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Abstract 

We consider the problem of learning the structure 
of a Markov Random Field (MRF) when a 
node-specific degree distribution is provided. The 
problem setting is inspired by protein contact map 
(i.e., graph) prediction in which the contact 
number (i.e., degree) of an individual residue (i.e., 
node) can be predicted without knowing the 
contact graph. We formulate this problem using 
maximum pseudo-likelihood plus a node-specific 
ℓ1  regularization derived from the predicted 
degree distribution. Intuitively, when a node have 
𝑘  predicted edges, we dynamically reduce the 
regularization coefficients of the 𝑘 most possible 
edges to promote their occurrence. We then 
optimize the objective function using ADMM and 
an Iterative Maximum Cost Bipartite Matching 
algorithm. Our experimental results show that 
using degree distribution as a constraint may lead 
to significant performance gain when the 
predicted degree has good accuracy. 

1. INTRODUCTION 

Structure learning of a Markov Random Field (MRF) is an 
important problem and has been applied to many 
real-world problems which require study of conditional 
independence between a set of objects. For example, 
structure learning has been used

1
to derive gene expression 

or regulatory network from gene expression levels [1, 6, 32, 
36] and predict the contact map of a protein from a 
multiple sequence alignment of a protein family [9, 15, 16, 
23, 24]. Two major approaches and their variants have 
been studied to learn the structure of a graphical model 
from data: Gaussian Graphical Model (GGM) [11] and 
maximum pseudo-likelihood [29]. Since many real-world 

  
1 The first two authors contribute equally to the paper. 

structures are usually sparse, ℓ1 regularization is usually 
added to the objective function to generate a sparse 
structure. Empirical studies indicate that the 
pseudo-likelihood approach may have better prediction 
accuracy and is also more efficient than GGM, by dropping 
the Gaussian distribution assumption.  

In real-world applications, the underlying structure (or 
graph) usually has some special properties and must satisfy 
some topological constraints. For example, a gene 
expression network is scale-free. A protein contact graph 
must satisfy some geometric constraints, e.g., the degree of 
each node is upper bounded by a constant and also depends 
on the properties of its corresponding amino acid. Only a 
few structure-learning algorithms take into consideration 
topological constraints of the underlying graph, which can 
be used to reduce the feasible solution set of the problem. 
From another perspective, predicted graphs without 
considering these constraints might contain conflicts and 
are physically infeasible. A predicted contact graph 
violating the above-mentioned geometric constraints may 
not correspond to a feasible protein structure. Several 
papers [12, 17, 30, 35] have considered some very general 
topological constraints describing the global properties of a 
graph to improve structure learning. However, these 
non-specific topological constraints do not help very much 
in practice. The reason may be that they are too loose for 
some nodes (graphs) and too restrictive for others and thus, 
the overall performance gain is limited.  

The problem addressed by this paper is inspired by protein 
contact graph prediction. A protein sequence consists of a 
string of amino acids (also called residues). In nature, a 
protein sequence folds into a specific 3D shape to function 
properly. Two residues are defined to form a contact if they 
are close (distance≤8 Å) in the 3D space. Therefore, we can 
use a contact map to model a protein 3D structure. 
Predicting inter-residue contacts from sequence is an 
important and challenging problem. Recent studies [22, 24, 
25, 27] indicate that predicted inter-residue contacts could 
be used as a valuable constraint to improve the folding of 
some proteins. Baker group [16] shows that one correct 
long-range contact for every 12 amino acids (AAs) in a 



 

protein allows for accurate topology-level protein folding. 
Recent breakthroughs [9, 15, 24] apply Gaussian Graphical 
Model and maximum pseudo-likelihood to formulate 
protein contact prediction as a structure learning problem. 
In these formulations, a protein sequence is viewed as a 
sample generated from a Markov Random Field (MRF), in 
which an MRF node represents one AA (also called 
residue) and an edge indicates a contact (i.e., strong 
interaction) between two AAs.   

Without knowing the actual contact graph of a protein, we 
can use a supervised learning method to predict the number 
of contacts (i.e., degree) of an AA from sequence 
information. In particular, we use 2𝐿 different linear-chain 
2

nd
-order Conditional Neural Fields (CNFs) [28] to predict 

the degree distribution for a protein of length 𝐿. A CNF is 
an integration of neural networks and Conditional Random 
Field (CRF) [20]. CNF models the relationship between 
the label at each node and input features by neural 
networks and also correlation among neighboring labels. 
Therefore, CNF can capture the complex relationship 
between node labels and features as well as the 
dependency between node labels. The predicted node 
degree distribution is then used as a regularization to help 
improve individual contact prediction.  

