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Abstract

Learning the structure of probabilistic graphi-
cal models for complex real-valued domains is
a formidable computational challenge. This in-
evitably leads to significant modelling compro-
mises such as discretization or the use of a sim-
plistic Gaussian representation. In this work we
address the challenge of efficiently learning truly
expressive copula-based networks that facilitate
a mix of varied copula families within the same
model. Our approach is based on a simple but
powerful bivariate building block that is used to
highly efficiently perform local model selection,
thus bypassing much of computational burden in-
volved in structure learning. We show how this
building block can be used to learn general net-
works and demonstrate its effectiveness on var-
ied and sizeable real-life domains. Importantly,
favorable identification and generalization per-
formance come with dramatic runtime improve-
ments. Indeed, the benefits are such that they
allow us to tackle domains that are prohibitive
when using a standard learning approaches.

1 INTRODUCTION

Probabilistic graphical models [Pearl, 1988] in general and
Bayesian networks (BNs) in particular, have become popu-
lar as a flexible and intuitive framework for modeling mul-
tivariate densities, a central goal of the data sciences. At
the heart of the formalism is a combination of a qualitative
graph structure that encodes the regularities (independen-
cies) of the domain and quantitative local conditional den-
sities of a variable given its parents in the graph. The result
is a decomposable model that facilitates relatively efficient
inference and estimation. Unfortunately, learning the struc-
ture of such models remains a formidable challenge, partic-
ularly when dealing with real-valued domains that are non-
Gaussian. The computational bottleneck lies in the need to

assess the merit of many candidate structures, each requir-
ing potentially costly maximum likelihood evaluation.

The situation is further compounded in realistic domains
where we also want to allow for the combination of differ-
ent local representations within the same model. Specifi-
cally, such a scenario requires that we perform non-trivial
local model selection within an already challenging struc-
ture learning procedure. In practice, with as few as tens of
variables, learning any real-valued graphical model beyond
the simple linear Gaussian BN can be computationally im-
practical. At the same time, it is clear that, for many do-
mains, the Gaussian representation is too restrictive. Our
goal in this work is to overcome this barrier and to effi-
ciently learn the structure of expressive networks that do
not only go beyond the Gaussian, but that also allow for a
mix of varied local representations.

In the search for expressive representations, several recent
works use copulas as a building block within the framework
of graphical models [Kirshner, 2007, Elidan, 2010, Wil-
son and Ghahramani, 2010]. Briefly, copulas [Joe, 1997,
Nelsen, 2007] flexibly capture distributions of few dimen-
sions: easy to estimate univariate marginals are joined to-
gether using a copula function that focuses solely on the
dependence pattern of the joint distribution. Appealingly,
regardless of the dependency pattern, any univariate repre-
sentation can be combined with any copula. In all of the
above works, the resulting copula graphical model proved
quite effective at capturing complex high-dimensional do-
mains, far surpassing the Gaussian representation.

Recently, Elidan [2012] proposed a structure learning
method that is tailored to the so called copula network rep-
resentation, and that is essentially as efficient as learning a
simple linear Gaussian BN. However, an important draw-
back of the approach is that it constrains all local copulas in
the model to be of the same type. Tenzer and Elidan [2013]
offer a slight improvement but their method is inherently
limited to few (2-3) of specific local representations and to
tree-structured networks. Clearly, to take advantage of the
plethora of dependency patterns captured by different cop-
ula families, we would like to have greater flexibility.
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Unfortunately, selection of the right copula family, or de-
pendence pattern, can be hard even for just two random
variables. Typical approaches (e.g., [Huard et al., 2006,
Fermanian, 2005, Hering and Hofert, 2010, Justel et al.,
1997, Genest and Rivest, 1993]) require costly computa-
tions such as maximum likelihood estimation, Bayesian in-
tegration, simulation, etc. (see Section 3 for details). While
such methods can be used to perform model selection for a
distribution with few variables, they are impractical when
faced with a large number of local model selection tasks
that underlie global structure learning. In this work we in-
troduce HELM: a method for Highly Efficient Learning of
Mixed copula networks.

Intuitively, for the task of model selection, the maximum
likelihood density defined by a particular copula family is
in fact a nuisance parameter, and we are only interested in
detecting the dependency pattern of the copula. Further,
since most copulas have a functional form with few param-
eters (or even just one), identifying between different copu-
las only requires a crude view of the distribution. Building
on this intuition, we build a copula-to-multinomial map-
ping that is independent of a particular domain. Then, when
faced with the model selection task given training samples,
we use a comparison of the empirical multinomial signa-
ture to the precomputed mapping in order to choose the
most promising copula family. Appealingly, for the build-
ing block task of choosing a copula family for two vari-
ables, our approach is effective, highly efficient, and comes
with finite sample guarantees.

With this model selection building block in hand, we are
still faced with the task of learning the global structure of
the model, which in turn requires costly maximum likeli-
hood computations. Fortunately, the same mechanism we
use for selection suggests a highly efficient and effective
proxy to the exact computation, when learning tree net-
works. Further, the method also gives rise to a natural
heuristic generalization that allows us to highly efficiently
learn networks with a general structure.

