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Abstract

Statistical topic models such as latent Dirich-

let allocation have become enormously popu-

lar in the past decade, with dozens of learning

algorithms and extensions being proposed each

year. As these models and algorithms continue

to be developed, it becomes increasingly impor-

tant to evaluate them relative to previous tech-

niques. However, evaluating the predictive per-

formance of a topic model is a computationally

difficult task. Annealed importance sampling

(AIS), a Monte Carlo technique which operates

by annealing between two distributions, has pre-

viously been successfully used for topic model

evaluation (Wallach et al., 2009b). This tech-

nique estimates the likelihood of a held-out doc-

ument by simulating an annealing process from

the prior to the posterior for the latent topic as-

signments, and using this simulation as an im-

portance sampling proposal distribution.

In this paper we introduce new AIS annealing

paths which instead anneal from one topic model

to another, thereby estimating the relative perfor-

mance of the models. This strategy can exhibit

much lower empirical variance than previous ap-

proaches, facilitating reliable per-document com-

parisons of topic models. We then show how to

use these paths to evaluate the predictive perfor-

mance of topic model learning algorithms by effi-

ciently estimating the likelihood at each iteration

of the training procedure. The proposed method

achieves better held-out likelihood estimates for

this task than previous algorithms with, in some

cases, an order of magnitude less computation.

1 INTRODUCTION

Topic models such as latent Dirichlet allocation (Blei et al.,

2003) have become standard tools for analyzing text cor-

pora, with broad applications in areas such as political sci-

ence (Grimmer, 2010), sociology (McFarland et al., 2013),

conversational dialog (Nguyen et al., 2013), and more. A

multitude of extensions to the LDA model have been devel-

oped for finding meaningful latent structure in text, along

with a variety of strategies for fitting these models to in-

creasingly large corpora.

As these new ideas continue to be proposed in the literature

it becomes increasingly important to obtain accurate quan-

titative evaluations of the different approaches. Among

the techniques available for evaluating topic models, the

prediction of words in held-out documents (via test log-

likelihood or perplexity) is perhaps the single most widely-

used method for benchmarking the performance of new

topic models and inference algorithms. An important point

is that speedups for training these models do not necessar-

ily translate to speedups in evaluating them. For example,

there now exist very fast learning algorithms for training

topic models based on approximate inference techniques,

such as stochastic variational inference (Hoffman et al.,

2010, 2013; Foulds et al., 2013), making it possible to learn

topic models on corpora with millions of documents. Iron-

ically, however, the time taken to compute test-set metrics

for these algorithms can be orders of magnitude greater

than the time it takes to train them. The evaluation of the

predictive performance of topic models on held-out docu-

ments is still painfully slow, and relatively unreliable for

individual documents as we will see later in the paper.

More specifically, consider a held-out document d, with

word vector w(d), in the context of evaluating the quality of

an LDA topic model (or one its many extensions). Given

point estimates of topics Φ and a potentially document-

specific Dirichlet prior α (if learned), we wish to com-

pute the likelihood of the words in this held-out document,

Pr(w(d)|Φ, α).1 The direct computation of this quantity

involves either an intractable sum over the latent topic as-

signments z(d), or an intractable integral over the distri-

bution over topics θ(d). Moreover, this already difficult

computation must be performed for every document in

1Or perplexity, a function of this and document length.



the held-out test set, which frequently contains hundreds

to thousands of documents. To address this challenge,

a wide variety of approximation strategies for estimating

Pr(w(d)|Φ, α) have been proposed in papers such as those

from Wallach et al. (2009b), Buntine (2009) and Scott &

Baldridge (2013). Although these methods can lead to sig-

nificantly more accurate results than naive approaches, the

reliable and efficient evaluation of topic models remains a

relatively open problem of practical significance.

In this paper we investigate new methods for evaluat-

ing topic models based on annealed importance sampling

(AIS) (Neal, 2001), a Monte Carlo integration technique

which was previously applied to topic model evaluation by

Wallach et al. (2009b). Given two probability distributions,

AIS produces an estimate of the ratio of their partition func-

tions by annealing between them. Wallach et al. leverage

this idea by annealing from the prior over the latent topic

assignments z(d) to the posterior, resulting in an estimate

of held-out document likelihood. AIS can be very accu-

rate given enough computation time, although the amount

of time needed may vary greatly between different choices

of annealing paths (Grosse et al., 2013).

The first contribution of this paper is to propose and eval-

uate an alternative annealing strategy, using two AIS paths

which anneal from one topic model to another. This strat-

egy (referred to as ratio-AIS) computes the ratio of the

likelihoods of two models instead of computing the like-

lihoods of each model separately. The result is an esti-

mate of the relative performance of the models, with signif-

icantly lower empirical variance across runs than previous

approaches.2 This in turn brings computational benefits, as

fewer samples or annealing temperatures may be required

to achieve reliable results. The reduced variance comes at

the cost of potentially increased bias when insufficient iter-

ations are performed to achieve convergence. However, we

also show how to detect such bias by annealing between the

topic models in both directions and comparing the results.

