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A PROOF OF THE CAUSAL
COARSENING THEOREM

We first define the relevant notions from basic set theory.

Definition 1 (Partition, Coarsening). Let A be a set and Π
a set of disjoint non-empty subsets of A. We say that Π is a
partition of A if ∪P∈Π = A. Let Π1,Π2 be two partitions
of A. We say that Π1 is a coarsening of Π2 if each P ∈ Π2

is a subset of some Q ∈ Π1. In addition, Π1 is a proper
coarsening of Π2 if it is a coarsening and Π1 6= Π2.

Before we prove the Causal Coarsening Theorem, we prove
its less general version in order to split the rather complex
proof of CCT into two parts. This Auxiliary Theorem can
be proven using simpler techniques, however here we de-
liberately use techniques that transfer directly to the proof
of the CCT.

Auxiliary Theorem Among all the generative models of
the form discussed in Fig. 2 (in the main text), the subset of
distributions P (T,H, I) for which the causal partition is
not a coarsening (proper or improper) of the observational
partition is Lebesgue measure zero.

Proof. Our proof is inspired by a proof used by Meek
[1995] to prove that almost all distributions compatible
with a given causal graph are faithful. The proof strat-
egy is thus first to express the proposition that for a given
distribution, the observational partition does not refine the
causal partition, as a polynomial equation on the space of
all distributions compatible with the model. We then show
that this polynomial equation is not trivial, i.e. there is at
least one distribution that is not its root. By a simple al-
gebraic lemma, this will prove the theorem. We extend
Meek’s proof technique in our usage of Fubini’s Theorem
for the Lebesgue integral. It allows us to “split” the poly-
nomial constraint into multiple different constraints along
several of the distribution parameters. This allows for ad-
ditional flexibility in creating useful assumptions (in our
proof, the assumption that the datapoints have well-defined

causal classes, but the observational class can still vary
freely).

Assume that T is binary and H = (H1, · · · , HM ), I are
discrete variables (say |Hi| = Ki, |I| = N , though N can
be very large; we will use the notationK , K1×· · ·×KM

for simplicity). We can factorize the joint as P (T,H, I) =
P (T | H, I)P (I | H)P (H). P (T | H, I) can be
parametrized by |H1|× · · ·× |HM |× |I| = K×N param-
eters, P (I | H) by (N − 1)×K parameters, and P (H) by
another K parameters, all of which are independent. Call
the parameters, respectively,

αh,i , P (T = 0 | H = h, I = i)

βi,h , P (I = i | H = h)

γh , P (H = h)

We will denote parameter vectors as

α = (αh1,i1 , · · · , αhK ,iN ) ∈ RK×N

β = (βi1,h1
, · · · , βiN−1,hK

) ∈ R(N−1)×K

γ = (γh1
, · · · , γhK

) ∈ RK ,

where the indices are arranged in lexicographical order.
This creates a one-to-one correspondence of each possi-
ble joint distribution P (T,H, I) with a point (α, β, γ) ∈
P [α, β, γ] ⊂ RK3×N×(N−1), where P [α, β, γ] is the
K3 × N × (N − 1)-dimensional simplex of multinomial
distributions.

To proceed with the proof, we first pick any point in the
P (T | H, I)× P (H) space: that is, we fix the values of α
and γ. The only free parameters are now βi,h for all values
of i, h; varying these values creates a subset of the space of
all the distributions which we will call

P [β;α, γ] = {(α, β, γ) | β ∈ [0, 1](N−1)×K}.

P [β;α, γ] is a subset of P [α, β, γ] isometric to the
[0, 1](N−1)×K-dimensional simplex of multinomials. We
will use the term P [β;α, γ] to refer both the subset of
P [α, β, γ] and the lower-dimensional simplex it is isomet-
ric to, remembering that the latter comes equipped with the
Lebesgue measure on R(N−1)×K .



