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Abstract

In this paper, we present a novel probabilistic la-
bel enhancement model to tackle multi-label im-
age classification problem. Recognizing multiple
objects in images is a challenging problem due
to label sparsity, appearance variations of the ob-
jects and occlusions. We propose to tackle these
difficulties from a novel perspective by construct-
ing auxiliary labels in the output space. Our idea
is to exploit label combinations to enrich the la-
bel space and improve the label identification ca-
pacity in the original label space. In particular,
we identify a set of informative label combina-
tion pairs by constructing a tree-structured graph
in the label space using the maximum spanning
tree algorithm, which naturally forms a condi-
tional random field. We then use the produced
label pairs as auxiliary new labels to augment
the original labels and perform piecewise train-
ing under the framework of conditional random
fields. In the test phase, max-product message
passing is used to perform efficient inference on
the tree graph, which integrates the augmented
label pair classifiers and the standard individual
binary classifiers for multi-label prediction. We
evaluate the proposed approach on several image
classification datasets. The experimental results
demonstrate the superiority of our label enhance-
ment model in terms of both prediction perfor-
mance and running time comparing to the-state-
of-the-art multi-label learning methods.

INTRODUCTION

based image annotation, which requires identifying a set
of objects presented in each image from a given set of
desired object concepts. The image annotation problem
for object recognition is an inherent multi-label classifi-
cation problem, since each image usually contains more
than one object of interest. Multi-label classification gen
eralizes the standard multi-class classification by atagwi
each instance to be simultaneously assigned into multiple
label categories. A key challenge for multi-label clasaific
tion is label sparsity. That is, the multiple labels are sup-
ported by the training data at different levels and many rare
labels may lack sufficient training supports to be reliably
recognized individually. Hence instead of learning binary
classifiers independently for each label, many multi-label
learning methods have proposed to exploit label correla-
tions or label dependence to improve multi-label classifica
tion performance, including second-order strategy method
[7, 11, 15], which model pairwise label correlations, and
high-order strategy methods [16, 19, 36], which consider
the interactions among subsets of labels.

Moreover, on image classification, multi-label learnirgpal
faces the general intra-class variation challenge of stahd
multi-class classification which is caused by viewpoint and
context variations and occlusions, as shown in Figure 1.
From the figures, we can see that the appearance of the
objectpeoplecan be profoundly different across different
images, by co-occurring with different objects and having
different occlusion patterns. In such cases, an individual
binary classifier may not be reliable for recognizing a tar-
get object. But other co-occurred objects can likely pro-
vide some useful information. For example, in the image
“peopleriding a bike’, many parts of thebike are invis-
ible, but thepeopleis easy to recognize and can provide
information about théike in the image peoplesitting in

the car’, eachpeopleis severely occluded but thear can

be detected easily and help the recognition offiepleif

With the development of internet and digital devices, thethey often co-occur; in the imaggéopleriding ahorsé€,
availability of visual data has been dramatically increas-the objectspeopleandhorsecan be helpful to each other
ing in recent decades, which provides billions of imagesas well. Moreover, the recognition of such composite co-
and videos. An important task for information retrieval occurrence patterns can also help the correct recognition o
and processing over such image and video data is objectadividual objects, especially for the ones that are ocetlid



Figure 1: Examples of image occlusion and object co-ocage@atterns in object recognition tasks.

