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Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z
drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-



error incurred by optimizing an empirical estimator rather
than the true population MMD and give some illustrations
on synthetic and real data.

2 LEARNING TO SAMPLE AS
OPTIMIZATION

It is well known that, for any distribution P and any con-
tinuous distributionN on sufficiently regular spaces X and
W, respectively, there is a function G : W → X, such that
G(W ) ∼ P when W ∼ N . (See, e.g., [4, Lem. 3.22].) In
other words, we can transform an input from a fixed input
distribution N through a deterministic function, producing
an output whose distribution is P . For a given family {Gθ}
of functions W → X, called generators, we can cast the
problem of learning a generative model as an optimization

arg min
θ
δ(P, Gθ(N )), (1)

where δ is some measure of discrepancy and Gθ(N ) is the
distribution of Gθ(W ) when W ∼ N . In practice, we only
have i.i.d. samplesX1, X2, . . . fromP , and so we optimize
an empirical estimate of δ(P, Gθ(N )).

2.1 ADVERSARIAL NETS

Adversarial nets [1] can be cast within this framework: Let
{Dφ} be a family of functions X → [0, 1], called discrim-
inators. We recover the adversarial nets objective with the
discrepancy

δAN(P, Gθ(N )) = max
φ

E
[
logDφ(X) + log(1−Dφ(Y ))

]
,

where X ∼ P and Y ∼ Gθ(N ). In this case, Eq. (1)
becomes

min
θ

max
φ

V (Gθ, Dφ)

where

V (Gθ, Dφ) = E
[
logDφ(X) + log(1−Dφ(Gθ(W )))

]

for X ∼ P and W ∼ N . The output of the discrimina-
tor Dφ can be interpreted as the probability it assigns to its
input being drawn from P , and so V (Gθ, Dφ) is the ex-
pected log loss incurred when classifying the origin of a
point equally likely to have been drawn from P or Gθ(N ).
Therefore, optimizing φ maximizes the probability of dis-
tinguishing samples from P and Gθ(N ). Assuming that
the optimal discriminator exists for every θ, the optimal
generator G is that whose output distribution is closest to
P , as measured by the Jensen–Shannon divergence, which
is minimized when Gθ(N ) = P .

sky, and Zemel [6] also propose to use MMD as a training ob-
jective for generative neural networks. We leave a comparison to
future work.

In [1], the generators Gθ and discriminators Dφ are chosen
to be multilayer perceptrons (MLP). In order to find a mini-
max solution, they propose taking alternating gradient steps
along Dφ and Gθ. Note that the composition Dφ(Gθ(·))
that appears in the value function is yet another (larger)
MLP. This fact permits the use of the back-propagation al-
gorithm to take gradient steps.

2.2 MMD AS AN ADVERSARY

In their paper introducing adversarial nets, Goodfellow et
al. [1] remark that a balance must be struck between opti-
mizing the generator and optimizing the discriminator. In
particular, the authors suggest k maximization steps for ev-
ery one minimization step to ensure that Dφ is well syn-
chronized with Gθ during training. A large value for k,
however, can lead to overfitting. In their experiments, for
every step taken along the gradient with respect toGθ, they
take two gradient steps with respect to Dφ to bring Dφ

closer to the desired optimum (Goodfellow, pers. comm.).

It is unclear how sensitive this balance is. Regardless, while
adversarial networks deliver impressive sampling perfor-
mance, the optimization takes approximately 7.5 hours to
train on the MNIST dataset running on a GeForce GTX
TITAN GPU from nVidia with 6GB RAM. Can we poten-
tially speed up the process with a more tractable choice of
adversary?

Our proposal is to replace the adversary with the kernel
two-sample test introduced by Gretton et al. [2]. In partic-
ular, we replace the family of discriminators with a family
H of test functions X→ R, closed under negation, and use
the maximum mean discrepancy between P and Gθ(N )
overH, given by

δMMDH(P, Gθ(N )) = sup
f∈H

E[f(X)]− E[f(Y )], (2)

where X ∼ P and Y ∼ Gθ(N ). See Fig. 1 for a compari-
son of the architectures of adversarial and MMD nets.

While Eq. (2) involves a maximization over a family of
functions, Gretton et al. [2] show that it can be solved in
closed form when H is a reproducing kernel Hilbert space
(RKHS).