The consequence of this bias-variance trade-off is that the

proposed method is useful in cases where we would like

to perform in-depth analysis at the per-document level and

when the two topic models are similar to each other. The

previous high-variance low-bias methods may still be pre-

ferred for general full-corpus comparisons of topic models.

Finally, we show how to use the proposed AIS paths for

evaluating topic model learning algorithms by computing

held-out likelihood curves over the iterations of the learn-

ing procedure. This is achieved by annealing between the

topic models at each iteration of the learning algorithm in

turn, which allows all previous computation to be reused

in each of the likelihood estimates. The proposed method

outperforms previous algorithms, in some cases even when

2“Variance” here refers to variance across Monte Carlo es-
timates of the difference in log-likelihood between models, per
document.

it is given an order of magnitude less computation time.

Note that although we focus on topic models, the ideas pre-

sented here could potentially also be useful for other latent

variable models with intractable likelihoods.

2 BACKGROUND

When proposing a new topic model or learning algorithm,

it is important to evaluate its performance. When the model

is to be used for a certain task it may be possible to evaluate

it with respect to an extrinsic, task-specific metric. For ex-

ample one could evaluate the quality of topics being used

as features for a classification algorithm by measuring clas-

sification accuracy. More generally, however, given that

topic models are generally trained in an unsupervised man-

ner (with a few notable exceptions), a ground-truth evalua-

tion metric is typically not available.

Consequently, a number of intrinsic (i.e. task independent)

validation strategies for topic models have been developed

in the literature. For example, Chang et al. (2009) proposed

the use of elicitations of judgments from humans to evalu-

ate the quality of topic models. Given that obtaining these

judgments can be expensive and difficult, Newman et al.

(2010) and Mimno et al. (2011) proposed automatic sur-

rogate measures of topic coherence, and showed that these

measures, which are typically based on word co-occurrence

statistics, are correlated with human judgments.

However, as topic models are statistical models, we also

would like to be able evaluate them as such. In the context

of unsupervised machine learning, the standard approach

for evaluating a statistical model is to compute the prob-

ability of held-out data. Regardless of the utility of the

aforementioned methods, it is generally useful to demon-

strate good predictive performance in addition to any other

extrinsic or intrinsic validation results. Intuitively, as our

goal is to fit a statistical model to data, we would like to

know both how well we are able to fit the model, and how

well the model is able to explain unobserved data.

As in Wallach et al. (2009b), we therefore focus on the

computation of Pr(w(d)|Φ, α), the likelihood of the words

w(d) in a held-out document d (or equivalently, perplexity),

conditioned on point estimates of the topic-word distribu-

tions Φ and (possibly document-specific) priors α, where

Φ is a W ×K matrix consisting of K discrete distributions

Φ(k) over the W words in the dictionary, and α is a K-

dimensional Dirichlet parameter vector.3 This quantity can

be used to evaluate a point estimate of the topics, or in an

inner loop to evaluate Bayesian evaluation metrics such as

the posterior predictive probability of held-out documents.

3It is standard practice to learn an asymmetric Dirichlet prior
α in LDA models, following Wallach et al. (2009a), so we include
it as a parameter to evaluate. The prior may also be learned in a
document dependent way for models such as DMR (Mimno &
McCallum, 2008).



It is in general infeasible to compute Pr(w(d)|Φ, α)
directly, as it involves an intractable sum
∑(d)

z Pr(w(d), z(d)|Φ, α) or an intractable integral
∫

θ
Pr(w(d), θ(d)|Φ, α). The computational difficulty

arises because the topic assignments z(d) and distributions

over topics θ(d) for the held-out document are unknown,

and so all possible values must be considered. A variety of

approximation strategies were considered by Wallach et al.

(2009b), the number of which alone is a testament to the

difficulty of the problem. The most widely used of these

approaches is the “left-to-right” particle filtering algorithm.

In the algorithm, a number of particles are maintained,

representing topic assignments up to the current word

t in the document. In each iteration, these particles are

used to draw samples of the topic assignment for the next

word t + 1, conditioned on the previous words and topic

assignments. A resampling step is also performed, making

the algorithm’s run time quadratic in the length of the

document. The algorithm was analyzed more closely by

Buntine (2009), and a faster, but less accurate, variant of

the technique was proposed by Scott & Baldridge (2013).

Alternatively, a strategy for side-stepping some of the com-

putational difficulty is to instead estimate (or sample) z(d)

or θ(d) on a subset w(d,1) of the document, and predict only

the remaining portion of the document w(d,2), thus esti-

mating Pr(w(d,2)|w(d,1),Φ, α). This method is frequently

used in practice (e.g. Rosen-Zvi et al. (2004); Wallach et al.