or difficult to be recognized individually. problems in the literature. In this section, we will provide
. . N a brief review over the most related work to the proposed
Motivated by these observations, in this paper, we propose . i tation. obiect
a novel probabilistic label enhancement model that uslize _approa(_:h from the p_erspectlves_o_ 'mage annotation, obj
L . . .~ interaction and multi-label classification.
the label combination patterns to improve multi-label im-
age classification performance. Our assumption is that viimage Annotation There are three major groups of im-
sual composites can be helpful when single classifier failsage annotation techniques [13]: (i) Generative models.
For example, assume the composjedple riding horses ~ Some methods in this group use generative topic models
often stays in similar poses. A classifier for this visualsuch as latent Dirichlet allocation [1], probabilisticeat
composite can then capture the co-appearance of the twsemantic analysis [24], and hierarchical Dirichlet preess
objects even though boiteopleand horseclassifiers fail  [33]. They model annotated images as samples from a mix-
to reliably recognize them separately. We propose to conture of topics, where each topic is a distribution over image
struct label combinations, in particular label pairs, aslau  features. Some other methods use mixture models to define
iary new labels to augment the original labels and improvea joint distribution over image features and annotatioss tag
label identification capacity in the original label space. | [4, 9, 22]. However, generative models perform training by
particular, we identify a set of informative label combina- maximizing generative data likelihoods, which are not nec-
tion pairs by constructing a tree-structured graph in the laessarily optimal for the target prediction performancd. (i
bel space using the maximum spanning tree algorithm, adiscriminative models. The methods in this group address
cording to the label co-occurrence information in the train image annotation as a classification problem. For exam-
ing data. This naturally forms a conditional random field ple, simple methods in [23, 12] treat labels independently
framework, under which we perform piecewise training.and learn a classifier for each label, while more advanced
The label pairs identified by the edges of the tree are usethethods in [30, 3] improve the classification performance
as auxiliary new labels, and a binary classifier is trained fo by considering the co-occurrences of different label$) (ii
each label in the augmented label space. To integrate thigearest neighbor based models. For example, the label
augmented multiple binary classifiers for multi-label pre-propagation method in [13] constructs a similarity graph
diction in the original label space, we perform exact infer-for all images, and propagates the label information via the
ence on the tree-structured conditional random field usingraph; and the search based method in [10] exploits a re-
max-product message passing. We evaluate the proposegession based kernel metric.
approach on a number of multi-label image classification_ )
datasets. The experimental results show that the propos&dPIect Interaction  There are a number of works on ob-
label enhancement model effectively outperforms the relect interaction that share the same intuition as our pro-

lated state-of-the-art methods in terms of both predictiorPoSed work, that s, visual composites can be helpful while
performance and running time. single components fail. The work in [18] learns object in-

teractions by modeling the prepositions and adjectivess tha
The rest of the paper is organized as follows. In Sectionelate nouns. The work in [34] models the co-occurrence of
2, we present a brief review over the related work. Thegbjects and human poses in human-object interaction activ-
proposed approach is presented in Section 3. We report thges. In [8], the interactions between objects are modeled
experimental results in Section 4 and finally conclude thempilicitly in the context of predicting sentences for image
paper in Section 5. [28] introduces a complex visual composite concept called
visual phrase for object detection, which treats each ghras
as a new label. Though this work shares similarity with our
proposed work in exploiting visual composites, there are
significant differences between it and our work. First, its
A considerable amount of research has been devoted tg@sual phrases are not automatically discovered but prede-
addressing image annotation and multi-label classifinatio fined. By contrast, the label combinations in our work are

2 RELATED WORK



constructed automatically. Second, it addresses very difput ofh is a L-length binary vector

ferent problems from ours. It tackles object detectiongask

while we address multi-label image annotation problems; h(x) = [hi(x), h2(x),..., hr(x)].
its goal is to find a bounding box where the visual compos-

ite occurs, while our goal is to predict the category labelsThe binary classifief; can be trained by minimizing dif-
of an image. ferent loss functions, such as log-loss and hinge loss.

Multi-label Classification The most straightforward -, itional Random Fields (CRFs) are undirected
multi-label classification method is binary relevance [2], o .anhical models that model the conditional distributién o
which trains a binary classifier for each label. The obvi-y,o 410yt labels given an input vector based on undirected
ous flaw of such method is the complete ignorance of labe raphs. An undirected gragh = (V, E) in the label space
correlations. Hence, numerous methods that encode lab formed by a set of vertices, eac;h of which represents
correlations have been proposed. One group is the ranking label variable, and a set of undirected ed@esvhere
based methods [7, 11, 32], which rank the relevant Iabel‘gjach edge consists of a pair of verticest) € E and rep-

higher than irrelevant ones and capture label correlation§esents the dependence relationship between the label vari

implicitly in the loss function. This technique however re- gp05 The joint probability of a configuration of the label
lies on a good distance metric and a fine-tuned threshold iDariables in a CRF can be given by

determining the number of relevant labels. The method in

[15] hence further eliminates this drawback by developing 1

a novel calibrated separation ranking loss function. An- P(y1,yz,...,yLlx) = Z(x) H¢C(yc7x)

