
Disciplined Convex Stochastic Programming:
A New Framework for Stochastic Optimization

Supplementary Material

In Sec. 1 of this supplement, we continue Sec. 4 of our
paper and present another example of a stochastic program
along with its corresponding cvxstoc implementation. In
Sec. 2, we give a PySP [2] implementation of the news ven-
dor problem that was outlined in Sec. 4.2 of the paper.

1 NETWORK RESOURCE
ALLOCATION

Consider the (general) problem of allocating resources
across a network; we make this problem concrete by fo-
cusing on the specific task of (optimally) allocating airline
passengers to flights, subject to flight capacity restrictions,
in the face of uncertain demand [1, chap. 16].

To this end, suppose we have a graph G = (V, E), with a
set of vertices V and a set of edges E , and let P be a set
of possible paths in the graph; we also define P = |P|,
n = |V|, and E = |E|. We wish to maximize rev-
enue, which we earn on a per-path basis (some paths may
be more lucrative than others) and model as a vector of
prices p ∈ RP ; however, demand for paths is uncertain
and is therefore modeled as a random vector d ∈ RP with
di ∼ LogNormal(µi, σ

2
i), i = 1, . . . , P .

We assume the set of passengers is partitioned into a set
of C passenger categories (e.g., business traveler, govern-
ment, consumer, etc.), and that the number of passengers
in each category (which we denote as xi ∈ RE , i =
1, . . . , C) that we may assign to each edge is constrained
by some vector u ∈ RE .

We can pose this problem as the following two-stage
stochastic program:

minimize
x1,...,xC

EQ(x1, . . . , xC)

subject to
∑C

i=1 xi � u, i = 1, . . . , C
xi � 0, i = 1, . . . , C,

where Q(x1, . . . , xC) = min
y

−pT y
s.t.

∑
k∈Pj

i
yk ≤ (xj)i,

i = 1, . . . , C,
j = 1, . . . , E,
0 � y � d,

(1)
and Pj

i denotes the set of paths containing edge j that are
flown by category i (such information is assumed to be
known a priori). Note that the first constraint in (1) merely
enforces consistency between the x and y variables, and
can also be written more compactly as Aiy � xi, i =
1, . . . , C, for appropriately-defined matrices Ai ∈ RE×P .

A cvxstoc implementation of this network resource al-
location problem is given in Listing 1 (the problem data is
the same as [1, chap. 16], i.e., n = 7, P = 6, E = 6,
Ai ∈ R6×6, and C = 2).� �
Create optimization variables
x = [NonNegative(E) for i in range(C)]
y = NonNegative(P)

Create second stage problem
capacity = [A[i]*y<=x[i] for i in range(C)]
d = RandomVariable(pymc.Lognormal(name="d", mu=0,

tau=1, size=P))
p2 = Problem(Minimize(-y.T*p), [y<=d] + capacity)
Q = partial_optimize(p2, [y], [x[0], x[1]])

Create and solve first stage problem
p1 = Problem(Minimize(expectation(Q(*x), m)),

[sum(x) <= u])
p1.solve()� �
Listing 1: A cvxstoc implementation of a network resource
allocation problem.

2 A PySP IMPLEMENTATION OF THE
NEWS VENDOR PROBLEM

In this section, we give a PySP [2] implementation of the
news vendor problem described in Sec. 4.2 of our paper.
Listing 2 specifies the first and second stage objective func-
tions in PySP syntax, as well as declares the optimization
variables, random variables, and problem data. Listing 3
specifies the relevant probability distributions, while List-

ing 4 describes the random variables, as well as the values
of the problem data.� �
Helper functions
def obj_rule(model):

return model.FirstStageCost + model.SecondStageCost

def ComputeFirstStageCost_rule(model):
return (model.FirstStageCost - (model.b*model.x))
↪→ == 0

def ComputeSecondStageCost_rule(model):
return (model.SecondStageCost - (-model.s*model.y1
↪→ - model.r*model.y2)) == 0

def constr1_rule(model):
return (model.y1+model.y2) <= model.x

def constr2_rule(model, i):
return 0 <= model.y1 and model.y1 <= model.d[i]

Initialize problem data
model = AbstractModel()

model.b = Param()

model.s = Param()
model.r = Param()

model.scens = Set()
model.d = Param(model.scens)

model.u = Param()

Setup all stage problems
model.x = Var(bounds=(0.0, model.u))
model.y1 = Var()
model.y2 = Var(within=NonNegativeReals)

model.obj = Objective(rule=obj_rule, sense=minimize)
model.FirstStageCost = Var()
model.SecondStageCost = Var()
model.ComputeFirstStageCost = Constraint(rule=

↪→ ComputeFirstStageCost_rule)
model.ComputeSecondStageCost = Constraint(rule=

↪→ ComputeSecondStageCost_rule)

model.constr1 = Constraint(rule=constr1_rule)
model.constr2 = Constraint(model.scens, rule=

↪→ constr2_rule)� �
Listing 2: A PySP implementation of the news vendor problem.� �
set Nodes := RootNode

BelowAverageNode
AverageNode
AboveAverageNode;

param NodeStage := RootNode FirstStage
BelowAverageNode SecondStage
AverageNode SecondStage
AboveAverageNode SecondStage;

set Children[RootNode] := BelowAverageNode
AverageNode
AboveAverageNode;

param ConditionalProbability := RootNode 1.0
BelowAverageNode 0.3
AverageNode 0.6
AboveAverageNode 0.1;

set Scenarios := BelowAverageScenario
AverageScenario
AboveAverageScenario;

param ScenarioLeafNode :=
BelowAverageScenario BelowAverageNode
AverageScenario AverageNode
AboveAverageScenario AboveAverageNode;

set StageVariables[FirstStage] := x;
set StageVariables[SecondStage] := y1

y2;

param StageCostVariable :=
FirstStage FirstStageCost
SecondStage SecondStageCost;� �

Listing 3: A PySP implementation of the news vendor problem.� �
param s := 25;
param r := 5;

set scens := BELOW AVG ABOVE;
param d := BELOW 55 AVG 139 ABOVE 141;

param u := 150;� �
Listing 4: A PySP implementation of the news vendor problem.

References

[1] S. Wallace and W. Ziemba. Applications of Stochas-
tic Programming. MPS-SIAM Series on Optimization.
Society for Industrial and Applied Mathematics, 2005.

[2] J. Watson, D. Woodruff, and W. Hart. PySP: Modeling
and solving stochastic programs in Python. Mathemat-
ical Programming Computation, 4(2):109–149, 2012.

