Stability of causal inference

Leonard J. Schulman & Piyush Srivastava

California Institute of Technology

UAI 2016

Causal identification: Experimental intervention

Observation

Causal identification: Experimental intervention

Directed graphical models

- A directed acyclic graph G = (V, E) whose nodes are random variables
- Absent edges represent conditional independence assumptions

$$\begin{split} P(X,Y,Z) &= P(X)P(Y|X)P(Z|X,Y) \\ &= P(X)P(Y)P(Z|X,Y) \text{, due to model constraints} \end{split}$$

Directed graphical models

- A directed acyclic graph G = (V, E) whose nodes are random variables
- Absent edges represent conditional independence assumptions

$$\begin{split} P(X,Y,Z) &= P(X)P(Y|X)P(Z|X,Y) \\ &= P(X)P(Y|X)P(Z|Y) \text{, due to model constraints} \end{split}$$

Semi-Markovian models

- A Markovian model with some nodes hidden
- Hidden nodes have no parents

Observed distribution

$$P(X,Y,Z) := \sum_{\mathfrak{u}} P(U=\mathfrak{u}) P(X|U=\mathfrak{u}) P(Z|X) P(Y|X,U=\mathfrak{u})$$

Semi-Markovian models

- A Markovian model with some nodes hidden
- Hidden nodes have no parents

Observed distribution

$$\begin{split} P(X,Y,Z) := \sum_{\mathfrak{u}} P(U=\mathfrak{u}) P(X|U=\mathfrak{u}) P(Z|X) P(Y|X,U=\mathfrak{u}) \\ = P(X) P(Z|X) P(Y|Z,X) \end{split}$$

Interventions without experiments [Pearl, 1995]

Observational distribution

$$\sum_{u} P(U = u) P(X|u) P(Y|X, u)$$

Interventions without experiments [Pearl, 1995]

Identification problem

[Pearl, 1995]

When is P(Y = y | do(X = x)) computable given the observed distribution P?

Interventions without experiments [Pearl, 1995]

Identification problem

[Pearl, 1995]

When is P(Y = y | do(X = x)) computable given the observed distribution P?

Not always!

Identifiable models

But sometimes it is...

Identification

$$\begin{split} P(Y \mid do(X=x)) &= \sum_{z} P(Z=z|X=x) \\ &\cdot \sum_{x'} P(X=x') P(Y=y \mid Z=z, X=x'). \end{split}$$

Deciding identifiability

A long line of work culminated in the following striking result

Complete Identification [Huang and Valtorta, 2008; Shpitser and Pearl, 2006, ...]

An efficient algorithm with the following characteristics exists:

Input: Semi-Markovian graph G = (V, E, U, D), disjoint subsets X, Y of V

Output: Either

A rational map

$$\mathsf{ID}(\mathsf{G},\mathsf{X},\mathsf{Y}):\mathsf{P}(\mathsf{V})\mapsto\mathsf{P}(\mathsf{Y}\mid\mathsf{do}(\mathsf{X})),$$
 or

• A certificate of non-existence of such a map

Note

- The observed distribution P is **not** an input to the algorithm
- The output is not numerical, but a symbolic, exact description of the map

Deciding identifiability

A long line of work culminated in the following striking result

Complete Identification [Huang and Valtorta, 2008; Shpitser and Pearl, 2006, ...]

An efficient algorithm with the following characteristics exists:

Input: Semi-Markovian graph G = (V, E, U, D), disjoint subsets X, Y of V

Output: Either

A rational map

$$\mathsf{ID}(\mathsf{G},\mathsf{X},\mathsf{Y}):\mathsf{P}(\mathsf{V})\mapsto\mathsf{P}(\mathsf{Y}\mid\mathsf{do}(\mathsf{X})),$$
 or

• A certificate of non-existence of such a map

assumes...

- Exact knowledge of observed distribution P
- Exact knowledge of the model G (no "missing" edges)

Stability of the identification map

$$G = (V, E, U, D) \text{ is a semi-Markovian graph}$$

$$ID(G, X, Y) : P(V) \mapsto P(Y \mid do(X))$$

Statistical stability

How sensitive is ID(G, X, Y) to small perturbations in the input P?

