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Abstract

Max-product belief propagation (BP) is a pop-
ular message-passing algorithm for computing
a maximum-a-posteriori (MAP) assignment in
a joint distribution represented by a graphical
model (GM). It has been shown that BP can
solve a few classes of Linear Programming (LP)
formulations to combinatorial optimization prob-
lems including maximum weight matching and
shortest path, i.e., BP can be a distributed solver
for certain LPs. However, those LPs and corre-
sponding BP analysis are very sensitive to under-
lying problem setups, and it has been not clear
what extent these results can be generalized to.
In this paper, we obtain a generic criteria that BP
converges to the optimal solution of given LP,
and show that it is satisfied in LP formulations
associated to many classical combinatorial op-
timization problems including maximum weight
perfect matching, shortest path, traveling sales-
man, cycle packing and vertex cover. More im-
portantly, our criteria can guide the BP design
to compute fractional LP solutions, while most
prior results focus on integral ones. Our results
provide new tools on BP analysis and new direc-
tions on efficient solvers for large-scale LPs.

1 INTRODUCTION

Graphical model (GM) has been one of powerful
paradigms for succinct representations of joint probability
distributions in variety of scientific fields (Yedidia et al.,
2005; Richardson and Urbanke, 2008; Mezard and Mon-
tanari, 2009; Wainwright and Jordan, 2008). GM repre-
sents a joint distribution of some random vector to a graph
structured model where each vertex corresponds to a ran-
dom variable and each edge captures to a conditional de-
pendency between random variables. In many applications
involving GMs, finding maximum-a-posteriori (MAP) as-
signment in GM is an important inference task, which is

known to be computationally intractable (i.e., NP-hard) in
general (Chandrasekaran et al., 2008). Max-product belief
propagation (BP) is the most popular heuristic for approxi-
mating a MAP assignment of given GM, where its perfor-
mance has been not well understood in loopy GMs. Nev-
ertheless, BP often shows remarkable performances even
on loopy GM. Distributed implementation, associated ease
of programming and strong parallelization potential are
the main reasons for the growing popularity of the BP al-
gorithm. For example, several software architectures for
implementing parallel BPs were recently proposed (Low
et al., 2010; Gonzalez et al., 2010; Ma et al., 2012) by dif-
ferent research groups in machine learning communities.

In the past years, there have been made extensive research
efforts to understand BP performances on loopy GMs be-
hind its empirical success. Several characterizations of the
max-product BP fixed points have been proposed (Weiss
and Freeman, 2001; Vinyals et al., 2010), whereas they do
not guarantee the BP convergence in general. It has also
been studied about the BP convergence to the correct an-
swer, in particular, under a few classes of loopy GM formu-
lations of combinatorial optimization problems: matching
(Bayati et al., 2005; Sanghavi et al., 2011; Huang and Je-
bara, 2007; Salez and Shah, 2009), perfect matching (Bay-
ati et al., 2011), matching with odd cycles (Shin et al.,
2013) and shortest path (Ruozzi and Tatikonda, 2008). The
important common feature of these instances is that BP
converges to a correct MAP assignment if the Linear Pro-
gramming (LP) relaxation of the MAP inference problem
is tight, i.e., it has no integrality gap. In other words, BP
can be used an efficient distributed solver for those LPs,
and is presumably of better choice than classical central-
ized LP solvers such as simplex methods (Dantzig, 1998),
interior point methods (Thapa, 2003) and ellipsoid methods
(Khachiyan, 1980) for large-scale inputs. However, these
theoretical results on BP are very sensitive to underlying
structural properties depending on specific problems and it
is not clear what extent they can be generalized to, e.g.,
the BP analysis for matching problems (Bayati et al., 2005;
Sanghavi et al., 2011; Huang and Jebara, 2007; Salez and
Shah, 2009) are not extended to even for perfect matching



ones (Bayati et al., 2011). In this paper, we overcome such
technical difficulties for enhancing the power of BP as a LP
solver.

Contribution. We establish a generic criteria for GM for-
mulations of given LP so that BP converges to the optimal
LP solution. By product, it also provides a sufficient con-
dition for a unique BP fixed point. As one can naturally ex-
pect given prior results, one of our conditions requires the
LP tightness. Our main contribution is finding other suffi-
cient generic conditions so that BP converges to the correct
MAP assignment of GM. First of all, our generic criteria
can rediscover all prior BP results on this line, including
matching (Bayati et al., 2005; Sanghavi et al., 2011; Huang
and Jebara, 2007), perfect matching (Bayati et al., 2011),
matching with odd cycles (Shin et al., 2013) and shortest
path (Ruozzi and Tatikonda, 2008), i.e., we provide a uni-
fied framework on establishing the convergence and cor-
rectness of BPs in relation to associated LPs. Furthermore,
we provide new instances under our framework: we show
that BP can solve LP formulations associated to other pop-
ular combinatorial optimizations including perfect match-
ing with odd cycles, traveling salesman, cycle packing and
vertex cover, which are not known in the literature. While
most prior known BP results on this line focused on the
case when the associated LP has an integral solution, the
proposed criteria naturally guides the BP design to com-
pute fractional LP solutions as well (see Section 4.2 and
Section 4.4 for details).

Our proof technique is built upon on that of Sanghavi et al.
(2011) where the authors construct an alternating path in
the computational tree induced by BP to analyze its perfor-
mance for the maximum weight matching problem. Such
a trick needs specialized case studies depending on the as-
sociated LP when the path reaches a leaf of the tree, and
this is one of main reasons why it is not easy to generalize
to other problems beyond matching. The main technical
contribution of this paper is providing a way to avoid the
issue in the BP analysis via carefully analyzing associated
LP polytopes.