other group is the graph-based methods, which implicitly ce€

incorporate label correlations into label propagatioroalg \yherez(x) is a partition function that ensures a valid con-
rithms as either part of the graph weights [20, 5] or addi-yjiona distribution given the input data instangeC is
t|9_nal constraints [30, 35]. There are also a set of probage et of cliques of the graph, and is the potential func-
bilistic graph-based methods [6, 14, 17, 27]. The methodjgp, for clique ¢, which maps the clique label configura-

in [14] uses directed graphs over the label variables to capyp, v. and the input data instaneeinto a positive scalar
ture label dependence under a probabilistic conditional dé e, The standard training procedure of conditional ran-
pendency network model. [17] further improves this model o fields typically involves first-order gradient descent o
by learning sparse conditional dependency graphs. [6, 27dgcond-order Newton methods, which require performing
integrate multiple classifiers in a chain graph to capturnference over each training instance in each iterative pa-
label correlations. The;e methods share S|m|lar|Fy Witheameter update step. For general graphs, performing exact
our proposed approach in capturing label correlations bynterence in CRFs is intractable, and approximate infezenc
integrating probabilistic classifiers on graphs over label 44qrithms are usually used instead. Moreover, performing
However, [6, 27] are limited to chain graphs and they ap-inference in each parameter update step can make the train-

ply greedy heuristics to search for th_e bgst label vector Ofhg process computationally expensive, especially fadar
each test instance; [14, 17] use cyclic directed graphs ang 4 densely connected graphs and large training sets.
their test phases involve approximate inference. By con-

trast, our method can exploit any automatically generate
acyclic tree graphs, not necessarily chains, while using
max-produgt fmessage passing algorithm to perform effithe straightforward method for multi-label image classifi-
cient exact inference. cation casts the problem as a set of independent binary clas-
sification problems, one for each object label, and trains

%.2 Probabilistic Label Enhancement Model

3 PROPOSED MODEL one binary classifier for each label using the one-vs-all
scheme. Training binary classifiers is computationally effi
3.1 Preliminaries cient and the one-vs-all training scheme can scale linearly

with the increasing of the label set. However, as we dis-
Multi-label Classification systems can be described as cussed before, such binary classifiers can fail to accyratel
below. Given the input feature spadé € R? and the recognize the individual objects in an image, due to la-
output label spac® = {0,1}*, a mapping functiorh: bel sparsity, intra-class variations, and occlusions.hls t
X — Y can be used to predict the corresponding label vecwork, we propose to enhance these standard binary clas-
tory € Y for each input data instaneec X'. Multi-label  sifiers by exploiting the label combination patterns which
learning focuses on identifying a good mapping function typically present as co-occurred object composites in im-
from the training data. The most straightforward methodages of the training data, as shown in Figure 1. We first
to learn such a mapping function is the binary relevancedentify the informative label combination pairs by learn-
method, which assumes labels are independently generatéty a tree-structured undirected graph in the label space,
and learns one binary classifikey for each label. The out- which forms the structure of a conditional random field.



Then we use the label combination pairs as augmenting

new labels and formulate the learning process as a piece- @
wise training procedure under the framework of conditional

random fields. Finally we apply the trained probabilistic

model to predict labels for testimages using a max-product

exact inference algorithm. e @ e e

3.2.1 Learning Tree-Structured Graph Figure 2: An example of the constructed tree-structured

Given the labeled training imageB={(x®, y()}r_, graph over labels.

where each label vectgr(” contains{0,1} values with

length L, corresponding to thé label classes, we aim to dog images and 20 car images. The compositpeaiple
identify the useful object composites by finding the infor- 5 cars can be more important to capture than the com-

mative Iabel_co—occurrence pat.tern.s. Though in p”nc'p'eposite ofpeopleanddogs towards the goal of assisting the
we can consider any label combination patterns, for compUgpiects with sparse supports in the training data. Our pro-
tational _S|mpI|C|ty we focus on second-ord_er patterns_, .8 hosed measure encodes this principle.
label pairs. We take all possible label pairs as candidates
by constructing a fully connected graph over thdabel ~ Given the proposed normalized co-occurrence criterion, we
variables. Then we measure the combination strength gfan compute the weights for all edges between the label
each label pair as the weight of the corresponding edge ugariables. Then we use a maximum spanning tree algo-
ing an appropriate criterion. One standard criterion is thdithm to select(L — 1) edges according to the computed
empiricalmutual informatiormeasure, which is popularly Weights to form a tree-structured graph. In our implemen-
used to measure the dependence strength of two variablégtion, we used Prim’s algorithm [26] to produce the max-
and can be computed from the training data. For exampldmum spanning tree. Figure 2 demonstrates an example
the empirical mutual information between label variablesof the constructed tree graph over the label variables. The
Y; andY; can be computed as label pair connected by each edge on the constructed tree
graph will be used as a constructed new label to augment
MI(YY;) = Z p(yi, y;) log ( P(yi,y;) ) the original labels. For example, for the tree graph in Fig
yi,y;€{0,1}

