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Abstract

We consider binary pairwise graphical models
and provide an exact characterization (necessary
and sufficient conditions observing signs of po-
tentials) of tightness for the LP relaxation on the
triplet-consistent polytope of the MAP inference
problem, by forbidding an odd-K5 (complete
graph on 5 variables with all edges repulsive) as
a signed minor in the signed suspension graph.
This captures signs of both singleton and edge
potentials in a compact and efficiently testable
condition, and improves significantly on earlier
results. We provide other results on tightness of
LP relaxations by forbidding minors, draw con-
nections and suggest paths for future research.

1 INTRODUCTION

Discrete undirected graphical models play a central role
in machine learning, providing a powerful and compact
way to model relationships between variables. A key chal-
lenge is the combinatorial search problem to identify a most
likely configuration of variables, termed maximum a pos-
teriori (MAP) or most probable explanation (MPE) infer-
ence. This has received a great deal of attention from var-
ious communities, where it is sometimes framed as energy
minimization (Kappes et al., 2013) or as solving a valued
constraint satisfaction problem (VCSP, Schiex et al., 1995).

Since the problem is NP-hard, much work has attempted
to identify restricted settings where polynomial-time meth-
ods are feasible. Where possible, we call such settings
tractable and the methods efficient. Two types of restric-
tion have been considered separately, either: (i) structural
constraints on the topology of connections between vari-
ables; or (ii) families of potential functions.

Exploring the first theme, Chandrasekaran et al. (2008)
showed that, if no restriction is placed on types of poten-
tials, then the structural constraint of bounded treewidth is

needed for tractable inference.1 See §2-4 for all definitions.

Recent work (Kolmogorov et al., 2015; Thapper and Živný,
2015) has examined the power of using a linear program-
ming (LP) relaxation of the discrete optimization problem.
An LP attains an optimum at a vertex of the feasible re-
gion; if this vertex is integral, then it provides an exact
solution to the original problem and we say that the LP
is tight. If the LP is performed over the marginal poly-
tope, which enforces global consistency (Wainwright and
Jordan, 2008), then this LP is always tight, but exponen-
tially many constraints are required, hence the method is
not efficient. The marginal polytope is typically relaxed
to the local polytope LOC, which enforces only pairwise
consistency, requiring a number of constraints linear in the
number of edges. Thapper and Živný (2015) showed that,
if no restriction is placed on topology, then for a given fam-
ily of potentials, either LP+LOC is tight, and hence solves
all such problems efficiently, or the problem set is NP-hard.

Here we consider hybrid conditions (Cooper and Živný,
2011), which combine constraints on both structure and
potentials, an exciting field with little prior work. Focus-
ing on the important class of binary pairwise models,2 and
considering each edge to be signed as either attractive or
repulsive, we establish precise hybrid characterizations for
when certain LP relaxations will be tight for all valid poten-
tials. By valid, we mean potentials that observe the signs
(attractive or repulsive) of the edges. We show that these
characterizations may be achieved by forbidding particular
signed minors of the signed graph topology, yielding com-
pact and efficiently testable conditions.

In applications, LP relaxations are widely used for struc-
tured prediction but the most common form, LP+LOC, of-
ten yields a fractional solution, motivating constraints for

1This result makes mild assumptions, specifically the grid-
minor hypothesis (Robertson et al., 1994), and that NP 6⊆P/poly.
See also (Kwisthout et al., 2010).

2Eaton and Ghahramani (2013) showed that any discrete
graphical model may be either exactly represented, or arbitrar-
ily well approximated, by a binary pairwise model, though the
number of variables may increase substantially.



higher order cluster consistency (Batra et al., 2011). Weller
et al. (2016) considered the LP relaxation over the triplet-
consistent polytope TRI, which is the next level up from
LOC in the hierarchy given by Sherali and Adams (1990)
and is still efficient. Whereas it is known that LP+LOC is
tight for any model which is balanced, Weller et al. (2016)
showed that LP+TRI is tight for any model which is almost
balanced. Further they demonstrated that almost balanced
models may be ‘pasted’ together in certain configurations,
while still guaranteeing tightness of LP+TRI.

The results of Weller et al. (2016) and our stronger charac-
terizations here are very relevant to many problems in com-
puter vision, such as foreground-background image seg-
mentation, where due to contiguity of real objects, learned
edges are mostly attractive, leading to a model which is
‘close to balanced’. For example, on the horses dataset con-
sidered by Domke (2013), LP+LOC is loose but LP+TRI is
often tight. Our work helps to explain this phenomenon.

We consider a refinement by examining the signs not only
of edge potentials, but also of singleton potentials. These
can be neatly incorporated by considering the signed sus-
pension graph of a model, which adds one extra node with
edges to the other variable nodes, each new edge corre-
sponding to a singleton of the original model; see §4.

1.1 MAIN RESULTS

Our strongest result is Theorem 14, which shows that
LP+TRI is tight for all valid potentials, observing signs
of both edge and singleton potentials, iff the signed sus-
pension graph does not contain an odd-K5 (the complete
graph on 5 nodes with all edges odd/repulsive, see §3) as a
signed minor. This is a more powerful, signed version of
an unsigned result, Theorem 13, that follows from the work
of Barahona and Mahjoub (1986), showing that LP+TRI is
tight for all valid unsigned potentials iff the unsigned sus-
pension graph does not contain K5 as an unsigned minor;
see §5. For a sense of the additional power of the signed
version, Theorem 14 allows models with arbitrarily high
treewidth, provided only that there is no odd-K5 minor
(one particular signing of a K5 structure), whereas The-
orem 12 prohibits a K5 minor of any type; see Table 2.

