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Abstract

Split-merge moves are a standard component
of MCMC algorithms for tasks such as multi-
target tracking and fitting mixture models with
unknown numbers of components. Achieving
rapid mixing for split-merge MCMC has been
notoriously difficult, and state-of-the-art meth-
ods do not scale well. We explore the reasons
for this and propose a new split-merge kernel
consisting of two sub-kernels: one combines a
“smart” split move that proposes plausible splits
of heterogeneous clusters with a “dumb” merge
move that proposes merging random pairs of
clusters; the other combines a dumb split move
with a smart merge move. We show that the
resulting smart-dumb/dumb-smart (SDDS) algo-
rithm outperforms previous methods. Experi-
ments with entity-mention models and Dirichlet
process mixture models demonstrate much faster
convergence and better scaling to large data sets.

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms have be-
come a central pillar of statistical inference and machine
learning. MCMC algorithms repeatedly apply a stochastic
kernel transformation to an initial state, generating a ran-
dom walk through the sample space whose stationary dis-
tribution matches a desired target distribution. Within the
general Metropolis-Hastings (MH) family of MCMC meth-
ods, which includes many specific algorithms that have
proven useful in practice, the kernel is built from a pro-
posal step followed by a stochastic acceptance step whose
probability is determined by the chosen proposal distribu-
tion. One key to efficient MH inference, then, is proposal
design.1

1Other approaches include parallelization [Chang and Fisher,
2013; Williamson et al., 2013] and taking advantage of symme-

This paper focuses on MH proposal design for split–merge
moves. Split and merge moves, which form a comple-
mentary pair comprising a kernel, are useful for problems
where an MCMC state can be thought of as consisting of
a number of components or clusters, each of which is re-
sponsible for some subset of observations. The canonical
example is the family of mixture models: a split move in
such a model converts one mixture component into two, di-
viding the observations of the original component between
the two new components; a merge move combines two
components and their observations into a single compo-
nent [Dahl, 2003; Pasula et al., 2003; Jain and Neal, 2004].
Split-merge moves are also common in multitarget track-
ing, where a “component” is a single track joining together
observations of an object over multiple time steps [Pasula
et al., 1999; Khan et al., 2005]. The state of the art for
split-merge MCMC in mixture models is considered to be
the restricted Gibbs split-merge (RGSM) algorithm of Jain
and Neal [2004].

The general idea followed in most MH proposal designs
is to make the proposal “smart” by preferentially propos-
ing states with higher probability according to the target
distribution. This tends to give higher acceptance proba-
bilities. The Gibbs sampler [Geman and Geman, 1984] is
the quintessential smart proposal: by proposing values for
some subset of variables exactly in proportion to their prob-
ability, Gibbs sampling has an acceptance probability of 1.
In the context of split-merge moves, a smart split would be
one that favors splitting a heterogeneous cluster to produce
two more homogeneous ones, and a smart merge would
favor merging similar clusters to ensure a homogeneous re-
sult. As our analysis and experiments show, however, com-
bining smart split and merge moves does not lead to high
acceptance probabilities and rapid convergence. The rea-
son is the asymmetry between subspaces withK andK+1
components: there are far more states in the latter than the
former, whereas in the case of Gibbs sampling the source
and target subspaces are identical.

try [Niepert and Domingos, 2014]. The work reported in this pa-
per can easily be combined with these approaches.



Our proposed solution, the smart-dumb/dumb-smart
(SDDS) algorithm, combines two kernels in parallel: one
has a smart split move and a “dumb” merge move that pro-
poses merging random pairs of clusters; the other combines
a dumb split move with a smart merge move. We show that
the resulting algorithm performs well in practice, main-
taining high acceptance rates and converging reasonably
quickly even for large data sets with many clusters, where
RGSM and other algorithms fail. To our knowledge, the
closest relative of SDDS is a parallel-computation MCMC
algorithm due to Chang and Fisher [2013], who mention
the use of a random split move as the complement of a
merge move in one part of a rather complex algorithm. A
second contribution of our paper is a fast, exact method for
sampling a split move from the posterior over all possible
splits of a given component, i.e., an efficient block-Gibbs
proposal for splits.

