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Abstract

We show that the climate phenomena of El Niño
and La Niña arise naturally as states of macro-
variables when our recent causal feature learn-
ing framework (Chalupka et al., 2015, 2016) is
applied to micro-level measures of zonal wind
(ZW) and sea surface temperatures (SST) taken
over the equatorial band of the Pacific Ocean.
The method identifies these unusual climate
states on the basis of the relation between ZW
and SST patterns without any input about past
occurrences of El Niño or La Niña. The sim-
pler alternatives of (i) clustering the SST fields
while disregarding their relationship with ZW
patterns, or (ii) clustering the joint ZW-SST pat-
terns, do not discover El Niño. We discuss the
degree to which our method supports a causal
interpretation and use a low-dimensional toy ex-
ample to explain its success over other cluster-
ing approaches. Finally, we propose a new ro-
bust and scalable alternative to our original algo-
rithm (Chalupka et al., 2016), which circumvents
the need for high-dimensional density learning.

1 INTRODUCTION
The accurate characterization of macro-level climate phe-
nomena is crucial to an understanding of climate dynam-
ics, long term climate evolution and forecasting. Modern
climate science models, despite their complexity, rely on
an accurate and valid aggregation of micro-level measure-
ments into macro-phenomena. While many aspects of the
climate may indeed be subject fundamentally to chaotic dy-
namics, many large scale phenomena are deemed amenable
to precise modeling. The El Niño–Southern Oscillation
(ENSO) is arguably the most studied climate phenomenon
at the inter-annual time scale, but much about its dynam-
ics relating zonal winds (ZW) and sea surface temperatures
(SST) remains poorly understood.

Figure 1: El Niño vs. neutral conditions from Di Liberto
(2014). Top: An illustration of the state of the atmosphere
and surface during typical El Niño conditions. Here, the
colors indicate SST deviations from the neutral state with
red being a positive and blue being a negative deviation.
Bottom: Similar to the top panel but now showing neutral
conditions of the Walker circulation (neither El Niño nor
La Niña).

We apply our recent causal feature learning (CFL) frame-
work (Chalupka et al., 2016) to learn causal macro-
variables from the equatorial Pacific climate data. Our goal
is threefold:

• apply CFL to real-world data, developing new practi-
cal algorithms as needed,

• test whether CFL can, without supervision, learn the
ground truth that El Niño is an important macro-
variable state in the ZW-SST system’s dynamics,

• explore the theoretical and practical difference be-
tween CFL and clustering methods.

From the climate-science point of view, our research shows



Figure 2: Niño 3.4 SST anomalies for the time period
1950–2005. The figure was adapted from McPhaden et al.
(2006). Red shadings indicate El Niño years and blue shad-
ings indicate La Niña years. The two dashed lines indicate
the threshold for strong El Niño or La Niña events.

that CFL can be successfully used for an unbiased auto-
mated extraction of climate macro-variables, which would
otherwise require tedious hand-crafting by domain experts.
Moreover, the framework can directly suggest (compu-
tationally) expensive climate experiments (for example,
through climate simulations) that could differentiate be-
tween true causes and mere correlations efficiently. Closer
inspection of the output of CFL can also yield insights
about new climate macro-phenomena (or important vari-
ants of existing ones) that inspire new physical mod-
els of the climate. Python code that reproduces our re-
sults and figures is available online at http://vision.
caltech.edu/˜kchalupk/code.html.

1.1 EL NIÑO–SOUTHERN OSCILLATION

El Niño is a weather pattern that is principally charac-
terized by the state of eastern Pacific near-surface winds
(ZW, zonal wind), sea surface temperature (SST) patterns,
and the associated state of the atmospheric Walker circula-
tion (see for example, Holton et al., 1989; Trenberth, 1997).
The Walker circulation (see Fig. 1) is characterized by
warm air rising over Indonesia and Papua New Guinea and
cooler subsiding air over the eastern Pacific cold tongue re-
gion just west of equatorial South America (Lau and Yang,
2003). Near the surface, easterly winds (winds blowing
from the east) drive water from east to west resulting in
oceanic upwelling near the coast of equatorial South Amer-
ica (and downwelling east of Indonesia), that brings with it
cold and nutrient rich waters from the deep oceans. During
the ENSO warm phase, commonly referred to as El Niño
(because it often occurs around and after Christmas), the
Walker circulation weakens, ultimately resulting in weaker
upwelling in the Eastern Pacific and thus in positive SST
anomalies. Fig. 1 illustrates these phenomena.