A weaker corollary of Theorem 14, our Theorem 10 shows
that if we are less observant and do not examine single-
ton potentials, then LP+TRI is tight for all valid potentials
(respecting signs of edges only) iff the signed graph topol-
ogy does not contain an odd-K4 as a signed minor.3 This
may be directly compared to the sufficient conditions of
Weller et al. (2016), which similarly do not examine sin-
gleton potentials. We show that Theorem 10 is a significant
improvement: it covers a substantially larger set of models,
provides a compact condition that is both necessary and

3Theorem 14 allows any odd-K4 minor inG provided it is not
part of an odd-K5 in∇G, a much stronger result; see Table 2.

sufficient, and is efficiently testable; see §4.3.

As another consequence of Theorem 14, we obtain a result
that may be of significant practical interest. Theorem 16
shows that in some cases, the number of cycle constraints
needed to enforce integrality for LP+TRI may be dramati-
cally reduced to just the signed cycle constraints; see §5.

We also reframe earlier results on tightness of LP relax-
ations in terms of forbidden minors. This perspective ele-
gantly captures conditions on both structure and potentials,
and reveals fascinating connections which prompt natural
directions to explore in future work. See Table 2 for a sum-
mary and §6 for discussion.

1.2 APPROACH AND RELATED WORK

Characterizing properties by forbidden minors has been a
fruitful theme in graph theory since the fundamental work
of Robertson and Seymour, which builds over more than
20 papers to the graph minor theorem, described by Dies-
tel (2010) as “among the deepest theorems that mathemat-
ics has to offer.” We describe elements of the approach in
§2, its extension to signed graphs, signed minors and odd
minors in §3, and its relevance to LP relaxations in §4.

Odd-minor-free graphs have received attention in theoreti-
cal computer science, for example (Demaine et al., 2010).
However, aside from the characterization by Watanabe
(2011) of when belief propagation has a unique fixed point
in terms of signed minors, to our knowledge there has been
little direct use of this perspective in machine learning.4

To show our results, we connect several earlier themes, for
which we provide relevant background. A key result by
Guenin (2001) showed that a signed graph is weakly bi-
partite, which characterizes integrality of the vertices of a
particular polyhedron, iff it does not contain an odd-K5 mi-
nor; see §3. We draw on connections between: the marginal
polytope of a model, with its LOC and TRI relaxations;
and the corresponding cut polytope of its suspension graph,
with its rooted semimetric RMET and semimetric MET re-
laxations (De Simone, 1990; Deza and Laurent, 1997); see
§5.1. We use a link between MET and the cycle inequali-
ties (Barahona, 1993); see §5.2. We extend these ideas to
signed graph topologies in §5.3. Some of these connections
for the unsigned case were considered by Sontag (2010).

2 GRAPHS AND MINORS

We follow standard definitions and omit some familiar
terms. For more background, see (Diestel, 2010), partic-
ularly §12 for a survey of treewidth and forbidden minors.

4Junction trees (Cowell et al., 1999), treewidth and unsigned
graph minors are closely related. Treewidth was discussed by
Halin but gained popularity through use by Robertson and Sey-
mour (see historical note by Seymour, 2014).



Figure 1: The left graph is a minor (unsigned) of the right graph,
obtained by deleting the grey dotted edges and resulting isolated
small grey vertex, and contracting the purple wavy edge. See §2.

t Forbidden minors for a graph to have treewidth ≤ t
1 K3

2 K4

3 K5 and 3 others
4 K6 and more than 70 others

Table 1: Characterization of low values of bounded
treewidth by forbidding minors.

A graph G(V,E) is a set of vertices V , and undirected
edgesE, where each edge (i, j) ∈ E connects i and j ∈ V .
The complete graph on n vertices, written Kn, has all

(
n
2

)
edges. A pairwise graphical model topology is always as-
sumed to be a simple graph, that is a vertex may not be
adjacent to itself (no loops) and each pair of vertices may
have at most one edge (no multiple edges). However, when
we consider minors, we allow loops and multiple edges.

A minor of a graphG is obtained fromG by deleting edges
or isolated vertices (as may be done to form a subgraph),
or also by contracting edges. To contract edge (i, j) means
to remove the vertices i and j, and replace them by a new
vertex with edges to all remaining vertices that were previ-
ously adjacent to i or j. See Figure 1 for an example.
For any property P of a graph, we say that P is closed
under taking minors (or minor-closed) if whenever G has
property P and H is a minor of G, then H has P .

A consequence of the graph minor theorem of Robertson
and Seymour is the following deep result.

Theorem 1 (Robertson and Seymour, 2004). If a graph
property P is closed under taking minors then it can be
characterized by a finite set of forbidden minors, i.e. G has
P iff G has none of the finite forbidden set as a minor.

There are important examples of graph properties closed
under taking minors where this finite set has just a few
members. Perhaps the best known is the early result of
Wagner (1937) that a graph G is planar iff G does not con-
tain K5 or K3,3 as a minor (K3,3 is the complete bipartite
graph where each partition has 3 vertices).

Another property closed under taking minors is bounded
treewidth. A definition of treewidth of a graph G that may
be familiar from the junction tree construction is that it is
one less than the minimum possible size of a largest clique
in a triangulation ofG (Wainwright and Jordan, 2008). The

Figure 2: The left graph is a signed minor of the right signed
graph, obtained similarly to Figure 1 except that before contract-
ing the repulsive edge, first flip the vertex at its right end. Solid
blue (dashed red) edges are attractive (repulsive). Grey dotted
edges on the right are deleted and may be of any sign. See §3.2.

forbidden minors are known for low values of bounded
treewidth, see Table 1. For example, a tree has treewidth
1 and cannot contain a K3 minor.

