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Abstract

We propose a family of efficient algorithms for
learning the parameters of a Bayesian network
from incomplete data. Our approach is based
on recent theoretical analyses of missing data
problems, which utilize a graphical representa-
tion, called the missingness graph. In the case
of MCAR and MAR data, this graph need not
be explicit, and yet we can still obtain closed-
form, asymptotically consistent parameter esti-
mates, without the need for inference. When this
missingness graph is explicated (based on back-
ground knowledge), even partially, we can obtain
even more accurate estimates with less data. Em-
pirically, we illustrate how we can learn the pa-
rameters of large networks from large datasets,
which are beyond the scope of algorithms like
EM (which require inference).

1 INTRODUCTION

When learning the parameters of a Bayesian network from
data with missing values, the conventional wisdom among
machine learning practitioners is that there are two options:
use expectation maximization (EM) or gradient methods (to
optimize the likelihood); see, e.g., Darwiche (2009), Koller
and Friedman (2009), Murphy (2012), Barber (2012). Both
of these approaches, however, suffer from the following
disadvantages, which prevent them from scaling to large
networks and datasets; see also Thiesson, Meek, and Heck-
erman (2001). First, they are iterative, and hence may need
many passes over a potentially large dataset. Next, these al-
gorithms may get stuck in local optima, which means that,
in practice, one must run these algorithms multiple times
with different initial seeds, and hope that one of them leads
to a good optimum. Last, but not least, these methods re-
quire inference in the network, which places a hard limit
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on the networks where EM and gradient methods can even
be applied, namely for networks where exact inference is
tractable, i.e., they have small enough treewidth, or suffi-
cient local structure (Chavira & Darwiche, 2006, 2007).

Recently, Mohan, Pearl, and Tian (2013) showed that the
joint distribution of a Bayesian network is recoverable from
incomplete data, including data that falls under the clas-
sical missing at random assumption (MAR), but also for
a broad class of data that is not MAR. Their analysis is
based on a graphical representation for missing data prob-
lems, called the missingness graph, where one explicates
the causal mechanisms that are responsible for the miss-
ingness in an incomplete dataset. Using this representation,
they provide a way to decide whether a given query (e.g.,
a joint marginal) is recoverable, and if so, they provide a
closed-form expression (in terms of the observables) for an
asymptotically consistent estimate.

Building on the theoretical foundations set by Mohan et al.
(2013), we propose a family of practical and efficient al-
gorithms for estimating the parameters of a Bayesian net-
work from incomplete data. For the cases of both MCAR
and MAR data, where the missingness graph need not be
explicit, we start by deriving the closed-form parameter
estimates, as implied by Mohan et al. (2013). We next
show how to obtain better estimates, by exploiting a factor-
ized representation that allows us to aggregate distinct, yet
asymptotically equivalent estimates, hence utilizing more
of the data. We also show how to obtain improved es-
timates, when the missingness graph is only partially ex-
plicated (based on domain or expert knowledge). As in
Mohan et al. (2013), all of our estimation algorithms are
asymptotically consistent, i.e., they converge to the true pa-
rameters of a network, in the limit of infinite data.

As we show empirically, our parameter estimation algo-
rithms make learning from incomplete data viable for larger
Bayesian networks and larger datasets, that would other-
wise be beyond the scope of algorithms such as EM and
gradient methods. In particular, our algorithms (1) are non-
iterative, requiring only a single pass over the data, (2) pro-
vide estimates in closed-form, and hence do not suffer from
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Figure 1: Datasets and DAGs.

local optima, and (3) require no inference, which is the pri-
mary limiting factor for the scalability of algorithms such
as EM. We note that these advantages are also available
when learning Bayesian networks from complete data.

2 TECHNICAL PRELIMINARIES

In this paper, we use upper case letters (X) to denote vari-
ables and lower case letters (x) to denote their values. Vari-
able sets are denoted by bold-face upper case letters (X)
and their instantiations by bold-face lower case letters (x).
Generally, we will use X to denote a variable in a Bayesian
network and U to denote its parents. A network parameter
will therefore have the general form θx|u, representing the
probability Pr(X=x|U=u).

Given an incomplete dataset D, we want to learn the pa-
rameters of the Bayesian network N that the dataset orig-
inated from. This network induces a distribution Pr(X),
which is in general unknown; instead, we only have access
to the dataset D.

2.1 MISSING DATA: AN EXAMPLE

As an illustrative example, consider Figure 1(a), depicting
a dataset D, and the directed acyclic graph (DAG) G of a
Bayesian network, both over variables X and Y . Here, the
value for variable X is always observed in the data, while
the value for variable Y can be missing. In the graph, we
denote a variable that is always observed with a double-
circle. Now, if we happen to know the mechanism that
causes the value of Y to become missing in the data, we
can include it in our model, as in Figure 1(b). Here, we
use a variable RY to represent the mechanism that controls
whether the value of variable Y is missing or observed.
Further, we witness the value of Y , or its missingness,
through a proxy variable Y �, as an observation. Such a
graph, which explicates the missing data process, is called
a missingness graph.