2. RELATED WORK 

To our best knowledge, there are very few published work 
that uses node-specific degree distribution to help with 
structure learning of MRFs. Motivated by the observation 
that many social and biological networks follow a 
power-law degree distribution [2, 5, 14], [21] proposed a 
novel non-convex reweighted ℓ1 regularization by using a 
log surrogate to approximate the power-law distribution. 
The basic idea is to reduce the regularization coefficients 
for hub nodes (i.e., nodes with a large degree) to promote 
their occurrence. A convex variant of this work was 
developed in [7], resulting in further performance 
improvement. This work modeled the structure learning 
problem as a set-function optimization problem and 
approximated it by Lovasz extension [4]. The resultant 
objective function is another kind of reweighed ℓ1 
regularization. Although these methods result in a graph 
following a power-law degree distribution, their accuracy 
of the predicted edges is not much better than the simple ℓ1 
regularization. A very recent work [37] obtained much 
better accuracy by making use of a reweighted ℓ1 
regularization accounting for not only global degree 
distribution, but also the estimated degree of an individual 
node and the relative strength of all the edges of the same 
node. 

Other work such as [10] takes into consideration 
eigenvector centrality constraints and triangle-shaped local 
motifs of the graph, which are properties of gene 
regulatory networks and protein-protein interaction 
networks. [33] presented a convex formulation that uses a 
group-sparsity penalty on the rows and columns of the data 
precision matrix, effectively selecting which nodes 

connect with all the other nodes or no nodes at all. This 
formulation also results in a graph following a power-law 
distribution. 

3. METHOD 

3.1 NOTATIONS AND PRELIMINARIES 

Given a protein sequence, we can run PSI-BLAST [3] to 
find its sequence homologs (i.e., proteins in the same 
family) and build a multiple sequence alignment (MSA) of 
homologs. By examining this MSA, we can identify 
evolution and co-evolution patterns in a protein family. By 
co-evolution, we mean the evolution of one AA is strongly 
impacted by the other.  As shown in Figure 1, the AAs in 
the two red MSA columns are co-evolved. It has been 
observed that two co-evolved residues are likely to 
form a contact in the 3D space since they strongly 
interact with each other.  

 

 

 

 

 

 

 

Figure 1. Two coevolved AAs (in red columns) may form a 
contact in 3D space. 

We can use Markov Random Fields (MRF) to model the 
MSA and infer inter-residue contacts by structure 
learning of the MRF. In the MRF model, a node 
represents one MSA column and an edge represents 
correlation between two MSA columns. Let  𝑋 =
{𝑋1, 𝑋2, … , 𝑋𝐿} be a protein sequence where 𝑋𝑖 represents 
amino acid type (or gap) at column 𝑖. Let 𝑅 denote the 
number of protein sequences (or rows) in the MSA.  Let 
𝑋𝑖𝑟  denote the amino acid type observed at row 𝑟 
(1 ≤ 𝑟 ≤ 𝑅) and column 𝑖 (1 ≤ 𝑖 ≤ 𝐿). The probability 
of observing 𝑋 can be defined as follows.       

     𝑃(𝑋) = ∏
exp (∑ 𝑏𝑖

𝐿
𝑖=1 (𝑋𝑖𝑟)+∑ 𝑤𝑖𝑗(𝑋𝑖𝑟, 𝑋𝑗𝑟)𝑖<𝑗 )

𝑍
𝑅
𝑟=1    (1) 

Here 𝑏𝑖 and 𝑤𝑖𝑗  denote the unary and binary potential 

functions for nodes 𝑖  and 𝑗 , respectively. 𝑍  is the 

partition function, summing over all the possible label 

combinations. If nodes 𝑖  and 𝑗  share an edge in the 

graph, they are correlated given all the other nodes, 

indicating that their corresponding AAs form a contact 

and interact with each other in the 3D space. Therefore, 

the contact number of one AA corresponds to the node 

degree in the graph. Both training and inference by 

maximizing (1) over a general graph are NP-hard. 

Pseudo-likelihood approximation [9, 29] is proposed to 



 

deal with this. Substituting the original likelihood 

function, we have, 

                   𝑃(𝑋𝑖) = ∏ 𝑃(𝑋𝑖,𝑟|𝑋\𝑖,𝑟)𝑅
𝑟=1                       (2) 

= ∏
exp (𝑏𝑖(𝑋𝑖,𝑟) + ∑ 𝑤𝑖,𝑗(𝑋𝑖,𝑟 , 𝑋𝑗,𝑟)𝐿

𝑗=1,𝑗≠𝑖 )

∑ exp (𝑏𝑖(𝑋𝑖,𝑟) + ∑ 𝑤𝑖,𝑗(𝑋𝑖,𝑟 , 𝑋𝑗,𝑟)𝐿
𝑗=1,𝑗≠𝑖 )𝑋𝑖,𝑟

𝑅

𝑟=1
 

Each binary potential function 𝑤𝑖𝑗  is a 21×21 matrix. 