Stability of the identification map

$$G = (V, E, U, D) \text{ is a semi-Markovian graph}$$

$$ID(G, X, Y) : P(V) \mapsto P(Y \mid do(X))$$

Statistical stability

How sensitive is ID(G, X, Y) to small perturbations in the input P?

Model Stability

How sensitive is ID(G, X, Y) to extra assumptions (missing edges) in G?

$$G = (V, E, U, D) \text{ is a semi-Markovian graph}$$

$$ID(G, X, Y) : P(V) \mapsto P(Y \mid do(X))$$

Suppose instead of P, we get \tilde{P} as input to ID(G, X, Y), such that

$$(1-\varepsilon)\leqslant \frac{\ddot{P}(\cdot)}{P(\cdot)}\leqslant (1+\varepsilon) \quad \equiv \quad \mathsf{Rel}\, P\leqslant \varepsilon, \, \mathsf{in}\,\, \|\cdot\|_{\infty} \,\, \mathsf{norm}$$

Condition number

$$\kappa_{\mathsf{ID}(G,X,Y)} = \qquad \text{ sup } \quad \frac{\mathsf{Rel}\,\mathsf{P}(\mathsf{Y}|\,\mathsf{do}(X))}{\mathsf{Rel}\,\mathsf{P}}$$

How large is the relative error in the output compared to that in the input?

$$G = (V, E, U, D) \text{ is a semi-Markovian graph}$$

$$ID(G, X, Y) : P(V) \mapsto P(Y \mid do(X))$$

Suppose instead of P, we get \tilde{P} as input to ID(G, X, Y), such that

$$(1-\varepsilon)\leqslant \frac{\tilde{P}(\cdot)}{P(\cdot)}\leqslant (1+\varepsilon) \quad \equiv \quad \mathsf{Rel}\, P\leqslant \varepsilon, \, \mathsf{in}\,\, \|\cdot\|_{\infty} \,\, \mathsf{norm}$$

Condition number

$$\kappa_{\mathsf{ID}(G,X,Y)} = \lim_{\varepsilon \downarrow 0} \ \sup_{\mathsf{Rel} \ P \leqslant \varepsilon} \frac{\mathsf{Rel} \ \mathsf{P}(\mathsf{Y}| \, \mathsf{do}(X))}{\mathsf{Rel} \ \mathsf{P}}$$

How large is the relative error in the output compared to that in the input?

e.g., κ for computing conditional probabilities from P is at most 2.

$$G = (V, E, U, D) \text{ is a semi-Markovian graph}$$

$$ID(G, X, Y) : P(V) \mapsto P(Y \mid do(X))$$

Suppose instead of P, we get \tilde{P} as input to ID(G, X, Y), such that

$$(1-\varepsilon)\leqslant \frac{\tilde{P}(\cdot)}{P(\cdot)}\leqslant (1+\varepsilon) \quad \equiv \quad \mathsf{Rel}\,\, P\leqslant \varepsilon,\, \mathsf{in}\,\, \|\cdot\|_{\infty}\,\, \mathsf{norm}$$

Sources of perturbations

• Standard model for floating-point round off in numerical analysis

$$G = (V, E, U, D)$$
 is a semi-Markovian graph
$$ID(G, X, Y) : P(V) \mapsto P(Y \mid \ do(X))$$

Suppose instead of P, we get \tilde{P} as input to ID(G, X, Y), such that

$$(1-\varepsilon)\leqslant \frac{\tilde{P}(\cdot)}{P(\cdot)}\leqslant (1+\varepsilon) \quad \equiv \quad \mathsf{Rel}\, P\leqslant \varepsilon, \, \mathsf{in}\,\, \|\cdot\|_{\infty} \,\, \mathsf{norm}$$

Sources of perturbations

- Standard model for floating-point round off in numerical analysis
- Statistical sampling errors: usually additive (even worse)

$$G = (V, E, U, D)$$
 is a semi-Markovian graph
$$ID(G, X, Y) : P(V) \mapsto P(Y \mid \ do(X))$$