In our example, we augmented the dataset and graph with
new variables RY , representing the causal mechanism that
dictates the missingness of the value of Y . This mechanism
can be active (Y is unobserved), denoted by RY=unob.
Otherwise, the mechanism is passive (Y is observed), de-

noted by RY=ob. Variable Y � acts as a proxy on the value
of Y , which may be an observed value y, or a special value
(mi) when the value of Y is missing. The value of Y � thus
depends functionally on variables RY and Y :

Y � = f(RY , Y ) =

�
mi if RY = unob

Y if RY = ob

That is, when RY=unob, then Y �=mi; otherwise RY=ob
and the proxy Y � assumes the observed value of Y .

X Y

Y �RXX� RY

Figure 2: An MNAR missingness graph.

Figure 2 highlights a more complex example of a missing-
ness graph, with causal mechanisms RX and RY that de-
pend on other variables. In Section 2.3, we highlight how
different missing data problems (such as MCAR and MAR)
lead to different types of missingness graphs.

2.2 LEARNING WITH MISSINGNESS GRAPHS

Given a Bayesian network with DAG G, and an incomplete
dataset D, we can partition the variables X into two sets:
the fully-observed variables Xo, and the partially-observed
variables Xm that have missing values in D. As in our ex-
ample above, one can take into account knowledge about
the processes responsible for the missingness in D. More
specifically, we can incorporate the causal mechanisms that
cause the variables Xm to have missing values, by intro-
ducing (1) variables R representing the causal mechanisms
that are responsible for missingness in the data, and (2)
variables X�

m that act as proxies to the variables Xm. This
augmented Bayesian network, which we refer to as the
missingness graph N �, has variables Xo,X

�
m,R that are

fully-observed, and variables Xm that are only partially-
observed. The missingness graph N � thus induces a distri-
bution Pr(Xo,Xm,X�

m,R). Using the missingness graph,
we want to draw conclusions about the partially-observed
variables, by reasoning about the fully-observed ones.

Missingness graphs can serve as a powerful tool for analyz-
ing missing data problems; see, e.g., Thoemmes and Mo-
han (2015), Francois and Leray (2007), Darwiche (2009),
Koller and Friedman (2009). As Mohan et al. (2013) show,
one can exploit the conditional independencies that miss-
ingness graphs encode, in order to extract asymptotically
consistent estimates for missing data problems, including
MNAR ones, whose underlying assumptions would put it
out of the scope of existing techniques.1 Mohan et al.

1Note that maximum-likelihood estimation is asymptotically
consistent, although a consistent estimator is not necessarily a
maximum-likelihood estimator; see, e.g., Wasserman (2011).



(2013) identify conditions on N � that allow the original,
partially-observed distribution Pr(Xo,Xm) to be identi-
fied from the fully-observed distribution Pr(Xo,X

�
m,R).

However, in practice, we only have access to a dataset D,
and the corresponding data distribution that it induces:

PrD(xo,x
�
m, r) = 1

ND#(xo,x
�
m, r),

where N is the number of instances in dataset D, and
where D#(x) is the number of instances where instanti-
ation x appears in the data.2 However, the data distribu-
tion PrD tends to the true distribution Pr (over the fully-
observed variables), as N tends to infinity.

Building on the theoretical foundations set by Mohan et al.
(2013), we shall propose a family of efficient and scalable
parameter estimation algorithms from incomplete data. In
essence, we will show how to query the observed data
distribution PrD, in order to make inferences about the
true, underlying distribution Pr(Xo,Xm) (in particular,
we want the conditional probabilities that parameterize the
given Bayesian network). As we shall discuss, in many
cases the missingness graph need not be explicit. In other
cases, when there is knowledge about the missingness
graph, even just partial knowledge, we can exploit it, in
order to obtain more accurate parameter estimates.

2.3 CATEGORIES OF MISSINGNESS

An incomplete dataset is categorized as Missing Com-
pletely At Random (MCAR) if all mechanisms R that cause
the values of variables Xm to go missing, are marginally
independent of X, i.e., where (Xm,Xo)⊥⊥R. This cor-
responds to a missingness graph where no variable in
Xm ∪ Xo is a parent of any variable in R. For example,
if all mechanisms R are root nodes, then the problem is
MCAR. Note that the missingness graph of Figure 1(b) im-
plies an MCAR dataset.

An incomplete dataset is categorized as Missing At Ran-
dom (MAR) if missingness mechanisms are conditionally
independent of the partially-observed variables given the
fully-observed variables, i.e., if Xm ⊥⊥R | Xo. This cor-
responds to a missingness graph where variables R are al-
lowed to have parents, as long as none of them are partially-
observed. In the example missingness graph of Figure 1(b),
adding an edge X → RY results in a graph that yields
MAR data. This is a stronger, variable-level definition
of MAR, which has previously been used in the machine
learning literature (Darwiche, 2009; Koller & Friedman,
2009), in contrast to the event-level definition of MAR that
is prevalent in the statistics literature (Rubin, 1976).

