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Abstract

In this paper, we present a novel probabilistic la-
bel enhancement model to tackle multi-label im-
age classification problem. Recognizing multiple
objects in images is a challenging problem due
to label sparsity, appearance variations of the ob-
jects and occlusions. We propose to tackle these
difficulties from a novel perspective by construct-
ing auxiliary labels in the output space. Our idea
is to exploit label combinations to enrich the la-
bel space and improve the label identification ca-
pacity in the original label space. In particular,
we identify a set of informative label combina-
tion pairs by constructing a tree-structured graph
in the label space using the maximum spanning
tree algorithm, which naturally forms a condi-
tional random field. We then use the produced
label pairs as auxiliary new labels to augment
the original labels and perform piecewise train-
ing under the framework of conditional random
fields. In the test phase, max-product message
passing is used to perform efficient inference on
the tree graph, which integrates the augmented
label pair classifiers and the standard individual
binary classifiers for multi-label prediction. We
evaluate the proposed approach on several image
classification datasets. The experimental results
demonstrate the superiority of our label enhance-
ment model in terms of both prediction perfor-
mance and running time comparing to the-state-
of-the-art multi-label learning methods.

1 INTRODUCTION

With the development of internet and digital devices, the
availability of visual data has been dramatically increas-
ing in recent decades, which provides billions of images
and videos. An important task for information retrieval
and processing over such image and video data is object-

based image annotation, which requires identifying a set
of objects presented in each image from a given set of
desired object concepts. The image annotation problem
for object recognition is an inherent multi-label classifi-
cation problem, since each image usually contains more
than one object of interest. Multi-label classification gen-
eralizes the standard multi-class classification by allowing
each instance to be simultaneously assigned into multiple
label categories. A key challenge for multi-label classifica-
tion is label sparsity. That is, the multiple labels are sup-
ported by the training data at different levels and many rare
labels may lack sufficient training supports to be reliably
recognized individually. Hence instead of learning binary
classifiers independently for each label, many multi-label
learning methods have proposed to exploit label correla-
tions or label dependence to improve multi-label classifica-
tion performance, including second-order strategy methods
[7, 11, 15], which model pairwise label correlations, and
high-order strategy methods [16, 19, 36], which consider
the interactions among subsets of labels.

Moreover, on image classification, multi-label learning also
faces the general intra-class variation challenge of standard
multi-class classification which is caused by viewpoint and
context variations and occlusions, as shown in Figure 1.
From the figures, we can see that the appearance of the
objectpeoplecan be profoundly different across different
images, by co-occurring with different objects and having
different occlusion patterns. In such cases, an individual
binary classifier may not be reliable for recognizing a tar-
get object. But other co-occurred objects can likely pro-
vide some useful information. For example, in the image
“peopleriding a bike”, many parts of thebike are invis-
ible, but thepeopleis easy to recognize and can provide
information about thebike; in the image “peoplesitting in
thecar”, eachpeopleis severely occluded but thecar can
be detected easily and help the recognition of thepeopleif
they often co-occur; in the image “peopleriding ahorse”,
the objectspeopleandhorsecan be helpful to each other
as well. Moreover, the recognition of such composite co-
occurrence patterns can also help the correct recognition of
individual objects, especially for the ones that are occluded



Figure 1: Examples of image occlusion and object co-occurrence patterns in object recognition tasks.

or difficult to be recognized individually.

Motivated by these observations, in this paper, we propose
a novel probabilistic label enhancement model that utilizes
the label combination patterns to improve multi-label im-
age classification performance. Our assumption is that vi-
sual composites can be helpful when single classifier fails.
For example, assume the composite “people riding horses”
often stays in similar poses. A classifier for this visual
composite can then capture the co-appearance of the two
objects even though bothpeopleandhorseclassifiers fail
to reliably recognize them separately. We propose to con-
struct label combinations, in particular label pairs, as auxil-
iary new labels to augment the original labels and improve
label identification capacity in the original label space. In
particular, we identify a set of informative label combina-
tion pairs by constructing a tree-structured graph in the la-
bel space using the maximum spanning tree algorithm, ac-
cording to the label co-occurrence information in the train-
ing data. This naturally forms a conditional random field
framework, under which we perform piecewise training.
The label pairs identified by the edges of the tree are used
as auxiliary new labels, and a binary classifier is trained for
each label in the augmented label space. To integrate the
augmented multiple binary classifiers for multi-label pre-
diction in the original label space, we perform exact infer-
ence on the tree-structured conditional random field using
max-product message passing. We evaluate the proposed
approach on a number of multi-label image classification
datasets. The experimental results show that the proposed
label enhancement model effectively outperforms the re-
lated state-of-the-art methods in terms of both prediction
performance and running time.

