APPENDIX: SUPPLEMENTARY MATERIAL
Bethe and Related Pairwise Entropy Approximations

In this Appendix, we provide:

e Proofs of Theorenig 6 afdl 7, and Len{nha 8 from the main text.
e Background on the loop series method (Chertkov and Cheyi2@8l6; Sudderth et al., 2007).

Second Derivatives of F4

Theorem[@ (H;; = %’g;‘j second derivativesof F4(qu, ..., ¢,), aSSuming optimum pairwise marginals ¢;;)
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whereg;; takes its optimum value from Theorém 2, dfg = ¢;q; (1 — ¢;)(1 — ¢;) — (&; — ¢iq;)? > 0, with equality iff
g org; € {0,1}.

Proof. The proof of this result for arbitrary counting numbers extethe earlier approaches of Weller and Jebara (2013)
and Kor€ et al.|(2012), which examined only the restrictasecof the Bethe approximation. Consider the equation éor th
free energy approximatiot4 (7). Note that we shall always assume optimum pairwise matgj, terms to be given
implicitly by Theoren{2. We first consider pairwise termsff, then singleton terms, which will be added together to
give the resultT;; > 0 unlessy; or ¢; € {0, 1} follows from (Weller and Jebara, 2013, Lemma 12).

Pairwiseterms. Consider an edgg, j) € £ and collect its pairwise terms together frofa (7), defining
fai,q5) = —Wii&ii(ai, q5) — pig Sii(ai, 45)- (12)

Lety = (y1,y2,ys3) be one of four possible vectors with components= a, y» = b andy; = 1, wherea,b € B = {0, 1}.
Note that a third ‘dimension’ restricted to the valukas been added for notational convenience (g} = p;;(a, b), that
is the(a, b) element from the:;; matrix (2), given the values af, andg;. Let¢(y) = W;; if y = (1,1,1), or¢(y) = 0
otherwise. Let = (¢;, ¢;, 1). Define functionk used in entropy calculations &¢z) = —zlog z.

Consider[(IPR) and instead of solving fr (or equivalently forr) explicitly, expressf as an optimization problem, min-
imizing the approximate free energy subject to local cdaasisy and normalization constraints in order to use tealasq
from convex optimization. We hav&(¢;, ¢;) = g(r) where

g(r) =min Y _ [=p(Y)7(y) — pish(n(y))]

st. Y wy)=r k=123 (13)
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Introducing dual variableX, the Lagrangian can be written as

Le(m, A) =Y _[(=6(y) = (y, A)7(y) = pijh(x(y))] + (1, A),
with derivative

— _(b(y) — <y’ )\> =+ p”(l + lOg 7T)7

which yields a minimum at

(14)

Ti(y) = exp (M —1).
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Since the minimization problem ifh_(IL3) is convex and sassflee weak Slater’s condition (the constraints are affine),
strong duality applies anglr) = maxy G(r,A) = G(r, A*(r)) where the dual is

G(r,A) = InlIlL = —pij Zﬂ')\ (15)
Hence,a = g—G = A}. Our aim is to obtain second derivativesfofia -2 o = %X’C , which we shall derive in terms
Tk Tk 7107k r
of a3 x 3 matrixC, Where we define
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Di(r,A) := Zyk%\ + 7y, using [15). (16)

Now Dy (r,A\*) = 0 for k = 1, 2, 3. Differentiating this W|th respect to,
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— Sk1+ Z Chyp 82897* using [16) and definition of.
Hence,ar o = —[C~1]k. Using its definition and{16), we have
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Thus, using shorthang,, = y;;(a,b),
1 Mo + p11 Hi1 Mo + M11
C=-— M1 o1 + 11 por + pa1 | - (7)
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Recall constraintgoo + po1 + pio + 11 = 1, po1 + p11 = g5, pio + pi1 = G-

Applying the result above and Cramer’s rule,
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From [17), after simplifying,—p;;j det C' = poopiop1n + paofaiftor + Hi1fiotoo + foipoopio > 0 (all products
of three terms of the pairwise pseudomarginal mafrix (2)ybs$ituting in terms from[{2) and simplifying establishes
—pi; det C = T;; from the statement of the theorem, and 1110 — poopt11 = ¢ig5 — &ij-

Hence,
82_f o QJ(l - QJ) an 495 — gij 82f QZ(l - QZ) (18)
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Singleton terms.  Let f;(¢;) be the singleton terms froml(7) fof;. The only non-zero derivatives are with respecj;to

filqi) = _eiQi+Si(Qi)(_Ci+ Z Pz‘j),
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Adding pairwise and singleton terms gives the result. O
Submodularity of F4
Here we considefF4(q1, - .-, q,) with pairwise marginals given by Theordrh 2, and show thatafoy discrete mesh

M = [T, M;, where); is a finite set of points fog; in [0, 1], and for any counting numbers (provided aj} # 0),
then the discrete optimization to find the pointArt with lowest.F 4 is submodular for any attractive model (hence can be
solved efficiently). We follow the same reasoning used byi&¥eind Jebara (201 3) for the Bethe approximation.

