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Abstract

Psychophysical detection tests are ubiquitous in
the study of human sensation and the diagno-
sis and treatment of virtually all sensory im-
pairments. In many of these settings, the goal
is to recover, from a series of binary observa-
tions from a human subject, the latent function
that describes the discriminability of a sensory
stimulus over some relevant domain. The audi-
tory detection test, for example, seeks to under-
stand a subject’s likelihood of hearing sounds as
a function of frequency and amplitude. Conven-
tional methods for performing these tests involve
testing stimuli on a pre-determined grid. This
approach not only samples at very uninforma-
tive locations, but also fails to learn critical fea-
tures of a subject’s latent discriminability func-
tion. Here we advance active learning with Gaus-
sian processes to the setting of psychophysical
testing. We develop a model that incorporates
strong prior knowledge about the class of stimuli,
we derive a sensible method for choosing sample
points, and we demonstrate how to evaluate this
model efficiently. Finally, we develop a novel
likelihood that enables testing of multiple stim-
uli simultaneously. We evaluate our method in
both simulated and real auditory detection tests,
demonstrating the merit of our approach.

1 INTRODUCTION

Psychophysical tests are a fundamental tool for investigat-
ing human perception: does a particular stimulus produce
sensation for a particular person? The most common form
of psychophysical tests — detection tests — present n. sen-
sory stimuli to a subject, and ask for n binary reports as
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to whether each stimulus was detected or not. Detection
tests exist for vision (Schiefer et al.,|2005)), pain (Carter and
Shieh, 2009), and many other settings. Perhaps the most
common example is audiometry (Carhart and Jerger, 1959
Don et al., |1978; Hughson and Westlake} |1944): a subject
is presented with a sequence of n tones x; Vt=1,...,n,
where each tone x; € R? is a pure tone with a specific fre-
quency (pitch) and intensity (volume). The subject reports
an observation ¥, = 1 if he/she heard the tone, and a y; =0
is concluded in the absence of a positive report. The pur-
pose of the test is to infer, from this sequence of observa-
tions, the underlying audiometric function g(x), a function
that describes how likely the subject is to hear sounds over
the domain of typical frequencies and intensities. There
is substantial variability in each person’s audiogram, par-
ticularly for those with partial, selective, or degenerative
hearing loss (Gosztonyi Jr et al.l |1971; [Robinson, [1991}
Schmuziger et al.l 2004). Accurate estimates of audio-
grams are thus essential to understanding human audition,
and to all medical studies and treatments of various forms
of hearing loss.

A standard auditory detection test is carried out by playing
an n-length sequence of pure tones on a pre-defined grid
in frequency-intensity space. This approach, while simple,
has several salient drawbacks that lead to an unnecessarily
large n. First, a given tone is played multiple times, even if
it is highly audible or highly inaudible. Second, informa-
tion is not shared between previous outcomes. For exam-
ple, human audition is monotonically increasing in inten-
sity, but in the standard test, even if a particular frequency
of sound is heard at a given intensity, tones with the same
frequency but higher intensity will still be tested. Finally,
owing to limitations on the size of sequence n, a standard
detection test probes only six discrete frequencies (Madi-
son et al., 2005). The coarseness of this grid can cause
significant errors, as human hearing loss can span a range
narrow enough to be entirely missed by these six frequen-
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cies (Jerger, [1960; Zhao et al.| [2002; |[Zhao and Stephens,
1998). All of these issues, combined with the impractical-
ity and burden to human subjects of a large n sequence,
motivate an active learning approach.

