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Abstract

Bipartite ranking aims to maximize the area un-
der the ROC curve (AUC) of a decision function.
To tackle this problem when the data appears
sequentially, existing online AUC maximization
methods focus on seeking a point estimate of the
decision function in a linear or predefined sin-
gle kernel space, and cannot learn effective ker-
nels automatically from the streaming data. In
this paper, we first develop a Bayesian multiple
kernel bipartite ranking model, which circum-
vents the kernel selection problem by estimating
a posterior distribution over the model weights.
To make our model applicable to streaming da-
ta, we then present a kernelized online Bayesian
passive-aggressive learning framework by main-
taining a variational approximation to the poste-
rior based on data augmentation. Furthermore,
to efficiently deal with large-scale data, we de-
sign a fixed budget strategy which can effectively
control online model complexity. Extensive ex-
perimental studies confirm the superiority of our
Bayesian multi-kernel approach.

1 INTRODUCTION

Aiming to learn a ranking decision function that is likely to
place a positive instance before most negative ones, bipar-
tite ranking [Agarwal and Roth, 2005; Clémençon et al.,
2008; Kotlowski et al., 2011] is especially useful for
imbalanced data sets, where the area under the ROC
curve (AUC) [Hanley and McNeil, 1982; Bradley, 1997;
Cortes and Mohri, 2004] is a commonly used evaluation
metric. Recently, several online AUC maximization al-
gorithms with pairwise loss functions were proposed to
tackle this problem when the data appears sequential-
ly [Zhao et al., 2011a,b; Zhao and Hoi, 2012; Yang et al.,
2013; Gao et al., 2013; Hu et al., 2015; Ding et al., 2015].

Furthermore, the generalization performance of online
learning algorithms with pairwise loss functions have been
investigated in [Wang et al., 2012; Kar et al., 2013].

Nevertheless, existing work only focus on seeking a point
estimate of the decision function in a linear or predefined
single kernel space, and cannot learn effective kernels auto-
matically from the streaming data. As well known, choos-
ing an appropriate kernel for real-world situations usually
is not easy for users without enough domain knowledge.
Multiple Kernel Learning (MKL) [Rakotomamonjy et al.,
2008; Gönen and Alpaydın, 2011] can circumvent such a
problem by learning an optimal linear combination of a set
of predefined kernels. However, conventional online MKL
algorithms [Luo et al., 2010; Hoi et al., 2013; Sahoo et al.,
2014] are unsuitable for a direct use since AUC is a met-
ric represented by the sum of pairwise losses between in-
stances from different classes. More importantly, existing
online MKL methods typically maintain a point estimate
of their model weights, which can be affected seriously by
online outliers and usually needs a tough tuning process for
their penalty parameters.

Focusing on these problems, we first develop a Bayesian
Bipartite Ranking model with Multiple Kernels (B2RMK),
which circumvents the kernel selection problem by esti-
mating a posterior distribution over the model weights.
Specifically, B2RMK imposes global-local sparsity shrink-
age priors on the weights of kernels and support vectors
and adopts a margin-based ranking pseudo-likelihood func-
tion that mimics the pairwise hinge loss and can be ex-
pressed as a location-scale mixture of normals. Within the
Bayesian formalism, the new model can automatically infer
the weight penalty parameters and naturally alleviate over-
fitting to small training sets via model averaging over the
posterior.

To make our model applicable to streaming data, we then
present a kernelized online Bayesian Passive-Aggressive
(PA) [Crammer et al., 2006] learning framework. As far as
we know, this is the first effort to perform online Bayesian
learning with multiple kernels. The key of Bayesian PA



is to maintain a posterior distribution at each time step.
Unfortunately, exact posterior inference of B2RMK is in-
tractable, so we devise an efficient data augmentation
[Tanner and Wong, 1987] based variational method to ap-
proximate the posterior with mean-field assumption.

Unlike most existing online MKL methods [Jin et al.,
2010; Luo et al., 2010; Hoi et al., 2013], which don’t
bound their model complexity and require more and more
memory and computation when the data arrives sequential-
ly, online B2RMK only maintains two fixed-size buffers
(one for positive instances, and another for negative ones)
to store the learned support vectors, thus are much more
efficient for large-scale data sets. When a buffer is full,
we propose a principled strategy to update it, which can
guarantee that the most important support vectors won’t be
discarded. As in [Hu et al., 2015], smooth updating and
compensation schemes are employed to further boost per-
formance when updating the buffer. Extensive experimen-
tal studies confirm the superiority of our online Bayesian
multi-kernel approach.

2 PRELIMINARIES

To better motivate our work, we first introduce some pre-
liminaries, including bipartite ranking, AUC optimization
and MKL. Let X = {x ∈ Rd} be the instance space,
Y = {+1,−1} be the label set, and S = S+ ∪ S− be
a set of training instances, where S+ and S− include N+

positive instances and N− negative instances, respectively.
The goal of bipartite ranking is to learn a ranking decision
function that is likely to place a positive instance before
most negative ones. AUC is a commonly used evaluation
metric for bipartite ranking. For a ranking decision func-
tion f : X → R, its AUC measure on S is defined as:

AUC(f) = 1−
∑N+

i=1

∑N−
j=1 I(f(x+

i )≤f(x−
j ))

N+N−

where I(π) is the indicator function that equals 1 when π is
true and 0 otherwise. Since directly maximizing AUC(f)
leads to a difficult combinatorial optimization problem, in
practice, the indicator function is usually replaced by its
convex surrogate, e.g., pairwise hinge loss [Hu et al., 2015;
Zhao et al., 2011a] and squared loss [Gao et al., 2013],
which leads to minimizing the following regularized pair-
wise learning task [Christmann and Zhou, 2015]:

L(f) = c

2
∥f∥2H +

N+∑
i=1

N−∑
j=1

ℓ
(
f ;x+

i , x
−
j

)
where ∥ · ∥H denotes the norm in Reproducing Kernel
Hilbert Space (RKHS), ℓ(·) is the convex surrogate loss
function and c is the regularization parameter balancing the
model complexity and training errors.