(2009a)). However, this “document completion” scenario

changes the task somewhat, and is not the gold standard

prediction task we would like it to be. It measures the abil-

ity of the model to “orient” itself quickly when given par-

tial documents, rather than how likely the overall document

is under the model. The widespread use of the document

completion strategy may be largely due to its convenient

computational properties (leading in turn to its use as a sur-

rogate for fully held-out prediction), rather than being due

to any intrinsic benefit of the metric itself.

It is also unclear how the use of document completion as

a surrogate for full-document prediction might affect our

conclusions, particularly when using topic models which

learn the Dirichlet hyper-parameter α as in Wallach et al.

(2009a) and Mimno & McCallum (2008). Learning α may

help the model to recover θ(d) better on the training por-

tion of the document, thus increasing the performance of

the model for document completion more than in the fully

held-out case.

On the other hand, observing more of the document de-

creases the relative impact of the prior on the posterior dis-

tribution, which could reduce the observed improvement

due to learning α. Thus, we suspect that document com-

pletion may not always be a good surrogate for the full pre-

diction task. It should be noted that many methods for fully

held-out prediction can also be adapted for document com-

pletion (including those proposed here).

2.1 ANNEALED IMPORTANCE SAMPLING

One of the more accurate strategies investigated by Wallach

et al. (2009b) to estimate held-out likelihood was annealed

importance sampling (AIS) (Neal, 2001). AIS is a general

technique for estimating an expectation of a function of a

random variable x with respect to an intractable distribution

of interest p0. Consider a distribution pn (which is typically

easy to sample from) and a sequence of “intermediate” dis-

tributions pn−1, . . . , p1 leading from pn to p0. AIS works

by annealing from pn towards p0 by way of the intermedi-

ate distributions, and using importance weights to correct

for the fact that an annealing process was used instead of

sampling directly from p0.

Assume that for each intermediate distribution pj we have

a Markov chain with transition operator Tj(x, x
′) which is

invariant to that distribution. We need to be able to sample

from these Markov chains, and for each pj be to able to

evaluate some function fj which is proportional to it. In a

manner similar to that of traditional importance sampling,

AIS produces a collection of samples x(1), . . . , x(S) with

associated importance weightsw(1), . . . , w(S). As with im-

portance sampling, the expectation of interest is estimated

using the samples, weighted by the importance weights.

The strategy for drawing each sample x(i) is to begin by

drawing a sample xn−1 from pn, then drawing a sequence

of points xn−2, . . . , x0 which “anneal” towards p0. Each

of the remaining xj ’s in the sequence are generated from

xj+1 via Tj . Importance weights w(i) are computed by

viewing (x0, . . . , xn−1) as an augmented state space, and

performing importance sampling on this new state space.

The above procedure is used as a proposal distribution Q
for importance sampling from another distribution P :

Q(x0, . . . , xn−1) ∝ fn(xn−1)

1
∏

j=n−1

Tj(xj , xj−1)

P (x0, . . . , xn−1) ∝ f0(x0)

n−1
∏

j=1

T̃j(xj−1, xj) ,

where T̃j(x, x
′) = Tj(x

′, x)
fj(x

′)
fj(x)

is the reversal of the

transition defined by Tj . This leads to importance weights

for each of the samples,

w(i) =
P (x0, . . . , xn−1)

Q(x0, . . . , xn−1)
=

n−1
∏

j=0

fj(xj)

fj+1(xj)
. (1)

Note that the marginal probability of x0 under P is p0(x0),
so after letting x(i) = x0 the procedure correctly carries

out importance sampling from p0. AIS also provides an

estimate for the ratio of normalizing constants for f0 and

fn. The normalizing constant for P is the same as the nor-

malizing constant for f0, and the normalizing constant for

Q is the same as the normalizing constant for fn, and so



the average of the importance weights,
∑

w(i)

N
, converges

to
∫
f0(x)dx∫
fn(x)dx

.

2.2 AIS FOR TOPIC MODELS

Wallach et al. (2009b) showed how to apply the AIS proce-

dure to the problem of calculating LDA likelihoods. The

likelihood of a test document for a topic model can be

estimated by using AIS to estimate a normalization con-

stant, operating on the latent topic assignments z(d) for

the document.4 We can set f0 = Pr(w(d), z(d)|Φ, α),
fn = Pr(z(d)|α), with intermediate distributions fj =
Pr(w(d)|z(d),Φ, α)βjfn and the transition operators Tj

being the Gibbs sampler for fj . The ratio of normalizing

constants is

∑

w(i)

S
≈

∑

z(d) Pr(w(d), z(d)|Φ, α)
∑

z(d) Pr(z(d)|α)

=
Pr(w(d)|Φ, α)

1
= Pr(w(d)|Φ, α) . (2)

The procedure for producing each importance sample,

then, is to draw an initial z(d) from the prior, and anneal

it towards f0 by performing rj ≥ 1 Gibbs iterations at each

intermediate distribution. After repeating this procedure

for each sample, the likelihood is estimated as the aver-

age of the importance weights. Note that in what follows

we define a run as the full procedure averaging over impor-

tance samples, while a sample refers to a single importance

sample.