The paper begins (Section 2) with background material on
MCMC. Section 3 describes, for expository purposes, the
entity/mention model (EMM), a very simple Bayesian mix-
ture model with observations that are discrete tokens, and
examines split-merge MCMC in the context of the EMM.
Section 4 describes the SDDS algorithm in detail. Fi-
nally, Section 5 evaluates SDDS in comparison to other ap-
proaches, both on EMM data and on data from a Dirichlet
process mixture model (DPMM).

2 MCMC METHODS

Here we provide a brief review of the relevant aspects of
Metropolis–Hastings MCMC. Let X be a sample space (a
set of possible worlds); a sample point x ∈ X will be called
a state. Let π(·) be a target distribution of interest, such as
the posterior distribution on X given some evidence. The
goal is to generate samples from π, or something close to it,
so as to answer queries. A standard MCMC algorithm con-
structs a Markov chain from a transition kernel P (x′|x),
such that the unique stationary distribution of the chain is π;
of primary concern is the rate of convergence of the Markov
chain to its stationary distribution.

The Metropolis–Hastings (MH) algorithm [Metropolis et
al., 1953; Hastings, 1970] is a general template for building
transition kernels with the desired property. Each transition
is built from two steps: first, a new state x′ is proposed
from a proposal distribution q(x′|x), then the new state is
accepted with a probability given by

α(x′|x) = min{1, π(x
′)

π(x)

q(x|x′)
q(x′|x)

} . (1)

(If the proposal is not accepted, the new state is the same
as the current state.) The ratio appearing in this expres-
sion is called the MH ratio; we have written it as the prod-
uct of the state ratio π(x′)/π(x) and the proposal ratio
q(x|x′)/q(x′|x). The only “free parameter” in designing

an MH algorithm is the proposal q(·|·), and it is this that
determines the rate of convergence.

Gibbs sampling can be understood as a special case of MH
[Gelman, 1992]. In its simplest form, it chooses a variable
Xi uniformly at random from the set of n variables whose
values define the state x and proposes a value x′i from the
distribution π(Xi|x−i), where x−i denotes the current val-
ues for all variables other than Xi. Because this proposal
distribution is proportional to the state probability, the pro-
posal ratio for Gibbs is exactly the inverse of the state ratio.
For the case where xi and x′i coincide, both ratios are 1;
when they differ, we have

q(x|x′)
q(x′|x)

=
q(xi,x−i|x′i,x−i)
q(x′i,x−i|xi,x−i)

=
1
nπ(xi|x−i)
1
nπ(x

′
i|x−i)

=
π(xi,x−i)π(x−i)

π(x′i,x−i)π(x−i)
=

π(x)

π(x′)
. (2)

Hence the acceptance probability in (1) is therefore exactly
1 for Gibbs sampling.

Having a high acceptance probability—or at least, one
bounded away from zero—is a necessary but not sufficient
condition for rapid mixing in MH. Moves can be accepted
with high probability but if those moves fail to lead the
chain from one local maximum in π to another, overall
mixing may still be slow. Thus, good proposal design is
concerned with both acceptance probabilities and the abil-
ity to traverse the state space without getting stuck in local
maxima.

3 THE ENTITY/MENTION MODEL

The entity/mention model or EMM is a very simple form
of mixture model, defined here for the purposes of expo-
sition. The EMM posits a certain (unknown) number of
entities that are referred to by some set of mentions. For
example, there is a person who may variously be referred
to as “Barack Obama”, “the President”, “POTUS”, and so
on. Given a collection of mentions of various entities—for
example, in newspaper text—the task is to figure out how
many entities exist, which mentions refer to which entities,
and thence the ways in which any given entity may be men-
tioned. In its simplest form, the EMM assumes that each
mention is a token with no internal structure, drawn from
a fixed, known set of tokens. This renders the model less
interesting than the models used in NLP research, but has
the advantage of simplifying the analysis.

3.1 The EMM probability model

We assume N mentions and L possible tokens. An EMM
model is composed from the following variables and con-
ditional distributions:

• K, the number of entities, drawn from a prior P (K).



• For each entity k, a dictionary θk, i.e., a cate-
gorical distribution over L tokens, drawn from a
Dirichlet(αk). The set of dictionaries {θ1, . . . ,θK}
is represented by Θ.

• For each mention mn, the entity Sn for that mention
is drawn u.a.r. from the set ofK entities, and the token
for that entity is drawn from θSn

. The (unknown) en-
tities {S1, . . . , SN} are represented by S and the ob-
served mentions {m1, . . . ,mN} by m.