P(y»)P(w ) ure 2, since there is an edge between the rigdend the
! / nodeY,, we will consider a constructed new lalig| o,

with the empirical probabilities computed from the train  Which has binary valueg0, 1}. The label value foi; .
data. However, this measure treats the co-presence of tff €ach instance can be produced based onithat = 1
two labels and the co-missing of them equivalently, whileiS equivalent ta; = 1 A Y; = 1. Then for each instance
we want to find the label composites that have significant”), we sety{”, = 1 if and only if the instance has been
co-presence patterns. Hence we propose a simple new meassigned both labél; and labelY; such thaty%” =1and

sure,normalized co-occurrengéo use. For two label vari- y;’i) — 1. Otherwise, we hava’lz — 0. Thus each con-
ablesY; andY, the normalized co-occurrence measure isstrycted new label can be treated as a new prediction class
defined as from the prediction perspective. The reason that we pro-
NOWY) = — count(Y;, Y;) iu&eairiz graphshlnitead of del_nsely connected cyclic grap_kjs
i min (count(Y;), count(Y;)) graphs have acyclic structures and permit effi

cient exact inference in the test phase to integrate the aug-
wherecount(Y;, Y;) is the number of co-occurrence of the mented label classifiers with the binary classifiers in the
two labels in the training data, such that original label space.

count(Y;,Y;) = Z”yz@ - Ly;-e) =1] (1) 3.2.2 Piecewise Training of CRFs
=1

The tree-structured graph constructed in the label space ac
and![-] denotes an indicator function. Similartyyunt(Y;)  tually forms a standard CRF model that permits label vec-
andcount(Y;) are the numbers of occurrences of single la-tor prediction from the input data, where we treat each node
bels in the training data. By normalizing the co-occurrenceand each edge as separate cliques. Based on our motivation
counts of the two labels with the minimum of their individ- of capturing object composite concept to help the multi-
ual occurrence counts, the measure emphasizes the relatikabel prediction in the original label space, we propose to
relatedness of the two objects and favors the less frequentperform piecewise training for the tree-structured CRF by
appeared objects. For example, assume there are 15 imadearning the potential functions for each node clique and
containingpeopleanddogs and 10 images containingeo-  each edge clique separately. That is, we train a sdt of
ple andcars while there are totally 100 people images, 80 binary classifiers independently from the data, one for each



The decoding process on the test instaxedms to find the
maximum a posteriori (MAP) label assignment by solving

y* = argmax P(y|x) @3)
Yy

The max-product algorithm performs this decoding on the
factor graph using the following message passing. First,

Figure 3: The factor graph constructed from the tree grapi{e randomly select a variable nodas the root of the tree,

in Figure 2. The circle nodes are variable nodes and théNd pass messages from leaves until they reach the root.
rectangle nodes are factor nodes. There are two types of messages: node-to-factor messages

and factor-to-node messages. The message from the;node
to the factor (e.g.,a = i ~ j) can be computed as
label in the original label space, as the potential function
for the node cliques, and train a set(@f — 1) binary clas- ti—a(yi) = ¥(yi) H fe—i(Yi) (4)
sifiers independently from the data for the constructed new cEN(i)\a

labels as the potential functions for the correspondingedg , ) )
cliques. Piecewise training can effectively avoid the re-WhereN (i)\a represents all the neighboring factor nodes

peated inference required for each step of parameter yf®f nodei excluding factor node. The message from the
dates in the standard CRF training procedure and make tH&Ctora = i ~ j to the nodej can be computed as
learning process efficient and scalable. It has been shown

in [29] that piecewise training of a CRF can be justified as fa—j(¥5) = . (wa (i, yg')/ima(yi)) (5)
minimizing a family of upper bounds on the log partition
function of the data log-likelihood. Back pointers are kept for each value that achieves the max-