We demonstrate the benefit of our HELM approach for
learning expressive networks that combine a varied set of
copulas for several sizeable real-life datasets. Specifically,
we show that our procedure is not only accurate in terms
of identifying the best copula family, but also leads to
learned probabilistic graphical models that generalize well.
Importantly, this favorable performance comes with dra-
matic runtime speedups that facilitate learning of models
in domains where maximum likelihood structure learning
is computationally impractical.

2 BACKGROUND

In this section we briefly describe copulas, their relation-
ship to Spearman’s ρs measure of association, and the cop-
ula network construction.

Figure 1: Samples from the bivariate Gaussian copula with
ρ = 0.25. (left) with Gaussian marginals; (right) with a
mixture of Gaussian and Gamma marginals.

Copulas
A copula function joins univariate marginals into a
joint real-valued multivariate distributions. Formally, let
U1, . . . , Un be random variables marginally uniformly dis-
tribution on [0, 1]. A copula function C : [0, 1]n →
[0, 1] is a joint distribution Cθ(u1, . . . , un) = P (U1 ≤
u1, . . . , Un ≤ un), where θ are the parameters of the cop-
ula distribution function.

Now let X = {X1, . . . Xn} be an arbitrary set of real-
valued random variables. Sklar [1959] states that for any
CDF FX (x), there exists a copula C such that

FX (x) = C(F1(x1), . . . , Fn(xn)).

When Fi(xi) are continuous, C is uniquely defined.

The constructive converse is of particular interest from a
modeling perspective: Since Fi(Xi) ∼ U([0, 1]), any cop-
ula function taking any marginals {Fi(Xi)} defines a valid
joint cumulative distribution with marginals {Fi(Xi)}.
Thus, copulas are “distribution generating” functions that
allow us to separate the choice of the univariate marginals
and that of the dependence.

To derive the joint density f(x) = ∂nF (x1,...,xn)
∂x1...∂xn

from the
copula construction, assuming F has n-order partial deriva-
tives (true almost everywhere when F is continuous), and
using the chain rule, we have

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)

∏
i

fi(xi)

≡ c(F1(x1), . . . , Fn(xn))
∏
i

fi(xi),

where we use c(F1(x1), . . . , Fn(xn)) to denote the copula
density function.

Example 2.1.: The extremely popular Gaussian copula is
defined as

CΣ({Ui}) = ΦΣ

(
Φ−1(U1), . . . ,Φ−1(UN )

)
, (1)

where Φ is the standard Gaussian, and ΦΣ is a zero mean
Gaussian with correlation matrix Σ.



Copulas and Spearman’s Rho
Copulas are intimately connected to many dependence con-
cepts such as Spearman’s ρs measure of association

ρs(X1, X2) =
cov(FX1 , FX2)

STD(FX1
)STD(FX2

)
,

which is simply Pearson’s correlation applied to the cumu-
lative distributions ofX1 andX2. For the copula associated
with the joint FX1,X2(x1, x2), we have

ρs(X1, X2) = ρs(C) ≡ 12
∫ ∫

C(u, v)dudv − 3.

Thus, Spearman’s ρs is monotonic in the copula cumula-
tive distribution function associated with the joint distribu-
tion of X1 and X2. See [Nelsen, 2007, Joe, 1997] for an
in-depth exploration of the framework of copulas and its
relationship to dependence measures.

Copula Networks
Similarly to a standard Bayesian network [Pearl, 1988], a
copula network uses a directed acyclic graph G to encode
the independencies I(G) = {(Xi ⊥ NonDesci | Pai)},
where Pai are the parents of Xi in G, and NonDesci are
its non-descendants. I(G) implies a decomposition of the
joint density into a product of local conditional densities
of each variable given its parents: fX (X1, . . . , Xn) =∏
i fi(Xi | Pai).

In copula networks, the local densities are defined via the
copula ratio

fi(Xi | Pai) =
cθ(Fi(Xi), {Fj(Xj)}j∈Pai)

cθ({Fj(Xj)}j∈Pai)
fi(Xi). (2)

Appealingly, for copulas the denominator can be easily
computed from the numerator without the need for inte-
gration. Thus, the representation relies solely on the esti-
mation of joint copulas. See [Elidan, 2010] for more details
on the construction and its merits.

3 RELATED WORKS

Broadly speaking, methods for performing copula model
selection can be split into three groups. Most commonly,
model selection is carried out via (penalized) maximum
likelihood estimation, which can be costly due to the need
to evaluate the maximum likelihood parameters. In fact, as
will be demonstrated in Section 7, even when the maximum
likelihood parameters have a simple closed form, the ac-
tual computation of the maximum likelihood value can be
time consuming in the context of structure learning, where
this task is repeated numerous times. A second group of
works relies on a measure of deviation between the copula,
or some of its statistical properties, from the empirical es-
timators. Genest and Rivest [1993], for example, use the
deviation of Kendall’s τ estimates from the population val-
ues to select between Archimedean copulas. Unfortunately,

for most copulas, characterizing the Kendall distribution re-
quires simulation and can be computationally demanding
[Hering and Hofert, 2010]. Another example first employs
Rosenblatt’s transformation, followed by a deviation mea-
surement relative to the uniform distribution [Justel et al.,
1997], a process that can also be computationally intensive.