The rest of the paper is organized as follows. In Section
2, we present a brief review over the related work. The
proposed approach is presented in Section 3. We report the
experimental results in Section 4 and finally conclude the
paper in Section 5.

2 RELATED WORK

A considerable amount of research has been devoted to
addressing image annotation and multi-label classification

problems in the literature. In this section, we will provide
a brief review over the most related work to the proposed
approach from the perspectives of image annotation, object
interaction and multi-label classification.

Image Annotation There are three major groups of im-
age annotation techniques [13]: (i) Generative models.
Some methods in this group use generative topic models
such as latent Dirichlet allocation [1], probabilistic latent
semantic analysis [24], and hierarchical Dirichlet processes
[33]. They model annotated images as samples from a mix-
ture of topics, where each topic is a distribution over image
features. Some other methods use mixture models to define
a joint distribution over image features and annotation tags
[4, 9, 22]. However, generative models perform training by
maximizing generative data likelihoods, which are not nec-
essarily optimal for the target prediction performance. (ii)
Discriminative models. The methods in this group address
image annotation as a classification problem. For exam-
ple, simple methods in [23, 12] treat labels independently
and learn a classifier for each label, while more advanced
methods in [30, 3] improve the classification performance
by considering the co-occurrences of different labels. (iii)
Nearest neighbor based models. For example, the label
propagation method in [13] constructs a similarity graph
for all images, and propagates the label information via the
graph; and the search based method in [10] exploits a re-
gression based kernel metric.

Object Interaction There are a number of works on ob-
ject interaction that share the same intuition as our pro-
posed work, that is, visual composites can be helpful while
single components fail. The work in [18] learns object in-
teractions by modeling the prepositions and adjectives that
relate nouns. The work in [34] models the co-occurrence of
objects and human poses in human-object interaction activ-
ities. In [8], the interactions between objects are modeled
implicitly in the context of predicting sentences for images.
[28] introduces a complex visual composite concept called
visual phrase for object detection, which treats each phrase
as a new label. Though this work shares similarity with our
proposed work in exploiting visual composites, there are
significant differences between it and our work. First, its
visual phrases are not automatically discovered but prede-
fined. By contrast, the label combinations in our work are



constructed automatically. Second, it addresses very dif-
ferent problems from ours. It tackles object detection tasks
while we address multi-label image annotation problems;
its goal is to find a bounding box where the visual compos-
ite occurs, while our goal is to predict the category labels
of an image.

Multi-label Classification The most straightforward
multi-label classification method is binary relevance [2],
which trains a binary classifier for each label. The obvi-
ous flaw of such method is the complete ignorance of label
correlations. Hence, numerous methods that encode label
correlations have been proposed. One group is the ranking
based methods [7, 11, 32], which rank the relevant labels
higher than irrelevant ones and capture label correlations
implicitly in the loss function. This technique however re-
lies on a good distance metric and a fine-tuned threshold in
determining the number of relevant labels. The method in
[15] hence further eliminates this drawback by developing
a novel calibrated separation ranking loss function. An-
other group is the graph-based methods, which implicitly
incorporate label correlations into label propagation algo-
rithms as either part of the graph weights [20, 5] or addi-
tional constraints [30, 35]. There are also a set of proba-
bilistic graph-based methods [6, 14, 17, 27]. The method
in [14] uses directed graphs over the label variables to cap-
ture label dependence under a probabilistic conditional de-
pendency network model. [17] further improves this model
by learning sparse conditional dependency graphs. [6, 27]
integrate multiple classifiers in a chain graph to capture
label correlations. These methods share similarity with
our proposed approach in capturing label correlations by
integrating probabilistic classifiers on graphs over labels.
However, [6, 27] are limited to chain graphs and they ap-
ply greedy heuristics to search for the best label vector on
each test instance; [14, 17] use cyclic directed graphs and
their test phases involve approximate inference. By con-
trast, our method can exploit any automatically generated
acyclic tree graphs, not necessarily chains, while using a
max-product message passing algorithm to perform effi-
cient exact inference.

