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Abstract

Transfer learning (sometimes also referred to
as domain-adaptation) algorithms are often used
when one tries to apply a model learned from a
fully labeled source domain, to an unlabeled tar-
get domain, that is similar but not identical to
the source. Previous work on covariate shift fo-
cuses on matching the marginal distributions on
observations X across domains while assuming
the conditional distribution P (Y |X) stays the
same. Relevant theory focusing on covariate shift
has also been developed. Recent work on trans-
fer learning under model shift deals with differ-
ent conditional distributions P (Y |X) across do-
mains with a few target labels, while assuming
the changes are smooth. However, no analysis
has been provided to say when these algorithms
work. In this paper, we analyze transfer learn-
ing algorithms under the model shift assumption.
Our analysis shows that when the conditional dis-
tribution changes, we are able to obtain a general-
ization error bound of O( 1

λ∗
√
nl

) with respect to
the labeled target sample size nl, modified by the
smoothness of the change (λ∗) across domains.
Our analysis also sheds light on conditions when
transfer learning works better than no-transfer
learning (learning by labeled target data only).
Furthermore, we extend the transfer learning al-
gorithm from a single source to multiple sources.

1 INTRODUCTION

In a classical transfer learning setting (see Fig. 1), we have
a source domain with sufficient fully labeled data, and a tar-
get domain with data that has little or no labels. These two
domains are related but not identical, and the usual assump-
tion is that there is some knowledge that can be transferred
from the source domain to the target domain. Examples of
transfer learning applied in the real-world include, adapting

classification models for different products, and transfer-
ring across diseases on medical data (Pan et al. (2009)). A
number of different transfer learning techniques have been
introduced in the past, e.g., algorithms dealing with covari-
ate shift (Shimodaira (2000), Huang et al. (2007), Gretton
et al. (2007)). Related theoretical analyses on covariate
shift have also been developed, e.g., for sample size m in
the source domain and sample size n in the target domain,
the analysis of Mansour et al. (2009) achieves a rate of
O(m−1/2 +n−1/2), and convergence of reweighted means
in feature space achieves rate O((1/m+ 1/n)1/2) (Huang
et al. (2007)).
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Figure 1: Transfer learning example: m source data points
{Xs, Y s} (red), n target data points {Xt, Y t} (blue), and
nl labeled target points (solid blue circles). HereX denotes
the input features and Y denotes the output labels.

However, not much work on transfer learning has con-
sidered the case when a few labels in the target domain
are available. Also little work has been done when con-
ditional distributions are allowed to change (defined as
model shift). Recently, algorithms dealing with trans-
fer learning under model shift have been proposed, where
the changes on conditional distributions are assumed to be
smooth (Wang et al. (2014)). However, no theoretical anal-
ysis has been provided for these approaches.

In this paper, we develop theoretical analysis for transfer
learning algorithms under the model shift assumption. Our
analysis shows that even when the conditional distributions
are allowed to change across domains, we are still able to
obtain a generalization bound of O( 1

λ∗
√
nl

) with respect to



the labeled target sample size nl, modified by the smooth-
ness of the transformation parameters (λ∗) across domains.
Our analysis also sheds light on conditions when transfer
learning works better than no-transfer learning. We show
that under certain smoothness assumptions it is possible to
obtain a favorable convergence rate with transfer learning
compared to no transfer at all. Furthermore, using the gen-
eralization bounds we derived in this paper, we are able to
extend the transfer learning algorithm from a single source
to multiple sources, where each source is assigned a weight
that indicates how helpful it is for transferring to the target.

We illustrate our theoretical results by empirical compar-
isons on both synthetic data and real-world data. Our re-
sults demonstrate cases where we obtain the same rate as
no-transfer learning, and cases where we obtain a favor-
able rate with transfer learning under certain smoothness
assumptions, which coincide with our theoretical analysis.
In addition, experiments on the real data show that our al-
gorithm for reweighting multiple sources yields better re-
sults than existing state-of-the-art algorithms.

2 RELATED WORK

Traditional methods for transfer learning use relatively re-
strictive assumptions, where specific parts of the learn-
ing model are assumed to be carried over between tasks.
For example, Mihalkova et al. (2007) transfers relational
knowledge across domains using Markov logic networks.
Niculescu-Mizil & Caruana (2007) learns Bayes Net struc-
tures by biasing learning toward similar structures for each
task. Do & Ng (2005) and Raina et al. (2006) assume that
models for related tasks share same parameters or prior dis-
tributions of hyperparameters.

A large part of transfer learning work is devoted to the
problem of covariate shift (Shimodaira (2000), Huang et
al. (2007), Gretton et al. (2007)), where the assumption
is that only the marginal distribution P (X) differs across
domains but the conditional distribution P (Y |X) stays the
same. The kernel mean matching (KMM) method (Huang
et al. (2007), Gretton et al. (2007)), is one of the algorithms
that deal with covariate shift. Huang et al. (2007) proved
the convergence of reweighted means in the feature space,
and showed that their method results in almost unbiased
risk estimates. More recent research (Zhang et al. (2013))
focused on modeling target shift (P (Y ) changes), condi-
tional shift (P (X|Y ) changes), and a combination of both.
The assumption for target shift is that X depends causally
on Y , thus P (Y ) can be re-weighted to match the distri-
butions on X across domains. The authors also provided
some theoretical analysis of the conditions when P (X|Y )
is identifiable. Both covariate shift and target/conditional
shift make no use of target labels Y t, even if some are avail-
able. For transfer learning under model shift, there could be
a difference in P (Y |X) that can not simply be captured by

the differences in P (X), hence neither covariate shift nor
target/conditional shift will work well under the model shift
assumption.

