
Annealed Gradient Descent for Deep Learning

Hengyue Pan Hui Jiang
Department of Electrical Engineering and Computer Science
York University, 4700 Keele Street, Toronto, Ontario, Canada

Emails: panhy@cse.yorku.ca hj@cse.yorku.ca

Abstract

Stochastic gradient descent (SGD) has been re-
garded as a successful optimization algorithm in
machine learning. In this paper, we propose a
novel annealed gradient descent (AGD) method
for non-convex optimization in deep learning.
AGD optimizes a sequence of gradually im-
proved smoother mosaic functions that approx-
imate the original non-convex objective function
according to an annealing schedule during the
optimization process. We present a theoretical
analysis on its convergence properties and learn-
ing speed. The proposed AGD algorithm is ap-
plied to learning deep neural networks (DNNs)
for image recognition on MNIST and speech
recognition on Switchboard. Experimental re-
sults have shown that AGD can yield comparable
performance as SGD but it can significantly ex-
pedite training of DNNs in big data sets (by about
40% faster).

1 INTRODUCTION

The past few decades have witnessed the success of gradi-
ent descent algorithms in machine learning. By only cal-
culating the local gradient information of the loss function,
gradient descent (GD) algorithms may provide reasonably
good optimization results for different types of problem-
s. Among many, stochastic gradient descent (SGD) is a
very popular method for modern learning systems, which
only use one or a few randomly-selected training samples
to update the model parameters in each iteration (Bottou,
1998). In comparison to the batch GD algorithms, SGD re-
quires far less computing resources especially when it deals
with a huge task involving big data. In (LeCun and Bottou,
2004), it has been proved that SGD can process asymptoti-
cally more training samples than batch GD algorithms giv-
en the same amount of computing resources. (Roux et al.,
2012) proposed a new SGD framework that can achieve

a linear convergence rate for strongly-convex optimization
problems. In (Shamir and Zhang, 2013), the performance
of SGD was analyzed on a number of non-smooth convex
objective functions and a bound on the expected optimiza-
tion errors was provided. On the other hand, SGD also has
its own drawbacks. The random noise introduced by da-
ta sampling leads to noisy gradient estimates, which may
slow down the convergence speed and degrage the perfor-
mance (Murata and Amari, 1999). Moreover, because of its
sequential nature, SGD is hard to parallelize. More recent-
ly, several different methods have been proposed to par-
allelize SGD to accelerate its training speed for big-data
applications. Initially, some researchers have proposed to
implement the SGD method across multiple computing n-
odes that are synchronized for updating model parameters.
Unfortunately, it has been found that the delay by the re-
quired server synchronization is always much longer than
the time needed to calculate the gradient. Therefore, sev-
eral other methods have been proposed to parallelize SGD
without frequent synchronization among computing nodes.
For example, Zinkevich et al. (2009) has presented a paral-
lelized SGD algorithm, which dispatches all training sam-
ples into several computing nodes to update the parameters
independently, and the final models will be combined by
averaging all separate models at the end of each training e-
poch. Moreover, Bockermann and Lee (2012) have proved
that the performance of this parallelized SGD algorithm de-
pends on the number of SGD runs, and they have success-
fully used it to train large-scale support vector machines.
However, the convergence of this simple parallelized SGD
method requires that the learning process is convex. More-
over, Agarwal and Duchi (2012) have shown that the delays
introduced by asynchronous model updates can be asymp-
totically neglected when we optimize a smooth and convex
problem. Similarly, Feng et al. (2011) has proposed a par-
allelized SGD framework called HOGWILD!, which has
mostly removed the memory locking and synchronization.
However, it has found that this method works well only for
sparse models. In summary, these parallelized SGD meth-
ods heavily rely on the assumptions that the learning prob-
lems are convex and/or sparse. These methods may suf-

fer the performance degradation when dealing with more
general non-convex optimization problems such as those in
deep learning.

Recently, deep learning (Bengio, 2009) has achieved huge
successes in many real-world applications, such as speech
recognition and computer vision. It becomes a very inter-
esting problem to learn large-scale deeply-structured neural
networks, such as deep neural networks (DNNs), from big
data sets. We know that the training of DNNs is highly non-
convex. Moreover, it is relatively expensive to compute the
gradients of the objective function for DNNs since it needs
to run the time-consuming back-propagation algorithm. To
accelerate the large scale DNN training for big data, it has
proposed a weight sharing method in (LeCun et al., 1989),
which reduces the number of free parameters in the neural
network and thus speeds up the training procedure. Even
though today’s development of computing hardware makes
it possible to train large DNNs directly, it is still very slow
to train state-of-the-art DNNs for many real-world applica-
tions since the major training of DNNs still depends on the
mini-batch SGD algorithm. Therefore, it is much needed in
deep learning to develop new optimization methods that are
faster to solve large-scale training problems in deep learn-
ing. One idea is ‘starting small’ (Elman, 1993), in which
the network training will begin from simple training da-
ta with small working memory, and gradually increase the
data complexity and network memory. This process simu-
lates the learning procedure of human beings, especially in
some complex domains like language. Krueger et al. have
implemented the so-called ‘shaping’ learning in the neural
network training (Krueger and Dayan, 2009). During the
training, the task is split into several sub-components and
a suitable training sequence is used to boost the training
speed. In (Bengio et al., 2009), Bengio et al. have pro-
posed a training strategy for deep learning called curricu-
lum learning. The basic idea is to start the learning pro-
cess from small tasks that are easy to solve, and gradually
increase the complexity of the tasks in the later learning
stage. Experimental results imply that when using a suit-
able curriculum, this training strategy may provide a sim-
ilar performance as unsupervised pre-training and it helps
the algorithm to find a better local minimum. The curricu-
lum learning method can serve as an important basis for the
work in this paper.