3 ALTERNATIVE ANNEALING PATHS

FOR THE EVALUATION OF TOPIC

MODELS

The AIS method described above can be very accurate if

given enough computation time (Wallach et al., 2009b).

However, it is subject to several potentially avoidable

sources of variability. Firstly, the method estimates the

ratio of the desired quantity Pr(w(d)|Φ, α) and the de-

nominator
∑

z(d) Pr(z(d)|α) in Equation 2, which equals

one, introducing stochastic noise on behalf of the denom-

inator even though this is a constant. We would also ex-

pect that the prior may typically be very different from the

posterior, thereby requiring many annealing iterations to

prevent the importance weights w(i) from having a large

variance. This has consequences for the efficiency of the

sampler, which is reduced by a factor of approximately

4The derivation here differs slightly from that of Wallach et al.
(2009b). The present derivation suggests that the procedure de-
scribed in Wallach et al. produces just one importance sample.
This may be repeated, finally producing as output the average of
the resulting importance weights. In practice however, we found
that a single sample with a longer annealing run, as in Wallach et
al., may still be the best strategy on a computational budget.

1 + Varq[w
(i)/Eq[w

(i)]] relative to direct sampling from

the target density (Neal, 2001).5

Making matters worse, we typically must perform the AIS

procedure many times across all held-out documents, and

therefore have a relatively limited computational budget

per document, preventing us from compensating for the

high variance by collecting many importance samples with

a large number of temperatures. In this section, we intro-

duce new AIS annealing paths for the evaluation of topic

models which can have lower variance than the standard

approach. We first introduce AIS paths which compare two

topic models by annealing between them. We then show

how to use these paths for evaluating topic model learn-

ing algorithms by computing per-iteration predictive per-

formance efficiently, reusing all previous computation.

3.1 COMPARING TOPIC MODELS BY

ANNEALING BETWEEN THEM

The most typical evaluation scenario is model

comparison—we want to determine whether a partic-

ular model (model 1) performs better at predicting held-out

documents than a baseline method (model 2) such as

vanilla LDA or a model trained using a previous learning

algorithm. Thus, in such situations, the quantity of interest

is the relative log-likelihood score of the model and the

baseline:

logPr(w(d)|Φ(1), α(1))− logPr(w(d)|Φ(2), α(2))

= log
Pr(w(d)|Φ(1), α(1))

Pr(w(d)|Φ(2), α(2))
. (3)

To compute this in the framework proposed by Wal-

lach et al., we must perform the AIS procedure once

for each model, incurring the stochastic error twice. To

avoid this and the aforementioned sources of variability

with that approach, and given that the procedure is al-

ready designed to compute a ratio, we propose to in-

stead use AIS to compute Equation 3 directly. Let

f0(z
(d)) = Pr(w(d), z(d)|Φ(1), α(1)) and fn(z

(d)) =
Pr(w(d), z(d)|Φ(2), α(2)). Then the desired quantity can

be estimated via

∑ w(i)

N
≈

∑

z(d) Pr(w(d), z(d)|Φ(1), α(1))
∑

z(d) Pr(w(d), z(d)|Φ(2), α(2))

=
Pr(w(d)|Φ(1), α(1))

Pr(w(d)|Φ(2), α(2))
. (4)

We will refer to this strategy as “ratio-AIS.” To im-

plement this method, it remains to choose the anneal-

ing path, i.e. the sequence of intermediate distribu-

tions. We first consider a geometric average fj(z
(d)) =

5Note that Eq[w
(i)] is equal to the ratio of normalizing con-

stants of the target and proposal densities, which in our case is the
quantity of interest, e.g. the likelihood.



f0(z
(d))βjfn(z

(d))1−βj of the initial and final distribu-

tions, a strategy suggested by Neal (2001) with analogy to

simulated annealing, where βj can be viewed as an “inverse

temperature.” To choose a transition operator Tj invariant

to fj , we straightforwardly select the Gibbs sampler. We

have importance weights

w(i) =
n−1
∏

j=0

Pr(w(d), z
(d)
j |Φ(1), α(1))βj

Pr(w(d), z
(d)
j |Φ(1), α(1))βj+1

×

n−1
∏

j=0

Pr(w(d), z
(d)
j |Φ(2), α(2))1−βj

Pr(w(d), z
(d)
j |Φ(2), α(2))1−βj+1

=

n−1
∏

j=0

Pr(w(d), z
(d)
j |Φ(1), α(1))τ

Pr(w(d), z
(d)
j |Φ(2), α(2))τ

logw(i) =
1

n

n−1
∑

j=0

log
Pr(w(d), z

(d)
j |Φ(1), α(1))

Pr(w(d), z
(d)
j |Φ(2), α(2))

, (5)

assuming βj − βj+1 = τ = n−1 ∀j, 0 ≤ j < n − 1.