ENSO-related weather in the tropics includes droughts,
flooding, and may have direct impact on fisheries through
reduced nutrient upwelling (e.g., Glantz, 2001). Atmo-

spheric waves (ripples in wind, SST and rainfall pat-
terns) generated by the change in circulation and SST
anomalies in the tropics, make their way across the planet
with dramatic impact (e.g, Ropelewski and Halpert, 1987;
Changnon, 1999). Cashin et al. (2015) show that the eco-
nomic impact of El Niño varies across regions. Economic
activity may decline briefly in Australia, Chile, Indonesia,
India, Japan, New Zealand, and South Africa after an El
Niño event. Enhanced growth may be registered in other
countries, such as the United States.

The ENSO cold phase, usually referred to as La Niña, is
the opposing phase of El Niño with enhanced upwelling
and colder SSTs in the eastern Pacific. Currently, predict-
ing the strength of El Niño and La Niña events remains a
difficult challenge for climate scientists as the period may
vary between 3 and 7 years (see Fig. 2); as a consequence
accurate forecasts are only possible less than a year in ad-
vance (e.g., Landsea and Knaff, 2000).

The National Oceanic and Atmospheric Administration
(NOAA) defines El Niño as a positive three-month run-
ning mean SST anomaly of more than 0.5◦C from nor-
mal (for the 1971–2000 base period) in the Niño 3.4 re-
gion (120◦W–170◦W, 5◦N–5◦S, see also Fig. 4). Simi-
larly, La Niña conditions are defined as negative anoma-
lies of more than −0.5◦ C. Conditions in between −0.5◦C
and 0.5◦C are called neutral. This is illustrated using red
and blue shadings in Fig. 2. Strong El Niño/La Niña events
are defined as SST-anomalies greater than 1.5◦C. However,
the definitions for El Niño and La Niña have evolved over
time. For example, other regions than the Niño 3.4 region
or other averaging conventions have been used in the spec-
ification of the SST anomalies.

1.2 CAUSAL FEATURES AND
MACRO-VARIABLES

Climate experts view zonal winds as drivers of SST pat-
terns. We take the view that if El Niño and La Niña are
indeed genuine macro-level climate phenomena in their
own right (and not just arbitrary quantities defined by con-
vention) then they must consist of macro-level features of
the relation between the high-dimensional micro-level ZT
and SST patterns that can be detected by an unsupervised
method. That is, it must be possible to identify El Niño and
La Niña from a mass of air pressure and sea temperature
readings, using a method that has no independent informa-
tion about when such periods occurred.

In Chalupka et al. (2016) we developed a theoretically pre-
cise account of causal relations of macro-variables that su-
pervene on micro-variables, and proposed an unsupervised
method for their discovery, which we called Causal Fea-
ture Learning (CFL). We adopt the framework (summa-
rized below) with a few interpretational adjustments for
our climate setting. The method (originally inspired by



the neuroscience setting, only tested on synthetic data)
was designed to establish claims such as “The presence of
faces (in an image) causes specific neural processes in the
brain.”, where a neural process identifies a class of spike
trains across a large number of neurons recorded by elec-
trodes. An ability to characterize such neural processes
would provide the basis to explain, for example, what con-
stitutes face recognition in the brain. There we considered
as input visual stimuli (in the form of still images) and as
output electrode recordings of the neural response of 1000
neurons (in the form of spike trains).

Formally, let an input (micro-)variable X take values in
a high-dimensional domain X (in Chalupka et al. (2016),
the pixel space of an image, in our case here ZW maps)
and the output (micro-)variable Y take values in the high-
dimensional domain Y (the space of neural spike trains
then, the SST patterns here). The basic idea underlying
our set-up is that the causal macro-variable relation is de-
fined in terms of the coarsest aggregation of the micro-
level spaces that preserves the probabilistic relations un-
der intervention (hence, causal) between the micro-level
spaces. Conceptually, macro-level causal variables group
together micro-level states that make no causal difference.
In Chalupka et al. (2016) we started by defining a micro-
level manipulation (similar to Pearl’s do()-operator (Pearl,
2000)):

Definition 1 (Micro-level Manipulation). A micro-level
manipulation is the operation man(X = x) that changes
the value of the micro-variable X to x ∈ X , while not (di-
rectly) affecting any other variables. We write man(x) if
the manipulated variable X is clear from context.

