Stability of causal inference

Leonard J. Schulman & Piyush Srivastava

California Institute of Technology

UAI 2016
Causal identification: Experimental intervention

Observation

Genetic factors

Smoking \(X \) → Lung disease \(Y \)

Experimental intervention on \(X \)
Causal identification: Experimental intervention

Observation

Intervention on X

Genetic factors

Smoking \rightarrow Lung disease

Genetic factors

Smoking \rightarrow Lung disease
Directed graphical models

- A directed acyclic graph $G = (V, E)$ whose nodes are random variables.
- Absent edges represent conditional independence assumptions.

$$P(X, Y, Z) = P(X)P(Y|X)P(Z|X, Y)$$
$$= P(X)P(Y)P(Z|X, Y), \text{ due to model constraints}$$
Directed graphical models

- A directed acyclic graph $G = (V, E)$ whose nodes are random variables
- Absent edges represent conditional independence assumptions

\[
P(X, Y, Z) = P(X)P(Y|X)P(Z|X, Y) \\
= P(X)P(Y|X)P(Z|Y), \text{ due to model constraints}
\]
Semi-Markovian models

- A Markovian model with some nodes hidden
- Hidden nodes have no parents

\[
P(X, Y, Z) := \sum_u P(U = u)P(X|U = u)P(Z|X)P(Y|X, U = u)
\]
Semi-Markovian models

- A Markovian model with some nodes hidden
- Hidden nodes have no parents

Observed distribution

\[
P(X, Y, Z) := \sum_u P(U = u)P(X|U = u)P(Z|X)P(Y|X, U = u)
= P(X)P(Z|X)P(Y|Z, X)
\]
Interventions without experiments [Pearl, 1995]

Observational distribution

\[P(X, Y) \]
\[
\sum_u P(U = u)P(X|u)P(Y|X, u)
\]
Interventions without experiments [Pearl, 1995]

Observational distribution

\[P(X, Y) \]
\[\sum_{u} P(U = u)P(X|u)P(Y|X, u) \]

Intervention distribution

\[P(Y | \text{do}(X = x)) \]
\[\sum_{u} P(U = u)P(Y|X = x, u) \]

Identification problem [Pearl, 1995]

When is \(P(Y = y | \text{do}(X = x)) \) computable given the observed distribution \(P \)?
Interventions without experiments [Pearl, 1995]

Observational distribution

\[P(X, Y) \]
\[\sum_u P(U = u)P(X|u)P(Y|X, u) \]

Intervention distribution

\[P(Y | \text{do}(X = x)) \]
\[\sum_u P(U = u)P(Y|X = x, u) \]

Identification problem [Pearl, 1995]

When is \(P(Y = y | \text{do}(X = x)) \) computable given the observed distribution \(P \)?

Not always!
But sometimes it is...

$$P(Y \mid \text{do}(X = x)) = \sum_z P(Z = z \mid X = x) \cdot \sum_{x'} P(X = x') \cdot P(Y = y \mid Z = z, X = x').$$
Deciding identifiability

A long line of work culminated in the following striking result

Complete Identification [Huang and Valtorta, 2008; Shpitser and Pearl, 2006, …]

An efficient algorithm with the following characteristics exists:

Input: Semi-Markovian graph $G = (V, E, U, D)$, disjoint subsets X, Y of V

Output: Either

- A rational map

\[
ID(G, X, Y) : P(V) \mapsto P(Y \mid \text{do}(X)),
\]

- A certificate of non-existence of such a map

Note

- The observed distribution P is **not** an input to the algorithm
- The output is not numerical, but a symbolic, **exact** description of the map
Deciding identifiability

A long line of work culminated in the following striking result

Complete Identification [Huang and Valtorta, 2008; Shpitser and Pearl, 2006, …]

An efficient algorithm with the following characteristics exists:

Input: Semi-Markovian graph $G = (V, E, U, D)$, disjoint subsets X, Y of V

Output: Either

- A rational map

 $\text{ID}(G, X, Y) : P(V) \mapsto P(Y \mid \text{do}(X))$, or

- A certificate of non-existence of such a map

ID assumes…

- *Exact* knowledge of observed distribution P
- *Exact* knowledge of the model G (no “missing” edges)
Stability of the identification map

\[G = (V, E, U, D) \text{ is a semi-Markovian graph} \]
\[\text{ID}(G, X, Y) : P(V) \mapsto P(Y \mid \text{do}(X)) \]