2Note that the data distribution is well-defined over the vari-
ables Xo,X

�
m and R, as they are fully-observed in the augmented

dataset, and that PrD can be represented compactly in space lin-
ear in N , as we need not explicitly represent those instantiations
x that were not observed in the data.

Table 1: Summary of Estimation Algorithms

Algorithm Description (Section Number)

D-MCAR Direct Deletion for MCAR data (3.1)
D-MAR Direct Deletion for MAR data (3.2)

F-MCAR Factored Deletion for MCAR data (3.3)
F-MAR Factored Deletion for MAR data (3.3)
I-MAR Informed Deletion for MAR data (5.1)

IF-MAR Informed Factored Deletion for MAR data (5.1)

An incomplete dataset is categorized as Missing Not At
Random (MNAR) if it is not MAR (and thus not MCAR).
For example, the DAG in Figure 2 corresponds to an
MNAR missingness graph. This is because the mechanism
RX has a partially-observed variable as a parent; further,
mechanism RY has a partially-observed parent X .

3 CLOSED-FORM LEARNING

We now present algorithms to learn the parameters of a
Bayesian network N from data D. We first consider the
classical missing data assumptions, with no further knowl-
edge about the missingness graph that generated the data.

To estimate the conditional probabilities θx|u that parame-
terize a Bayesian network, we estimate the joint distribu-
tions Pr(X,U), which are subsequently normalized, as a
conditional probability table. Hence, it suffices, for our
discussion, to estimate marginal distributions Pr(Y) for
families Y = {X} ∪ U. We let Yo = Y ∩ Xo de-
note the observed variables in Y, and Ym = Y ∩ Xm

denote the partially-observed variables. Further, we let
RZ ⊆ R denote the missingness mechanisms for the
partially-observed variables Z. Through D, we have access
to the data distribution PrD over the variables in the miss-
ingness dataset. Appendix D illustrates our learning algo-
rithms on a concrete dataset and Table 1 gives an overview
of the different estimation algorithms in this paper.

3.1 DIRECT DELETION FOR MCAR

The statistical technique of listwise deletion is perhaps the
simplest technique for performing estimation with MCAR
data: we simply delete all instances in the dataset that
contain missing values, and estimate our parameters from
the remaining dataset, which is now complete. Of course,
with this technique, we potentially ignore large parts of
the dataset. The next simplest technique is perhaps pair-
wise deletion, or available-case analysis: when estimating
a quantity over a pair of variables X and Y , we delete just
those instances where variable X or variable Y is missing.

Consider now the following, more general, deletion tech-
nique, which is expressed in the terms of causal missing-
ness mechanisms. In particular, to estimate the marginals
Pr(Y) of a set of (family) variables Y, from the data dis-



tribution PrD, we can use the estimate:

Pr(Y) = Pr(Yo,Ym|RYm
=ob) by Xo ,Xm ⊥⊥R

= Pr(Yo,Y
�
m|RYm

=ob) by Xm=X�
m when R=ob

≈ PrD(Yo,Y
�
m|RYm

=ob)

That is, we can estimate Pr(Y) by using the subset of the
data where every variable in Y is observed (which follows
from the assumptions implied by MCAR data). Since the
data distribution PrD tends to the true distribution Pr, this
implies a consistent estimate for the marginals Pr(Y). In
contrast, the technique of listwise deletion corresponds to
the estimate Pr(Y) ≈ PrD(Yo,Y

�
m|RXm

=ob), and the
technique of pairwise deletion corresponds to the above,
when Y contains two variables. To facilitate comparisons
with more interesting estimation algorithms that we shall
subsequently consider, we refer to the more general esti-
mation approach above as direct deletion.

3.2 DIRECT DELETION FOR MAR

In the case of MAR data, we cannot use the simple dele-
tion techniques that we just described for MCAR data—
the resulting estimates would not be consistent. However,
we show next that it is possible to obtain consistent esti-
mates from MAR data, using a technique that is as simple
and efficient as direct deletion. Roughly, we can view this
technique as deleting certain instances from the dataset, but
then re-weighting the remaining ones, so that a consistent
estimate is obtained. We shall subsequently show how to
obtain even better estimates by factorization.

Again, to estimate network parameters θx|u, it suffices to
show how to estimate family marginals Pr(Y), now under
the MAR assumption. Let X�

o = Xo \Yo denote the fully-
observed variables outside of the family variables Y (i.e.,
Xo = Yo ∪X�

o). We have

Pr(Y) =
�

X�
o

Pr(Yo,Ym,X�
o)

=
�

X�
o

Pr(Ym|Yo,X
�
o) Pr(Yo,X

�
o)

Hence, we reduced the problem to estimating two sets of
probabilities. Estimating the probabilities Pr(Yo,X

�
o) is

straightforward, as variables Yo and X�
o are fully observed

in the data. The conditional probabilities Pr(Ym|Yo,X
�
o)

contain partially observed variables Ym, but they are con-
ditioned on all fully observed variables Xo = Yo ∪ X�

o.
The MAR definition implies that each subset of the data
that fixes a value for Xo is locally MCAR. Like the MCAR
case, we can estimate each conditional probability as

Pr(Ym|Yo,X
�
o) = Pr(Y�

m|Yo,X
�
o,RYm

=ob).