More carefully, letH be a reproducing kernel Hilbert space
(RKHS) of real-valued functions on Ω and let 〈·, ·〉H denote
its inner product. By the reproducing property it follows
that there exists a reproducing kernel k ∈ H such that every
f ∈ H can be expressed as

f(x) = 〈f, k(·, x)〉H =
∑

αik(x, xi) (3)

The functions induced by a kernel k are those functions in
the closure of the span of the set {k(·, x) : x ∈ Ω}, which is
necessarily an RKHS. Note, that for every positive definite
kernel there is a unique RKHS H such that every function
inH satisfies Eq. (3).
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Figure 1: (top left) Comparison of adversarial nets and MMD nets. (top right) Here we present a simple one-dimensional illustration of
optimizing a generator via MMD. Both the training data and noise data are Gaussian distributed and we consider the class of generators
given by G(µ,σ)(w) = µ + σw. The plot on the left shows the isocontours of the MMD-based cost function and the path taken by
gradient descent. On right, we show the distribution of the generator before and after a number of training iterations, as compared with
the data generating distribution. Here we did not resample the generated points and so we do not expect to be able to drive the MMD to
zero and match the distribution exactly. (bottom) The same procedure is repeated here for a two-dimensional dataset. On the left, we see
the gradual alignment of the Gaussian-distributed input data to the Gaussian-distributed output data as the parameters of the generator
Gθ are optimized. The learning curve on the right shows the decrease in MMD obtained via gradient descent.

Assume that X is a nonempty compact metric space and F
a class of functions f : X→ R. Let p and q be Borel proba-
bility measures on X, and let X and Y be random variables
with distribution p and q, respectively. The maximum mean
discrepancy (MMD) between p and q is

MMD(F , p, q) = sup
f∈F

E[f(X)]− E[f(Y )]

If F is chosen to be an RKHSH, then

MMD2(F , p, q) = ‖µp − µq‖2H

where µp ∈ H is the mean embedding of p, given by

µp =

∫

X
k(x, ·) p(dx) ∈ H

and satisfying, for all f ∈ H,

E[f(X)] = 〈f, µp〉H.

The properties of MMD(H, ·, ·) depend on the underlying
RKHS H. For our purposes, it suffices to say that if we
take X to be RD and consider the RKHS H induced by
Gaussian or Laplace kernels, then MMD is a metric, and so
the minimum of our learning objective is achieved uniquely
by P , as desired. (For more details, see Sriperumbudur et
al. [12].)

In practice, we often do not have access to p or q. Instead,
we are given independent i.i.d. data X,X ′, X1, . . . , XN

and Y, Y ′, Y1, . . . , YM fom p and q, respectively, and
would like to estimate the MMD. Gretton et al. [2] showed
that

MMD2[H, p, q] = E[k(X,X ′)− 2k(X,Y ) + k(Y, Y ′)]

and then proposed an unbiased estimator

MMD2
u[H, X, Y ] =

1

N(N − 1)

∑

n 6=n′
k(xn, xn′)

+
1

M(M − 1)

∑

m6=m′
k(ym, ym′)

− 2

MN

M∑

m=1

N∑

n=1

k(xn, ym).

(4)

3 MMD NETS

With an unbiased estimator of the MMD objective in hand,
we can now define our proposal, MMD nets: Fix a neural
network Gθ, where θ represents the parameters of the net-
work. Let W = (w1, . . . , wM ) denote noise inputs drawn
from N , let Yθ = (y1, . . . , ym) with yj = Gθ(wj) denote



Algorithm 1 Stochastic gradient descent for MMD nets.

Initialize M , θ, α, k
Randomly divide training set X into Nmini mini batches
for i← 1, number-of-iterations do

Regenerate noise inputs {wi}i=1,...,M every r iterations
for nmini ← 1, Nmini do

for m← 1,M do
ym ← Gθ(wm)

end for
compute the n’th minibatch’s gradient∇C(n)

update learning rate α (e.g., RMSPROP)
θ ← θ − α∇Cn

end for
end for

the noise inputs transformed by the network Gθ, and let
X = (x1, .., xN ) denote the training data in RD. Given a
positive definite kernel k on RD, we minimize C(Yθ, X)
as a function of θ, where

C(Yθ, X) =
1

M(M − 1)

∑

m 6=m′
k(ym, ym′)

− 2

MN

M∑

m=1

N∑

n=1

k(ym, xn).