A number of theoretical analyses on domain adaptation
have also been developed. Ben-David et al. (2006)
presented VC-dimension-based generalization bounds for
adaptation in classification tasks. Later Blitzer et al. (2007)
extended the work with a bound on the error rate under a
weighted combination of the source data. Mansour et al.
(2009) introduced a discrepancy distance suitable for arbi-
trary loss functions and derived new generalization bounds
for domain adaptation for a wide family of loss functions.
However, most of the work mentioned above deals with
domain adaptation under the covariate shift assumption,
which means they still assume the conditional distribution
stays the same across domains, or the labeling functions in
the two domains share strong proximity in order for adapta-
tion to be possible. For example, one of the bounds derived
in Mansour et al. (2009) has a term L(h∗Q, h

∗
P ) related to

the average loss between the minimizer h∗Q in the source
domain and the minimizer h∗P in the target domain, which
could be fairly large when there exists a constant offset be-
tween the two labeling functions.

In Wang et al. (2014), the authors proposed a transfer learn-
ing algorithm to handle the general case where P (Y |X)
changes smoothly across domains. However, the authors
fail to make explicit connections between the smooth-
ness assumption and the generalization bounds for transfer
learning. They do not show whether the performance will
degrade when the smoothness assumption is relaxed, and
whether the smoothness assumption yields a lower general-
ization error for transfer learning than no-transfer learning.

Similarly, most work in transfer learning with multiple
sources focuses only on P (X). For example, Mansour et
al. (2008) proposed a distribution weighted combining rule
of source hypotheses using the input distribution P (X) for
both source and target. This approach requires estimat-
ing the distribution Di(x) of source i on a target point x
from large amounts of unlabeled points typically available
from the source, which might be difficult in real applica-
tions with high-dimensional features. Other existing work
focuses on finding the set of sources that are closely re-
lated to the target (Crammer et al. (2008)), or a reweight-
ing of sources based on prediction errors (Yao and Doretto,
(2010)). Chattopadhyay et al. (2011) proposed a condi-
tional probability based weighting scheme under a joint
optimization framework, which leads to a reweighting of
sources that prefers more consistent predictions on the tar-
get. However, these existing approaches do not consider
the problem that there might exist shifts in the conditional
distribution from source to the target, and how the smooth-
ness of this shift can help in learning the target, which is
the main issue addressed in this paper.



3 TRANSFER LEARNING UNDER
MODEL SHIFT: A REVIEW OF THE
ALGORITHMS

Notation: Let X ∈ Rd and Y ∈ R be the input and
output space for both the source and the target domain.
We are given a set of m labeled data points, (xsi , y

s
i ) ∈

(Xs, Y s), i = 1, . . . ,m, from the source domain. We are
also given a set of n target data points, Xt, from the tar-
get domain. Among these we have nl labeled target data
points, denoted as (XtL, Y tL). The unlabeled part of Xt

is denoted as XtU , with unknown labels Y tU . For sim-
plicity let z ∈ Z = X × Y denote the pair of (x, y), and
we use zs, zt, ztL for the source, target, and labeled target,
correspondingly. We assume Xs, Xt are drawn from the
same P (X) throughout the paper since we focus more on
P (Y |X)1. If necessary P (X) can be easily matched by
various methods dealing with covariate shift (e.g. Kernel
Mean Matching) without the use of Y .

Let H be a reproducing kernel Hilbert space with kernel
K such that K(x, x) ≤ κ2 < ∞ for all x ∈ X . Let
||.||k denote the corresponding RKHS norm. Let φ denote
the feature mapping on x associated with kernel K, and
Φ(X) denote the matrix where the i-th column is φ(xi).
Denote KXX′ as the kernel computed between matrix X
and X ′, i.e., Kij = k(xi, x

′
j). When necessary, we use

ψ to denote the feature map on y, and the corresponding
matrix as Ψ(Y ). For a hypothesis h ∈ H, assume that
|h(x)| ≤ M for some M > 0. Also assume bounded label
set |y| ≤M . We use `2 loss as the loss function l(h(x), y)
throughout this paper, which is σ-admissible, i.e.,

∀x, y,∀h, h′, |l(h(x), y)− l(h′(x), y)| ≤ σ|h(x)− h′(x)|.
(1)

It is easy to see that σ = 4M for bounded h(x) and y. Note
the loss function is also bounded, l(h(x), y) ≤ 4M2.

Next we will briefly review two algorithms introduced in
Wang et al. (2014) that handle transfer learning under
model shift: the first is conditional distribution matching,
and the second is two-stage offset estimation.

(1) Conditional Distribution Matching (CDM).