Elegantly, the log importance weights are the average of the

log ratios of the probabilities of w(d) and z(d) according to

each model. Observe that the same z assignments are used

for the numerator and denominator in each of the ratios in

Equation 5, further reducing the variance of the estimate

relative to the standard AIS strategy.

Although geometric averages are the standard choice for an

annealing path, in many cases there exist annealing paths

which perform much better. Grosse et al. (2013) intro-

duced an alternative annealing path for exponential fami-

lies which converges much more quickly, constructed by

annealing averages of the moments of the sufficient statis-

tics. The Dirichlet-multinomial distribution Pr(z(d)|α) is

not an exponential family so their method does not directly

apply to LDA. Nevertheless, we consider an annealing path

inspired by their work, where intermediate distributions are

constructed by taking convex combinations of the parame-

ters:

fj(z
(d)) = Pr(w(d), z(d)|Φj = βjΦ

(1) + (1− βj)Φ
(2),

αj = βjα
(1) + (1− βj)α

(2)) . (6)

The intermediate distributions are topic models, so we set

Tj to be the corresponding Gibbs sampler. This Tj does not

require power operations, providing substantial execution

time savings over the geometric path and Equation 2. The

importance weights are

logw(i) =

n−1
∑

j=0

(

logPr(w(d), z
(d)
j |Φj , αj)

− logPr(w(d), z
(d)
j |Φj+1, αj+1)

)

. (7)

To implement this method we need to draw initially from

fn(z
(d)), which we accomplish via Gibbs sampling. These

initial samples from fn(z
(d)) need not be independent for

the procedure to work, although we may choose to run in-

dependent chains if the cost of burn-in is deemed to be less

than the time wasted due to running the annealing on cor-

related samples. Finally, AIS will be more likely to con-

verge if the initial and target distributions are similar to

each other. We therefore align the topics before running

the algorithm, using the Hungarian algorithm to minimize

the L1 distances between topics. This operation, which is

O(K3), where K is the number of topics, is not a compu-

tational bottleneck (relative to performing AIS) and needs

only to be performed once per corpus. Pseudo-code for

ratio-AIS using the path from Equation 6 is given in Algo-

rithm 1.

Algorithm 1 Ratio-AIS, using the convex path

for i = 1 : S //importance samples

log ω[i] := 0

Φ(next) := Φ(2)

α(next) := α(2)

draw z(i) ∼ Pr(z|α(2))

for j = n− 1, n− 2, . . . , 0 //temperatures

Φ(curr) := Φ(next)

α(curr) := α(next)

Φ(next) := βjΦ
(1) + (1− βj)Φ

(2)

α(next) := βjα
(1) + (1− βj)α

(2)

for a = 1 : rj //rn−1 is large, for burn in

for l = 1 : length(w(d)) //words

//draw z
(i)
l

Pr(z
(i)
l = k|.) ∝ (n

(i)
k +α

(curr)
k )Φ

(curr)

w
(d)
l

,k
log ω[i] := log ω[i]
+ logPr(w(d), z(i)|Φ(next), α(next))
− logPr(w(d), z(i)|Φ(curr), α(curr))

return logSumExp(log ω)− log(S)

Detecting Convergence Failures

AIS can produce poor estimates if the annealing fails to

converge to a high-probability state in the target distribu-

tion within the given set of iterations. In general, this may

be very difficult to detect. However, in our case we can

interchange f0 and fn in our AIS strategy to compute the

reciprocal of the desired ratio, and compare the reciprocal

of this to our estimate. If these two values are wildly dif-

ferent, then we will know that the annealing has failed to

converge. This means that we are able to detect conver-

gence failures in many practical cases. In our experiments,

we were easily able to catch convergence failures by ob-

serving a systematic bias across documents in the results of

the different annealing directions (see Section 4).



3.2 EFFICIENTLY EVALUATING TOPIC MODEL

LEARNING ALGORITHMS WITH

ITERATION-AIS

When evaluating algorithms for learning topic models (or

monitoring their convergence), we would ideally like to

compute and plot held-out log-likelihood scores per learn-

ing iteration (or unit of computation time) for each algo-

rithm under consideration. This is extremely expensive,

requiring |H | × I × M Monte Carlo approximations of

already intractable high-dimensional integrals, where H is

the held-out test set, I is the number of iterations of the

learning algorithms to evaluate at, and M is the number of

competing learning methods.