Note that C(Yθ, X) is composed of only those parts of the
unbiased estimator (Eq. (4)) that depend on θ.

In practice, the minimization is solved by gradient descent,
possibly on subsets of the data. More carefully, the chain
rule gives us

∇C(Yθ, X) =
1

N

N∑

n=1

M∑

m=1

∂Cn(Yθ, Xn)

∂ym

∂Gθ(wm)

∂θ
,

where

Cn(Yθ, Xn) =
1

M(M − 1)

∑

m 6=m′
k(ym, ym′)

− 2

M

M∑

m=1

k(ym, xn).

Each derivative ∂Cn(Yθ,Xn)
∂ym

is easily computed for standard
kernels like the RBF kernel. Our gradient∇C(Yθ, Xn) de-
pends on the partial derivatives of the generator with re-
spect to its parameters, which we can compute using back
propagation.

4 MMD GENERALIZATION BOUNDS

MMD nets operate by minimizing an empirical estimate
of the MMD. This estimate is subject to Monte Carlo error
and so the network weights (parameters) θ̂ that are found to

minimize the empirical MMD may do a poor job at mini-
mizing the exact population MMD. We show that, for suffi-
ciently large data sets, this estimation error is bounded, de-
spite the space of parameters θ being continuous and high
dimensional.

Let Θ denote the space of possible parameters for the gen-
erator Gθ, let N be the distribution on W for the noisy
inputs, and let pθ = Gθ(N ) be the distribution of Gθ(W )

when W ∼ N for θ ∈ Θ. Let θ̂ be the value optimizing the
unbiased empirical MMD estimate, i.e.,

MMD2
u(H, X, Yθ̂) = inf

θ
MMD2

u(H, X, Yθ), (5)

and let θ∗ be the value optimizing the population MMD,
i.e.,

MMD2(H, pdata, pθ∗) = inf
θ

MMD2(H, pdata, pθ).

We are interested in bounding the difference

MMD2(H, pdata, pθ̂)−MMD2(H, pdata, pθ∗).

To that end, for a measured space X , write L∞(X ) for
the space of essentially bounded functions on X and write
B(L∞(X )) for the unit ball under the sup norm, i.e.,

B(L∞(X )) = {f : X → R : (∀x ∈ X )f(x) ∈ [−1, 1]}.

The bounds we obtain will depend on a notion of complex-
ity captured by the fat-shattering dimension:

Definition 1 (Fat-shattering [8]). Let XN =
{x1, . . . , xN} ⊂ X and F ⊂ B(L∞(X )). For ev-
ery ε > 0, XN is said to be ε-shattered by F if there
is some function h : X → R, such that for every
I ⊂ {1, . . . , N} there is some fI ∈ F for which

fI(xn) ≥ h(xn) + ε if n ∈ I,
fI(xn) ≤ h(xn)− ε if n /∈ I.

For every ε, the fat-shattering dimension of F , written
fatε(F), is defined as

fatε(F) = sup {|XN | : XN ⊂ X , XN is ε-shattered by F} .

Consider the class

GXk+ = {g = k(x,Gθ(·)) : x ∈ X, θ ∈ Θ}

of functions from W to R that are compositions of some
generator and the kernel with some fixed input, and the
(sub)class

Gk+ = {g = k(Gθ(w), Gθ(·)) : w ∈ W, θ ∈ Θ}.

We then have the following bound on the estimation error:



Theorem 1 (estimation error). Assume the kernel is
bounded by one and that there exists γ1, γ2 > 1 and
p1, p2 ∈ N such that, for all ε > 0, it holds that
fatε(Gk+) ≤ γ1ε

−p1 and fatε(GXk+) ≤ γ2ε
−p2 . Then with

probability at least 1− δ,

MMD2(H, pdata, pθ̂) < MMD2(H, pdata, pθ∗) + ε,

with

ε = r(p1, γ1,M) + r(p2, γ2,M − 1) + 12M−
1
2

√
log

2

δ
,

where the rate r(p, γ,M) is

r(p, γ,M) = Cp
√
γ





M−
1
2 if p < 2,

M−
1
2 log

3
2 (M) if p = 2,

M−
1
p if p > 2,

for constants Cp1 and Cp2 depending on p1 and p2 alone.