In this paper, we propose a new algorithm called annealed
gradient descent (AGD). Instead of directly optimizing the
original non-convex objective function, the basic idea of
AGD is to optimize a low resolution approximation func-
tion that may be smoother and easier to optimize. Further-
more, the approximation resolution is gradually improved
according to an annealing schedule over the optimization
course. In this work, we have proposed to approximate a
non-convex objective function based on some pre-trained
codebooks, where the approximation precision can be eas-

ily controlled by choosing different number of codewords
in the codebook. In comparison with (Bengio et al., 2009),
the main contribution of this paper is that AGD provides a
suitable way for approximation (through pre-trained code-
books), and more importantly, we show a bound for the
difference between the parameters derived by AGD and
the regular GD algorithms. This new method has several
advantages: Firstly, the low resolution approximation by
codebooks lead to a much smoother risk function, which
may result in finding a good local minimum more easily.
Secondly, because the size of each codebook is much s-
maller than that of the training set, we can use a fast batch
algorithm to learn the model at the beginning and this part
can be easily parallelized. In this work, we have applied
AGD to training DNNs for various tasks to verify its effi-
ciency and effectiveness. Experiments have shown that the
AGD algorithm yields about 40% speed-up in total training
time of DNNs, and also leads to similar recognition perfor-
mance as the regular mini-batch SGD.

The remainder of this paper is organized as follows. In sec-
tion 2, we provide some background information about em-
pirical risk function and two kinds of gradient descent algo-
rithm. Section 3 shows the mosaic risk function and some
related theoretical analysis. In section 4, we present the
proposed AGD algorithm. Section 5 reports experiments
on different tasks, and we conclude this paper in section 6.

2 PRELIMINARIES

In this section, we first review some preliminary definition-
s in machine learning, which serve as important notation
bases for this work.

2.1 EMPIRICAL RISK FUNCTION

In machine learning, we normally use a loss function,
Q(x, y, θ), to measure the ‘cost’ of a given event x (y is
the corresponding label of x) and the underlying model pa-
rameters are denoted as θ, and the expected value of the
loss function is the so-called expected risk function, R(θ):

R(θ) = E[Q(x, y, θ)] ,
∫
Q(x, y, θ)dP (x, y) (1)

where P (x, y) denotes the ground truth distribution over
all possible events. The fundamental goal of many ma-
chine learning problems is to minimize the above expect-
ed risk function. In practice, however, it is extreme-
ly hard to do so because P (x, y) is always unknown.
Therefore, In practice, we normally use a finite training
set that includes N independent pairs of sample ON =
{(x1, y1), (x2, y2), ..., (xN , yN)}, which are presumably
randomly sampled from the above unknown distribution.
Based on the training set, we may derive the so-called em-
pirical risk function, RN (θ), to approximate the expected

risk function in eq.(1):

R(θ) ≈ RN (θ) =
1

N

N∑
n=1

Q(xn, yn, θ) (2)

If the training set is sufficiently large, under some minor
conditions, minimizing the empirical risk function in e-
q.(2) may also minimize the expected risk function in eq.(1)
(Vapnik, 1998). For notational clarity, without confusion,
we drop label yn from the loss function for the rest of this
paper.

2.2 GRADIENT DESCENT ALGORITHM

To minimize the empirical risk function, we can use gra-
dient descent algorithms, which update θ along the direc-
tion of the negative gradient based on a pre-defined learning
rate λ. Generally speaking, there are two different types of
gradient descent algorithms: batch gradient descent (batch
GD) and stochastic gradient descent (SGD).

In each iteration, the batch GD considers all of the training
samples to calculate the average gradient and then update
the parameters accordingly:

θ̂t+1 = θ̂t − λt · ∇θRN (θ̂t)

= θ̂t − λt ·
1

N

N∑
n=1

∂Q(xn, θ̂t)

∂θ
(3)

where λt is the learning rate at iteration t. In contrast, SGD
only takes one training sample (which is randomly sampled
from the training set) into account in each iteration:

θ̄t+1 = θ̄t − λt ·
∂Q(xn, θ̄t)

∂θ
. (4)

If we set a suitable learning rate, under some conditions,
both batch GD and SGD can finally converge to a local
minimum θ∗ of the empirical risk function (Bottou, 2004).
In practice, to reduce variance of the estimated gradients in
SGD, a variant SGD, called mini-batch SGD, is normally
used, where a small set (called mini-batch) of randomly
selected data samples are used to estimate the gradient for
each model update, as opposed to only one sample in SGD.

As we know, the batch GD works well for convex opti-
mization while SGD may be used to solve non-convex op-
timization problems due to the random noises in its gra-
dient estimation. Meanwhile, SGD requires far less com-
puting resources in comparison to batch algorithms, but
on the downside, its convergence speed is very slow due
to sampling noise, and it is very hard to parallelize SGD.
Therefore, when dealing with some large scale tasks, S-
GD may run very slowly. In this paper, we propose a new
optimization method to solve some large-scale non-convex
optimization problems in deep learning. The new method
will be compared with SGD in terms of convergence speed
and learning performance.