Here we treat psychophysical detection tests as an active
learning problem, extending and adapting recent work on
active learning with Gaussian processes (GPs) (Garnett
et al., 2013} [Houlsby et al., [2011} Iwata et al., 2013). Our
method addresses all the drawbacks of grid-sampling by
performing Bayesian active learning of the audiometric
function g(x). Specifically, we place a GP prior on the
latent audiogram f(x), which we transform to a [0, 1] val-
ued quantity using a probit transformation (Kuss and Ras-
mussen, 2003), such that g(x) ~ ®(f(x)). We use this
model to sequentially sample at each time step ¢ the most
informative next tones conditioned on the previous ¢t—1 ob-
servations ¥, ..., y;—1. This model significantly enhances
the accuracy and efficiency of learning audiograms. Our
work offers two main contributions:

1. We extend and adapt existing work on Bayesian op-
timization and active learning to the setting of psy-
chophysical detection tests. We present a model that
incorporates strong prior knowledge about the audi-
tory stimulus space, and we present experimental re-
sults demonstrating the effectiveness of a Bayesian ac-
tive learning approach.

2. We develop a novel ‘OR-channel’ likelihood that al-
lows the query of multiple tones simultaneously. We
analyze this likelihood in the active learning context,
clarifying the non-obvious intuition for why and when
such an approach can outperform single-tone queries.

We evaluate our algorithm on both simulated and real au-
diometric detection tests. Our active learning approach ob-
tains finer grained estimates of the audiogram g(x) with
substantially fewer stimuli queries (lower n). We note that,
in the remainder of this work (notably our experiments), we
will continue to use the example and nomenclature of au-
diometry, though our algorithm is precisely equivalent for
other psychophysical detection tests as well.

2  GAUSSIAN PROCESSES

Throughout this paper we will make extensive use of Gaus-
sian processes (GPs). A GP is formally a prior over
functions, f ~ GP(uo(-),k(-,-)), parameterized by a
mean function po(x) = E[f(x)] and covariance function

k(x,x") = E[(f(x) = po(x))(f (x) = po(x'))]-
For any set of n observations X = [xy,...,X,], the GP
implies that their function values £ = [f(x1), ..., f(x,)]

are jointly Gaussian distributed, f ~ N (u(X), K), where
K defines the covariance K;; = Cov(f;, f;] = k(xi,x;).

If we add a test point x* with unknown function value f*
this distribution extends naturally by one dimension to
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We can utilize standard Gaussian conditioning rules (Ras-
mussen and Williams| [2006)) to derive the posterior distri-
bution, p(f*|X, f,x*), which is Gaussian with mean and
variance

P = po(x") +KTKTHE —po(x") (1)
o (x*) = k(x*,x) - kTK K" (2)
Here k* = [k(x*,X1),..., k(x*,x,)]" denotes the kernel

vector between the test input x* and each training input.

In practice, we often do not observe f; directly, but rather
some dependent random variable y;. A popular example
is to assume additive Gaussian noise, y; = f; +¢ with € ~
N(0,02). In this setting, the distribution for f* remains
Gaussian, with a mean and variance similar to eqs. @ and
[@) (where K is replaced with K + ¢21).

However, with most observation models, the posterior dis-
tribution of f* conditioned on y is not Gaussian, and ex-
act inference becomes impossible. Approximate inference
may be performed using a Gaussian approximation to the
likelihood (Kuss and Rasmussenl 2005; [Minka, [2001). In
particular, by using a Gaussian approximation to the like-
lihood, we recover the Gaussianity of the posterior. For a
full treatment of Gaussian processes, see (Rasmussen and
Williams), [2006).

Note that in many cases, our goal is to make predictions, for
which we use the posterior predictive distribution—a distri-
bution over y*:

P X,y ) = [ PR Koy

This distribution is typically not computable analytically.
However, if the posterior distribution for f* is Gaussian
(e.g., because a Gaussian likelihood or Gaussian approxi-
mate likelihood was used), this integral can often be com-
puted efficiently.