A kernelized ranking decision function f : X → R that is
used to predict the ranking score of a test instance xi can

be written as
f(xi) = a⊤ki + b

where a = [a1, . . . , aN ]⊤ denotes the vector of weight-
s assigned to each training instance (N = N+ + N−); b
is the bias; and ki = [K(x1, xi), . . . ,K(xN , xi)]

⊤, where
K : X × X → R is a kernel function that measures the
similarities between xi and xj , j = 1, 2, . . . , N .

An important problem in single kernel learning is to pre-
specify the kernel parameters, which is often done in an
empirical way. This problem can be circumvented by using
the MKL framework [Rakotomamonjy et al., 2008], which
is a popular technique for learning an optimal linear com-
bination of a set of predefined kernels. MKL algorithms
basically use a weighted sum of P kernels {Km : X×X →
R}Pm=1 to get the following multi-kernel ranking decision
function:

f(xi) = a⊤
(

P∑
m=1

emkm,i

)
+ b =

P∑
m=1

ema⊤km,i + b

where km,i = [Km(x1, xi), . . . ,Km(xN , xi)]
⊤, and em

denotes the weight assigned to the m-th kernel.

In the sequel, the m-th N × N kernel matrix will be de-
noted by Km, and the vector of ranking scores of positive
instances and negative instances will be denoted by f+ and
f−, respectively, and f =

[
f⊤+ f⊤−

]⊤
.

3 BAYESIAN MULTIPLE KERNEL
BIPARTITE RANKING

In this section, we formulate a probabilistic model for
multi-kernel bipartite ranking. We impose a fairly gener-
al global-local shrinkage prior on the sample weights and
kernel combination weights to keep the sparsity of them.
Since pairwise hinge loss makes traditional Bayesian anal-
ysis hard, we then define a margin-based ranking pseudo-
likelihood function to overcome this situation. After intro-
ducing a set of augmented variables and making the mean-
field assumption, the intractable inference problem of our
model can be transformed into a tractable one.

3.1 BAYESIAN SPARSITY SHRINKAGE PRIOR

Similar as in kernelized SVM, the sample weights a is of-
ten expected to be sparse for selecting support vectors ac-
tually needed in decision function. From the Bayesian per-
spective, a fairly general global-local shrinkage prior is the
Three Parameter Beta Normal (T PBN ) [Armagan et al.,
2011], which favors strong shrinkage of small signals while
having heavy tails to avoid over-shrinkage of the larger sig-
nals. Thus, concentrated at zero, T PBN can yield sparse
model representations by suppressing unnecessary support
vectors. In this paper, we select T PBN as the sparsi-
ty shrinkage prior due to its better mixing properties than



priors such as spike-slab and Laplace. Besides, T PBN
works well for high-dimensional settings since it can spec-
ify global and local properties independently. Assuming
a ∼

∏N
i=1 T PBN (ai|αa, βa, ϕ), we have the following

hierarchical prior:

ai|λi ∼ N (ai|0, λi),

λi|ξi ∼ Γ(λi|αa, ξi), ξi|ϕ ∼ Γ(ξi|βa, ϕ),

ϕ|η ∼ Γ(ϕ|1/2, η), η ∼ Γ(η|1/2, 1),

where Γ(·) is the Gamma distribution (with shape-rate pa-
rameterization). Note that sample-level sparsity can be
tuned by assigning suitable values to the hyper-parameters
(αa, βa). Setting αa = βa = 0.5, a special case of T PBN
corresponds to the horseshoe prior.

Similarly, sparsity on kernel combination weights e =
[e1, . . . , eP ]

⊤ is also desirable for better interpretability.
So, we assume e ∼

∏P
m=1 T PBN (em|αe, βe, ρ), involv-

ing latent variables ωm, φm and τ . Kernel-level sparsity
can also be tuned by changing (αe, βe).

With the above priors on model weights, we assume the
ranking scores of our B2RMK model have the following
distributions,

G|a, {Km}Pm=1, υ ∼
P∏

m=1

N∏
i=1

N
(
gmi|a⊤km,i, υ

−1
)
,

f+|e,G, b, c ∼
N+∏
i=1

N
(
fi|e⊤g·i + b, c−1

)
,

f−|e,G, b, c ∼
N−∏
j=1

N
(
fj |e⊤g·j + b, c−1

)
,

where υ ∼ Γ (υ|αυ, βυ), b|γ ∼ N
(
b|0, γ−1

)
, γ ∼

Γ (γ|αγ , βγ), c ∼ Γ (c|αc, βc). The intermediate vari-
ables gmi (m = 1, . . . , P, i = 1, . . . , N ) are introduced
to make the inference procedures efficient. The P × N
matrix of intermediate variables is denoted by G, and the
m-th row and i-th column of G by gm· and g·i, respec-
tively. In the sequel, all hyper-parameters will be denoted
by Υ = {αa, βa, αe, βe, αυ, βυ, αγ , βγ , αc, βc}, while the
priors by Ψ = {λ, ξ, ϕ, η,ω,φ, ρ, τ, υ, γ, c} and the re-
maining variables by Ω = {a, b, e,G, f+, f−}.