Now we are ready to show that the subset of P [β;α, γ]
which does not satisfy the Causal Coarsening constraint is
of measure zero with respect to the Lebesgue measure. To
see this, first note that since α and γ are fixed, each im-
age i has a well-defined causal class C(i) =

∑
h αh,iγh.

The Causal Coarsening constraint says “For every pair of
images i, j such that P (T | i) = P (T | j) it holds that
C(i) = C(j).” The subset of P [β;α, γ] of all distributions
that do not satisfy the constraint consists of the P (T,H, I)
for which for some i, j it holds that

P (T = 0 | i) = P (T = 0 | j) and C(i) 6= C(j).

Take any pair i, j for which C(i) 6= C(j) (if such a pair
does not exist, then the Causal Coarsening constraint holds
for all the distributions in P [β;α, γ]). We can write

P (T = 0 | i) =
∑
h

P (T = 0 | h, i)P (h | i)

=
1

P (i)

∑
h

P (T = 0 | h, i)P (i | h)P (h).

Since the same equation applies to P (T = 0 | j), the con-
straint P (T | i) = P (T | j) can be rewritten

1

P (i)

∑
h

P (T = 0 | h, i)P (i | h)P (h)

=
1

P (j)

∑
h

P (T = 0 | h, j)P (j | h)P (h)

⇐⇒ P (j)
∑
h

P (T = 0 | h, i)P (i | h)P (h)

− P (i)
∑
h

P (T = 0 | h, j)P (j | h)P (h) = 0,

which we can rewrite in terms of the independent param-
eters (after defining α0,h,i = αh,i and α1,h,i = 1 − αh,i)
and further simplify as

 ∑
t∈{0,1}

∑
h

αt,h,jγhβj,h

∑
h

α0,h,iγhβi,h −

−

 ∑
t∈{0,1}

∑
h

αt,h,iγhβi,h

∑
h

α0,h,jγhβj,h = 0

⇐⇒

(∑
h

α1,h,jγhβj,h

)∑
h

α0,h,iγhβi,h −

−

(∑
h

α1,h,iγhβi,h

)∑
h

α0,h,jγhβj,h = 0

⇐⇒

(∑
h

(1− αh,j)γhβj,h

)∑
h

αh,iγhβi,h −

−

(∑
h

(1− αh,i)γhβi,h

)∑
h

αh,jγhβj,h = 0

⇐⇒

(∑
h

γhβj,h

)∑
h

αh,iγhβi,h −

−

(∑
h

γhβi,h

)∑
h

αh,jγhβj,h = 0, (1)

which is a polynomial constraint on P [β;α, γ] (note that
to keep the notation manageable, we have omitted the de-
pendent term 1−

∑
h γh from the equations). By a simple

algebraic lemma [proven by Okamoto, 1973], if the above
constraint is not trivial (that is, if there exists β for which
the constraint does not hold), the subset of P [β;α, γ] on
which it holds is measure zero.

To see that Eq. (1) does not always hold, note that if for any
h∗ we set βi,h∗ = 1 (and thus βi,h = 0 for any h 6= h∗)
and βj,h∗ = 1, the equation reduces to

(γh∗)2(αhi,i − αhj ,h) = 0.

Thus if Eq. (1) was trivially true, we would have αh,i =
αh,j or γh = 0 for all h. However, this implies C(i) =
C(j), which contradicts our assumption.

We have now shown that the subset of P [β;α, γ] which
consists of distributions for which P (T | i) = P (T | j)
(even though C(i) 6= C(j)) is Lebesgue measure zero.
Since there are only finitely many pairs of images i, j for
which C(i) 6= C(j), the subset of P [β;α, γ] of distribu-
tions which violate the Causal Coarsening constraint is also
Lebesgue measure zero. The remainder of the proof is a di-
rect application of Fubini’s theorem.