Robertson and Seymour also showed that checking for any
fixed minor may be performed efficiently.

Theorem 2 (Robertson and Seymour, 1995). For any fixed
graph H and a given graph G with n vertices, there is an
O(n3)-time algorithm to determine if H is a minor of G.5

Together, Theorems 1 and 2 show that any minor-closed
graph property may be decided in polynomial-time.

3 SIGNED GRAPHS & SIGNED MINORS

A signed graph (Harary, 1953) is a graph (V,E) together
with one of two possible signs for each edge. This is a
natural structure when considering binary pairwise models,
where we characterize edges as either attractive (or even)
or repulsive (or odd), see §4. Where helpful for clarity,
we refer to the standard graphs of §2 as unsigned graphs.
We shall see that important concepts and results for minors
of unsigned graphs have corresponding results for signed
minors of signed graphs.

In a signed graph, a fundamental property of any cycle is
whether or not it is a frustrated cycle (or odd cycle), i.e.
if it is a cycle with an odd number of repulsive (or odd)
edges. A signed graph is balanced if it contains no frus-
trated cycles. Following Weller (2015), a signed graph is
almost balanced if it contains a vertex such that deleting it
renders the remaining graph balanced.

3.1 FLIPPING/RESIGNING AND ODD GRAPHS

Given a signed graph, a subset of variables S ⊆ V may be
flipped (or switched). This flips the sign of any edge with
exactly one end in S (i.e. flips the edge between attrac-
tive/even and repulsive/odd), and is called a resigning. It is
easily seen that this operation does not change the nature
(frustrated or not) of any cycle. For binary graphical mod-
els, this has a natural interpretation: if the original model
has variables {Xi ∈ {0, 1} : i ∈ V } then consider an

5Kawarabayashi et al. (2012) improved this to O(n2)-time.



(a) The class containing the fully attractive K4

(these are balanced, LP+LOC is always tight):
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(b) The class containing a K4 with exactly one repulsive edge
(these are almost balanced, LP+TRI is always tight):
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(c) The class containing the fully repulsive odd-K4
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base base+flip 1 base+flip 1,2 base+flip 1,3

Figure 3: Examples of signed K4 graphs. These are complete
graphs on 4 vertices where each edge is either attractive/even
(solid blue) or repulsive/odd (dashed red). Each row illustrates
examples from one of the three signing equivalence classes.
At bottom left is an odd-K4. See §3.

equivalent model with variables {Yi : i ∈ V } given by
Yi = 1 −Xi for i ∈ S, Yi = Xi for i ∈ V \ S, with new
potentials set to match properties of the original model.6

Two signed graphs are signing equivalent (sometimes
called gauge equivalent) if they are isomorphic up to a
resigning (an equivalence relation). We are interested in
signed graphs only up to signing equivalence; see §3.2.

For any unsigned graph G, the signed graph odd-G is the
signed version of G where every edge is odd (or repul-
sive). Figure 3 shows examples of signed K4 graphs, in
their signing equivalence classes. The bottom row shows
an odd-K4 at the left, together with possible resignings.

3.2 SIGNED MINORS

A signed minor of a signed graph is obtained just as for
an unsigned minor of an unsigned graph with the follow-
ing modifications: any resigning operations are permitted
(see §3.1); and contractions are allowed only for attrac-
tive/even edges. Note that a repulsive/odd edge may first
be resigned to an attractive/even edge by flipping either end
vertex (which will also affect its other incident edges) and
then contracted. See Figure 2 for an example, which may
be compared to the unsigned minor example of Figure 1.

A significant project is in progress to try to generalize all of
Robertson and Seymour’s graph minor theory to the much
broader class of Γ-labeled graphs for any finite abelian

6Given the form of potentials (2) we choose in §4, this flips
the signs of {θi : i ∈ S} and {Wij : exactly one of i or j ∈ S}.

group Γ (Geelen et al., 2014), which includes signed graphs
by considering Γ = Z/2Z. An equivalent result to The-
orem 1 is claimed, though the formal write-up is still to
come. An equivalent result to Theorem 2 has been shown.

Theorem 3 (A special case of Theorem 1.1.10 of
Huynh, 2009). For any fixed signed graph H , there is a
polynomial-time algorithm which determines if an input
signed graph G contains H as a signed minor.

3.3 WEAKLY BIPARTITE SIGNED GRAPHS

If a signed graph is balanced, its vertices may be partitioned
into two exhaustive groups s.t. all inter-group edges are odd
and all intra-group edges are even (Harary, 1953); the re-
signing obtained by flipping either group renders all edges
even. With this observation, a signed graph which is bal-
anced is sometimes called bipartite (related, but different,
to the standard meaning of bipartite for unsigned graphs).

Generalizing bipartite signed graphs, a signed graph
G(V,E) with edge signs is weakly bipartite if the follow-
ing polyhedron Q has only integral vertices:

Q=

{
y ∈ R|E|+ :

∑
e∈D

ye ≥ 1,∀ odd cycles D of signed G

}
(1)

Here, odd cyclesD are in the signed sense, i.e. have an odd
number of odd edges. We shall see in §5.3 that Q relates
closely to the triplet-consistent polytope TRI of a graphical
model, if we consider signs of all potentials. We make use
of the following result, which proved a conjecture of Sey-
mour (1977), earning Guenin a Fulkerson prize in 2003.