3.2 MARGIN-BASED RANKING LIKELIHOOD

Several loss functions are available for bipartite ranking.
Among them, pairwise hinge loss is the tightest convex up-
per bound on the rank loss, which is beneficial for better
performance and faster convergence. Specifically, the pair-
wise hinge loss on data set S can be written as

ℓ(f ;S) =

N+∑
i=1

N−∑
j=1

max
(
0, 1− f(x+

i ) + f(x−
j )

)
,

which does not lend itself to a convenient description of a
likelihood function. To overcome this situation, we propose
to define a margin-based ranking pseudo-likelihood

L(y|f) =
N+∏
i=1

N−∏
j=1

exp (−2max(0, 1− fi + fj)) ,

where y is the label vector and has been divided out.
With T PBN priors and the above margin-based ranking
pseudo-likelihood, we can get the following pseudo poste-
rior distribution using Bayes’ rule

p(Ψ,Ω|y) = L(y|f)p(Ω|Ψ)p(Ψ)/p(y|Υ),

where p(y|Υ) is the normalization constant. Note that it
is hard to compute p(Ψ,Ω|y) analytically due to the max
function in L(y|f). Fortunately, we can re-express L(y|f)
as the product of N+ · N− location-scale mixtures of nor-
mals (see Supplement Section A) based on data augmenta-
tion idea [Tanner and Wong, 1987]

L(y|f) =
N+∏
i=1

N−∏
j=1

∫ ∞

0

exp
(

(θij+1−fi+fj)
2

−2θij

)
√
2πθij

dθij , (1)

where θij is the augmented variable. In the following, the
matrix of augmented variables will be denoted by θ, and
the i-th row and j-th column of θ by θi· and θ·j , respective-
ly. (1) indicates that the posterior distribution p(Ψ,Ω|y)
can be expressed as the marginal of a higher-dimensional
distribution that includes the augmented variables. There-
fore, the augmented posterior distribution has the form

p(Ψ,Ω,θ|y) = L(y,θ|f)p(Ω|Ψ)p(Ψ)

p(y|Υ)
, (2)

where the unnormalized joint distribution of y and θ con-
ditioned on f is

L(y,θ|f) =
N+∏
i=1

N−∏
j=1

1√
2πθij

exp

(
(θij + 1− fi + fj)

2

−2θij

)
.

3.3 VARIATIONAL APPROXIMATE INFERENCE

Directly solving for the augmented posterior is intractable
due to the normalization constant p(y|Υ), thus we appeal
to the mean-field variational approximate Bayesian infer-
ence method, which is generally much more efficient than
the Markov Chain Monte Calo (MCMC) based sampling
methods. Specifically, we assume there are a family of fac-
torable and free-form variational distributions

q(Ψ,Ω,θ) = q(λ)q(ξ)q(ϕ)q(η)q(ω)q(φ)q(ρ)q(τ)q(υ)

·q(γ)q(c)q(a)q(b, e)q(G)q(f+)q(f−)q(θ),

and the objective is to get the optimal one which minimizes
the Kullback-Leibler (KL) divergence between the approx-
imating distribution and the target posterior, i.e.,

min
q(Ψ,Ω,θ)∈P

KL (q(Ψ,Ω,θ)∥p(Ψ,Ω,θ|y)) ,



where P is the space of probability distributions. To this
end, we first initialize the moments of all factor distribu-
tions of q(Ψ,Ω,θ) appropriately and then iteratively opti-
mize each of the factors in turn using the current estimates
for all of the other factors. It can be shown that when keep-
ing all other factors fixed the optimal distribution q∗(a) sat-
isfies

q∗(a) ∝ exp{E−a[log p(Ψ,Ω,θ, {Km}Pm=1,y)]}, (3)

where E−a denotes the expectation with respec-
t to p(Ψ,Ω,θ) over all variables except for a, and
p(Ψ,Ω,θ, {Km}Pm=1,y) is the joint distribution of data
and all variables, which has the following form

p(Ψ,Ω,θ, {Km}Pm=1,y) =

L(y,θ|f)p(f |e,G, b, c)p(G|a, {Km}Pm=1, υ)

·p(a|λ)p(e|ω)p(b|γ)p(λ|ξ)p(ξ|ϕ)p(ϕ|η)p(η)
·p(ω|φ)p(φ|ρ)p(ρ|τ)p(τ)p(υ)p(γ)p(c).

Expanding the right side of (3) and ignoring the terms un-
related to a, we can further get1

q∗(a) ∝ exp{E−a[log p(G|a, {Km}Pm=1, υ) + log p(a|λ)]}

= N
(
Σa

(
⟨υ⟩

∑P

m=1
Km⟨g⊤

m·⟩
)
, Σa

)
,

where Σa =
(
⟨υ⟩

∑P
m=1KmK⊤

m+ ⟨Λ−1
λ ⟩

)−1

and Λ−1
λ =

diag(λ)−1. Similarly, we can also get

q∗(b, e) = N
(
Σ(b,e)⟨c⟩

[
1, ⟨G⟩⊤

]⊤ ⟨f⟩, Σ(b,e)

)
,

q∗(G) =
N∏
i=1

N
(
µg·i ,

(
⟨c⟩⟨ee⊤⟩+ ⟨υ⟩I

)−1
)
,

q∗(f+) = N
(
µf+ ,

( N−∑
j=1

⟨Λ−1
θ·j

⟩+ ⟨c⟩I
)−1)

,

q∗(f−) = N
(
µf− ,

( N+∑
i=1

⟨Λ−1
θi·

⟩+ ⟨c⟩I
)−1)

,

q∗(θ) =

N+∏
i=1

N−∏
j=1

GIG
(1
2
, 1, ⟨(1− fi + fj)

2⟩
)
,

where

Σ(b,e) =

[
⟨c⟩N + ⟨γ⟩, ⟨c⟩1⊤⟨G⊤⟩
⟨c⟩⟨G⟩1, ⟨c⟩⟨GG⊤⟩+ ⟨Λ−1

ω ⟩

]−1

,

µg·i = Σg·i(⟨c⟩ (⟨fi⟩⟨e⟩ − ⟨be⟩) + ⟨υ⟩K⊤
i ⟨a⟩),

µf+ = Σf+(N−1+⟨θ−1⟩ (⟨f−⟩+ 1)+⟨c⟩(⟨G⊤
+⟩⟨e⟩+⟨b⟩1)),

µf− = Σf−(⟨θ−1⟩⊤ (⟨f+⟩ − 1)−N+1+⟨c⟩(⟨G⊤
−⟩⟨e⟩+⟨b⟩1)).