The basic idea of CDM is to match the conditional distribu-
tions P (Y |X) for the source and the target domain. Since
there is a difference in P (Y |X) across domains, these
two conditional distributions cannot be matched directly.
Therefore, the authors propose to make a parameterized-
location-scale transform on the source labels Y s:

Y new = Y s �w(Xs) + b(Xs),

where w denotes the scale transform, b denotes the loca-
tion transform, and� denotes the Hadamard (elementwise)

1This assumption is only required in our analysis for simplic-
ity. It can be relaxed when applying the algorithms.

P(Ynew|Xs)

P(Ys|Xs)

P(YtL|XtL)≈

Figure 2: Illustration of the conditional distribution match-
ing algorithm: red (source), blue (target).

product. w and b are non-linear functions of X which al-
lows a non-linear transform from Y s to Y new.

The objective is to use the transformed conditional distri-
bution in the source domain P (Y new|Xs), to match the
conditional distribution in the target domain, P (Y tL|XtL),
such that the transformation parameter w and b can be
learned through optimization. The matching on P (Y |X) is
achieved by minimizing the discrepancy of the mean em-
bedding of P (Y |X) with a regularization term:

min
w,b

L+ Lreg,where

L = ||Û [PY new|Xs ]− Û [PY tL|XtL ]||2k,
Lreg = λreg(||w − 1||2 + ||b||2),

(2)

where U [PY |X ] is the mean embedding of the conditional
distribution P (Y |X) (Song et al. (2009)), and Û [PY |X ]
is the empirical estimation of U [PY |X ] based on samples
X,Y . Further the authors make a smoothness assumption
on the transformation, i.e., w,b are parameterized using:
w = Rg,b = Rh, whereR = KXsXs(KXsXs +λRI)−1,
and g,h ∈ Rm×1 are the new parameters to optimize
in the objective. After obtaining g,h (or equivalently
w,b), Y new is computed based on the transformation. Fi-
nally the prediction on XtU is based on the merged data:
(Xs, Y new) ∪ (XtL, Y tL).

Fig 2 shows an illustration of the conditional distribu-
tion matching algorithm. As we can see from the figure,
Y s is transformed to Y new such that P (Y new|Xs) and
P (Y tL|XtL) can be approximately matched together.

Remark. Here we analyze what happens when the smooth-
ness assumption is relaxed. It is easy to derive that, when
setting w = 1,b = 0, we can directly solve for Y new by
taking the derivative of Lwith respect to Y new, and we get:

KXsXs(KXsXs + λI)−1Y new

= KXsXtL(KXtLXtL + λI)−1Y tL,
(3)

where λ is some regularization parameter to make sure the
kernel matrix is invertible. In other words, the smoothed
Y new is given by the prediction on the source using only
labeled target data. Hence Y new provides no extra infor-
mation for prediction on the target, compared with using
the labeled target data alone.



(2) Two-stage Offset Estimation (Offset).

The idea of Offset is to model the target function f t using
the source function fs and an offset, fo = f t − fs, while
assuming that the offset function is smoother than the target
function. Specifically, using kernel ridge regression (KRR)
to estimate all three functions, the algorithm works as fol-
lows:
(1) Model the source function using the source data, i.e.,
fs(x) = KxXs(KXsXs + λI)−1Y s.
(2) Model the offset function by the difference between
the true target labels and the predicted target labels, i.e.,
fo(XtL) = Y tL − fs(XtL).
(3) Transform Y s to Y new by adding the offset,
i.e., Y new = Y s + fo(Xs), where fo(Xs) =
KXsXtL(KXtLXtL + λI)−1fo(XtL).
(4) Train a model on {Xs, Y new} ∪ {XtL, Y tL}, and use
the model to make predictions on XtU .

We would like to answer: under what conditions these
transfer learning algorithms will work better than no-
transfer learning, and how the smoothness assumption af-
fects the generalization bounds for these algorithms.

4 ANALYSIS OF CONDITIONAL
DISTRIBUTION MATCHING

In this section, we analyze the generalization bound for the
conditional distribution matching (CDM) approach.

4.1 RISK ESTIMATES FOR CDM

We use stability analysis on the algorithm to estimate the
generalization error. First we have:

Theorem 1. (Bousquet & Elisseeff (2002), Theorem 12
and Example 3) Consider a training set S = {z1 =
(x1, y1), ..., zm = (xm, ym)} drawn i.i.d. from an un-
known distribution D. Let l be the `2 loss function which is
σ-admissible with respect to H, and l ≤ 4M2. The Kernel
Ridge Regression algorithm defined by:

AS = arg min
h∈H

1

m

m∑
i=1

l(h, zi) + λ||h||2k

has uniform stability β with respect to l with β ≤ σ2κ2

2λm .

In addition, let R = Ez[l(AS , z)] be the generalization er-
ror, and Remp = 1

m

∑m
i=1 l(AS , zi) be the empirical error,

then the following holds with probability at least 1− δ,

R ≤ Remp +
σ2κ2

λm
+ (

2σ2κ2

λ
+ 4M2)

√
ln(1/δ)

2m
.

In CDM, the prediction on the unlabeled target data points
is given by merging the transformed source data and the
labeled target data, i.e., (Xs, Y new) ∪ (XtL, Y tL). Hence

we need to bound the difference between the empirical er-
ror on the merged data and the generalization error (risk) in
the target domain.

