Learning and Inference in Tractable Probabilistic Knowledge
Bases

SUPPLEMENTARY MATERIAL

Proof of Theorem 1

Proof. We provide a constructive proof, describing the ar-
chitecture of an SPN constructed from any given TPKB.
We prove that (a) the SPN’s distribution is that of the TPKB
and (b) the SPN is valid, that is, it computes all marginals
and the partition function correctly. Finally, we show that
the size of the SPN is linear in the size of the TPKB. By
Theorem 1 of Gens and Domingos [9], which applies to all
valid SPNs, we can conclude that the partition function of
a TPKB can be computed in time linear in its size.

The proof consists of three parts.

(i) We first construct a subSPN SPN(0, C) for every pair
(0,C) where O is a leaf in the part decomposition, C
a leaf in the class hierarchy, and O a possible instance
of C. We show that each of these subSPNss is valid and
computes the weight of subworlds and the correspond-
ing partition function correctly.

(ii) We construct a subSPN SPN(0,C) for every pair
(0, C) where 0 is a leaf in the part decomposition and C
is the class that object 0 was declared to be an instance
of. We show that each of these subSPNs is valid and
computes the weight of subworlds and the correspond-
ing partition function correctly. This is accomplished
via a proof by induction on the height of a tree (a sub-
tree of the class hierarchy) of which C is the root node.

(iii) Finally, we construct a subSPN for the pair (0, Co)
and show that it is valid and computes the weight of
subworlds correctly. This is accomplished by a proof
of induction on the height of the part decomposition.

We begin by proving part (i). We denote by L; the i-th
layer of the part decomposition where 7 is the height of the
layer. Hence, the leaf nodes of the part decomposition are
in layer L. Moreover, let Cy be the set of leaf classes of
the class hierarchy the object O can possibly be an instance
of. Let 0 € Ly and C € Cy. For each such pair, we con-
struct a subSPN SPN(0, C) as follows. We create a product
node with two product nodes as children. One child repre-
sents the product of the attribute distributions. For each at-
tribute declared for class C there is one sum node represent-

ing the efficiently summable/integrable attribute distribu-
tion with the (implicitly given) indicator variables A(Q, D)
and —A(0, D). For each relation R declared for class C, there
is one sum node representing the relation distribution with
indicator variables R(0) and —R(0). Since 0 does not have
parts, these indicator variables represent atoms of unary
predicates. Finally, we add the indicator variable Is(0,C)
as a child node to the top product node. Figure 3 depicts the
subSPN for a pair (0, C). Here, we do not need the depicted
product nodes representing the subclass and part distribu-
tions because leaf objects do not have parts and leaf classes
do not have subclasses. It is now straighforward to verify
that the subSPN SPN(0, C) computes ¢(0,C, W) for ev-
ery possible subworld W with top object 0 and top class
C. Since each possible world determines the truth value of
all indicator variables, the SPN also computes the partition
function Z (g ¢ correctly. Moreover, it is straightforward to
verify that the subSPN is valid by showing that it is com-
plete and decomposable [27]. This concludes the first part
of the proof.

We now proceed to prove part (ii). We construct subSPNs
SPN(0, Cp) for every pair (0,Cq) where O is a leaf in the
part decomposition and Cy is a class that 0 is declared to be
an instance of. We accomplish this with an inductive proof
on the height of the subtree of the class hierarchy with Cqy
as root node. We denote this subtree as the class tree of the
pair (0, Co) and write Tree(qgc,). In the preceding step of
the main proof, we showed the bases case, that is, for all
C € Tree(g,,) With height 0 we constructed a valid SPN
that computes the weight of subworlds and the correspond-
ing partition function correctly. Let class C be a node in
Tree(p,c,) and let the height of C be i > 0. The inductive
hypothesis is that, for all classes C’ in Tree g ¢, with height
smaller than h, the subSPNs SPN(0, C’) are valid and com-
pute the weight of subworlds and the partition function cor-
rectly.

Let Sq,...,.S, be the direct subclasses declared for class C
with height 0. We now introduce a new product node with
four child nodes.

1. A sum node evaluating the weighted sum over the
SPNs SPN(0,S;),1 < i < n. Whenever there are
attributes [relations] declared for class S; that are not



(0.P,,Cy) | (0.P,Cy)

Ay
®

u,’' u

R,(0,...) —-R;(0,...)