To h h touts of potential funci tible t imum at a max operation. At the root, we multiply all in-
0 nave the outputs ot potential functions compatib’e 10.,5ing messages to obtain the maximum probability and
each other, we propose to use binary probabilistic class

e MAP configuration of the root no
fiers, in particular binary logistic regression classifidos g de

training. Each binary logistic regression classifier can be .

trained efficiently by using second-order Newton methods P = e (w(y’”) II_V[ ”‘Hr(yr)) )

to minimize the regularized log-likelihood. For theth aeN(r)

classifier, this is to minimize y, = argmax (@z;(yr) H ﬂa—)r()’r)) (7)
yr a€N(r)

o 5 T (D BT
min Z log <1 te ) Toww (2 We then back trace the pointers and find the complete val-
=1 uesy™ that lead toP*. For tree graphs, this max-product

. RO algorithm provides an exact inference solution. But for an
where g is a trade-off parameter, aryifC is simply the . : . . .
arbitrary graph with loops, it can only provide an approxi-

translation ofy,(f) from values{1,0} to {1, —1}. mate solution.

3.2.3 Inference with Max-product Algorithm 4 EXPERIMENTS

Given the trained tree-structured CRF model, the multi-

label prediction on a test instance can be performed usfo evaluate the proposed approach, we conducted experi-
ing the max-product inference algorithm [21]. The max- ments on several standard multi-label image classification
product algorithm conducts label decoding through mesdatasets, comparing to a few state-of-the-art multi-label
sage passing which operates in factor graphs. Given thiearning methods and baselines. We report our empirical
trained pairwise CRF model, we then first transfer it intoresults in this section.

a factor graph by simply keeping all variable nodes and

adding a factor node for each edge clique. For exampleg 1 Datasets

the factor graph constructed for the tree-structured CRF in

Figure 2 is given in Figure 3, where each variable nodéWNe used the following three image datasets in our exper-
is represented as a circle and each factor node is repré@nents: Pascal VOC 2007 (Pascal07orel5K and SUN
sented as a rectangle. For a given test instandbe po- 2012 PascalQ07is one of the most famous image datasets
tentials of the two types of nodes in the factor graph carfor classification and detection and it contaiXisdifferent

be computed using the probabilistic binary classifiers pro-object classesCorel5K is a standard image set for multi-
duced in the training phase, such@&s/;) = P(y;|x) and  label classification withs, 000 instances an@60 classes.
V(yi,¥5) = V(Ying) = P(Yinjl%). To have a fair comparison with a few comparison methods,



some of which are too slow to deal with many classes, westandard criteria: macro-F1, micro-F1, hamming loss, pre-
selected two subsets witl) most frequent labels and)0 cision and recall. The average results and standard devia-
most frequent labels respectively to u§&JN 201231]is  tions in terms of the five criteria for all the four methods are

a recently released large-scale image set for object deteceported in Table 2. We can see that our proposed method
tion. Similarly, we used two subsets wiih labels and 00 outperforms all the other comparison methods across all
labels respectively. The properties of the datasets used fiive datasets and in terms of all the four measure crite-
our experiment are briefly summarized in Table 1, whereria: macro-F1, micro-F1, Precision and Recall. In terms
cardinality denotes the average number of labels assighesf hamming loss, the proposed approach produced the best
to one image. In these datasets, each image is representegbults on four out of the five datasets. Moreover, the pro-

as a 512-dimensio®IST [25] feature vector. posed approach significantly outperforms the basdliRe
method across all different settings. This clearly showas th
Table 1: Summary information of the datasets. the augmenting new labels in our model are very effective
in assisting identifying the individual labels, and it isye
Dataset #images #labels cardinality beneficial to exploit the label co-occurrence patterns. By
Pascal07 4168 20 2.26 comparing the results on thorel5k(s50)dataset and the
Corel5K(s50) 4999 50 2.32 Corel5k(s100)dataset, we can see that with the increas-
Corel5K(s100)| 4999 100 2.89 ing of the label set size, the performance of all methods in
SUN12(s50) 5000 50 8.98 terms of the four measures, macro-F1, micro-F1, precision
SUN12(s100) | 5000 100 11.18 and recall, has the general trend of decreasing. In terms of

the hamming loss, however, the results of all approaches
are even better o€orel5k(s100)than onCorel5k(s50)
This seems very strange. But if we check the two datasets,
we can see that thougBorel5k(s100)contains 50 more