Denote z̃i = (x̃i, ỹi) ∈ (X̃, Ỹ ), where X̃, Ỹ represents the
merged data: X̃ = Xs ∪ XtL, Ỹ = Y new ∪ Y tL. Let
h∗ ∈ H be the minimizer on the merged data, i.e.,

h∗ = arg min
h∈H

1

m+ nl

m+nl∑
i=1

l(h, z̃i) + λ||h||2k.

Then the following theorem holds:

Theorem 2. Assume the conditions in Theorem 1 hold.
Also assume ||Û [PY new|Xs ]−Û [PY tL|XtL ]||k ≤ ε after we
optimize objective Eq. 2. The following holds with proba-
bility at least 1− δ:

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)− Ezt [l(h∗, zt)]|

≤ 4M(εκ+ C(λ1/2c + (nlλc)
−1/2))+

σ2κ2

λt(m+ nl)
+ (

2σ2κ2

λt
+ 4M2)

√
ln(1/δ)

2(m+ nl)
,

where λc is the regularization parameter used in estimating
Û [PY tL|XtL ] = Ψ(Y tL)(KXtLXtL + λcnlI)−1Φ>(XtL),
and λt is the regularization parameter when estimating the
target function. C > 0 is some constant.

Proof. Let z̄i = (x̄i, ȳi) ∈ (X̄, Ȳ ), where X̄, Ȳ are the
auxiliary samples with X̄ = Xs ∪ XtL, Ȳ = Ȳ ts ∪ Y tL,
where Ȳ ts are pseudo labels in the target domain for the
source data points Xs. Using triangle inequality we can
decompose the LHS by:

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)− Ezt [l(h∗, zt)]|

≤ | 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)|

+ | 1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)− Ezt [l(h∗, zt)]|

The second term is easy to bound since it is simply the dif-
ference between the empirical error and the generalization
error in the target domain with effective sample size nl+m,
thus using Theorem 1, we have

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)− Ezt [l(h, zt)]|

≤ σ2κ2

λt(m+ nl)
+ (

2σ2κ2

λt
+ 4M2)

√
ln(1/δ)

2(m+ nl)
.

(4)



To bound the first term, we have

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)|

≤ 1

m+ nl

m+nl∑
i=1

|l(h∗, z̃i)− l(h∗, z̄i)|

≤ 1

m+ nl

m∑
i=1

4M |ynewi − U [PY t|Xt ]φ(xsi )|

≤ 4M

m+ nl

m∑
i=1

(|Û [PY new|Xs ]φ(xsi )− Û [PY tL|XtL ]φ(xsi )|

+ |Û [PY tL|XtL ]φ(xsi )− U [PY t|Xt ]φ(xsi )|)

≤ 4M

m+ nl

m∑
i=1

(||Û [PY new|Xs ]− Û [PY tL|XtL ]||k
√
k(x, x)

+ |Û [PY tL|XtL ]φ(xsi )− U [PY t|Xt ]φ(xsi )|)

≤ 4M(εκ+ C(λ1/2c + (nlλc)
−1/2)),

(5)

where in the last inequality, the second term is bounded
using Theorem 6, Song et al. (2009).

Now combining Eq. 5 and Eq. 4 concludes the proof.

4.2 TIGHTER BOUNDS UNDER SMOOTH
PARAMETERIZATION

Theorem 2 suggests that using CDM, the empirical risk
converges to the expected risk at a rate of

O(λ1/2c + (nlλc)
−1/2 + λ−1t (m+ nl)

−1/2). (6)

In the following, we show how the smoothness parameter-
ization in CDM helps us obtain faster convergence rates.

Under the smoothness assumption on the transformation,
w,b are parameterized using: w = Rg,b = Rh, where
R = KXsXs(KXsXs +λRI)−1. For simplicity we assume
the same λR for both w and b. Similar to the derivation in
Eq. 5, we have

|ynewi − U [PY t|Xt ]φ(xsi )|
= |Û [PY new|Xs ]φ(xsi )− Û [PY tL|XtL ]φ(xsi )|

+ |Û [PY tL|XtL ]φ(xsi )− U [PY t|Xt ]φ(xsi )|)

≤ εκ+ |Û [PwtL|XtL ]φ(xsi )− U [Pwt|Xt ]φ(xsi )| · |ysi |

+ |Û [PbtL|XtL ]φ(xsi )− U [Pbt|Xt ]φ(xsi )|

≤ εκ+ C1(λ
1/2
R + (nlλR)−1/2)M + C2(λ

1/2
R + (nlλR)−1/2)

≤ εκ+ C ′(λ
1/2
R + (nlλR)−1/2).

(7)

Hence we can update the bound in Eq. 5 by:

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)|

≤ 4M(εκ+ C ′(λ
1/2
R + (nlλR)−1/2)).