Regarding the expression fdd;; from Theorem[ b together with Lemnid 3, observe that providgd # 0 and
¢i,q; € (0,1),W;; >0« %ﬁgj < 0 (whatever the sign gf;).

We first show that third derivatives of4 exist and are finite. Recall that by definitiom,; = exp(W;;/p;;) — 1 > —1,
with the same sign &ad/;; / p;;.

Lemma 9 (Finite 3rd derivatives)If ¢;,¢; € (0,1) andp;; # 0V(3, 5) € &, then all third derivatives exist and are finite.

Proof. Using Theorerfil6 and notiri; > 0 strictly given our conditions, it is sufficient to show thalyaaai—ikj is finite. We
may assumé € {i, j} else the derivative i8 and by symmetry need only che%%f. Differentiating [8),

0%ij _ ij(q; —&ij) + 4
0qi 14 aij(qi — &;j + a5 — &ij)

Recalling [2).q; — &;; andg; — &;; are elements of the edge pseudomarginal and hence are momaed-ora;; > 0,

it is clear that the denominator is positive. df; < 0 then note thaty;; € (—1,0), hence it is sufficient to show that
(¢ — &j + q; — &;) < 1. This follows immediately from other constraints ensurihgt elements of the pseudomarginal
are valid, i.e&; > 0andl +¢&;; — ¢ —g; > 0. |

Next we show a stronger version of Lemia 3. This will simpttig subsequent proof of Theoréin 7.

Lemma 10 (Better lower bound fo¢;;, Lemma 14 in Weller and Jebara, 2018%)«;; > 0, thené;; > qiq; + a4qiq; (1 —
¢i)(1 —q;)/[1 + i (g + g5 — 2¢iq;)], equality only possible at an edge, i.e. one or both;of; € {0, 1}.

Proof. Write §;; = ¢:¢; + y and substitute intd_{8) to give
aijy® =yl + aij(ai + a5 — 24i0;)] + ijqiq;(1 — ¢:)(1 — ;) = 0.

This is a convex parabola which gt= 0 is above the abscissa (unlgsr ¢; € {0, 1}), with negative gradierﬂ.Hence,
all roots are ay > 0, and given convexity we can bound below using the tangeptat, which yields the result. O

Now we prove the main result of this Section.

Theorem[7l For any counting numbers withy; # 0 V(i,j) € &, and any discretization, an attractive model yields a
submodular discrete optimization problem to estimage 4.

"Observe thaty; + q; — 2giq; = 3 — 2(q: — 3)(¢; — 3), hencee (0,1) for ¢;, ¢; € (0,1).



Proof. For any edgéi, j), let f be the pairwise terms frotfi4 given in [12), and note the submodularity requirement from
42.3. Letw = (21, 22), y = (y1,92) be any points if0, 1)2. Defines(z,y) = (s1, s2) = (min(x1,y1), min(z2,y2)), and
t(z,y) = (t1,t2) = (max(x1,y1), max(x2,ys2)). Letg(x,y) = f(s1,s2) + f(t1,t2) — f(s1,t2) — f(s2,t1), and call this
the submodularity of the rectangle defineddyy;. We must show(z,y) < 0. Note f is continuous ir{0, 1]2, hence so
also isg. We shall show that(z,y) € (0,1)2, g(z,y) < 0 then the result follows by continuity.

Assumer,y € (0,1)2. Consider derivatives of in the compact sel2 = [s1,#1] x [s2,%2]. Using [9) and bounded

pseudomarginal entries (see Weller and Jebara, 2013 failg)efirst derivatives exist and are bounded. By Thedrém 6
2

and Lemma, the same holds for second and third derivatfather, Theoreml6 and Lemrhal 10 show t 2 qu =

9% f
0q;0q; <0.

If a rectangle is sliced fully along each dimension so as teuimlivided into sub-rectangles then summing the submodu-
larities of all the sub-rectangles, internal terms canndlae obtain the submodularity of the original rectangle.