The micro-level manipulation is then used to define what
we refer to as the fundamental causal partition:

Definition 2 (Fundamental Causal Partition, Causal Class).
Given the pair (X ,Y), the fundamental causal partition of
X , denoted by Πc(X ) is the partition induced by the equiv-

alence relation X∼ such that

x1
X∼ x2 ⇔ ∀y P (y | man(x1)) = P (y | man(x2)).

Similarly, the fundamental causal partition ofY , denoted by
Πc(Y), is the partition induced by the equivalence relation
Y∼ such that

y1
Y∼ y2 ⇔ ∀x P (y1 | man(x)) = P (y2 | man(x)).

A cell of a causal partition is a causal class of X or Y .

The fundamental causal partitions then naturally give rise
to the macro-level cause variable C and effect variable E
that stand in a bijective relation to the cells of Πc(X ) and
Πc(Y), respectively. Thus, the macro-variable cause C ig-
nores all the micro-level changes in X that do not have
an effect on the probabilities over Y , and the macro-level

Figure 3: The Causal Coarsening Theorem, adapted from
Chalupka et al. (2016). In this plot, the observational input
macro-variable (top, gray) has four states, and has a well-
defined joint with the observational output macro-variable
(with six states). In each case, the causal macro-variable
states are a coarsening of the observational states. For ex-
ample, the input causal macro-variable merges the two top
observational states. E.g. P (Y | x1) 6= P (Y | x2), but
P (Y | man(x1)) = P (Y | man(x2)).

effect E ignores all the micro-level detail in Y , which oc-
cur with the same probability given a manipulation to any
X = x.

With these definitions there is no reason a priori to think
that macro-variables are common phenomena. In fact quite
the opposite: The conditions that the probability distri-
butions over X and Y must satisfy to give rise to non-
trivial macro-variablesC andE can easily be described as a
measure-zero event when taken in their strict form. Conse-
quently, our view is that to the extent that macro-variables
are discussed in a scientific domain, there must be a pre-
supposition that such strong conditions are satisfied at least
approximately.

In the present context, our climate data consisting of ZW
and SST measurements (we give a detailed description of
the data in Section 1.3 below) is entirely observational.
That is, the data is naturally sampled from P (SST, ZW)
and not created by a (hypothetical) experimentalist from
P (SST | man(ZW = z)) for different values of z. Never-
theless, we can identify the observational macro-variables
that characterize the probabilistic relation between ZW and
SST by replacing the probabilities in Definition 1.2 with
observational probabilities P (y | x):

Definition 3 (Fundamental Observational Partition, Obser-
vational Class). Given the pair (X ,Y), the fundamental
observational partition of X , denoted by Πo(X ) is the par-

tition induced by the equivalence relation X∼ such that

x1
X∼ x2 ⇔ ∀y P (y | x1) = P (y | x2).

Similarly, the fundamental observational partition of Y , de-



Figure 4: A micro-variable climate dataset. Top: A week’s
average ZW field. Bottom: A week’s average SST field
over the same region. In addition, the Niño 3.4 region is
marked. Our dataset comprises 36 years’ worth of overlap-
ping weekly averages over the presented region.

noted by Πo(Y), is the partition induced by the equivalence

relation Y∼ such that

y1
Y∼ y2 ⇔ ∀x P (y1 | x) = P (y2 | x).

A cell of an observational partition is an observational
class of X or Y .

In Chalupka et al. (2016) we showed that the fundamen-
tal causal partition is almost always a coarsening of the
corresponding fundamental observational partition, as il-
lustrated in Fig. 3. We thus have some reason to expect that
any macro-variables we do identify from our observational
climate data will capture all the distinctions that are causal,
but may in addition make some distinctions that do not sup-
port a causal inference. We return to this point in Section 6,
where we discuss in more detail what causal insights can
be drawn from this work. Our results should be seen as a
step towards a characterization of macro-level causal vari-
ables for climate science, but we fully acknowledge that a
complete causal characterization of the equatorial Pacific
climate dynamics is beyond the scope of this paper.