3 THE MOSAIC RISK FUNCTION

Some previous work has considered the problem of crit-
ical points (including local optima and saddle points) in
non-convex optimizations. According to (Choromanska
et al., 2014), some poor local minima may hinder the opti-
mization process especially in small-scale neural network-
s. (Dauphin et al., 2014) argued that for the practical high
dimensional problems, the saddle points may become the
most difficult problem to deal with, rather than local opti-
ma. In practice, any local search algorithms may be eas-
ily trapped into a nearby shallow local optimum point or
saddle point, which makes it hard for optimization to pro-
ceed further. SGD relies on the sampling noise to allevi-
ate this problem. Another way to tackle this problem is to
optimize a smoother approximation of the original rugged
non-convex function. In this work, we propose to approx-
imate the original objective function based on a relatively
small codebook, which is generated by clustering the whole
training set. In this way, we may provide a low resolution
approximation of the objective function, which is much s-
moother and easier to optimize with simple local search
algorithms.

Assume we use a discrete codebook, denoted as C =
{c1, c2, ..., cM}, where M � N , to approximate the o-
riginal training set. For a training sample xn, we select its
nearest codeword in C as its approximation:

c(n) = arg min
cm∈C

‖ xn − cm ‖ (5)

and the quantization error εn is ‖ xn − c(n) ‖.

Next, we may derive a low resolution risk function R̃ε,
called mosaic risk function, to approximate the empirical
risk function RN (θ) (where ε ≡ maxn εn):

R̃ε(θ) =
1

N

N∑
n=1

Q(c(n), θ) =
M∑
m=1

ωm
N
·Q(cm, θ) (6)

where ωm is the number of training samples in the whole
training set that are approximated by the codeword cm, i.e.,
ωm =

∑N
n=1 δ(c

(n)−cm), where δ() denotes the Kroneck-
er delta function.

Assume that the loss function Q(x, θ) is twice Lipschitz-
continuous with respect to the input sample x and the mod-
el parameter θ, that is,

‖ Q(xi, θ)−Q(xj , θ) ‖< L0 ‖ xi − xj ‖ (7)

‖ Q′(xi, θ)−Q′(xj , θ) ‖< L1 ‖ xi − xj ‖ (8)

‖ Q(x, θi)−Q(x, θj) ‖< L0 ‖ θi − θj ‖ (9)

‖ Q′(x, θi)−Q′(x, θj) ‖< L1 ‖ θi − θj ‖ (10)

In this case, it is easy to show that for any θ, the mosaic
risk function can provide a bounded approximation for the

empirical risk function:

‖ RN (θ)− R̃ε(θ) ‖< ε · L0 (∀θ). (11)

When we deal with a non-convex loss function, the mosa-
ic risk function will give a very important benefit due to
its low resolution: because we use a smaller codebook to
approximate the training set, and one codeword may repre-
sent a large number of different training samples, the mosa-
ic risk function normally corresponds to a smoother curve
that may get rid of a lot of critical points comparing with
the original empirical risk function. (Bengio et al. (2009)
may support this argument.) Therefore, if we use the gra-
dient descent method to optimize the mosaic risk function,
named as mosaic gradient descent (MGD), we can find its
local minimum much easier and much faster, and this local
minimum on mosaic risk function is a good initialization
for further learning. If we can use a batch algorithm to op-
timize the mosaic risk function, it may significantly speed
up the training phase due to a smaller number of codeword-
s.

When we use MGD to minimize the mosaic risk function,
we can get the following parameter update sequence:

θ̃t+1 = θ̃t − λt · ∇θR̃ε = θ̃t − λt
M∑
m=1

ωm
N
· ∂Q(cm, θ̃t)

∂θ

(12)
Obviously, MGD generates a different sequence of the
model parameters θ̃t.

Moreover, we may extend the above MGD to a stochastic
version using only a random mini-batch of data for each
model update in eq.(12) rather than the whole training set.
All data in the selected mini-batch are approximated by
codewords as in eq.(5). This is called mini-batch MGD.
Of course, it may be better to use a much larger batch size
in mini-batch MGD than that of mini-batch SGD to explore
the overall structure of the mosaic function.

In the following, we will show that under some minor con-
ditions, minimization of the mosaic risk function leads to
convergence into a bounded neighborhood of a local op-
timum of the empirical risk function. Moreover, we also
show that MGD may provide faster a convergence rate than
GD and SGD under certain conditions.

3.1 CONVERGENCE ANALYSIS

As we know, if the learning rates satisfy some minor con-
ditions, the batch GD algorithm in eq. (3) is guaranteed to
converge to a critical point of the empirical risk function.
In the following, let’s first compare the MGD update se-
quence in eq.(12) with the GD update in eq.(3). Obviously,
we have the following lemma:

Lemma 1 (MGD vs. GD) Assume that the two update se-
quences in eq. (3) and eq. (12) start from the same initial

parameters θ0, and use the same sequence of learning rates
λt, then we have:

‖ θ̃t − θ̂t ‖< ε · L1 ·
t−1∑
τ=1

λτ (13)

Proof: (1) At t = 1, assume that GD and MGD start from
the same initialization θ0 and share the same sequence of
learning rate. Based on the Lipschitz-continuous condition
in eq. (8), it is easy to show:

‖ θ̃1 − θ̂1 ‖=
λ0
N
‖

N∑
n=1

∂Q(xn, θ0)

∂θ0
−

N∑
n=1

∂Q(c(n), θ0)

∂θ0
‖

≤ λ0
N
·
N∑
n=1

‖ ∂Q(xn, θ0)

∂θ0
− ∂Q(c(n), θ0)

∂θ0
‖

≤ λ0
N
· L1 ·

N∑
n=1

‖ xn − c(n) ‖

≤ ε · L1 · λ0
(14)

(2) Assume that the Lemma 1 holds for t, i.e.,

‖ θ̃t − θ̂t ‖< ε · L1 ·
t−1∑
τ=1

λτ . (15)

For t+ 1, considering the condition in eq. (10), we have:

‖ θ̃t+1 − θ̂t+1 ‖

=‖ (θ̃t − θ̂t) +
λt
N

N∑
n=1

(
∂Q(xn, θ̂t)

∂θ
− ∂Q(c(n), θ̃t)

∂θ
) ‖

≤‖ θ̃t − θ̂t ‖ +
λt
N

N∑
n=1

‖ ∂Q(xn, θ̂t)

∂θ
− ∂Q(c(n), θ̃t)

∂θ
‖

≤ ε · L1 ·
t−1∑
τ=1

λτ + λt · L1· ‖ xn − c(n) ‖

= ε · L1 ·
t∑

τ=1

λτ

(16)

Therefore, Lemma 1 also holds for t+ 1. �

Lemma 1 means that if we run both MGD and the batch GD
algorithm for t iterations, the difference between two resul-
tant model parameters is bounded and it is proportional to
the maximum quantization error, ε, in the mosaic function.

Based on Lemma 1, we have the following theorem:

Theorem 2 (MGD vs. GD) When we use the empirical
risk function eq. (2) to measure the two parameters θ̃t in
eq. (12) and θ̂t in eq.(3), the difference is also bounded as:

‖ RN (θ̃t)−RN (θ̂t) ‖≤ ε · L0 · L1 ·
t∑

τ=1

λτ (17)

Proof: Based on the condition in eq.(7) we have:

‖ RN (θ̃t)−RN (θ̂t) ‖=

1

N
· ‖

N∑
n=1

(Q(xn, θ̃t)−Q(xn, θ̂t)) ‖

≤ 1

N
·
N∑
n=1

‖ Q(xn, θ̃t)−Q(xn, θ̂t) ‖

≤ L0· ‖ θ̃t − θ̂t ‖

≤ L0 · ε · L1 ·
t∑

τ=1

λτ . �

(18)

In Lemma 1 and Theorem 2, the bounds are proportion-
al to the summation of all used learning rates. However,
in many deep learning practices such as DNN/CNN train-
ing, we need to use a sequence of quickly-decayed learning
rates to guarantee the convergence. In these situations, the
summation of all learning rates is clearly bounded. There-
fore, Theorem 2 shows that model parameters θ̃t derived
by MGD provide a good estimation of θ̂t learned by the
regular batch GD algorithm when they are measured with
the empirical risk function. The difference is bounded by a
quantity proportional to the quantization error in the mosaic
function. As a result, if the quantization error is sufficiently
small, MGD converges into a bounded neighborhood of a
critical point of the original empirical risk function.

3.2 FASTER LEARNING

Here we study the learning speed of MGD. If we want to
optimize the empirical risk function RN (θ) up to a given
precision ρ, i.e., ‖ θ − θ∗ ‖< ρ, by using batch gradi-
ent descent in eq. (3), it will take O(log 1

ρ) iterations, and
the complexity of each iteration is O(N). Thus the overall
complexity of the batch algorithm isO(N log(1

ρ)) (Bottou,
2012).

Alternatively, we can run the MGD algorithm on eq. (12)
for t iterations, and based on Lemma 1 we have:

Lemma 3 If we run the MGD algorithm in eq. (12) for t
iterations, the model parameters can reach the precision
as:

‖ θ̃t − θ∗ ‖< ρ+ ε · L1 ·
t∑

τ=1

λτ (19)

and the overall computational complexity of MGD isO(M ·
t).

Based on Lemma 3, we can have Theorem 4 as below:

Theorem 4 (MGD vs. GD) Assume there exists a code-
book C containing M codewords, which can approximate
the whole training set well enough, and M is sufficiently

small, i.e.

ε� ρ

L1 ·
∑t
τ=1 λτ

and M <
N ·O(log(1

ρ))

t
(20)

then to reach the same optimization precision, optimizing
the mosaic risk function using MGD requires less comput-
ing resources and yields faster convergence speed than the
batch GD in eq. (3).

Similar to Theorem 4, we also have Theorem 5 that com-
pares the resource requirement between MGD and SGD:

Theorem 5 (MGD vs. SGD) In SGD, we need to run
O(1

ρ) iterations to achieve the optimization precision ρ
(Bottou, 1998). Similar to Theorem 4, if we find a code-
book which satisfies the quantization error requirement and
remains sufficiently small as follows:

ε� ρ

L1 ·
∑t
τ=1 λτ

and M <
1

t
·O(

1

ρ
) (21)

then MGD will require less computation resource than S-
GD to achieve the optimization precision ρ.