We can estimate all 𝑤𝑖𝑗  by maximizing (2). We can use 

∑ |𝑤𝑖,𝑗(𝑎, 𝑏)|20
𝑎,𝑏=1 to measure the interaction strength 

between two nodes 𝑖 and 𝑗. A pair of nodes with strong 

interaction is predicted to share an edge or form a 

contact.  

3.2 NODE-SPECIFIC DEGREE 

REGULARIZATION  

In this section we introduce how to add a node-specific 

degree distribution as a prior to the above 

pseudo-likelihood function. Let 𝑃𝑖(𝑘) be the predicted 

probability of node 𝑖  having 𝑘  contacts. Let 

𝑊𝑖𝑗=∑ |𝑤𝑖,𝑗(𝑎, 𝑏)|20
𝑎,𝑏=1 , which indicates the interaction 

strength between two AAs 𝑖  and 𝑗 . Given a 𝑖 , we 

exclude 𝑊𝑖𝑖 and denote the t-th largest 𝑊𝑖𝑗  as 𝑊𝑖,(𝑡). We 

use the following penalty term Ω𝑖  for AA 𝑖. 

      Ω𝑖 = ∑ 𝑃𝑖(𝑘)(− ∑ 𝑊𝑖,(𝑡)
𝑘
𝑡=1 + ∑ 𝑊𝑖,(𝑡)

𝐿−1
𝑡=𝑘+1 )𝐿−1

𝑘=1      (3) 

Eq. (3) implies that if the degree of AA 𝑖 is 𝑘, its 𝑘 largest 

𝑊𝑖,(1), 𝑊𝑖,(2), … , 𝑊𝑖,(𝑘)  shall be big and the remaining 

𝑊𝑖,(𝑘+1), 𝑊𝑖,(𝑘+2), …  shall be very small. The outer 

summation ranges from 1 to 𝐿 − 1  since the contact 

number is less than 𝐿. Regrouping Eq. (3) by each 𝑊𝑖,(𝑘) 

we have, 

                             Ω𝑖 = ∑ 𝑔𝑖,𝑘𝑊𝑖,(𝑘)
𝐿−1
𝑘=1                           (4)    

where 𝑔𝑖,𝑘 = − ∑ 𝑃𝑖(𝑡)𝐿−1
𝑡=𝑘 + ∑ 𝑃𝑖(𝑡)𝑘−1

𝑡=1 . Notice that the 

coefficient  𝑔𝑖,𝑘 for 𝑊𝑖,(𝑘) can be negative, which will lead 

the optimization problem to be unbounded, so empirically 

we add a constant 𝛽 (0.2 by default) to each 𝑔𝑖,𝑘 to make it 

positive. Figure 2 shows two examples. For node 𝑖 , its 

degree is most likely to be either 1 or 3, so the coefficient 

for the largest interaction strength 𝑊𝑖,(1) should be reduced. 

For node 𝑗, its degree is most likely to be zero, so all the 

coefficients are increased to drive its interaction strengths 

to zero.  

The reweighted ℓ1 regularized pseudo-likelihood function 

is defined as, 

                          min𝑊 𝐿(𝑊) + ∑ Ω𝑖
𝐿
𝑖=1 (𝑊)                 (5) 

Where 𝐿(𝑊)  is the negative log of Eq. (2) and Ω𝑖  is a 

special ℓ1 penalty defined in Eq. (4). To optimize (5), we 

use Alternating Direction Method of Multipliers (ADMM) 

[13] to separate the pseudo-likelihood function and the ℓ1 

penalty term. ADMM alternatively solves the following 

three sub-problems. 

           𝑍𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑍𝐿(𝑍) +
𝜌

2
‖𝑍 − 𝑊𝑛 + 𝑈𝑛‖2

2       (6) 

 𝑊𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊
∑ Ω𝑖

𝐿
𝑖=1 (𝑊) +

𝜌

2
‖𝑍𝑛 − 𝑊 + 𝑈𝑛‖2

2  (7)        

                       𝑈𝑛+1 = 𝑈𝑛 + 𝑍𝑛+1 − 𝑊𝑛+1                   (8) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Node-specific degree-based ℓ1  penalty. This figure 

shows how the regularizers are different based on the predicted 

degree distribution. The X-axis is the probability and the Y-axis 

is the degree. The colorful arrows represent the change of 

coefficient for the ℓ1-norm. The warmer the color the smaller the 

value is. Down arrows represent negative value and up arrows 

represent positive value. 

where 𝜌 > 0  is a fixed step-size parameter (we used 

𝜌 = 0.01) and 𝑈 is the dual variable passing information 

between sub-problems (6) and (7). Problem (6) can be 

solved using conjugate gradient decent. Since the order of 

𝑊𝑖,∗ for each 𝑖 is unknown in problem (7), it is challenging 

to solve (7). We need to consider their order so that 𝑔𝑖,𝑘 

can be used to weight the 𝑘𝑡ℎ largest 𝑊𝑖,(𝑘). Let 𝑀 = 𝑍 +

𝑈 and 𝑔𝑖,𝑘 = 𝑔𝑖,𝑘/𝜌. We may further divide problem (7) 

into 𝐿 sub-problems; the 𝑖𝑡ℎ sub-problem is as follows. 

