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A FAST TRANSFORM FOR DISJOINT PAIRS

Let o be a function that associates each pair of disjoint
subsets of V' = {1,...,n} with a real number. Define the
function & by letting

SR =

SCCCSUR

a(C, R\ C)

for all disjoint subsets S and R of V. Furthermore, define
ap =aandfori =1,..., n, recursively

Oéi(S, R) = ai,l(S, R) + [Z ER] . Oéifl(SU{’L'}, R\{Z}) .

This recurrence gives us a way to compute the transform:

Lemma 8. It holds that oy, = G

Proof. For asubset X C V and element ¢ € V, we write
X; for the set X N {1,...,i} and X? for the set X N {i +
1,...,n} :X\Xi.

We will show by induction on 7 that

a(S,R) = Y

S:CCC(SUR);

a(CUS', (R \C)URY). (5

This clearly holds for ¢ = 0, as then the only term in the
sumis a(@ U S?, (Ry\ @)U R°) = a(S, R) = ap(S, R).

Suppose then that ¢ > 0. Consider first the case that i ¢ R.
Then, by the definition and the induction hypothesis,

a(S,R)= > a(CUS™ (Ri.1\C)UR™Y).
Si—1CCC(SUR);—1

Writing C” for the set C' U (S N {i}) we now obtain

az(S,R) = Z

S;CC'C(SUR);

a(C'US (R;\C")URY),

which matches the induction hypothesis (5).

Consider then the case that i € R. Observe that ¢ ¢ S, since
S is disjoint from R. As above, expand «;_1 (S, R) using
the induction hypothesis into

> (CUS™Y (Ri_1 \C)UR"™Y),

Si_1CCC(SUR);—1
which equals

Y a(C'USL(Ri\C)URY).

5;CC'C(SUR);

igc’
Likewise, expand cv;—1(SU{i}, R\ {¢}) using the induction
hypothesis into

Y aCUSTL(Ri-\C) UR\H)T,

Si—1CCC(SUR); 1

where we write C’ for C'U{i}. Observe that this sum equals

Y a(C'US,(Ri\C)URY,
$;CC/C(SUR);

iec’

because ¢ ¢ S and ¢ € R. Adding up the obtained two sums
over C' yields

az(S,R) = Z

S;CC'C(SUR);

a(C'US (R;\C")URY),

which matches the induction hypothesis (5). O

B PROOF OF LEMMA 4

In order to prove Lemma 4, we first prove the following
lemma:

Lemma 9. Backtracking starting from g(C,U) makes at
most |U| recursive nonterminating visits to g (including the

visit to g(C,U)).

Proof. We show the claim by induction over |U|. The case
|U| = 0 is trivial as it terminates. Suppose that |U| > 1 and



the claim holds for smaller U. The visit to g(C,U) is fol-
lowed by recursive visits to (i) g(C, U \ R) and (ii) h(C, R).
By the induction assumption (i) amounts to at most |U|—|R|
recursive nonterminating visits to g. Visit (ii) is followed by
a visit to f succeeded by a visit to g(C’, R\ C") for some
C’ with RN C" # @. Thus, by the induction assumption,
(ii) amounts to at most |R| — 1 recursive nonterminating
visits to g. The total, including the visit to g(C, U), is thus
atmost (|U| — |R|) + (|R| — 1)+ 1= |U]|. O

Now we can prove Lemma 4:

Proof of Lemma 4. Observe that the first two visits are to
f(@,V) and to g(C,U) where |U| < |V| — 1. By Lemma
9, there are thus at most n — 1 nonterminating visits to g.
Also note that a visit to h is always from a nonterminating
visit to g and a visit to f always from a visit to h (except
the first visit). The result follows. O]

C PROOF OF LEMMA 5

In order to prove Lemma 5, we first prove the following
lemma:

Lemma 10. Consider backtracking from g(C, U) onwards.
Let {(C1,U1),(Ca,Us),...,(Cq,Uq)} be the set pairs of
the recursive nonterminating visits to g, including (C,U).
Then there exists an ordering of the d set pairs such that

G5+ |Us| < |C|+|U| =i+ Lforalli=1,....d.

Proof. We show the claim by induction over |U|. The case
|U| = 0 s trivial as there are no recursive visits. Suppose
that |U| > 1 and the claim holds for smaller U. The visit
to g(C, U) is followed by recursive visits to (i) g(C, U \ R)
and (ii) h(C, R).

First, let (C1,U;) = (C,U). Clearly then the claim holds
fori =1.

Let then {(Cy, Us), ..., (Cy+1,Uq+1)} be the d’ set pairs
of g visited in branch (i). By the induction assumption and
the fact that U N R # O, there exists an ordering over these
set pairs such that forall: = 2,...,d" + 1,

ICi| +|Us| < |C|+|U\R|—(i—1)+1
<|C|+|U|—i+1.

Thus the claim holds fori = 2,...,d + 1.

Finally, branch (ii) makes, via h and f, a recursive visit
to g(C', R\ C') for some C’ with RN C" # @. Let
(Cd'+27 Ud/+2), ey (Cd/+du+1, Udl+d//+1) be the d’ set
pairs of g visited in branch (ii). By the induction assump-
tion, there exists an ordering over these set pairs such that

foralli =d +2,...,d +d" +1,

Cil 4+ T3] < |C'] + [R\C'| — (i —d' — 1) + 1
< (10| + Rl = 1) =i + (U] - |R]) +2
= O]+ U] i+ 1.

The second inequality uses the fact that C’ UR = SUR C
C U R, where S is selected during the visit to h, and the
fact that by Lemma 9, d’ < |[U \ R| = |U| — |R|. As
d' +d" + 1 = d, the claim thus holds for¢ = d' +1,...,d,
which completes the proof. O

Now we can prove Lemma 5:

Proof of Lemma 5. For g the claim directly follows by ap-
plying Lemma 10. As a visit to h(C, R) is always from
a nonterminating visit to g(C, U) with some U such that
CUR C CUU, the claim follows for h. Finally, except the
first visit, any other visit to f(5, R) is always from a visit
to h(C, R) with some C such that |SU R| < |C U R| — 1.
Thus we can index the remaining set pairs from 2 to dy such
that the claim holds for them. Then (S7, R;) must be set to
(@,V) so that |S1| + |R1| < n and the claim follows also
fori = 1. O



