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@ A directed acyclic graph G = (V,E) whose nodes are random variables

@ Absent edges represent conditional independence assumptions

@

P(X,Y,Z) = P(X)P(YIX)P(Z|X,Y)
=P(X)P(Y)P(Z|X,Y), due to model constraints
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@ Absent edges represent conditional independence assumptions

P(X,Y, Z) = P(X)P(Y[X)P(Z|X,Y)
= P(X)P(Y|X)P(Z]Y), due to model constraints



@ A Markovian model with some nodes hidden

@ Hidden nodes have no parents
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@ A Markovian model with some nodes hidden

@ Hidden nodes have no parents

Observed distribution

P(X,Y, Z) ZPU WP(X[U = w)P(ZIX)P(YIX, U = u)

=P( JP(ZIX)P(Y|Z, X)
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|dentification problem [Pearl, 1995]

When is P(Y = y|do(X = x)) computable given the observed distribution P?
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|dentification problem [Pearl, 1995]

When is P(Y = y|do(X = x)) computable given the observed distribution P?

Not always!



But sometimes it is...

|[dentification

P(Y | do(X = ZP =z/X =x)

Y PX=x)P(Y=y|Z=2,X=X).

x/




A long line of work culminated in the following striking result

Complete |dentification [Huang and Valtorta, 2008; Shpitser and Pearl, 2006, ... ]

An efficient algorithm with the following characteristics exists:
Input: Semi-Markovian graph G = (V, E, U, D), disjoint subsets X,Y of V
Output: Either
@ A rational map

ID(G,X,Y) : P(V) — P(Y | do(X)), or

@ A certificate of non-existence of such a map

@ The observed distribution P is not an input to the algorithm

@ The output is not numerical, but a symbolic, exact description of the map




A long line of work culminated in the following striking result

Complete |dentification [Huang and Valtorta, 2008; Shpitser and Pearl, 2006, ... ]

An efficient algorithm with the following characteristics exists:
Input: Semi-Markovian graph G = (V, E, U, D), disjoint subsets X,Y of V
Output: Either
@ A rational map

ID(G,X,Y) : P(V) — P(Y | do(X)), or

@ A certificate of non-existence of such a map

ID assumes. ..

@ Exact knowledge of observed distribution P

@ Exact knowledge of the model G (no “missing” edges)




G = (V,E,U,D) is a semi-Markovian graph
ID(G,X,Y) : P(V) — P(Y | do(X))

Statistical stability

How sensitive is ID(G, X,Y) to small perturbations in the input P?




G = (V,E,U,D) is a semi-Markovian graph
ID(G,X,Y) : P(V) — P(Y | do(X))

Statistical stability

How sensitive is ID(G, X,Y) to small perturbations in the input P?

Model Stability

How sensitive is ID(G, X, Y) to extra assumptions (missing edges) in G?
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How large is the relative error in the output compared to that in the input?
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Condition number

L RelP(Vdokx)
ID(G,X,Y) = €l RelPge Rel P

How large is the relative error in the output compared to that in the input?

e.g, k for computing conditional probabilities from P is at most 2.
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ID(G,X,Y) : P(V) — P(Y | do(X))

Suppose instead of P, we get P as input to ID(G, X, Y), such that

1—e)<——=<(1+€) = RelP<ein Il lo NOrm

Sources of perturbations

e Standard model for floating-point round off in numerical analysis
@ Statistical sampling errors: usually additive (even worse)

@ Intentionally introduced errors: e.g. by some differential privacy mechanisms




G = (V,E,U,D) is a semi-Markovian graph
ID(G,X,Y) : P(V) — P(Y | do(X))

Suppose instead of P, we get P as input to ID(G, X, Y), such that

1—e)<——=<(1+€) = RelP<ein Il lo NOrm

Ignoring “weak” edges

The same framework of perturbations to P can handle “model stability” as well!

[see paper for details]




Theorem: There exist highly ill-conditioned examples!

There exists an infinite sequence of semi-Markovian graphs G;, with n observed
vertices and disjoint subsets S;, and T, of the observed vertices such that

KID(G,Tn,$n) = €XP (Q (n%*7))

@ This is a property of the ID map itself, not of an algorithm computing it!



Theorem: There exist highly ill-conditioned examples!

There exists an infinite sequence of semi-Markovian graphs G;, with n observed
vertices and disjoint subsets S;, and T, of the observed vertices such that

KID(G,Tn,$n) = €XP (Q (n%*7))

@ This is a property of the ID map itself, not of an algorithm computing it!