The main appeals of our results are providing not only
tools on BP analysis, but also guidelines on BP design for
its high performance, i.e., one can carefully design a BP
given LP so that it satisfies the proposed criteria. We run
such a BP for solving the famous traveling saleman prob-
lem (TSP), and our experiments show that BP outperforms
other popular heuristics (see Section 5). Our results provide
not only new tools on BP analysis and design, but also new
directions on efficient distributed (and parallel) solvers for
large-scale LPs and combinatorial optimization problems.

Organization. In Section 2, we introduce necessary back-
grounds for the BP algorithm. In Section 3, we provide
the main result of the paper, and several concrete applica-
tions to popular combinatorial optimizations are described

in Section 4. In Section 5, we show empirical performances
of BP algorithms for solving TSP.

2 PRELIMINARIES

2.1 GRAPHICAL MODEL

A joint distribution of n (binary) random variables Z =
[Zi] ∈ {0, 1}n is called a Graphical Model (GM) if it fac-
torizes as follows: for z = [zi] ∈ {0, 1}n,

Pr[Z = z] ∝
∏

i∈{1,...,n}

ψi(zi)
∏
α∈F

ψα(zα),

where {ψi, ψα} are (given) non-negative functions, so-
called factors; F is a collection of subsets

F = {α1, α2, ..., αk} ⊂ 2{1,2,...,n}

(each αj is a subset of {1, 2, . . . , n} with |αj | ≥ 2); zα
is the projection of z onto dimensions included in α.1 In
particular, ψi is called a variable factor. Figure 1 depicts
the the graphical relation between factors F and variables
z.

α1 α2 α3

z1 z2 z3 z4

Figure 1: Factor graph for the graphical model
Pr[z] ∝ ψα1

(z1, z3)ψα2
(z1, z2, z4)ψα3

(z2, z3, z4), i.e.,
F = {α1, α2, α3} and n = 4. Each αj selects a subset
of z. For example, α1 selects {z1, z3}.

Assignment z∗ is called a maximum-a-posteriori (MAP)
assignment if z∗ = arg maxz∈{0,1}n Pr[z]. This means
that computing a MAP assignment requires us to compare
Pr[z] for all possible z, which is typically computation-
ally intractable (i.e., NP-hard) unless the induced bipartite
graph of factors F and variables z, so-called factor graph,
has a bounded treewidth (Chandrasekaran et al., 2008).

2.2 MAX-PRODUCT BELIEF PROPAGATION

The (max-product) BP algorithm is a popular heuristic for
approximating the MAP assignment in GM. BP is imple-
mented iteratively; at each iteration t, BP maintains four
messages {mt

α→i(c),m
t
i→α(c) : c ∈ {0, 1}} between

every variable zi and every associated α ∈ Fi, where
Fi := {α ∈ F : i ∈ α}; that is, Fi is a subset of F
such that all α in Fi are associated with zi. The messages

1For example, if z = [0, 1, 0] and α = {1, 3}, then zα =
[0, 0].



are updated as follows:

mt+1
α→i(c) = max

zα:zi=c
ψα(zα)

∏
j∈α\i

mt
j→α(zj) (1)

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

mt
α′→i(c). (2)

Where each zi only sends messages to Fi; that is, zi sends
messages to αj only if αj selects/includes i. The outer-
term in the message computation (1) is maximized over all
possible zα ∈ {0, 1}|α| with zi = c. The inner-term is a
product that only depends on the variables zj (excluding
zi) that are connected to α. The message-update (2) from
variable zi to factor ψα is a product containing all messages
received by zi in the previous iteration, except for the mes-
sage sent by ψα itself.

One can reduce the complexity by combining (1) and (2)
as:

mt+1
i→α(c) = ψi(c)

∏
α′∈Fi\α

max
zα′ :zi=c

ψα′(zα′)

×
∏

j∈α′\i

mt
j→α′(zj).

The BP fixed-point of messages is defined as mt+1 = mt

under the above updating rule. Given a set of messages
{mi→α(c),mα→i(c) : c ∈ {0, 1}}, the so-called BP
marginal beliefs are computed as follows:

bi[zi] = ψi(zi)
∏
α∈Fi mα→i(zi). (3)

This BP algorithm outputs zBP = [zBPi ] where

zBPi =


1 if bi[1] > bi[0]

? if bi[1] = bi[0]

0 if bi[1] < bi[0]

.

It is known that zBP converges to a MAP assignment after
a sufficient number of iterations, if the factor graph is a
tree and the MAP assignment is unique. However, if the
graph contains cycles, the BP algorithm is not guaranteed
to converge a MAP assignment in general.

3 CONVERGENCE AND CORRECTNESS
OF BELIEF PROPAGATION

In this section, we provide the main result of this paper:
a convergence and correctness criteria of BP. Consider the
following GM: for x = [xi] ∈ {0, 1}n and w = [wi] ∈ Rn,

Pr[X = x] ∝
∏
i

e−wixi
∏
α∈F

ψα(xα), (4)

where F is the set of non-variable factors and the factor
function ψα for α ∈ F is defined as

ψα(xα) =

{
1 if Aαxα ≥ bα, Cαxα = dα

0 otherwise
,

for some matrices Aα, Cα and vectors bα, dα. Now we
consider the Linear Programming (LP) corresponding the
above GM:

minimize w · x
subject to ψα(xα) = 1, ∀α ∈ F

x = [xi] ∈ [0, 1]n.