The EMM resembles a topic model for a single document
with an unknown number of topics (entities).

In the experiments described below, we use a broad prior
for K, namely a discretized log-normal distribution with
the location parameter µ and the scale parameter σ on a
logarithmic scale:

P (K) =
1

C

1

Kσ
√
2π
e−(logK−µ)

2/2σ2

where C is an additional normalization factor arising from
discretizing the distribution.

Because the entity for any given mention is assumed to be
chosen u.a.r. from the available entities, we have

P (S|K) =

(
1

K

)N
.

Rather than sample the dictionaries, we will integrate them
out exactly, taking advantage of properties of the Dirichlet.
In particular, we have∫

Θ

P (m,Θ|K,S) =
∏

k∈{1:K}

B(αk + nk)

B(αk)

where B(·) is the Beta function and αk and nk are both
vectors of size L, representing respectively the Dirichlet
prior counts and the observed counts of each token in the
dictionary.

3.2 Gibbs sampling for the EMM

Basic Gibbs sampling samples one variable at a time,
which means, in our entity/mention model, sampling a new
entity assignment Sn for some mentionmn, conditioned on
all other current assignments S−n of mentions to entities.
The initial assignment is chosen at random, then the Gibbs
sampler is repeated for I iterations, each cycling through all
the mentions; see Algorithm 1.

The probability P (Sn|K,S−n,m) is calculated by:

P (Sn= k|K,S−n,m) ∝ αk,l + nk,l∑
l′∈L(αk,l′ + nk,l′)

where αk,l and nk,l are respectively the prior counts for
the token l (the mention mn = l) and observed counts for

Algorithm 1 Gibbs sampling for an entity/mention model
1: procedure GIBBS SAMPLING
2: for n=1 to N do
3: Sample Sn u.a.r. from {1, . . . ,K}
4: end for
5: for i=1 to I do
6: for n=1 to N do
7: Sample Sn from P (Sn|K,S−n,m)
8: end for
9: end for

10: end procedure

token l assigned to Ek. It is divided by the sum of the prior
and observed counts for all the L tokens.

Each step of the Gibbs sampler is relatively easy to com-
pute, but of course the algorithm cannot change the number
of entities; moreover, it tends to get stuck on local maxima
because of the local nature of the changes [Celeux et al.,
2000]. Despite these drawbacks, Gibbs steps are an impor-
tant element used in association with split-merge steps in
order to optimize the allocation of mentions to entities.

3.3 Split–merge MCMC for the EMM

One way to explore states with different numbers of enti-
ties is to use birth and death moves. A birth moves creates
a new entity with no mentions, while a death move kills off
an entity that has no mentions. While such moves, com-
bined with Gibbs moves, do connect the entire state space,
they lead to very slow mixing because death moves can
only occur when Gibbs moves have removed all the men-
tions from an entity, which is astronomically unlikely when
N is much larger than K—unless the entity being killed is
one that was just born.

Split and merge moves simultaneously change the number
of entities and change the assignments of multiple mentions
in one go. The simplest approach is to pick an entity at ran-
dom and split it into two, randomly assigning the mentions
to the two new entities; the merge move operates in reverse
by picking two entities and merging into one, along with
their mentions. A naive implementation of this idea often
fails to work, because random splits often yield a state with
a very low probability, preventing acceptance. Pasula et al.
[2003] suggested a random mixing procedure that chooses
two entities and randomly assigns each of their mentions to
one of two new entities. A split occurs when the two chosen
entities happen to coincide, and a merge happens when one
of the new entities receives no mentions and is discarded.
The approach was effective for medium-sized data sets in
their experiments (300-400 mentions, 60-80 entities) but
fails when each entity has many mentions: merges become
exponentially unlikely to be proposed.