Suppose instead of P, we get \tilde{P} as input to ID(G, X, Y), such that

$$(1-\varepsilon)\leqslant \frac{\ddot{P}(\cdot)}{P(\cdot)}\leqslant (1+\varepsilon) \quad \equiv \quad \mathsf{Rel}\, P\leqslant \varepsilon, \, \mathsf{in}\,\, \|\cdot\|_{\infty} \,\, \mathsf{norm}$$

Sources of perturbations

- Standard model for floating-point round off in numerical analysis
- Statistical sampling errors: usually additive (even worse)
- Intentionally introduced errors: e.g. by some differential privacy mechanisms

Perturbations in the input: Inaccurate models

$$G = (V, E, U, D)$$
 is a semi-Markovian graph
$$ID(G, X, Y) : P(V) \mapsto P(Y \mid do(X))$$

Suppose instead of P, we get \tilde{P} as input to ID(G, X, Y), such that

$$(1-\varepsilon)\leqslant \frac{\tilde{P}(\cdot)}{P(\cdot)}\leqslant (1+\varepsilon) \quad \equiv \quad \mathsf{Rel}\, P\leqslant \varepsilon, \, \mathsf{in}\,\, \|\cdot\|_{\infty} \,\, \mathsf{norm}$$

lgnoring "weak" edges

The same framework of perturbations to P can handle "model stability" as well!

g

Results: Condition of causal identification

Theorem: There exist highly ill-conditioned examples!

There exists an infinite sequence of semi-Markovian graphs G_n with n observed vertices and disjoint subsets S_n and T_n of the observed vertices such that

$$\kappa_{\mathsf{ID}(G_n,\mathsf{T}_n,\mathsf{S}_n)} = \exp\left(\Omega\left(n^{0.49}\right)\right)$$

• This is a property of the **ID** map itself, not of an algorithm computing it!

Condition vs. Stability

Results: Condition of causal identification

Theorem: There exist highly ill-conditioned examples!

There exists an infinite sequence of semi-Markovian graphs G_n with n observed vertices and disjoint subsets S_n and T_n of the observed vertices such that

$$\kappa_{\mathsf{ID}(G_n,\mathsf{T}_n,\mathsf{S}_n)} = \exp\left(\Omega\left(n^{0.49}\right)\right)$$

• This is a property of the ID map itself, not of an algorithm computing it!

On these examples, any algorithm computing ID may lose $\frac{\Omega\left(n^{0.49}\right)}{\text{bits of precision}}$

Condition vs. Stability

Results: Condition of causal identification

Theorem: An important class of well-conditioned examples

Let G be a semi-Markovian graph and let X be an observed node in G such that it is not possible to reach a child of X from X using only the hidden edges. Then, for any subset S of V not containing X.

$$\kappa_{\mathsf{ID}(G,X,S)} = \mathsf{O}(|\mathsf{V}|).$$

• Identifiability under the above condition was proved by Tian and Pearl [2002]

Ill-conditioned examples

Primitives of identifiability

Easy cases: no directed edges

Identification

$$P(Y \mid do(X = x)) = \sum_{x} P(Y, X = x) = P(Y)$$

In general, if X is not an ancestor of Y, it can be marginalized

Easy cases: no hidden edges

Identification

 $P(YZ \mid \ do(X=x)) = P(YZ|X)$

Easy cases: no hidden edges (slightly more complicated)

Identification

$$P(YZ \mid do(X = x)) = P(Z)P(Y|Z,X)$$

 A generalization of this is the crucial tool in the identification algorithms described earlier

Easy cases: no hidden edges (slightly more complicated)

Identification

$$P(YZ \mid do(X = x)) = P(Z)P(Y|Z,X)$$

- A generalization of this is the crucial tool in the identification algorithms described earlier
- ...and also, in connivance with the innocuous marginalization described above, the main source of ill-conditioning!