2.1 BAYESIAN ACTIVE LEARNING

The goal of Bayesian active learning is to sequentially
choose samples so as to accurately model an unknown
function g(-) with as few samples as possible. In the audio-
metric setting, g(x) is the probability that the patient hears
the tone x. If we query whether the patient can hear a set
of tones X, we would like for our predictive posterior be-
lief p(y*|X,y, x*) to match g(x*) as well as possible and
as confidently as possible. Suppose that at iteration ¢t < n
the points X = [x1, ..., x| and corresponding labels y are



known. Houlsby et al.|(2011) propose to use mutual infor-
mation,

I(fa yt|Xt) =H [f|X7 Y]_E [H[f|Xa Yy, yt]]p(y”x’y’xt) (4)

where H[A] denotes the differential entropy of a random
variable A, to identify a new point x;, with future label y;,
to be queried in iteration t—i.e. x; is chosen to be

x; = argmax I (f, y|x) 5)

3 METHOD

In this section, we discuss our model and approach to psy-
chophysical detection testing using Gaussian processes. As
a running example, we will use audiometry. In an audio-
metric detection test, a patient is presented with tones of
varying frequency and intensity. The patient is asked to re-
spond (e.g., by pressing a button) if he/she hears the sound.
In the absence of a timely reaction the tone is assumed to
be inaudible to the patient. The delay between tones is suf-
ficiently randomized to prevent patients from responding to
predictable patterns (Gosztonyi Jr et al.l [1971]).

At time step ¢, we choose a tone x; = (w, 4) with frequency
w and intensity ¢ to present to the subject. In return, we
receive a response y; € {0, 1}, where y; = 1 indicates that
the patient heard the sound and y; =0 indicates that he/she
did not. There is inherent observation noise in patient re-
sponses. When patients become uncertain when presented
with sounds very close to their threshold (i.e., the sounds
become faint and hard to hear). Patients do not have per-
fect detection boundaries, and only hear tones near their
hearing threshold with some probability. This uncertainty
is observed in reality for a number of reasons. First, pa-
tient attention may waver, or they may be unable to distin-
guish between tones near their hearing threshold and slight
background noise. Alternatively, this uncertainty may de-
rive from physical sources. For example, if a tone is faint
enough, a patient may be able to hear that tone between—
but not during—heart beats. Our goal is therefore to predict
the probability that a patient is able hear a given sound.

3.1 PRIOR

In the case of audiometric testing, we have valuable prior
knowledge about a patient’s audiometric function that we
can encode in our GP model. In particular, the probability
that a patient hears a sound (w, %) is monotonically increas-
ing in the intensity ¢. In other words, if a tone is audible
to a patient, then an even louder tone is more likely to be
audible. Furthermore, audition is a smooth function with
respect to the frequency w. Human nerves that detect sim-
ilar frequencies are co-located in the cochlea and, as a re-
sult, a partial loss of hearing in one frequency is likely to
cause a loss of hearing in nearby frequencies. A GP prior

can encode both properties naturally through its covariance
function. A combination of a linear kernel in intensity and a
squared exponential kernel in frequency ensures the mono-
tonicity and smoothness properties:

1
k((w,i), (w',i") = i7" + exp {—EHOJ — w’||§} . (6)

Here, ¢ regulates the smoothness (characteristic length-
scale) w.r.t. frequency. Note that a GP prior is techni-
cally incapable of supporting only monotonically increas-
ing functions. However, we only need that the posterior
probability of detection, [3] be monotonic, which is gener-
ally true after a few tones are sampled (for example, see
figure [3)).

For the mean function (g, we note that intensity is typically
measured in dB HL,, which is an empirical unit of measure-
ment normalized based on population data so that at each
frequency the typical human hearing threshold is around 0
dB HL. As a result we choose a constant mean function.

3.2 OBSERVATION MODEL

This mean function, 1(-), and covariance function, k(-, -),
define a prior over real-valued latent functions f ~
GP(po(),k(-,)). Our goal is to predict the probability
(i.e. within [0, 1]) that a patient hears a tone with a spec-
ified frequency and intensity. We can never observe these
probabilities directly. For any tone, we can instead only
observe the outcome of a Bernoulli trial with the true prob-
ability. This setting is akin to Gaussian Process classifica-
tion (Kuss and Rasmussen, 2005) and similarly we use a
Bernoulli likelihood, where Pr(y = 1|f) = ®(f) and ®(-)
denotes the standard normal cumulative density function
(CDF).