Fermanian [2005] suggests an alternative in the form of a
goodness-of-fit test that is based on kernel density estima-
tion. This, however, still requires tedious numerical inte-
gration. Finally, Huard et al. [2006] presents a Bayesian
approach that, like our method, is quite generic as it avoids
estimation of the maximum likelihood parameters. Poste-
rior computations, however, still require costly integration
over the support of Kendall’s τ values. In contrast to all
of these works, our HELM method uses extremely sim-
ple statistics that are easily computed for any copula. As
demonstrated in Section 7, this leads to effective perfor-
mance while offering dramatic speedups.

4 EXPRESSIVE TREE NETWORKS

Our goal is to efficiently learn the structure of copula-based
probabilistic graphical models while allowing for different
copula families within the same model. We start by consid-
ering in this section the building block task of performing
selection for bivariate copulas, and show how this building
block can be used to learn tree structured networks. Then,
after deriving in Section 5 finite sample guarantees for the
bivariate case, in Section 6 we propose an extension for
learning general networks.

4.1 MULTINOMIAL-BASED SELECTION

Recall that, intuitively, for the purpose of choosing a partic-
ular dependence pattern, the distribution is a nuisance pa-
rameter and it may be possible to forgo precise estimation.
As an example, Figure 2(top) shows the grid frequency of
samples from the bivariate Clayton and Gumbel copulas
with ρs = 0.5. The greater emphasis of the Clayton copula
on the lower tail is evident as is the converse for the Gumbel
copula. Thus, it is possible to choose between the copulas
based on simple statistics. Motivated by this example, our
selection procedure involves three steps:

1. Precompute a multinomial signature for each copula
family under consideration.

2. Given a set of training instances, compute an empiri-
cal multinomial signature.

3. Choose the copula whose multinomial signature is
closest (in some sense) to the empirical one.

We now briefly describe the details involved in each of
these three stages.
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Figure 2: An example of the multinomial mapping for
ρs = 0.5. (top) shows the distribution for the Clayton
and Gumbel families, overlaid with a 4× 4 grid. (bottom)
shows the corresponding multinomial signatures defined by
this grid for the two copula families.

Precomputing The Multinomial Signatures
We start by recalling the monotonic relationship, within
a copula family, between Spearman’s ρs and the copula
parameter. This allows us to use the notation Cρs to re-
fer to a particular instance of the copula family Cθ(ρs).
To define the copula-to-multinomial mapping, for a cop-
ula family Cρs , we partition the unit cube into N partitions
{A1, . . . , AN} and define a multinomial random variable
X via

PCρs (X = i) =

∫
Ai

cρs(u, v)dudv,

where cρs is the corresponding copula density. This map-
ping defines an N-valued multinomial representation of the
copula which we denote by π(cρs). In principle, comput-
ing P (X = i) requires integration. However, for copulas
the cumulative distribution function is explicit and, if each
Ai is chosen as a rectangular region, then P (X = i) can
be readily computed.

For simplicity, we use a generic partition into equal K×K
squares is illustrated in Figure 2(top) for K = 4. Fi-
nally, since we map the copula to a crude coarsening as
it is, in practice we compute the above only for ρs ∈
{−1,−0.95, . . . , 0.95, 1}, and use interpolation to define
the mapping for intermediary values. This also ensures ro-
bustness to small fluctuations in the ρs estimate. We use
π(cρs) to denote the resulting multinomial distribution.

Choosing A Copula Family
Given a set of M observations for two random variables
X,Y , our task is now to compute the empirical multino-
mial signature and compare it to the template ones in order
to choose the closest copula family. Let C be the set of

candidate copula families from which we wish to choose
the most appropriate copula. Omitting the explicit depen-
dence on the data for readability, we use π̂ and ρ̂s to denote
the empirical multinomial frequency over the K ×K grid
and the empirical Spearman’s ρs estimate, respectively. We
choose the copula family C̃ as the one that minimizes the
distance between the empirical and template signatures.1

That is:
C̃ = argminCρ̂d (π̂‖π(cρ̂s)) , (3)

where d(·‖·) is a divergence measure between distributions.
Several possible choices for this measure come to mind.
The KL [Kullback and Leibler, 1951] distance is the diver-
gence of choice between distributions, but can be sensitive
to small probabilities which can occur in some of the multi-
nomial grid cells. The L1-norm measure is less sensitive to
outliers but does not measure relative deviation. In Sec-
tion 5 we explore the theoretical properties of both choices,
and in Section 7 we demonstrate their empirical merit.

4.2 LEARNING A TREE NETWORK

We now turn to our goal of learning the structure of a
high-dimensional tree copula networks. Consider a tree
structured model overN variables [Kirshner, 2007, Elidan,
2012] where the joint density can be written as

fX (x1, . . . , xn) =
∏

(i,j)∈T

cij(Fi(xi), Fj(xk))
∏
i

fi(xi),

where cij is the copula associated with the edge (i, j) in the
network. Learning the optimal tree structure can be easily
carried our using a maximum spanning tree algorithm once
the merit of each theO(N2) candidate edges has been com-
puted. However, even if we have already made the choice
of the copula family for each pair of variables, we still need
to estimate the maximum likelihood parameters of the cop-
ula, and then compute the maximum likelihood score. That
is, taking the log of the density, for each pair of variables
in the network Xi and Xj , we need to compute

Score(i, j)≡
M∑
m=1

log cθ̂(FXi(xi[m]), FXj (xj [m])),

(4)
where the sum is over instances and θ̂ are the maximum
likelihood parameters. As we report in Section 7, the over-
all computations for the entire network can be demanding.