Jain and Neal [2004] proposed a Restricted Gibbs Split–



Merge (RGSM) algorithm to generate splits that are con-
sistent with data. Two random elements are chosen in the
beginning. A split is proposed if these two elements belong
to the same component and otherwise a merge is proposed.
To split the component ck, RGSM algorithm first assigns
the elements randomly into two new components claunch1

and claunch2 as the launch state. Restricted Gibbs is then
applied for t times inside the launch state, re-assigning el-
ements to one of the components. The modified launch
state after t Restricted Gibbs steps is used for generating
the split. The resulting split reflects the data to some ex-
tent and tends to have a higher likelihood. However, these
intermediate Restricted Gibss steps are rather computation-
ally expensive, especially for large data sets. Dahl [2003]
proposed an allocation procedure, which works by assign-
ing elements sequentially to two components. It starts with
creating two new components c1 and c2 with two random
elements. The remaining elements are sequentially allo-
cated to either c1 or c2 using the Restricted Gibbs sampler
conditioned on those previously assigned elements. This
procedure is more efficient than preparing the launch state
in RGSM.

Split–merge has been applied to different models such as
the Beta Process Hidden Markov Model [Hughes et al.,
2012] and the Hierarchical Dirichlet Process [Wang and
Blei, 2012; Rana et al., 2013]; on the other hand, the split–
merge method itself has not been improved since RGSM
was first proposed in 2004. In the next section, we exam-
ine the interaction of the MH algorithm with split–merge
moves and propose a new combination of moves that seems
to work better.

4 SMART AND DUMB PROPOSALS

In general, smart proposals that lead to high-probability
states are preferred, as they lead to faster convergence of
MCMC. What Jain and Neal [2004] did for RGSM is to
avoid the low-probability states generated by random splits.
As we mentioned in Section 1, “smart” proposals propose
states with higher probability according to the target distri-
bution. The Gibbs sampler is smart in this sense, because
its proposal distribution is proportional to the state proba-
bility and hence the MH acceptance probability is always 1
(Eq. 2). Consequently, we may instinctively conclude that
the convergence efficiency might be significantly improved
if we concentrate on the design of smart proposals. How-
ever, this is not true for MH in general. The MH ratio in
the case of a smart merge proposal will be analyzed as an
example.

Let q(x′|x) and q(x|x′) be respectively a smart merge pro-
posal and a smart split proposal. Each first picks a subset
of the variables to merge (or split) with probability Pm (or
Ps). It then proposes a particular merge (or split) according
to the target distribution fm (or fs), where fm and fs are

proportional to state probabilities:

fm =
π(x′)∑

ω∈W (x) π(ω)
, fs =

π(x)∑
ω∈W (x′) π(ω)

, (3)

where W (x) and W (x′) are respectively the set of states
for all possible merges and the set of states for all possible
splits given Ps and Pm.

The MH ratio is then given by

q(x|x′)
q(x′|x)

π(x′)

π(x)
=

Ps
Pm

π(x)∑
ω∈W (x′) π(ω)

π(x′)∑
ω∈W (x) π(ω)

π(x′)

π(x)

=
Ps
Pm

∑
ω∈W (x) π(ω)∑
ω∈W (x′) π(ω)

(4)

When both split and merge are smart, the ratio Ps

Pm
will be

very low due to a quite small Ps. It is because that the
smart split would not give a big probability mass to the part
a smart merge prefers to merge (detailed examples given in
the next subsection). The second part in Formula 4, namely
space ratio, is important in split-merge case because of the
space asymmetry.

∑
ω∈W (x) on the top is just π(x) since

when we have chosen two entities to merge (Pm), there is
only one merge possibility. However,

∑
ω∈W (x′) contain

2n possible splits (n is the number of mentions assigned to
the picked entity).

The Ps

Pm
ratio gives the first idea about why smart propos-

als have conflicts with inverse smart proposals. In case of
space asymmetry, a smart–smart proposal suffers also from
the space ratio in addition to the Ps

Pm
ratio.

4.1 Why smart proposals do not work by themselves:
A simple example

Let’s take a concrete example of split and merge to illus-
trate the problem stated above for smart proposals. Assum-
ing that there are three entities in state x as below:

x : {E1 : {A A B B}; E2 : {C C}; E3 : {C C}},

a desired split would be splitting E1 into two entities as
follows:

x′1 : {E1 : {A A}; E4 : {B B}; E2 : {C C}; E3 : {C C}}.

A smart split proposal distribution should propose the state
x′1 with a quite high probability as illustrated in the left part
of Figure 1, where the width of the arrow line indicates
the probability value. However, a smart merge proposal,
starting from state x′1, would rather have a high probability
q(x′′1 |x′1) for proposing the state x′′1 :

x′′1 : {E1 : {A A}; E4 : {B B}; E2 : {C C C C}}.