                    𝑚𝑖𝑛 𝑊𝑖

1

2
‖ 𝑊𝑖 − |𝑀𝑖| ‖2

2 + Ω𝑖( 𝑊𝑖)             (9) 

To solve problem (9), we need a mapping between original 

 {𝑊𝑖,𝑘} and {𝑔𝑖,𝑘}, as different mappings lead to different 

optimization problems. For a given mapping, we need to 

minimize the corresponding function subject to the 

constraints provided by the mapping. We want the 

mapping with the smallest optimal value. However, there 

are an exponential number of mappings between  {𝑊𝑖,𝑘} 

and {𝑔𝑖,𝑘}, which makes it impossible to enumerate all the 

possible mappings. To make it easy, we assume  𝑊𝑖,(𝑘) >



 

 𝑊𝑖,(𝑘+1) for all  𝑘. That is, we only want to find a solution 

satisfying this condition. Next we will introduce how to 

use an Iterative Maximum Cost Bipartite Matching 

algorithm to solve the relaxation problem. 

3.2.1 Iterative Maximum Cost Bipartite Matching 

Algorithm 

Theorem 1. Let  𝑊𝑖,(1) >  𝑊𝑖,(1) > ⋯ >  𝑊𝑖,(𝐿−1)  be the 

ranking of { 𝑊𝑖,𝑘} . The optimal solution 𝑊𝑖,(𝑘)
∗ =

 ∑ |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)|20

𝑎,𝑏=1  of problem (9) always has the form, 

      |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)| = 𝑚𝑎𝑥 {|𝑀𝑖,(𝑘)(𝑎, 𝑏)| − 𝑔𝑖,𝑘, 0}      (10) 

Proof. By taking the sub-gradient with respect to each 

|𝑤𝑖,(𝑘)(𝑎, 𝑏)| and setting it to zero we obtain Eq. (10). If 

the optimal solution |𝑤𝑖,(𝑘)
∗ (a, b)| of (9) does not satisfy 

Eq. (10), we can always decrease the objective function 

by adding or subtracting a small constant to (10) so that 

 𝑊𝑖,(𝑘−1) >  𝑊𝑖,(𝑘) >  𝑊𝑖,(𝑘+1) still holds. This contradicts 

with our assumption that |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)|  is the optimal 

solution. ☐ 

Based on Theorem 1, given a ranking of { 𝑊𝑖,𝑘}, we can 

substitute { 𝑊𝑖,𝑘} of (9) by Eq. (10) to obtain the below 

equation. 

            ∑ ∑ 𝑀𝑖,(𝑘)(𝑎, 𝑏)2 − 𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)220

𝑎,𝑏=1
𝐿−1
𝑘=1          (11) 

Now we need to minimize (11). Notice that the summation 

of all the 𝑀𝑖,(𝑘)(𝑎, 𝑏)2 is a constant, so minimizing (11) is 

equivalent to the following optimization problem. 

                      𝑚𝑎𝑥 ∑ ∑ 𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)220

𝑎,𝑏=1
𝐿−1
𝑘=1                 (12) 

Substituting (9) into (12) and considering the constraints of 

the mapping, we have the following optimization problem. 

    𝑚𝑎𝑥 ∑ ∑ 𝑚𝑎𝑥 {|𝑀𝑖,(𝑘)(𝑎, 𝑏)| − 𝑔𝑖,𝑘, 0}220
𝑎,𝑏=1

𝐿−1
𝑘=1      (13) 

                      s.t.        ∀𝑘   𝑊𝑖,(𝑘)
∗ > 𝑊𝑖,(𝑘+1)