On each of five datasets, we compared the proposed a abels thanCorel5k(s50) the difference between their la-

proach to the following state-of-the-art multi-label afiiis el cardinality values is very small. This indicates that
cation methods and baseline method: the labels are even more sparseCarel5k(s100}than in

Corel5k(s50) By producing similar number of positive la-
e Ensembled Probabilistic Classifier Chain (EPCC) bels, the p(_erformance of each approachlwill automaticglly
This probabilistic multi-label learning method is de- 9€t better in terms of hamming loss, with the increasing

veloped in [6] and it integrates base classifiers in g0f the label set size. This result suggests that hamming
chain structure in the label space. loss is not an appropriate criterion for multi-label cléissi

) ) ) o cation when the label cardinality is small while the num-
* Maximum Margin Output Coding (MMOCThisis &  per of |abel classes is large. Similar results are observed
multi-label learning method developed in [36], which 4¢65s5UN12(s50pndSUN12(s1003s well. Another ob-
performs classification on a simultaneously leamedseyation over the table is thePCCproduced the second
lower-dimensional label space within & maximum pegt results in most cases. TEECCmethod greatly out-
margin framework. performs the baselingR almost on all the datasets and in
e Logistic Regression (LR)This is a baseline method terms of all criteria, except that G1UN12(s100h terms of
that trains a set of independent binary logistic regresmacro-F1 and o®UN12(s50)n terms of precision, where
sion classifiers, one for each label, to perform multi-it produces similar results withR. The MMOC method
label classification. is much more time-consuming than other methods. On
the two datasets with 100 labels, it fails to yield any re-
For our proposed approach, there is one regularizatiosult within reasonable period of running time. It has infe-
trade-off parametes to set for the logistic regression clas- rior performance comparing to the proposed approach and
sifiers. We found that logistic regression classifiers ate noEPCCin most cases.
very sensitive to this parameter. In our experiments, we s

4.2 Experimental Results

as a very small value aroud)002. Eor the comparison e‘Illzunning time To compare the empirical efficiency of the
r’;ethoc\ilf?ZZCCam\j/MuMOC ue sed.the code acEa Ies re- approaches, we have also recorded the training time and
 We'l P 9 testing time of each approach on a 64-bit machine with

leased on the internetThese packages contain parameter16GB memory and quad core intel i7 processors. The re-

selection procedures and settings. sults of average running time are reported in Figure 4. We
On each dataset, we performed a 5-fold cross validation tean see the baselineR is the most efficient method in
compare all the methods. To evaluate the multi-label clasterms of both training and testing time, since it only needs
sification results from different perspective, we used fiveto train a set of binary classifiers and perform classificatio
independently for each label. Among the remaining three

1 . . ._ _ s . .
https://github.com/multi-label-classification/PCC; methods, our proposed approach is significantly more ef-

http://www.cs.cmu.edu/ yizhangl/files/ICML20Tbde.zip



Table 2: The average results and standard deviations dieatidmparison methods on the five datasets in terms of differe
evaluation criteria. On each dataset, the best result ih eaterion across different methods is shown in bold fort. ’

denotes the fact that the method fails to run on the correpgriataset due to the large label size.