From the point of view of a smart merge, inverting the
smart split’s preferred move q(x|x′1) is highly unlikely, as



represented by the dashed arrow in the figure. Therefore,
considering the high value of q(x′1|x), the proposal ratio
becomes extremely low, which leads to a very low accep-
tance rate for smart split proposals.

(a) smart split (b) smart merge

Figure 1: Conflicts between smart split and smart merge
(red lines for splits and green lines for merges; thick/dashed
lines for moves preferred/dispreferred by smart proposals.)

It is a similar situation for smart merge proposals, as illus-
trated in the right part of Figure 1. A smart merge proposal
will give a high probability to generate the state x′2:

x′2 : {E1 : {A A B B}; E2 : {C C C C}}.

On the other hand, the smart split from the state x′2 will be
more likely to generate a state such as:

x′′2 : {E1 : {A A}; E3 : {B, B}; E2 : {C C C C}},

leaving only a tiny probability to propose the state x′2 to go
back to x. The same phenomenon of a low acceptance rate
will be engendered.

For the particular case of split and merge, a new entity cre-
ated by the split proposal changes the parameters of the
space, which means, for one split and its inverse merge,
there are much more possibilities for splits than those for
merges. This neighborhood issue makes the smart merge
proposal even harder to be accepted as shown in Formula 4.

4.2 Coupling with smart and dumb proposals

Smart proposals are not effective in this case because the
entity which we choose to split does not correspond to the
entities that we prefer to merge in the reverse direction.
However, if we want to distribute a higher probability to
the reverse move, q(x|x′1) for instance, it can be treated
as a dumb proposal rather than a smart one. “Dumb” pro-
posals can be considered as distributions that give uniform
probability mass over all possible moves.

An important property of MCMC methods is that detailed
balance can be guaranteed when several different proposals
are adopted on condition that each proposal satisfies the
Metropolis-Hastings algorithm [Tierney, 1994]. Therefore,
there is a solution to combine smart and dumb proposals,
namely the Smart-Dumb Dumb-Smart proposals (SDDS),
as illustrated in Figure 2.

Figure 2: Smart-Dumb Dumb-Smart design for proposals

As a consequence, there are two separate pairs of proposal
distributions. For either of them, the dumb proposal gives a
uniform distribution over all possible moves. The existence
of dumb proposals helps the acceptance of smart proposals.
In the context of these two pairs, both smart split and smart
merge can produce higher acceptance rates and faster mix-
ing.

4.3 An SDDS split–merge algorithm

Inside the SDDS algorithm, we want to propose high-
probability states with smart splits and smart merges and to
do so efficiently. The algorithm for the smart split proposal
with dumb merge and the one for smart merge proposal
with dumb split are respectively described in Algorithm 2
and Algorithm 3.

Smart split/dumb merge proposal Algorithm 2 begins
by choosing randomly between a smart split proposal and a
dumb merge proposal. If a smart split is picked, it will first
choose one entity Ek based on a function fsplit(Ek). The
function is inversely proportional to the likelihood of the
mentions mEk

associated with this entity Ek, which im-
plies that the proposal tends to choose large and mixed enti-
ties. The likelihood is given byB(αk+nk)/B(αk) where
αk and nk are respectively the vectors for the Dirichlet
prior counts and the observed counts of each token in mEk

.

Once the entity Ek chosen, the smart split procedure will
allocate sequentially each mention to one of two newly
created entities E′1 and E′2, according to the likelihood of
the previously assigned mentions. Given the entity Ek :
{AABBCC} for example, the procedure is illustrated in



Algorithm 2 Smart Split and Dumb Merge proposal
1: procedure SMART SPLIT DUMB MERGE
2: choose a move type: type ∼ (split,merge)
3: if type==split then . smart split
4: choose one entity to split
5:

Ek ∼ fsplit(Ek)

fsplit(Ek) ∝
1

P (mEk
|Ek)

6: create two new empty entities E′1 and E′2
7: assign each mention inEk sequentially toE′1 or
E′2 according to the likelihood of previously assigned
mentions

8: else . dumb merge
9: choose one entity uniformly from K entities

10: choose another entity uniformly from the rest
K-1 entities

11: end if
12: calculate the acceptance ratio α
13: apply the proposal with probability α
14: end procedure

Table 1.