∗  

where 𝑊𝑖,(𝑘)
∗ = ∑ max {|𝑀𝑖,(𝑘)(𝑎, 𝑏)| − 𝑔𝑖,𝑘, 0}20

𝑎,𝑏=1 . Note 

that in this problem we are looking for a one-to-one 

matching between 𝑀𝑖,(𝑘) and 𝑔𝑖,𝑘, which can be modeled 

as an Integer Linear Problem (ILP) defined on variable 

𝐸 = {𝑒𝑘,𝑙} as follows, 

            𝑚𝑎𝑥 ∑ 𝜃𝑘,𝑙𝑒𝑘,𝑙𝑘,𝑙 + ∑ 𝜃𝑘,𝑞,𝑙,𝑙+1𝑘≠𝑞,𝑙 𝑒𝑘,𝑙𝑒𝑞,𝑙+1   (14) 

                     s.t.    ∀𝑘, 𝑙    ∑ 𝑒𝑘,𝑙𝑘 = 1 , ∑ 𝑒𝑘,𝑙𝑙 = 1 

Here 𝑒𝑘,𝑙 = 1 if 𝑀𝑖,𝑘  is assigned to 𝑔𝑖,𝑙 ; otherwise 0. Let 

Λ𝑖,𝑘,𝑙(𝑎, 𝑏)=𝑚𝑎𝑥 {|𝑀𝑖,𝑘(𝑎, 𝑏)| − 𝑔(𝑖, 𝑙), 0}, then each 𝜃𝑘,𝑙 

and 𝜃𝑘,𝑞,𝑙,𝑙+1 can be computed as follows. 

                 𝜃𝑘,𝑙 = ∑ 𝛬𝑖,𝑘,𝑙(𝑎, 𝑏) 220
𝑎,𝑏=1                            (15) 

        𝜃𝑘,𝑞,𝑙,𝑙+1 = {
0 ∑ 𝛬𝑖,𝑘,𝑙(𝑎, 𝑏) 20

𝑎,𝑏=1 > ∑ 𝛬𝑖,𝑞,𝑙+1(𝑎, 𝑏) }20
𝑎,𝑏=1

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       

Each 𝜃𝑘,𝑙  reflects the preference of mapping 𝑀𝑖,𝑘  to 𝑔𝑖,𝑙 

while 𝜃𝑘,𝑞,𝑙,𝑙+1reflects the constraints to be satisfied. With 

these definitions, we can use the ADMM algorithm by 

introducing an auxiliary variable 𝑣𝑘,𝑙  for each 𝑒𝑘,𝑙  and 

solving (14) using the following iterative procedure, 

                       𝑉𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑌 ∑ 𝐶𝑞,𝑙𝑣𝑞,𝑙𝑞,𝑙                (16) 

                        𝐸𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐸 ∑ 𝐷𝑘,𝑙𝑒𝑘,𝑙𝑘,𝑙               (17) 

                     𝜂𝑛+1 = 𝜂𝑛+1 + (𝐸𝑛+1 − 𝑉𝑛+1)               (18) 

Each 𝐶𝑞,𝑙 and 𝐷𝑘,𝑙 can be computed as, 

       𝐶𝑞,𝑙 = −𝜂𝑞,𝑙 + (∑ 𝜃𝑘,𝑞,𝑙−1,𝑙𝑘{𝑘≠𝑞} 𝑒𝑘,𝑙−1) + 𝛾𝑒𝑞,𝑙   (19) 

     𝐷𝑘,𝑙 = 𝜃𝑘,𝑙 + ∑ 𝜃𝑘,𝑞,𝑙,𝑙+1𝑣𝑞,𝑙+1𝑞{𝑞≠𝑘} + 𝜂𝑘,𝑙 + 𝛾𝑣𝑘,𝑙 (20) 

Here 𝛾 > 0  is a fixed step-size parameter (we used 

𝛾 = 0.5) and 𝜂 (we used 0.1) is the dual variable passing 

information between sub-problems (16) and (17). Both (16) 

and (17) can be viewed as a bipartite matching problem, 

which can be solved by the Hungarian algorithm [19]. 

Using the above algorithm (steps 16-18), we can find a 

permutation of  {𝑊𝑖,𝑘} ;  |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)|  is then given by 

(10). Notice that in order to minimize (9), if 

|𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)| ≠ 0 , then 𝑤𝑖,(𝑘)

∗ (𝑎, 𝑏)  and  𝑀𝑖,𝑘(𝑎, 𝑏) 

should have the same sign. The final solution of 

𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏) is therefore given by,  

      𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)                                                               (21) 