3 PROPOSED MODEL

3.1 Preliminaries

Multi-label Classification systems can be described as
below. Given the input feature spaceX ∈ R

d and the
output label spaceY = {0, 1}L, a mapping functionh:
X → Y can be used to predict the corresponding label vec-
tor y ∈ Y for each input data instancex ∈ X . Multi-label
learning focuses on identifying a good mapping functionh

from the training data. The most straightforward method
to learn such a mapping function is the binary relevance
method, which assumes labels are independently generated
and learns one binary classifierhi for each label. The out-

put ofh is aL-length binary vector

h(x) = [h1(x), h2(x), . . . , hL(x)] .

The binary classifierhi can be trained by minimizing dif-
ferent loss functions, such as log-loss and hinge loss.

Conditional Random Fields (CRFs) are undirected
graphical models that model the conditional distribution of
the output labels given an input vector based on undirected
graphs. An undirected graphG = (V,E) in the label space
is formed by a set of verticesV , each of which represents
a label variable, and a set of undirected edgesE, where
each edge consists of a pair of vertices(s, t) ∈ E and rep-
resents the dependence relationship between the label vari-
ables. The joint probability of a configuration of the label
variables in a CRF can be given by

P (y1,y2, . . . ,yL|x) =
1

Z(x)

∏

c∈C

ψC(yc,x)

whereZ(x) is a partition function that ensures a valid con-
ditional distribution given the input data instancex, C is
the set of cliques of the graph, andψc is the potential func-
tion for clique c, which maps the clique label configura-
tion yc and the input data instancex into a positive scalar
value. The standard training procedure of conditional ran-
dom fields typically involves first-order gradient descent or
second-order Newton methods, which require performing
inference over each training instance in each iterative pa-
rameter update step. For general graphs, performing exact
inference in CRFs is intractable, and approximate inference
algorithms are usually used instead. Moreover, performing
inference in each parameter update step can make the train-
ing process computationally expensive, especially for large
and densely connected graphs and large training sets.

3.2 Probabilistic Label Enhancement Model

The straightforward method for multi-label image classifi-
cation casts the problem as a set of independent binary clas-
sification problems, one for each object label, and trains
one binary classifier for each label using the one-vs-all
scheme. Training binary classifiers is computationally effi-
cient and the one-vs-all training scheme can scale linearly
with the increasing of the label set. However, as we dis-
cussed before, such binary classifiers can fail to accurately
recognize the individual objects in an image, due to la-
bel sparsity, intra-class variations, and occlusions. In this
work, we propose to enhance these standard binary clas-
sifiers by exploiting the label combination patterns which
typically present as co-occurred object composites in im-
ages of the training data, as shown in Figure 1. We first
identify the informative label combination pairs by learn-
ing a tree-structured undirected graph in the label space,
which forms the structure of a conditional random field.



Then we use the label combination pairs as augmenting
new labels and formulate the learning process as a piece-
wise training procedure under the framework of conditional
random fields. Finally we apply the trained probabilistic
model to predict labels for test images using a max-product
exact inference algorithm.