The proof appears in the appendix. We can obtain simpler,
but slightly more restrictive, hypotheses if we bound the
fat-shattering dimension of the class of generators {Gθ :
θ ∈ Θ} alone: Take the observation space X to be a
bounded subset of a finite-dimensional Euclidean space
and the kernel to be Lipschitz continuous and translation
invariant. For the RBF kernel, the Lipschitz constant is
proportional to the inverse of the length-scale: the result-
ing bound loosens as the length scale shrinks.

5 EMPIRICAL EVALUATION

In this section, we demonstrate the approach on an illustra-
tive synthetic example as well as the standard MNIST dig-
its and Toronto Face Dataset (TFD) benchmarks. We show
that MMD-based optimization of the generator rapidly de-
livers a generator that produces recognizable samples, but
these samples are inferior to those produced by adversarial
networks, both visually and as measured by an estimate of
the mean log density on a held-out test set.

5.1 GAUSSIAN DATA, KERNEL, AND
GENERATOR

Under an RBF kernel and Gaussian generator with param-
eters θ = {µ, σ}, it is straightforward to find the gradi-
ent of C(Yθ, X) by applying the chain rule. Using fixed
random standard normal numbers {w1, ..., wM}, we have
ym = µ + σwm for m ∈ {1, ..,M}. The result of these
illustrative synthetic experiments can be found in Fig. 1.
The dataset consisted of N = 200 samples from a standard
normal and M = 50 noise input samples were generated
from a standard normal with a fixed random seed. The al-
gorithm was initialized at values {µ, σ} = {2.5, 0.1}. We
fixed the learning rate to 0.5 and ran gradient descent steps
for K = 250 iterations.

5.2 MNIST DIGITS

We evaluated MMD nets on MNIST digits [5]. The genera-
tor was chosen to be a fully connected, 3 hidden layer neu-
ral network with sigmoidal activation functions. Following
Gretton et al. [2], we used a radial basis function (RBF)
kernel, but also evaluated the rational quadratic (RQ) ker-
nel [9] and Laplacian kernel, but found that the RBF per-
formed best in the parameter ranges we evaluated. We used
Bayesian optimization (WHETLab) to set the bandwidth of
the RBF and the number of neurons in each layer on ini-
tial test runs of 50,000 iterations. However, one can get a
similar-quality generator simply using the median heuris-
tic [2] to set the kernel bandwidth. The learning rate was
adjusting during optimization by RMSPROP [14].

Fig. 2 presents the digits learned after 1,000,000 iterations.
(Doubling the number of iterations produced similar im-
ages.) We performed minibatch stochastic gradient de-
scent, resampling the generated digits every 300 iterations,
with minibatches of 500 training and generated points. It
is clear that the digits produced have many artifacts not
appearing in the MNIST data set. Indeed, the mean log
density of held-out test data was estimated to be only 113
± 2, as compared with the reported 225 ± 2 achieved by
adversarial nets. On the other hand, most of the gain is
achieved by MMD nets in the first 100-200k iterations, and
so perhaps MMD nets could be used to initialize a network
further optimized by other means.

5.3 TORONTO FACE DATASET

We also evaluated MMD nets on the Toronto face dataset
(TFD) [13]. We used a 3-hidden-layer sigmoidal MLP with
similar architecture (1000, 600, and 1000 units) and RBF
kernel for the cost function with the same hyper parameter.
We used 500 training and generated points per batch. The
generated points were resampled every 500 iterations. The
network was optimized for 500,000 iterations. Samples
from the resulting network are plotted in Fig. 3. Again, the
samples produced by MMD nets are clearly distinguishable
from the training samples and this is reflected in a much
lower mean log density than adversarial nets.

6 CONCLUSION

MMD offers a closed-form surrogate for the discriminator
in the adversarial nets framework. After using Bayesian
optimization for the parameters, we found that the network
produced samples that were visually similar, but far from
indistinguishable from those used to train the network. On
one hand, adversarial nets handedly outperformed MMD
nets in terms of mean log density. On the other, MMD nets
achieve most of their gain quickly and so it seems promis-
ing to combine MMD nets with another technique, perhaps
using MMD nets to initialize a more costly procedure.