1.3 DATASET

The data used for this study is based on the daily-
averaged version of the NCEP-DOE Reanalysis 2 prod-
uct for the time period 1979–2014 inclusive (Kanamitsu
et al., 2002), a data product provided by the US National
Centers for Environmental Protection (NCEP) and the De-
partment of Energy (DOE). Reanalysis data sets are gen-
erated by fitting a complex climate model to all avail-
able data for a given period of time, thus generating es-
timates for times and locations that were not originally
observed. In addition, we used the Geophysical Obser-

vational Analysis Tool (http://www.goat-geo.org) to inter-
polate the SST and zonal wind fields onto a 2.5◦ × 2.5◦

spatial grid for easier analysis. We chose to focus on the
(140◦, 280◦)E×(-10◦, +10◦)N equatorial band of the Pa-
cific Ocean. From the raw dataset, we extracted the zonal
(west-to-east) wind component and SST data in this region
(specifically, we extracted the fields at the 1000 hPa level
near the surface). Finally, we smoothed the data by com-
puting a running weekly average in each domain. The re-
sulting dataset contains 13140 zonal wind and 13140 cor-
responding SST maps, each a 9×55 matrix. Fig. 4 shows
sample data points.

2 PACIFIC MACRO-VARIABLES
To apply CFL in practice, we adapted our unsupervised
causal feature learning algorithm (Chalupka et al., 2016)
to more realistic scenarios. The new solution (Sec. 3) is
more robust and applicable to high-dimensional real-world
data. We start with a description of the results.

Throughout the article, we will refer to zonal wind macro-
variables as W, and to temperature macro-variables as
T. We first chose to search for four-state macro-variables
(though we experiment with varying this number in
Sec. 4.1) and considered a zero-time delay1 between W
and T. In the CFL framework, each macro-variable state
corresponds to a cell of a partition of the respective micro-
variable input space. Fig. 5 visualizes the W and T we
learned by plotting the difference between each macro-
variable cell’s mean and the ZW (SST) mean across the
whole dataset. The visualized states are easy to describe:
For example, when W=WEqt there is a larger-than-average
westerly wind component in the west-equatorial region, a
feature often associated with the causes of El Niño (see
Fig. 1). Indeed, Table 1 shows that the El Niño cell of T
only arises in connection with W=WEqt. In addition, WEqt
is often positively correlated with the T=Warm. Through-
out the rest of the article, we will mostly focus on the T
macro-variable. Our first goal is to quantitatively justify
calling T=1 “El Niño” and calling T=2 “La Niña”. Quali-
tatively, the warm and cold water tongues that reach west-
ward across the Pacific and that are often used to describe
the two phenomena, are evident in the image.

Following the standard definition of El Niño (see Sec-
tion 1.1), we use the SST anomaly in the Niño 3.4 region to
detect its presence (Trenberth, 1997). The anomaly is com-
puted with respect to the climatological mean, that is the

1A zero time delay implies that CFL will attempt to relate the
weekly moving ZW average to the weekly moving SST average.
The question of different time delays turns out to be a very subtle
issue in the study of El Niño as El Niño is not a periodic event,
nor does it have a fixed duration (see Fig. 2). A careful discussion
of other delays is not feasible in a short article and the zero-time
delay was deemed a reasonable starting point by domain experts
we consulted.



Figure 5: Macro-variables discovered by Alg. 1. For
each state, the average difference from the dataset mean
is shown. Left: Four states of W, the zonal wind macro-
variable. We named the states “Easterly Equatorial”
(EEqt),“Westerly Equatorial” (WEqt), “Easterly North of
Equator” (EN) and “Easterly South of Equator” (ES).
Right: Four states of T, the SST macro-variable. We named
the states “Cold [American Coastal Waters]”, “El Niño”,
“La Niña” and “Warm [American Coastal Waters]”. The
main text provides additional justification for calling T=1
and T=2 “El Niño” and ”La Niña”, respectively.

mean temperature during the same week of the year over
all the weeks in our dataset. We will call a weekly average
anomaly exceeding +.5◦C a mild episode, and an anomaly
exceeding +1.5◦C a strong episode. The definition of La
Niña is analogous, with negative thresholds. Fig. 6 shows
that in the T=1 and T=2 cells, over 75% of all the points
exceed the threshold for a mild (positive and negative, re-
spectively) anomaly, and over 50% of the points exceed the
strong threshold. The situation is different in the Warm
and Cold cells, where almost no points exceed the strong
threshold while the number of points falling in these non-
anomalous cells is about 30% of the total. Since this macro-
variable contains a state capturing a high proportion of El
Niño-like patterns, we will say that this state has a “high
precision” of detecting El Niño, while similarly, state T=2
has a high La Niña precision. Formally, we define the pre-
cision of a macro-variable state as follows:

