
Auxiliary Gibbs Sampling for Inference in Piecewise-Constant Conditional
Intensity Models

Zhen Qin
University of California, Riverside

zqin001@cs.ucr.edu

Christian R. Shelton
University of California, Riverside

cshelton@cs.ucr.edu

Abstract

A piecewise-constant conditional intensity
model (PCIM) is a non-Markovian model of
temporal stochastic dependencies in continuous-
time event streams. It allows efficient learning
and forecasting given complete trajectories.
However, no general inference algorithm has
been developed for PCIMs. We propose an
effective and efficient auxiliary Gibbs sampler
for inference in PCIM, based on the idea of
thinning for inhomogeneous Poisson processes.
The sampler alternates between sampling a finite
set of auxiliary virtual events with adaptive rates,
and performing an efficient forward-backward
pass at discrete times to generate samples.
We show that our sampler can successfully
perform inference tasks in both Markovian and
non-Markovian models, and can be employed
in Expectation-Maximization PCIM parameter
estimation and structural learning with partially
observed data.

1 INTRODUCTION

Modeling temporal dependencies in event streams has wide
applications. For example, users’ behaviors in online shop-
ping and web searches, social network activities, and ma-
chines’ responses in datacenter management can each be
viewed as a stream of events over time. Models that can
successfully learn the complex dependencies among events
(both label and timing) allow targeted online advertising,
automatic policy selection in datacenter management, user
behavior modeling, or event prediction and dependency un-
derstanding in general.

[Gunawardana et al., 2011] proposed the piecewise-
constant conditional intensity model (PCIM) which
captures the dependencies among the types of events
through a set of piecewise-constant conditional intensity

functions. A PCIM is represented as a set of decision trees,
which allow for efficient model selection. Forecasting via
forward sampling is also simple by iteratively sampling
next events based on the current history.

However, currently model selection and forecasting for
PCIMs is only effective given complete data. When
there are missing data, an inference method is needed to
answer general queries or be employed in expectation-
maximization (EM) algorithms for model selection and pa-
rameter learning. Currently, no inference algorithm has
been proposed for PCIM that can condition on general evi-
dence.

In this work, we propose the first general inference algo-
rithm for PCIMs, based on the idea of thinning for in-
homogeneous Poisson process [Lewis and Shedler, 1979].
This results in an auxiliary Gibbs sampler that alternates
between sampling a finite set of virtual event times given
the current trajectory, and then sampling a new trajectory
given the set of evidences and event times (virtual and
actual). Our method is convergent, does not involve ap-
proximations like fixed time-discretization, and the sam-
ples generated can answer any type of query. We pro-
pose an efficient state-vector representation to maintain
only necessary information for diverging trajectories, re-
ducing the exponentially increasing sampling complexity
to linear in most cases. We show empirically our infer-
ence algorithm converges to the true distribution, permits
effective query answering, and aids model selection with
incomplete data for PCIM models with both Markovian
and complex non-Markovian dynamics. We also show the
connection between PCIMs and continuous-time Bayesian
networks (CTBNs), and compare our method with an ex-
isting method on such models.

2 PREVIOUS WORK

A dynamic Bayesian network (DBN)
[Dean and Kanazawa, 1988] models temporal depen-
dencies between variables in discrete time. For systems
that evolve asynchronously without a global clock, it is

often not clear how timestamps should be discretized.
Health records, computer server logs, and social networks
are examples of asynchronous event data streams. For such
systems, too slow a sampling rate would poorly represent
the data, while too fast a sampling rate makes learning and
inference more costly.

Continuous-time models have drawn attention recently in
applications ranging from social networks [Du et al., 2013,
Saito et al., 2009, Linderman and Adams, 2014] to ge-
netics [Cohn et al., 2009] to biochemical networks
[Golightly and Wilkinson, 2011]. Continuous Time
Bayesian Networks (CTBN) [Nodelman et al., 2002] are
homogeneous Markovian models of the joint trajectories
of discrete finite variables, analogous to DBNs. Non-
Markovian continuous models allow the rate of an event to
be a function of the process’s history. Poisson Networks
[Rajaram et al., 2005] constrain this function to depend
only on the counts of the number of events during a finite
time window. Poisson cascades [Simma and Jordan, 2010]
define the rate function to be the sum of a kernel applied to
each historic event, and requires the modeler to choose a
parametric form for temporal dependencies.

A PCIM defines the intensity function as decision trees,
with internal nodes’ tests mapping time and history to
leaves. Each leaf is associated with a constant rate. A
PCIM is able to model non-Markovian temporal depen-
dencies, and is an order of magnitude faster to learn than
Poisson networks. Applications include modeling super-
computer event logs and forecasting future interests of web
search users. While PCIMs have been extended in a num-
ber of ways [Parikh et al., 2012, Weiss and Page, 2013],
there is no general inference algorithms.

Inference algorithms developed for continuous systems
are mainly for Markovian models or specifically de-
signed for a particular application. For CTBNs, there
are variational approaches such as expectation propagation
[El-Hay et al., 2010] and mean field [Cohn et al., 2009],
which do not converge to the true value as computation
time increases. Sampling based approaches include im-
portance sampling [Fan et al., 2010] and Gibbs sampling
[Rao and Teh, 2011, Rao and Teh, 2013] that converge to
the true value. The latter is the current state-of-the-
art method designed for general Markov Jump Processes
(MJPs) and its extensions (including CTBNs). It uses
the idea of uniformization [Grassmann, 1977] for Markov
models, similar to thinning [Lewis and Shedler, 1979] for
inhomogeneous Poisson processes. We note that our infer-
ence method generalizes theirs to non-Markovian models.