Statistical stability

How sensitive is \(\text{ID}(G, X, Y) \) to small perturbations in the input \(P \)?
G = (V, E, U, D) is a semi-Markovian graph

ID(G, X, Y) : P(V) ⟼ P(Y | do(X))

Statistical stability

How sensitive is ID(G, X, Y) to small perturbations in the input P?

Model Stability

How sensitive is ID(G, X, Y) to extra assumptions (missing edges) in G?
Perturbations in the input: Condition number

\[G = (V, E, U, D) \] is a semi-Markovian graph

\[\text{ID}(G, X, Y) : P(V) \mapsto P(Y \mid \text{do}(X)) \]

Suppose instead of \(P \), we get \(\tilde{P} \) as input to \(\text{ID}(G, X, Y) \), such that

\[
(1 - \epsilon) \leq \frac{\tilde{P}(\cdot)}{P(\cdot)} \leq (1 + \epsilon) \quad \equiv \quad \text{Rel} \ P \leq \epsilon, \text{ in } \| \cdot \|_\infty \text{ norm}
\]

Condition number

\[
\kappa_{\text{ID}(G, X, Y)} = \sup \frac{\text{Rel} \ P(Y \mid \text{do}(X))}{\text{Rel} \ P}
\]

How large is the relative error in the output compared to that in the input?
Perturbations in the input: Condition number

\[G = (V, E, U, D) \text{ is a semi-Markovian graph} \]

\[\text{ID}(G, X, Y): P(V) \mapsto P(Y \mid \text{do}(X)) \]

Suppose instead of \(P \), we get \(\tilde{P} \) as input to \(\text{ID}(G, X, Y) \), such that

\[
(1 - \epsilon) \leq \frac{\tilde{P}(\cdot)}{P(\cdot)} \leq (1 + \epsilon) \quad \equiv \quad \text{Rel } P \leq \epsilon, \text{ in } \| \cdot \|_\infty \text{ norm}
\]

Condition number

\[
\kappa_{\text{ID}(G, X, Y)} = \lim_{\epsilon \downarrow 0} \sup_{\text{Rel } P \leq \epsilon} \frac{\text{Rel } \tilde{P}(Y \mid \text{do}(X))}{\text{Rel } P}
\]

How large is the relative error in the output compared to that in the input?

E.g., \(\kappa \) for computing conditional probabilities from \(P \) is at most 2.
Perturbations in the input: Condition number

\[G = (V, E, U, D) \] is a semi-Markovian graph
\[\text{ID}(G, X, Y) : P(V) \mapsto P(Y \mid \text{do}(X)) \]

Suppose instead of \(P \), we get \(\tilde{P} \) as input to \(\text{ID}(G, X, Y) \), such that

\[(1 - \epsilon) \leq \frac{\tilde{P}(\cdot)}{P(\cdot)} \leq (1 + \epsilon) \equiv \text{Rel } P \leq \epsilon, \text{ in } \| \cdot \|_{\infty} \text{ norm} \]

Sources of perturbations

- Standard model for floating-point round off in numerical analysis

Statistical sampling errors: usually additive (even worse)
Intentionally introduced errors: e.g. by some differential privacy mechanisms
Perturbations in the input: Condition number

\[G = (V, E, U, D) \] is a semi-Markovian graph

\[\text{ID}(G, X, Y) : P(V) \mapsto P(Y \mid \text{do}(X)) \]

Suppose instead of \(P \), we get \(\tilde{P} \) as input to \(\text{ID}(G, X, Y) \), such that

\[
(1 - \epsilon) \leq \frac{\tilde{P}(\cdot)}{P(\cdot)} \leq (1 + \epsilon) \quad \equiv \quad \text{Rel} \, P \leq \epsilon, \text{ in } \| \cdot \|_\infty \text{ norm}
\]