1Here ⟨·⟩ means the expectation operator, e.g., ⟨υ⟩ means the
expectation of υ over its current optimal variational distribution.

Note that, θ−1 is the element-wise inversion of θ, and G+

(G−) denotes the part of G corresponding to positive (neg-
ative) instances. The detailed derivations of the above e-
quations together with the equations for all other variables
can be found in the Supplement Section B.

4 ONLINE B2RMK LEARNING

The above batch B2RMK model still suffers from efficien-
cy problems, e.g., huge memory consumption in dealing
with large data sets and time-consuming re-training when
the data appears sequentially. Online Passive-Aggressive
(PA) [Crammer et al., 2006] learning is a principled way
to solve such problems. However, it is less explored under
the Bayesian framework. Here, we present a fixed budget
strategy to conduct online multiple kernel PA learning in
Bayesian manner. Our method can be seen as an exten-
sion of the linear framework in [Shi and Zhu, 2014], which
studied online max-margin topic models.

In the online setting, what we truly care about is how to
update the current model, on the arrival of a new data. So,
assume we already have an existing B2RMK model at the
t-th trial. In the updating of the kernel-based ranking de-
cision function, the main problem is to compute the Gram
matrix of pairwise kernel evaluations between the historical
instances and new arriving instance, and we have to store
all the received historical instances, making it impractical
for large-scale online learning tasks. We address this chal-
lenge by maintaining only a small number of received his-
torical instances. Specifically, we define two buffers B+

t

and B−
t of size |B+

t | and |B−
t |, for storing the learned im-

portant positive and negative support vectors at the t-th tri-
al, respectively. These support vectors in B+

t and B−
t are

essential for constructing the ranking decision function at
the (t+1)-th trial, thus are expected to keep track of the
global information of the decision boundary. To this end,
existing online MKL methods [Luo et al., 2010; Hoi et al.,
2013] typically assume an infinite buffer. However, their
naive treatment of storing all received historical instances,
requires more and more memory and computation when
the data arrives sequentially. On the contrary, we con-
trol the computational complexity of our Online B2RMK
(OB2RMK) model by fixing the buffer size to an appro-
priate value, assuming that the performance of OB2RMK
increases gradually with the increase of the buffer and it
will be saturated when the buffer is large enough. As will
be seen in the experimental section, such assumptions are
well validated. Overall, the proposed OB2RMK consists of
two key modules, i.e., buffer update and model update.

4.1 UPDATE BUFFER

How to maintain the buffers with the most informative sup-
port vectors to get better generalization performance is a



key challenge. Traditionally, First-In-First-Out (FIFO) and
Reservoir Sampling (RS) are two typical stream oblivi-
ous policies to update the buffers and have demonstrat-
ed their effectiveness in online linear AUC maximization
[Zhao et al., 2011a]. However, FIFO and RS will cast off
the important support vectors, thus will degrade the perfor-
mance of the online learning algorithms. Compared with
linear algorithms, this adverse impact will be more intense
in the kernel-based algorithms which work with the Gram
matrix of pairwise kernel evaluations [Yang et al., 2013;
Hu et al., 2015]. In the following, we will propose a nov-
el strategy to update the buffers for OB2RMK, aiming to
preserve the most important support vectors.

For the incoming new instance (x⋆, y⋆), instead of counting
its pairwise losses with all support vectors in the opposite
buffer which is easily affected by outliers, we only count
the pairwise losses with its k-nearest opposite support vec-
tors Xk. This allows us to utilize the local information
around x⋆ and improve the robustness of the ranking de-
cision function [Hu et al., 2015].

When the buffers B+
t and B−

t are not full, the incoming
new instance will be put into one of the buffers directly,
thus the pairwise hinge loss at the (t+1)-th trial is

ℓ(f ;x⋆, Xk) =
∑k

j=1 max
(
0, 1− f(x⋆) + f(x−

j )
)
, y⋆ = 1,∑k

i=1 max
(
0, 1− f(x+

i ) + f(x⋆)
)
, y⋆ = −1.

When either buffer is full, one of the instances in this buffer
should be discarded, to accommodate the incoming new
instance. Recall that the T PBN prior concentrates at ze-
ro, thus a positive (negative) support vector xi is likely to
have a positive (negative) weight ai to attain a discrimi-
native decision function. Supposing B+

t (B−
t ) is full, we

first search for a support vector xr which has the small-
est (largest) weight in the buffer. Instead of discarding xr

directly, we put xr and x⋆ together to count the pairwise
losses between them and Xk. This compensation scheme
guarantees the useful information of xr can be fully uti-
lized before it is discarded. Hence, the pairwise hinge loss
at the (t+1)-th trial is

ℓ(f ;x⋆, xr, Xk) =
∑k

j=1{max(0, 1− f(x⋆) + f(x−
j ))

+ max(0, 1− f(xr) + f(x−
j ))}, y⋆ = 1,∑k

i=1{max(0, 1− f(x+
i ) + f(x⋆))

+ max(0, 1− f(x+
i ) + f(xr))}, y⋆ = −1.

Concisely, the pairwise hinge loss at the (t+1)-th trial can
be uniformly written as

ℓ(f ;x⋆, Bt) =

Ñ+∑
i=1

Ñ−∑
j=1

max
(
0, 1− f(x+

i ) + f(x−
j )

)
,

where Bt = B+
t ∪ B−

t , and Ñ+ and Ñ− are the number
of positive and negative instances, respectively, in counting
the pairwise hinge loss at the (t+1)-th trial. For example,
we have Ñ+ = 1, Ñ− = k when y⋆ = 1 and B+

t was not
full (i.e., without xr), and Ñ+ = 2, Ñ− = k when y⋆ = 1
and B+

t was full (i.e., with xr).