This leads to the following estimation algorithm,

Pr(Y) ≈
�

X�
o

PrD(Y�
m|Yo,X

�
o,RYm

=ob) PrD(Yo,X
�
o)

Algorithm 1 F-MCAR(y,D)

Input:
y: A state of query variables Y
D: An incomplete dataset with data distribution PrD

Auxiliary:
CACHE: A global cache of estimated probabilities

Function:
1: if y = ∅ then return 1
2: if CACHE[y] �= nil then return CACHE[y]
3: E ← ∅ // Initialize set of estimates
4: for each y ∈ y do
5: u ← y \ {y} // Factorize with parents u
6: add PrD(y|u,Ry=ob) · F-MCAR(u,D) to E
7: CACHE[y] ←Aggregate estimates in E // E.g., mean
8: return CACHE[y]
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Figure 3: Factorization Lattice of Pr(X,Y, Z)

which uses only the fully-observed variables of the data
distribution PrD. Note that the summation requires only a
single pass through the data, i.e., for only those instantia-
tions of X�

o that appear in it. Again, PrD tends to the true
distribution Pr, as the dataset size tends to infinity, imply-
ing a consistent estimate of Pr(Y).

3.3 FACTORED DELETION

We now propose a class of deletion algorithms that exploit
more data than direct deletion. In the first step, we generate
multiple but consistent estimates for the query so that each
estimates utilizes different parts of a dataset to estimate the
query. In the second step, we aggregate these estimates to
compute the final estimate and thus put to use almost all
tuples in the dataset. Since this method exploits more data
than direct deletion, it obtains a better estimate of the query.

Factored Deletion for MCAR Algorithm 1 implements
factored deletion for MCAR. Let the query of interest be
Pr(Y), and let Y 1, Y 2, . . . , Y n be any ordering of the n



variables in Y. Each ordering yields a unique factorization:

Pr(Y) =

n�

i=1

Pr
�
Y i | Y i+1, . . . , Y n

�

We can estimate each of these factors independently, on
the subset of the data in which all of its variables are fully
observed (as in direct deletion), i.e.,

Pr(Y i|Y i+1, . . . , Y n
m) = Pr(Y i|Y i+1, . . . , Y n

m,RZi=ob)

where Zi is the set of partially-observed variables in the
factor. When |Ym| > 1, we can utilize much more data
than direct deletion. See Appendix D, for an example.

So far, we have discussed how a consistent estimate of
Pr(Y) may be computed given a factorization. Now we
shall detail how estimates from each factorization can be
aggregated to compute more accurate estimates of Pr(Y).
Let k be the number of variables in a family Y. The num-
ber of possible factorizations is k!. However, different fac-
torizations share the same sub-factors, which we can es-
timate once, and reuse across factorizations. We can or-
ganize these computations using a lattice, as in Figure 3,
which has only 2k nodes and k2k−1 edges. Our algorithm
will compute as many estimates as there are edges in this
lattice, which is only on the order of O(n log n), where n
is the number of parameters being estimated for a family
Y (which is also exponential in the number of variables k).
To emphasize the distinction with direct deletion, which
uses only those instances in the data where all variables in
Y are observed, factored deletion uses any instance in the
data where at least one variable in Y is observed.

More specifically, our factored deletion algorithm first esti-
mates the conditional probabilities on the edges of the lat-
tice, each estimate using the subset of the data where its
variables are observed. Second, it propagate the estimates,
bottom-up. For each node, there are several alternative es-
timates available, on its incoming edges. There are various
ways of aggregating these estimates, such as mean, median,
and propagating the lowest-variance estimate.3

Factored Deletion for MAR Algorithm 2 implements
factored deletion for MAR. Let Y 1

m, Y 2
m, . . . , Y n

m be any or-
dering of the n partially observed variables Ym ⊆ Y and
let X�

o = Xo \Yo denote the fully-observed variables out-
side of Y. Given an ordering, we have the factorization:

Pr(Y) =
�

X�
o

Pr(Yo,X
�
o)

n�

i=1

Pr
�
Y i
m | Zi+1

m ,Xo

�

where Zi
m =

�
Y j
m

��i ≤ j ≤ n
�

. We then proceed in a man-
ner similar to factored deletion for MCAR to estimate indi-
vidual factors and aggregate estimates to compute Pr(Y).
For equations and derivations, please see Appendix A.

3In initial experiments, all aggregations performed similarly.
Reported results use an inverse-variance weighting heuristic.