Table 1: Splitting one entity into two entities sequentially
steps 0 1 2 3 4 5 6
E′1 A AA AA AA AA AA
E′2 B BB BBC BBCC
P 0.5 0.6 0.625 0.714 0.5 0.714

Two new created entities are empty in the beginning. Dur-
ing each step, the allocation probability for each mention
mi is calculated by:

P (E′1|mi) ∝ α1,l′ + n1,l′∑
l′∈L(α1,l′ + n1,l′)

P (E′2|mi) ∝ α2,l + n2,l∑
l′∈L(α2,l′ + n2,l′)

(5)

where α1,l and α2,l are the Dirichlet priors for the token l
(the mention mi = l, which is A, B or C in this case) be-
ing assigned to entity E′1 and E′2, n1,l and n2,l are current
observed counts of token l assigned to E′1 and E′2 (counts
are updated during each step). The denominator sums up
the prior and observed counts for all possible tokens (A, B
and C in this case). The probability in each step is given
in the table taking all α1,l=α2,l=1 as example (smaller al-
pha makes this procedure more discriminating). The prob-
ability of this allocation procedure is then a product of the
probability in each step. This procedure avoids the time-
consuming Restricted Gibbs sampling adopted by Jain and
Neal [2004]. [Dahl, 2003] proposed a similar sequential
procedure but started by creating two new entities with two

Algorithm 3 Smart Merge and Dumb Split proposal
1: procedure SMART MERGE DUMB SPLIT
2: choose a move type: type ∼ (split,merge)
3: if type==merge then . smart merge
4: choose one entity Ei uniformly from K entities
5: choose another entity

Ej ∼ fmerge(Ej |Ei)

fmerge(Ej |Ei) ∝ P (mEi,Ej
, Ej |Ei)

6: else . dumb split
7: choose one entityEk uniformly from K entities
8: create two new empty entities E′1 and E′2
9: assign each mention in Ek sequentially to E′1

or E′2 with equal probability
10: end if
11: calculate the acceptance ratio α
12: apply the proposal with probability α
13: end procedure

random mentions, which causes an initial bias when these
two random mentions are supposed to be associated with
the same entity.

The reverse dumb merge proposal would rather generate
random merges. It picks one entity uniformly from K enti-
ties and then picks another from the remaining K-1 entities.
The probability of this reverse proposal is then 2/K(K−1)
(two orders of choosing these two entities).

If a dumb merge proposal is chosen in the beginning, the
choice of two entities will have the probability 1/K(K −
1). Then we need to know the probability of the split pro-
posal that reverses this move, i.e., allocates the mentions
exactly into the two given sets. The order of mentions dur-
ing allocation influences the final probability and the dif-
ferent probabilities from all possible orders are supposed
to be summed up, which is not really feasible in practice.
Dahl [2003] applied a random permutation on the order of
mentions, which may be critical to correctness of MCMC
methods since in this way we are obtaining a random prob-
ability for the reverse split when merge is proposed and it
may not correspond to the exact probability of the inverse
move. In our case, we fix a unique order for all mentions so
that there is only one way of applying the procedure thus
only one possible probability value for the same split re-
sults, either the real split procedure or the imaged reverse
one. This unique order is chosen in an arbitrary way. The
choice of any particular order has no influence on the infer-
ence but the same order should be kept all along the exper-
iments.

Smart merge/dumb split proposal Algorithm 3 begins
from making the random choice between merge and split as
well. If smart merge proposal is picked, it will first choose



one entity Ei randomly from K entities. The choice of the
second entity Ej is based on how likely it is when merged
with Ei. The entity Ej is draw from a distribution given by
function fmerge(Ej |Ei), which is proportional to the like-
lihood of this resulting merge of Ej to Ei. The likelihood
of the merge is calculated by:

P (mEi,Ej
, Ej |Ei) =

B(αi + ni + nj)

B(αi)
(6)

where mEi,Ej refers to all mentions assigned to Ei and
Ej , αi is vector for Dirichlet prior, and ni + nj refers to
the vector for the observed counts of each term in mEi,Ej

.

The reverse dumb split proposal chooses one entityEk uni-
formly from K entities and allocates each mention ran-
domly into two new created entities, the probability of
which is 1/(K · 2n), where n is the number of mention
assigned to entity Ek.