In the case of big data, i.e., N is extremely large (N �M),
or in an early stage of optimization, when we only require
a rough optimization precision, i.e., ρ is allowed to be rel-
atively large, such codebook may exist. In these cases, it
may be beneficial to run MGD instead of GD or SGD since
MGD has faster convergence speed than batch GD and S-
GD. Moreover, as opposed to pure serial computation in
SGD, the gradient computation in each MGD iteration can
be easily parallelized. Therefore, MGD may provide an
even faster training speed if multiple computing units are
available.

4 ANNEALED GRADIENT DESCENT

Theorems 4 and 5 imply that MGD may possibly converge
faster than either GD or SGD but it remains unclear how to
find a codebook that simultaneously satisfy both condition-
s in these theorems. Moreover, we may require different
levels of optimization precision in various stages of a train-
ing process. For example, at the beginning, when all model
parameters stay far away from any local optimal point, we
may not need to calculate a very accurate gradient, i.e., ρ
is allowed to be relatively large at this time. On the other
hand, as the parameters move towards a close neighbor-
hood of an optimal point, we may require a very small ρ
to perform an accurate local search to converge more ef-
fectively. As suggested by eq.(20), the required quantiza-
tion error, ε, is proportionally related to ρ. For a fixed set
of training data, the quantization error, ε, in turn depend-
s on the size of the codebook, M . This suggests we use
an annealing schedule of {ε1, ε2, · · · } (with εi+1 < εi) for

the whole training process, where ε gradually decreases as
training continues. At the beginning, we can use a small
low resolution codebook (relatively big ε) to run MGD to
learn model parameters. As training proceeds, we gradual-
ly reduce ε by using increasingly larger codebooks. At the
final stage, we may even use all original training samples
to fine-tune the model parameters.

Therefore, the basic idea of annealed gradient descen-
t (AGD) is to construct deeply-structured hierarchical code-
books, in which quantization error ε slowly decreases from
the top layer down to the bottom layer, and the last layer
is finally connected to the original training set. During the
training procedure, we first start from the top to use each
layer of codebooks to do MGD updates in eq.(12) and grad-
ually move down the hierarchy based on a pre-specified an-
nealing schedule until we finally use the training samples
to fine-tune the model parameters. If a proper annealing
schedule is used, this annealed learning process may ac-
celerate the training speed as implied by Theorems 4 and
5. More importantly, it may help to converge to a better
local optimum at the end because AGD optimizes much s-
moother mosaic objective functions from the early stage of
training.

In this section, we first briefly discuss the hierarchical code-
books, and then present the AGD training algorithm.

4.1 HIERARCHICAL CODEBOOKS

In this work, we use a regular K-means based top-down hi-
erarchical clustering algorithm (Zhou et al., 2015) to con-
struct the required hierarchical codebooks, where the cen-
troid of each cluster is used as a codeword for each lay-
er. The structure of the hierarchical codebooks is shown in
Figure 1.

Figure 1: Illustration of a hierarchical codebook for AGD

When building the codebooks, we first divide the training
set into several subsets based on the class labels of da-
ta samples (each subset only contains all training samples

from one class label), then conduct the hierarchical top-
down K-means clustering on each subset. Note that the
clustering process is very easy to parallelize because al-
l subsets are independent with each other and we can run
hierarchical K-means on them separately. In the K-means
clustering, we first define a suitable K, then use K-means
to split each subset into K clusters. The centroids of all
clusters are used to build the first layer of codebooks. Next,
we continuously apply the K-means clustering on all clus-
ters to further divide them into K sub-clusters to derive
the codebooks in the next layer. We repeat this procedure
several times until the quantization error in the last layer
becomes small enough. Finally, we connect the original
training samples at the bottom as the leaf nodes to obtain a
hierarchical codebook as shown in Figure 1, in which the
sizes of the codebooks are gradually increased from the top
layer to the bottom layer. In this way, the K-means code-
words in the various layers of the hierarchy may be used
to approximate each training sample in the leaf node up to
different precision levels as required in the following AGD
algorithm.

4.2 ANNEALED GRADIENT DESCENT
ALGORITHM

In AGD, we first specify an annealing schedule, i.e.,
{ε1, ε2, · · · } (εi+1 < εi). In each epoch of AGD, for each
training sample in the selected data mini-batch, we selec-
t a codeword from the uppermost layer of the hierarchi-
cal codebooks that barely satisfies the required quantiza-
tion error εi, to construct the mosaic function for MGD at
this stage. Since εi gradually decreases in the annealing
schedule, we slowly move to use more and more precise
codewords (eventually the original data samples) in AGD.
In AGD, a hierarchical search list is constructed for each
layer in C based on the average quantization errors in K-
means. As a result, in each AGD step, the correspond-
ing codewords can be found very efficiently based on this
search list. The annealed gradient descent (AGD) algorith-
m is shown as in Algorithm 1. During the AGD training,
we may even use varying batch sizes. For example, we
can start from a very large batch size (even the whole train-
ing set) at the beginning and slowly decrease the batch size
from epoch to epoch. In general, we normally use much
larger batch sizes than those used in the regular mini-batch
SGD. If a suitable annealing schedule is specified, many
initial AGD epochs may be designated to run faster MGD
with smaller codebooks, yielding faster training speed than
the mini-batch SGD or GD in overall.