3 PCIM BACKGROUND

Assume events are drawn from a finite label setL. An event
then can be represented by a time-stamp t and a label l.
An event sequence x = {(ti, li)}ni=1, where 0 < t1 <

λ = 0.01 λ = 2

λ = 0.5

Are there ≥ 1 A
events in [t-1,t)?

λA

Are there ≥ 1 B
events in [t-1,t)?

λB

λ = 0.01 λ = 2 λ = 0.1 λ = 0.01

Y N

Y N Y N Y N

Y N

Are there ≥ 1 B
events in [t-2,t-1)?

Are there ≥ 1 A
events in [t-5,t)?

Are there ≥ 1 A
events in [t-2,t-1)?

Figure 1: Decision tree representing S and θ for events of
labels A and B. Note the dependency among event labels
(the rate of B depends on A). [Gunawardana et al., 2011]

. . . < tn. We use hi = {(tj , lj) | (tj , lj) ∈ x, tj < ti)}
for the history of event i, when it is clear from context
which x is meant. We define the ending time t(y) of an
event sequence y as the time of the last event in y, so that
t(hi) = ti−1. A conditional intensity model (CIM) is a set
of non-negative conditional intensity functions indexed by
label {λl(t|x; θ)}|L|l=1. The data likelihood is

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi; θ)1l(li)e−Λl(ti|hi;θ) (1)

where Λl(t|h; θ) =
∫ t
t(h)

λl(τ |h; θ)dτ . The indicator func-

tion 1l(l
′
) is one if l

′
= l and zero otherwise. λl(t|h; θ)

is the expected rate of event l at time t given history h
and model parameters θ. Conditioning on the entire history
causes the process to be non-Markovian. The modeling as-
sumptions for a CIM are quite weak, as any distribution for
x in which the timestamps are continuous random variables
can be written in this form. Despite the weak assumptions,
the per-label conditional factorization allows the modeling
of label-specific dependence on past events.

A PCIM is a particular class of CIM that restricts λ(h) to
be piecewise constant (as a function of time) for any his-
tory, so the integral for Λ breaks down into a finite number
of components and forward sampling becomes feasible. A
PCIM represents the conditional intensity functions with
decision trees. Each internal node in a tree is a binary test
of the history, and each leaf contains an intensity. If the
tests are piecewise-constant functions of time for any event
history, the resulting function λ(t|h) is piecewise-constant.
Examples of admissible tests include

• Was the most recent event of label l?
• Is the time of the day between 6am and 9am?
• Did an event with label l happen at least n times be-

tween 5 seconds ago and 2 seconds ago?
• Were the last two events of the same label?

Note some tests are non-Markovian in that they require
knowledge of more than just which event was most recent.
See Fig. 1 for an example of a PCIM model.

The decision tree for label l maps the time and history to a

leaf s ∈ Σl, where Σl is the set of leaves for l. The resulting
data likelihood can be simplified:

p(x|S, θ) =
∏
l∈L

∏
s∈Σl

λ
cls(x)
ls e−λlsdls(x). (2)

S is the PCIM structure represented by the decision trees;
the model parameters θ are rates at the leaves. cls(x) is the
number of times label l occurs in x and is mapped to leaf
s. dls(x) is the total duration when the event trajectory for
l is mapped to s. c and d are the sufficient statistics for
calculating data likelihood.

[Gunawardana et al., 2011] showed that given the structure
S, by using a product of Gamma distributions as a conju-
gate prior for θ, the marginal likelihood of the data can be
given in closed form, and thus parameter estimation can be
done in closed form. Furthermore, imposing a structural
prior allows a closed form Bayesian score to be used for
greedy tree learning.

4 AUXILIARY GIBBS SAMPLING FOR
PCIM

In this section we introduce our new inference algorithm
for PCIM, called ThinnedGibbs, based on the idea of thin-
ning for inhomogeneous Poisson processes. We handle in-
complete data in which there are intervals of time during
which events for particular label(s) are not observed.

4.1 Why Inference in PCIM is Difficult

Filling in partially observed trajectories for PCIM is hard
due to the complex dependencies between unobserved
events and both past and future events. See Fig. 2 for an
example. While the history (the event at t) says it is likely
that there should be events in the unobserved area (with an
expected rate of 2), future evidence (no events inR) is con-
tradictory: If there were indeed events in the unobserved
area, those events should stimulate events happening in R.

Such a phenomenon might suggest existing algorithms
such as the forward-filtering-backward-sampling (FFBS)
algorithm for discrete-time Markov chains. However,
there are two subtleties here: First, we are dealing with
non-Markovian models. Second, we are dealing with
continuous-time systems, so the number of time steps over
which to propagate is infinite.

4.2 Thinning

Thinning [Lewis and Shedler, 1979] can be used to turn a
continuous-time process into a discrete-time one, without
using a fixed time-slice granularity. We select a rate λ∗

greater than any in the inhomogeneous Poisson process and
sample from a homogeneous process with this rate. To get a

λ = 0.1

Are there ≥ 1 l
events in [t-2,t-1)?