If the dumb split proposal is chosen, it generates a ran-
dom split with the same probability 1/(K · 2n). As for
the reverse smart merge proposal, we need to consider
the merge in two different orders, namely fmerge(Ej |Ei)
and fmerge(Ei|Ej), where fmerge(Ei|Ej) is proportional
to P (mEj ,Ei

, Ei|Ej) which can be calculated similarly to
Formula 6.

5 EXPERIMENTS WITH SDDS

5.1 Applying SDDS to EMM

We applied the SDDS algorithm to the entity/mention
model. During each inference step, the SDDS sampler
chooses uniformly from either smart-split/dumb-merge
proposal or dumb-split/smart-merge proposal; this is then
complemented by one single Gibbs sampling step.2 It is
worth emphasizing again that detailed balance is satisfied
when each sub-kernel fulfills the detailed balance condition
individually. Three other algorithms are tested for com-
parison. The first is a random mixing (RM) sampler in-
spired from [Pasula et al., 2003]. It works by choosing
two random entities (which could be the same one) and
then distributing corresponding mentions into two new cre-
ated entities by a randomly chosen split point. The second
is the RGSM sampler [Jain and Neal, 2004].3 The third
is a smart-smart (SS) sampler which has the same smart
split and merge moves as SDDS but lacks the paired dumb
moves.

The simulated data sets use 10 different tokens (A, B, C,
etc.). Different configurations were tested, including dif-

2The different ways of combining a designed sampler with
Gibbs sampler is an issue to be investigated; we adopted this con-
figuration for all tested algorithms for comparison.

3The stable version (5, 1, 1) is adopted for comparison, which
contains 5 intermediate Restricted Gibbs steps inside one MH step
and then one complete Gibbs sampling.

ferent data set sizes (N=100, 200, 500) and different initial
entity numbers (K0=1, 5, 10, 20). All Dirichlet priors α
are set to 0.001. For the Log-normal prior on the number
of entities K, the location parameter is set to 0.5 (10 enti-
ties) and scale parameter is set to 1. Experiments were run
for 10K/50K/200K iterations, with a time-out at 10 hours.

We are interested in the posterior distribution of K, the
number of entities, given the available evidence. We illus-
trate the evolution of the expected value of K for the vari-
ous algorithms as a function of the number of iterations, for
different values of N and K0. We also give the acceptance
rates and time needed for each iteration for comparison.

Posterior distribution of entity numbers The posterior
distributions of entity numbers are analyzed by the mean
of the value K during iterations. First of all, we fix the
initial valueK0=5 to compare results of these four different
algorithms for different data sizes, as shown in Figure 3.
We can see that for N = 100 and N=200, all samplers
except random mixing sampler can converge to the correct
posterior K=10. However, when a larger data set N=500
is used, the RGSM sampler fails to have successful split or
merge therefore the value K is trapped at initial value. The
SS sampler is capable of applying several effective splits
whereas the merge proposal does not work well because of
the reason we discussed in Section 4.1.

For the data set N=500, we have also analyzed the sen-
sitivity of the sampler to initial value K0, as illustrated in
Figure 4. It is easy to observe that RGSM sampler is always
trapped in initial K0 in this case. The SS sampler can gen-
erate well-assigned mentions for entities during smart split
procedure, whereas it can not converge to the true posterior.
It is interesting to see from the results of Random Mixing
sampler that it works well when the initial value is twice as
large as the true value. In fact, in the RM sampler, the ran-
dom split procedure encourages the acceptance of merge
proposals. However, the random split proposals themselves
are not likely to be accepted because they generate very
low-probability states. The SDDS sampler outperforms all
the others, converging to the true posterior regardless of the
initial value.

It is worth mentioning that the inferences start from random
allocations, which would generate an ensemble of messed
up entities. It is not really useful to merge messed up en-
tities. The acceptance rates for merging messed up enti-
ties should be very low as well. It is therefore logical to
observe many accepted splits in the beginning of the infer-
ence of SDDS algorithm. SDDS algorithm generates more
well-formed entities and then yields higher probabilities for
merging them.

