which are the settings suggested by Breiman origi-
nally.

The non-conformity score αyi of point zi is calcu-
lated as the fraction of trees (using a training set that
doesn’t include zi) that miss-classify the sample xi,
i.e. give the output 1 − yi. Note that this choice of
non-conformity score implies βyi = 1 − αyi , and thus



the conjugate score does not provide any new informa-
tion about the data. Nevertheless, conjugate prediction
will still be useful for larger error tolerances.

2. In-Class Distance in k-Nearest-Neighbor: As the sec-
ond scoring function, we built a non-conformity score
based on the well-known k nearest neighbor algo-
rithm. For each point zi, we calculated the closest
k data points with the same label yi from the set σ(i)

t/y

and used the arithmetic average of these k distances as
the non-conformity score of αyi .

In the implementation, we tried k values in the range 3
to 10, and we report the results for k = 5, which per-
formed the best in all five data sets. Note that while
larger values imply better stability, choosing k too
large weakens the classifier’s predictive power. We
used Euclidean distance to measure the closeness of
the data points after centering and scaling each fea-
ture to unit variance.

Note that, in contrast to the non-conformity score used
with random forests, this non-conformity score pro-
vides new information about the data, and as we see
in Section 4.2.3, the advantage of using conjugate pre-
dictors is greater in this case.

4.2.2 Data Sets

We used the following data sets from UCI ML Repository
(Lichman, 2013):

• Breast Cancer Wisconsin (Original) Data Set (Man-
gasarian & Wolberg, 1990): This data set consists of
699 data points, where each data point is collected
from a patient that contains 10 integer valued features
of a breast tumor and a binary label for its type (be-
nign/malignant).

• Haberman’s Survival Data Set: This data set contains
5 year survival information 306 patients after surgery
for breast cancer. The data contain 3 integer features
and 1 binary label (survived/died in 5 year.)

• Parkinson’s Data Set (Little, McSharry, Hunter, &
Ramig, 2008): This dataset contains data about 195
vocal recordings, where each record is represented by
a 23 dimensional real vector and the goal is to predict
if the subject has Parkinson’s disease or not.

• Musk (v1) Data Set: This data set contains 476 data
points on 92 types of molecules, each of which is rep-
resented by 166 features classifying them as musks
and non-musks. The goal is to determine whether a
new molecule will be a musk or not.

• Statlog (Australian Credit Approval) Data Set: This
data set contains 690 data points on anonymized credit
card applications described by 14 features, and classi-
fying them as approved or rejected.

4.2.3 Results

In this part, we tested the above five data sets with both of
the described non-conformity scores using error tolerance
values of 0.03, 0.10, and 0.18. Because we assume ex-
changeability, we randomly permute the data before each
experiment. Each experiment is repeated 10 times. The
means are reported in Table 1,2,3, and 4.

In Tables 1 and 2, we report the cumulative error rate, i.e.
fraction of mis-classified samples, for both conjugate and
conformal predictors for each score, data, tolerance level
combinations. Tables 3 and 4 give the cumulative rejection
rates, i.e. the ratio of samples where the classifier declined
to predict/classify.

Table 1: Conjugate Conformal Predictors: Mean Cumula-
tive Error Rates. KNN means k nearest neighbor, and RF
means random forest. B.C. means the breast cancer data
set, Surv means survival, and Park. means Parkinson’s.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.0284 0.0329 0.0335

KNN/Surv. 0.0363 0.1007 0.1699

KNN/Park. 0.0313 0.0836 0.1000

KNN/Musk 0.0336 0.1057 0.1473

KNN/Statlog 0.0358 0.1070 0.1574

RF/B.C. 0.0271 0.0334 0.0334

RF/Surv. 0.0366 0.1000 0.1788

RF/Park. 0.0313 00944. 0.1246

RF/Musk. 0.0372 0.1092 0.1571

RF/Statlog 0.0371 0.1035 0.1380

Table 2: Classical Conformal Predictors: Mean Cumula-
tive Error Rates. Labels have the same meaning as in the
previous table. Conjugate predictors (previous table) are
more accurate or comparable in nearly all cases.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.0343 0.1048 0.1827

KNN/Surv. 0.0330 0.0971 0.1683

KNN/Park. 0.0354 0.0979 0.1692

KNN/Musk 0.0368 0.1038 0.1815

KNN/Statlog 0.0371 0.1133 0.1917

RF/B.C. 0.0307 0.1034 0.1892

RF/Surv. 0.0366 0.1000 0.1794

RF/Park. 0.0313 0.0985 0.1697

RF/Musk. 0.0372 0.1092 0.1824

RF/Statlog 0.0371 0.1045 0.1832

Additionally, in Table 5 the cumulative error rates for the
native random forest and k nearest neighbor algorithms are
presented. For the native implementation, at each time
point t, the algorithm is trained on the first t−1 data points
and used to predict the tth one. In the for each combination,
we report the error rates of the native algorithms over the