For each α, γ, call the (measure zero) subset of P [β;α, γ]
that violates the Causal Coarsening constraint z[α, γ]. Let
Z = ∪α,γz[α, γ] ⊂ P [α, β, γ] be the set of all the joint dis-
tributions which violate the Causal Coarsening constraint.
We want to prove that µ(Z) = 0, where µ is the Lebesgue
measure. To show this, we will use the indicator function

ẑ(α, β, γ) =

{
1 if β ∈ z[α, γ],
0 otherwise.

By the basic properties of positive measures we have

µ(Z) =

∫
P [α,β,γ]

ẑ dµ.

It is a standard application of Fubini’s Theorem for the
Lebesgue integral to show that the integral in question



equals zero. For simplicity of notation, let

A = RK×N

B = RN×K

G = RK .

We have

∫
P [α,β,γ]

ẑ dµ =

∫
A×B×G

ẑ(α, β, γ) d(α, β, γ)

=

∫
A×G

∫
B
ẑ(α, β, γ) d(β) d(α, γ)

=

∫
A×G

µ(z[α, γ]) d(α, γ) (2)

=

∫
A×G

0 d(α, γ)

= 0.

Equation (2) follows as ẑ restricted to P [β;α, γ] is the in-
dicator function of z[α, γ].

This completes the proof that Z, the set of joint distribu-
tions over T,H and I that violate the Causal Coarsening
constraint, is measure zero.

We are now ready to prove the main theorem.

Theorem (Causal Coarsening Theorem) Among all
the generative models of the form discussed in Fig. 2 (in
the main text) that have distributions P (T,H, I) that
induce some given observational partition Πo, almost all
induce a causal partition Πc that is a coarsening of Πo.

Proof. Any variables that appear in this proof without def-
inition are defined in the proof of the Auxiliary Theorem.
We take the same α, β, γ parametrization of distributions.
Fixing an observational partition means fixing a set of ob-
servational constraints (OCs)

P (T | i11) = · · · = P (T | i1N1
),

...

P (T | iL1 ) = · · · = P (T | iLNK
),

where 1 ≤ L ≤ N is the number of observational classes.
Since P (T,H, I) = P (H | T, I)P (T | I)P (I), P (T | i)
is an independent parameter in the unrestricted P (T,H, I),
and the OCs reduce the number of independent parameters
of the joint by

∑L
l=1(Nl − 1). We want to express this

parameter-space reduction in terms of the α, β and γ pa-
rameterization and then apply the proof of the Auxiliary

Theorem. To do this, for each observational class l, choose
a representative image ı̂l such that

P (T | ilm) = P (T | ı̂l) ∀m∈1···Nk
.

Then for each ilm 6= ı̂l it holds that

P (T, ilm) = P (T | ı̂l)P (ilm)

or ∑
h

P (T, h, ilm) = P (T | ı̂l)
∑
h

P (h, ilm).

Picking an arbitrary h0, we can separate the left-hand side
as

P (T, h0, i
l
m) = P (T | ı̂l)

∑
h

P (h, ilm)−
∑
h6=h0

P (T, h, ilm).

Finally, this equation can be rewritten in terms of α, β and
γ as

αh0,iβi,h0γh0 = P (T | ı̂l)
∑
h

βh,ilmγh−
∑
h6=h0

αh,ilmβilmγh,

or

αh0,i =

(
P (T | ı̂l)

∑
h βh,ilmγh −

∑
h6=h0

αh,ilmβilmγh

)
βi,h0

γh0

for any ilm 6= ı̂l. There are precisely
∑L
l=1(Nl − 1) such

equations, altogether equivalent to the observational con-
straints. Thus we can express any P (T,H, I) distribution
that is consistent with a given observational partition in
terms of the full range of β and γ parameters, and a re-
stricted number of independent α parameters. The rest of
the proof now follows similarily to the proof of the Auxil-
iary Theorem and shows that within this restricted param-
eter space, the parameters for which the (fixed) observa-
tional partition is not a refinement of the causal partition is
measure zero.