= {  𝑀𝑖,(𝑘)(𝑎, 𝑏) − 𝑠𝑖𝑔𝑛 (𝑀𝑖,(𝑘)(𝑎, 𝑏)) 𝑔
𝑖,𝑘

|𝑀𝑖,(𝑘)(𝑎, 𝑏)| > 𝑔
𝑖,𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

3.3 ESTIMATE NODE-SPECIFIC DEGREE 

DISTRIBUTION  

Here we introduce how to predict the degree distribution of 

each node. Notice that in a protein sequentially-adjacent 

AAs must be close in the 3D space so their corresponding 

MRF nodes are connected. We introduce a concept called 

Partial Contact Number (PCN) denoted by 𝛣𝑖,𝑗  for each 

node pair 𝑖 and 𝑗, which is defined as the number of edges 

formed by node 𝑖 with nodes 𝑖 + 1, 𝑖 + 2, ... , 𝑗 (if 𝑗 > 𝑖) 
or nodes 𝑖 − 1, 𝑖 − 2, ... , 𝑗  (if 𝑗 < 𝑖 ). Each 𝛣𝑖,𝑗  has 15 

labels indicating the degree from 0 to 13 and ≥ 14. We set 

the maximum degree to 14 since the contact number of an 

AA is upper bounded by a small constant. Since 𝐵𝑖,𝑗  is 

correlated with its nearest neighbors 𝐵𝑖,𝑗−1 and 𝐵𝑖,𝑗+1, we 

apply a Conditional Neural Field (CNF) to predict 𝐵𝑖,𝑗 . 

Each node 𝑖  is associated with two 2
nd

-order CNFs, as 



 

shown in Figure 3. A protein with 𝐿 nodes (AAs) has 2𝐿 

different 2
nd

-order CNFs.  

Let 𝐹𝑖,𝑗 denote the feature vector extracted from two AAs 𝑖 

and 𝑗 , we use one CNF is to estimate 

𝑃(𝛣𝑖,𝑖+6~𝛣𝑖,𝐿|𝐹𝑖,𝑖+6~𝐹𝑖,𝐿)  and the other for 

𝑃(𝛣𝑖,1~𝛣𝑖,𝑖−6|𝐹𝑖,𝑖+6~𝐹𝑖,𝐿) . We ignore very short-range 

contacts (sequence distance<6) as they are less informative 

for structure prediction. We train CNFs by maximum 

likelihood. We use a ℓ2 regularization to avoid over-fitting 

and 5-fold cross validation to choose the hyper parameters. 

Since CNF is non-convex, we train it starting from 5 

different initial solutions and pick the best one. See [28] for 

more details of CNF. 

After training the CNF models, we calculate the marginal 

probabilities 𝑃(𝛣𝑖,𝑗) using the standard forward-backward 

algorithm [20] independently on each CNF. Finally, we 

calculate the probability of node 𝑖  having degree 𝐾  as 

follows. 

           ∑ (𝑃(𝛣𝑖,1 = 𝐾1) +𝐾1+𝐾2=𝐾 𝑃(𝛣𝑖,𝐿 = 𝐾2))     (22) 

4. EXPERIMENTS 

4.1 TRAINING AND TEST DATA 

We use a subset of the PDB25 dataset, generated by the 

PISCES server [34], to train and validate our CNF models. 

Any two proteins in this dataset share <25% sequence 

identity. In total we used 3118 proteins with length 

between 40 and 500, among which 3/4 are randomly 

chosen for training and the remaining 1/4 for validation. To 

test the performance, we evaluate our results on CASP10 

[18] and CASP11 [26] datasets. We rule out short proteins 

with fewer than 70 amino acids since they have relatively 

low contact number prediction accuracy. This leads to 109 

test proteins in the CASP10 set and 99 proteins in the 

CASP11 dataset. We use the CASP official domain 

boundary definition for each test protein. For each test 

protein, we run PSI-BLAST [3] with 5 iterations and 

E-value 0.001 to generate sequence profile, from which we 

extract 𝐹𝑖,𝑗 . All the native structures of our training and 

validation proteins are solved before CASP10 and 

CASP11 and do not share high sequence identify with the 

CASP test proteins. 

4.2 EVALUATION CRITERIA AND PROGRAMS 

TO COMPARE 

Depending on the sequence distance (i.e., the number of 

AAs between the two ends of a contact along the protein 

sequence), we divide contacts into 3 categories: [6,12) for 

short-range contacts, [12,24) for medium-range contacts 

and ≥ 24 for long-range contacts. Generally speaking, 

medium- and long-range contacts are more important for 

structure prediction, but more challenging to predict. We 

evaluate only top 𝐿/5, 𝐿/10, and 𝐿/2 predicted contacts. 

The accuracy is calculated as the percentage of the 

correctly predicted contacts. The ground truth is calculated 

from the experimental structure. When more predicted 

contacts are evaluated, the difference among methods 

becomes smaller since it is more likely to pick a native 

contact by chance. We compare our method to three other 

structure learning methods: PSICOV [15], plmDCA [9], 

and CCMpred [31]. PSICOV uses Graphical Lasso for 

contact prediction while plmDCA and CCMpred use 

maximum pseudo-likelihood with ℓ2  regularization. 

These programs are run with their default parameters. 

When node-specific degree distribution is no used, our 

method is exactly the same as CCMpred, so we can 

calculate performance gain by examining the 

improvement of our method over CCMpred. 