Definition 4 (precision). Let T = {T1, · · · , TK} be a par-
tition of the set of all the SST maps used in our experiments.
Let n34 : SST → R be the function that computes the
Niño 3.4 anomaly for a given map. Then, let

cθ(Tk) =


1
|Tk| |{t ∈ Tk s.t. n34(t) > θ}| if θ > 0

1
|Tk| |{t ∈ Tk s.t. n34(t) < θ}| if θ < 0

be the function that computes for, a given cell Tk of the
partition, the fraction of its members whose anomaly is
greater than (if θ > 0) or lesser than (if θ < 0) a given
threshold θ. Finally, call the four numbers maxk c.5(Tk),

Figure 6: T=1 and T=2 are El Niño and La Niña. Top:
Each plot shows the cumulative histogram of the Niño 3.4
anomalies, computed over all the weekly SST averages that
belong to the given state of T. The dashed lines show the
+/-0.5 and +/-1.5 “mild” and “strong” anomaly thresholds.
Bottom: The minimal manipulations needed to transition
from a given T-state into another (the exact procedure to
obtain the plots is described in the text).

maxk c1.5(Tk), maxk c(−.5)(Tk), maxk c(−1.5)(Tk) the
mild/strong-El Niño and mild/strong-La Niña precision of
the macro-variable T .

Together, the precisions indicate how well the partition T
separates the mild and strong El Niño and La Niña anoma-
lies from other structures in the data. In Fig. 6, for ex-
ample, c.5(T ) ≈ .75 and c1.5(T ) ≈ .25 (both because of
T=1), c(−.5)(T ) ≈ .85 and c(−1.5)(T ) ≈ .5 (both because
of T=2). Thus, T has high mild-El Niño precision, and high
mild-La Niña precision.

As further evidence that Alg. 1 recovered El Niño and
La Niña, we show minimal state-to-state manipulations in
Fig. 6. Take the La Niña→El Niño plot as an example. To
compute it, we took all the SST maps for which T=La Niña,
and for each found the closest (in the Euclidean space) map
for which T=El Niño. We then averaged these differences.
One of the insights the figure offers is that low SSTs in
the Niño 3.4 region really are the distinguishing feature
of T=La Niña. Similarly, an important difference between
the T=Warm and T=El Niño is the characteristic tongue of
warm water extending into the Niño 3.4 region. Adding this
tongue is necessary to switch from T=Cold to T=El Niño,
but not to switch from T=Cold or T=La Niña to T=Warm.

The CFL framework allows us to interpret W and T as stan-



Figure 7: Alg. 1 vs. clustering. In this toy example, the data
is sampled from the distribution P (X) = U({1/5; 2/5)}∪
{3/5; 4/5}), P (Y | X) = P (Y ) = U({1/5; 2/5)} ∪
{3/5; 4/5}). The clusters in the X , Y , and joint X ,Y
space are evident. However, since X and Y are inde-
pendent, we expect Alg. 1 to find only one macrolevel
class of X . Indeed, (properly regularized) regression gives
f(x) = const ∀x, so W (x) = 0 ∀x. Incidentally, since the
density of Y is similar in the neighborhood of each sample
y (see data Y-projection on the right), T (y) = 0 ∀y .

dard probabilistic random variables with distribution we
can estimate. Table 1 offers a probabilistic description of
the system we learned. “When the equatorial zonal wind is
unusually westerly, there is a 75% chance that the eastern
Pacific is warm, and a 25% chance that El Niño arises.” and
“When the North-equatorial zonal wind is predominantly
westerly, but the South-equatorial easterly, then the East-
ern Pacific is most likely to be cold.”—are example insights
about the equatorial Pacific wind-SST system offered by
CFL. We emphasize that both the macro-variables and the
probabilities are learned from the data in an entirely un-
supervised manner, without any a priori input about what
constitutes ENSO events (except the fact that we restrict
the SST and ZW fields to the equatorial Pacific region).

3 CFL: A ROBUST ALGORITHM
The practical bottleneck of the original CFL algo-
rithm (Chalupka et al., 2016) is the need for joint den-
sity estimation of p(X, Y ). Density estimation is noto-
riously hard, especially in high dimensions. We modified
the original algorithm to avoid explicit density estimation.
An additional advantage of our approach (Alg. 1) is that
it is very robust with respect to input space dimensional-
ity: Input data is only used explicitly in regression, which
can be implemented using any algorithm that easily handles
high-dimensional inputs (we used neural nets).