Fortunately, for many learning algorithms such as the col-

lapsed Gibbs sampler, the topics at successive iterations

are similar to each other, and the topics typically vary

smoothly from “high temperature” high entropy distribu-

tions at early iterations to more complicated later distribu-

tions. This suggests using a single AIS path to perform

the entire evaluation across all of the iterations, with the

topic models at each iteration (or a subset of them) as inter-

mediate distributions. We can accomplish this by anneal-

ing from the prior Pr(z(d)|α(1)) to the first topic model

Pr(w(d), z(d)|Φ(1), α(1)) as in Wallach et al. (2009b), and

then using ratio-AIS to anneal between successive topic

models Pr(w(d), z(d)|Φ(t), α(t)). For the topic model at

iteration t, the average S−1
∑

iw
(i,t) of the importance

weights computed up to that point w(i,t) converges to the

ratio of normalizing constants,

∑

z(d) Pr(w(d), z(d)|Φ(t), α(t))
∑

z(d) Pr(z(d)|α(1))
= Pr(w(d)|Φ(t), α(t)).

(8)

With n temperatures per learning iteration k, importance

weights can be written recursively as

logw(i,t) =
t

∑

t′=1

n−1
∑

j=0

log
ft′,j(zt′,j)

ft′,j+1(zt′,j)
(9)

= logw(i,t−1) +

n−1
∑

j=0

log
ft,j(zt,j)

ft,j+1(zt,j)
.

This method, which we refer to as iteration-AIS, exploits

all of the computation for selecting z assignments and im-

portance weights from the likelihood estimates at previous

learning iterations, leading to successively longer anneal-

ing runs, and therefore potentially better likelihood esti-

mates, as k increases.

4 EXPERIMENTS

We explored the performance of the proposed techniques

using a corpora of scientific articles from the Association

of Computational Lingusitics (ACL) conference6 (Radev

et al., 2013), and another from the Neural Information Pro-

cessing Systems (NIPS) conference.7 The ACL dataset

consists of the 3286 articles from the years 1987 to 2011,

while the NIPS corpus contains the 1740 articles published

between 1987 and 1999. In each experiment, topic models

with 50 topics were fit to each corpus by performing 1000

iterations of collapsed Gibbs sampling using the MALLET

toolkit (McCallum, 2002). Roughly 10% of the documents

in each corpus were withheld for testing (130 NIPS ar-

ticles, and 300 ACL articles). Although cross-validation

would have been a preferable option to using a single hold-

out set, the computational expense of the experiments pre-

vented this. For example, across all algorithms and learn-

ing iterations, Figure 2 required a total of 6.6 million Gibbs

iterations for each one of the 300 test articles.

When using AIS we must select the number of tempera-

tures n, the number of importance samples S, and the tem-

perature schedule β0, β1, . . . , βn. The variability of an AIS

estimator can be reduced by increasing S (due to the law of

large numbers) or by increasing n (which reduces the vari-

ance of the w(i)). In the experiments, we focused on the

case where S = 1, as in Wallach et al. (2009b). We found

in preliminary experiments that S = 1 gave essentially ex-

actly the same answer as S = 100 importance samples for

Ratio-AIS with 10,000 temperatures. For simplicity, we

used a uniform spacing of the temperatures βj .8

We also compared to the left-to-right (LR) particle filter-

ing algorithm of Wallach et al. (2009b), using the imple-

mentation provided in MALLET. The left-to-right method

requires Nd(Nd + 1)/2 word-level Gibbs updates per par-

ticle for a document of length Nd. The execution of p =
2× n/(Nd + 1) particles corresponds to the same number

of Gibbs updates as AIS with n temperatures and S = 1.

We select the number of LR particles by rounding p to the

nearest integer greater than zero.

Ratio-AIS was designed for reliable per-document com-

parisons. To explore this, we ran each algorithm twice

on each document, and reported results comparing the two

runs across documents. To remove the effect of document

length in the results, instead of reporting the differences

in log-likelihood scores for each model we consider in-

stead perplexity scores exp(− logPr(w(d)|Φ,α)
Nd

). The ratio

of the perplexity of model 1 over the perplexity of model

2 for a document is easily computed from the output of

Ratio-AIS as exp(L2−L1

Nd
), where Lj is the log-likelihood

for model j. We considered two evaluation scenarios: com-

paring learned topics to perturbed versions of the same top-

6Available at http://clair.eecs.umich.edu/aan/
index.php .

7The NIPS dataset, due to Gregor Heinrich, is available at
http://www.arbylon.net/resources.html .

8Neal (2001) suggests that a geometric spacing of the βj ’s
may be beneficial, at least for the geometric annealing path.



ics (Section 4.1), and comparing topic models learned with

symmetric and asymmetric Dirichlet priors (Section 4.2).

Finally, we evaluated iteration-AIS for estimation of per-

iteration likelihood (Section 4.3).

4.1 LEARNED TOPICS VERSUS PERTURBED

TOPICS

As the likelihoods we are trying to estimate are intractable,

we do not in general have access to ground truth. How-

ever, after learning topics Φ on a dataset and then creating

a noisy copy of them Φ′, we have good reason to believe

that the original topics Φ are better than the copy. This

style of experiment was previously performed by Wallach

et al. (2009b). We took the word-topic assignments learned

by MALLET, and created Φ′ by re-assigning 5% of them

to new word-topic assignments uniformly at random.9

Ratios of the perplexities for the two models were com-

puted with both cheap (100 temperatures) and expensive

runs (10,000 temperatures). Overall results are given in

Table 1, and per-document results for the ACL dataset are

plotted in Figure 1.10 The two ratio-AIS paths were both

the most accurate and the most consistent methods, in both

temperature regimes.