Table 3: Conjugate Conformal Predictors: Mean Cumula-
tive Rejection Rates. Labels have the same meanings as in
the previous tables.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.0570 0.0110 0.0098

KNN/Surv. 0.9255 0.7258 0.4507

KNN/Park. 0.4359 0.1410 0.0728

KNN/Musk 0.6149 0.2603 0.0981

KNN/Statlog 0.7581 0.2423 0.0174

RF/B.C. 0.0271 0.0146 0.0143

RF/Surv. 0.7461 0.5020 0.3010

RF/Park. 0.3503 0.1323 0.0805

RF/Musk. 0.4779 0.2088 0.1084

RF/Statlog 0.3964 0.0936 0.0293

Table 4: Classical Conformal Predictors: Mean Cumula-
tive Rejection Rates. Labels have the same meanings as
in the previous tables. Note that conjugate predictors (pre-
vious table) enjoy consistently lower rejection rates for k
nearest neighbor algorithm and equivalent rejection rates to
the conformal ones upto statistical fluctuations while keep-
ing error rate at a lower level.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.6611 0.4246 0.2212

KNN/Surv. 0.9510 0.8013 0.6775

KNN/Park. 0.8195 0.6108 0.4615

KNN/Musk 0.8828 0.6903 0.5221

KNN/Statlog 0.9112 0.6878 0.4467

RF/B.C. 0.0255 0.0102 0.0095

RF/Surv. 0.7461 0.5020 0.3010

RF/Park. 0.3503 0.1297 0.0662

RF/Musk. 0.4779 0.2088 0.0962

RF/Statlog 0.3962 0.0929 0.0148

samples that corresponding conjugate predictors refused to
make a prediction or not.

We observe that conjugate predictors always preserve va-
lidity (see Table 1), since they reach an error rate equal or
less than the target tolerance level (up to statistical fluctua-
tions). However, when the data is relatively easy to classify
as in the breast cancer data (see Table 5), conjugate predic-
tors are more decisive while also reducing the error rate by
preserving the original validity guarantees.

Furthermore, the decisiveness of conjugate predictors re-
duces the rejection rates in our simulations (see Table 3 and
4). The gain is more pronounced when the data is relatively
less noisy, i.e. easy to classify as in the breast cancer data,
and the conjugate score of the base algorithm provides ex-
tra information about the data, as when using the k nearest
neighbor algorithm.

Table 5: Baseline: Depending on the error tolerance ε,
the conjugate algorithm refuses to predict on certain data
points. For each box having format x/y, the table shows
the error rate (x) of the underlying algorithm on the refused
data points and the error rate (y) on the data points upon
which the conjugate algorithm makes prediction. Note that,
the error rate is significantly higher on the refused data
points whenever the target error level ε is low, i.e. refusals
are inevitable to preserve the validity.

ε = 0.03 ε = 0.10 ε = 0.18

KNN/B.C. 0.10/0.03 0.05/0.03 0.00/0.03

KNN/Surv. 0.26/0.54 0.24/0.37 0.23/0.31

KNN/Park. 0.19/0.05 0.21/0.10 0.14/0.11

KNN/Musk 0.23/0.09 0.27/0.14 0.29/0.16

KNN/Statlog 0.16/0.15 0.22/0.14 0.11/0.16

RF/B.C. 0.17/0.03 0.01/0.03 0.00/0.03

RF/Surv. 0.36/0.14 0.41/0.20 0.41/0.26

RF/Park. 0.29/0.05 0.22/0.12 0.06/0.14

RF/Musk. 0.33/0.08 0.37/0.15 0.30/0.19

RF/Statlog 0.26/0.06 0.33/0.12 0.08/0.14

5 DISCUSSION & CONCLUSION

Extending conformal predictors to multiple dimensions is
both technically reasonable and practically beneficial. This
paper has shown that the extension almost always increases
the efficiency and always preserves the validity of ma-
chine learning algorithms compared with standard confor-
mal predictors.

Other applications of this extension include scenarios
where one may want to combine a set of conformal predic-
tions to make better predictions even when there are breaks
in exchangeability. For example, consider the problem of
prediction under seasonal changes or other sources of con-
cept drift.

Our conjugate prediction framework is an iterative method
for finding hybrid non-conformity scores. As noted in the
proof of Theorem 3.1, each multidimensional predictor can
be equivalently represented as a conformal predictor. Thus,
if one starts with a conformal predictor and can improve
upon it by extending it to higher dimensions, as in the case
of conjugate predictors, one will obtain a more effective
conformal predictor.

The next steps in this work are to demonstrate the benefits
of this extension to these other applications, to incorporate
the resulting methods into standard machine learning soft-
ware, and to explore further generalizations of conformal
(and multi-dimensional/conjugate conformal) predictors.
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