Let X ,Y denote the micro-variable input and output space,
respectively. Our algorithm is based on the insight that CFL
only needs to detect the two equivalences

p(Y | x1) = p(Y | x2) for any x1, x2 ∈ X and (1)
p(y1 | x) = p(y2 | x) for any y1, y2 ∈ Y, x ∈ X , (2)

instead of actually computing the conditionals p(Y | X).

Algorithm 1: Unsupervised Causal Feature Learning
input : D = {(x1, y1), · · · , (xN , yN )}

Cluster – a clustering algorithm
output: W (x), T (y) – the causal class of each x, y.

1 Regress f ← argminf Σi(f(xi)− yi)2;

2 Let W (xi)← Cluster(f(x1), · · · , f(xN ))[xi];
3 Let Range(W ) = {0, · · · , N};
4 Let Yw ← {y |W (x) = w and (x, y) ∈ D};
5 Let g(y)← [kNN(y,Y0), · · · ,kNN(y,YN )];
6 Let T (yi)← Cluster(g(y1), · · · , g(yN ))[yi];

If Eq. (1) holds, we also have E[Y | x1] = E[Y | x2].
Computing conditional expectations is much easier than
learning the full conditional: f(X) = E[Y | X] minimizes
E[(Y − f(X))2], so learning the conditional expectation
amounts to regressing Y on X under the mean-squared er-
ror measure. Unfortunately, equal conditional expectations
do not imply equal conditional distributions. However, ar-
guably the practical risk of encountering differing condi-
tionals with identical means is lower than the risk of failing
at high-dimensional density learning. For this reason, we
use E[Y | x1] = E[Y | x2] as a heuristic indicator of the
equivalence of the conditionals in Eq. (1) (see Line 2 in
Alg. 1). For a more robust heuristic one could use more
than just equal expectations to decide distribution equality.
A promising direction would be to use a Mixture Density
Network (Bishop, 1994) to approximate P (Y | x) with a
mixture of Gaussians for each x, and then cluster the mix-
tures.

Clustering the conditional expectations gives us the macro-
variable class W (x) of each input x. By construc-
tion (Chalupka et al., 2015), we have p(Y | x) = P (Y |
W (x)) and by assumption the range of W is small. Instead
of checking whether Eq. (2) holds for a given pair y1, y2
over all the x ∈ X , it is thus enough to check whether
p(y1 | W = w) = p(y2 | W = w) for each value
w ∈ Range(W ). For each given w we have a subset
Yw ⊂ Y which consists of all the y’s whose corresponding
x’s have causal class w. Consequently, Eq. (2) does not de-
pend on the exact densities conditional on the micro-state,
but only the densities conditional on the macro-level state.
Thus, instead of trying to evaluate any given p(y | w),
Line 5 computes the distance of y to the k-th nearest neigh-
bor in Yw. This idea is based on a principle that under-

Cold El Niño La Niña Warm

EEqt 2/3 0 1/3 0
WEqt 0 1/4 0 3/4
EN ∼1/10 0 1/4 ∼2/3
ES 3/4 0 0 1/4

Table 1: Each row shows P (T |W = w) for a given w.



Figure 8: Changes in macro-variable precision as we vary
the number of states in CFL, clustering, and CFL on reshuf-
fled data (“Rand CFL”). With two states, it is impossible to
differentiate El Niño and La Niña from other weather fea-
tures, be it dynamic (CFL) or spatio-structural (clustering).
Increasing the number of states reveals differences between
the algorithms.

lies a whole class of nonparametric density estimation al-
gorithms (Fukunaga and Hostetler, 1973; Mack and Rosen-
blatt, 1979): Where the density is high, samples from the
distribution are closer to each other than where the den-
sity is low. This is illustrated in Fig 7. On the right, we
plotted the projection of the data onto the y-space. In this
projection, the distance of y1 to its third-nearest neighbor
is roughly the same as the distance of y2 to its third-nearest
neighbor. Indeed, this is the case for all the y’s, because
they are generated from a distribution that assigns equal
density to all of them.

In Chalupka et al. (2016) we represented each y by an esti-
mate of [p(y | x1), · · · , p(y | xN )], where N is the number
of datapoints. The new approach represents each y sam-
ple by its ’k-nn representation’, one scalar value for each
w ∈ Range(W ) (Line 5). Clustering these representations
gives us the causal state T (y) for each y.