Acceptance rates The relation between the size of data
set and the acceptance rates for both split and merge are
shown in Figure 5. We can observe that, for the data set
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Figure 3: The mean of K during iteration for different data size, with the initial K0=5

(a) Random Mixing (b) Restricted Gibbs Split-Merge (c) Smart Split Smart Merge (d) Smart-Dumb Dumb-Smart

Figure 4: The mean of K during iteration for different initial K0=1,5,10,20, with the data size N=500

N=100, RGSM sampler has high acceptance rates for both
split (7.8%) and merge (2.1%). However, when the data
size is N=200, the acceptance rates are decreased largely,
only 1.1% for split and 0.08% for merge. When the data
size grows to N=500, almost no effective split or merge is
happening. On the contrary, the smart proposals in SDDS
algorithm, either smart split or smart merge, maintain sat-
isfying acceptance rates even for the data set N=500, 1.9%
for smart split and 4.8% for smart merge. For the SS sam-
pler, the drop of acceptance rates is similar to RGSM sam-
pler since there is no dumb proposals to support their cor-
responding smart proposals.

Time per iteration As we stated previously, the allo-
cation procedure in our smart split proposal is less time-
consuming than the Restricted Gibbs sampling based split
proposal. The performance of the running time per iter-
ation is shown for each algorithm in Figure 5. For the
RGSM sampler, the time spent per iteration grows quickly
with the data size, whereas the time for SDDS algorithm re-
mains stable. In the case of N=500, RGSM sampler takes
488.63 milliseconds per step while SDDS algorithm takes
only 10.02 milliseconds per step. The time per iteration for
Random Mixture sampler and that for SS sampler (which
are not show in the figure) is in the same scale of SDDS
sampler and stays stable for different data sizes.

5.2 Applying SDDS to conjugate Dirichlet Process
Mixture Model

RGSM algorithm is originally proposed for Dirichlet Pro-
cess Mixture Model (DPMM). When conjugate priors are
used, the Gibbs sampling procedure can be easily con-
structed for DPMM. A particular Gibbs sampling method
is adapted in this context of DPMM model so that the Gibbs
sampler can create new components [Neal, 1992]. The pro-
posed SDDS algorithm is also applied to DPMM and is
then compared to the Gibbs sampler and RGSM sampler.

The experiments have been done with high dimensional
Bernoulli data. Given the independently and identically
distributed data set y = (y1, y2, ..., yN ) , each observation
yi has m Bernoulli attributes, (yi1, yi2, ..., yim). Given the
component ci each item yi belongs to, its attributes are in-
dependent of each other. The mixture components are con-
sidered as the latent class that produces the observed data.

The simulated data for our experiments are generated in
the same way as Jain and Neal [2004] did for one high-
dimensional data set: 5 components with attribute dimen-
sion 15. Experiments are run for different sizes, N=100,
1K, and 10K. The Dirichlet process prior and the Beta prior
for attributes are respectively set to 1 and 0.1. (See Jain and
Neal [2004] for further details on this model).

;Jain and Neal [2004] have demonstrated their results by
plotting the traces of the five ;highest-wweight components



(a) Acceptance rates for split (b) Acceptance rates for merge (c) Time per Iteration

Figure 5: The differences of acceptance rates and time per iteration for different data sizes

(a) Data size N=100 (b) Data size N=1K (c) Data size N=10K

Figure 6: Comparison of the evolution of likelihood during the time for different data sizes

to verify if their algorithms can cover most data and de-
tect ;five components. We have provided the same plots
for the SDDS sampler. We observed the same relative per-
formance for SDDS and RGSM on the DPMM as for the
EMM, in terms of time per iteration and acceptance rates
(results not shown here). We also compared the evolution
of the likelihoods for SDDS, RGSM, and Gibbs as a func-
tion of running time (Figure 6). We see that, for N=100,
RGSM arrives at high-probability states about 0.5 second
after the SDDS algorithm does. When N=1K, SDDS gains
70 seconds over RGSM. When N=10K, SDDS outper-
forms RGSM by more than 2000 seconds. We conclude
from this limited sample of runs that the advantage of
SDDS over RGSM increases with data set size.

6 CONCLUSION

We have described the SDDS algorithm, which achieves ef-
ficient split–merge inference by combining smart and dumb
proposals. The idea is illustrated for the entity/mention
model. For the smart split proposal, we proposed a fast
and exact way of generating splits that are consistent with
data. Experiments on the entity/mention model and Dirich-
let process mixture models suggest that SDDS algorithm
mixes faster than previously known algorithms, and that
the advantage increases with data set size.
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