Figure 2: (top-left) MNIST digits from the training set. (top-right) Newly generated digits produced after 1,000,000 iterations (approx-
imately 5 hours). Despite the remaining artifacts, the resulting kernel-density estimate of the test data is state of the art. (top-center)
Newly generated digits after 300 further iterations optimizing the associated empirical MMD. (bottom-left) MMD learning curves for
first 2000 iterations. (bottom-right) MMD learning curves from 2000 to 500,000 iterations. Note the difference in y-axis scale. No
appreciable change is seen in later iterations.

Figure 3: (left) TFD. (right) Faces generated by network trained for 500,000 iterations. (center) After an additional 500 iterations.

A PROOFS

We begin with some preliminaries and known results:

Definition 2 ([8]). A random variable σ is said to be a
Rademacher random variable if it takes values in {−1, 1},
each with probability 1/2.

Definition 3 ([8]). Let µ be a probability measure on X ,
and let F be a class of uniformly bounded functions on X .
Then the Rademacher complexity of F (with respect to µ)
is

RN (F) = EµEσ1,...,σN

[
1√
N

sup
f∈F

∣∣∣
N∑

n=1

σnf(Xn)
∣∣∣
]
,

where σ = (σ1, σ2, . . . ) is a sequence of independent
Rademacher random variables, and X1, X2, . . . are inde-
pendent, µ-distributed random variables, independent also
from σ.

Theorem 2 (McDiarmids Inequality [8]). Let f : X1 ×
· · · × XN → R and assume there exists c1, . . . , cN ≥ 0
such that, for all k ∈ {1, . . . , N}, we have

sup
x1,...,xk,x′k,...,xN

|f(x1, . . . , xk, . . . , xN )

− f(x1, . . . , x
′
k, . . . , xN )| ≤ ck.

Then, for all ε > 0 and independent random variables
ξ1, . . . , ξn in X ,

Pr {f(ξ1, . . . , ξN )− E(f(ξ1, . . . , ξN )) ≥ ε)}

< exp

(
−2ε2

∑N
n=1 c

2
n

)
.

Theorem 3 ([8, Thm. 2.35]). Let F ⊂ B(L∞(X )). As-
sume there exists γ > 1, such that for all ε > 0, fatε(F) ≤
γε−p for some p ∈ N. Then there exists constants Cp
depending on p only, such that RN (F) ≤ CpΨ(p,N, γ)
where

Ψ(p,N, γ) = γ
1
2





1 if 0 < p < 2

log
3
2 N if p = 2

N
1
2−

1
p if p > 2.

Theorem 4 ([2]). Assume 0 ≤ k(xi, xj) ≤ K, M = N .
Then

Pr
[
|MMD2

u(H, X, Yθ)−MMD2(H, pdata, pθ)| > ε
]
≤ δε

where

δε = 2 exp

(
− ε2M

16K2

)
.

The case where Θ is a finite set is elementary:
Theorem 5 (estimation error for finite parameter set). Let
pθ be the distribution of Gθ(W ), with θ taking values in
some finite set Θ = {θ1, ..., θT }, T <∞. Then, with prob-
ability at least 1 − (T + 1)δε, where δε is defined as in
Theorem 4, we have

MMD2(H, pdata, pθ̂) < MMD2(H, pdata, pθ∗) + 2ε.

Proof. Let E(θ) = MMD2
u(H, X, Yθ) and let T (θ) =

MMD2(H, pdata, pθ).

Note, that the upper bound stated in Theorem 4 holds for
the parameter value θ∗, i.e.,

Pr [|E(θ∗)− T (θ∗)| > ε] ≤ δε. (6)



Because θ̂ depends on the training data X and generator
data Y , we use a uniform bound that holds over all θ.
Specifically,

Pr
[
|E(θ̂)− T (θ̂)| > ε

]
≤ Pr

[
sup
θ
|E(θ)− T (θ)| > ε

]

(7)

≤
T∑

t=1

Pr
[
|E(θ̂)− T (θ̂)| > ε

]
≤ Tδε.

This yields that with probability at least 1− Tδε,

2ε ≥ |E(θ̂)− T (θ̂)|+ |E(θ∗)− T (θ∗)|

≥ |E(θ∗)− E(θ̂) + T (θ̂)− T (θ∗)|.
(8)

Since θ∗ was chosen to minimize T (θ), we know that
T (θ̂) ≥ T (θ∗). Similarly, by Eq. (5), E(θ∗) ≥ E(θ̂).
Therefore it follows that

2ε ≥ T (θ̂)− T (θ∗)

= MMD2(H, pdata, pθ∗)−MMD2(H, pdata, pθ̂)

proving the theorem.