Theorem 4 (Guenin, 2001). A signed graph is weakly bi-
partite iff it does not contain an odd-K5 as a signed minor.7

4 GRAPHICAL MODELS AND LP
RELAXATIONS

We consider a binary pairwise undirected model with n
variables X1, . . . , Xn ∈ {0, 1}. Let x = (x1, . . . , xn) ∈
{0, 1}n be one complete configuration. The probability
distribution is specified by p(x) ∝ exp[score(x)], where
we choose a symmetric minimal reparameterization (Wain-
wright and Jordan, 2008) such that

score(x) = −
∑
i∈V

θixi −
∑

(i,j)∈E

Wij1[xi 6= xj ], (2)

where 1[·] is the indicator function. The model’s un-
signed topology is the graph G(V,E), with n variables
V = {1, . . . , n} and m = |E| ≤

(
n
2

)
edge relation-

ships between the variables. The n singleton parameters
{θi : i ∈ V } and m edge weights {Wij : (i, j) ∈ E}

7The original proof is long. A shorter proof was provided by
Schrijver (2002). Both proofs rely on a result of Lehman (1990).



define the potentials, which we allow to take any rational
value (to enable polynomial-time algorithms).

In addition to the unsigned graph G, we shall be interested
in two more informative ways of considering a model’s
topology. The signed graph G assigns edge signs accord-
ing to the signs of edge potentials. If Wij > 0, the edge
(i, j) tends to pull Xi and Xj toward the same value and is
attractive (or even). If Wij < 0, the edge is repulsive (or
odd).

The signed suspension graph∇G(V ′, E′) of a model adds
an extra node 0, that is V ′ = V ∪ {0}. Edges to 0 encode
singletons of the model, with E′ = E ∪ {(0, i) : θi 6= 0}.

With∇G in mind, we have chosen the form of (2) carefully,
using negative signs so Wij > 0 is attractive, and 1[xi 6=
xj ] edge terms in order to facilitate later demonstration of
the equivalence between the MAP problem and a max cut
problem on the edge-weighted suspension graph; see §5.

In ∇G, it may be helpful to consider the added node 0
as being set to the value 0; then regarding (2), the single-
ton potential terms θixi may be viewed as θi1[xi 6= 0],
and hence all singleton and edge potential terms follow the
same sign convention. In particular, the sign of each new
edge (0, i) in ∇G matches that of θi: if θi > 0 then the
added edge is attractive, pulling Xi toward 0; if θi < 0
then (0, i) is repulsive (or odd).

4.1 LINEAR PROGRAMMING FOR MAP

The potential parameters may be concatenated to form a
vector w = (−θ1, . . . ,−θn, . . . ,−Wij , . . . ) ∈ Qd, where
d = n + m. Let yij = 1[xi 6= xj ], and for any configura-
tion x, similarly concatenate the n xi and m yij(x) terms
into a vector z = (x1, . . . , xn, . . . , yij , . . . ) ∈ {0, 1}d.
Now score(x) = w ·z, yielding the following integer linear
programming formulation for MAP inference, to identify

z∗ ∈ arg max
z:x∈{0,1}n

w · z (3)

The convex hull of the 2n possible integer solutions in
[0, 1]d is the marginal polytope M for our choice of single-
ton and edge terms.8 Regarding the convex coefficients as
a probability distribution p over all possible states, M may
be considered the space of all singleton and pairwise mean
marginals that are consistent with some global distribution
p over the 2n states, that is

M = {µ = (µ1, . . . , µn, . . . , µij , . . . ) ∈ [0, 1]d s.t. (4)
∃p : µi = Ep(Xi) ∀i, µij = Ep(1[Xi 6= Xj ]) ∀(i, j) ∈ E}

A standard approach is to relax (3) to a linear program (LP).
Performing this over M remains intractable since the num-

8Our choice of edge term 1[xi 6= xj ] will facilitate later anal-
ysis of∇G in §5. A common alternative choice for edges is to use
xixj , which leads to an equivalent polytope, sometimes called the
Boolean quadric polytope QPn (Padberg, 1989).

ber of linear constraints required grows extremely rapidly
with n (Deza and Laurent, 1997). Hence, a simpler, re-
laxed constraint set is typically employed, yielding an up-
per bound on the original optimum. This set is often chosen
as the local polytope LOC, which enforces only pairwise
consistency (Wainwright and Jordan, 2008). If an optimum
vertex is achieved at an integer solution, then this must be
an optimum of the original discrete problem (3), in which
case we say that the relaxation LP+LOC is tight.

Sherali and Adams (1990) proposed a series of succes-
sively tighter relaxations by enforcing consistency over
progressively larger clusters of variables. At order r, the
Lr polytope enforces consistency over all clusters of vari-
ables of size ≤ r. L2 is the local polytope LOC. Next,
L3 is the triplet-consistent polytope TRI, and so on, with
Ln = M ⊆ Ln−1 ⊆ · · · ⊆ L3 = TRI ⊆ L2 = LOC.
Clearly LP+Ln is always tight. The following result, de-
rived using the junction tree theorem (Cowell et al., 1999),
gives a sufficient condition for tightness at any order.
Theorem 5 (Wainwright and Jordan, 2004). If the graph of
a model has treewidth ≤ r − 1 then LP+Lr is tight.

4.2 RELATION TO MINORS, NEW RESULTS

Theorem 5 provides a sufficient condition that considers
only the treewidth of the unsigned graph G, without any
regard to the potentials. As remarked in §2, the graph prop-
erty of bounded treewidth is minor-closed, hence can be
characterized by excluding a finite set of forbidden minors,
see Table 1 for examples.