λl

Y N

λ = 2
t t+1 t+2

R

Figure 2: A simple PCIM with a partially observed trajec-
tory. The vertical solid arrow indicates an evidence event.
Areas between parentheses are unobserved. History alone
indicates there should be events filled in, while the future
(no events in R) provides contradictory evidence.

sample from the original inhomogeneous process, an event
at time t is thinned (dropped) with probability 1− λ(t)

λ∗ .

This process can also be reversed. If given the set of
thinned event times (samples from the inhomogeneous pro-
cess), extra events can be added to a sample from the orig-
inal constant-rate process by sampling from a Poisson pro-
cess with rate λ∗ − λ(t). The cycle can then repeat by
thinning the new total set of times (ignoring how they were
generated). At each cycle, the times (after thinning) are
drawn from the original inhomogeneous process. It is this
type of cycle we will employ in our sampler.

The difficulty is a PCIM is not an inhomogeneous Pois-
son process. Its intensity depends on the entire history of
events, not just the current time. For thinning, this means
that we cannot independently sample whether each event is
to be thinned. Furthermore, we wish to sample from the
posterior process, conditioned on evidence. All evidence
(both past and future) affect the probability of a specific
thinning configuration.

4.3 Overview of Our Method

To overcome both of these problems, we extend thin-
ning to an auxiliary Gibbs sampler in the same way
that [Rao and Teh, 2011, Rao and Teh, 2013] extended
Markovian-model uniformization [Grassmann, 1977] (a
specific example of thinning in a Markov process) to a
Gibbs sampler. To do this we introduce auxiliary variables
representing the events that were dropped. We call these
events virtual events.

As a standard Gibbs sampler, our method cycles through
each variable in turn. In our case, a variable corresponds
to an event label. For event label l, let xl be the sampled
event sequence for this label. Let Yl be all evidence (for l
and other labels) and all (currently fixed) samples for other
labels. Our goal is to sample from p(xl | Yl).

Let vl be the virtual events (the auxiliary variable) associ-
ated with l and zl = xl ∪ vl (all event times, virtual and
non-virtual). Our method first samples from p(vl | xl, Yl)
and then samples from p(xl | zl, Yl). The first step adds vir-

tual events given the non-virtual events are “correct.” The
second step treats all events as potential events and drops or
keeps events. The dropped events are removed completely.
The kept events, xl, remain as the new sampled trajectory.

The proof of correctness follows analogously to that of
[Rao and Teh, 2013] for Markovian systems. However, the
details for sampling from p(vl | xl, Yl) and p(xl | zl, Yl)
differ. We describe them next.

4.4 Sampling Auxiliary Virtual Events with Adaptive
Rates

Sampling from p(vl | xl, Yl) amounts to adding just the
virtual (dropped) events. As the full trajectory (xl for all
l) is known, the rate at any time step for a virtual event
is independent of any other virtual events. Therefore, the
process is an inhomogeneous Poisson process for which the
rate at t is equal to λ∗−λl(t|h) where h is fully determined
by xl and Yl. Recall that λl(t|h) is piecewise-constant in
time, so sampling from such an inhomogeneous Poisson
process is simple.

The auxiliary rate, λ∗, must be strictly greater than the
maximum rate possible for irreducibility. We use an aux-
iliary rate of λ∗ = 2 max(λ(t|h)) to sample virtual events
in the unobserved intervals. This choice balances mixing
time (better with higher λ∗) and computational complexity
(better with lower λ∗).

A naı̈ve way to pick λ∗ is to find λmax: the maximum rate
in the leaves of PCIM, and use 2λmax. However, there
could be unobserved time intervals with a possible maxi-
mum rate much smaller than λmax. Using λmax in those
regions would generate too many virtual events, most of
which will be dropped in the next step leading to computa-
tional inefficiency. We therefore use an adaptive strategy.

Our adaptive λ∗(t|h) cannot depend on xl (this would
break the simplicity of sampling mentioned above). There-
fore, we determine λ∗(t|h) by passing (t, h) down the
PCIM tree for λl. At each internal node, if the branch does
not depend on xl, we can directly take one branch. Other-
wise, the test is related to the sampled events, and we take
the maximum rate of taking both branches. This method
results in λ∗(t|h) as a piecewise-constant function of time
(for the same reasons that λl(t|h) is piecewise-constant).

Consider Fig. 3 as an example. When sampling event l = A
on the interval [1, 5), we would not take the left branch at
the root (no matter what events for A have been sampled),
but must maximize over the other two leaves (as different
xl values would result in different leaves). This results in a
λ∗ = 4 over this interval, which is smaller than 6.

Are there ≥ 1 B
events in [t-5,t)?

λA

Y N

λ = 3
1 3 8

A

5
B

λ∗ = 4 λ∗ = 6

λ = 2 λ = 1

Y N

Are there ≥ 1 A
events in [t-1,t)?

Figure 3: Adaptive auxiliary rate example. When sampling
A, the branch to take at the root does not depend on un-
observed events for A. If the test is related to the sampled
event, we take the maximum rate from both branches. The
red arrows indicate the branches to take between time [1, 5],
and λ∗ = 2× 2 in that interval, instead of 6.