5 EXPERIMENTS

In this section, we apply the proposed AGD algorithm
to learning sigmoid fully connected deep neural networks
(DNNs) for image recognition in the MNIST database and

Algorithm 1 Annealed Gradient Descent(AGD)
Input: training set O, hierarchical codebook C, anneal-
ing schedule {ε1, ε2, ..., εT | εi+1 < εi}
for each epoch i = 1 to T do

for each batch X do
For each sample in X , select a codeword c(n) at the
uppermost layer of the C satisfying εi;
Use MGD to optimize the mosaic risk function;

end for
end for

Table 1: The total training time of K-means clustering.
Database Number of CPUs Training Time
MNIST 5 4.3 (hr)
Switchboard 8 9.2 (hr)

speech recognition in the Switchboard database. AGD and
the regular mini-batch SGD are both used to train DNNs
based on the minimum cross-entropy error criterion. AGD
is compared with mini-batch SGD in terms of the total
training time and the final recognition performance.

For each data set, we first use a standard K-means algorith-
m to build a deeply-structured hierarchical codebook. We
use K = 5 in MNIST and K = 4 in Switchboard, which
can result in a hierarchical codebook with sufficient depth.
In our experiments, the MNIST database contains 10 class-
es and Switchboard contains 8991 classes, thus the hierar-
chical K-means has a good potential for parallel training.
Here, the K-means clustering procedure is parallelized a-
mong multiple CPUs to speed it up as much as possible.
In our experiments, the total running time of the K-means
clustering is about 4.3 hours in MNIST (using 5 CPUs) and
about 9.2 hours in Switchboard (using 8 CPUs), as shown
in Table 1. If we use more CPUs, the K-means running
time can be further reduced. As shown later, the K-means
training time is not significant when comparing with the
necessary DNN training times. And if we use more CPUs
to do K-means, the clustering time can be further reduced
(approximately less than 3 hours for MNIST and less then
5 hours for Switchboard). Moreover, for each database we
only need to run K-means once and after that we can use
the same codebook to train DNNs based on different an-
nealing schedules. Therefore, we do not take into account
the running time of the K-means clustering in the following
comparisons. Note that no pre-training is used for DNNs
in our experiments.

5.1 MNIST: IMAGE RECOGNITION

The MNIST database (LeCun et al., 1998) contains 60,000
training images and 10,000 test images, and the images are
28-by-28 in size. Here, we use data augmentation through
image deformation at the beginning of each epoch to en-

large the training set as in (Ciresan et al., 2010). We use the
configuration of 3-hidden-layer DNNs (1500, 1000, 500 n-
odes in each hidden layer) in (Ciresan et al., 2010) as our
network structures and use SGD and AGD to do network
training. Following (Ciresan et al., 2010), we fine-tune al-
l hyper-parameters towards the best possible performance.
In SGD, we use a mini-batch of 10 samples and an initial
learning rate of 0.4. Notice that in MNIST experiments
we do not use momentum during the training phase. In
MGD, we use a larger mini-batch size of 4500 and an ini-
tial learning rate of 0.8. The training process runs for 550
epochs to guarantee the convergence of the augmented M-
NIST database.

As we know, we should shrink the learning rates during the
training process for better convergence. Specifically, when
the training mean square error (MSE) becomes smaller than
a pre-defined threshold r, we use the formula

λt+1 = λt ·
p

p+ t

to gradually decrease the learning rate, where p is a pre-
defined constant to control the decreasing speed of the
learning rates. In our experiments, we set r = 0.17 and
p = 10000. As for the AGD annealing schedule in MNIST,
we start from ε1 = 7.5 (this value is based on the average
quantization error in the first layer of the codebook) and
εi+1 = 0.999 · εi.

During the annealing phase we use MGD to train the net-
work while in the regular phase we use SGD with the same
configurations as the baseline. Note that we only do image
deformation during the regular phase. In Figure 2, we have
shown the learning curves of both SGD and AGD in terms
of cross-entropy and classification error rate on the MNIST
training set. Since each MGD epoch runs much faster than
a SGD epoch, all learning curves are plotted as a function
of total training time instead of epochs.

From the two pictures in Figure 2 we can see that AGD
(in blue) finishes the same number of epochs much earlier
than SGD (in red). In addition, in Table 2, we also give the
total training time and the best classification error on the
test set for both AGD and SGD. From results in Figure 2
and Table 2, we can see that the proposed AGD training
algorithm yields slightly better classification performance
in the test set, and more importantly reduces the total DNN
training time by about 40%.

5.2 SWITCHBOARD: SPEECH RECOGNITION

Switchboard is a 320-hour English transcription task,
which contains 332,576 utterances in its training set
(amounting to about 126 millions of training samples in
total). We select the standard NIST Hub5e2000 as the test

0 200 400 600 800 1000 1200 1400
−4.5

−4

−3.5

−3

−2.5

Execution Time(102 sec)

Lo
g

of
 C

ro
ss

 E
nt

ro
py

 o
n

T
ra

in
in

g
S

et

Training CE of Two Methods

SGD
AGD

0 200 400 600 800 1000 1200 1400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Execution Time(102 sec)

Lo
g

of
 E

rr
or

 o
n

T
ra

in
in

g
S

et

Training Error of Two Methods

SGD
AGD

Figure 2: Learning curves on the MNIST training set (Left: cross entropy error; Right: classification error) of SGD and
AGD as a function of elapsed training time.

Table 2: Comparison between SGD and AGD in terms of
total training time (using one GPU) and the best classifica-
tion error rate on MNIST.