C-components

C-components

[Tian and Pearl, 2002]

 $\{Y,Z\}$ in the above graph is a C-component: a maximal connected component among observed nodes induced by the hidden edges

C-components

C-components

[Tian and Pearl, 2002]

 $\{Y,Z\}$ in the above graph is a $\hbox{C-component:}$ a maximal connected component among observed nodes induced by the hidden edges

C-components are identifiable

[Tian and Pearl, 2002]

If $S\subseteq V$ is a C-component in G=(V,E,U,D) then

$$P(S \mid do(V-S)) = \prod_{A \in S} P(A \mid V_{\pi($$

where π is a topological order on V according to E

The hardest case

The "hardest" case for identifiability is P(S|do(X)), where

- X is an ancestor set for S in G, and
- S is a C-component in G X

The hardest case

The "hardest" case for identifiability is P(S|do(X)), where

- X is an ancestor set for S in G, and
- S is a C-component in G X

Case 1 $S \cup X$ is a C-component in G: ID(G, S, X) does not exist

The hardest case

The "hardest" case for identifiability is P(S|do(X)), where

- X is an ancestor set for S in G, and
- S is a C-component in G X

Case 1 $S \cup X$ is a C-component in G: ID(G, S, X) does not exist

Case 2 S is a C-component in G: Use C-component identifiability

The hardest case

The "hardest" case for identifiability is P(S|do(X)), where

- X is an ancestor set for S in G, and
- S is a C-component in G X

Case 1 $S \cup X$ is a C-component in G: ID(G,S,X) does not exist

Case 2 S is a C-component in G: Use C-component identifiability

Case 3 $S \cup X'$ is a C-component in G, for some $X' \subsetneq X$:

Recursion

Call $ID(S \cup X', X', S)$, but with P replaced by

$$P'(S \cup X') := \prod_{A \in S \cup X'} P(A \mid V_{\pi(< A)}),$$

where π is a topological order on V according to E

Recursion will fail immediately unless some X^\prime is no more an ancestor of S!

The ill-conditioned examples

A warm-up calculation: κ is at least $\Omega(n)$

$$P(\cdot) \mapsto P(S \mid do(Y)) = P(.) \mapsto \prod_{i=1}^{n} P(S_i | S_{$$

A warm-up calculation: κ is at least $\Omega(n)$

- When P is uniform, the output of the map is the uniform distribution
- However, one can construct a \tilde{P} that is ϵ -close to P and such that each conditional probability above has a positive $\Omega(\epsilon)$ relative error,
 - for a total relative error of $\Omega(\mathfrak{n}\epsilon)$.

No recursion was used here!

$$\begin{split} P\left(X_{[k]},S_{[m+1]},Y_{[m],[k]}\right) := & \quad P\left(X_k = x,X_{[k-1]}\right) \cdot \prod_{i=1}^m P\left(S_i,Y_{i,[k]} \mid \mathsf{pred}_i\right) \\ & \quad \cdot P\left(S_{m+1} \mid \mathsf{pred}_{m+1}\right), \end{split}$$

$$\begin{split} P'\left(X_{[k]},S_{[m+1]},Y_{[m],[k-1]}\right) := & \quad P\left(X_k = x,X_{[k-1]}\right) \cdot \prod_{i=1}^m P\left(S_i,Y_{i,[k-1]} \mid \mathsf{pred}_i\right) \\ & \quad \cdot P\left(S_{m+1} \mid \mathsf{pred}_{m+1}\right), \end{split}$$

 $\mathsf{Rel}\,\mathsf{P} = \varepsilon \qquad \rightsquigarrow \qquad \mathsf{Rel}\,\mathsf{P}' \sim \mathfrak{m} \cdot \varepsilon$

$$\begin{split} \pi(P)\left(X_{[k-1]}, S_{[m+1]}, Y_{[m],[k-1]}\right) &:= \sum_{x} P\left(X_k = x, X_{[k-1]}\right) \cdot \prod_{i=1}^{m} P\left(S_i, Y_{i,[k-1]} \mid \mathsf{pred}_i\right) \\ &\cdot P\left(S_{m+1} \mid \mathsf{pred}_{m+1}\right), \end{split}$$