Algorithm 1 relies on a successful regression f that mini-
mizes the mean squared error E[(f(x) − y)2]. In our ex-
periments, we used the Theano (Bastien et al., 2012) and
Lasagne packages to implement and train a three-hidden-
layers, fully-connected neural network (Bishop, 1995) in
Python. The data was sufficiently simple (compared to e.g.
image datasets used to evaluate state-of-the-art neural nets
in vision) that no regularization technique beyond simple
weight decay and early stopping was necessary to minimize
the validation error.

Figure 9: t-SNE (Van der Maaten and Hinton, 2008) em-
bedding of the k-nn representation of SST data. The blue
dots show, for varying K, the state of T with largest c(−.5)
precision (see Def. 4). The red dots show the state with
largest c.5. Thus, the blue dots are “the” La Niña cluster
for each K, and the red dots “the” El Niño cluster.

4 ROBUSTNESS OF THE RESULTS

In this section, we describe two additional studies we per-
formed to ensure our algorithm behaves as expected, and
that the results are robust with respect to changing the ex-
perimental parameters.

4.1 VARYING THE NUMBER OF STATES

Our choice of discovering four-state macro-variables was
rather arbitrary. To check how varying the number of states
changes the macro-variable precision (Def. 4), we repeated
our experimental procedure, varying the number of states K
from 2 to 16 (both in the ZW and SST space). Fig. 8 shows
the precisions for each case. As expected, a low number
of states (K=2, 3) doesn’t allow the algorithm to precisely
detect El Niño and La Niña. With K > 4 however, a slowly
growing trend persists at high precision values. El Niño
and La Niña remain important features as K changes.

There are several possible behaviors of the algorithm given
the slowly growing precision of the macro-variables with
growing K: (1) The El Niño and La Niña states remain
roughly constant, (2) CFL sub-divides the El Niño and La
Niña states, (3) CFL finds better El Niño and La Niña re-
gions, (3) A mix of the above. Fig. 9 suggests that (2) is
true. As K grows, the clusters that most precisely detect the
mild El Niño and mild La Niña phenomena form a chain of
strict subsets.



T1 T2 T3 T4

W1 .075 .40 .25 .27
W2 .083 .39 .25 .27
W3 .084 .39 .26 .27
W4 .080 .40 .24 .27

Table 2: Conditional probabilities P (T | W ) when Alg. 1
is applied to randomly (in time) reshuffled ZW and SST
data.

4.2 RESHUFFLED DATA

As a sanity check, we ran Alg. 1 on randomly reshuf-
fled (across the time dimension) ZW and SST data. We
asked the algorithm to find K=4, . . . , 16-state ZW and
SST macro-variables. Table 2 shows P (T | W ), where
W and T are the input and output macro-variables discov-
ered in the randomized dataset with K = 4. Note that
P (T | W = W1), P (T | W = W2), P (T | W = W3)
and P (T | W = W4) are all equal. This is exactly as ex-
pected, since by reshuffling the data we removed any prob-
abilistic dependence between the inputs and the outputs.

Applying Definition 2 to this data indicates that the al-
gorithm implicitly only discovered one true input state,
even though we explicitly asked it to look for a four-
state macro-variable. The cardinality of the output macro-
variable is three or four states, depending on whether .25
is close enough to .27 to apply Def. 2 to merge the last
two columns. We performed the same reshuffled analysis
for each K and computed as before the precision for the
weak and strong El Niño and the weak and strong La Niña.
Fig. 8, large dotted lines, shows that in each case none of
the clusters contains a significant proportion of either El
Niño or La Niña patterns. This experiment offers two in-
sights:

• Alg. 1 passes the sanity check. When the inputs and
outputs are independent, the input macro-variable is
trivial, it has a single state.
• When SST patterns are clustered according to their

probability of occurrence (e.g. as the W variable does
in Table 2), El Niño and La Niña are not identified as
macro-level climate states. We will return to this point
in the Discussion.

5 WHY NOT NAIVE CLUSTERING?
It is instructive to compare our results with unsupervised
clustering. Fig. 8 shows the precision coefficients for k-
means clustering with k=4, . . . , 16 (small dotted line),
alongside our CFL results. Whereas CFL detects both
El Niño and La Niña with high precision using only four
states, k-means struggles to achieve a similar result even
for larger K.