Algorithm 2 F-MAR(y,D)

Input:
y: A state of query variables Y, consisting of yo and ym

D: An incomplete dataset with data distribution PrD

Function:
1: e ← 0 // Estimated probability
2: for each xo appearing in D that agrees with yo do
3: Dxo

← subset of D where xo holds
4: e ← e+ PrD(xo) · F-MCAR(ym,Dxo)
5: return e

4 EMPIRICAL EVALUATION

To evaluate the learning algorithms we proposed, we sim-
ulate partially observed datasets from Bayesian networks,
and re-learn their parameters from the data.4

In our first sets of experiments, we compare our parame-
ter estimation algorithms with EM, on relatively small net-
works for MCAR and MAR data. These experiments are
intended to observe general trends in our algorithms, in
terms of their computational efficiency, but also in terms of
the quality of the parameter estimates obtained. Our main
empirical contributions are presented in Section 4.3, where
we demonstrate the scalability of our proposed estimation
algorithms, to larger networks and datasets, compared to
EM (even when using approximate inference algorithms).

We consider the following algorithms:

D-MCAR & F-MCAR: direct deletion and factored dele-
tion for MCAR data.

D-MAR & F-MAR: direct deletion and factored deletion
for MAR data.

EM-k-JT: EM with k random restarts, jointree inference.

F-MAR + EM-JT: EM seeded with F-MAR estimates,
jointree inference.

Remember that D-MCAR and F-MCAR are consistent for
MCAR data only, while D-MAR and F-MAR are consis-
tent for general MAR data. EM is consistent for MAR data,
but only if it converges to maximum-likelihood estimates.

We evaluate the learned parameters in terms of their like-
lihood on independently generated, fully-observed test
data, and the Kullback–Leibler divergence (KLD) between
the original and learned Bayesian networks. We report
per-instance log-likelihoods (which are divided by dataset
size). We evaluate the learned models on unseen data, so
all learning algorithms assume a symmetric Dirichlet prior

4An implementation of our system is available at http://
reasoning.cs.ucla.edu/deletion.
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Figure 4: Learning the alarm network from MCAR data.

on the network parameters with a concentration parameter
of 2 (which corresponds to Laplace smoothing).

4.1 MCAR DATA

First, we consider learning from MCAR data, evaluating
the quality of the parameters learned by each algorithm.
We simulate training sets of increasing size, from a given
Bayesian network, selecting 30% of the variables to be par-
tially observed, and removing 70% of their values com-
pletely at random. All reported numbers are averaged over
32 repetitions with different learning problems. When no
number is reported, a 5 minute time limit was exceeded.

To illustrate the trade-off between data and computational
resources, Figure 4 plots the KLDs as a function of dataset
size and time; further results are provided in Table 5 of
Appendix B. First, we note that in terms of the final esti-
mates obtained, there is no advantage in running EM with
restarts: EM-1-JT and EM-10-JT learn almost identical
models. This indicates that the likelihood landscape for
MCAR data has few local optima, and is easy to optimize.
Hence, EM may be obtaining maximum-likelihood esti-
mates in these cases. In general, maximum-likelihood esti-
mators are more statistically efficient (asymptotically) than
other estimators, i.e., they require fewer samples. However,
other estimators (such as method-of-moments) can be more
computationally efficient; see, e.g., Wasserman (2011). We
also observe this trend here. EM obtains better estimates
with smaller datasets, with smaller KLDs. However, direct
and factored deletion (D-MCAR and F-MCAR) are both
orders-of-magnitude faster, and can scale to much larger

datasets, than EM (which requires inference). Further, F-
MCAR needs only a modest amount of additional data to
obtain comparable estimates.

To compare our direct and factored methods, we see that
F-MCAR is slower than D-MCAR, as it estimates more
quantities (one for each lattice edge). F-MCAR learns bet-
ter models, however, as it uses a larger part of the available
data. Finally, D-MAR performs worse than F-MCAR and
D-MCAR, as it assumes the weaker MAR assumption. All
learners are consistent, as all KLDs converge to zero.

4.2 MAR DATA

Next, we consider the more challenging problem of learn-
ing from MAR data, which we generate as follows: (1) se-
lect an m-fraction of the variables to be partially observed,
(2) add a missingness mechanism variable RX for each
partially-observed variable X , (3) assign p parents to each
RX , randomly selected from the set of observed variables,
giving preference to neighbors of X in the network, (4)
sample parameters for the missingness mechanism CPTs
from a Beta distribution, (5) sample a complete dataset with
RX values, and (6) hide values of X accordingly.

For our first MAR experiment, we use a small network that
is tractable enough for EM to scale to large dataset sizes,
so that we can observe trends in this regime. Figure 5(a)
shows KLD for the fire alarm network, which has
only 6 variables (and hence, the complexity of inference is
negligible). The missing data mechanisms were generated
with m = 0.3, p = 2, and a Beta distribution with shape
parameters 1.0 and 0.5. All numbers are averaged over 64
repetitions with different random learning problems.5