Sources of perturbations

- Standard model for floating-point round off in numerical analysis
- **Statistical sampling errors**: usually additive (even worse)
Perturbations in the input: Condition number

\[G = (V, E, U, D) \] is a semi-Markovian graph

\[\text{ID}(G, X, Y) : P(V) \mapsto P(Y | \text{do}(X)) \]

Suppose instead of \(P \), we get \(\tilde{P} \) as input to \(\text{ID}(G, X, Y) \), such that

\[
(1 - \epsilon) \leq \frac{\tilde{P}(\cdot)}{P(\cdot)} \leq (1 + \epsilon) \equiv \text{Rel} P \leq \epsilon, \text{ in } \| \cdot \|_\infty \text{ norm}
\]

Sources of perturbations

- Standard model for floating-point round off in numerical analysis
- **Statistical sampling errors**: usually additive (even worse)
- **Intentionally introduced errors**: e.g. by some differential privacy mechanisms
Perturbations in the input: Inaccurate models

\[G = (V, E, U, D) \] is a semi-Markovian graph

\[\text{ID}(G, X, Y) : P(V) \leftrightarrow P(Y | \text{do}(X)) \]

Suppose instead of \(P \), we get \(\tilde{P} \) as input to \(\text{ID}(G, X, Y) \), such that

\[
(1 - \epsilon) \leq \frac{\tilde{P}(\cdot)}{P(\cdot)} \leq (1 + \epsilon) \quad \equiv \quad \text{Rel} \, P \leq \epsilon, \text{ in } || \cdot ||_\infty \text{ norm}
\]

Ignoring “weak” edges

The same framework of perturbations to \(P \) can handle “model stability” as well!

[see paper for details]
Results: Condition of causal identification

Theorem: There exist highly ill-conditioned examples!

There exists an infinite sequence of semi-Markovian graphs G_n with n observed vertices and disjoint subsets S_n and T_n of the observed vertices such that

$$\kappa_{ID}(G_n,T_n,S_n) = \exp\left(\Omega \left(n^{0.49} \right) \right)$$

- This is a property of the ID map itself, not of an algorithm computing it!
Results: Condition of causal identification

Theorem: There exist highly ill-conditioned examples!

There exists an infinite sequence of semi-Markovian graphs G_n with n observed vertices and disjoint subsets S_n and T_n of the observed vertices such that

$$\kappa_{\text{ID}}(G_n, T_n, S_n) = \exp\left(\Omega\left(n^{0.49}\right)\right)$$

- This is a property of the ID map itself, not of an algorithm computing it!

On these examples, any algorithm computing ID may lose $\Omega\left(n^{0.49}\right)$ bits of precision
Theorem: An important class of well-conditioned examples

Let G be a semi-Markovian graph and let X be an observed node in G such that it is not possible to reach a child of X from X using only the hidden edges. Then, for any subset S of V not containing X.

$$\kappa_{\text{ID}}(G,X,S) = O(|V|).$$

- Identifiability under the above condition was proved by Tian and Pearl [2002].
Primitives of identifiability
Easy cases: no directed edges

\[P(Y \mid \text{do}(X = x)) = \sum_x P(Y, X = x) = P(Y) \]

In general, if \(X \) is not an ancestor of \(Y \), it can be marginalized.
Easy cases: no hidden edges

Identification

\[P(YZ \mid do(X = x)) = P(YZ \mid X) \]
Easy cases: no hidden edges (slightly more complicated)

A generalization of this is the crucial tool in the identification algorithms described earlier.

$$P(YZ \mid \text{do}(X = x)) = P(Z)P(Y \mid Z, X)$$
Easy cases: no hidden edges (slightly more complicated)

\[P(YZ \mid \text{do}(X = x)) = P(Z)P(Y \mid Z, X) \]

- A generalization of this is the crucial tool in the identification algorithms described earlier
- ...and also, in connivance with the innocuous marginalization described above, the main source of ill-conditioning!
\(\{Y, Z\} \) in the above graph is a \textbf{C-component}: a \textit{maximal} connected component among observed nodes induced by the hidden edges.
C–components

\{Y, Z\} in the above graph is a C–component: a maximal connected component among observed nodes induced by the hidden edges.