In the cheap regime, the ratio-AIS points are slightly off-

diagonal in Figure 1, with one annealing direction giving

systematically lower results, representing a detectable bias

due to convergence failure in at least one annealing direc-

tion. Nevertheless, these results have much lower vari-

ance, and the bias disappears in the expensive regime. Sur-

prisingly, the standard AIS method performed extremely

poorly, with most data points falling outside of the bound-

aries of the figure, which are tight around the results of

the other methods. Using many importance samples would

very likely mitigate this, at greater computational cost. It

should be noted that the task of comparing two very sim-

ilar topic models is difficult for standard methods, but is

relatively easy for ratio-AIS due to the distance to anneal

between the distributions being smaller.

4.2 SYMMETRIC VERSUS ASYMMETRIC

DIRICHLET PRIORS

Learning asymmetric α hyperparameters can improve the

predictive performance of topic models (e.g., Wallach et al.

(2009a)). To explore this, on each corpus we learned a topic

model with asymmetric α, and a model where α was fixed

to be flat but its concentration parameter was learned. The

AIS and LR algorithms were used to compare the result-

ing models, using runs with 1000 temperatures and 10,000

temperatures.

9MALLET’s left-to-right takes as input a count matrix, so the
perturbed topics must be representable as counts.

10Results for the NIPS corpus are similar, and are provided in
Foulds (2014).

It was found that in the “cheap” 1000 temperature regime,

the ratio-AIS estimates were the most closely correlated

with left-to-right estimates in the expensive regime, the best

available proxy for ground truth (Table 2, top).11 In all

cases the ratio-AIS paths had one to two orders of mag-

nitude lower empirical variances in the estimates of per-

document perplexity ratios than the previous methods, with

the convex path having the least variance (Table 2, mid-

dle). Ratio-AIS therefore achieves the original goal of

greatly reducing the variance of per-document comparisons

of topic models. This is particularly important if we want

to perform detailed analysis at a per-document level, such

as exploring the effect of covariates on topic model per-

formance. In such a scenario, the previous methods have

unacceptably high variance for a reasonable level of com-

putation (see also Figure 1), while the ratio-AIS estimates

of relative performance have very small empirical variance

with just one importance sample.

Unfortunately, this reduction comes at a price of potentially

increased bias in the estimated perplexity ratio when given

insufficient computation. Topic models which learn an

asymmetric α tend to perform better than those with a sym-

metric α (Wallach et al., 2009a), and the previous methods

detected a larger advantage for the asymmetric approach

(Table 2, bottom). The direction of the ratio-AIS annealing

path also made a difference to the outcome. In particular,

the forward direction of annealing did not detect an overall

advantage to the asymmetric hyper-parameter model. On

the other hand, the difference per direction allowed us to

detect a convergence failure, which is difficult to do in gen-

eral. Also note that for the task in Section 4.1, the overall

perplexity ratios were very consistent between annealing

directions, and showed a clearer difference between mod-

els than the baseline algorithms did – see Foulds (2014).

4.3 EVALUATING TOPIC MODELS PER

ITERATION

The iteration-AIS annealing path evaluates the perfor-

mance of topic model learning algorithms on a per-iteration

basis. We explored its performance using the convex path

with 1000 and 10,000 temperatures per learned model, an-

nealing between the models at every 10th learning itera-

tion. At the first learning iteration Φ(1), the algorithms

were given an extra 1000 temperatures to compensate for

the cold-start from the prior.

Results on ACL are shown in Figure 2. It was found that

iteration-AIS estimated higher log-likelihoods than left-to-

right and standard AIS in both temperature regimes (Fig-

ure 2, left). The main failure mode of these algorithms

is to underestimate the likelihood by failing to find high

probability regions, so higher values are likely to be better

11The standard AIS estimate of the perplexity ratios had too
high a variance to be used (see Table 2).



% Correct Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS

to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 63.8 48.8 83.8 89.2 84.6 87.7

NIPS (expensive) 84.6 62.3 86.9 87.7 87.7 87.7
ACL (cheap) 80.2 50.8 88.3 92.0 88.3 92.3

ACL (expensive) 90.7 75.2 90.3 90.3 90.3 90.3

Table 1: Percentage of documents where the learned topics Φ were estimated to have higher likelihood than the perturbed

topics Φ′.
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Figure 1: Comparing learned topics with perturbed versions of them, on the ACL dataset. In the figures, every point

corresponds to a document. Each axis corresponds to estimated
perp(Φ)

perp(Φ′) for a repeat of the experiment, with the ratio-

AIS repeats being performed in different annealing directions. Points in the lower left quadrant are those which (likely

correctly) predict the unperturbed topics as the winner in both trials. Points near the diagonal have consistent results across

the two trials. Left: 100 temperatures. Right: 10,000 temperatures. Missing Standard AIS results are outside of the bounds

of the plots. Figure best viewed in color.