We now make the following observation, where “valid po-
tentials” for a graph means any potentials that respect the
graph structure (signed or unsigned accordingly).
Theorem 6. The property P of a graph G that “LP+Lr is
tight for all valid potentials onG” is minor-closed, whether
G is unsigned or signed (if signed then use signed minors).

Proof. The property P is maintained under deletion, con-
traction and (for signed graphs) resigning. To see this for
contraction: if an edge (i, j) of G is contracted to yield G′,
then for any valid model M ′ on G′, consider the model M
on G which has all the same potentials and in addition set
the edge potential for (i, j) to be sufficiently high such that
in M this forces Xi and Xj to take the same value.

Hence, we should expect to be able to characterize LP tight-
ness for all valid potentials, for both unsigned and signed
topologies, by specifying a finite set of forbidden minors
(signed minors in the signed case), see §2 and §3.

From Theorem 5 and Table 1: if we consider only the un-
signed topology G, then LP+LOC (LP+TRI) is tight for all
potentials if the graph G does not contain a K3 (K4, re-
spectively) as a minor. To demonstrate the converse, and as
a result of independent interest, we show the following.



All models

G has K4

∇G has K5

G has odd-K4

∇G has odd-K5

problems

Forbidden minors
Sherali-Adams Graph G Suspension graph ∇G

cluster size Unsigned Signed Unsigned Signed
LOC L2 K3 odd-K3

TRI L3 K4 odd-K4 K5 odd-K5

Theorem Thm 8 Thm 10 Thm 13 Thm 14
L4 K5+? odd-K5+? K6+? odd-K6+?

Table 2: Summary of results characterizing tightness of LP relaxations by forbidden minors. All conditions may be checked efficiently.
Right: The section for TRI (shaded blue) contains our main new results: Theorem 10 for signed G; and the stronger Theorem 14 for
signed∇G, which examines singleton and edge potentials. Theorem 14 implies Theorems 13, 10 and 8. Results for L4 are unknown.
Left: Illustration of the model classes for LP+TRI, where problems are models for which LP+TRI is not tight. Theorem 14 is the most
powerful result, showing that all problems lie within the set of models where∇G contains an odd-K5. See discussion in §4.3 and §6.

Theorem 7. LP+Lr is not tight for the fully connected
model on n = r+1 variables with all θi = Wij = −1 ∀i ∈
V, (i, j) ∈ E. Note that this model has signed G which is
an odd-Kr+1, and signed ∇G which is an odd-Kr+2.

Proof. The proof is from first principles. Consider the dis-
tribution for each r-cluster that is uniform over all configu-
rations with b r2c 0s and d r2e 1s. This has higher score than
the best integral configuration of bn2 c 0s and dn2 e 1s.

Applying Theorem 7 for r = 2 and 3 yields the following
result (since if a model contains a Kr+1 minor, then we
may assume potentials such that the model is the Kr+1).
Theorem 8. Considering unsigned topologies: LP+LOC
is tight for all valid potentials iff G does not contain a K3

minor; LP+TRI is tight for all valid potentials iff G does
not contain a K4 minor.

We next provide stronger results by considering the signs
of edge potentials. Intriguingly, both for LOC and TRI, the
forbidden signed minor is exactly the odd version of the
forbidden unsigned minor in Theorem 8.
Theorem 9. LP+LOC is tight for all valid potentials iff the
signed graph G does not contain an odd-K3 signed minor.

Proof. It is easily seen that if the signed graph of a model
does not contain an odd-K3 signed minor, then it is bal-
anced (see §3). Earlier work showed that LP+LOC is
tight for any balanced model (Padberg, 1989; Weller et al.,
2016). Necessity follows from Theorem 7.

Theorem 10. LP+TRI is tight for all valid potentials iff the
signed graph G does not contain an odd-K4 signed minor.

Theorem 10 follows as a corollary of the stronger Theo-
rem 14, which we shall show in §5, which also considers
the signs of singleton potentials by examining the signed
suspension graph ∇G (defined in §4 just before §4.1).

4.3 REMARKS, EARLIER WORK

Taken together, our results in §4.2 employ the framework
of forbidden minors to characterize compactly the tightness

of LP relaxations in an elegant and unifying way. See Table
2 for a summary, which includes later results from §5. Note
the interesting relationships across conditions, all of which
may be checked efficiently by Theorems 2 and 3.

Little was known theoretically about conditions for tight-
ness of LP+TRI before Weller et al. (2016) showed that it
was sufficient for a model to be almost balanced (defined
in §3). They also demonstrated a composition result which
allows almost balanced sub-models to be pasted together
in particular ways, while maintaining tightness. The condi-
tion in Theorem 10 is substantially stronger: the new con-
dition is both necessary and sufficient; it is compact to de-
scribe and it is efficient to check. Further, we next show
that Theorem 10 covers a strict superset of models.

Observe that the property for a signed graph of being al-
most balanced is closed under taking signed minors. An
odd-K4 is clearly not almost balanced, see Figure 3. Hence
almost balanced models ⊆ models whose signed topology
does not contain an odd-K4 minor. Next consider the per-
mitted pasting operation (Weller et al., 2016, Theorem 12),
which allows sub-models to be pasted together either on a
single variable or, in limited settings, on an edge. If each
sub-model is odd-K4-free, then so too is the pasted combi-
nation. Hence, Theorem 10 covers all the models covered
by Weller et al. (2016); we next show that Theorem 10 cov-
ers a significant additional class of models.

Signed graphs that do not contain an odd-K4 minor have
been studied previously (Gerards, 1988; Truemper, 1998).
An important class that is odd-K4-minor-free but not al-
most balanced is planar signed graphs with two odd faces
(i.e. all but exactly two faces have even bounding cycles).
See Figure 4 for an example by J. Carmesin which is 3-
connected, hence there is no way it could be constructed by
pasting almost balanced sub-models on edges or vertices.