Method Training Time Test Error

SGD 38.8 (hr) 0.47%
AGD 23.6 (hr) 0.46%

set in this work, which has 1831 utterances.1 Following
(Seide et al., 2011; Bao et al., 2013; Pan et al., 2012),
we train a 6-hidden-layer DNN with 2048 nodes per lay-
er based on the minimum cross-entropy criterion. We com-
pare the cross entropy and frame classification errors on the
training and test sets to evaluate the performance of SGD
and AGD, meanwhile we also evaluate word error rates in
speech recognition for the test set.

Here we use similar hyper-parameters as in (Pan et al.,
2012; Xue et al., 2014). For example, we use a mini-batch
of 1024 samples and an initial learning rate of 0.2 in SGD,
and a mini-batch of 6144 and an initial learning rate of 1.0
in MGD. We use 0.9 as the momentum in both SGD and
MGD. We run 10 epochs in SGD and 17 epochs in AGD.
During the training process, we need to shrink the learn-
ing rates slowly. Specifically, we multiply the learning rate
by 0.8 every epoch after the 5-th epoch in SGD and the
12-th epoch in AGD. Note that our SGD baseline is solid
and comparable with the best results reported on this task

1Due to the copyright issue, all Switchboard experiments were
conducted at NELSLIP, University of Science and Technology of
China.

(Seide et al., 2011; Hinton et al., 2012; Xue et al., 2014) in
terms of both training speed and recognition performance.

As for the AGD annealing schedule in Switchboard, unlike
MNIST, it starts from an initial value ε1 (17.5 in this case),
and use the formula

εi+1 = εi −∆ε

to reduce εi by subtracting a constant value every epoch
until it reaches the pre-defined value (8.5 in this case). The
reason for this formula is that we run much less epochs
here. In Switchboard, we have evaluated three differen-
t annealing schedules to show how they affect the training
speed and the final recognition performance as shown in
Table 3. In these three schedules, we use different values
for ∆ε, e.g. 1.0, 0.9 and 0.8 respectively. We can see that
the annealing schedule 1 (∆ε = 1.0) decreases fastest and
it provides the best performance but relatively slower train-
ing speed. In contrast, schedule 3 (∆ε = 0.8) gives the
fastest training speed but slightly worse performance be-
cause more epochs will be dispatched to run MGD.

Figure 3 shows the learning curves of both SGD and AGD
(using the annealing schedule with ∆ε = 1) in terms of
cross-entropy and frame errors on the Switchboard training
set as a function of elapsed training time. Clearly, AGD
runs much faster than SGD on Switchboard as well. Mean-
while, AGD can also achieve a slightly better local mini-
mum than SGD as measured in both figures.

In Table 3, we give the total training times and the word
error rates in speech recognition. We report the experimen-
tal results for all 3 different annealing schedules. The re-
sults have shown that the proposed AGD method can yield
similar recognition performance with much faster training

0 100 200 300 400
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Execution Time(103 sec)

C
ro

ss
 E

nt
ro

py
 o

n
T

ra
in

in
g

S
et

Training CE of Two Methods

SGD
AGD

0 100 200 300 400

50

55

60

65

70

75

80

85

90

95

Execution Time(103 sec)

F
ra

m
e

E
rr

or
 o

n
T

ra
in

in
g

S
et

(%
)

Training Frame Error of Two Methods

SGD
AGD

Figure 3: Learning curves on the Switchboard training set (Left: cross entropy error; Right: frame classification error) of
SGD and AGD as a function of elapsed training time.

Table 3: Comparison between SGD and AGD in terms of
total training time (using one GPU) and word error rate in
speech recognition on Switchboard.

Method Training Time Word Error

SGD 114.05 (hr) 16.4%
AGD (∆ε = 1.0) 78.79 (hr) 16.3%
AGD (∆ε = 0.9) 66.63 (hr) 16.7%
AGD (∆ε = 0.8) 55.35 (hr) 17.5%

speed than SGD (about a 30% to 40% reduction in total
training time) when a suitable annealing schedule is used.
Results in Table 3 also imply how quantization errors in the
codebooks may affect the final classification performance:
a slower schedule means more epochs will be dispatched
to run MGD, which uses each layer of the codebooks to
train the DNNs. In this case, the quantization error of the
codebook may bring about some negative influence on the
performance but provide faster learning speed. In practice,
when we are sensitive to the total training time of DNNs,
we may use slower decreasing schedules to accelerate the
DNN training dramatically.

6 CONCLUSIONS

In this paper, we have proposed a new annealed gradien-
t descent (AGD) algorithm for non-convex optimization in
deep learning, which can converge to a better local min-
imum with faster speed when compared with the regular
mini-batch SGD algorithm. In this work, AGD has been
applied to training large scale DNNs for image classifi-

cation and speech recognition tasks. Experimental result-
s have shown that AGD significantly outperforms SGD in
terms of the convergence speed. Therefore, the AGD algo-
rithm is especially suitable for the large scale non-convex
optimization problems in deep learning. In the future,
we may apply AGD to training convolutional neural net-
works (CNNs) for other more challenging image recogni-
tion tasks, where we may build the hierarchical codebook-
s by clustering image patches instead of the whole input
images. Moreover, AGD may be applied to the recently
proposed unsupervised learning algorithm in (Zhang and
Jiang, 2015; Zhang et al., 2015) as well.

Acknowledgments

This work was partially supported by an NSERC discovery
grant from the Canadian Federal Government. The first au-
thor is supported by a scholarship from China Scholarship
Council (CSC). We appreciate Dr. Pan Zhou from NEL-
SLIP, University of Science and Technology of China for
his help in conducting the Switchboard experiments in this
paper.