There is a significant difference between EM, with and
without restarts, indicating that the likelihood landscape
is challenging to optimize (compared to MCAR, which
we just evaluated). EM-10-JT performs well for small
dataset sizes, but stops converging after around 1,000 in-
stances. This could be due to all restarts getting stuck in
local optima. The KLD of F-MAR starts off between EM-
1-JT and EM-10-JT for small sizes, but quickly outper-
forms EM. For the largest dataset sizes, it learns networks
whose KLD is two orders of magnitude smaller than EM-
10-JT. The KLD improves further when we use F-MAR
estimates to seed EM. This approach is on par with EM-10
for small datasets, while still converging for large dataset
sizes. However, note that using F-MAR to seed EM will not
be practical for larger networks, where inference becomes a

5On our chosen parameters: (1) the number of repetitions was
chosen to produce smooth learning curves; (2) a Beta distribution
with shape parameter 1 is uniform, and with parameter 0.5, it is
slightly biased (so that it acts more like an MAR, and less like an
MCAR, mechanism); (3) m = 0.3 corresponds to a low amount
of missing data, and later m = 0.9 corresponds to high amount;
and (4) p = 2 encourages sparsity and keeps the CPTs small,
although setting p to 1 or 3 does not change the results.
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Figure 5: Learning small, tractable Bayesian networks from MAR data. The legend is given in sub-figure (b).

bottleneck. D-MCAR and F-MCAR are not consistent for
MAR data, and indeed converge to a biased estimate with
a KLD around 0.1. Finally, we observe that the factorized
algorithms generally outperform their direct counterparts.

For our second MAR experiment, we work with the classi-
cal alarm network, which has 37 variables. The missing
data mechanisms were generated with m = 0.9, p = 2, and
a Beta distribution with shape parameters 0.5. All reported
numbers are averaged over 32 repetitions, and when no
number is reported, a 10 minute time limit was exceeded.

Figures 5(b) and 5(c) show test set likelihood as a function
of dataset size and learning time. EM-10-JT performs well
for very small dataset sizes, and again outperforms EM-
1-JT. However, inference time is non-negligible and EM-
10-JT fails to scale beyond 1,000 instances, whereas EM-
1-JT scales to 10,000 (as one would expect). The closed-
form learners dominate all versions of EM as a function
of time, and scale to dataset sizes that are two orders of
magnitude larger. EM seeded by F-MAR achieves sim-
ilar quality to EM-10-JT, while being significantly faster
than EM learners with random seeds. D-MAR and F-MAR
are more computationally efficient, and can scale to much
larger dataset sizes. Further, as seen in Figure 5(c), they
can obtain good likelihoods even before the EM methods
report their first likelihoods.

4.3 SCALING TO LARGER NETWORKS

In our last set of experiments of this section, we evaluate
our algorithms on their ability to scale to larger networks,
with higher treewidths, where exact inference is more chal-
lenging.6 Again, inference is the main factor that limits the
scalability of algorithms such as EM, to larger networks
and datasets (EM invokes inference as a sub-routine, once
per data instance, per iteration). Tables 2 & 3 report results
on four networks, where we simulated MAR datasets, as
in the previous set of experiments. Each method is given a
time limit of 5 or 25 minutes. Appendix C provides results
on additional settings. We consider the following methods:

6The grid network has 400 variables, munin1 has 189 vari-
ables, water has 32 variables, and barley has 48 variables.

EM-JT The EM-10-JT algorithm used in anytime fashion,
which returns, given a time limit, the best parameters
found in any restart, even if EM did not converge.

EM-BP A variant of EM-JT that uses (loopy) belief prop-
agation for (approximate) inference (in the E-step).

We see that EM-JT, which performs exact inference, does
not scale well to these networks. This problem is mitigated
by EM-BP, which performs approximate inference, yet we
find that it also has difficulties scaling (dashed entries in-
dicate that EM-JT and EM-BP did not finish 1 iteration of
EM). In contrast, F-MAR, and particularly D-MAR, can
scale to much larger datasets. This efficiency is due to the
relative simplicity of the D-MAR and F-MAR estimation
algorithms: they are not iterative and require only a single
pass over the data. In contrast, with EM-BP, the EM algo-
rithm is not only iterative, but the BP algorithm that EM-BP
invokes as a sub-routine, is itself an iterative algorithm. As
for accuracy, F-MAR typically obtains the best likelihoods
(in bold) for larger datasets, while EM-BP can perform bet-
ter on smaller datasets. We also evaluated D-MCAR and
F-MCAR, although they are not in general consistent for
MAR data. We find that they scale even further, and can
also produce good estimates in terms of likelihood.

5 EXPLOITING MISSINGNESS GRAPHS

We have so far made very general assumptions about the
structure of the missingness graph, capturing the MCAR
and MAR assumptions. In this section, we show how to
exploit additional knowledge about the missingness graph
to further improve the quality of our estimates. Having
deeper knowledge of the nature of the missingness mech-
anisms will even enable us to obtain consistent estimators
for datasets that are not MAR (in some cases).