The linear component of the kernel in (6) results in a func-
tion that, after being warped by ®(-), is sigmoidal in the
intensity dimension: after the slope is fixed (by condition-
ing on the first few points), the posterior belief about ®( f)
will tend to O as the intensity decreases and 1 as the inten-
sity increases. This reflects our prior knowledge that tones
of extremely low intensity are unlikely to be heard, whereas
tones of high intensity are more likely to be audible.

Predictions. Once we have collected data, we can use
the predictive distribution p(y*|X, y x*) to summarize our
belief about whether the patient will hear a test tone
x*. As our likelihood is non-Gaussian, the posterior
p(f*|X,y,x*) has no closed form solution. However,
an approximate Gaussian posterior over f* can be ob-
tained with the standard Laplace approximation to the
likelihood (Kuss and Rasmussen, 2005; Rasmussen and

Williams!, [2006).



3.3 MULTIPLE TONES

An interesting property of audiometry (that may also be
common to other psychophysical domains, e.g. visual or
touch sensory tests), is that multiple tone stimuli can be
presented to a patient simultaneously by overlaying tones.
In this setting however, we can still only query whether the
patient heard the overlaid tones. A negative response to a
multi-tone sample indicates that the patient did not hear any
of the overlaid tones; a positive response indicates that the
patient heard at least one of them.

OR-Channel. Presenting a patient with & tones leads
to a novel extension to the standard Bernoulli likelihood
used in classification. We present the patient with k tones
X1, ..., Xg. The patient hearing the individual tone x; is still
the outcome of a Bernoulli trial with Pr(y;|f;) = ®(f:),
as the individual trials are independent conditioned on f.
However, we cannot directly observe any individual y;.
Rather, we record them through an OR-channel, that is we
observe y, which is 1 if the patient hears at least one of
the k tones presented, and is 0 otherwise. This leads to the
OR-channel likelihood:

Pr(z = 1/£,.5) = 1 - [T(1 - @(;)
=1-J[2e-£) (7)

Note when k=1, eq. (7) reduces to the standard Bernoulli
likelihood for single tones, Pr(y = 1|f1) = ®(f1).

3.4 QUERY SELECTION

In iteration ¢ we present the subject with a query set of over-
laid tones q; = [{x1, ..., X }| and query the response g;. To
select q; we pick the point set that maximizes the expected
decrease in posterior entropy, analogous to eq. ().

Single tone mutual information. We first consider the
setting of picking a single tone, i.e. where q; = [{x:}].
Houlsby et al.| (2011)) derive an analytical approximation
to the mutual information, eq. (E]), when using a Bernoulli
likelihood. These results directly apply when picking a sin-
gle tone x;. When f; is known, the entropy of the Bernoulli
variable y; is given by h(®(f;)), where

h(p) = —plogp — (1-p) log(1-p),

is the Bernoulli entropy function. We can rephrase the en-
tropy in eq. (@) as

I(f, yelae) = H [y X, y] = E[H [pelf]] 1% 5y 8

and rewrite both terms on the right hand side through h. If f
is unknown and y; is conditioned on X, y, the entropy can

be expressed in terms of the expectation over the posterior
for f:

H [y X, y] = h (E[2(f)]) . ©)
If f; is known we have Pr(y|f) = ®(f;), yielding
H [ye|f] =h (2(f2))- (10)

Substituting egs. (@), (I0) into (8] leads us to the following
expression for the mutual information between f and y; in
the single tone scenario:

Ii(f,yila:) = h (E[@(f:)]) —Eh(2(f:))]- (11)

The computation of I; involves an intractable integral,
which can be approximated through numerical integration.
This approach is very fast in practice as the integral is
only one dimensional and can be computed efficiently us-
ing quadrature.