Corollary 1. With probability at least 1− δ,

MMD2(H, pdata, pθ̂) < MMD2(H, pdata, pθ∗) + 2εδ,

where

εδ = 8K

√
1

M
log [2(T + 1)δ].

In order to prove the general result, we begin with some
technical lemmas. The development here owes much to
Gretton et al. [2].
Lemma 1. Let F = {f : Y × Y → R} and

F+ = {h = f(y, ·) : f ∈ F , y ∈ Y} ∩B(L∞(Y)).

Let {Yn}Nn=1 be µ-distributed independent random vari-
ables in Y . Assume for some γ > 1 and some p ∈ N, we
have fatε(F+) ≤ γε−p, for all ε > 0. For yn ∈ Y ∀n =
1, . . . , N , define ρ(y1, . . . , yN ) to be

sup
f∈F

∣∣∣E (f(Y, Y ′))− 1

N(N − 1)

∑

n 6=n′
f(yn, yn′)

∣∣∣.

Then there exists a constant C that depends on p, such that

E (ρ(Y1, . . . , YN )) ≤ C√
N − 1

Ψ(γ,N − 1, p).

Proof. Let us introduce {ζn}Nn=1, where ζn and Yn′ have
the same distribution and are independent for all n, n′ ∈
{1, . . . , N}. Then the following is true:

E(f(Y, Y ′)) = E
( 1

N(N − 1)

∑

n,n′:n 6=n′
f(ζn, ζn′)

)

Using Jensen’s inequality and the independence of Y, Y ′

and Yn, Yn′ , we have

E (ρ(Y1, . . . , YN ))

= E

(
sup
f∈F

∣∣∣∣E(f(Y, Y ′))

− 1

N(N − 1)

∑

n 6=n′
f(Ym, Ym′)

∣∣∣∣
)

≤ E
(

sup
f∈F

∣∣∣∣
1

N(N − 1)

∑

n 6=n′
f(ζn, ζ

′
n)

− 1

N(N − 1)

∑

n 6=n′
f(Yn, Yn′)

∣∣∣∣
)
.

(9)

Introducing conditional expectations allows us to rewrite
the equation with the sum over n outside the expectations.
I.e., Eq. (9) equals

1

N

∑

n

EE(Yn,ζn)
(

sup
f∈F

∣∣∣ 1

N − 1

∑

n6=n′
Φ(ζn, ζn′ , Yn, Yn′)

∣∣∣
)

=EE(Y,ζ)
(

sup
f∈F

∣∣∣ 1

N − 1

N−1∑

n=1

σnΦ(ζ, ζn, Y, Yn)
∣∣∣
)
,

(10)

where Φ(x, x′, y, y′) = f(x, x′) − f(y, y′). The sec-
ond equality follows by symmetry of random variables
{ζn}N−1

n=1 . Note that we also added Rademacher random
variables {σn}N−1

n=1 before each term in the sum since
(f(ζn, ζn′) − f(Yn, Yn′)) has the same distribution as
−(f(ζn, ζn′) − f(Yn, Yn′)) for all n, n′ and therefore the
σ’s do not affect the expectation of the sum.

Note that ζm and Ym are identically distributed. Thus the
triangle inequality implies that Eq. (10) is less than or equal
to

2

N − 1
E

(
E(Y )

(
sup
f∈F

∣∣
N−1∑

n=1

σnf(Y, Yn)
∣∣
))

≤ 2√
N − 1

RN−1(F+),

where RN−1(F+) is the Rademacher’s complexity of F+.
Then by Theorem 3, we have

E (ρ(Y1, . . . , YN )) ≤ C√
N − 1

Ψ(γ,N − 1, p).

Lemma 2. Let F = {f : X × Y → R} and F+ = {f :
x × Y → R, x ∈ X} and assume F+ ⊂ B(L∞(Y)). Let
{Xn}Nn=1 and {Ym}Mn=1 be ν- and µ-distributed indepen-
dent random variables in X and Y , respectively. Assume
for some γ > 1, such that for all ε > 0, fatε(F+) ≤ γε−p,



for some p ∈ N. For all xn ∈ X , n ≤ N , and all ym ∈ Y ,
m ≤M , define

ρ(x1, . . . , xN , y1, . . . , yM ) =

sup
f∈F

∣∣∣E(f(X,Y )− 1

NM

∑

n,m

f(xn, ym)
∣∣∣.