 $\mathsf{Rel}\,\mathsf{P} = \varepsilon \qquad \rightsquigarrow \qquad \mathsf{Rel}\,\mathsf{P}' \sim \mathfrak{m} \cdot \varepsilon \qquad \rightsquigarrow \qquad \mathsf{Rel}\,\pi(\mathsf{P}) \overset{?}{\sim} \mathfrak{m} \cdot \varepsilon$

$$\begin{split} \pi(P) \left(X_{[k-1]}, S_{[m+1]}, Y_{[m],[k-1]} \right) &:= \sum_{x} P \left(X_k = x, X_{[k-1]} \right) \cdot \prod_{i=1}^{m} P \left(S_i, Y_{i,[k-1]} \mid \mathsf{pred}_i \right) \\ &\cdot P \left(S_{m+1} \mid \mathsf{pred}_{m+1} \right), \end{split}$$

$$Rel P = \epsilon \qquad \rightsquigarrow \qquad Rel P' \sim \mathfrak{m} \cdot \epsilon \qquad \rightsquigarrow \qquad Rel \pi(P) \stackrel{?}{\sim} \mathfrak{m} \cdot \epsilon$$

$$Repeat k times to get Rel ID \sim \mathfrak{m}^k \cdot \epsilon?$$

Comments

• The marginalization operation can "eat up" the accumulated error if the underlying distribution is uniform

Our proof

With appropriately chosen non-uniform distributions, the marginalization operation propagates errors

Comments

 The marginalization operation can "eat up" the accumulated error if the underlying distribution is uniform

Our proof

With appropriately chosen non-uniform distributions, the marginalization operation propagates errors

• To get a condition number of $\sim \Omega(\exp(\sqrt{n}))$, choose $m \cong k \cong \sqrt{n}$

Details of analyzing this correctly are somewhat involved: please see paper

Condition number of causality

Highly ill-conditioned examples exist

Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Condition number of causality

Highly ill-conditioned examples exist

Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied

Condition number of causality

Highly ill-conditioned examples exist

Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?

Highly ill-conditioned examples exist

Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs

Highly ill-conditioned examples exist

Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs

Thank you!

Highly ill-conditioned examples exist

Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs

Thank you!

Highly ill-conditioned examples exist

Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs

Thank you!

Condition number and numerical stability

Condition number is a property of the function Numerical stability is a property of a floating point algorithm

$$\mathsf{ADD}: (x_1, x_2, \dots, x_n) \mapsto x_1 + x_2 \dots x_n$$

Condition number

$$\kappa = \frac{\sum_{i=1}^{n} |x_i|}{|\sum_{i=1}^{n} x_i|} = \text{1, for positive } x_i$$

Numerical stability: Naive linear summation

$$O(\mathbf{n} \cdot \mathbf{\epsilon} \cdot \mathbf{\kappa})$$

Numerical stability: Kahan summation

$$O(\varepsilon \cdot \kappa)$$
, to first order in ε

 ϵ is the "machine epsilon"

Bibliography I

- Yimin Huang and Marco Valtorta. On the completeness of an identifiability algorithm for semi-Markovian models. *Ann. Math. Artif. Intell.*, 54(4):363–408, December 2008. ISSN 1012-2443, 1573-7470. doi: 10.1007/s10472-008-9101-x. URL http://link.springer.com/article/10.1007/s10472-008-9101-x.
- Judea Pearl. Causal diagrams for empirical research. *Biometrika*, 82(4):669–688, December 1995. ISSN 0006-3444, 1464-3510. doi: 10.1093/biomet/82.4.669. URL http://biomet.oxfordjournals.org/content/82/4/669.
- Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proc. 20th AAAI Conference on Artifical Intelligence, pages 1219–1226. AAAI Press, July 2006. URL http://www.aaai.org/Papers/AAAI/2006/AAAI06-191.pdf.
- Jin Tian and Judea Pearl. A general identification condition for causal effects. In *Proceedings of the Eighteenth National Conference on Artificial Intelligence*, pages 567–573, 2002.