Multiple tone mutual information The above results
can be extended to compute the mutual information when
sampling multiple tones q; = [{x1,...,xx}]. In partic-
ular, the probability of observing 3, = 1 changes from
®(f;) to the OR-channel probability, (7). Thus, when
fi, ..., fi are known, the entropy of the Bernoulli variable

guish (1 -T2, ®(-1)-

To simplify notation, let us define p; = Pr(y = 1/f; 1) as
defined in (7). Substituting p; for ®(f;) in (II)) gives the
mutual information of paired tone sample q; after observ-
ing the outcome ¥;:

Ii(f,9t|a:) =h(E [p1]) —E [h(p1)]

- h(IE [Hj<1>(—fj)D —E [hqu’(_fj)ﬂ

where the second equality holds by the linearity of expec-
tation and because h(p) is a concave function that is sym-
metric about p = 0.5 (i.e. h(p) =1—h(p)). The last term
leads again to an intractable integral. However, similar to
the one tone scenario, Ij, can also be evaluated efficiently
using numerical integration, as k is relatively small.

Computational Considerations Finding a setof k < K

(k)

tones q; ’ to maximize I (f, §:|q:) from a candidate set X

of size S requires O ((‘: )) considerations. In order to en-

sure that patients do not have to wait for a lengthy duration
between sounds are played, we construct a set of multiple
tones to play greedily. We select the best single tone by ex-
haustively searching X'. Then, to select the best set of size
k, we exhaustively add each x € X to the best set of size
k—1, qgk_l) and compute the expected decrease in poste-
rior entropy of qgkfl) Ux. This greedy selection procedure
reduces the computational complexity of considering tone
sets of up to size k to O (Sk), and in practice requires only
a few seconds of computation time.
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Figure 1: Difference in mutual information /o — I; between a paired query and a single query: (a) discrete distribution
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3.5 OR-CHANNEL ANALYSIS

We first investigate the OR-channel likelihood of eq. (7), as
it is unclear if this elaboration can provide any benefit over
a standard Bernoulli likelihood. Intuitively, the result of
y = 0 from an OR-channel is quite informative: all inputs
into that channel must have been 0 (in the auditory exam-
ple, no sounds were heard). On the other hand, the result of
4 = 1 is much less informative than in the Bernoulli chan-
nel, as it means only that one or more of the inputs were 1
(some sound or sounds were heard), but there is no infor-
mation about which. Here we analyze simple models that
support the use of the OR-channel likelihood. We compare
a single input, corresponding to the standard Bernoulli like-
lihood, to a paired input, corresponding to an OR-channel
likelihood with two inputs. That is, with inputs {f1, f2}
and output y € {0, 1} as above, our quantities of interest
are Iy := I(y, f1) and Is := I(y, {f1, f2}), and we seek to
understand if more information about the inputs can exist
in the paired-input query, than in the single-input query.

3.5.1 OR-channel Inputs With Discrete Support

The simplest case involves perfectly correlated inputs f; =
fo, and further, a discrete distribution on f; with two atoms
of equal mass. The implied probability ¢(f1) will then
have the same discrete distribution which we write as

p(o(f1)) = 30(6(f1) = @) + 30(6(f1) = B), for some

atoms « and . Then, the mutual information of the single
query is:

Iy =H(y) — H(ylf)
=h(Es[¢(f1)]) —Ey [h (s (f1))] (13)

—n (50t ) - 5 b +h(s),

where [E; is the expectation under the distribution on
f. The OR-channel likelihood for two terms is similarly

ply = 1{f1.fo}) = 1 = A —=0(f1) (1 -9(f2)) =
—(1 = ¢(f1))?. The mutual information of a paired-input
query becomes

p=h(3@+8) -3 0@+n@E).  ab

wherea =1 - (1—-a)?and B =1- (1 - 82 L
and I; offer a convenient geometric interpretation by view-
ing mutual information as the Jensen’s inequality gap of
h (eqgs. (13) and (T4)). With this simple discrete distribu-
tion, o and (8 can be chosen such that Io — I3 will be pos-
itive or negative. We show the critical case I > I; in
Figure [Th, where the blue line segment connects (cv, h(c))
to (8,h(pB)) with (o, 8) = (0.05,0.65), and the red line
segment is then implied by those choices of a, 5 (that is,
(@, B) =~ (0.10,0.88) in the figure). Here the difference is
I, — I = 0.18 bits. The contours of Iy — I as a function
of (a, 8) is shown in Figure[.