5.1 INFORMED DELETION FOR MAR

Consider any MAR dataset, and a missingness graph where
each R ∈ R depends every observed variable in Xo.
This would be an MAR missingness graph that assumes



Table 2: Log-likelihoods of large networks, with higher treewidths, learned from MAR data (5 min. time limit).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR
102

G
ri

d
90

-2
0-

1 - -57.14 -80.92 -57.01 -80.80 -56.53

W
at

er

-19.10 -18.76 -25.31 -21.76 -25.29 -21.81
103 - -65.41 -38.54 -30.07 -38.27 -29.86 - -14.73 -19.13 -16.45 -18.93 -16.36
104 - - -25.95 -23.30 -25.36 -22.88 - -20.70 -16.66 -14.90 -16.33 -14.67
105 - - -22.74 -22.01 -21.60 - - - -15.49 - -14.90 -
102

M
un

in
1 - -103.72 -115.50 -105.81 -115.41 -104.87

B
ar

le
y

- -89.22 -89.54 -89.26 -89.60 -89.14
103 - -69.03 -71.01 -65.91 -70.61 -65.51 - -74.26 -71.67 -70.46 -71.68 -70.18
104 - -157.23 -56.07 -54.24 -55.46 - - - -56.44 -55.12 -56.40 -
105 - - -52.00 - - - - - - - - -

Table 3: Log-likelihoods of large networks, with higher treewidths, learned from MAR data (25 min. time limit).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR
102

G
ri

d
90

-2
0-

1 - -49.15 -80.00 -56.45 -79.81 -55.94

W
at

er

-18.88 -18.73 -25.84 -22.11 -25.87 -22.25
103 - -53.64 -38.14 -29.32 -37.75 -29.09 -17.63 -14.41 -18.39 -15.95 -18.27 -15.79
104 - -85.65 -26.21 -23.05 -25.45 -22.62 - -14.52 -15.57 -14.07 -15.24 -13.92
105 - - -22.78 -21.54 -21.60 -20.79 - -24.99 -14.17 -13.46 -13.71 -13.19
106 - - - - - - - - -13.73 - - -
102

M
un

in
1 - -99.15 -114.76 -106.07 -114.66 -105.12

B
ar

le
y

-89.05 -89.15 -89.57 -89.17 -89.62 -89.03
103 - -67.85 -74.18 -67.81 -73.82 -67.39 - -70.38 -71.86 -70.54 -71.87 -70.27
104 - -66.62 -57.50 -54.94 -56.96 -54.64 - -76.48 -56.37 -55.13 -56.33 -
105 - - -53.07 -51.66 -52.27 - - - -51.31 - -51.19 -

the least, in terms of conditional independencies, about the
causal mechanisms R. If we know more about the nature of
the missingness (i.e., the variables that the R depend on),
we can exploit this to obtain more accurate estimates. Note
that knowing the parents of an R is effectively equivalent to
knowing the Markov blanket of R (Pearl, 1987), which can
be learned from data (Tsamardinos, Aliferis, Statnikov, &
Statnikov, 2003; Yaramakala & Margaritis, 2005). With
sufficient domain knowledge, an expert may be able to
specify the parents of the R. It suffices even to identify
a set of variables that just contains the Markov blanket.

Suppose that we have such knowledge of the missing data
mechanisms of an MAR problem, namely that we know
the subset Wo of the observed variables Xo that suffice to
separate the missing values from their causal mechanisms,
i.e., where Xm ⊥⊥R | Wo. We can exploit this knowl-
edge in our direct deletion algorithm, to obtain improved
parameter estimates. In particular, we can reduce the scope
of the summation in our direct deletion algorithm from the
variables X�

o (the set of variables in Xo that lie outside the
family Y), to the variables W�

o (the set of variables in Wo

that lie outside the family Y), yielding the algorithm:

Pr(Y)

≈
�

W�
o

PrD(Y�
m|Yo,W

�
o,RYm

=ob) PrD(Yo,W
�
o)

Again, we need only consider, in the summation, the in-
stantiations of W�

o that appear in the dataset.

Table 4: alarm network with Informed MAR data

Size F-MCAR D-MAR F-MAR ID-MAR IF-MAR
Kullback-Leibler Divergence

102 1.921 2.365 2.364 2.021 2.011
103 0.380 0.454 0.452 0.399 0.375
104 0.073 0.071 0.072 0.059 0.053
105 0.041 0.021 0.022 0.011 0.010
106 0.040 0.006 0.008 0.001 0.001

Test Set Log-Likelihood (Fully Observed)
102 -11.67 -12.13 -12.13 -11.77 -11.76
103 -10.40 -10.47 -10.47 -10.42 -10.40
104 -10.04 -10.04 -10.04 -10.02 -10.02
105 -10.00 -9.98 -9.98 -9.97 -9.97
106 -10.00 -9.97 -9.97 -9.96 -9.96

We refer to this algorithm as informed direct deletion. By
reducing the scope of the summation, we need to estimate
fewer sub-terms PrD(Y�

m|Yo,W
�
o,RYm=ob). This re-

sults in a more efficient computation, but further, each in-
dividual sub-expression can be estimated on more data.
Moreover, our estimates remain consistent. We can simi-
larly replace Xo by Wo in the factored deletion algorithm,
to obtain an informed factored deletion algorithm.