3.2.1 Learning Tree-Structured Graph

Given the labeled training imagesD={(x(i),y(i))}ni=1,
where each label vectory(i) contains{0,1} values with
lengthL, corresponding to theL label classes, we aim to
identify the useful object composites by finding the infor-
mative label co-occurrence patterns. Though in principle
we can consider any label combination patterns, for compu-
tational simplicity we focus on second-order patterns, i.e.,
label pairs. We take all possible label pairs as candidates
by constructing a fully connected graph over theL label
variables. Then we measure the combination strength of
each label pair as the weight of the corresponding edge us-
ing an appropriate criterion. One standard criterion is the
empiricalmutual informationmeasure, which is popularly
used to measure the dependence strength of two variables
and can be computed from the training data. For example,
the empirical mutual information between label variables
Yi andYj can be computed as

MI(Yi;Yj) =
∑

yi,yj∈{0,1}

P̂ (yi, yj) log

(

P̂ (yi, yj)

P̂ (yi)P̂ (xj)

)

with the empirical probabilities computed from the training
data. However, this measure treats the co-presence of the
two labels and the co-missing of them equivalently, while
we want to find the label composites that have significant
co-presence patterns. Hence we propose a simple new mea-
sure,normalized co-occurrence, to use. For two label vari-
ablesYi andYj , the normalized co-occurrence measure is
defined as

NC(Yi;Yj) =
count(Yi, Yj)

min (count(Yi), count(Yj))

wherecount(Yi, Yj) is the number of co-occurrence of the
two labels in the training data, such that

count(Yi, Yj) =

n
∑

ℓ=1

I[y
(ℓ)
i = 1,y

(ℓ)
j = 1] (1)

andI[·] denotes an indicator function. Similarly,count(Yi)
andcount(Yj) are the numbers of occurrences of single la-
bels in the training data. By normalizing the co-occurrence
counts of the two labels with the minimum of their individ-
ual occurrence counts, the measure emphasizes the relative
relatedness of the two objects and favors the less frequently
appeared objects. For example, assume there are 15 images
containingpeopleanddogs, and 10 images containingpeo-
ple andcars, while there are totally 100 people images, 80

Figure 2: An example of the constructed tree-structured
graph over labels.

dog images and 20 car images. The composite ofpeople
andcars can be more important to capture than the com-
posite ofpeopleanddogs, towards the goal of assisting the
objects with sparse supports in the training data. Our pro-
posed measure encodes this principle.

Given the proposed normalized co-occurrence criterion, we
can compute the weights for all edges between the label
variables. Then we use a maximum spanning tree algo-
rithm to select(L − 1) edges according to the computed
weights to form a tree-structured graph. In our implemen-
tation, we used Prim’s algorithm [26] to produce the max-
imum spanning tree. Figure 2 demonstrates an example
of the constructed tree graph over the label variables. The
label pair connected by each edge on the constructed tree
graph will be used as a constructed new label to augment
the original labels. For example, for the tree graph in Fig-
ure 2, since there is an edge between the nodeY1 and the
nodeY2, we will consider a constructed new labelY1∼2,
which has binary values{0, 1}. The label value forY1∼2

in each instance can be produced based on thatY1∼2 = 1
is equivalent toY1 = 1 ∧ Y2 = 1. Then for each instance
x(i), we sety(i)

1∼2 = 1 if and only if the instance has been

assigned both labelY1 and labelY2 such thaty(i)
1 = 1 and

y
(i)
2 = 1. Otherwise, we havey(i)

1∼2 = 0. Thus each con-
structed new label can be treated as a new prediction class
from the prediction perspective. The reason that we pro-
duce tree graphs instead of densely connected cyclic graphs
is that tree graphs have acyclic structures and permit effi-
cient exact inference in the test phase to integrate the aug-
mented label classifiers with the binary classifiers in the
original label space.

3.2.2 Piecewise Training of CRFs

The tree-structured graph constructed in the label space ac-
tually forms a standard CRF model that permits label vec-
tor prediction from the input data, where we treat each node
and each edge as separate cliques. Based on our motivation
of capturing object composite concept to help the multi-
label prediction in the original label space, we propose to
perform piecewise training for the tree-structured CRF by
learning the potential functions for each node clique and
each edge clique separately. That is, we train a set ofL

binary classifiers independently from the data, one for each



Figure 3: The factor graph constructed from the tree graph
in Figure 2. The circle nodes are variable nodes and the
rectangle nodes are factor nodes.

label in the original label space, as the potential functions
for the node cliques, and train a set of(L− 1) binary clas-
sifiers independently from the data for the constructed new
labels as the potential functions for the corresponding edge
cliques. Piecewise training can effectively avoid the re-
peated inference required for each step of parameter up-
dates in the standard CRF training procedure and make the
learning process efficient and scalable. It has been shown
in [29] that piecewise training of a CRF can be justified as
minimizing a family of upper bounds on the log partition
function of the data log-likelihood.