4.5 The Naı̈ve FFBS Algorithm

Once these virtual events are added back in, we take zl (the
union of virtual events and “real” sampled events) as a sam-
ple from the Poisson process with rate λ∗ and ignore which
were originally virtual and which were originally “real.”
We then thin this set to get a sample from the conditional
marginal over l.

The restriction to consider events only at times in zl trans-
forms the continuous-time problem into a discrete one.
Given zl with m possible event times (zl,1, zl,2, . . . , zl,m),
let b = {bi}mi=1 be a set of binary variables, one per event,
where bi = 1 if event i is included in xl (otherwise bi = 0
and the event is not included in xl). Thus sampling b is
equivalent to sampling xl (zl is known) as it specifies which
events in zl are in xl. Let Y i:jl be the portion of Y between
times zl,i and zl,j , and bi:j = {bk|i ≤ k ≤ j}We wish to
sample b (and thereby xl) from p(b | Y) ∝(∏

i

p(Y i−1:i
l , bi | b1:i−1, Y 1:i−1

l)

)
p(Y m:∞

l | b) (3)

where the final Y m:∞
l signifies all of the evidence after the

last virtual event time zl,m and can be handled similarly to
the other terms.

The most straight-forward method for such sampling con-
siders each possible assignment to b (of which there are
2m). For each interval, we multiply terms from Eq. 3 of the
form p(Y i−1:i

l , bi | b1:i−1, Y 1:i−1
l) =

p(Y i−1:i
l | b1:i−1, Y 1:i−1

l)p(bi | b1:i−1, Y 1:i
l) (4)

where the first term is the likelihood of the trajectory inter-
val from zl,i−1 to zl,i and the second term is the probability
of the event being thinned, given the past history. The first
can be computed by tallying the sufficient statistics (counts
and durations) and applying Eq. 2. Note that these suf-
ficient statistics take into account b1:i−1 which specifies

events for l during the unobserved region(s), and the like-
lihood must also be calculated for labels l′ 6= l for which
λl′(t|h) depends on events from l. The second term is equal
to λl(t|h)

λ∗(t) if bi = 1 (and 1− λl(t|h)
λ∗(t) if bi = 0). The numer-

ator’s dependence on the full history similarly dictates a
dependence on b1:i−1.

This might be formulated as a naı̈ve FFBS algorithm: To
generate one sample, we propagate possible trajectories
forward in time, multiplying in Eq. 4 at each inter-event
interval to account for the evidence. Every time we see
a virtual event, each possible trajectory diverges into two
(depending on whether the virtual event is to be thinned or
not). By the end, we have all 2m possible trajectories, each
with its probability (Eq. 3). We sample one trajectory as
the output, in proportion of the calculated likelihoods. As
we explicitly keep all possible trajectories, the sampled tra-
jectory immediately tells us which virtual events are kept,
so no actual backward pass is needed.

4.6 An Efficient State-Vector Representation

The naı̈ve FFBS algorithm is clearly not practical, as the
number of possible trajectories grows exponentially with
the number of auxiliary virtual events (m). We propose
a more efficient state-vector representation to only keep
the necessary information for each possible trajectory. The
idea takes advantage of the structure of the PCIM and leads
to state merges, similar to what happens in FFBS for hidden
Markov models (HMMs).

The terms in Eq. 4 depend on b1:i−1 only through the tests
in the internal nodes of the PCIM trees. Therefore, we do
not have to keep track of all of b1:i−1 to calculate these like-
lihoods, but only the current state of such tests that depend
on events with label l. For example, a test that asks “Is the
last event of label l?” only needs to maintain a bit as the
indicator. The test “Are there more than 3 events of label q
in the last 5 seconds?” for q 6= l has no state, as b1:i−1 does
not affect its choice. By contrast, a test such as “Is the last
event of label q?” does depend on b, even if q 6= l.

As we propagate forward, we merge b1:i sequences that re-
sult in the same set of states for all internal tests inside the
PCIM. See Fig. 4 as a simple example. Though there are
8 possible trajectories, they merge to only 2 states that we
can sample from. Similar to FFBS for HMM, we need to
maintain the transition probabilities in the forward pass and
use them in a backward sampling pass to recover the full
trajectory, but such information is also linear.

Note that this conversion to a Markov system for sam-
pling is not possible in the original continuous-time sys-
tem. Thinning has allows it by randomly selecting a few
discrete time points, thereby restricting the possible state
space to be finite.

The state space depends on the actual tests in the PCIM

λ = 0.1

Was the most recent
event label A?

λA

Y N

λ = 2

A

B

true true false

true

false

true

false

b1 b2 b3

b1=1

b1=0

b2=1

b2=0

b3=1

b3=0
b3=1

b3=0

Figure 4: Dotted events are the virtual events that we sam-
ple as binary variables (bi is 1 if event i is kept). The state
diagram below the trajectory indicates the state of the test
as we diverge (keep or drop a virtual event). Though there
are 23 possible configurations, state merges can reduce the
exponentially increasing complexity to linear in this case.

model. See Tbl. 1 for the tests we currently support and
their state representations. The LastStateTest and StateTest
are used to support discrete finite variable systems such as
CTBN, as we will use in Sec. 5 and in experiments. Note
the EventCountTest was the only supported test in the orig-
inal PCIM paper. We can see that for tests that only depend
on the current time (i.e. TimeTest), the diverging history
does not affect them, so no state is needed. For Marko-
vian tests (LastEventTest and LastStateTest), we only need
a Boolean variable. For the non-Markovian test (Event-
CountTest), the number of possible states does grow expo-
nentially with the number of virtual events maintained in
the queue. This is the best we can do and still be exact. It
is much better than growing with the number of all virtual
events. However, note that commonly lag2 = 0 and n is
a small number. In this case, the state space size at any
point is bounded as

(
m′

n

)
, where m′ is the maximum num-

ber of sampled events in any time interval of duration lag1
(which is upper bounded by m). If n is 1, this is linear in
the number of samples generated in during lag1 time units.