 

Figure 3. A Conditional Neural Field model for the prediction of 

Partial Contact Numbers. 

4.3 PRE-PROCESSING AND POST-PROCESSING 

We employ the same pre- and post-processing procedures 

as plmDCA and CCMpred to ensure our comparison with 

them is fair. To reduce the impact of redundant sequences, 

we apply the same sequence weighting method as 

plmDCA. In particular, duplicate sequences are removed 

and MSA columns containing more than 90% of gaps are 

deleted. The sequence is weighted using a threshold of 62% 

sequence identity. Similar to plmDCA and CCMpred, 

average-product correction (APC) [8] is applied to 

post-process predicted contacts. 

4.4 PERFORMANCE 

4.4.1 Overall Performance 

As shown in Tables 1 and 2, on both CASP10 and CASP11 
test proteins, our method significantly outperforms the 
others in terms of the accuracy of the top L/10, L/5 and L/2 
predicted contacts. plmDCA and CCMpred achieve better 



 

results than PSICOV because they drop the Gaussian 
distribution assumption. Our method differs from plmDCA 
and CCMpred in that we use a separate ℓ1 regularization 
term for every pair of AAs instead of a universal 
regularization on all the AA pairs. 

Table 1. Contact prediction accuracy on the 109 CASP10 
targets 

 Short-range Medium-range Long-range 

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2 

Our Method  

 

method 

0.32 0.33 0.19 0.39 0.34 0.28 0.37 0.34 0.25 

PSICOV 0.23 0.19 0.14 0.31 0.26 0.19 0.28 0.23 0.17 

plmDCA 0.26 0.22 0.15 0.34 0.29 0.21 0.33 0.28 0.21 

CCMpred 0.28 0.29 0.16 0.36 0.30 0.22 0.33 0.30 0.22 

 

Table 2. Contact prediction accuracy on the 99 CASP11 
targets 

 Short-range Medium-range Long-range 

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2 

Our method 0.25 0.22 0.15 0.27 0.22 0.16 0.28 0.25 0.19 

PSICOV 0.19 0.14 0.11 0.20 0.16 0.12 0.20 0.17 0.13 

plmDCA 0.19 0.14 0.11 0.21 0.17 0.13 0.23 0.23 0.17 

CCMpred 0.21 0.17 0.12 0.24 0.19 0.13 0.24 0.22 0.17 

4.4.2 Impact of Predicted Contact Number 

Distribution 

First we evaluate the accuracy of contact number 
prediction. The contact number is predicted by picking the 
label with the maximum marginal probability computed by 
(22). The 15-label accuracy calculated on the CASP10 and 
CASP11 datasets are both 0.30 while random guess (i.e., 
predicting all the labels to be the one with the largest 
background probability) is 0.21. The average Pearson 
correlations between the ground truth and our prediction 
are 0.71 and 0.74, respectively. In addition, we can predict 
small- or large-valued contact number labels very 
accurately. These two properties help suppress the contacts 
of those AAs with very few contacts from showing up in 
the final prediction and thus, decrease the false positives.  

Now we evaluate the impact of contact number prediction 
on individual contact prediction. We compare our method 
(i.e., predicted contact number used) with CCMpred (i.e., 
predicted contact number not used) in terms of the 
accuracy of the top L/10 predicted long-range contacts. 
The top L/10 predicted contacts cover only a small number 
of AAs, so for each protein we only calculate the contact 
number accuracy on the AAs covered by the top L/10 
predicted contacts. We group the test proteins into seven 
bins according to their accuracy of predicted contact 
number. For each bin we calculate the average accuracy 
improvement of individual contact prediction by our 
method over CCMpred. As shown in Figure 4, the 
improvement is positively correlated with the accuracy of 
contact number prediction on both CASP10 and CASP11 
datasets. That is, the more accurately we can predict the 

contact number, the more performance gain can be 
obtained for individual contact prediction. In particular, 
when the accuracy of contact number prediction is low 
(<0.1), our method cannot improve individual contact 
prediction accuracy because the predicted contact number 
has too much noise. When the accuracy of contact number 
prediction is above 0.5, the performance gain from the 
predicted contact number information is large (≥0.05). 
This implies that our method makes a good use of 
predicted contact number information. 

 

 

 

 

 

 

 

 

 

Figure 4. Relationship between top 𝐿/10  long-range contact 

prediction accuracy gain and the accuracy of contact number 

prediction. The accuracy gain is calculated as the performance 

difference between our method and CCMpred. 