To overcome this difficulty, we again note that the precise
bivariate distribution, defined via θ̂, is a nuisance parame-
ter. In fact, all that we need is a proxy to the above score
that will reasonably rank candidate edges.2 Recalling that

1In the unlikely case that more than one copula minimizes this
mesure, we randomly choose between the minimizing copulas.

2We note that the ρs-based proxy of Elidan [2012] cannot be
used since it assumes the same copula for all edges.
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Figure 3: Edge score ranks using maximum likelihood (y-
axis) vs. our multinomial proxy score (x-axis) for two of
the real-life datasets used in Section 7.

our multinomial mapping roughly approximates the den-
sity, it is natural to use the implied multinomial likelihood
as a proxy score. Concretely, using Ci,j to denote the
chosen copula for the variable pair Xi and Xj , instead of
Eq. (4), we use

ScoreMult(i, j) =
∑
k π̂i,j [k] log π(ci,j)[k], (5)

where π̂i,j is the empirical multinomial distribution in-
duced by Xi and Xj .

To gauge the quality of this proxy score, Figure 3 compares
the ranks of Eq. (5) and Eq. (4) for pairs of variables in two
large datasets that we use in our experimental evaluation,
Gene and Secom (see Section 7 for details). It is easy to
see that our proxy score is near perfect for the purpose of
ranking the benefit of candidate edges. Importantly, com-
putation of π̂ is linear in the (small) number of cells of the
multinomial signature. Consequently, computation of our
proxy score is significantly faster than the computation of
the likelihood score. As we shall see in Section 7, this re-
sults in dramatic speedups of the learning procedure.

5 FINITE SAMPLE BOUNDS

Before describing how our approach can be extended to
general structures, in this section we consider the theo-
retical properties of our building block copula selection
method. Clearly, asK is increased in the multinomial map-
ping, we capture the density at an increasingly better gran-
ularity and, assuming continuity, asymptotic recovery fol-
lows from standard considerations. In fact, even for fixed
small partitions such as K = 4, most standard copula fam-
ilies will disagree on some of the K×K multinomial bins,
and asymptotic recovery can be easily guaranteed. We are
more interested, however, in providing finite sample guar-
antees for our algorithm, both when using the Kullback-
Leibler divergence and the L1-norm in Eq. (3). To the best
of our knowledge ours are the first finite-sample bounds in
the context of copula model selection.

We assume ρs is known (or has been measured) and omit
it from the notation for clarity. Let C be a finite copula
family hypothesis class of cardinality |C| = L and let D be
a set of M i.i.d training instances sampled from C∗ ∈ C.
Denote by π̂ the empirical multinomial signature of D and
by C̃(D) the copula family chosen by our algorithm. The
probability of mistakingly identifying the copula family is:

err(D) = PC∗(C̃(D) 6= C∗),

where we use PC∗ as a shorthand for PD∼C∗ . We will now
bound number of instances needed to ensure that the error
is below a constant err(D) ≤ α.

5.1 KULLBACK-LEIBLER DIVERGENCE

Assume that the data was generated by a specific copula
family C0 ∈ C. We will later allow C0 to be any copula
in C. We start by observing that deciding between C0 and
some other Cj ∈ C based on the KL distance from π̂ is
equivalent to a hypothesis test:

H0 : π̂ ∼ C0 H1 : π̂ ∼ Cj ,

where, using the likelihood ratio test, the rejection region

is defined via λ(C0, C1;D) =
Pπ(cj)

(D)

Pπ(c0)(D) > 1. Thus, clas-
sification error can be cast in terms of type I error, giving
rise to a finite sample bound:
Lemma 5.1.: Assume D ∼ C0 or equivalently π̂ ∼ π(c0).
There exists a constant δ0(j) such that for any α > 0 and
Cj ∈ C, if M ≥ log

(
1
α

)
1

δ0(j) then

PC0

(
dKL(π̂||π(cj)) ≤ dKL(π̂||π(c0))

)
≤ α

Proof: By Sanov’s theorem [Cover and Thomas, 1991] we
have that the type I error is 2−MdKL(π0||π(c0)), where π0

is the closest multinomial to π(c0) that is in the rejection
region of the above test. π0 is given explicitly by:

π0[k] =
π(c0)[k]λπ(cj)[k]1−λ∑
k′ π(c0)[k′]λπ(cj)[k′]1−λ

, λ ∈ R,

where [k] is the k’th multinomial component, and λ is cho-
sen so that dKL(π0||π(c0))− dKL(π0||π(cj)) = 0. Taking
δ0(j) to be dKL(π̂||π(cj)) (see Cover and Thomas [1991]
for details on how λ, δ0(j) can be computed) we get the
desired result. Note that π0 does not depend on α.

Defining δ0 = minj 6=0δ0(j), we then have:
Corollary 5.2.: Let D ∼ C0. If M ≥ log2

(
L−1
α

)
1
δ0

, then
the classification error is bounded from above by α.