4.2 UPDATE MODEL

In online B2RMK, the model parameters a, b and e should
vary with t, to update the ranking decision function. Note
that the dimensionality of a will increase until the buffers
are full, whereas b and e are always fixed-size.

4.2.1 Priors

Let pt(at, b,e) denote the posterior distribution of (a, b, e)
at the t-th trial, which will become a prior distribution at the
(t+1)-th trial. Assuming a⋆ is the corresponding weight of
x⋆ at the (t+1)-th trial. After imposing a T PBN prior
on a⋆, i.e., a⋆|αa⋆ , βa⋆ , ϕ⋆ ∼ T PBN (a⋆|αa⋆ , βa⋆ , ϕ⋆),
we have the hierarchical priors: a⋆|λ⋆ ∼ N (a⋆|0, λ⋆),
λ⋆|ξ⋆ ∼ Γ(λ⋆|αa⋆ , ξ⋆), ξ⋆|ϕ⋆ ∼ Γ(ξ⋆|βa⋆ , ϕ⋆), ϕ⋆|η⋆ ∼
Γ(ϕ⋆|1/2, η⋆) and η⋆ ∼ Γ(η⋆|1/2, 1).

The prior distributions of G, f+, f−, υ and c are omit-
ted here as they are similar as in B2RMK. Now let
Υ̃ = {αa⋆ , βa⋆}, Ψ̃ = {λ⋆, ξ⋆, ϕ⋆, η⋆} and Ω̃ =
{f+, f−,G, υ, c} for notational simplicity.

4.2.2 Posterior Updating

Since a, b, e, Ψ̃ and Ω̃ actually are random variables, we
have to average the loss ℓ(f ;x⋆, Bt) over their joint dis-
tribution. Let Ep(a,b,e,Ψ̃,Ω̃) denote the expectation over
p(a, b, e, Ψ̃, Ω̃), then we define the following expected
pairwise hinge loss at the (t+1)-th trial:

R(p(a, b,e, Ψ̃, Ω̃)) =
Ñ+∑
i=1

Ñ−∑
j=1

Ep(a,b,e,Ψ̃,Ω̃)[max (0, 1− fi + fj)].

Note that, expected pairwise hinge loss is an upper bound
of the pairwise hinge loss of the expected bipartite ranking
model by Jensen’s inequality, and is more convenient for
our inference as shown below.

Now we can infer the new posterior distribution
pt+1(a, b, e) on the arrival of the new data (x⋆, y⋆) by solv-
ing the following optimization problem:

min
p(a,b,e)∈P

KL (p(a, b, e)∥pt(at, b, e)p(a⋆))

+2C · R(p(a, b, e, Ψ̃, Ω̃)), (4)

where C is a positive regularization parameter, the constant
2 is just for convenience, and R(p(a, b, e, Ψ̃, Ω̃)) is the ex-
pected pairwise hinge loss at the (t+1)-th trial. Intuitively,



we find a posterior distribution pt+1(a, b, e) in the feasi-
ble zone that is not only close to pt(at, b, e)p(a⋆), but also
has small loss at the new trial. Note that a =

[
a⊤
t a⋆

]⊤
at the (t+1)-th trial, but if B+

t (B−
t ) is already full and

y⋆ = 1 (y⋆ = −1), the weight vector at has been truncated
one dimension before the optimization (4) to accommodate
a⋆, which corresponds to an updating of the buffer.

Directly optimizing (4) with R is difficult and inefficient.
Here we regard

Lt+1(y|a, b, e) =
Ñ+∏
i=1

Ñ−∏
j=1

exp
{
−2C · Ep(Ψ̃,Ω̃) [max(0, 1− fi + fj)]

}
,

as the unnormalized pseudo-likelihood of label vector y,
then (4) can be rewritten as

min
p(a,b,e)∈P

KL (p(a, b, e)∥pt(at, b, e)p(a⋆))

−Ep(a,b,e)[log(Lt+1(y|a, b, e))].

It is straightforward to verify that the solution of this infor-
mation theoretical optimization problem is

p(a, b, e) =
pt(at, b, e)p(a⋆)Lt+1(y|a, b, e)

p(y|Υ̃)
,

where p(y|Υ̃) is the normalization constant, and the pos-
terior at the t-th trail pt(at, b, e) becomes a prior. Since it
is hard to compute the expectation with respect to p(Ψ̃, Ω̃)
in Lt+1(y|a, b,e), we can regard the posterior distribution
p(a, b, e) as the marginal of a higher-dimensional distribu-
tion that includes variables Ψ̃ and Ω̃. Note that Ψ̃ and Ω̃
will play only an auxiliary role in the inference procedure.

Therefore, the higher-dimensional distribution of a, b, e, Ψ̃
and Ω̃ at the (t+1)-th trial satisfies the following form:

pt+1(a, b, e, Ψ̃, Ω̃) =
pt(at, b, e)p(a⋆)p(Ψ̃, Ω̃)Lt+1(y|f)

p(y|Υ̃)
,

Lt+1(y|f) =

Ñ+∏
i=1

Ñ−∏
j=1

exp (−2C ·max(0, 1− fi + fj)) ,

which is intractable to compute analytically due to the max
function in it. Similar as in B2RMK, where data augmen-
tation presents an elegant way to deal with the challenging
posterior inference problem, we transform Lt+1(y|f) into
the product of Ñ+ ·Ñ− location-scale mixtures of normals:

Lt+1(y|f) =

Ñ+∏
i=1

Ñ−∏
j=1

∫ ∞

0

exp
(

(θij+C(1−fi+fj))
2

−2θij

)
√

2πθij
dθij .

Now Lt+1(y|f) can also be seen as the marginal of the
higher-dimensional distribution

Lt+1(y,θ|f) =
Ñ+∏
i=1

Ñ−∏
j=1

exp
(

(θij+C(1−fi+fj))
2

−2θij

)
√
2πθij

,

and the complete posterior distribution at the (t+1)-th trial
can be expressed as

pt+1(a, b, e, Ψ̃, Ω̃,θ) =

pt(at, b, e)p(a⋆)p(Ψ̃, Ω̃)Lt+1(y,θ|f)
p(y|Υ̃)

.