(8)

It is easy to see that Eq. 4 remains the same. Hence, the
rate for CDM under the smooth parametrization is:

O(λ
1/2
R + (nlλR)−1/2 + λ−1t (m+ nl)

−1/2). (9)

In transfer learning we usually assume the number of
source data is sufficient, i.e., m → ∞. Comparing Eq. 9
with Eq. 6 we can see that, when the number of labeled
points nl is small, the term (nlλc)

−1/2 in Eq. 6 and the
term (nlλR)−1/2 in Eq. 9 take over. If we further assume
that the transformation w and b are smoother functions
with respect to X than the target function with respect to
X , i.e., λR > λc, then Eq. 9 is more favorable. On the
other hand, when the number of labeled target points nl is
large enough for the first term λ

1/2
c in Eq. 6 and the first

term λ
1/2
R in Eq. 9 to take over, then it is reasonable to use

a λR closer to λc to get a similar convergence rate as in
Eq. 6. Intuitively, when the number of labeled target points
is large enough, it is not very helpful to transfer from the
source for target prediction.

Remark. Note that in Eq. 6 and Eq. 9, an ideal choice of λ
close to 1/

√
nl can minimize λ1/2 + (nlλ)−1/2. However,

note that the generalization bound is the difference between
the expected risk R and the empirical risk Remp, and a λ
that minimizes the generalization bound does not necessar-
ily minimize the expected risk R, since the empirical risk
Remp (which is also affected by λ) can still be large. To
obtain a relatively small empirical risk, λ should be deter-
mined by the smoothness of the offset/target function, since
it is the regularization parameter when estimating the off-
set/target. In practice λ is chosen by cross validation on the
labeled data, and is not necessarily close to 1/

√
nl. For ex-

ample, on real data we find that λ is usually chosen to be in
the range of 1e− 2 to 1e− 4 to accommodate a fairly wide
range of functions, which makes the second term 1/

√
nlλ

dominate the risk if nl is much smaller than 1e4.

4.2.1 Connection with Domain Adaptation Learning
Bounds

In Mansour et al. (2009), the authors provided several
bounds on the pointwise difference of the loss for two dif-
ferent hypothesis (Theorem 11, 12 and 13). It is worth not-
ing that in order to bound the pointwise loss, the authors
make the following assumptions when the labeling func-
tion fS (source) and fT (target) are potentially different:

δ2 = LŜ(fS(x), fT (x))� 1,



where LŜ(fS(x), fT (x)) = EŜ(x)l(fS(x), fT (x)). This
condition is easily violated under the model shift assump-
tion, where the two labeling functions can differ by a large
margin. However, with our transformation from Y s to
Y new, we can translate the above assumption to the fol-
lowing equivalent condition:

δ2 = LŜ(Y new, fT (x)) =
1

m

m∑
i=1

(ynewi − U [PY t|Xt ]φ(xsi ))
2

≤ (εκ+ C ′(λ
1/2
R + (nlλR)−1/2))2,

using the results in Eq. 7. Hence we can bound δ2 to be
small under reasonable assumptions on nl and λR.

4.2.2 Comparing with No-transfer Learning

Without transfer, which means we predict on the unlabeled
target set based merely on the labeled target set, the gen-
eralization error bound is simply: | 1nl

∑nl

i=1 l(h
tL, ztLi ) −

Ezt [l(h
tL, zt)]| ≤ σ2κ2

λtnl
+( 2σ2κ2

λt
+4M2)

√
ln(1/δ)
2nl

, where

htL is the KRR minimizer on {XtL, Y tL}. Then

Ezt [l(h
tL, zt)]− 1

nl

nl∑
i=1

l(htL, ztLi ) = O(
1

λt
√
nl

). (10)

We can see that with transfer learning, first we obtain a
faster rate O(λ−1t (m + nl)

−1/2) in Eq. 9 with effective
sample size nl + m than O(λ−1t n

−1/2
l ) in Eq. 10 with ef-

fective sample size nl. However, the transfer-rate Eq. 9
comes with a penalty term O(λ

1/2
R + (nlλR)−1/2) which

captures the estimation error between the transformed la-
bels and the true target labels. Again, in transfer learning
usually we assumem→∞, and nl is relatively small, then
the transfer-rate becomes O((nlλR)−1/2). Further if we
assume that the smoothness parameter λR for the transfor-
mation is larger than the smoothness parameter λt for the
target function (λR > λt will be sufficient if λR < 1, oth-
erwise we need to set λR > λ2t if λR ≥ 1), then we obtain
a faster convergence rate with transfer than no-transfer. We
will further illustrate the results by empirical comparisons
on synthetic and real data in the experimental section.

5 ANALYSIS ON THE OFFSET METHOD

In this section, we analyze the generalization error on the
two-stage offset estimation (Offset) approach. Interest-
ingly, our analysis shows that the generalization bounds for
offset and CDM have the same dependency on nl.

5.1 RISK ESTIMATES FOR OFFSET

(1) First, we learn a model from the source domain by min-
imizing the squared loss on the source data, i.e.,

hs = arg min
h∈H

1

m

m∑
i=1

l(h, zsi ) + λs||h||2k.

Using Theorem 1, we have with probability at least 1− δ,

Rs ≤ Rsemp +
σ2κ2

λsm
+ (

2σ2κ2

λs
+ 4M2)

√
ln(1/δ)

2m
,

where Rs = Ezs [l(hs, zs)], Rsemp = 1
m

∑m
i=1 l(h

s, zsi ).
Hence

Rs −Rsemp = O(
1

λs
√
m

), (11)

(2) Second, we learn the offset by KRR on {XtL, ŷo},
where ŷo = Y tL− fs(XtL), i.e., ŷo is the estimated offset
on labeled target pointsXtL, and fs(XtL) is the prediction
on XtL using source data.