3.5.2 OR-channel Inputs With Normal Densities

We next analyze the OR-channel likelihood with two la-
tent factors fi = f(x1) and fo = f(x2), which are
jointly Gaussian according to the GP model of Section [3}
[f1, fo] ~ N (m,S). We calculate I, — I; numerically us-
ing eq. (II) (note that, compared to the previous example,
only the expectation over f has changed). We simplify the

parameter space with m = Z ] and S = ; ? (but note

that the function I, — I; is not invariant to either of these
simplifications). We plot the contours of I — I; as a func-
tion of correlation p and mean 1 in Figure[Tk, which indeed
has substantial regions of both positive and negative mass.

In summary, though intuitively non-obvious, the above
analyses clarify that the OR-channel likelihood can, but
need not, increase mutual information between the input
distribution and the binary outcome y. This finding offers a
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Figure 2: Standard grid search audiogram with tones played at every octave from 250 to 8000 Hz, and every 5 dB HL from
-10 dB to 80 dB, compared to a multi-tone GP audiogram with 60 iterations (and therefore 119 “samples”).

critical takeaway: the OR-channel can be used effectively,
but only in the setting where a judicious choice of input
distribution can be made. Indeed, this is exactly what our
framework will achieve: it will choose pairs of input points
(paired sounds) to learn more about the underlying audio-
gram than a single point alone. Thus, the OR-channel like-
lihood offers benefit beyond this scheme, which we already
expect to outperform a naive approach to learning these la-
tent functions. In this work we only consider paired inputs;
a future question for study is how the information gain dis-
tribution changes with increasing numbers of inputs.

4 RELATED WORK

A number of papers have been recently published on
Bayesian active learning. Many papers have consid-
ered Bayesian active learning using mutual information in
the regression setting (Guestrin et al., 2005 |Krause and
Guestrin, [2007; Srinivas et al.,|2009). However, the compu-
tation of mutual information is significantly less tractable
in the classification setting. To our knowledge, [Houlsby
et al.| (2011) is the first paper to leverage the rewriting of
mutual information in (12)), allowing for tractable compu-
tation of mutual information with the Bernoulli observation
model. This paper is most similar to ours, as the Bernoulli
observation model is identical to our single tone audiomet-
ric algorithm. A number of other, orthogonal applications
and extensions of this method have since been published
(Garnett et al., 2013} Iwata et al., 2013).

Alternative techniques for estimating audiograms have ex-
isted for many years. Sweep-based audiometry, such as
Bekesy audiometry and Audioscan, are able to produce a
more continuous estimate of the audiogram that can of-
ten detect notches, but with the disadvantage of a partic-

ularly time- and attention-demanding task (Jerger, |1960;
Meyer-Bischl [1996). Several Bayesian audiogram estima-
tion techniques, such as parameter estimation by sequen-
tial testing (PEST) and maximum likelihood methods also
exist, although most do not simultaneously estimate multi-
ple frequencies (Greenl [1993; |Leek et al., [2000; Ozdamar
et al., |[1990; Pentland, |1980; Taylor and Creelman), [1967).
More recent advances in audiometric testing have focused
on improving the accessibility of hearing screening by dis-
tribution over telephone, Internet, or mobile devices (Smits
et al., 2004; [Swanepoel et al., [2014; [Vlaming et al., 2014
‘Watson et al., 2012 Williams-Sanchez et al.| [2014).

S RESULTS

In this section, we empirically evaluate our proposed al-
gorithms for psychophysical detection. We focus on our
application to audiometry, and seek to evaluate the merits
of using Gaussian processes for audiometry in general, as
well as to compare single-tone and multi-tone audiometry,
focusing on the machine learning aspects of our algorithms.