B CCT: EXAMPLES AND
COUNTER-EXAMPLES

In Fig. 1 we provide examples of three distributions over
binary variables H,T and three-valued I . The first model
induces a causal partition that is a proper coarsening of
the observational partition, and thus agrees with the CCT.
The second model induces an observational partition that
is a proper coarsening of the causal partition – CCT im-
plies that this is a measure-zero case and that, after fix-
ing the observational partition, we had to carefully tweak
the parameters to align the causal partition as it is. The
third model induces causal and observational partitions that
are incompatible – that is, neither is a coarsening of the



other. This is also a measure-zero case. We provide a
Tetrad (http://www.phil.cmu.edu/tetrad/) file
that contains these three models at http://vision.
caltech.edu/˜kchalupk/code.html. It can be
used to verify our observational and causal partition com-
putations.

C PROOF OF THE COMPLETE
MACRO-VARIABLE DESCRIPTION
THEOREM

Theorem (Complete Macro-variable Description) The
following two statements hold for C and S as defined in
the main text:

1. P (T | I) = P (T | C, S).

2. Any other variableX such that P (T | I) = P (T | X)
has Shannon entropy H(X) ≥ H(C, S).

Proof. The first part follows by construction of S. For the
second part, note that by the CCT there is a bijective cor-
respondence between the pairs of values (c, s) and the ob-
servational probabilities P (T | I). Call this correspon-
dence f , that is f(c, s) = P (T | c, s) and f−1(p) =
(c, s s.t. P (T |c, s) = p). Further, define g as the func-
tion on X, with g : x 7→ P (T | x). But since P (T | X) =
P (T | I), we have (c, s) = f−1(g(x)). That is, the value
of C and S is a function of the value of X , and thus the
entropy of C and S is smaller than the entropy of X .

D PREDICTIVE NON-CAUSAL
INFORMATION IN CAUSAL
VARIABLE C

In some cases C retains predictive information that is not
causal. Consider the following example: We have a causal
graph consisting of three variables {I, T,H} where the
causal relations are I → T and I ← H → T . All three
variables are binary and we have a positive distribution over
the variables. In the general case, distributions over this
graph satisfy

1. P (T |do(I = 1)) 6= P (T |do(I = 0))

2. P (T |I = 1) 6= P (T |I = 0) , and importantly

3. P (T |I) 6= P (T |do(I)).

If we view I as an image (which can either be all black
or all white), T as the target behavior and H as a hidden
confounder, analogous to the set-up in the main article,
then the observational partition Πo has just two classes,
namely {1, 0}. But in this case the observational parti-
tion is the same as the causal partition: Πo = Πc. So

I=2

I=1

I=0

P(H=0) = 0.4572
P(I=0|H=0) = 0.3426
P(I=1|H=0) = 0.1239

P(I=0|H=1) = 0.3255
P(I=1|H=1) = 0.5097

P(T=0|H=0, I=0) = 0.13
P(T=0|H=0, I=1) = 0.233
P(T=0|H=0, I=2) = 0.05
P(T=0|H=1, I=0) = 0.12
P(T=0|H=1, I=1) = 0.0332
P(T=0|H=1, I=2) = 0.1141

I=2

I=1

I=0

P(H=0) = 0.4572
P(I=0|H=0) = 0.3426
P(I=1|H=0) = 0.1239

P(I=0|H=1) = 0.3255
P(I=1|H=1) = 0.5097

P(T=0|H=0, I=0) = 0.13
P(T=0|H=0, I=1) = 0.233
P(T=0|H=0, I=2) = 0.44
P(T=0|H=1, I=0) = 0.12
P(T=0|H=1, I=1) = 0.0332
P(T=0|H=1, I=2) = 0.1582

I=2

I=1

I=0

P(H=0) = 0.4572
P(I=0|H=0) = 0.3426
P(I=1|H=0) = 0.1239

P(I=0|H=1) = 0.3255
P(I=1|H=1) = 0.5097

P(T=0|H=0, I=0) = 0.123
P(T=0|H=0, I=1) = 0.883
P(T=0|H=0, I=2) = 0.44
P(T=0|H=1, I=0) = 0.321
P(T=0|H=1, I=1) = 0.0938
P(T=0|H=1, I=2) = 0.1582