Denote ĥo as the minimizer on ẑo = {XtL, ŷo}, i.e.,

ĥo = arg min
h∈H

1

nl

nl∑
i=1

l(h, ẑoi ) + λo||h||2k

= arg min
h∈H

R(h) +N(h).

(12)

Denote ho as the minimizer on zo = {XtL, yo}, where yo

is the unknown true offset:

ho = arg min
h∈H

1

nl

nl∑
i=1

l(h, zoi ) + λo||h||2k

= arg min
h∈H

R′(h) +N(h),

(13)

Using Theorem 1, we have with probability at least 1− δ,

Ro ≤ Roemp +
σ2κ2

λonl
+ (

2σ2κ2

λo
+ 4M2)

√
ln(1/δ)

2nl
(14)

where Ro = Ezo [l(ho, zo)], Roemp = 1
nl

∑nl

i=1 l(h
o, zoi ).

In our estimation we use ŷo instead of yo, hence we need
to account for this estimation error.

Lemma 1. The generalization error Ro is bounded by:

Ro = R̄oemp +O(
1

λo
√
nl

), (15)

as m→∞. Here R̄oemp = 1
nl

∑nl

i=1 l(ĥ
o, ẑoi ) is the empir-

ical error of our estimator ĥo on {XtL, ŷo}.

Proof. Define the Bregman Divergence associated to F of
f to g by BF (f ||g) = F (f)−F (g)− < f − g,∇F (g) >.
Let F (h) = R(h) + N(h), F ′(h) = R′(h) + N(h).
Since ho, ĥo are the minimizers, we have BF ′(ĥo||ho) +

BF (ho||ĥo) = F ′(ĥo) − F ′(ho) + F (ho) − F (ĥo) =

R′(ĥo) − R′(ho) + R(ho) − R(ĥo). In addition, us-
ing the nonnegativity of B and BF = BR + BN ,
BF ′ = BR′ +BN , we have BN (ĥo||ho) +BN (ho||ĥo) ≤
BF (ho||ĥo) + BF ′(ĥ

o||ho). Combining the two we
have BN (ĥo||ho) + BN (ho||ĥo) ≤ R′(ĥo) − R′(ho) +



R(ho)−R(ĥo) = 1
nl

∑nl

i=1 l(ĥ
o, zoi )− 1

nl

∑nl

i=1 l(h
o, zoi )+

1
nl

∑nl

i=1 l(h
o, ẑoi )− 1

nl

∑nl

i=1 l(ĥ
o, ẑoi ) ≤ 2

nl

∑nl

i=1 σ|yoi −
ŷoi |, using |l(ĥo, zoi ) − l(ĥo, ẑoi )| ≤ |2ĥo(xi) − yoi − ŷoi | ·
|yoi − ŷoi | ≤ σ|yoi − ŷoi |, σ = 4M .

Since for RKHS norm BN (f ||g) = ||f − g||2k, we
have BN (ĥo||ho) + BN (ho||ĥo) = 2||ho − ĥo||2k.
Combined with the above inequality, we have 2||ho −
ĥo||2k ≤ 2

nl

∑nl

i=1 σ|yoi − ŷoi |. Then we have |l(ho, zoi ) −
l(ĥo, zoi )| ≤ σ|ho(xi) − ĥo(xi)| ≤ σ||ho − ĥo||kκ ≤
σκ

√
1
nl

∑nl

i=1 σ|yoi − ŷoi |. Hence | 1nl

∑nl

i=1 l(h
o, zoi ) −

1
nl

∑nl

i=1 l(ĥ
o, ẑoi )| ≤ 1

nl

∑nl

i=1[|l(ho, zoi ) − l(ĥo, zoi )| +

|l(ĥo, zoi ) − l(ĥo, ẑoi )|] ≤ σκ
√

1
nl

∑nl

i=1 σ|yoi − ŷoi | +
1
nl

∑nl

i=1 σ|yoi − ŷoi |. Now we can conclude that

Roemp =
1

nl

nl∑
i=1

l(ho, zoi ) ≤ R̄oemp + P, (16)

where R̄oemp = 1
nl

∑nl

i=1 l(ĥ
o, ẑoi ), and P =

σκ
√

1
nl

∑nl

i=1 σ|yoi − ŷoi | + 1
nl

∑nl

i=1 σ|yoi − ŷoi |.
To bound P , first we have 1

nl

∑nl

i=1 |yoi − ŷoi | =
1
nl

∑nl

i=1 |(ytLi −ysi )− (ytLi − ŷsi )| = 1
nl

∑nl

i=1 |ysi − ŷsi | ≤√
1
nl

∑nl

i=1(ysi − ŷsi )2. Using Eq. 11, 1
nl

∑nl

i=1(ysi − ŷsi )2

is bounded by Rsemp + O( 1
λs
√
m

). We can see that the
penalty term P diminishes as m → ∞. Plugging Eq. 16
into Eq. 14 concludes the proof.