4.2.3 Approximate Inference

We then make the variational approximate inference for
pt+1(a, b, e, Ψ̃, Ω̃,θ). Specifically, assume there are a fam-
ily of factorable and free-form variational distributions

qt+1(a, b, e, Ψ̃, Ω̃,θ) =

qt+1(a)qt+1(b, e)qt+1(λ⋆)qt+1(ξ⋆)qt+1(ϕ⋆)qt+1(η⋆)

·qt+1(υ)qt+1(c)qt+1(G)qt+1(f+)qt+1(f−)qt+1(θ),

and the goal is to get the optimal one which minimizes
KL(qt+1(a, b, e, Ψ̃, Ω̃,θ)∥pt+1(a, b,e, Ψ̃, Ω̃,θ)) between
the approximating distribution and the target posterior. Fol-
lowing similar derivations as in B2RMK model, we can in-
fer the optimal distributions for all involved variables at the
(t+1)-th trial, and the detailed descriptions are shown in
Supplement Section C.

5 CONVERGENCE, COMPLEXITY AND
PREDICTION

In both B2RMK and OB2RMK, the inference mechanis-
m sequentially updates the approximate posterior distribu-
tions of the model parameters and the augmented parame-
ters until convergence, which is guaranteed because the KL
divergence is convex with respect to each of the factors.

Rather than addressing the high-dimensionality problem
directly, our kernel-based approach always transforms the
original data into kernel matrices whose sizes only depend
on the number of instances. Meanwhile, our online al-
gorithm can naturally overcome the memory consumption
challenge posed by large training sets.

For B2RMK, the computational complexity for trans-
forming original data into kernel matrices {Km}Pm=1 is
O(N2Pd), where d is the dimensionality of the original
data. Note that

∑P
m=1 KmK⊤

m should be cached before
starting inference to reduce the computation. The compu-
tational complexity for each iteration of the variational in-
ference on training data is O(N3 + P 3), where the matrix
inversions for computing the covariances Σa and Σb,e con-
sume O(N3) and O(P 3) computation, respectively. Note
that we can explore the symmetric positive semi-definite
property to accelerate these matrix inversions.



For OB2RMK, the computational complexity for the con-
struction of P kernel matrices {Km}Pm=1 at the t-th tri-
al is O(|Bt|ÑPd), where |Bt| = |B+

t | + |B−
t | and

Ñ = Ñ+ + Ñ−. The computational complexity for
each iteration of the variational inference during training
is O(|Bt|3 + P 3), which indicates that the computational
complexity of OB2RMK will be limited by the buffer size
|Bt| when P is given.

After obtaining the approximate posterior distributions
q∗(a) and q∗(b, e), the ranking score for a new instance
xnew can be calculated by:

fnew = ⟨a⟩⊤
(∑P

m=1⟨em⟩km,new

)
+ ⟨b⟩.

6 EXPERIMENTS

In this section, we present extensive experimental results
on real data sets to demonstrate the effectiveness of the pro-
posed B2RMK and OB2RMK with fixed budgets. Specifi-
cally, we compare them with the following algorithms:

• Three batch learning algorithms, including SVMperf

for ordinal regression (SVM-OR) [Joachims, 2006], a
bipartite ranking model with univariate logistic loss
(Uni-Log) [Kotlowski et al., 2011] and least square
SVM (LS-SVM);

• Several state-of-the-art online AUC maximization
algorithms, including one-pass AUC optimization
(OPAUC) [Gao et al., 2013], kernelized online imbal-
anced learning (KOIL) algorithm with fixed budgets
[Hu et al., 2015] and a bounded kernel-based online
learning algorithm (Projectron++) [Orabona et al.,
2009];

• A latest online multiple kernel classification (OMKC)
algorithm with infinite buffer size, which doesn’t
bound its model complexity, thus requires more and
more computational resources when the data arrives
sequentially [Hoi et al., 2013].

6.1 EXPERIMENTAL TESTBED AND SETUP

We conduct experiments on a variety of data sets obtained
from the UCI and the LIBSVM websites, as summarized in
Table 1. To be consistent with previous studies [Gao et al.,
2013; Hu et al., 2015], the features have been scaled to
[−1, 1] for all data sets, and multi-class data sets have been
transformed into class-imbalanced binary ones. On each
data set, we conduct four independent trials of 5-fold cross
validation for all the algorithms, where four folds of the da-
ta are used for training while the rest for test in each trial.
The averaged AUC value over these 20 runs is reported. For
kernelized methods, we predefine a pool of 18 kernel func-
tions on all features, including Gaussian kernels with 13 d-
ifferent widths {2−6, 2−5, . . . , 26} and polynomial kernels

with 5 different degrees {1, 2, . . . , 5}. Following [Gönen,
2012], all kernel matrices are normalized to have unit di-
agonal entries, i.e., spherical normalization, which can be
done online. Note that our Bayesian multi-kernel approach
infers model parameters automatically via posterior infer-
ence rather than time-consuming grid search. Though we
still have to specify the hyper-parameters, they are fixed for
all 15 data sets without re-adjustment on each data set.