H

I

T

{0,1}

{0,1,2}

{0,1}

Figure 1: A graphical causal model and three faithful prob-
ability tables. The first (from the top) table induces a
causal partition (red) that is a coarsening of the observa-
tional partition (gray) – specifically, as the figure shows,
P (T |I = 0) 6= P (T |I = 1) but P (T |man(I = 0)) =
P (T |man(I = 1)). The second table induces an observa-
tional partition that is a coarsening of the causal partition.
The last table induces a causal and an observational parti-
tion such that neither is a coarsening of the other.



by our definition of a spurious correlate, S is a constant,
since there are no further distinctions to be made within
any of the causal classes. S would be omitted from any
standard causal model. Nevertheless, we have in our model
still that P (T |C) 6= P (T |do(C)), i.e. the causal variable
C still contains predictive information that is not causal.
Given that there is by construction no other than the causal
and the trivial partition in this example, it must be the case
that C retains predictive non-causal information. It follows
that in our definitions of C and S, it is not the case that the
predictive non-causal components of an image can always
be completely separated from the causal features.

E THE MNIST ON MTURK EXPERIMENT

For this experiment, we started off by training ten one-vs-
all neural nets. We used cross-validation to choose among
the following architectures: 100 hidden units (h.u.), 300
h.u. (one layer), 100-100 h.u (two layers), 300-300 h.u.
(two layers). We used maxout [Goodfellow and Warde-
Farley, 2013] activations (each of which computed the max
of 5 linear functions). For training we used stochastic gra-
dient descent in batches of 50 with 50% dropout [Hinton
and Srivastava, 2012] on the hidden units, momentum ad-
justment from 0.5 to 0.99 at iteration 100, learning rate de-
caying from 0.1 to 0.0001 with exponential coefficient of
1/0.9998, no weight decay, and we enforced the maximum
norm of a column of hidden units to 5. The training stopped
after 1000 iterations and the iteration with best validation
error was chosen. We used the Pylearn2 package [Goodfel-
low and Warde-Farley, 2013] to train the networks.

This initial training was done on 5000 training points
and 1250 validation points (both of which come from the
MNIST dataset) for each machine. The training points were
chosen at random to include 2500 images of a specific digit
class (that is, 2500 zeros for the first machine, 2500 ones
for the second machine and so on), and 2500 images of
random other digits for each machine. The validation sets
were composed similarly. Each machine then used Algo-
rithm 2 to transform 1000 images of digits from its training
set into maximally similar images of the opposing class.

We thus started off with ten manipulated datasets of 1000
images each. The first dataset contained images of zeros
manipulated to be non-zeros, and all the other digits ma-
nipulated to be zeros. The tenth dataset contained images
of nines manipulated to be non-nines and the other digits
manipulated to be nines. We then used Amazon Mechan-
ical Turk to present all those images to human annotators,
using the interface shown in Fig. 2. The images created
by all the manipulator networks were mixed at random to-
gether, so that each single annotator (annotating 250 im-
ages in one task) would see some images created by each
machine. Finally, each of the 10000 images was shown
to five annotators; we used 5×40=200 annotators total on

Figure 2: The Amazon Mechanical Turk interface we used
to query online annotators. An annotator is shown five rows
of five manipulated digit images, and is requested to type
the digit labels (or ‘?’) into the input boxes. Each annotator
goes through ten similar screens, annotating a total of 250
digits.

each iteration. The annotators labeled the images as either
one of the ten digits, or the question mark ‘?’ if there was
no recognizable digit in an image. The final label (“target
digit” or “not target digit”) was chosen using majority of
the annotators’ votes.

The annotated manipulated digits were then added to the
datasets which their respective original images belonged to.
We then proceeded to train the next iteration of neural net-
work manipulators on the updated datasets, and so on until
completion of the manipulator training.
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