(5)

One can easily observe that the MAP assignments for GM
(4) corresponds to the (optimal) solution of LP (5) if the
LP has an integral solution x∗ ∈ {0, 1}n. As stated in the
following theorem, we establish other sufficient conditions
so that the max-product BP can indeed find the LP solution.

Theorem 1 The max-product BP on GM (4) with arbitrary
initial message converges to the solution of LP (5) if the
following conditions hold:

C1. LP (5) has a unique integral solution x∗ ∈ {0, 1}n,
i.e., it is tight.

C2. For every i ∈ {1, 2, . . . , n}, the number of factors as-
sociated with xi is at most two, i.e., |Fi| ≤ 2.

C3. For every factor ψα, every xα ∈ {0, 1}|α| with
ψα(xα) = 1, and every i ∈ α with xi 6= x∗i , there
exists γ ⊂ α such that

|{j ∈ {i} ∪ γ : |Fj | = 2}| ≤ 2

ψα(x′α) = 1, where x′k =

{
xk if k /∈ {i} ∪ γ
x∗k otherwise

.

ψα(x′′α) = 1, where x′′k =

{
xk if k ∈ {i} ∪ γ
x∗k otherwise

.

Since Theorem 1 holds for arbitrary initial messages, the
conditions C1, C2, C3 also provides the uniqueness of BP
fixed-points in term of marginal beliefs, as follows.

Corollary 2 The BP fixed-points of GM (4) have the same
marginal beliefs if conditions C1, C2, C3 hold.

The conditions C2, C3 are typically easy to check given
GM (4) and the uniqueness in C1 can be easily guaran-
teed via adding random noises, where we provide several
concrete examples in Section 4. On the other hand, the in-
tegral property in C1 requires to analyze LP (5), where it
has been extensively studied in the field of combinatorial
optimization (Schrijver, 2003). Nevertheless, Theorem 1
provides important guidelines to design BP algorithms, ir-
respectively of the LP analysis. For example, in Section
5, we report empirical performances of BP following the
above guideline for solving the traveling salesman prob-
lem, without relying on whether the corresponding LP has
an integral solution or not.



3.1 PROOF OF THEOREM 1

To begin with, we define some necessary notation. We let
P denote the polytope of feasible solutions of LP (5):

P := {x ∈ [0, 1]n : ψα(xα) = 1, ∀α ∈ F} .

Similarly, Pα is defined as

Pα :=
{
x ∈ [0, 1]|α| : ψα(xα) = 1

}
.

We first state the following key technical lemma.
Lemma 3 There exist universal constants K, η > 0 for LP
(5) such that if z ∈ [0, 1]n and 0 < ε < η satisfy the
followings:

1. There exist at most two violated factors for z, i.e.,
|{α ∈ F : zα /∈ Pα}| ≤ 2.

2. For each violated factor α, there exist i ∈ α such that
z†α ∈ Pα, where z† = z + εei or z† = z − εei and
ei ∈ {0, 1}n is the unit vector whose i-th coordinate
is 1,

then there exists z‡ ∈ P such that ‖z − z‡‖1 ≤ εK.

The proof of Lemma 3 is presented in Section 3.2. Now,
from Condition C1, it follows that there exists ρ > 0 such
that

ρ := inf
x∈P\x∗

w · x− w · x∗

‖x− x∗‖1
> 0. (6)

We let x̂t ∈ {0, 1, ?}n denote the BP estimate at the t-
th iteration for the MAP computation. We will show that
under Conditions C1-C3,

x̂t = x∗, for t >
(
wmax

ρ
+ 1

)
K,

where wmax = maxj |wj | and K is the universal con-
stant in Lemma 3. Suppose the above statement is false,
i.e., there exists i ∈ {1, 2, . . . , n} such that x̂ti 6= x∗i for

t >
(
wmax

ρ + 1
)
K. Under the assumption, we will reach

a contradiction.

Now we construct a tree-structured GM Ti(t), popularly
known as the computational tree (Weiss and Freeman,
2001), as follows:

1. Add yi ∈ {0, 1} as the root variable with variable fac-
tor function e−wiyi .

2. For each leaf variable yj and for each α ∈ Fj and ψα
is not associated with yj in the current tree-structured
GM, add a factor function ψα as a child of yj .

3. For each leaf factor ψα and for each variable yk such
that k ∈ α and yk is not associated with ψα in the cur-
rent tree-structured GM, add a variable yk as a child
of ψα with variable factor function e−wkyk .

4. Repeat Step 2, 3 t times.

Suppose the initial messages of BP are set by 1, i.e.,
mj→α(·)0 = 1. Then, if x∗i 6= x̂ti, it is known (Weiss,
1997) that there exists a MAP configuration yMAP on Ti(t)
with yMAP

i 6= x∗i at the root variable. For other initial mes-
sages, one can guarantee the same property under changing
weights of leaf variables of the tree-structured GM. Specif-
ically, for a leaf variable k with |Fk = {α1, α2}| = 2 and
α1 being its parent factor in Ti(t), we reset its variable fac-
tor by e−w

′
kyk , where

w′k = wk−log
maxzα2 :zk=1 ψα2

(zα2
)Πj∈α2\km

0
j→α2

(zj)

maxzα2 :zk=0 ψα2
(zα2

)Πj∈α2\km
0
j→α2

(zj)
.

(7)
This is the reason why our proof of Theorem 1 goes through
for arbitrary initial messages. For notational convenience,
we present the proof for the standard initial message of
m0
j→α(·) = 1, where it can be naturally generalized to

other initial messages using (7).