As noted above, if the test is not related to the sampled
event (for example, in sampling event l = A with test “are
there ≥3 B events in the last 5 seconds”), the state of the
test is null. This is because the evidence and sampled val-
ues for B (not the current variable for Gibbs sampling) can
answer this test without reference to samples of l.

See Alg. 1 for the algorithm description for resampling
event l. The complete algorithm iterates this procedure for
each event label to get a new sample. The helper func-
tion UpdateState(s,b,t) returns the new state given the old
state (s), the new time (t), and whether an event occurs at
t (b). SampProbMap(M) takes a mapping from objects to
positive values (M) and randomly returns one of the ob-
jects with probability proportional to the associate value.
AddtoProbMap(M,o,p) checks to see if o is in M. If so, it
adds p to the associated probability. Otherwise, it adds the

Table 1: Tests and their corresponding state representations.

Test Example State Representation Property
TimeTest Is the time between 6am and 9am? Null independent of b
LastEventTest Is the last event A? Boolean Markovian
EventCountTest Are there >= n A event in [t −

lag1, t− lag2]?
A queue maintaining all the times of A
between [t−lag2, t], and the most recent
n events between [t− lag1, t− lag2].

Non-Markovian

LastStateTest Is the last sublabel of var A=0? Boolean Markovian
StateTest Is the current sublabel of varA=0? Null independent of b

A

B
1.5

0.05 2.3

λ = 0.1

Are there ≥ 1 A
events in [t−2, t−1)?

λA

Y N

λ = 1.5λ = 1

Is the most recent
event of label A?

Y N

A

B
1.5

1.00.05 2.3 3.3

0.1 1 1.5 0.1 1λ : 2.9 2 1.5 2.9 2λ∗ − λ :

A

B
1.5

1.00.05 2.3 3.3

[0.05]
true

[0.05,1.0]
true

[0.05]
true

[0.05,1.0]
false

[0.05]
false

[1.0,2.3]
true

[2.3]
true

[1.0]
false

[]
false

[]
false

[2.3]
true

[3.3]
true

[2.3,3.3]
true

A

B
1.5

1.00.05 2.3 3.3

[0.05]
true

[0.05,1.0]
true

[0.05]
true

[0.05,1.0]
false

[0.05]
false

[1.0,2.3]
true

[2.3]
true

[1.0]
false

[]
false

[]
false

[2.3]
true

[3.3]
true

[2.3,3.3]
true

(a) (b)

(c) (d)

Figure 5: Extended Example, see Section 4.7

mapping o→ p to M.

4.7 Extended Example

Fig. 5 shows an example of resampling the events for label
A on the unobserved interval [0.8, 3.5). On the far left is
the PCIM rate tree for event A. Box (a) shows the sam-
ple from previous iteration (single event at 2.3). Dashed
lines and λ show the piecewise-constant intensity function
given the sample. Box (b) shows the sampling of virtual
events. For this case λ∗ = 3 for all time. λ∗ − λ is the
rate for virtual events. The algorithm samples from this
process, resulting in two virtual events (dashed). In box (c)
all events become potential events. The state of the root
test is a queue of recent events. The state of the other test
is Boolean (whether A is more recent). On the bottom is
the lattice of joint states over time. Solid arrows indicate
bi = 1 (the event is kept). Dash arrows indicate bi = 0
(the event is dropped). Each arrow’s weight is as per Eq. 4.
The probability of a node is the sum over all paths to the
node of the product of the weights on the path (calculated
by dynamic programming). In box (d) a single path is sam-
pled with backward sampling, shown in bold. This path
corresponds to keeping the first and last virtual events and
dropping the middle one.

QA|B=0 =

[
−1 1

2 −2

]

QA|B=1 =

[
−10 10

20 −20

]

AB

CTBN PCIM

λA

Last B
subevent=0?

Last A
subevent=0?

Last A
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

λ=20λ=10λ=0λ=0λ=2λ=1λ=0 λ=0

Y N

Y N Y N

Y NY NY NY N

Figure 6: Explicit conversion from a CTBN to a PCIM by
using specific tests. Only rates for variable A shown. The
colored arrows and boxes show one-to-one correspondence
of a path in the tree and an entry in the rate matrix of CTBN.
Diagonal elements in the CTBN are redundant and do not
need to be represented in the PCIM.

5 REPRESENTING CTBNS AS PCIMS

A non-Markovian PCIM is more general than the Marko-
vian CTBN model. We can, therefore represent a CTBN
using a PCIM. In this way, we can extend PCIMs and we
can compare our PCIM method with existing methods for
CTBNs.