Table 1: Details of the data sets used in our experiments.
Datasets #instances Datasets #instances Datasets #instances
sonar 208 svmguide2 391 svmguide3 1243
glass 214 diabetes 768 segment 2310
heart 270 fourclass 862 satimage 4435
bupaliver 345 german 1000 spambase 4601
ionosphere 351 splice 1000 usps 9298

6.2 PERFORMANCE EVALUATION

6.2.1 Batch Learning

Though we mainly focus on online learning, we also briefly
compare the proposed B2RMK with three batch method-
s. We force sparsity at both sample-level and kernel-level
by imposing sparsity-inducing priors (T PBN ) on the sam-
ple weights and kernel weights, respectively. Specifically,
the hyper-parameters of the proposed B2RMK are set to
(αa, βa) = (αe, βe) = (0.5, 0.5), (αυ, βυ) = (αc, βc) =
(10+2, 10−2) and (αγ , βγ) = (10−2, 10−2) for all data set-
s, while 5-fold cross validation is conducted on training set-
s to choose a better regularization parameter from 2[−10:10]

for other methods. The averaged AUC values of these batch
algorithms are listed in Table 2, which show that B2RMK
performs significantly better than the competitors on 3 out
of 5 data sets. Figure 1 illustrates the kernel weights and
sample weights obtained by B2RMK on ‘fourclass’ data
set, which show that our model can effectively identify the
key kernels and support vectors that are actually needed.

Table 2: Average AUC of batch learning methods.

Methods diabetes fourclass german splice usps

SVM-OR .832±.032 .831±.031 .793±.035 .924±.009 .963±.005
Uni-Log .833±.032 .829±.031 .799±.034 .921±.011 .964±.004
LS-SVM .832±.033 .831±.031 .799±.034 .925±.009 .963±.005
B2RMK .832±.028 1.000±.000 .795±.027 .936±.012 .999±.001
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Figure 1: (a) Kernel weights and (b) sample weights ob-
tained by B2RMK on ‘fourclass’ data set.



6.2.2 Online Learning

In real world online learning problems, there is usually very
few training data at the beginning, and it is required to
maintain a dynamic model with the sequentially arriving
data. Since revisiting historical data is expensive for on-
line algorithms, we cannot do cross validation on the entire
training set. As such, we assume a half of one fold in the
training data is available in a batch manner, and all algo-
rithms tune their parameters on them.

For KOIL updated by RS++ or FIFO++, we set the learn-
ing rate η = 0.01 and select the penalty parameter C from
2[−10:10] as suggested in their paper. For OPAUC, we select
the learning rate parameter η and the regularization param-
eter λ from 2[−12:10] and 2[−10:2], respectively. For Projec-
tron++, we select the parameter of projection difference η
from 2[−10:10]. For OMKC, we adopt the deterministic up-
dating and combination strategy, and the discount weight
parameter β and smoothing parameter δ are fixed to 0.8
and 0.01, respectively. For OB2RMK, we initially conduct
B2RMK on the half fold of training data to get the poste-
rior distribution p(a, b, e). Then the hyper-parameters of
OB2RMK are set to (αa⋆ , βa⋆) = (αυ, βυ) = (αc, βc) =
(1, 1). The parameter k is fixed to 3, and the regularization
parameter C is chosen from {0.1, 1, 3}. Furthermore, to
provide KOIL and Projectron++ with multiple kernel infor-
mation, we also run them with an unweighted combination
of all the kernels as well as the best kernel among the pool
of kernels. The symbols u and ∗ marked on the upper right
corner are used for denoting them, respectively. All buffer
sizes for KOIL and OB2RMK are set to 100.

Table 3 summarizes the average AUC values of the com-
pared online algorithms. We also list the performance of
the proposed batch B2RMK in the last column for refer-
ence. Several observations can be drawn as follows. First,
by comparing the proposed OB2RMK algorithm against
the other online algorithms, we can find that the OB2RMK
performs considerably better on most data sets. In particu-
lar, the AUC values of OB2RMK significantly surpass the
baseline algorithms on some data sets. For example, on
‘bupaliver’, the AUC values for the baseline algorithms are
lower than 71%, while OB2RMK is able to achieve 75.8%.
Secondly, online multiple kernel learning algorithms show
better AUC performance than the single kernel and linear
online learning algorithms on most data sets. This demon-
strates the power of multiple kernel learning methods in
classifying real-world data sets. Thirdly, OPAUC achieves
fairly comparable or even better results than kernel-based
algorithms on the data sets of ‘svmguide2’ and ‘german’.
We attribute this to the fact that a linear algorithm is enough
to achieve good performance on some data sets, while the
kernel-based algorithms may be easily affected by outlier-
s. Finally, by examining the proposed OB2RMK algo-
rithm against the online multiple kernel learning algorith-
m OMKC(D,D) with infinite buffers, we can find that the

OB2RMK algorithm tends to outperform the OMKC(D,D)

algorithm on most data sets. This encouraging result shows
that the OB2RMK algorithm with fixed buffer size is able
to maintain an accurate sketch of historical training exam-
ples by exploring the compensation scheme.

6.3 SENSITIVITY ANALYSIS

The default values of parameter C, the buffer size and the
number of iterations for each online updating are 1, 100
and 30 respectively. When we study one of them through
varying its values, the other two are fixed to their default
values. First, from Figure 2 we observe that the perfor-
mance of OB2RMK increases gradually with the increase
of the buffer size and it is saturated when the size is rel-
atively large, which is consistent with the observations in
[Zhao et al., 2011a; Hu et al., 2015]. Then, we can con-
clude from Figure 3 (a) that the regularization parameter C
should not be too large, whereas there is a relatively broad
range between [10−3, 1] where OB2RMK achieves good
results. Finally, Figure 3 (b) shows that OB2RMK con-
verges rapidly, and typically stable results can be attained
within 30 iterations.
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Figure 2: Average AUC of OB2RMK vs. buffer size.
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Figure 3: Average AUC of OB2RMK when different (a)
parameter C and (b) number of iterations are used.

7 RELATED WORK

Online pairwise learning has gained increasing attention
recently. In [Zhao et al., 2011a], a buffer sampling based
linear Online AUC maximization (OAM) model was pro-
posed. In [Hu et al., 2015], the Kernelized Online Imbal-



Table 3: Average AUC values (mean±std) on a variety of data sets. •/◦ indicates that OB2RMK is significantly bet-
ter/worse than the corresponding method (pairwise t-tests at 95% significance level).