Proof: Using the union bound we have:

PC0
(∃j : d(π̂||π(cj)) ≤ d(π̂||π(c0)))

≤
∑
Cj∈C

PC0(d(π̂||π(cj)) ≤ d(π̂||π(c0)))

≤
∑

Cj∈C,j 6=0

α

L− 1
= α



where, for compactness d() ≡ dKL(). The second inequal-
ity follows from the above lemma by using α = α

L−1 so
that M ≥ log

(
L−1
α

)
1

δ0(j) for all j.

Finally, we can drop the assumption that the specific gener-
ating copula family is known and, appealingly, get a bound
that grows logarithmically with 1

α :
Theorem 5.3. : Define δC = mini:Ci∈Cδi. If
M ≥ log2

(L(L−1)
α

)
1
δC

then the misclassification error is
bounded from above by α.

5.2 L1 DISTANCE

We now develop parallel bounds for the case of the L1-
norm. Denote by π(ci)[k] the k-th component of the multi-
nomial defined by Ci, and define δ0(i)[k] = |π(c0)[k] −
π(ci)[k]| for C0, Ci ∈ C.
Lemma 5.4.: Let D ∼ C0, and let δ0 = mini 6=0,kδ0(i)[k].

If the number of samples satisfies M ≥ log
( 2(L−1)K2

α

)
1
δ20

,
then the probability of a classification error is bounded
from above by α.

Proof: For compactness define ∆i[k] = |π̂[k] − π(ci)[k]|.
Then, since π̂ ∼ π(c0), and using simple union bounds, the
probability of misclassification is:

PC0

(
∃i 6= 0 :

∑
k

∆i[k] ≤
∑
k

∆0[k]
)

≤
∑
i 6=0

PC0

(∑
k

∆i[k]
)
≤
∑
k

∆0[k]
)

≤
∑
i 6=0,k

PC0
(∆i[k] ≤ ∆0[k])

Next, by definition ∆i[k] ≤ ∆0[k] ⇔ ∆0[k] ≥ δ0(i)[k].
Also, since D ∼ C0, we have E(π̂[k]) = π(c0)[k]. Using
Hoeffding’s inequality we then have:

PC0

(
∆i[k] ≤ ∆0[k]

)
= PC0

(
∆0[k] ≥ δ0(i)[k]

)
≤ 2e−2Mδ20 .

If we now choose the number of samples to be M ≥
log
( 2(L−1)K2

α

)
1
δ20

, the result easily follows.

Now, using a similar argument to the KL case, we have
Theorem 5.5. : Define δC = miniδi. For all α, if
M ≥ log2

(L(L−1)K2

α

)
1
δ2C

, then the misclassification error
is bounded from above by α.

As an example consider sample data that is distributed ac-
cording to AMH copula with Spearman’s rho equals 0.6.
Assuming the copula hypothesis class consists of AMH,
Clayton, Gumbel and Plackett copulas. Then using k = 2,
it is easily verified that δ0 = 0.0713. Thus, according to
5.4, in order to bound the classification error by α = 0.05,
at lest 1217 samples are needed.

6 LEARNING GENERAL NETWORKS

We now show how our structure learning approach of Sec-
tion 4 can be adapted to the more elaborate task of learn-
ing a copula graphical model with a general structure. As
is commonly done, due to the super-exponential nature of
the search space, we learn the structure via a greedy search
procedure that involves local modifications to the structure
(e.g., add/delete/reverse an edge). Similarly to the case of
trees, we start by generalizing the local copula selection
building block and then explain how this can be used when
learning a global structure.

6.1 CHOOSING THE COPULA

Recall that in order to choose a copula family in the bivari-
ate case, we first evaluate the empirical measure of associ-
ation ρ̂s, as well as the bivariate statistics of the data, and
then choose the copula family signature that is closest to the
empirical distribution for ρ̂s. In a nutshell, we will choose
a copula family for more than two variables by aggregating
bivariate distances.

Before doing so, however, we need to evaluate ρ̂. For the
Gaussian copula, our path is obvious since each bivariate
marginal is characterized by it’s own dependence param-
eters Σi,j , and the corresponding measure of association
ρ̂i,j can be computed as before. However, the situation is
quite different for other copula families. For example, all
bivariate marginals of an n-dimensional Archimedean cop-
ula have the same dependence parameter so that we require
ρ̂i,j = ρ̂ for all i, j. Thus, a natural choice in the common
case of a one parameter family is to estimate ρ̂ using

ρ̂ =
∑

Xi,Xj ,i<j

(
n

2

)−1

ρ̂Xi,Xj .

Note that this is one of the standard generalizations of
Spearman’s rho [Schmid and Schmidt, 2007]. Then, with
ρ̂i,j = ρ̂ in hand, we select the copula family that mini-
mizes the sum of distances between the empirical and tem-
plate multinomials signatures, similarly to Eq. (3):

C̃ = argminCρ̂

∑
Xi,Xj, i<j

d
(
π̂‖π(cρ̂i,j )

)
.