We have since published a small clinical trial in a medi-
cal journal evaluating the novel GP audiometric techniques
discussed here from a clinical point of view as well, and re-
fer readers to|Song et al.|(2015) for additional results com-
paring GP audiometry and standard audiometry.

To begin, we compare the audiograms found by a standard
grid audiometric test and by our multi-tone GP model. In
both cases we run the same human subject in the same au-
diometric setting. The only differences are the tones pre-
sented and the method used to infer the audiometric func-
tion. All audiometric tests were run in accordance with
an approved IRB. In the standard setting, tones from this
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Figure 3: The posterior probability of detection within the frequency / intensity space during a GP audiometric test on a
human subject. Panels show the learned GP after 1, 15, 30, and 60 iterations. Queries consist of a single or a paired tone
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outcome. Paired tones with positive outcome (at least one of the two tones was heard) are connected by a blue line. Almost
all queries are close to the final audible threshold (0.5 posterior detection probability), which is well approximated even

after only 15 iterations.

grid are presented in a pre-determined order, typically as-
cending in frequency and decreasing in intensity. In the
GP model, pairs of tones were actively selected given all
previous pairs of tones and the responses to those tones.
A random delay of up to 3 seconds was inserted between
tone presentations to prevent subjects from memorizing a
pattern in the test. Figure[2]shows the resulting data and in-
ferred audiograms plotted in frequency-intensity space (left
panel: standard audiometric test; right panel: GP method).

For both the standard and GP experiments, tones that were
detected by the patient are plotted as blue circles, and tones
that were not detected are plotted as red crosses. For the
paired-tone GP test (right panel), paired samples that were
detected are plotted as blue circles connected by a blue line
(recall that, due to the OR-channel likelihood, we do not
know which tone was heard). Paired tones that were not
detected are again plotted as individual red crosses, as these
data are functionally equivalent to two single-tone samples

that were not detected (again due to the OR-channel obser-
vation model).

In the standard audiometric test, the inferred audiogram
is simply an “audible threshold” that is the piecewise lin-
ear function connecting the detection threshold at each fre-
quency. This threshold is depicted as a black line in the left
panel of Figure[2] In the GP case, we infer a full posterior
distribution on the detection threshold. We plot contours
of the posterior detection probability in the right panel of
Figure with a solid black line at 50% posterior detection
probability.

This confirmatory comparison offers several key points of
interpretation. First, the tests agree with each other: the
50% posterior detection probability in the GP case is within
5dB of the standard audiogram, giving confidence to the
general sensibility of this model. Second, perhaps most im-
portantly to the active learning goal, the GP active learning



80 1
70t °©
~ 60} 0.8
550» .
T 40} '
%30' 0.4
5 20
ERl 0.2
0,
-10 0

8 o9 10 11 12 13
Frequency (Log Hz)

(a) A GP trained on 100 single tones. Blue circles denote tones
detected by the subject, and red crosses denote tones that were not
detected. The posterior probabilities are shown as color contours.
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(b) Log likelihood of random presentation of tones (no active
learning, shown in gray), active learning presentation of sin-
gle tones (shown in blue), and active learning with paired tones
(shown in red), under the ground truth audiometric function from
Figure a] Log likelihood is plotted as a function of iterations in
each audiometric testing strategy. Shaded areas denote standard
error.

Figure 4: Comparison of multi-tone and single-tone GP audiometrics

model presents approximately half as many iterations (60
actively learned paired tones compared to 114 single tones
preselected from a grid). Thus the GP model is able to
explore substantially more of the frequency space than the
standard grid test, and it does so in many fewer overall iter-
ations, reducing the burden of these tests. Third, note that
the GP model does not explore uninformative regions of
tone space: above a certain intensity (at which the model is
confident that tones are certainly heard), there are no tones
queried. This observation differs sharply from the standard
test, which squanders numerous samples at intensities well
above this subject’s audible threshold, where little to no in-
formation is available. Fourth, by design our GP model
offers a full posterior distribution over tone space, and thus
produces a richer and more descriptive audiogram than the
piecewise linear audible threshold function in the standard
test. Finally, it is worth noting that, though the paired tones
in the right panel of Figure 2] appear to be sampled at very
similar frequencies in log-space, the differences were often
nontrivial, up to four or five half steps in an octave.