Hence there exists ansuch that if we subdivide the rectangle definedihy into sufficiently small sub-rectangles with
sides< e and apply Taylor’s theorem up to second order with the redeaiexpressed in terms of the third derivative
evaluated in the interval, then the second order terms damniand the submodularity of each small sub-rectargle
Summing over all sub-rectangles yields the result. O

Effect of Approximate Entropy on Marginals

Lemmal8 For a symmetric homogeneous d-regular modehorrtices, letd be the Hessian of the approximate free
energy atg; = l Vi € V, using uniform counting numbers = ¢ Vi € V,p;; = p V(i,j) € &, then1TH1 =

n [4(0 —dp) + g} , Where¢ = 1o ( ) is the uniform optimum edge marginal term, and:) =
sigmoid function.

1+€ — is the standard

Proof. Using [9), it is straightforward to show that there is a stadiry point aty; = 1 Vi. By Theoreni2, all optimum
pairwise marginal terms ag; = £ = —cr (2/) ) whereo(u) = —— is the standard sigmoid function. Now using

1+e—w
Theorent®, allly; = 7 = & — (¢ = 1)* = ¢ (3 - ¢), and
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Background on the Loop Series M ethod

The loop series expansion of Chertkov and Chernyak (200®)igees an expression for the ratio of the true partition
functionZ to the Bethe approximatiafiz. Here we provide brief background, following the preseaateinSudderth et al.
(2007).

At any stationary poing of the Bethe free energ¥s, specified by our usual singletdn; : : € V} and edg€¢;; : (4, 5) €

£} marginal terms,
=1t Y Br T Ba [ (Xi = )] (19)
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wheredr = [] 6. B8y = S — 4y ., andd;(F) is the degree of in the subgraph induced .
(i,j)eF ¢i(1 —q)g; (1 —q)

We write Z (/1) to mearexp [—Fg(ft)]. Note thatZp = max; Zg(f1) and that bottZ, Zg > 0.



Observe thaf(19) is a sum over (the potentially large setlbfjon-empty edge subsets. However, for any subsstich
thatd;(F) = 1 for anyi € V, thenE,, [(X; — ¢;)%*)] = 0, hence the term for this subset is zero and all such subsets
may be ignored. This leaves all subsétsuch thatl;(F) # 1 Vi € V. These remaining subsets are caligtheralized
loops Examples include a single cycle, two disjoint cycles, av tycles connected by a path between them.

A related concept is theore of a graph, which is defined as the (unique) graph which resnafiter repeatedly removing
any nodes with degree 1. It is easy to see that no generatinpchn exist outside the core.

Regarding[(19). Sudderth et al. (2007) sought sufficientditimms such that all terms in the sum were nonnegative, in
which case clearly’z < Z. One case is if (i) alBy > 0, and (ii) all Eq, [(X; — qi)di(F)} > 0. The first condition holds
for an attractive model since by Lemina 3, ed@thtakes the sign ofV;; (all p;; = 1 for the Bethe approximation). The
second condition clearly holds for anwith d; (F') even (since then we have the expectation of a non-negatargity), or
d;(F) = 1 (in which case it is 0 as noted above). Hence, we must wory aimbut generalized loops containing variables
with odd degree- 1.

Using a standard result for moments of Bernoulli randomalaes,
Eq, [(Xi —¢)"] = ai(1— ;) [(1 —q)* " + (1) ]

For d odd, this is nonnegative providéd — ¢;) > ¢; & ¢; < % Hence, if this is true for all variables in the core with
degree> 3, then this is sufficient to show thatz < Z. Using a slight variant of the same argument, Sudderthl ¢2607)
show that it is also sufficient if instead all such variablasdy; > %

Our new observations. For our first result in§6.3, we apply the same analysis and observe that if a modéhiosn
exactly one cycle with edge s€étand it is frustrated, then there is only one generalized Bep C': this hasgr < 0 and
all d;(F) = 2, hence byl(IR)Z/Z (i) < 1 Vji, and thus in particula/z > zB

Similarly, we can conclude more generally thiag > Z for any model such that every generalized loop contains an
odd number of repulsive edges (this is a sort of generalizestriited cycle), and the Bethe optimum marginals for every
variable that has an odd degree3 in any generalized loop, are either gll% orall > %

8In fact, for models with exactly one cycle, it is known that tRethe free energy is convéx (Pakzad and Ananthédram), 20623e
there is only one stationary point.