5 INCLUDING SINGLETONS,∇G

In this Section, we extend the analysis of §4 to include sin-
gleton potentials, by now considering the suspension graph
∇G rather than just the base graph G. We build to §5.3,



odd odd

Figure 4: A 3-connected signed graph that is not almost bal-
anced, hence the results of Weller et al. (2016) cannot be used
to show that LP+TRI is tight for such a model; yet it is odd-K4-
minor-free, hence Theorem 10 proves that LP+TRI is tight for
all valid potentials. This is a planar signed graph with two odd
faces (Gerards, 1988, §3.2), with the odd faces indicated (others
are even); see §4.3. Solid blue (dashed red) edges are even (odd).

Potential values for Potential values for
n variables + m edges ↔ n+m edges
Marginal polytope M ↔ CUT polytope of ∇G

TRI relaxation ↔ MET relaxation = CYC
LOC relaxation ↔ RMET relaxation

Table 3: Relations between polytopes; see §5.

where we state and prove our strongest result, Theorem
14, which characterizes tightness of LP+TRI if we examine
the signs of both edge and singleton potentials. We show
that this result implies Theorem 10 from §4, which exam-
ines only edge signs. Our approach relies on Theorem 4
(Guenin’s result), connecting to it by showing relations be-
tween various polytopes.

In §4, we introduced the marginal polytope M, together
with its relaxations TRI and LOC, with M ⊆ TRI ⊆ LOC.
Here, we first show equivalences to the cut polytope CUT
of the suspension graph ∇G, together with its relaxations
MET (the semimetric polytope) and RMET (the rooted
semimetric polytope) with CUT ⊆MET ⊆ RMET, see Ta-
ble 3. In §5.2, we relate MET to the cycle inequalities
(Barahona and Mahjoub, 1986; Barahona, 1993) and pro-
vide Theorem 13, which does not consider signs of poten-
tials. For more background, see (Deza and Laurent, 1997).

In §5.3 we consider signed cycles, then by combining re-
sults, we prove Theorem 14, our strongest new result. In
addition, we are able to show that many typically used cy-
cle inequalities may be redundant for enforcing integrality.

5.1 MARGINAL AND CUT POLYTOPES, AND
THEIR RELAXATIONS

Here we establish many of the equivalences of polytopes
shown in Table 3. Recall the definition of the suspension
graph ∇G(V ′, E′) from §4.

Given a subset S ⊆ V ′ = {0, 1, . . . , n}, let δ(S) ∈
{0, 1}|E′| be the cut vector of edges of ∇G that run be-
tween the vertex partitions S and V ′ \ S, defined by

δ(S)ij = 1 iff i and j are in different partitions.

The cut polytope (Barahona, 1983; Barahona and Mahjoub,
1986) of∇G is the convex hull of all such cut vectors, that
is CUT = conv {δ(S) : S ⊆ V ′}. Although there are
2n+1 choices of S, CUT has 2n vertices since by definition
δ(S) = δ(V ′\S). In fact, there is a linear bijection between
CUT and M, which is particularly simple given the form
we selected for edge marginals in (4).9 Given d ∈ CUT
with entries dij for (i, j) ∈ E′, d maps to µ ∈ M where
µj = d0j for j ∈ V, and µij = dij for (i, j) ∈ E.

To see this, dij may be interpreted as the marginal prob-
ability that i, j ∈ V ′ lie in different partitions. Similarly,
µij ∈ M is the marginal probability that Xi and Xj take
different values; and µi is the probability that Xi 6= 0 (cor-
responding in ∇G to i being in a different partition to 0).

MAP inference for the model on G is now clearly equiva-
lent to the max cut problem for∇G, i.e.10

max
µ∈M

w·µ = max
d∈CUT

w′ ·d, w′ij =

{
−θj i = 0

−Wij (i, j) ∈ E.
(5)

The bijection between M and CUT may also be used to map
the LOC and TRI relaxations of M to corresponding re-
laxations of CUT in [0, 1]|E

′|, called the rooted semimetric
polytope RMET and the semimetric polytope MET, respec-
tively, as shown in Table 3. The constraints for the MET
polytope (which corresponds to TRI) take the following
form, sometimes described as unrooted triangle inequali-
ties (Deza and Laurent, 1997, §27.1):

MET ∀i, j, k ∈ V ′, d(i, j)− d(i, k)− d(j, k) ≤ 0 (6)
d(i, j) + d(i, k) + d(j, k) ≤ 2.

Remarkably, the constraints for RMET, the rooted triangle
inequalities, are exactly just those of (6) for which one of
i, j, k is 0, the vertex that was added to yield ∇G. Hence,
RMET may be regarded as MET rooted at 0. Correspond-
ingly, we may consider TRI to be a version of LOC that is
universally rooted (Weller, 2016). See discussion in §6.

5.2 CYCLE INEQUALITIES, CYC POLYTOPE

Here we define the cycle inequalities and provide back-
ground showing how they may be used to characterize
tightness of LP+TRI by forbidding unsigned K5 as a mi-
nor of the unsigned suspension graph∇G(V ′, E′).

For any edge set F ⊆ E′ and x ∈ [0, 1]|E
′|, let x(F ) =∑

e∈F x(e). Let C ⊆ E′ be the edge set of a cycle in ∇G.

9If instead, edge terms of the form xixj are used for the
marginal polytope, as in the Boolean quadric polytope (see foot-
note 8), then the linear bijection required is slightly more complex
and is called the covariance mapping (De Simone, 1990).