Algorithm 1 Resampling event l
input: The previous trajectory (xl,Yl)
output: The newly sampled x

′

l

1: for each unobserved interval for l do
2: Find piecewise constant λ∗(t|h) using Yl
3: Find piecewise constant λ(t|h) using xl, Yl
4: Sample virtual events vl with rate λ∗(t|h)− λ(t|h)

5: Let zl = xl ∪ vl, m = |zl|, and s0 be the initial state
6: AddtoProbMap(S0,s0,1.0)
7: for i← 1 to m do
8: for each {(si−1, ·)→ p} in Si−1 do
9: pkeep = p(Ei−1:i, bi = 1 | si−1, E1:i−1)

10: pdrop = p(Ei−1:i, bi = 0 | si−1, E1:i−1)

11: skeepi ← UpdateState(si−1, true, zl,i)
12: sdropi ← UpdateState(si−1, false, zl,i)
13: AddtoProbMap(Si,(s

keep
i , zl,i), p×pkeep)

14: AddtoProbMap(Si,(s
drop
i , ∅), p×pdrop)

15: AddtoProbMap(Ti(s
keep
i), (si−1, zl,i), p×pkeep)

16: AddtoProbMap(Ti(s
drop
i), (si−1, ∅), p×pdrop)

17: Update Sm by propagating until ending time
18: x

′

l ← ∅ and (s
′

m, t)← SampProbMap(Sm)
19: if t 6= ∅ then x

′

l ← x
′

l ∪ {t}
20: for i← m− 1 to 1 do
21: (s

′

i, t)← SampProbMap(Ti+1(s
′

i+1))
22: if t 6= ∅ then x

′

l ← x
′

l ∪ {t}
23: return x

′

l

We associate a PCIM label with each CTBN variable. We
also augment the notion of a PCIM label to include a sub-
label. For each CTBN variable, its PCIM label has one
sublabel for each state of the CTBN variable. Therefore, a
PCIM event with label X and sublabel x corresponds to a
transition of the CTBN variable X from its previous value
to the value x. The PCIM trees’ tests can also check the
sublabel associated with the possible event.

We augment the auxiliary Gibbs sampler to not only sam-
ple which virtual events are kept, but also which sublabel is
associated with each. This involves modifying the bi vari-
ables from the previous section to be multi-valued. Other-
wise, the algorithm proceeds the same way.

The last two tests in Tbl. 1 are explicitly for this type of
sublabelled event model. We can use them to turn a con-
ditional intensity matrix from the CTBN into a PCIM tree.
Fig. 6 shows the conversion of the “twonode” model.

6 EXPERIMENTS

We implement our method as part of an open source code
base, and all the code and data will be publicly available.

We perform two sets of experiments to validate our method.

Figure 7: The toroid network and observed patterns
[El-Hay et al., 2010].

10
2

10
3

10
−3

10
−2

10
−1

10
0

of samples

K
L

D
iv

er
ge

nc
e

ThinnedGibbs
AuxGibbs

Figure 8: Number of samples versus KL divergence for the
toroid network. Both axes are on a log scale.

First we perform inference with our method on both
Markovian and non-Markovian models, and compare the
result with the ground-truth statistics. For both we show
our result converges to the correct result. Ours is the
first that can successfully perform inference tasks on non-
Markovian PCIMs. For the second set of experiments, we
use ThinnedGibbs in EM for both parameter estimation
and structural learning for a non-Markovian PCIM. Our in-
ference algorithm can indeed help producing models that
achieve higher data likelihood on holdout test data than sev-
eral baseline methods.

6.1 Verification on the Ising Model

We first evaluate our method, ThinnedGibbs, on a network
with Ising model dynamics. The Ising model is a well-
known interaction model with applications in many fields
including statistical mechanics, genetics, and neuroscience.
This is a Markovian model and has been tested by several
existing inference methods designed for CTBNs.

Using this model, we generate a directed toroid net-
work structure with cycles following [El-Hay et al., 2010].

λ = 2

λ = 0.5

Are there ≥ 1 A
events in [t-0.5,t)?

λA

Is the most recent
event label B?

λB

λ = 1 λ = 5 λ = 1 λ = 10

Y N

N Y N Y N

Y N

Are there ≥ 1 A
events in [t-0.5,t)?

Is absolute time in the
first half of a time unit?

Are there ≥ 1 A
events in [t-1,t)?

Is the most recent
event label B?

λ = 1 λ = 5

Y N

Y

A

B

0.1 0.2 1.0 3.0 3.4 3.6 3.7

4.74.02.01.80.60.4

Figure 9: Non-Markovian PCIM and evidence. The ending
time is 5.

Nodes can take values −1 and 1, and follow their parents’
states according to a coupling strength parameter (β). A
rate parameter (τ) determines how fast nodes toggle be-
tween states. We test with β = 0.5 and τ = 2. The net-
work and the evidence patterns are shown in Fig. 7. The
nodes are not observed between t = 0 and t = 1. We
query the marginal distribution of nodes at t = 0.5 and
measure the sum of the KL-divergences of all marginals
against the ground truth. We compare with the state-of-the-
art CTBN Auxiliary Gibbs method [Rao and Teh, 2013].
Other existing methods either produce similar or worse re-
sults [Celikkaya and Shelton, 2014]. We vary the sample
size between 50 and 5000, and set the burn-in period to be
10% of this value. We run the experiments for 100 times,
and plot the means and standard deviations.