To have the outputs of potential functions compatible to
each other, we propose to use binary probabilistic classi-
fiers, in particular binary logistic regression classifiers, for
training. Each binary logistic regression classifier can be
trained efficiently by using second-order Newton methods
to minimize the regularized log-likelihood. For thek-th
classifier, this is to minimize

min
w

n
∑

i=1

log
(

1 + e−ŷ
(i)
k

w
⊤
x
(i)
)

+
β

2
w⊤w (2)

whereβ is a trade-off parameter, and̂y(i)
k is simply the

translation ofy(i)
k from values{1, 0} to {1,−1}.

3.2.3 Inference with Max-product Algorithm

Given the trained tree-structured CRF model, the multi-
label prediction on a test instance can be performed us-
ing the max-product inference algorithm [21]. The max-
product algorithm conducts label decoding through mes-
sage passing which operates in factor graphs. Given the
trained pairwise CRF model, we then first transfer it into
a factor graph by simply keeping all variable nodes and
adding a factor node for each edge clique. For example,
the factor graph constructed for the tree-structured CRF in
Figure 2 is given in Figure 3, where each variable node
is represented as a circle and each factor node is repre-
sented as a rectangle. For a given test instancex, the po-
tentials of the two types of nodes in the factor graph can
be computed using the probabilistic binary classifiers pro-
duced in the training phase, such asψ(yi) = P (yi|x) and
ψ(yi,yj) = ψ(yi∼j) = P (yi∼j |x).

The decoding process on the test instancex aims to find the
maximum a posteriori (MAP) label assignment by solving

y∗ = argmax
y

P (y|x) (3)

The max-product algorithm performs this decoding on the
factor graph using the following message passing. First,
we randomly select a variable noder as the root of the tree,
and pass messages from leaves until they reach the root.
There are two types of messages: node-to-factor messages
and factor-to-node messages. The message from the nodei

to the factora (e.g.,a = i ∼ j) can be computed as

µi→a(yi) = ψ(yi)
∏

c∈N(i)\a

µc→i(yi) (4)

whereN(i)\a represents all the neighboring factor nodes
of nodei excluding factor nodea. The message from the
factora = i ∼ j to the nodej can be computed as

µa→j(yj) = max
yi

(

ψa(yi,yj)µi→a(yi)
)

(5)

Back pointers are kept for each value that achieves the max-
imum at a max operation. At the root, we multiply all in-
coming messages to obtain the maximum probability and
the MAP configuration of the root nodey∗

r

P ∗ = max
yr

(

ψ(yr)
∏

a∈N(r)

µa→r(yr)
)

(6)

y∗
r = argmax

yr

(

ψ(yr)
∏

a∈N(r)

µa→r(yr)
)

(7)

We then back trace the pointers and find the complete val-
uesy∗ that lead toP ∗. For tree graphs, this max-product
algorithm provides an exact inference solution. But for an
arbitrary graph with loops, it can only provide an approxi-
mate solution.

4 EXPERIMENTS

To evaluate the proposed approach, we conducted experi-
ments on several standard multi-label image classification
datasets, comparing to a few state-of-the-art multi-label
learning methods and baselines. We report our empirical
results in this section.

4.1 Datasets

We used the following three image datasets in our exper-
iments: Pascal VOC 2007 (Pascal07), Corel5K, andSUN
2012. Pascal07is one of the most famous image datasets
for classification and detection and it contains20 different
object classes.Corel5K is a standard image set for multi-
label classification with5, 000 instances and260 classes.
To have a fair comparison with a few comparison methods,



some of which are too slow to deal with many classes, we
selected two subsets with50 most frequent labels and100
most frequent labels respectively to use.SUN 2012[31] is
a recently released large-scale image set for object detec-
tion. Similarly, we used two subsets with50 labels and100
labels respectively. The properties of the datasets used in
our experiment are briefly summarized in Table 1, where
cardinality denotes the average number of labels assigned
to one image. In these datasets, each image is represented
as a 512-dimensionGIST [25] feature vector.