6.2 EVALUATING THE STRUCTURE SCORE

As in bivariate case, after choosing the copula family, we
still face the challenge of comparing the benefit of different
candidate structural changes. Concretely, using Eq. (2),
we we need to evaluate the conditional likelihood score:

Score(i,Pai) ≡
M∑
m=1

log
cθ̂(Fi(xi[m]), {Fj(xj [m])}j∈Pai)

cθ({Fj(xj [m])}j∈Pai)
,



N F G C A M
N 0.87 0.06 0.02 0.00 0.02 0.02
F 0.05 0.89 0.01 0.00 0.02 0.04
G 0.01 0.01 0.98 0.00 0.00 0.00
C 0.00 0.00 0.00 0.97 0.02 0.01
A 0.02 0.02 0.00 0.03 0.92 0.01
M 0.02 0.03 0.00 0.00 0.02 0.94

N F G C A M
N 0.93 0.01 0.01 0.00 0.03 0.03
F 0.14 0.74 0.00 0.00 0.04 0.08
G 0.13 0.00 0.87 0.00 0.00 0.00
C 0.13 0.00 0.00 0.84 0.03 0.00
A 0.01 0.01 0.00 0.00 0.96 0.02
M 0.00 0.00 0.00 0.00 0.02 0.98

N F G C A M
N 0.96 0.02 0.00 0.00 0.00 0.01
F 0.02 0.94 0.00 0.00 0.00 0.048
G 0.00 0.00 1.00 0.00 0.00 0.00
C 0.00 0.00 0.00 1.00 0.00 0.00
A 0.04 0.12 0.00 0.02 0.79 0.02
M 0.02 0.03 0.00 0.00 0.00 0.98

HELM Huard Costly ML

Figure 4: Copula family selection performance for synthetically generated data with 1000 samples. Methods compared
are our HELM, that of Huard [Huard et al., 2006], and time consuming ML estimation. Each confusion matrix shows the
percentage of the predicted family (columns) given the generating family (rows).

where θ̂ are the maximum likelihood parameters of the cop-
ula associated with Xi and its parents.

Once again, we face the bottleneck of maximum likelihood
estimation. Whenever an analytically simple relationship
between ρ̂ ((or Kendall’s τ ) and θ̂ exists, we use the heuris-
tic proposed by [P.Embrechts and M.Hofert, 2010] and
simply invert the average association measure described
above. For other copula families (e.g. Ali-Mikhail), we re-
sort to a standard optimization procedure such as conjugate
gradient. Note that even in this case, we perform costly es-
timation only for the chosen copula family, and are thus still
significantly more efficient than a full maximum likelihood
selection and estimation procedure.

6.3 ADJUSTING THE SCALE OF THE SCORE

To learn a structure that allows for several parents for each
variable, all family scores must obviously lie on the same
scale. However, the proxy score we use in the case of
a single parent is based on a discrete multinomial likeli-
hood (Eq. (5)), while for multiple parents we use a real-
valued conditional likelihood (Eq. (6)). Thus, to rank can-
didate structural changes, we must somehow calibrate these
scores relative to each other.

Fortunately, as is clearly evident in Figure 3, our single
parent proxy scores are almost linearly correlated to the
exact maximum likelihood scores. Consequently, all that
is required in order to accurately approximate the needed
scores is to recover this linear transformation via straight-
forward regression. Concretely, we randomly choose few
(e.g. 10%) of the variables pairs, and solve the following
regression problem:

β̂ = argmin
β

∑
i,j

(
Score(i, j)−β0−β1Score

Mult(i, j)
)2

We then use β̂ to calibrate our bivariate scores:

S̃core(i, j) = β0 + β1 · ScoreMult(i, j).

To summarize: starting with the empty graph G∅, we rank

the differentO(N2) candidate edges using our multinomial
approximation score. Next, we calibrate these scores using
the regression coefficients β. These calibrated score are
then used together with the multi-parent scores to guide the
greedy structure learning procedure.

7 EXPERIMENTAL EVALUATION

We now evaluate the ability of our HELM approach to ef-
ficiently learn expressive copula networks that generalize
well. We start by evaluating the merit of the HELM model
selection building block in the case where the generating
distribution is known. We then demonstrate the power of
HELM when learning high-dimensional structures for siz-
able real-life domains.

7.1 COPULA MODEL SELECTION

To evaluate our HELM copula model selection building
block, we synthetically generate i.i.d. instances from dif-
ferent copula families and attempt to identify the gener-
ating family from the samples. We compare our HELM
approach to the standard maximum likelihood (ML) ap-
proach (using an inversion of the empirical Kendall tau or
Spearman’s rho for fast estimation where possible), and to
a Bayesian approach from the copula community suggested
by Huard [Huard et al., 2006].

Similarly to Huard et al. [2006], we consider a collec-
tion of copula families that exhibit varied dependence pat-
terns: Normal (N), Frank (F), Gumbel (G), Clayton (C),
Ali-Mikhail-Haq (A),and Farlie-Gumbel-Morgenstern (M)
(see [Joe, 1997, Nelsen, 2007] for details of these copulas).
For each family, we precompute its multinomial signature
as described in Section 4. To cover a wide range of depen-
dence levels, we generate the synthetic data as follows: for
values of Spearman’s ρs ranging from 0.25 to 0.95, we ran-
domly choose a copula family C, and generate M = 1000
i.i.d samples from Cρs . We repeat this 1000 times for each
value of ρs and use the different methods to predict the
generating copula family.