Results in Fig. 8 verify that our inference method in-
deed produces results that converge to the true distribution.
Our method reduces to that of [Rao and Teh, 2013] in this
Markovian model. Differences between the two lines are
due to slightly different initializations of the Gibbs Markov
chain and not significant.

6.2 Verification on a Non-Markovian Model

We further verify our method on a much more challeng-
ing non-Markovian PCIM (Fig. 9). This model contains
several non-Markovian EventCountTests. We have obser-
vations for event A at t = 0.4, 0.6, 1.8, 4.7 and for event
B at t = 0.1, 0.2, 3.4, 3.6, 3.7. Event A is not observed on
[2.0, 4.0) and event B is not observed on [1.0, 3.0).

In produce ground truth, we discretized time and converted
the system to a Markovian system. Note that because the
time since the last A event is part of the state, as the dis-
cretization becomes finer, the state space increases. For

10
2

10
3

10

12

14

16

18

20

22

24

of samples

E
xp

ec
te

d
nu

m
be

r
of

 e
ve

nt
s

oc
cu

rr
in

g

True E[#A]
ThinnedGibbs E[#A]
True E[#B]
ThinnedGibbs E[#B]

Figure 10: Number of samples versus the inferred expected
number of events. The horizontal axis is on a log scale.

this small example, this approach is just barely feasible. We
continued to refine the discretization until the answer stabi-
lized. The ground-truth expected total number of A events
between [0, 5] is 22.3206 and the expected total number of
B events is 11.6161. That is, there are about 18.32A events
and 6.62 B events in the unobserved areas. Note that if the
evidence is changed to have no events these numbers drop
to 1.6089 and 8.6866 respectively and if the evidence af-
ter the unobserved intervals is ignored the expectations are
22.7183 and 8.6344 respectively. Therefore the evidence
(both before and after the unobserved intervals) is impor-
tant to incorporate in inference.

We compare our inference method to the exact values,
again varying the sample size between 50 and 5000 and
setting the burn-in period to be 10% of this value. We ran
the experiments 100 times and report the mean and stan-
dard deviation of the two expectations. Our sampler has
very small bias and therefore the average values match the
true value almost exactly. The variance decreases as ex-
pected, demonstrating the consistent nature of our method.
See Fig. 10. We are not aware of existing methods that can
perform inference on this type of model to which we could
compare.

6.3 Parameter Estimation and Structural Learning

We further test ThinnedGibbs by using it in EM, for both
parameter estimation (given the tree structure, estimate the
rates in the leaves), and structural learning (learn both the
structure and rates). We use Monte Carlo EM that iterates
between two steps: First, given a model we generate sam-
ples conditioned on evidence with ThinnedGibbs. Second,
given the samples, we treat them as complete trajectories
and perform parameter estimation and structural learning,
which is efficient for PCIM. We initialize the model from

4 6 8 10 12 14 16 18 20 22
−1350

−1300

−1250

−1200

−1150

−1100

−1050

−1000

−950

of training examples

Lo
g

lik
el

ih
oo

d
on

 te
st

in
g

da
ta

ThinnedGibbs
True Model
Partial Data
Complete Data

Figure 11: Parameter estimation. Testing log-likelihood as
a function of the number of training samples.

4 6 8 10 12 14 16 18 20 22
−2200

−2000

−1800

−1600

−1400

−1200

−1000

−800

of training examples

Lo
g

lik
el

ih
oo

d
on

 te
st

in
g

da
ta

ThinnedGibbs
True Model
Partial Data
Complete Data
EMUP

Figure 12: Structure and parameter estimation. Testing log-
likelihood as a function of the number of training examples.

the partial trajectories, assuming no events occur in the un-
observed intervals. EM terminates when the parameters of
PCIMs in two consecutive iterations are stable (all rates
change less than 10% from the previous ones), or the num-
ber of iterations surpasses 10. For structural learning, the
structure needs to be the same between iterations.

We use the model in Fig. 1 and generate complete trajecto-
ries for time range [0, 10). We vary the number of training
samples (5, 10, 15, and 20) and use a fixed set of 100 trajec-
tories as the testing data. For each training size, we use the
same the training data for all algorithms and runs. We ran-
domly generate an unobserved interval with length 0.6×T
for both event labels. For each training sample, ThinnedG-
ibbs fills it in to generate a new sample after burning in 10
steps. For each configuration, we run ThinnedGibbs for 5
times. We measure the data likelihood of the holdout test-
ing data on the learned models.

For parameter estimation, we compare with the true model
that generated the data, the model learned with only par-

tial data in which we assume no events happened during
unseen intervals (Partial Data), and a model learned with
complete training data (Complete Data). The results are
summarized in Fig. 11. We can see that the model learned
by EM algorithm using ThinnedGibbs can indeed produce
significantly higher testing likelihood than using only par-
tial data. Of course, we do not do as well as if none of the
data had been hidden (Complete Data).

If learning the structure, there is one other possibility: We
could use the original fast PCIM learning method, but in-
dicate (by new event labels) when an unobserved interval
starts and stops. We augment the bank of possible decisions
to include testing if each pseudo-events have occurred most
recently. In this way, the PCIM directly models the process
that obscures the data. Of course, at test time, branches
modeling such unobserved times are not used. Such model
should serve as a better baseline than learning from par-
tially observed data, because it can potentially learn unob-
served patterns and only use the dependencies in the ob-
served intervals for a better model. We call this model
EMUP (explicit modeling of unobserved patterns).