(3) Now we analyze the generalization error in the target
domain. Using the assumption that the target labels yt can
also be decomposed by yo + ys, we have:

Ezt [l(h, zt)] = Ezt [(h(xt)− yt)2]

= E[(ho(xt) + hs(xt)− yo − ys)2]

≤ 2E(ho(xt)− yo)2 + 2E(hs(xt)− ys)2.
(17)

Plugging in Eq. 11 and Eq. 15, we have

Rt = Ezt [l(h, zt)] = 2Rsemp+2R̄oemp+O(
1

λo
√
nl

+
1

λs
√
m

)

In transfer learning usually we assume that the number of
source data is sufficient, i.e., m→∞, hence

Rt − 2(Rsemp + R̄oemp) = O(
1

λo
√
nl

). (18)

5.1.1 Comparing with No-transfer Learning

As with the no-transfer-rate in Sec. 4.2.2, we have

Rt −RtLemp = O(
1

λt
√
nl

), (19)

where λt is the regularization parameter when estimating
the target function. Comparing this rate with Eq. 18, and
using our assumption that we have a smoother offset than
the target function, i.e., λo > λt, we can see that we obtain
a faster convergence rate with transfer than no-transfer.

6 MULTI-SOURCE TRANSFER
LEARNING

In this section, we show that we can easily adapt the trans-
fer learning algorithm from a single source to transfer
learning with multiple-sources, by utilizing the generaliza-
tion bounds we derived in earlier sections. Transfer learn-
ing with multiple sources is similar to multi-task learning,
where we learn the target and multiple sources jointly.

A closer look at Eq. 9 for CDM, and Eq. 18 for Offset
reveals that, when nl is small and m → ∞, we have a
convergence rate of O( 1

λ∗
√
nl

) for both algorithms, where
λ∗ is some parameter that controls the smoothness of the
source-to-target transfer (for Eq. 9 we can set λR = λ2∗).
This observation motivates our reweighting scheme on the
source hypotheses to achieve transfer learning under multi-
ple sources, described as the following.

Assume we have S sources and a target. First, we apply the
transfer learning algorithm from a single source to obtain a
model Ms from each source s to target t, where the pa-
rameter λs∗ is determined by cross-validation, s = 1, ..., S.
Second, we compute the weight for each source s by:

ws = p(D|Ms)p(Ms), where

p(D|Ms) = exp{−
ms∑
i=1

(ytLi − f̂s(xtLi ))2},

p(Ms) ∝ exp{−α 1

λs∗
},

where f̂s(xtLi ) is the prediction given by Ms.

The idea is similar to Bayesian Model Averaging (Hoet-
ing et al. (1999)), where the first term p(D|Ms) serves as
the data likelihood of the predictive model Ms from source
s, and the second term p(Ms) is the prior probability on
model Ms. In our case, p(Ms) is chosen to indicate how
similar each source to the target is, where the similarity is
measured by how smooth the change is from source s to
target t. It is easy to see that, the weights coincide with our
analysis of the generalization bounds for transfer learning,
and the choice of α should be in the order of O(1/

√
nl).

Intuitively, when the number of labeled target points nl is
small, p(Ms) has a larger effect on ws, which means we
prefer the source that has a smoother change (larger λs∗)
for the transfer. On the other hand, when nl is large, then
p(D|Ms) takes over, i.e., we prefer the source that results
in a larger data likelihood (smaller prediction errors). Fi-



nally, we combine the predictions by:

f̂(xtUi ) =

S∑
s=1

ws∑S
s=1 ws

f̂s(xtUi )

This weighted combination of source hypotheses gives us
the following generalization bound in the target domain:

Ezt [l(h, zt)] = Ezt [(
∑
s

ws∑S
s=1 ws

hs(x
t)− yt)2]

= Ezt [(
∑
s

ws∑S
s=1 ws

(hs(x
t)− yt))2]

≤
∑
s

ws∑S
s=1 ws

Ezt [(hs(xt)− yt)2]

=
∑
s

ws∑S
s=1 ws

[R̃semp +O(
1

λs
√
nl

)],

where the third inequality uses Jensen’s inequality, and the
last equality uses the bounds we derived. Here R̃semp refers
to the empirical error for source s when transferring from s
to t (Thm. 2 for CDM and Eq. 18 for Offset).

7 EXPERIMENTS

7.1 SYNTHETIC EXPERIMENTS

In this section, we empirically compare the generalization
error of transfer learning algorithms to that of no-transfer
learning (learning by labeled target data only), on synthetic
datasets simulating different conditions.

We generate the synthetic dataset in this way: Xs, Xt

are drawn uniformly at random from [0, 4], Y s =
sin(2Xs) + sin(3Xs) with additive Gaussian noise. Y t

is the same function with a smoother location-scale trans-
formation/offset. In each of the following comparisons, we
plot the mean squared error (MSE) on the unlabeled target
points (as an estimation of the generalization error) with
respect to different number of labeled target points. The
labeled target points are chosen uniformly at random, and
we average the error over 10 experiments. The parameters
are chosen using cross validation.