Now we construct a new valid assignment yNEW on the
computational tree Ti(t) as follows:

1. Initially, set yNEW ← yMAP .

2. Update the value of the root variable of Ti(t) by
yNEWi ← x∗i .

3. For each child factor ψα of root i ∈ α, choose γ ⊂ α
according to Condition C3 and update the associated
variable by yNEWj ← x∗j ∀j ∈ γ.

4. Repeat Step 2,3 recursively by substituting Ti(t) by
the subtree of Ti(t) of root j ∈ γ until the process
stops (i.e., i = j) or the leaf of Ti(t) is reached (i.e., i
does not have a child).

One can notice that the set of revised variables in Step 2 of
the above procedure forms a path structure Q in the tree-
structured GM. We first, consider the case that both ends
of the path Q touch leaves of Ti(t), where other cases can
be argued in a similar manner. Define ζj and κj be the
number of copies of xj in path Q with x∗j = 1 and x∗j = 0,
respectively, where ζ = [ζj ], κ = [κj ] ∈ Zn+ . Then, from
our construction of yNEW , one can observe that

yNEW = yMAP + ζ − κ
w · yMAP − w · yNEW = w · (κ− ζ).

If we set z = x∗ + ε(κ− ζ) where 0 < ε < min{1/2t, η},
then one can check that z satisfies the conditions of Lemma
3 using Conditions C2, C3. Hence, from Lemma 3, there
exists z‡ ∈ P such that

‖z‡ − z‖1 ≤ εK
‖z‡ − x∗‖1 ≥ ε(‖ζ‖1 + ‖κ‖1 −K) ≥ ε(t−K).



where z = x∗ + ε(κ− ζ). Hence, it follows that

0 < ρ ≤ w · z‡ − w · x∗

‖z‡ − x∗‖1

≤ w · z + εwmaxK − w · x∗

ε(t−K)

=
εw · (κ− ζ) + εwmaxK

ε(t−K)

=
w · (κ− ζ) + wmaxK

t−K

Furthermore, if t >
(
wmax

ρ + 1
)
K, the above inequality

implies that

w · yMAP − w · yNEW = w · (κ− ζ)

≥ ρt− (wmax + ρ)K > 0.

This contradicts to the fact that yMAP is a MAP configura-
tion. This completes the proof of Theorem 1.

3.2 PROOF OF LEMMA 3

One can write P = {x : Ax ≥ b} ⊂ [0, 1]n for some
matrix A ∈ Rm×n and vector b ∈ Rm, where without loss
of generality, we can assume that ‖Ai‖2 = 1 where {Ai}
is the set of row vectors of A. We define

Pε = {x : Ax ≥ b− ε1},

where 1 is the vector of ones. Then, one can check that
z ∈ Pε for z, ε satisfying conditions of Lemma 3. Now we
aim for finding a universal constant K satisfying

dist(P,Pε) := max
x∈Pε

(min
y∈P
‖x− y‖1) ≤ εK,

which leads to the conclusion of Lemma 3.

To this end, for ξ ⊂ [1, 2, . . . ,m] with |ξ| = n, we let Aξ
be the square sub-matrix of A by choosing ξ-th rows of A
and bξ is the n-dimensional subvector of b corresponding ξ.
Throughout the proof, we only consider ξ such that Aξ is
invertible. Using this notation, we first claim the following.

Claim 4 If Aξ is invertible and vξ := A−1ξ bξ ∈ P , then vξ
is a vertex of polytope P .

Proof. Suppose vξ is not a vertex of P , i.e. there exist
x, y ∈ P such that x 6= y and vξ = λx + (1 − λ)y for
some λ ∈ (0, 1/2]. Under the assumption, we will reach a
contradiction. Since P is a convex set,

3λ

2
x+

(
1− 3λ

2

)
y ∈ P. (8)

However, as Aξ is invertible,

Aξ

(
3λ

2
x+

(
1− 3λ

2

)
y

)
6= bξ. (9)

From (8) and (9), there exists a row vector Ai of Aξ and
the corresponding element bi of bξ such that

Ai ·
(

3λ

2
x+

(
1− 3λ

2

)
y

)
> bi.

Using the above inequality and Ai · (λx+ (1− λ)y) = bi,
one can conclude that

Ai ·
(
λ

2
x+

(
1− λ

2

)
y

)
< bi,

which contradict to λ
2x +

(
1− λ

2

)
y ∈ P . This completes

the proof of Claim 4. �

We also note that if v is a vertex of polytope P , there exists
ξ such that Aξ is invertible and v = A−1ξ bξ. We define the
following notation:

I = {ξ : A−1ξ bξ ∈ P} Iε = {ξ : A−1ξ (bξ − ε1) ∈ Pε},

where Claim 4 implies that {vξ := A−1ξ bξ : ξ ∈ I} and
{uξ,ε := A−1ξ (bξ − ε1) : ξ ∈ Iε} are sets of vertices of
P and Pε, respectively. Using the notation, we show the
following claim.

Claim 5 There exists η > 0 such that Iε ⊂ I for all ε ∈
(0, η).