Figure 3: The partial SPN corresponding to an object 0 being an instance of a generic class C.

declared for §;, 1 < ¢ # j < n, we make the indica-
tor variables —A(0, ...)[-R(0, .. .)] children of the top
node of SPN(0, S;). Moreover, for every class S;, we
make the indicator variable —Is(0,S;) a child of the
top node of SPN(0, S;), for every ¢ # j. These steps
do not change the validity of SPN(0Q, S;) but make the
sum node that evaluates the weighted sum over the
SPNs SPN(0, 8;), 1 < ¢ < n, complete.

. A product node that evaluates the product of the
attributes’ weight functions. For each attribute de-
clared for class C with weight function u and do-
main D, we add one sum node representing the ef-
ficiently summable/integrable weight function having
the (implicitly given) indicator variables A(0,D) and
—A(0,D) for every D € D as children. If the attribute
A is also declared for a class C’ that is a subclass
of C in Tree(g,,), we do not add the corresponding
sum node. Instead, we alter the weight function of
the corresponding sum node in SPN(0, C’) for every
C' € Tree(g,) with height 0. Intuitively, we merge
the sum nodes representing attribute weight functions
at different levels of the class tree and bring them to
the lowest level of the class tree to ensure decompos-
ability. Let the weight function for attribute A declared
for class C have domain D and weight function u. If
there exists a sum node representing the weight func-
tion u’ for attribute A in SPN(0, C’), then we replace
this weight function with the element-wise multiplica-
tion of the two weight function u’ @ u. If there does
not exist a sum node in SPN(0Q, C’) representing the
weight function for attribute A we add the sum node
with weight function u to SPN(0, C’)’s product node
representing the product of attributes. These steps en-
force the decomposability of the top product node of
SPN(0, C) and leave all other altered product nodes of
the subSPNs decomposable.

. A product node that evaluates the product of the rela-
tions’ weights. For each relation declared for class C,
we add one sum node representing the relation distri-
bution with indicator variables R(0) and —R(0). Anal-
ogous to attributes that are declared for subclasses, we
handle relations that are declared in subclasses of C.
This renders the product node decomposable.

4. An indicator variable Is(0,C).

Figure 3 illustrates the subSPN for a generic class-instance
pair (0,C). Since objects that are leaves in the part de-
composition do not have parts, the product node evaluating
products of parts is absent in the above construction. It is
straightforward to verify that the resulting SPNs are valid,
since all children are valid SPNs based on the induction
hypothesis. Moreover, the SPNs compute ¢(0,C, W) for
every possible subworld W with top object 0 and top class
C. Since every possible world determines the truth value of
all indicator variables, the SPN also computes the partition
function Z g ¢ correctly.

We are now in the position to inductively construct a valid
and correct SPN for the top object and the top class of the
TPKB, proving part (iii). We accomplish this by induction
on the height of the part decomposition. The previous step
of the proof showed the base case: we can construct, for
every object 0 € Ly and for every class C the object O is
declared to be an instance of, a valid SPN SPN(0, C) that
computes the weight of subworlds and the partition func-
tion correctly.

Let class 0 € Ly, and let 1 > 0. The inductive hypothe-
sis is that, for all objects 0 € L;, ¢ < h, and all classes
it is declared to be an instance of, we can construct a SPN
SPN(0,C) that is valid and computes the weight of sub-
worlds and the partition function correctly. We need to
show that we can, for every 0 € Ly and for every C it is
declared to be an instance of, construct an SPN SPN(0, C)
that is valid and computes the weight of subworlds and the
partition function correctly. We now construct the SPN ex-
actly as before, except that there is an additional product
node evaluating the product of the parts of class C (see
Figure 3). By the induction hypothesis, each of the part’s
subSPNs are valid and compute the weight of possible
worlds and the partition function correctly. Since the in-
dicator variables of each of the subSPNs are disjoint the
product node evaluating the product of parts is also valid.
With the same arguments made before, we can show that
SPN(0, C) is valid and computes the weight of subworlds
and the partition function correctly. Moreover, the size of
the SPN is linear in the size of the TPKB. This concludes
the proof. O