Barring particularities of the data (which we consider in
the Discussion), there is in general no reason for CFL to

give the same results as clustering. Consider the example in
Fig. 7. Arguably, a reasonable clustering algorithm should
find four linearly separable clusters in the joint X ,Y space,
and two clusters in the X and Y space each. However,
the variables are probabilistically independent. In contrast,
CFL would only find a one-state input variable, since all
values of X imply the same distribution over Y . Addition-
ally, since P (Y | X) = P (Y ) is constant across all the
samples, CFL would also only find a one-state output vari-
able. The figure illustrates that Alg. 1 does precisely that
(as should the original algorithm in Chalupka et al. (2016)).

6 DISCUSSION
The CFL framework we developed in Chalupka et al.
(2015, 2016) aspires to solve an important problem in
causal reasoning: how to automatically form macro-level
variables from micro-level observations. In this work we
have shown, for the first time, that these algorithms can
be successfully applied to real-life data. We have recov-
ered well-known, complex climate phenomena (El Niño,
La Niña) as macro-variable states directly from climate
data, in an entirely unsupervised manner. In order to do
so, we developed a new, practical version of the original
CFL algorithm.

We emphasize that our experiments use observational cli-
mate data, and we have to be cautious about causal conclu-
sions. It is not even clear a priori whether theZW → SST
causal direction is a reasonable choice: it is known that
wind patterns cause changes in SST and it in turn affects
the wind by changing the atmospheric pressure. Feedback
loops are commonplace in climate dynamics.

The Causal Coarsening Theorems in Chalupka et al. (2015,
2016) provide the basis for an efficient learning of causal
relationships based on observational macro-variables – but
some experiments are required. In addition, the theorems
were only shown to hold for variables that are not subject
to feedback. However, we are hopeful that an extension
accounting for feedback can be proven. While real cli-
mate experiments are generally not feasible, such a theo-
rem would provide the basis to perform large-scale climate
experiments with detailed climate models, for example, to
check whether interventionally shifting from the W = 0
zonal wind state to W = 1 in the climate model increases
the likelihood of El Niño (i.e. of SST ending up in state
T=1). Connecting the CFL framework with such experi-
ments is an exciting future direction as it would also enable
the possibility of using the macro-variables we have found
to inform policy that aims to influence climate phenomena.

Our experiments that compare CFL with clustering showed
that, as the number of clusters grows, k-means approaches
never exceed CFL’s precision in detecting El Niño and La
Niña. One explanation for this finding is that while clus-
tering looks for spatial features in the data, CFL looks



for relational probabilistic features. Fig. 8 suggests that
when the number of clusters is small there are strong spa-
tial features in the data that supersede El Niño and La
Niña in their distinctiveness. In contrast, CFL already de-
tects El Niño with high precision with only four clusters.
This indicates that either (1) There is something unique
about P (El Niño | W) and P (La Niña | W), or (2) There
is something unique about P (El Niño) and P (La Niña).
Since we disproved the second hypothesis in Sec. 4.2, our
results overall indicate that the El Niño and La Niña phe-
nomena do not only constitute interesting spatial features
of the SST map, but are also crucially characterized by the
dynamic aspect of the interplay between zonal winds and
sea surface temperatures.

Even when working with purely observational data, CFL
offers an important causal insight not revealed by cluster-
ing methods. It guards against learning variables with am-
biguous manipulation effects (Spirtes and Scheines, 2004).
An illustrative example of an ambiguous macro-variable
is total cholesterol. Low density lipids (LDL, commonly
called “bad cholesterol”) and high density lipids (HDL,
“good cholesterol”) can be aggregated together to count to-
tal cholesterol (TC), but TC has an ambiguous effect on
heart disease because effects of LDL and HDL differ. The
Causal Coarsening Theorem guarantees that each state of
the observational macro-variable is causally unambiguous:
no mixing of HDL and LDL can occur. In case of our
El Niño setup, this means that two ZW states within the
same cell are guaranteed to have the same effect on the
SST macro-variable.

Finally, we note that there still is significant debate among
climate scientists about what exactly constitutes El Niño
and what its causes are. For example, recent research has
shown that there may be multiple different types of El Niño
states (Kao and Yu, 2009; Johnson, 2013) that all fall under
NOAA’s definition. Our results suggest that the current def-
inition described in Section 1.1 coincides well with states
of the probabilistic macro-variable discovered by CFL. In
addition, Sec. 4.1 indicates that finer-grained structure does
exist within the El Niño and La Niña clusters when they are
analyzed from the relational-probabilistic standpoint. We
leave this line of research as an important future direction.
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