Proof. Suppose η > 0 satisfying the conclusion of Claim
5 does not exist. Then, there exists a strictly decreasing
sequence {εk > 0 : k = 1, 2, . . . } converges to 0 such that
Iεk − I 6= ∅. Since |{ξ : ξ ⊂ [1, 2, . . . ,m]}| < ∞, there
exists ξ′ such that

|K := {k : ξ′ ∈ Iεk − I}| =∞. (10)

For any k ∈ K, observe that the sequence {uξ′,ε` : ` ≥
k, ` ∈ K} converges to vξ′ . Furthermore, all points in the
sequence are in Pεk since Pε` ⊂ Pεk for any ` ≥ k. There-
fore, one can conclude that vξ′ ∈ Pεk for all k ∈ K, where
we additionally use the fact that Pεk is a closed set. Be-
cause P =

⋂
k∈K Pεk , it must be that vξ′ ∈ P , i.e., vξ′

must be a vertex of P from Claim 4. This contradicts to the
fact ξ′ /∈ I. This completes the proof of Claim 5. �

From the above claim, we observe that any x ∈ Pε can be
expressed as a convex combination of {uξ,ε : ξ ∈ I}, i.e.,
x =

∑
ξ∈I λξuξ,ε with

∑
ξ∈I λξ = 1 and λξ ≥ 0. For all

ε ∈ (0, η) for η > 0 in Claim 5, one can conclude that

dist(P,Pε) ≤ max
x∈Pε

‖
∑
ξ∈I

λξuξ,ε −
∑
ξ∈I

λξvξ‖1

= max
x∈Pε

ε‖
∑
ξ∈I

λξA
−1
ξ 1‖1

≤ εmax
ξ
‖A−1ξ 1‖1,

where we choose K = maxξ ‖A−1ξ 1‖1. This completes
the proof of Lemma 3.



4 APPLICATIONS OF THEOREM 1 TO
COMBINATORIAL OPTIMIZATION

In this section, we introduce concrete instances of LPs
satisfying the conditions of Theorem 1 so that BP cor-
rectly converges to its optimal solution. Specifically, we
consider LP formulations associated to several combina-
torial optimization problems including shortest path, max-
imum weight perfect matching, traveling salesman, maxi-
mum weight disjoint vertex cycle packing and vertex cover.
We note that the shortest path result, Corollary 6, is known
(Ruozzi and Tatikonda, 2008), where we rediscover it as a
corollary of Theorem 1. Our other results, Corollaries 7-11,
are new and what we first establish in this paper.

4.1 SHORTEST PATH

Given directed graph G = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the shortest path prob-
lem is to find the shortest path from the source s to the
destination t: it minimizes the sum of edge weights along
the path. One can naturally design the following LP for this
problem:

minimize w · x

subject to
∑

e∈δo(v)

xe −
∑

e∈δi(v)

xe

=


1 if v = s

−1 if v = t

0 otherwise
∀ v ∈ V

x = [xe] ∈ [0, 1]|E|.

(11)

where δi(v), δo(v) are the set of incoming, outgoing edges
of v. It is known that the above LP always has an integral
solution, i.e., the shortest path from s to t. We consider the
following GM for LP (11):

Pr[X = x] ∝
∏
e∈E

e−wexe
∏
v∈V

ψv(xδ(v)), (12)

where the factor function ψv is defined as

ψv(xδ(v)) =



1 if
∑
e∈δo(v) xe −

∑
e∈δi(v) xe

=


1 if v = s

−1 if v = t

0 otherwise
0 otherwise

.

For the above GM (12), one can easily check Conditions
C2, C3 of Theorem 1 hold and derive the following corol-
lary whose formal proof is presented in the supplementary
material due to the space constraint.
Corollary 6 If the shortest path from s to t, i.e., the solu-
tion of the shortest path LP (11), is unique, then the max-
product BP on GM (12) converges to it.

The uniqueness condition in the above corollary is easy to
guarantee by adding small random noises to edge weights.

4.2 MAXIMUM WEIGHT PERFECT MATCHING

Given undirected graphG = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ on edges, the maximum
weight perfect matching problem is to find a set of edges
such that each vertex is connected to exactly one edge in
the set and the sum of edge weights in the set is maximized.
One can naturally design the following LP for this problem:

maximize w · x

subject to
∑
e∈δ(v)

xe = 1, ∀ v ∈ V

x = [xe] ∈ [0, 1]|E|.

(13)

where δ(v) is the set of edges connected to a vertex v. If
the above LP has an integral solution, it corresponds to the
solution of the maximum weight perfect matching problem.

It is known that the maximum weight matching LP
(13) always has a half-integral solution x∗ ∈ {0, 12 , 1}

|E|.
We will design BP for obtaining the half-integral solution.
To this end, duplicate each edge e to e1, e2 and define a
new graph G′ = (V,E′) where E′ = {e1, e2 : e ∈ E}.
Then, we suggest the following equivalent LP that always
have an integral solution:

maximize w′ · x

subject to
∑

ei∈δ(v)

xei = 2 ∀ v ∈ V

x = [xei ] ∈ [0, 1]|E
′|.

(14)

where w′e1 = w′e2 = we. One can easily observe that solv-
ing LP (14) is equivalent to solving LP (13) due to our con-
struction of G′ and w′. Now, construct the following GM
for LP (14):

Pr[X = x] ∝
∏
ei∈E′

ew
′
ei
xei
∏
v∈V

ψv(xδ(v)), (15)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
ei∈δ(v) xei = 2

0 otherwise
.

For the above GM (15), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 7 If the solution of the maximum weight perfect
matching LP (14) is unique, then the max-product BP on
GM (15) converges it.



Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights [w′ei ]. We note that it is known (Bayati et al., 2011)
that BP converges to the unique and integral solution of LP
(13), while Corollary 7 implies that BP can solve it without
the integrality condition. We note that one can easily ob-
tain a similar result for the maximum weight (non-perfect)
matching problem, where we omit the details in this paper.