4.4.3 Case Study 

Here we use two specific examples to further demonstrate 
the strength of our method. In particular, we want to study 
how the predicted contact number distribution helps with 
individual contact prediction. One example is a CASP10 
target T0758 (PDB ID 4RM7). The other is a CASP11 
target T0813 (PDB ID 4WJI). They have 366 and 302 AAs, 
respectively, and 9572 and 4177 similar sequences. As 
shown in Tables 3 and 4, our method significantly 
outperforms the others by at least 0.2 on the top 𝐿/10 
long-range contact predictions. plmDCA and CCMpred 
have similar results since they use the same loss function. 
PSICOV yields relatively low performance on T0813, 
most likely attributing to the default sparsity setting being 
too aggressive.   

Table 3. Contact prediction accuracy of T0758 (4RM7) 

 Short-range Medium-range Long-range 

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2 

Our method 0.62 0.39 0.26 0.67 0.55 0.28 0.76 0.64 0.50 

PSICOV 0.50 0.31 0.19 0.55 0.41 0.19 0.50 0.47 0.40 

plmDCA 0.44 0.30 0.20 0.61 0.42 0.26 0.56 0.56 0.45 

CCMpred 0.42 0.32 0.19 0.64 0.56 0.30 0.53 0.48 0.45 

 

Table 4. Contact prediction accuracy of T0813 (4WJI) 

 Short-range Medium-range Long-range 

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2 



 

Our method 0.43 0.32 0.16 0.60 0.44 0.25 0.73 0.60 0.50 

PSICOV 0.30 0.20 0.11 0.43 0.28 0.19 0.50 0.40 0.31 

plmDCA 0.37 0.27 0.14 0.57 0.40 0.20 0.53 0.47 0.40 

CCMpred 0.37 0.28 0.13 0.53 0.42 0.23 0.47 0.50 0.45 

adfas

dfdfs

adf 

 

Now for each target we examine two AA pairs not in 
contact. Our method can correctly predict that they are not 
in contact, but the other three methods predict they are in 
contact. Figures 5 and 6 show the predicted contact number 
distributions for the eight AAs of the two targets. Most of 
these AAs are predicted to have very few contacts. 
Especially the 137th AA of T0758 and the 268th AA of 
T0813; the predicted probability of the contact number 
being zero are both over 0.5, which means all the 
parameters associated with these two AAs shall be forced 
to zero.  

 

 

 

 

 

 

 

Figure 5. Predicted contact number distributions of 4 AAs of T0758 

(4RM7) shown in Figure 7. 

 

 

 

 

 

 

 

 

Figure 6. Predicted contact number distributions of 4 AAs of T0813 

(4WJI) shown in Figure 8. 

As shown in Figures 7 and 8, these two AAs are exposed at 
the protein surface and they do not form any long-range 
contacts. Similarly, for the other 6 AAs, the mass of 
predicted contact number distribution are all concentrated 
around 3 or 4, which means our model most likely can only 
allow 3 or 4 contacts for each AA. The top predicted 
contacts of these AAs are all short- and medium-range. 
That is why our method does not predict any long-range 
contacts for these AAs. 

 

Figure 7. Two long-range false positives predicted by PSICOV, plmDCA 

and CCMpred for Target T0758 (4RM7): one false contact between the 

146th AA and 202nd AA and the other between the 137th AA and 207th 

AA.  Their true distances are 20.7 Å and 14.2 Å, respectively. 

 

Figure 8. Two false positives predicted by PSICOV, plmDCA and 

CCMpred for T0813 (4WJI): one false contact between the 244th AA and 

268th AA and the other between the 231st AA and 277th AA. Their true 

distances are 35.9 Å and 29.3 Å, respectively. 

5. DISCUSSION AND FUTURE WORK 

We have presented a new structure learning method that 
can make use of the predicted node-specific degree 
distribution to improve prediction accuracy of edges. The 
predicted degree distribution is used as a kind of soft 
topological constraints to restrict the solution space and 
avoid “unreasonable” predictions. Experimental results 
show that by using the degree distribution we can 
significantly improve protein contact prediction over 
current state-of-the-art structure learning methods.  

From a computational perspective, our method provides 
a new framework to integrate orthogonal information 
into structure learning. That is, we first use supervised 
learning to learn node-specific local topological 



 

constraints and then add it as a prior to learn the whole 
network structure. In many real-world applications, the 
connections of the graph are more or less influenced by the 
properties of nodes, so a node-specific degree distribution 
can be learned from local features without knowing the 
whole network structure. The contact number prediction is 
a very challenging supervised learning problem. In this 
work, we use multiple linear-chain graphical models to 
circumvent the difficulty of training and inference on 
loopy graphs. In the future, we will extend CNF by adding 
a deep learning module to further improve it. 

For protein contact prediction, adding AA-specific 
topological constraint is only our first step. We are 
considering other AA- and segment-specific topological 
constraints, such as some geometric constraints imposed 
by a single secondary structure segment, two correlated 
secondary structure segments, or even the global structure 
of a protein.   
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