Empirical Evaluation Here, we evaluate the benefits of
informed deletion. In addition to the MAR assumption,
with this setting, we assume that we know the set of par-
ents Wo of the missingness mechanism variables. To gen-



erate data for such a mechanism, we select a random set
of s variables to form Wo. We further employ the sam-
pling algorithm previously used for MAR data, but now
insist that the parents of R variables come from Wo. Ta-
ble 4 shows likelihoods and KLDs on the alarm network,
for s = 3, and other settings as in the MAR experiments.
Informed D-MAR (ID-MAR) and F-MAR (IF-MAR) con-
sistently outperform their non-informed counterparts.

5.2 LEARNING FROM MNAR DATA

A missing data problem that is not MAR is classified as
MNAR. Here, the parameters of a Bayesian network may
not even be identifiable. Further, maximum-likelihood es-
timation is in general not consistent, so EM and gradient
methods can yield biased estimates. However, if one knows
the mechanisms that dictate missingness (in the form of
a missingness graph), it becomes possible again to obtain
consistent estimates, in some cases (Mohan et al., 2013).

For example, consider the missingness graph of Figure 2,
which is an MNAR problem, where both variables X and Y
are partially observed, and the missingness of each variable
depends on the value of the other. Here, it is still possible
to obtain consistent parameter estimates, as Pr(X,Y ) =

Pr(RX=ob, RY=ob) Pr(X�, Y �|RX=ob, RY=ob)

Pr(RX=ob|Y �, RY=ob) Pr(RY=ob|X�, RX=ob)

For a derivation, see Mohan et al. (2013). Such derivations
for recovering queries under MNAR are extremely sensi-
tive to the structure of the missingness graph. Indeed, the
class of missingness graphs that admit consistent estima-
tion has not yet been fully characterized.

6 RELATED WORK

When estimating the parameters of a Bayesian network,
maximum-likelihood (ML) estimation is the typical ap-
proach, where for incomplete data, the common wisdom
among machine learning practitioners is that one needs
to use Expectation-Maximization (EM) or gradient meth-
ods (Dempster, Laird, & Rubin, 1977; Lauritzen, 1995);
see also, e.g., Darwiche (2009), Koller and Friedman
(2009), Murphy (2012), Barber (2012). Again, such meth-
ods do not scale to large datasets or large networks as (1)
they are iterative, (2) they suffer from local optima, and
most notably, (3) they require inference in a Bayesian net-
work. Considerable effort has been expended in improving
on EM across these dimensions, in order to, for example,
(1) accelerate the convergence of EM, and to intelligently
sample subsets of a dataset, e.g., Thiesson et al. (2001),
(2) escape local optima, e.g., (Elidan, Ninio, Friedman, &
Shuurmans, 2002), and (3) use approximate inference algo-
rithms in lieu of exact ones when inference is intractable,
e.g., Ghahramani and Jordan (1997), Caffo, Jank, and Jones

(2005). Further, while EM is suitable for data that is MAR
(the typical assumption in practice), there are some excep-
tions, such as work on recommender systems that explicitly
incorporate missing data mechanisms (Marlin & Zemel,
2009; Marlin, Zemel, Roweis, & Slaney, 2007, 2011).

In the case of complete data, the parameter estimation task
simplifies considerably, in the case of Bayesian networks:
maximum-likelihood estimates can be obtained inference-
free and in closed-form, using just a single pass over the
data: θx|u = PrD(x|u). In fact, the estimation algorithms
that we proposed in this paper also obtain the same param-
eter estimates in the case of complete data, although we are
not concerned with maximum-likelihood estimation here—
we simply want to obtain estimates that are consistent (as
in estimation by the method of moments).

Other inference-free estimators have been proposed for
other classes of graphical models. Abbeel, Koller, and
Ng (2006) identified a method for closed-form, inference-
free parameter estimation in factor graphs of bounded de-
gree from complete data. More recently, Halpern and Son-
tag (2013) proposed an efficient, inference-free method
for consistently estimating the parameters of noisy-or net-
works with latent variables, under certain structural as-
sumptions. From the perspective of maximum-likelihood
learning, where evaluating the likelihood (requiring infer-
ence) seems to be unavoidable, the ability to consistently
estimate parameters—without the need for inference—
greatly extends the accessibility and utility of such mod-
els. For example, it opens the door to practical structure
learning algorithms, under incomplete data, which is a no-
toriously difficult problem in practice (Abbeel et al., 2006;
Jernite, Halpern, & Sontag, 2013).

7 CONCLUSIONS

In summary, we proposed a family of efficient and scal-
able algorithms for learning the parameters of Bayesian
networks, from MCAR and MAR datasets, and sometimes
MNAR datasets. Our parameter estimates are asymptoti-
cally consistent, and further, they are obtained inference-
free and in closed-form. We further introduced and dis-
cussed some improved approaches for parameter estima-
tion, when given additional knowledge of the missingness
mechanisms underlying an incomplete dataset. Empiri-
cally, we demonstrate the practicality of our method, show-
ing that it can scale to much larger datasets, and much
larger Bayesian networks, than EM.
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