Next, Figure [3] investigates the convergence of our GP
model after 1,15, 30, 60 iterations of our paired-tone GP
audiometric algorithm. The posterior after a single iter-
ation (upper left panel) reflects primarily the prior mean
and the covariance of the model, which incorporates our
knowledge about the general shape of human audiograms.
As the active learning procedure continues (other panels),
the GP posterior quickly converges to the audiogram of this
particular subject. After only 30 iterations, the GP model

has already captured the audiogram shape, and subsequent
changes are very minor.

To investigate the performance of our GP active learning
method in greater detail, we construct a synthetic data set
with known ground truth (a known audiometric function).
We begin by training a GP on 100 single tones and the
detection of those tones reported by a second human sub-
ject. The tones sampled and the inferred audiogram are
presented in Figure[a] We use this posterior GP as the true
audiogram of a simulated subject.

This ground truth audiometric function allows for the crit-
ical assessment of performance shown in Figure 4b] We
compare three strategies of data presentation: random pre-
sentation of tones (no active learning, shown in gray), ac-
tive learning presentation of single tones (shown in blue),
and active learning with paired tones (shown in red). For
each strategy, at each iteration (tone presentation), we infer
the GP posterior mean, which is the MAP estimate of the
audiometric function, given each stream of data. We evalu-
ate the log likelihood of each strategy’s GP posterior mean
under the ground truth GP from Figure[da] This step offers
a quantitative assessment of how closely each strategy has
approximated the true audiometric function. The maroon
dashed line depicts the log likelihood of the ground truth
GP itself, which is thus the maximum achievable perfor-
mance of any strategy. All three strategies (random, single
tone active learning, paired tone active learning) should,
with enough iterations, converge to ground truth. Thus, the
essential question of this work, and indeed of any active



learning method, is how much more quickly a particular
strategy approaches the ground truth than competing strate-
gies.

We ran the single and paired tone active learning methods
ten times each, and standard errors are plotted as shaded
regions. Because of the very high standard error of the ran-
dom tone audiogram, these results were averaged over 100
runs.

Figure[db]has a few key findings. Both the single and paired
tone active learning strategies significantly outperform ran-
dom sampling. Thus our strong prior rapidly learns that
large portions of the tone space are either very likely or very
unlikely to be heard, and is able to quickly learn to sample
in regions of high information. After 80-90 iterations the
paired tone algorithm matches the ground truth model very
closely. This result is in significant contrast to randomly
choosing tones, which not only has very large standard er-
ror, but also rarely converges to a good model. Finally, we
observe that the paired tone active learning strategy signif-
icantly outperforms the single tone strategy. In fact, the
paired tone strategy requires only half as many iterations to
achieve the same level of likelihood. Compared to random
sampling, paired tone active learning reduces the number
of iterations by 85%.

6 DISCUSSION

In this paper, we explored the problem of adapting
Bayesian active learning to psychophysical testing, and im-
proving upon standard techniques used in audiometric test-
ing. In the process of our investigation, we developed a
novel OR-channel likelihood that allows us to present mul-
tiple tones to a subject simultaneously, leading to an au-
diometric testing strategy that not only yields good audio-
gram estimation using significantly fewer samples, but also
leads to much better coverage of the frequency dimension.
We demonstrate a non-obvious result, that multiple tones
played through an OR-channel can, but do not have to,
yield more information than a single tone. As future work
we will continue to investigate the theoretical properties of
this likelihood function and its use in active learning. We
also hope that the drastic improvements of our method over
the state-of-the-art will convince experts in medicine and
psychology to adapt machine learned approaches for psy-
chophysical testing.
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