Then there exists C that depends on p, such that

E (ρ(X1, . . . , XN , Y1, . . . , YM )) ≤ C√
M

Ψ(γ,M, p).

Proof. The proof is very similar to that of Lemma 1.

Proof of Theorem 1. The proof follows the same steps as
the proof of Theorem 5 apart from a stronger uniform
bound stated in Eq. (7). I.e., we need to show:

Pr

[
sup
θ∈Θ
|E(θ)− T (θ)| ≥ ε

]
≤ δ.

Expanding MMD as defined by Eq. (4), and substituting
Y = Gθ(W ), yields

sup
θ∈Θ
|E(θ)− T (θ)|

= sup
θ∈Θ

∣∣∣E(k(X,X ′))

− 1

N(N − 1)

∑

n′ 6=n

k(Xn, Xn′)

+ E(k(Gθ(W ), Gθ(W
′)))

− 1

M(M − 1)

∑

m 6=m′
k(Gθ(Wm), Gθ(Wm′))

− 2E(k(X,Gθ(W )))

+
2

MN

∑

m,n

k(Xn, Gθ(Wm))
∣∣∣.

(11)

For all n ∈ {1, . . . , N}, k(Xn, Xn′) does not depend on
θ and therefore the first two terms of the equation above
can be taken out of the supremum. Also, note that since
|k(·, ·)| ≤ K, we have
∣∣∣ζ(x1, . . . , xn, . . . , xN )− ζ(x1, . . . , x

′
n, . . . , xN )

∣∣∣ ≤ 2K

N
,

where

ζ(x1, . . . , xN ) =
1

N(N − 1)

∑

n,n′:n′ 6=n

k(xn, xn′),

and ζ is an unbiased estimate of E(k(X,X ′)). Then from
McDiarmid’s inequality on ζ, we have

Pr
(∣∣∣E(k(X,X ′))− 1

N(N − 1)

∑

n′ 6=n

k(Xn, Xn′)
∣∣∣ ≥ ε

)

≤ exp

(
− ε2

2K2
N

)
. (12)

Therefore Eq. (11) is bounded by the sum of the bound on
Eq. (12) and the following:

sup
θ∈Θ

∣∣∣E(k(Gθ(W ), Gθ(W
′)))

− 1

M(M − 1)

∑

m 6=m′
k(Gθ(Wm), Gθ(Wm′))

− 2E(k(X,Gθ(W )))

+
2

MN

∑

m,n

k(Xn, Gθ(Wm))
∣∣∣.

(13)

Thus the next step is to find the bound for the supremum
above.

Define

f(W1, . . . ,WM ; pnoise) = f(WM )

= sup
θ∈Θ

∣∣∣E(k(Gθ(W ), Gθ(W
′)))

− 1

M(M − 1)

∑

m6=m′
k(Gθ(Wm), Gθ(Wm′))

∣∣∣

and

h(X1, . . . , XN ,W1, . . . ,WM ; pdata, pnoise)

= h(XN ,WM )

= sup
θ∈Θ

∣∣∣ 1

MN

∑

m,n

k(Xn, Gθ(Wm))− E(k(X,Gθ(W )))
∣∣∣.

Then by triangle inequality, the supremum in Eq. (13) is
bounded by

f(WM ) + 2h(XN ,WM ).

We will first find the upper bound on f(WM ), i.e., for ev-
ery ε > 0, we will show that there exists δf , such that

Pr (f(WM ) > ε) ≤ δf (14)

For each m ∈ {1, . . . ,M},
∣∣∣f(W1, . . . ,Wm, . . . ,WM )

− f(W1, . . . ,W
′
m, . . . ,WM )

∣∣∣ ≤ 2K

M

since the kernel is bounded by K, and therefore
k(Gθ(Wm), Gθ(Wm′)) is bounded by K for all m. The
conditions of Theorem 2 are satisfied and thus we can use
McDiarmids Inequality on f :

Pr (f(WM )− E(f(WM )) ≥ ε) ≤ exp

(
−ε

2M

2K2

)
.