Datasets OB2RMK KOILu
RS++ KOIL∗

RS++ KOILu
FIFO++ KOIL∗

FIFO++ OMKC(D,D) Projectron++u Projectron++∗ OPAUC B2RMK

sonar .915±.044 .865±.050• .847±.051• .865±.050• .850±.049• .916±.036 .713±.082• .825±.071• .813±.082• .942±.034◦
glass .896±.035 .842±.050• .784±.053• .839±.052• .785±.054• .856±.071• .582±.098• .763±.066• .822±.059• .898±.034

heart .895±.050 .893±.057 .895±.056 .894±.057 .895±.056 .854±.075• .773±.056• .806±.055• .893±.051 .905±.053◦
bupaliver .758±.058 .703±.056• .689±.062• .707±.054• .690±.059• .654±.074• .511±.020• .587±.053• .685±.068• .755±.061

ionosphere .982±.012 .982±.012 .971±.015• .982±.012 .974±.018• .969±.021• .850±.041• .898±.040• .826±.075• .980±.012

svmguide2 .943±.040 .939±.033 .924±.032• .942±.032 .919±.038• .921±.043• .790±.065• .836±.040• .922±.035• .942±.035

diabetes .824±.028 .808±.039• .789±.045• .817±.036• .798±.038• .789±.022• .574±.047• .681±.041• .742±.067• .832±.028◦
fourclass 1.000±.000 .987±.039• .999±.001 .987±.039• .999±.001 .999±.001 .815±.045• .998±.002• .830±.021• 1.000±.000

german .768±.029 .760±.039• .724±.046• .761±.042• .733±.041• .723±.042• .544±.030• .625±.031• .749±.043• .795±.027◦
splice .894±.019 .886±.021• .869±.018• .887±.019• .872±.024• .906±.022◦ .701±.030• .797±.024• .865±.020• .936±.012◦

svmguide3 .732±.023 .686±.039• .620±.052• .685±.051• .625±.045• .725±.034• .503±.005• .626±.031• .715±.042• .807±.026◦
segment .984±.005 .975±.006• .959±.011• .975±.006• .957±.009• .970±.006• .789±.036• .962±.010• .895±.016• .998±.001◦
satimage .978±.006 .958±.006• .973±.007• .956±.008• .973±.007• .974±.003 .903±.016• .937±.006• .848±.028• .991±.002◦
spambase .944±.010 .938±.016• .922±.017• .938±.009• .927±.015• .958±.007◦ .866±.021• .893±.019• .941±.009 .983±.004◦

usps .990±.003 .985±.004• .988±.004 .984±.005• .988±.003 .986±.002 .867±.030• .976±.003• .957±.003• .999±.001◦
win/tie/loss 12/3/0 12/3/0 12/3/0 12/3/0 9/4/2 15/0/0 15/0/0 13/2/0 0/5/10

anced Learning (KOIL) algorithm extended OAM to the
nonlinear case with a predefined single kernel. Both of
them provided regret bound based on pairwise hinge loss.
[Ding et al., 2015] extended OAM with adaptive gradien-
t method which can exploit the knowledge of historical
gradients. Besides, [Gao et al., 2013] proposed a linear
one-pass AUC optimization model which scans through
the training data only once owing to the use of squared
loss. A more recent squared loss based algorithm, named
OPERA, was proposed in [Ying and Zhou, 2015], where a
non-strongly convex objective was formulated in an uncon-
strained reproducing kernel Hilbert space. All the afore-
mentioned methods seek point estimates of the decision
function in a linear or single kernel space.

On the other hand, recent years witnessed the efforts on
online extensions of multiple kernel learning due to its ef-
ficiency constrictions. Luo et al. [Luo et al., 2010] first in-
troduced an Online Multiclass Multi-kernel (OM2) classifi-
cation algorithm with hinge loss. In [Hoi et al., 2013], Hoi
et al. proposed several Online Multiple Kernel Classifica-
tion (OMKC) algorithms that aim to learn multiple kernel-
ized classifiers and their linear combination simultaneous-
ly. In [Sahoo et al., 2014], a family of Online Multiple K-
ernel Regression (OMKR) algorithms were proposed with
sliding windows to address non-stationary times-series da-
ta. [Xia et al., 2014] proposed an Online Multiple Kernel
Similarity (OMKS) learning method, which learns a flexi-
ble nonlinear proximity function for visual search. These
online MKL methods are effective for their specific appli-
cations, but generally involves several regularization pa-
rameters that are difficult to tune in real online scenario.

Bayesian learning is a principled way to infer the en-
tire posterior distribution of various model parameter-
s (e.g., kernel weights) from data automatically, provid-
ing the user a more simple way to accurately model da-

ta. In [Girolami and Rogers, 2005] and [Gönen, 2012],
the authors studied Dirichlet and Gaussian priors for the
kernel weights respectively. While both of them yield
promising results, the former is difficult for inference.
[Christoudias et al., 2009] studied Bayesian localized MK-
L with Gaussian processes. So far, there is not only no on-
line Bayesian MKL model but also no Bayesian multiple
kernel AUC optimization model. Our margin-based model
is the first combination of pairwise learning/AUC optimiza-
tion with Bayesian MKL in the online setting.

8 CONCLUSION AND FUTURE WORK

We developed a Bayesian multi-kernel bipartite ranking
model, which can circumvent the kernel selection prob-
lem by estimating a posterior distribution over the mod-
el weights. To make our model applicable to stream-
ing data, we presented a kernelized online Bayesian PA
learning framework by maintaining a variational approx-
imation to the posterior. Furthermore, to efficiently deal
with large-scale data, we maintained two fixed size buffer-
s to control the number of support vectors while keep-
ing track of the global information of the decision bound-
ary. Extensive experimental studies confirmed the supe-
riority of our Bayesian multi-kernel approach. In future,
we plan to extend our model to deal with multi-source da-
ta with multi-task and transfer learning [Evgeniou et al.,
2005; Gönen and Margolin, 2014].
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