4.3 MAXIMUM WEIGHT PERFECT MATCHING
WITH ODD CYCLES

In previous section we prove that BP converges to the opti-
mal (possibly, fractional) solution of LP (14), equivalently
LP (13). One can add odd cycle (also called Blossom) con-
straints and make those LPs tight i.e. solves the maximum
weight perfect matching problem:

maximize w · x

subject to
∑
e∈δ(v)

xe = 1, ∀ v ∈ V

∑
e∈C

xe ≤
|C| − 1

2
, ∀C ∈ C,

x = [xe] ∈ [0, 1]|E|.

(16)

where C is a set of odd cycles in G. The authors (Shin
et al., 2013) study BP for solving LP (16) by replacing∑
e∈δ(v) xe = 1 by

∑
e∈δ(v) xe ≤ 1, i.e., for the maximum

weight (non-perfect) matching problem. Using Theorem 1,
one can extend the result to the maximum weight perfect
matching problem, i.e., solving LP (16). To this end, we
follow the approach (Shin et al., 2013) and construct the
following graph G′ = (V ′, E′) and weight w′ = [w′e : e ∈
E′] ∈ R|E′| given set C of disjoint odd cycles:

V ′ = V ∪ {vC : C ∈ C}
E′ = {(u, vC) : u ∈ C,C ∈ C} ∪ E \ {e ∈ C : C ∈ C}

w′e =


1
2

∑
e′∈E(C)(−1)dC(u,e′)we′ if e = (u, vC)

for some C ∈ C
we otherwise

,

where dC(u, e′) is the graph distance between u, e′ in cycle
C. Then, LP (16) is equivalent to the following LP:

maximize w′ · y

subject to
∑
e∈δ(v)

ye = 1, ∀ v ∈ V

∑
u∈V (C)

(−1)dC(u,e)y(vC ,u) ∈ [0, 2], ∀e ∈ E(C)

∑
e∈δ(vC)

ye ≤ |C| − 1, ∀C ∈ C

y = [ye] ∈ [0, 1]|E
′|.

(17)

Now, we construct the following GM from the above LP:

Pr[Y = y] ∝
∏
e∈E

eweye
∏
v∈V

ψv(yδ(v))
∏
C∈C

ψC(yδ(vC)),

(18)
where the factor function ψv , ψC is defined as

ψv(yδ(v)) =

{
1 if

∑
e∈δ(v) ye = 1

0 otherwise
,

ψC(yδ(vC)) =


1 if

∑
u∈V (C)(−1)dC(u,e)y(vC ,u) ∈ {0, 2}∑
e∈δ(vC) ye ≤ |C| − 1

0 otherwise

.

For the above GM (18), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 8 If the solution of the maximum weight perfect
matching with odd cycles LP (17) is unique and integral,
then the max-product BP on GM (18) converges to it.

We again emphasize that a similar result for the maximum
weight (non-perfect) matching problem was established in
(Shin et al., 2013). However, the proof technique in the
paper does not extend to the perfect matching problem.
This is in essence because presumably the perfect match-
ing problem is harder than the non-perfect matching one.
Under the proposed generic criteria of Theorem 1, we over-
come the technical difficulty.

4.4 VERTEX COVER

Given undirected graph G = (V,E) and non-negative in-
teger vertex weights b = [bv : v ∈ V ] ∈ Z|V |+ , the vertex
cover problem is to find a set of vertices minimizes the sum
of vertex weights in the set such that each edge is connected
to at least one vertex in it. This problem is one of Karp’s
21 NP-complete problems (Karp, 1972). The associated LP
formulation to the vertex cover problem is as follows:

minimize b · y
subject to yu + yv ≥ 1, (u, v) ∈ E

y = [yv] ∈ [0, 1]|V |.

(19)

However, if we design a GM from the above LP, it does not
satisfy conditions in Theorem 1. Instead, we will show that
BP can solve the following dual LP:

maximize
∑
e∈E

xe

subject to
∑
e∈δ(v)

xe ≤ bv, ∀ v ∈ V

x = [xe] ∈ R|E|+ .

(20)

Note that the above LP always has a half-integral solution.
As we did in Section 4.2, one can duplicate edges, i.e.,



E′ = {e1, . . . , e2bmax : e ∈ E} with bmax = maxv bv ,
and design the following equivalent LP having an integral
solution:

maximize w′ · x

subject to
∑

ei∈δ(v)

xei ≤ 2bv, ∀ v ∈ V

x = [xei ] ∈ [0, 1]|E
′|

, (21)

where w′ei = we for e ∈ E and its copy ei ∈ E′. From the
above LP, we can construct the following GM:

Pr[X = x] ∝
∏
ei∈E′

ew
′
ei
xei
∏
v∈V

ψv(xδ(v)), (22)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
ei∈δ(v) xei ≤ 2bv

0 otherwise
.

For the above GM (22), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 9 If the solution of the vertex cover dual LP (21)
is unique, then the max-product BP on GM (22) converges
it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights [w′ei ]. We further remark that if the solution of
the primal LP (19) is integral, then it can be easily found
from the solution of the dual LP (21) using the strictly com-
plementary slackness condition (Bertsimas and Tsitsiklis,
1997) .

4.5 TRAVELING SALESMAN

Given directed graph G = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the traveling salesman
problem (TSP) is to find the minimum weight Hamiltonian
cycle inG. The natural LP formulation to TSP is following:

minimize w · x

subject to
∑
e∈δ(v)

xe = 2

x = [xe] ∈ [0, 1]|E|.

(23)

From the above LP, one can construct the following GM:

Pr[X = x] ∝
∏
e∈E

e−wexe
∏
v∈V

ψv(xδ(v)), (24)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
e∈δ(v) xe = 2

0 otherwise
.