On these examples, any algorithm computing ID may lose
Q (n4?)
bits of precision




Theorem: An important class of well-conditioned examples

Let G be a semi-Markovian graph and let X be an observed node in G such that it is

not possible to reach a child of X from X using only the hidden edges. Then, for any
subset S of V not containing X.

KiD(G,x,s) = O(IV]).

e Identifiability under the above condition was proved by Tian and Pearl [2002]



Primitives of identifiability



|[dentification

P(Y | do(X=x)) =) P(Y,X=x)=P(Y)

In general, if X is not an ancestor of Y, it can be marginalized



|[dentification

P(YZ | do(X =x)) = P(YZ|X)




|[dentification

P(YZ | do(X =x)) = P(Z)P(Y|Z,X)

@ A generalization of this is the crucial tool in the identification algorithms
described earlier



|[dentification

P(YZ | do(X =x)) = P(Z)P(Y|Z,X)

@ A generalization of this is the crucial tool in the identification algorithms
described earlier

@ ..and also, in connivance with the innocuous marginalization described above,
the main source of ill-conditioning!



C—components [Tian and Pearl, 2002]

{Y, Z} in the above graph is a C-component: a maximal connected component among
observed nodes induced by the hidden edges




C—components [Tian and Pearl, 2002]

{Y, Z} in the above graph is a C-component: a maximal connected component among
observed nodes induced by the hidden edges

C-components are identifiable [Tian and Pearl, 2002]
If SCV is aC-component in G = (V,E,U,D) then

P(S| do(V—5)) = [ P(A | Vca)),

A€S

where 7t is a topological order on V according to E
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The hardest case
The "hardest” case for identifiability is P(S|do(X)), where
@ X is an ancestor set for S in G, and

@ S is a C-component in G — X

Case 1 SUX is a C-component in G: ID(G, S, X) does not exist
Case 2 S is a C-component in G: Use C-component identifiability
Case 3 SUX' is a C-component in G, for some X’ C X:

Call ID(SUX’,X’,S), but with P replaced by

(SuX)i= [] PA]Vr<a
AeSuX’

where 7t is a topological order on V according to E

Recursion will fail immediately unless some X’ is no more an ancestor of S!



The ill-conditioned examples



o et el el e

P(:) = P(S | do(Y)) =P(.) = [ [ P(SilS<iY<i)

i=1



o et el el e

P(:) = P(S | do(Y)) =P(.) — ﬁP(Si|S<iY<i)

i=1

@ When P is uniform, the output of the map is the uniform distribution

@ However, one can construct a P that is e-close to P and such that each
conditional probability above has a positive Q(e) relative error,

» for a total relative error of Q(ne).

No recursion was used herel




)



The final gadget (m =6,k =4): P(S | do(X,Y)

R_R R R
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The final gadget (m =6,k =4): P(S | do(X,Y)
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The final gadget (m =6,k =4): P(S | do(X,Y)

R_2 R R

m

7(P) (Xik—11» Sm+11> Yiml, (k—11) ZP Xy =%, Xx—_11) H (Si, Yi,k—1) | pred;)

P (Sm | prede)

RelP =¢ ~ RelP/ ~m- ¢ ~ Reln(P)Zmoe
Repeat k times to get Rel ID ~mk¥ - €?

20




@ The marginalization operation can “eat up” the accumulated error if the
underlying distribution is uniform

Our proof

With appropriately chosen non-uniform distributions, the marginalization operation propagates
errors

1



@ The marginalization operation can “eat up” the accumulated error if the
underlying distribution is uniform

Our proof

With appropriately chosen non-uniform distributions, the marginalization operation propagates
errors

@ To get a condition number of ~ Q(exp(y/n)), choose m & k = /n

( Details of analyzing this correctly are somewhat involved: please see paper )

1



Condition number of causality

Highly ill-conditioned examples exist But not all instances are ill-conditioned
Very small uncertainties in the model or data A well studied class of examples indeed has
can introduce very large errors in causal small condition number: so numerically

identification stable algorithms can be designed
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Condition number is a property of the function
Numerical stability is a property of a floating point algorithm

ADD : (x1,X2y++eyXn) = X1 +X2...Xn

Condition number

_ Z?:l Ixil

K= m =1, for positive x;
Numerical stability: Naive linear summation
O(n-e-«x)
Numerical stability: Kahan summation
O(e - k), to first order in ¢

¢ is the “machine epsilon”
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