In Fig. 3, we compare transfer learning using CDM with
no-transfer learning. The results show that with the ad-
ditional smoothness assumption, we are able to achieve a
much lower generalization error for transfer learning than
no-transfer learning. In Fig. 4 and 5, we compare transfer
learning using the Offset approach with no-transfer learn-
ing. The two figures show different generalization error
curves when the smoothness of the offset is different. We
can see that with a smoother offset (Fig. 4) we are able to
achieve a much lower generalization error than no-transfer
learning. With a less smooth offset (Fig. 5) we can still
achieve a lower generalization error than no-transfer learn-
ing, but the rate is slower compared to Fig. 4. Further we

analyze the case when the smoothness assumption does not
hold, by setting the source function to be sin(Xs) + ε such
that the target changes faster than the source. In this case,
transfer learning with CDM/Offset yield almost the same
generalization error as no-transfer learning (Fig. 6), i.e.,
the source data does not help in learning the target.
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Figure 3: No-transfer learning vs. transfer learning (CDM)
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Figure 4: No-transfer learning vs. transfer learning using
the Offset approach (smoother offset, λR = 0.1)
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Figure 5: No-transfer learning vs. transfer learning using
the Offset approach (less smooth offset, λR = 0.001)
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Figure 6: No-transfer learning vs. transfer learning, when
the smoothness assumption does not hold

7.2 EXPERIMENTS ON THE REAL DATA

7.2.1 Comparing Transfer Learning to No-transfer
Learning, Using Different Sources

The real-world dataset is an Air Quality Index (AQI)
dataset (Mei et al. (2014)) during a 31-day period from
Chinese cities. For each city, the input feature xi is a bag-
of-words vector extracted from Weibo posts of each day,
with 100, 395 dimensions as the dictionary size. The out-
put label yi is a real number which is the AQI of that day.

Fig. 7 shows a comparison of MSE on the unlabeled target
points, with respect to different number of labeled target



points, when transferring from a nearby city (Ningbo) and a
faraway city (Xi’an), to a target city (Hangzhou). The data
is shown in the left figure of Fig. 7, where the x-axis is each
day. The results are averaged over 20 experiments with uni-
formly randomly chosen labeled target points. First we ob-
serve that we obtain a lower generalization error by trans-
ferring from other cities than learning by the target city data
alone (no-transfer). In addition, the generalization error are
much lower if we transfer from nearby cities where the dif-
ference between source and target is smoother.
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Figure 7: Comparison of MSE on unlabeled target points

7.2.2 Transfer Learning with Multiple Sources

The results in Sec. 7.2.1 indicate that, when transferring
from multiple sources to a target, it is important to choose
which source to transfer, in order to obtain a larger gain.
In this section, we show the results on the same air quality
index data by reweighting different sources (Sec. 6).

Fig. 8 shows a comparison of MSE on the unlabeled target
data (data shown in the left figure) with respect to different
number of labeled target points (nl ∈ {2, 5, 10, 15, 20}),
where the prediction is based on each source independently
(labeled as source i, i ∈ {1, 2, 3}), and based on multiple
sources (labeled as posterior). Since CDM and Offset give
similar bounds, we use two-stage offset estimation as the
prediction algorithm from each source s to target t. The
weighting on the sources is as described in Sec. 6. As can
be seen from the results, using posterior reweighting on dif-
ferent sources, we obtain results that are very close to the
results using the best source.
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Figure 8: Comparison of MSE on unlabeled target points,
with multiple sources

Further in Figure. 9, we show a comparison of MSE on
the unlabeled target data between the proposed approach
and two baselines, with respect to different number of la-

beled target points. The results are averaged over 20 ex-
periments. The first baseline wDA is a weighted multi-
source domain adaptation approach proposed in Mansour
et al. (2008), where the distribution Di(x) for source i on
a target point x is estimated using kernel density estima-
tion with a Gaussian kernel. Note that the original algo-
rithm proposed in Mansour et al. (2008) does not assume
the existence of a few labeled target points, thus the hy-
pothesis hi(x) from each source i is computed by using the
source data only. To ensure a fair comparison, we augment
hi(x) by using the prediction of the Offset approach given
nl labeled target points. The second baseline optDA is a
multi-source domain adaptation algorithm under an opti-
mization framework, as proposed in Chattopadhyay et al.
(2011), where the parameters γA, γI are set as described
in the paper, and θ is chosen using cross-validation on the
set {0.1, 0.2, ..., 0.9} (the final choice of θ is 0.1). Note
that our proposed algorithm gives the best performance. In
addition, our algorithm does not require density estimation
as in wDA, which can be difficult in real-world applica-
tions with high-dimensional features. Further note pos-
terior considers the change in P (Y |X) while wDA fo-
cuses on the change of P (X). A potential improvement
can be achieved by combining these two in the reweighting
scheme, which should be an interesting future direction.
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Figure 9: Multi-source transfer learning: comparison of
MSE on the proposed approach (posterior) and baselines

8 CONCLUSION

In this paper, we provide theoretical analysis for algorithms
proposed for transfer learning under the model shift as-
sumption. Unlike previous work on covariate shift, the
model shift poses a harder problem for transfer learning,
and our analysis shows that we are still able to achieve a
similar rate as in covariate shift/domain adaptation, mod-
ified by the smoothness of the transformation parameters.
We also show conditions when transfer learning works bet-
ter than no-transfer learning. Finally we extend the algo-
rithms to transfer learning with multiple sources.
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