C–components are identifiable

If \(S \subseteq V \) is a C–component in \(G = (V, E, U, D) \) then

\[
P(S \mid \text{do}(V - S)) = \prod_{A \in S} P(A \mid V_{\pi(<A)}),
\]

where \(\pi \) is a topological order on \(V \) according to \(E \).
C-components and general identifiability

The hardest case

The “hardest” case for identifiability is $P(S|\text{do}(X))$, where

- X is an ancestor set for S in G, and
- S is a C-component in $G - X$
The hardest case

The "hardest" case for identifiability is $P(S|\text{do}(X))$, where

- X is an ancestor set for S in G, and
- S is a C-component in $G - X$

\textbf{Case 1} \hspace{1cm} S \cup X \text{ is a C-component in } G: \text{ ID}(G, S, X) \text{ does not exist}
The hardest case

The “hardest” case for identifiability is $P(S|\text{do}(X))$, where
- X is an ancestor set for S in G, and
- S is a C-component in $G - X$

Case 1 $S \cup X$ is a C-component in G: $\text{ID}(G, S, X)$ does not exist

Case 2 S is a C-component in G: Use C-component identifiability
C-components and general identifiability

The hardest case

The “hardest” case for identifiability is $P(S \mid \text{do}(X))$, where

- X is an ancestor set for S in G, and
- S is a C-component in $G - X$

Case 1 $S \cup X$ is a C-component in G: $\text{ID}(G, S, X)$ does not exist

Case 2 S is a C-component in G: Use C-component identifiability

Case 3 $S \cup X'$ is a C-component in G, for some $X' \subsetneq X$:

Recursion

Call $\text{ID}(S \cup X', X', S)$, but with P replaced by

$$P'(S \cup X') := \prod_{A \in S \cup X'} P(A \mid V_{\pi(<A)})$$

where π is a topological order on V according to E

Recursion will fail immediately unless some X' is no more an ancestor of S!
The ill-conditioned examples
A warm-up calculation: \(\kappa \) is at least \(\Omega(n) \)

\[
\begin{align*}
P(\cdot) \mapsto P(S \mid \text{do}(Y)) &= P(\cdot) \mapsto \prod_{i=1}^{n} P(S_i \mid S_{<i} Y_{<i})
\end{align*}
\]
A warm-up calculation: \(\kappa \) is at least \(\Omega(n) \)

\[
P(\cdot) \mapsto P(S \mid \text{do}(Y)) = P(\cdot) \mapsto \prod_{i=1}^{n} P(S_i \mid S_{<i} Y_{<i})
\]

- When \(P \) is uniform, the output of the map is the uniform distribution
- However, one can construct a \(\tilde{P} \) that is \(\epsilon \)-close to \(P \) and such that each conditional probability above has a positive \(\Omega(\epsilon) \) relative error,
 - for a total relative error of \(\Omega(n\epsilon) \).

No recursion was used here!
The final gadget ($m = 6, k = 4$): $P(S \mid \operatorname{do}(X, Y))$
The final gadget \((m = 6, k = 4)\): \(P(S \mid \text{do}(X, Y))\)

\[
P(X_{[k]}, S_{[m+1]}, Y_{[m],[k]}):= P(X_k = x, X_{[k-1]}) \cdot \prod_{i=1}^{m} P(S_i, Y_{i,[k]} \mid \text{pred}_i) \\
\cdot P(S_{m+1} \mid \text{pred}_{m+1}),
\]
The final gadget \((m = 6, k = 4)\): \(P(S \mid \text{do}(X, Y))\)

\[
\begin{align*}
P'(X_k, S_{m+1}, Y_{m}, \lbrack k-1 \rbrack) & := P(X_k = x, X_{\lbrack k-1 \rbrack}) \cdot \prod_{i=1}^{m} P(S_i, Y_i, \lbrack k-1 \rbrack \mid \text{pred}_i) \\
& \quad \cdot P(S_{m+1} \mid \text{pred}_{m+1}),
\end{align*}
\]

\[
\text{Rel } P = \epsilon \quad \leadsto \quad \text{Rel } P' \sim m \cdot \epsilon
\]
The final gadget ($m = 6, k = 4$): $P(S \mid \text{do}(X, Y))$

$$
\pi(P) \left(X_{[k-1]}, S_{[m+1]}, Y_{[m],[k-1]} \right) := \sum_x P \left(X_k = x, X_{[k-1]} \right) \cdot \prod_{i=1}^m P \left(S_i, Y_{i,[k-1]} \mid \text{pred}_i \right) \\
\cdot P \left(S_{m+1} \mid \text{pred}_{m+1} \right),
$$