Correlation with Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS

Long LR Run to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 0.947 0.619 0.973 0.975 0.976 0.981

NIPS (expensive) 0.993 0.852 0.981 0.982 0.981 0.982

ACL (cheap) 0.965 0.578 0.984 0.983 0.987 0.986

ACL (expensive) 0.995 0.892 0.989 0.989 0.990 0.989

Variance of Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS

Perplexity Ratio to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 2.6 ×10−4 2.6 ×10−3 2.0 ×10−5 1.5 ×10−5
8.2× 10

−6 9.8 ×10−6

NIPS (expensive) 1.7 ×10−5 6.0 ×10−4 1.4 ×10−6 1.2 ×10−6 6.9 ×10−7
5.8× 10

−7

ACL (cheap) 1.7×10−4 3.6 ×10−3 1.6×10−5 1.3×10−5 7.7×10−6
6.6× 10

−6

ACL (expensive) 1.4×10−5 5.6×10−4 1.1×10−6 9.4×10−7 7.4×10−7
5.1× 10

−7

Corpus-Level Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS

Perplexity Ratio to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 0.984 0.975 1.01 0.992 1.01 0.994

NIPS (expensive) 0.989 0.990 1.00 0.999 1.00 0.998

ACL (cheap) 0.984 0.980 1.00 0.985 1.00 0.988

ACL (expensive) 0.987 0.989 0.994 0.992 0.996 0.992

Table 2: Comparing asymmetric α and symmetric α topic models. Correlation coefficient with the perplexity ratio esti-

mates from a run of left-to-right in the expensive regime (top), average empirical variance (evaluated across two runs per

document) of the per-document perplexity ratio (middle), and the overall perplexity ratio for the entire corpus (bottom).
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Figure 2: Evaluating iteration-AIS on ACL. Jumps in log-likelihood are due to hyper-parameter optimization.

Figure best viewed in color.

(Wallach et al., 2009b). Consistent with this observation,

the iteration-AIS likelihood curve at 1000 temperatures co-

incided with the likelihood curves of the baselines when

they were given ten times more computation. The proposed

method also exhibited much lower variance in the likeli-

hood estimates (Figure 2, right). This is expected, as the ef-

fective number of annealing temperatures is higher, which

is known to reduce the variance of the importance weights

(Neal, 2001). Similar results were observed on NIPS (see

Foulds (2014) for these and other additional results).

The baselines reported decreasing held-out likelihood in

later iterations, while iteration-AIS did not. Such a de-

crease could be due to over-fitting, but is more likely to be

caused by convergence failures due to the topics becoming

more complex. As evidence for this, the dip in likelihood

was smaller with increased computation, and all methods

exhibited higher variance in the likelihood estimates for

later learning iterations (Figure 2, right, computed based on

two evaluations of the likelihood per document, and aver-

aged across documents). The prior probability of the topic

models also decreased from around iteration 300 (the same

point where standard AIS began to report a decrease in per-

formance), and this is likely to make inference more diffi-

cult (see Foulds (2014)).

5 CONCLUSIONS

We have introduced ratio-AIS, a strategy for comparing

topic models, and empirically evaluated its performance

relative to previous methods using two datasets. Ratio-AIS

was found to have low empirical variance, making it useful

for document-level analysis. It should be noted that impor-

tance sampling can suffer from bias with a finite number of

samples, e.g. approaches such as those described by Wal-

lach et al. (2009b) will typically underestimate the likeli-

hood. For ratio-AIS this results in the potential for a bias

that favors a particular model when an insufficient number

of samples or temperatures is used, due to the directional

nature of the approach. Such a convergence failure of a

Monte Carlo algorithm is in general very difficult to detect,

but in the proposed method the bias is frequently easily de-

tectable by comparing the results of two Monte Carlo runs.

When applied to the evaluation of the per-iteration perfor-

mance of topic model training algorithms (iteration-AIS),

the method outperforms traditional approaches even when

given an order of magnitude less computation. Based on

our results, we recommend ratio-AIS for document-level

analysis, or in cases where the topics are very similar to

each other. The method should be performed using both

annealing directions as a convergence sanity check, at least

for a subset of the held-out documents. Left-to-right is

still generally preferred for corpus-level perplexity compar-

isons, unless per-iteration curves are desired, in which case

we recommend that iteration-AIS be used.

For future work, it is straightforward to adapt ratio-AIS to

the document completion task. It may also be possible to

find other AIS paths with better mixing properties, and the

ideas in this work may be applicable to other latent vari-

able models such as RBMs. See Foulds (2014) for a dis-

cussion on these ideas, as well as on the use of ratio-AIS

with multiple topic models, and where the models differ in

the number of topics or in their parametric forms.
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