For structure learning, we fix the bank of possible
PCIM tests as EventCountTests with (l, n, lag1, lag2) ∈
{A,B}× {1, 2}× {2, 3, 4, 5, 6}× {0, 1, 2} (omitting tests
for which lag1 ≤ lag2). For EMUP we also allow testing
if currently in unobserved interval. The results are summa-
rized in Fig. 12. We can see that EMUP does outperform
models using only partial data. However, Structural EM
with ThinnedGibbs still performs better. The performance
gain is less than that in the parameter estimation task, prob-
ably because there are more local optimums for structural
EM, especially with fewer training examples.

7 DISCUSSION AND FUTURE WORK

We proposed the first effective inference algorithm,
ThinnedGibbs, for PCIM. Our auxiliary Gibbs sampling
method effectively transforms a continuous-time problem
into a discrete one. Our state-vector representation of di-
verging trajectories takes advantage of state merges and
reduces complexity from exponential to linear for most
cases. We build the connection between PCIM and CTBN,
and show our method generalizes the state-of-art inference
method for CTBN models. In experiments we validate our
idea on non-Markovian PCIMs, which is the first to do so.

Our method converges to the exact conditional distribution.
If the true state of the model grows exponentially, the com-
plexity of ThinnedGibbs follows. We believe this technique
could also be applied to other non-Markovian processes.
The challenge lies in computing the forward-pass likeli-
hoods when the rate function is not piecewise-constant.

Acknowledgement

This work was supported by DARPA (FA8750-12-2-0010).

References

[Celikkaya and Shelton, 2014] Celikkaya, E. B. and Shelton,
C. R. (2014). Deterministic anytime inference for stochastic
continuous-time Markov processes. In ICML. 8

[Cohn et al., 2009] Cohn, I., El-Hay, T., Kupferman, R., and
Friedman, N. (2009). Mean field variational approximation
for continuous-time Bayesian networks. In UAI. 2

[Dean and Kanazawa, 1988] Dean, T. and Kanazawa, K. (1988).
Probabilistic temporal reasoning. In AAAI. 1

[Du et al., 2013] Du, N., Song, L., Gomez-Rodriguez, M., and
Zha, H. (2013). Scalable influence estimation in continuous-
time diffusion networks. In NIPS. 2

[El-Hay et al., 2010] El-Hay, T., Cohn, I., Friedman, N., and
Kupferman, R. (2010). Continuous-time belief propagation.
In ICML. 2, 7

[Fan et al., 2010] Fan, Y., Xu, J., and Shelton, C. R. (2010).
Importance sampling for continuous time Bayesian networks.
Journal of Machine Learning Research, 11(Aug):2115–2140.
2

[Golightly and Wilkinson, 2011] Golightly, A. and Wilkinson,
D. J. (2011). Bayesian parameter inference for stochastic bio-
chemical network models using particle Markov chain Monte
Carlo. Interface Focus. 2

[Grassmann, 1977] Grassmann, W. K. (1977). Transient solu-
tions in Markovian queueing systems. Computers & Opera-
tions Research, 4(1):47–53. 2, 3

[Gunawardana et al., 2011] Gunawardana, A., Meek, C., and Xu,
P. (2011). A model for temporal dependencies in event
streams. In NIPS. 1, 2, 3

[Lewis and Shedler, 1979] Lewis, P. A. W. and Shedler, G. S.
(1979). Simulation of nonhomogeneous Poisson processes by
thinning. Naval Research Logistics Quarterly, 26(3):403–413.
1, 2, 3

[Linderman and Adams, 2014] Linderman, S. W. and Adams,
R. P. (2014). Discovering latent network structure in point pro-
cess data. In ICML. 2

[Nodelman et al., 2002] Nodelman, U., Shelton, C. R., and
Koller, D. (2002). Continuous time Bayesian networks. In
UAI. 2

[Parikh et al., 2012] Parikh, A., Gunawardana, A., and Meek, C.
(2012). Cojoint modeling of temporal dependencies in event
streams. In UAI Workshops. 2

[Rajaram et al., 2005] Rajaram, S., Graeoel, T., and Herbrich, R.
(2005). Poisson-networks: A model for structured point pro-
cess. In AIStats. 2

[Rao and Teh, 2011] Rao, V. and Teh, Y. W. (2011). Fast MCMC
sampling for Markov jump processes and continuous time
Bayesian networks. In UAI. 2, 3

[Rao and Teh, 2013] Rao, V. and Teh, Y. W. (2013). Fast
MCMC sampling for Markov jump processes and exten-
sions. Journal of Machine Learning Research, 14:3207–3232.
arXiv:1208.4818. 2, 3, 4, 8

[Saito et al., 2009] Saito, K., Kimura, M., Ohara, K., and Mo-
toda, H. (2009). Learning continuous-time information diffu-
sion model for social behavioral data analysis. In ACML, pages
322–337. 2

[Simma and Jordan, 2010] Simma, A. and Jordan, M. (2010).
Modeling events with cascades of Poisson processes. In UAI.
2

[Weiss and Page, 2013] Weiss, J. and Page, D. (2013). Forest-
based point processes for event prediction from electronic
health records. In ECML-PKDD. 2