Rel $P = \epsilon \Rightarrow$ Rel $P' \sim m \cdot \epsilon \Rightarrow$ Rel $\pi(P) \sim m \cdot \epsilon$
The final gadget \((m = 6, k = 4)\): \(P(S \mid \text{do}(X, Y))\)

\[
\pi(P) (X_{[k-1]}, S_{[m+1]}, Y_{[m],[k-1]}) := \sum_x P(X_k = x, X_{[k-1]}) \cdot \prod_{i=1}^{m} P(S_i, Y_{i,[k-1]} \mid \text{pred}_i) \\
\cdot P(S_{m+1} \mid \text{pred}_{m+1}),
\]

\[
\text{Rel } P = \epsilon \quad \leadsto \quad \text{Rel } P' \sim m \cdot \epsilon \quad \leadsto \quad \text{Rel } \pi(P) ? m \cdot \epsilon
\]

Repeat \(k\) times to get \(\text{Rel ID} \sim m^k \cdot \epsilon\).
Comments

- The marginalization operation can “eat up” the accumulated error if the underlying distribution is uniform

Our proof

With appropriately chosen non-uniform distributions, the marginalization operation propagates errors.
The marginalization operation can “eat up” the accumulated error if the underlying distribution is uniform.

With appropriately chosen non-uniform distributions, the marginalization operation propagates errors.

To get a condition number of $\sim \Omega(\exp(\sqrt{n}))$, choose $m \approx k \approx \sqrt{n}$.

Details of analyzing this correctly are somewhat involved: please see paper 21.
Conclusion

Condition number of causality

- **Highly ill-conditioned examples exist**
 - Very small uncertainties in the model or data can introduce very large errors in causal identification

- **But not all instances are ill-conditioned**
 - A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions
- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g., some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g., SEMs

Thank you!
Conclusion

Condition number of causality

Highly ill-conditioned examples exist
Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned
A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions
- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
Conclusion

Condition number of causality

Highly ill-conditioned examples exist

- Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

- A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
Conclusion

Condition number of causality

Highly ill-conditioned examples exist

- Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

- A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs
Conclusion

Condition number of causality

Highly ill-conditioned examples exist

But not all instances are ill-conditioned

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs

Thank you!
Conclusion

Condition number of causality

Highly ill-conditioned examples exist

- Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned

- A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions

- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs

Thank you!
Conclusion

Condition number of causality

Highly ill-conditioned examples exist
Very small uncertainties in the model or data can introduce very large errors in causal identification

But not all instances are ill-conditioned
A well studied class of examples indeed has small condition number: so numerically stable algorithms can be designed

Some future directions
- Algorithmically classify condition numbers for any given model and intervention
 - e.g., for comparing different models of the system being studied
- Find ways to get around an ill-conditioned model by using more data
 - e.g. some measured intervention distributions? error correction?
- Condition number for other causal inference problems, e.g. SEMs

Thank you!
Condition number and numerical stability

Condition number is a property of the function
Numerical stability is a property of a floating point algorithm

\[\text{ADD} : (x_1, x_2, \ldots, x_n) \mapsto x_1 + x_2 \ldots x_n \]

Condition number

\[\kappa = \frac{\sum_{i=1}^{n} |x_i|}{|\sum_{i=1}^{n} x_i|} = 1, \text{ for positive } x_i \]

Numerical stability: Naive linear summation

\[O(n \cdot \varepsilon \cdot \kappa) \]

Numerical stability: Kahan summation

\[O(\varepsilon \cdot \kappa), \text{ to first order in } \varepsilon \]

\(\varepsilon \) is the “machine epsilon”
Bibliography I