Tree Networks Non-tree Networks

Tree Networks

Gaussian Our ML Speed
copula method Factor

Crime 67.31 71.2 72.75 175
(0.84) (0.79) (0.76)

Secom 368.19 389.12 390.36 182
(3.68) (3.73) (3.58)

SP500 119.36 128.73 129.15 307
(3.15) (3.18) (3.26)

Gene 372.43 490.56 – ∞
(4.61) (4.83)

Non-tree Networks

Gaussian Our ML Speed
copula Method Factor

Crime 83.16 85.79 86.12 78
(0.92) (0.86) (0.89)

Secom 420.72 428.96 435.74 76.3
(3.35) (3.83) (3.79)

SP500 144.27 146.94 147.52 59.9
(3.45) (3.38) (3.41)

Gene 432.42 517.25 – ∞
(4.72) (4.63)

Figure 5: Comparison of copula networks learned using the different methods for tree and non-tree networks. (left top)
shows the distribution of the chosen copula families when learning using standard maximum likelihood (ML) for the
Secom dataset. (left middle/bottom) summarizes the average test log-probability per instance performance of our method
(white bars), ML (black bars) and the Gaussian copula baseline (gray bar). (right) detailed generalization performance
along with standard deviation across random folds (in parentheses) and speedup factor of our method relative to ML.

In Figure 4 we report average results in the form of con-
fusion matrices that show the distribution of the predicted
copula family (columns) for each generating copula family
(rows). Results for our approach are with K = 8 and using
KL (results were qualitatively similar using K = 4 and the
L1 distance). As can be seen, HELM surpasses Huard on
average and is not far beyond the much slower ML. This
is to be expected since we intentionally took a crude but
efficient view of the distribution, a crucial step toward the
goal of performing global structure learning.

The above competitiveness comes with substantial compu-
tational advantages. A single model selection task when
using ML took 1.08 × 10−2 seconds on average. Using
HELM this took only 1.1545× 10−4 seconds on average,

a two orders of magnitude speedup. Advantages are even
greater for K = 4 since HELM is quadratic in K. In this
case, HELM is close to 200 faster than ML, while suf-
fering negligible decrease in predictive performance. Fi-
nally, while Huard does reasonably well in terms of pre-
dictive performance, this comes at an enormous computa-
tional cost, taking an average of 0.28 seconds, or 4 orders
of magnitude slower than HELM.

7.2 LEARNING EXPRESSIVE NETWORKS

We now evaluate the merit of HELM for learning expres-
sive copula networks for real-life domains that benefit from
a rich mix of local representations. We consider four real-



life datasets that are quite sizable in the context of structure
learning of non-Gaussian real-valued models:

• Crime (UCI repository). 1994 instances of 100 census
variables ranging from household size to fraction of chil-
dren born out of marriage, for 1994 U.S. communities.

• Secom (UCI repository). 1567 instances of 362 variables
collected from sensors during a semi-conductor manu-
facturing process, corresponding to key factors that ef-
fect downstream yield.

• SP500. End of day changes of the 500 Standard and
Poor’s index stocks (variables) over a period of close to
2000 trading days (samples).

• Gene. A compendium of gene expression. We focus
on 999 genes (variables) that have at most one missing
experiment, resulting in 2000 samples.

For each domain, we learn a copula network model us-
ing HELM as well as using standard maximum likeli-
hood (using fast inversion of ρs or τK where possible). In
both cases, we allow for a mix of Gaussian, Frank, Gum-
bel, Clayton, arch12, arch14, Ali-Mikhail and FGM cop-
ulas. To make comparison to the costly ML feasible, we
learn networks with up to two parents. For the univariate
marginals for both methods, we use a standard kernel-based
approach [Parzen, 1962] with the common Gaussian kernel
(see, for example, [Bowman and Azzalini, 1997] for de-
tails). As an additional baseline, we also consider learning
only with a Gaussian copula, which is the strongest of all
single family baselines. Finally, we note that due to its sig-
nificant computational demands, the Bayesian method of
Huard could not be used in these experiments.

We start by qualitatively demonstrating the real-life need
for expressive modeling, or for the combination of differ-
ent local representations wihin the same model. As an ex-
ample Figure 5(left top) shows the distribution of the cop-
ula families chosen when learning a mixed model using the
ML method for the Secom dataset. Obviously, the learned
model is a rich one.

Quantitatively, Figure 5(left middle/bottom) shows that a
mixed ML model (black bar) also leads to better general-
ization relative to the best single family baseline (gray bar)
in terms of test set log-probability per instance. Also shown
is the performance of HELM (white bar). As can be seen,
HELM is competitive with the costly ML method. The
table on the right includes the average test performance re-
sults along with standard deviations (in parentheses) across
10 folds. Importantly, note that the improvement over the
single family baseline is significant since the scale of im-
provement is in bits per instances. Thus, an improvement
of, for example, 10 bits per instance is equivalent to each
test instance being on average 210 more likely.