Measure Methods Datasets
Pascal07 Corel5k(s50) Corel5k(s100) SUN12(s50) SUNDB(s1
Proposed| 0.268+0.005 0.276-0.003 0.1640.004 0.37#40.004 0.315:-0.002
Macro-F1 EPCC 0.252+0.005 0.2450.006 0.1580.002 0.3553-0.002 0.216-0.003
MMOC | 0.22G+0.003 0.218-0.002 - 0.3180.002 -
LR 0.247#0.006 0.20%#0.003 0.135:0.002 0.323-0.002 0.215-0.002
Proposed| 0.579-0.004 0.3620.005 0.333-:0.003 0.58%+0.003 0.514-0.002
Micro-F1 EPCC 0.56A40.003 0.35%0.002 0.32#0.002 0.563-0.001 0.50#0.002
MMOC | 0.543t0.006 0.2380.003 - 0.514-0.002 -
LR 0.4810.007 0.22Z20.003 0.19740.003 0.486-0.003 0.386-0.003
Proposed| 0.0570.003 0.062+0.002 0.023:t0.002 0.146-0.003 0.082-0.004
Hamming Loss EPCC 0.094+0.001 0.07#£0.001 0.04#0.000 0.166-0.001 0.116-0.000
MMOC | 0.089+0.002 0.05#0.001 - 0.154+0.001 -
LR 0.121-0.002 0.0720.001 0.042-0.000 0.176:0.001 0.1380.001
Proposed| 0.69740.013 0.3430.003 0.3168:0.005 0.656-0.003 0.54%0.003
Precision EPCC 0.649+0.004 0.31%#0.002 0.306:0.003 0.544-0.001 0.51#0.002
MMOC | 0.689+0.011 0.225-0.004 - 0.614-0.003 -
LR 0.518+0.010 0.1980.003 0.185-:0.004 0.5480.004 0.403-0.003
Proposed| 0.57Gt0.010 0.4580.014 0.4180.008 0.64%+0.002 0.565-0.005
Recall EPCC 0.55740.003 0.4530.005 0.4040.004 0.616:0.003 0.523-0.003
MMOC | 0.482£0.004 0.184-0.005 - 0.464-0.003 -
LR 0.50A0.006 0.2350.004 0.206:0.003 0.456-0.002 0.396-0.002
ElFroposed 1000 EProposed
B [ 900 hmoc B
LR LR
1200F 800
1000f Toor
= = 600
§ 8001 § s00
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400 soor
200F
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m o=l0  m ‘ m
Pascalo7  Corel5k(s50) Coéﬂf:s(gllsooy SUN12(s50) SUN12(s100) Pascald7  Corel5k(s50) Colsigs(ztlsoo) SUN12(s50) SUN12(s100)
(a) Training (b) Testing

Figure 4: Training and testing time (seconds) for all methddote on Corel5k(s100) and SUN12(s100), the yellow bar
(for MMOC) is missing due to that MMOC fails to handle thes¢adets.

ficient than the other two methods in terms of the testingdllustration of the Results To have an illustrative under-
time. For training time, the proposed approach is similar tostanding about the image annotation problem and the pre-
EPCCon the datasePascalO7which has small label set, diction results, in Table 3 we presented the predicted fabel
and is more efficient thaBPCCon the other larger scale on four testing images from tH@UN12(s50ylataset by the
datasetsMMOC is the most inefficient one among all the four methods. The true positive labels are shown in bold
four methods. It even fails to produce any results on the€font. We can see that our proposed approach is in general
two datasets with 100 labels. more accurate than the other methods, thoB&CC has



Table 3: The predicted labels on four test images of SUNIR (8% the comparison methods.

shown in bold font.

The true positive labels are

Methods T B e~ «

Proposed| wall, floor, ceiling, | floor, wall, ceiling, | wall, door, road, car, | door, sky, trees, grass
chair, door, cabinet, | door, table, person,| sky, trees, person
table, vase bottle, | box, books chair mountain
window

EPCC wall, floor, ceiling, | wall, floor, ceiling, | sky, window, door,| sky, tree wall, floor,
chair, ceiling lamp, | chair, door, person | plant, building, tree,| window, ceiling, chair,
table, vase, flowers| ceiling lamp, window,| grass door, table, plant
window, plant cabinet

MMOC | wall, floor, window, | wall, floor, ceiling, per- | sky, car, ceiling, grass, sky, tree, wall, win-
ceiling, chair, table, | son window, ceiling| plant, building, tree, dow, plants
curtain, sofa, window lamp streetlight

LR wall, floor, ceiling, | wall, floor, ceiling, per- | wall, sky, road, car, | sky, tree, grass plant,
chair, table, bottle,| son plant, building, tree, wall
window, curtain, rug, grass, streetlight
sofa

good precision result on the firstimage as well. some interesting pairs missing in the tree graph. For ex-

. . .ample,sofaandtv monitorcan be observed in most sitting
All these results suggest that by capturing the object Comb'rooms, but their combination pair is not kept in the tree

n§1_t|0_n patterns in newly created Iabels_, the proposec_i proba raph. On the other hand, the tree graph captured many
bilistic label enhancement model provides an effective an .
important co-occurrence patterns witluch lessnumber

efficient framework for multi-label image classification.