For the above GM (24), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 10 If the solution of the traveling salesman LP
(23) is unique and integral, then the max-product BP on
GM (24) converges it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights. In Section 5, we show the empirical performance
of the max-product BP on GM (24) for solving TSP without
relying on the integrality condition in Corollary 10.

4.6 MAXIMUM WEIGHT CYCLE PACKING

Given undirected graphG = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the maximum weight
vertex disjoint cycle packing problem is to find the maxi-
mum weight set of cycles with no common vertex. It is easy
to observe that it is equivalent to find a subgraph maximiz-
ing the sum of edge weights on it such that each vertex of
the subgraph has degree 2 or 0. The natural LP formulation
to this problem is following:

maximize w · x

subject to
∑
e∈δ(v)

xe = 2yv

x = [xe] ∈ [0, 1]|E|, y = [yv] ∈ [0, 1]|V |.

(25)

From the above LP, one can construct the following GM:

Pr[X = x, Y = y] ∝
∏
e∈E

ewexe
∏
v∈V

ψv(xδ(v), yv),

(26)
where the factor function ψv is defined as

ψv(xδ(v), yv) =

{
1 if

∑
e∈δ(v) xe = 2yv

0 otherwise
.

For the above GM (26), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 11 If the solution of maximum weight vertex
disjoint cycle packing LP (25) is unique and integral, then
the max-product BP on GM (26) converges it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights.

5 EXPERIMENTAL RESULTS FOR
TRAVELING SALESMAN PROBLEM

In this section, we report empirical performances of BP on
GM (24) for solving the traveling salesman problem (TSP)



Table 1: Experimental results for small size complete graph and each number is the average among 100 samples. For
example, Greedy+BP means that the Greedy algorithm using edge weights as BP beliefs as we describe in Section 5. The
left value is the approximation ratio, i.e., the average weight ratio between the heuristic solution and the exact solution.
The right value is the average weight of the heuristic solutions. The last row is a ratio of tight TSP LP (23).

Size 5 10 15 20 25
Greedy 1.07 / 1.84 1.20 / 2.25 1.33 / 2.58 1.51 / 2.85 1.51 / 3.04
Greedy+BP 1.00 / 1.75 1.05 / 1.98 1.13 / 2.23 1.19 / 2.27 1.21 / 2.43
Christofides 1.38 / 1.85 1.38 / 2.56 1.67 / 3.20 1.99 / 3.75 2.16 / 4.32
Christofides+BP 1.00 / 1.75 1.09 / 2.07 1.23 / 2.43 1.30 / 2.50 1.45 / 2.90
Insertion 1.03 / 1.79 1.29 / 2.38 1.53 / 2.95 1.72 / 3.26 1.89 / 3.77
Insertion+BP 1.00 / 1.75 1.29 / 2.39 1.52 / 2.97 1.79 / 3.38 1.94 / 3.89
N-Neighbor 1.07 / 1.84 1.27 / 2.39 1.42 / 2.74 1.55 / 2.96 1.64 / 3.30
N-Neighbor+BP 1.00 / 1.75 1.05 / 1.98 1.13 / 2.23 1.15 / 2.21 1.20 / 2.40
2-Opt 1.00 / 1.75 1.08 / 2.04 1.12 / 2.21 1.24 / 2.36 1.28 / 2.57
2-Opt+BP 1.00 / 1.75 1.04 / 1.96 1.07 / 2.11 1.11 / 2.13 1.16 / 2.34
Tight LPs 100% 93% 88% 87% 84%

Table 2: Experimental results for sparse Erdos-Renyi graph with fixed average vertex degrees and each number is the
average among 1000 samples. The left value is the ratio that a heuristic finds the Hamiltonian cycle without penalty edges.
The right value is the average weight of the heuristic solutions.

Size 100 200
Degree 10 25 50 10 25 50
Greedy 0% / 7729.43 0.3% / 2841.98 13% / 1259.08 0% / 15619.9 0% / 5828.88 0.3% / 2766.07
Greedy+BP 14% / 1612.82 21% / 1110.27 44% / 622.488 6.4% / 2314.95 10% / 1687.29 16% / 1198.48
Christoifeds 0% / 19527.3 0% / 16114.3 0% / 10763.7 0% / 41382.5 0% / 37297.0 0% / 32023.1
Christofides+BP 14% / 2415.73 20% / 1663.47 34% / 965.775 6.1% / 3586.77 9.2% / 2876.35 12% / 2183.80
Insertion 0% / 12739.2 84% / 198.099 100% / 14.2655 0% / 34801.6 0.9% / 3780.71 99% / 44.1293
Insertion+BP 0% / 13029.0 76% / 283.766 100% / 14.6964 0% / 34146.7 0.3% / 4349.11 99% / 41.2176
N-Neighbor 0% / 9312.77 0% / 3385.14 7.6% / 1531.83 0% / 19090.7 0% / 7383.23 0.3% / 3484.82
N-Neighbor+BP 16% / 1206.95 26% / 824.232 50% / 509.349 6.9% / 1782.17 12% / 1170.38 24% / 888.421
2-Opt 34% / 1078.03 100% / 14.6873 100% / 7.36289 2% / 3522.78 100% / 35.8421 100% / 18.6147
2-Opt+BP 76% / 293.450 100% / 13.5773 100% / 6.53995 33% / 1088.79 100% / 34.7768 100% / 17.4883
Tight LPs 62% 62.3% 63% 52.2% 55% 52.2%

that is presumably the most famous one in combinatorial
optimization. In particular, we design the following BP-
guided heuristic for solving TSP:

1. Run BP for a fixed number of iterations, say 100, and
calculate the BP marginal beliefs (3).

2. Run the known TSP heuristic using edge weights as
log b[0]

b[1] using BP margianl beliefs instead of the orig-
inal weights.