10The negative signs before θj and Wij terms are because we
followed the convention that Wij > 0 is an attractive edge, and
made the signs of singleton potentials consistent; see §4.



At any vertex of CUT, if we traverse C, we must change
partitions an even number of times.

Hence, the following cycle inequalities hold ∀x ∈ CUT:
for any cycle C and any edge subset F ⊆ C with |F | odd,

x(F )− x(C \ F ) ≤ |F | − 1. (7)

Let CYC be the polytope defined by these constraints, i.e.
CYC = {x ∈ [0, 1]|E

′| : x(F )−x(C\F ) ≤ |F |−1 for any
cycle C of ∇G and any F ⊆ C, |F | odd}. The triangle in-
equalities (6) are special cases of (7) with |C| = 3, though
note that those apply in MET to any triplet i, j, k ∈ V ′

without regard to the edges E′, whereas cycle inequalities
apply only to the cycles of ∇G(V ′, E′). Nevertheless, in
fact, the following result holds; see Table 3.

Theorem 11 (Barahona and Mahjoub, 1986; Barahona,
1993). MET = CYC.

Barahona and Mahjoub (1986) established the following
important characterization for when the cycle inequalities
are sufficient for tightness by forbidding a K5 minor.

Theorem 12 (Barahona and Mahjoub, 1986). CUT = CYC
iff unsigned ∇G does not contain K5 as a minor.

Using the equivalences of §5.1 (see (5) and Table 3), The-
orems 11 and 12 together show the following result, which
characterizes when LP+TRI is tight if we examine only the
unsigned suspension graph ∇G.

Theorem 13. LP+TRI is tight for all valid potentials iff
unsigned ∇G does not contain K5 as a minor.

Theorems 11 and 12 of Barahona and Mahjoub (1986) are
often used to show only that LP+TRI is tight for a planar
model with no singleton potentials (which excludes both
K5 and K3,3, see §2), e.g. see Theorem 3.3.2 in (Sontag,
2010). However, Theorem 13 is stronger, and perhaps is
more naturally viewed instead as extending the characteri-
zation of treewidth ≤ 2 as K4-minor-free; see §6.

5.3 SIGNED CYCLES, MISS POLYTOPE

Here we shall prove Theorem 14, a stronger, signed version
of Theorem 13. Theorem 10 will follow as a corollary. For
cycles in ∇G, to avoid confusion, we write C for the edge
set of an unsigned cycle, and D for the signed edge set of a
signed odd cycle (which has an odd number of odd edges).

Given results in §5.1-5.2 (see (5) and Table 3), we have

max
µ∈TRI

w·µ = max
x∈CYC

w′ ·x, w′ij =

{
−θj i = 0

−Wij (i, j) ∈ E.
(8)

We shall relate this to Theorem 4 (Guenin’s result on
weakly bipartite graphs from §3.3) to prove the following.

Theorem 14. LP+TRI is tight for all valid potentials, ob-
serving signs of both edge and singleton potentials, iff the

signed suspension graph ∇G does not contain odd-K5 as
a signed minor.

Proof. We first show sufficiency of the condition. Regard-
ing (8), CYC is defined by the inequalities (7), which we
rewrite as |F | − x(F ) + x(C \ F ) ≥ 1, or∑

e∈F
(1− xe) +

∑
e∈C\F

xe ≥ 1. (9)

The unsigned cycle inequality (9) applies for every cycle C
of ∇G and every F ⊆ C with |F | odd. Aiming to relate
(9) to the definition of a weakly bipartite graph (1), we in-
troduce the following MISS polytope, which is equivalent
to CUT by a reflection that adjusts for the signs of edges
of ∇G(V ′, E′). Recall how these signs are set in §4, and
regarding (8), observe that edge e ∈ E′ is odd iff w′e > 0.

Given a configuration of variables X1, . . . , Xn ∈ {0, 1}n,
the corresponding vertex ∈ {0, 1}|E′| of the CUT polytope
has a 1 for edge (i, j) ∈ E′ iff Xi 6= Xj , taking X0 = 0.

For MISS, instead the corresponding vertexm ∈ {0, 1}|E′|

has a 1 for edge (i, j) ∈ E′ iff mij ‘misses’ the potential
score benefit that the edge offers. That is, take X0 = 0
as before, and now for all (i, j) ∈ E′, assign mij = 1 if
Xi 6= Xj and the edge is even (attractive), or if Xi = Xj

and the edge is odd (repulsive); otherwise mij = 0.

Each of CUT and MISS is formed as the convex hull of
its 2n vertices. MISS is the reflection of CUT across 1

2
in exactly the dimensions for which edges of ∇G are odd.
That is, x ∈ CUT maps bijectively to y ∈ MISS, where
ye = xe for even edges, and ye = 1− xe for odd edges.

Let D be the edge set of an odd cycle of signed∇G (i.e. D
has an odd number of odd edges). Given any configuration
of variables, as we go round D, to return to the same value,
we must ‘miss’ at least one edge. That is, for any vertex
m ∈MISS,

∑
e∈Dme ≥ 1. Hence, what we call the signed

cycle inequalities hold ∀y ∈MISS ⊆ [0, 1]|E
′|:∑

e∈D
ye ≥ 1, ∀ odd cycles D of signed∇G. (10)

Note the direct correspondence between the signed cycle
inequalities (10) and the inequalities defining the weakly
bipartite polyhedron Q (1). Observe the following.

Lemma 15. Each signed cycle inequality (10) corresponds
to an unsigned cycle inequality (9).