Define

Gk = {k(Gθ(·), Gθ(·)) : θ ∈ Θ}



To show Eq. (14), we need to bound the expectation of f .
We can apply Lemma 1 on the function classes Gk and Gk+.
The resulting bound is

E(f(WM )) ≤ εp1 =
Cf√
M − 1

Ψ(γ1,M − 1, p1), (15)

where p1 and γ1 are parameters associated with fat shatter-
ing dimension of Gk+ as stated in the assumptions of the
theorem, and Cf is a constant depending on p1.

Now we can write down the bound on f :

Pr (f(WM ) ≥ εp1 + ε) ≤ exp

(
−ε

2M

2K2

)
= δf . (16)

Similarly, h(XN ,WM ) has bounded differences:
∣∣∣h(X1, . . . , Xn, . . . , XN ,W1, . . . ,WM )

− h(X1, . . . , Xn′ , . . . , XN ,W1, . . . ,WM )
∣∣∣ ≤ 2K

N

and
∣∣∣h(X1, . . . , XN ,W1, . . . ,Wm, . . . ,WM )

− h(X1, . . . , XN ,W1, . . . ,Wm′ , . . . ,WM )
∣∣∣ ≤ 2K

M
.

McDiarmid’s inequality then implies

Pr (h(XN ,WM )− E(h(XN ,WM ) ≥ ε)

≤ exp

(
− ε2

2K2

NM

N +M

)
.

(17)

We can bound expectation of h(XN ,WM ) using Lemma 2
applied on GXk and GXk+, where

GXk = {k(·, Gθ(·)) : θ ∈ Θ}.

Then

E(h(XN ,WM )) ≤ εp2 =
Ch√
M

Ψ(γ2,M, p2). (18)

for some constant Ch that depends on p@. The final bound
on h is then

Pr (h(XN ,WM ) ≥ εp2 + ε)

≤ exp

(
− ε2

2K2

NM

N +M

)
= δh.

Summing up the bounds from Eq. (16) and Eq. (17), it fol-
lows that

Pr (f(WM ) + 2h(XN ,WM ) ≥ εp1 + 2εp2 + 3ε)

≤ max(δf , δh) = δh.

Using the bound in Eq. (12), we have obtain the uniform
bound we were looking for:

Pr

[
sup
θ∈Θ
|E(θ)− T (θ)| > εp1 + 2εp2 + 4ε

]
≤ δh,

which by Eq. (7) yields

Pr
[
|E(θ̂)− T (θ̂)| > εp1 + 2εp2 + 4ε

]
≤ δh.

Since it was assumed that K = 1 and N = M , we get
δh = exp

(
−ε2M/4

)
.

To finish, we proceed as in the proof of Theorem 5. We
can rearrange some of the terms to get a different form of
Eq. (6):

Pr [|E(θ∗)− T (θ∗)| > 2ε] ≤ 2 exp

(
−ε

2M

4

)
= 2δh.

All of the above implies that for any ε > 0, there exists δ,
such that

Pr
(
MMD2(H, pdata, pθ̂)−MMD2(H, pdata, pθ∗) ≥ ε

)
≤ δ,

where

ε = εp1 + 2εp2 +
12√
M

√
log

2

δ
.

We can rewrite ε as:

ε = r(p1, γ1,M) + r(p2, γ2,M − 1) + 12M−
1
2

√
log

2

δ
,

The rate r(p, γ,N) is given by Eq. (15) and Eq. (18):

r(p, γ,M) = Cp
√
γ





M−
1
2 if p < 2,

M−
1
2 log

3
2 (M) if p = 2,

M−
1
p if p > 2,

where Cp1 and Cp2 depend on p1 and p2 alone.

We close by noting that the approximation error is zero in
the nonparametric limit.
Theorem 6 (Gretton et al. [2]). Let F be the unit ball
in a universal RKHS H, defined on the compact metric
space X, with associated continuous kernel k(·, ·). Then
MMD[H, p, q] = 0 if and only if p = q.
Corollary 2 (approximation error). Assume pdata is in the
family {pθ} and that H is an RKHS induced by a charac-
teristic kernel. Then

inf
θ

MMD(H, pdata, pθ) = 0

and the infimum is achieved at θ satisfying pθ = pdata.

Proof. By Theorem 6, it follows that MMD2(H, ·, ·) is a
metric. The result is then immediate.
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