For TSP heuristic in Step 2, we use Greedy, Christoifeds,
Insertion, N-Neighbor and 2-Opt provided by the LEMON
graph library (Dezső et al., 2011). We first perform the ex-
periments on the complete graphs of size 5, 10, 15, 20, 25
and random edge weight in (0, 1) to measure approxima-
tion qualities of heuristics, where it is reported in Table 1.
Second, we consider the sparse Erdos-Renyi random graph
of size 100, 200 and random edge weight in (0, 1). Then,
we make it a complete graph by adding non-existing edges
with penalty edge weight 1000.2 For these random in-

2This is to ensure that a Hamiltonian cycle always exists.

stances, we report performance of various heuristics in Ta-
ble 2. Our experiments show that BP boosts performances
of known TSP heuristics in overall, where BP is very easy
to code and does not hurt the simplicity of heuristics.

6 CONCLUSION

The BP algorithm has been the most popular algorithm
for solving inference problems arising graphical models,
where its distributed implementation, associated ease of
programming and strong parallelization potential are the
main reasons for its growing popularity. In this paper, we
aim for designing BP algorithms solving LPs, and pro-
vide sufficient conditions for its correctness and conver-
gence. We believe that our results provide new interesting
directions on designing efficient distributed (and parallel)
solvers for large-scale LPs.
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an open source c++ graph template library. Electronic
Notes in Theoretical Computer Science, 264(5):23–45,
2011.

Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. Par-
allel splash belief propagation. Technical report, DTIC
Document, 2010.

Bert C Huang and Tony Jebara. Loopy belief propagation
for bipartite maximum weight b-matching. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 195–202, 2007.

Richard M Karp. Reducibility among combinatorial prob-
lems. Springer, 1972.

Leonid G Khachiyan. Polynomial algorithms in linear
programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72, 1980.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M. Hellerstein.
Graphlab: A new framework for parallel machine learn-
ing. In UAI 2010, Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, pages
340–349. AUAI Press, 2010.

Nam Ma, Yinglong Xia, and Viktor K Prasanna. Task
parallel implementation of belief propagation in factor
graphs. In Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, pages 1944–1953. IEEE, 2012.

Marc Mezard and Andrea Montanari. Information, physics,
and computation. Oxford University Press, 2009.

Tom Richardson and Ruediger Urbanke. Modern coding
theory. Cambridge University Press, 2008.

Nicholas Ruozzi and Sekhar Tatikonda. st paths using the
min-sum algorithm. In Communication, Control, and
Computing, 2008 46th Annual Allerton Conference on,
pages 918–921. IEEE, 2008.

Justin Salez and Devavrat Shah. Belief propagation: an
asymptotically optimal algorithm for the random assign-
ment problem. Mathematics of Operations Research, 34
(2):468–480, 2009.

Sujay Sanghavi, Dmitry Malioutov, and Alan Willsky. Be-
lief propagation and lp relaxation for weighted matching
in general graphs. Information Theory, IEEE Transac-
tions on, 57(4):2203–2212, 2011.

Alexander Schrijver. Combinatorial optimization: polyhe-
dra and efficiency, volume 24. Springer, 2003.

Jinwoo Shin, Andrew E Gelfand, and Misha Chertkov. A
graphical transformation for belief propagation: Maxi-
mum weight matchings and odd-sized cycles. In Ad-
vances in Neural Information Processing Systems, pages
2022–2030, 2013.

George B Dantzig Mukund N Thapa. Linear programming.
2003.

Meritxell Vinyals, Alessandro Farinelli, Juan A Rodrı́guez-
aguilar, et al. Worst-case bounds on the quality of max-
product fixed-points. In Advances in Neural Information
Processing Systems, pages 2325–2333, 2010.

Martin J Wainwright and Michael I Jordan. Graphical
models, exponential families, and variational inference.
Foundations and Trends R© in Machine Learning, 1(1-2):
1–305, 2008.

Yair Weiss. Belief propagation and revision in networks
with loops. 1997.

Yair Weiss and William T Freeman. On the optimality
of solutions of the max-product belief-propagation al-
gorithm in arbitrary graphs. Information Theory, IEEE
Transactions on, 47(2):736–744, 2001.

Jonathan S Yedidia, William T Freeman, and Yair Weiss.
Constructing free-energy approximations and general-
ized belief propagation algorithms. Information Theory,
IEEE Transactions on, 51(7):2282–2312, 2005.


	INTRODUCTION
	PRELIMINARIES
	GRAPHICAL MODEL
	MAX-PRODUCT BELIEF PROPAGATION

	CONVERGENCE AND CORRECTNESS OF BELIEF PROPAGATION
	PROOF OF THEOREM 1
	PROOF OF LEMMA 3

	APPLICATIONS OF THEOREM 1 TO COMBINATORIAL OPTIMIZATION
	SHORTEST PATH
	MAXIMUM WEIGHT PERFECT MATCHING
	MAXIMUM WEIGHT PERFECT MATCHING WITH ODD CYCLES
	VERTEX COVER
	TRAVELING SALESMAN
	MAXIMUM WEIGHT CYCLE PACKING

	EXPERIMENTAL RESULTS FOR TRAVELING SALESMAN PROBLEM
	CONCLUSION