Proof. Given a signed cycle inequality (10), let F be the
odd edges of D, with |F | odd. Let C = D. The equivalent
reflected form of (10) for x ∈ CUT is

∑
e∈F (1 − xe) +∑

e∈C\F xe ≥ 1, which matches (9) as required.

Let CYCR be the polytope CYC reflected in the odd edge
dimensions, just as MISS may be obtained from CUT, so



MISS ⊆ CYCR as CUT ⊆ CYC. Consider (8), note edge e
is odd⇔ w′e > 0, let x ∈ CYC map to y ∈ CYCR, then

max
µ∈TRI

w · µ = max
y∈CYCR

∑
odd e∈E′

w′e(1− ye) +
∑

even e∈E′

w′eye

= A+ max
y∈CYCR

w′′ · y, (11)

where A =
∑
e:w′

e>0 w
′
e is a constant, and w′′e =

−|w′e| ∀e ∈ E′.

We are now ready to apply Theorem 4. We have {all valid
integer solutions} ⊆ MISS ⊆ CYCR, while (by Lemma
15) CYCR enforces all the signed cycle inequalities (10),
which match the weakly bipartite conditions (1). Further,
in (11) we are maximizing an objective with every coef-
ficient negative, which is needed since Q is a polyhedron
unbounded in the positive directions (1). Finally, no in-
valid integer solutions lie in CYCR. Hence, by Theorem 4,
if signed ∇G does not contain odd-K5 as a signed minor,
then LP+TRI is tight.

For necessity of the condition, if ∇G does contain an odd-
K5 minor, then by choice of potentials, we may assume
signed ∇G(V ′, E′) to be exactly odd-K5. Then Theorem
7 with r = 3 provides an example where LP+TRI is not
tight. This completes the proof of Theorem 14.

Corollaries. Theorem 14 may be used to prove Theorem
10 as follows. First, if signed G does not contain an odd-
K4, then clearly signed ∇G cannot contain an odd-K5,
hence LP+TRI is tight by Theorem 14. Now, if signed G
does contain an odd-K4, then we may select all negative
singleton potentials for those variables, then use the exam-
ple above for odd-K5 in signed∇G.

In practice, LP+TRI is often implemented by enforcing the
(unsigned) cycle constraints (9) rather than all triplet con-
straints (Sontag, 2010). Theorem 14 and Lemma 15 show
the following, which may be useful by dramatically reduc-
ing the number of constraints required for integrality.11

Theorem 16. If a model has signed ∇G that is odd-K5-
minor-free, then integrality of LP+TRI will be achieved by
enforcing only the signed cycle inequalities (10), with the
other unsigned cycle inequalities (9) being redundant.12

6 DISCUSSION, FUTURE WORK

We have drawn connections to powerful results from graph
theory by showing how tightness of LP relaxations may be
elegantly characterized by forbidding certain minors: ei-
ther from the graph topology G, if singleton potentials are

11For implementations which successively add violated cutting
planes, this result may be less useful, though it still dramatically
reduces the search space of possible constraints to add.

12Consider that (9) has no access to edge signs, hence tests all
possible frustrated/odd cycles (10).

not examined; or, with more precision, from the suspen-
sion graph ∇G, if the topology of both edge and single-
ton potentials is considered. We significantly strengthen
results by examining also the signs of the potentials and
forbidding signed minors. All conditions can be tested effi-
ciently (Theorems 2 and 3). Our strongest result, Theorem
14, shows that LP+TRI is tight for all valid potentials, ob-
serving the signed topology of the suspension graph ∇G,
iff signed ∇G is odd-K5-minor-free. Our results go sub-
stantially beyond earlier work (Weller et al., 2016) that pro-
vided only sufficient conditions for a smaller set of models,
without an easy way to test.

Viewing our characterizations together in Table 2, fascinat-
ing patterns emerge. We make the following observations.
(a) In all known cases, it is exactly just the odd versions
of the forbidden unsigned minors which can cause lack of
tightness of the LP relaxation. In future work, we would
like to understand if this pattern extends to other cases.
(b) For unsigned graphs G, given the treewidth result of
Wainwright and Jordan (2004), we can expect that as clus-
ter size increases, the number of forbidden minors could
grow rapidly,13 see Table 1. (c) For TRI, going from G to
the suspension graph ∇G adds one universally connected
vertex to the forbidden minor. Why does this not happen
for LOC, and will it hold for higher cluster sizes? Recall
the observations just before §5.2, where we saw that LOC
has a fixed root whereas TRI is universally rooted. This
is why results for TRI examine the suspension graph ∇G
with complete symmetry for singleton and edge potentials,
whereas for LOC, singleton potentials are different. This
prompts further analysis and may lead to new algorithms
for TRI. It also suggests viewing the forbidden K5 minor
in ∇G not as a strengthened form of planarity (which for-
bids K5 and K3,3), but rather as forbidding K4+1, where
K4 is the treewidth constraint of the base graphG. Further,
it explains why it is possible for LP+TRI to perform worse
as singleton potentials rise within a range, see Appendix.

Theorem 7 shows that for any cluster size r, it is necessary
to forbid Kr+2 as a signed minor of ∇G in order to guar-
antee tightness of LP+Lr. We have placed the appropriate
entries in the L4 row of Table 2. Theorem 5 shows that it is
sufficient to forbid all the treewidth minors in unsigned G.
Must we forbid odd versions of all these in signed G? So
far, we have not been able to find an example where LP+L4

is not tight other than where∇G contains an odd-K6.
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J. Thapper and S. Živný. The complexity of finite-valued CSPs.
Technical report, February 2015. arXiv:1210.2987v3.

K. Truemper. Matroid decomposition (revised edition). 1998.
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