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A FAST TRANSFORM FOR DISJOINT PAIRS

Let α be a function that associates each pair of disjoint
subsets of V = {1, . . . , n} with a real number. Define the
function α̂ by letting

α̂(S,R) =
∑

S⊆C⊆S∪R

α(C,R \ C)

for all disjoint subsets S and R of V . Furthermore, define
α0 = α and for i = 1, . . . , n, recursively

αi(S,R) = αi−1(S,R) + [i ∈R] · αi−1(S∪{i}, R\{i}) .

This recurrence gives us a way to compute the transform:

Lemma 8. It holds that αn = α̂.

Proof. For a subset X ⊆ V and element i ∈ V , we write
Xi for the set X ∩ {1, . . . , i} and Xi for the set X ∩ {i +
1, . . . , n} = X \Xi.

We will show by induction on i that

αi(S,R) =
∑

Si⊆C⊆(S∪R)i

α(C ∪ Si, (Ri \ C) ∪Ri) . (5)

This clearly holds for i = 0, as then the only term in the
sum is α(∅ ∪ S0, (R0 \∅) ∪R0) = α(S,R) = α0(S,R).

Suppose then that i > 0. Consider first the case that i /∈ R.
Then, by the definition and the induction hypothesis,

αi(S,R) =
∑

Si−1⊆C⊆(S∪R)i−1

α(C ∪ Si−1, (Ri−1 \ C) ∪Ri−1) .

Writing C ′ for the set C ∪ (S ∩ {i}) we now obtain

αi(S,R) =
∑

Si⊆C′⊆(S∪R)i

α(C ′ ∪ Si, (Ri \ C ′) ∪Ri) ,

which matches the induction hypothesis (5).

Consider then the case that i ∈ R. Observe that i /∈ S, since
S is disjoint from R. As above, expand αi−1(S,R) using
the induction hypothesis into∑
Si−1⊆C⊆(S∪R)i−1

α(C ∪ Si−1, (Ri−1 \ C) ∪Ri−1) ,

which equals∑
Si⊆C′⊆(S∪R)i

i6∈C′

α(C ′ ∪ Si, (Ri \ C ′) ∪Ri) .

Likewise, expand αi−1(S∪{i}, R\{i}) using the induction
hypothesis into∑
Si−1⊆C⊆(S∪R)i−1

α(C ′ ∪ Si−1, (Ri−1\C ′) ∪ (R\{i})i−1) ,

where we write C ′ for C∪{i}. Observe that this sum equals∑
Si⊆C′⊆(S∪R)i

i∈C′

α(C ′ ∪ Si, (Ri \ C ′) ∪Ri) ,

because i 6∈ S and i ∈ R. Adding up the obtained two sums
over C ′ yields

αi(S,R) =
∑

Si⊆C′⊆(S∪R)i

α(C ′ ∪ Si, (Ri \ C ′) ∪Ri) ,

which matches the induction hypothesis (5).

B PROOF OF LEMMA 4

In order to prove Lemma 4, we first prove the following
lemma:

Lemma 9. Backtracking starting from g(C,U) makes at
most |U | recursive nonterminating visits to g (including the
visit to g(C,U)).

Proof. We show the claim by induction over |U |. The case
|U | = 0 is trivial as it terminates. Suppose that |U | ≥ 1 and



the claim holds for smaller U . The visit to g(C,U) is fol-
lowed by recursive visits to (i) g(C,U \R) and (ii) h(C,R).
By the induction assumption (i) amounts to at most |U |−|R|
recursive nonterminating visits to g. Visit (ii) is followed by
a visit to f succeeded by a visit to g(C ′, R \ C ′) for some
C ′ with R ∩ C ′ 6= ∅. Thus, by the induction assumption,
(ii) amounts to at most |R| − 1 recursive nonterminating
visits to g. The total, including the visit to g(C,U), is thus
at most (|U | − |R|) + (|R| − 1) + 1 = |U |.

Now we can prove Lemma 4:

Proof of Lemma 4. Observe that the first two visits are to
f(∅, V ) and to g(C,U) where |U | ≤ |V | − 1. By Lemma
9, there are thus at most n − 1 nonterminating visits to g.
Also note that a visit to h is always from a nonterminating
visit to g and a visit to f always from a visit to h (except
the first visit). The result follows.

C PROOF OF LEMMA 5

In order to prove Lemma 5, we first prove the following
lemma:

Lemma 10. Consider backtracking from g(C,U) onwards.
Let {(C1, U1), (C2, U2), . . . , (Cd, Ud)} be the set pairs of
the recursive nonterminating visits to g, including (C,U).
Then there exists an ordering of the d set pairs such that

|Ci|+ |Ui| ≤ |C|+ |U | − i+ 1 for all i = 1, . . . , d.

Proof. We show the claim by induction over |U |. The case
|U | = 0 is trivial as there are no recursive visits. Suppose
that |U | ≥ 1 and the claim holds for smaller U . The visit
to g(C,U) is followed by recursive visits to (i) g(C,U \R)
and (ii) h(C,R).

First, let (C1, U1) = (C,U). Clearly then the claim holds
for i = 1.

Let then {(C2, U2), . . . , (Cd′+1, Ud′+1)} be the d′ set pairs
of g visited in branch (i). By the induction assumption and
the fact that U ∩R 6= ∅, there exists an ordering over these
set pairs such that for all i = 2, . . . , d′ + 1,

|Ci|+ |Ui| ≤ |C|+ |U \R| − (i− 1) + 1

≤ |C|+ |U | − i+ 1.

Thus the claim holds for i = 2, . . . , d′ + 1.

Finally, branch (ii) makes, via h and f , a recursive visit
to g(C ′, R \ C ′) for some C ′ with R ∩ C ′ 6= ∅. Let
(Cd′+2, Ud′+2), . . . , (Cd′+d′′+1, Ud′+d′′+1) be the d′′ set
pairs of g visited in branch (ii). By the induction assump-
tion, there exists an ordering over these set pairs such that

for all i = d′ + 2, . . . , d′ + d′′ + 1,

|Ci|+ |Ui| ≤ |C ′|+ |R \ C ′| − (i− d′ − 1) + 1

≤ (|C|+ |R| − 1)− i+ (|U | − |R|) + 2

= |C|+ |U | − i+ 1.

The second inequality uses the fact that C ′ ∪R = S ∪R ⊂
C ∪ R, where S is selected during the visit to h, and the
fact that by Lemma 9, d′ ≤ |U \ R| = |U | − |R|. As
d′ + d′′ + 1 = d, the claim thus holds for i = d′ + 1, . . . , d,
which completes the proof.

Now we can prove Lemma 5:

Proof of Lemma 5. For g the claim directly follows by ap-
plying Lemma 10. As a visit to h(C,R) is always from
a nonterminating visit to g(C,U) with some U such that
C ∪R ⊆ C ∪U , the claim follows for h. Finally, except the
first visit, any other visit to f(S,R) is always from a visit
to h(C,R) with some C such that |S ∪R| ≤ |C ∪R| − 1.
Thus we can index the remaining set pairs from 2 to df such
that the claim holds for them. Then (S1, R1) must be set to
(∅, V ) so that |S1|+ |R1| ≤ n and the claim follows also
for i = 1.