References

A. Agarwal and J. C. Duchi. Distributed delayed stochastic
optimization. In IEEE Annual Conference on Decision
and Control (CDC), pages 5451–5452, 2012.

Y. Bao, H. Jiang, L. Dai, and C. Liu. Incoherent training of
deep neural networks to de-correlate bottleneck features
for speech recognition. In Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 6980–6984, 2013.

Y. Bengio. Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1):1–127, 2009.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-
riculum learning. In Proceedings of the 26th annual in-
ternational conference on machine learning, pages 41–
48. ACM, 2009.

C. Bockermann and S. Lee. Scalable stochastic gradient de-
scent with improved confidence. In NIPS Workshop on
Big Learning–Algorithms, Systems, and Tools for Learn-
ing at Scale, 2012.

L. Bottou. Online learning and stochastic approximations.
On-line learning in neural networks, 17:9, 1998.

L. Bottou. Stochastic learning. In Advanced lectures on
machine learning, pages 146–168. Springer, 2004.

L. Bottou. Stochastic gradient tricks. Neural network-
s: tricks of the trade. Springer, Berlin, pages 430–445,
2012.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous,
and Y. LeCun. The loss surface of multilayer networks.
arXiv preprint arXiv:1412.0233, 2014.

D. C. Ciresan, U. Meier, L. M. Gambardella, and
J. Schmidhuber. Deep big simple neural nets excel on
handwritten digit recognition. Neural Computation, 22
(12):3207–3220, 2010.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Gan-
guli, and Y. Bengio. Identifying and attacking the sad-
dle point problem in high-dimensional non-convex opti-
mization. In Advances in Neural Information Processing
Systems (NIPS’14), pages 2933–2941, 2014.

J. L. Elman. Learning and development in neural networks:
The importance of starting small. Cognition, 48(1):71–
99, 1993.

N. Feng, R. Benjamin, R. Christopher, and J. W. Stephen.
Hogwild!: A lock-free approach to parallelizing stochas-
tic gradient descent. In Advances in Neural Information
Processing System 24 (NIPS’11), 2011.

G. Hinton, L. Deng, D. Yu, G. Dahl, A.Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and
B. Kingsbury. Deep neural networks for acoustic mod-
elling in speech recognition. IEEE Signal Processing
Magazine, 29, 2012.

K. A. Krueger and P. Dayan. Flexible shaping: How learn-
ing in small steps helps. Cognition, 110(3):380–394,
2009.

Y. LeCun and L Bottou. Large scale online learning. In
Advances in neural information processing systems 17
(NIPS’04), page 217, 2004.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Back-
propagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

N. Murata and S. Amari. Statistical analysis of learning
dynamics. Signal Processing, 74(1):3–28, 1999.

J. Pan, C. Liu, Z. Wang, Y. Hu, and H. Jiang. Investigations
of deep neural networks for large vocabulary continuous
speech recognition: Why DNN surpasses GMMs in a-
coustic modelling. In Proc. of International Symposium
on Chinese Spoken Language Processing, 2012.

N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic
gradient method with an exponential convergence rate
for finite training sets. In Advances in Neural Infor-
mation Processing Systems 25 (NIPS’12), pages 2672–
2680, 2012.

F. Seide, G. Li, and D. Yu. Conversational speech tran-
scription using context-dependent deep neural networks.
In Proc. of Interspeech, pages 437–440, 2011.

O. Shamir and T. Zhang. Stochastic gradient descent for
non-smooth optimization: Convergence results and opti-
mal averaging schemes. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13),
pages 71–79, 2013.

V. N. Vapnik. Statistical Learning Theory. John Wiley and
Sons, 1st edition, 1998.

S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu. Fast
adaptation of deep neural network based on discriminan-
t codes for speech recognition. IEEE/ACM Trans. on
Audio, Speech and Language Processing, 22(12):1713–
1725, 2014.

S. Zhang and H. Jiang. Hybrid orthogonal projection and
estimation (hope): A new framework to probe and learn
neural networks. In arXiv:1502.00702, 2015.

S. Zhang, L. Dai, and H. Jiang. The new hope way to learn
neural networks. In Proc. of Deep Learning Workshop
at ICML 2015, 2015.

P. Zhou, H. Jiang, L. Dai, Y. Hu, and Q. Liu. State-
clustering based multiple deep neural networks model-
ing approach for speech recognition,. IEEE/ACM Trans.
on Audio, Speech and Language Processing, 23(4):631–
642, 2015.

M. Zinkevich, J. Langford, and E. J. Smola. Slow learners
are fast. In Advances in Neural Information Processing
Systems 22 (NIPS’09), pages 2331–2339, 2009.

	INTRODUCTION
	PRELIMINARIES
	EMPIRICAL RISK FUNCTION
	GRADIENT DESCENT ALGORITHM

	THE MOSAIC RISK FUNCTION
	CONVERGENCE ANALYSIS
	FASTER LEARNING

	ANNEALED GRADIENT DESCENT
	HIERARCHICAL CODEBOOKS
	ANNEALED GRADIENT DESCENT ALGORITHM

	EXPERIMENTS
	MNIST: IMAGE RECOGNITION
	SWITCHBOARD: SPEECH RECOGNITION

	CONCLUSIONS