of edges. For example, the tree graph captures the frequent
co-occurrences betweperrsonand many other objects. By
looking at the images in Pascal07, we can find many images
containingpersonin different classes, which explains why

Our proposed approach constructs a tree-graph to iderthe tree graph ipersoncentric. Moreover, even with much
tify the informative label combination patterns. In order MOre edges, there are twoisolated nodes in the dense graph,

to produce the tree structure, the maximum spanning tre@/Nile none of nodes can be isolated in the tree graph.

algorithm needs to ignore the edges with larger (normal-The classification results of these two variants are regorte
ized co-occurrence) weights to avoid cycles. To investigat in Table 4, in terms of macro-F1, micro-F1 and hamming
whether this is problematic, we tried an alternative ver-loss. We can see that though the tree graph sacrificed edges
sion of the proposed approach by constructing a denselyith larger weights to maintain a singly connected tree
connected graph for label combinations, instead of restric structure, its performance is similar or even slightly eett

ing to singly connected trees. Specifically, we produce theéhan the performance of the dense graph in most cases. In
dense graph by simply keeping a proportion of the existingerms of the three measures, the dense graph only outper-
edges (there is no edge between label pairs that never ceorms the tree graph oBorel5k(s50)and SUN12(s50)n
occur) with largest weights. In the experiments, we kepterms of macro-F1, and dPascal07in terms of hamming

the top30% of the edges. loss. With cyclic dense graphs, the max-product algorithm
We compared the two variants of the proposed modein the test phase can iny producg approximate inference
across the five datasets. In particular, Figure 5 shows theesults. This can contribute to the inferior pe.rformance of
examples of the dense graph and the tree graph constructdef dense graph in many cases. Moreover, with more edges
on the Pascal07 dataset. The tree graph only has 19 edg&&Pt In the graph, there will be more auxiliary classifiers
while the dense graph has 37 edges. We can see that tH train in the training phase, this makes the dense graph
two graphs have many common edges but also captur\éa”ant to have larger tralnlng time. AII these information
some very different label combination patterns. There arguggests that the tree graph is a desirable structure.

4.3 Experiments with Dense Graphs
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Figure 5: The densely connected graph and tree graph coteddran Pascal07.

Table 4: The average comparison results between the proppgeoach (with tree graph) and its alternative versioh wit

a dense graph.

Measure Methods Datasets
Pascal07 Corel5k(s50) Corel5k(s100) SUN12(s50) SUND®(s1
Macro-F1 Tree 0.268:0.005 0.276+0.003 0.1674-0.004 0.377:0.004 0.315+0.002
Dense 0.250+0.005 0.278+:0.005 0.162£0.003 0.420t0.005 0.298+0.002
Micro-F1 Tree 0.579+0.004 0.3620.005 0.3330.003 0.58%0.003 0.514-0.002
Dense 0.568:0.002 0.366:0.004 0.338:0.003 0.572:0.003 0.504-0.003
Hamming Loss Tree 0.057#0.003 0.062:£0.002 0.023-0.002 0.146:0.003 0.082-0.004
Dense 0.052:£0.001 0.078:0.001 0.0320.001 0.1720.001 0.126-:0.001

5 CONCLUSION

In this paper, we presented a novel probabilistic label en-

[2]

hancement model for multi-label image classification. The
idea is to use informative label combination pairs (i.eg, th

object composite concepts in images) to augment the orig-[3] X. Cai, F. Nie, W. Cai, and H. Huang. New graph
structured sparsity model for multi-label image anno-

inal labels which can be difficult to predict individually
due to label sparsity, intra-class variations and occhssio

aiming to enhance the overall multi-label prediction per-
formance. We formulated our model under the conditional

random field framework by first constructing a tree graph
in the label space based on the label co-occurrence patterns

in the training data, and then performing efficient piece- [5] G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-

wise training. The learning process of the proposed model
only requires training a set of independent binary classi-
fiers, while its tree structure permits efficient and exact
max-product inference in the test phase. Our experiments[6]
on several image classification datasets showed the pro-
posed approach has superior performance in terms of both

prediction quality and empirical computational complexit

comparing to the state-of-the-art comparison methods.
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