Recall that our goal was not simply to learn competitive
expressive networks but to do so highly efficiently so as to
facilitate scaling up of structure learning. Speed up factors
of HELM relative to ML are reported in the right-hand col-
umn of the tables in Figure 5. As can be seen, the runtime
improvements are dramatic at over two orders of magni-
tudes when learning tree networks. To make these numbers
concrete, for example, using HELM to learn a mixed tree
for the SP500 domain took less than a minute, while for
ML the average runtime was nearly 5 hours. For the Gene
data set with 1000 variables, although learning a mixed net-
work with HELM took only around 4.5 minutes, ML did
not terminate after two days. A substantial runtime im-
provement is also evident for more general structures. For
example, learning using HELM took around an hour and
a half for SP500, while learning using ML took over three
days. Dramatically, although HELM was able to learn a
mixed Gene network model in less than two hours, learn-
ing a model for this domain using ML proved impractical,
and did not terminate within a week.

8 SUMMARY

We presented HELM, an algorithm for efficiently learning
copula networks that allows for a rich mix of varied cop-
ula families within the same model. We demonstrated the
substantial computational advantages of using our multi-
nomial signature based approach when learning complex
models for several varied sizeable real-life domains.

Our contribution is three fold. First, we presented a
straightforward but powerful copula model selection build-
ing block that, even in the simple bivariate case, is com-
petitive with maximum likelihood and other estimation ap-
proaches while offering dramatic runtime improvements.
We further derive finite-sample guarantees for this building
block. To the best of our knowledge, these are the first such
guarantees in the context of copula model selection.

Second, we showed how our building block gives rise ac-
curate and efficient ranking of candidate structures, result-
ing in highly efficient global structure learning. Third, the
computational advantages allows us to scale up structure
learning and easily cope with domains that are prohibitive
if tackled using standard procedures. Indeed, to the best of
our knowledge, ours is the first structure learning method
that allows for a mix of local real-valued representations
and that has been applied to domains of this size.

Acknowledgements
This work was supported in part by an ISF Center of Ex-
cellence grant, by an Israeli Ministry of Science center of
knowledge and by the Intel Collaborative Research Insti-
tute for Computational Intelligence (ICRI-CI). We thank
Elad Eban and Elad Mezuman for their valuable comments
on different drafts of this work.



References
A. Bowman and A. Azzalini. Applied Smoothing Tech-

niques for Data Analysis. Oxford University Press, 1997.

T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley & Sons, New York, 1991.

G. Elidan. Lightning-speed structure learning of nonlin-
ear continuous networks. In Proceedings of the AI and
Statistics Conference (AISTATS), 2012.

Gal Elidan. Copula Bayesian networks. In Advances in
Neural Information Processing Systems (NIPS), 2010.

J.-D. Fermanian. Godness-of-fit tests for copulas. Journal
of Multivariate Analysis, 95:52–119, 2005.

Christian Genest and L.-P. Rivest. Statistical infer-
ence procedures for bivariate archimedean copulas.
Statist.Assoc., 88(8):1034 – 1043, 1993.

Chistian Hering and Marius Hofert. Godness-of-fit tests
for archimedean copulas in large dimensions. Working
paper, 2010.

David Huard, Guillaume ı́vin, and Anne-Catherine Favre.
Bayesian copula selection. Comput. Stat. Data Anal., 51
(2):809–822, 2006.

H. Joe. Multivariate models and dependence concepts.
Monographs on Statistics and Applied Probability, 73,
1997.

A. Justel, D. Pena, and R. Zamar. A multivariate
kolmogorov-smornov test of goodness of fit. Statistical
Probability Letters, 35:251–259, 1997.

S. Kirshner. Learning with tree-averaged densities and dis-
tributions. In Advances in Neural Information Process-
ing Systems (NIPS), 2007.

S. Kullback and R. A. Leibler. On information and suf-
ficiency. Annals of Mathematical Statistics, 22:76–86,
1951.

R. Nelsen. An Introduction to Copulas. Springer, 2007.

E. Parzen. On estimation of a probability density function
and mode. Annals of Math. Statistics, 33:1065–1076,
1962.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

P.Embrechts and M.Hofert. Statistical inference for cop-
ulas in high dimension: a simulation study. Statistical
Probability Letters, 35:251–259, 2010.

Friedrich Schmid and Rafael Schmidt. Multivariate exten-
sions of spearman’s rho and related statistics. Statistics
and Probability Letters, 77(4):407 – 416, 2007.

A. Sklar. Fonctions de repartition a n dimensions et leurs
marges. Publications de l’Institut de Statistique de
L’Universite de Paris, 8:229–231, 1959.

Y. Tenzer and G. Elidan. Speedy model selection (SMS) for
copula models. In Uncertainty in Artificial Intelligence
(UAI), 2013.

Andrew Wilson and Zoubin Ghahramani. Copula pro-
cesses. In Advances in Neural Information Processing
Systems (NIPS), 2010.


	INTRODUCTION
	BACKGROUND
	RELATED WORKS
	EXPRESSIVE TREE NETWORKS
	MULTINOMIAL-BASED SELECTION
	LEARNING A TREE NETWORK

	FINITE SAMPLE BOUNDS
	KULLBACK-LEIBLER DIVERGENCE
	L1 DISTANCE

	LEARNING GENERAL NETWORKS
	CHOOSING THE COPULA
	EVALUATING THE STRUCTURE SCORE
	ADJUSTING THE SCALE OF THE SCORE

	EXPERIMENTAL EVALUATION
	COPULA MODEL SELECTION
	LEARNING EXPRESSIVE NETWORKS

	SUMMARY