Table 1: Summary information of the datasets.

Dataset #images #labels cardinality
Pascal07 4168 20 2.26

Corel5K(s50) 4999 50 2.32

Corel5K(s100) 4999 100 2.89

SUN12(s50) 5000 50 8.98

SUN12(s100) 5000 100 11.18

4.2 Experimental Results

On each of five datasets, we compared the proposed ap-
proach to the following state-of-the-art multi-label classifi-
cation methods and baseline method:

• Ensembled Probabilistic Classifier Chain (EPCC).
This probabilistic multi-label learning method is de-
veloped in [6] and it integrates base classifiers in a
chain structure in the label space.

• Maximum Margin Output Coding (MMOC). This is a
multi-label learning method developed in [36], which
performs classification on a simultaneously learned
lower-dimensional label space within a maximum
margin framework.

• Logistic Regression (LR). This is a baseline method
that trains a set of independent binary logistic regres-
sion classifiers, one for each label, to perform multi-
label classification.

For our proposed approach, there is one regularization
trade-off parameterβ to set for the logistic regression clas-
sifiers. We found that logistic regression classifiers are not
very sensitive to this parameter. In our experiments, we set
β as a very small value around0.0002. For the comparison
methodsEPCCandMMOC, we used the code packages re-
leased on the internet1. These packages contain parameter
selection procedures and settings.

On each dataset, we performed a 5-fold cross validation to
compare all the methods. To evaluate the multi-label clas-
sification results from different perspective, we used five

1 https://github.com/multi-label-classification/PCC;
http://www.cs.cmu.edu/ yizhang1/files/ICML2012Code.zip

standard criteria: macro-F1, micro-F1, hamming loss, pre-
cision and recall. The average results and standard devia-
tions in terms of the five criteria for all the four methods are
reported in Table 2. We can see that our proposed method
outperforms all the other comparison methods across all
five datasets and in terms of all the four measure crite-
ria: macro-F1, micro-F1, Precision and Recall. In terms
of hamming loss, the proposed approach produced the best
results on four out of the five datasets. Moreover, the pro-
posed approach significantly outperforms the baselineLR
method across all different settings. This clearly shows that
the augmenting new labels in our model are very effective
in assisting identifying the individual labels, and it is very
beneficial to exploit the label co-occurrence patterns. By
comparing the results on theCorel5k(s50)dataset and the
Corel5k(s100)dataset, we can see that with the increas-
ing of the label set size, the performance of all methods in
terms of the four measures, macro-F1, micro-F1, precision
and recall, has the general trend of decreasing. In terms of
the hamming loss, however, the results of all approaches
are even better onCorel5k(s100)than onCorel5k(s50).
This seems very strange. But if we check the two datasets,
we can see that thoughCorel5k(s100)contains 50 more
labels thanCorel5k(s50), the difference between their la-
bel cardinality values is very small. This indicates that
the labels are even more sparse inCorel5k(s100)than in
Corel5k(s50). By producing similar number of positive la-
bels, the performance of each approach will automatically
get better in terms of hamming loss, with the increasing
of the label set size. This result suggests that hamming
loss is not an appropriate criterion for multi-label classifi-
cation when the label cardinality is small while the num-
ber of label classes is large. Similar results are observed
acrossSUN12(s50)andSUN12(s100)as well. Another ob-
servation over the table is thatEPCCproduced the second
best results in most cases. TheEPCCmethod greatly out-
performs the baselineLR almost on all the datasets and in
terms of all criteria, except that onSUN12(s100)in terms of
macro-F1 and onSUN12(s50)in terms of precision, where
it produces similar results withLR. The MMOC method
is much more time-consuming than other methods. On
the two datasets with 100 labels, it fails to yield any re-
sult within reasonable period of running time. It has infe-
rior performance comparing to the proposed approach and
EPCCin most cases.

Running time To compare the empirical efficiency of the
approaches, we have also recorded the training time and
testing time of each approach on a 64-bit machine with
16GB memory and quad core intel i7 processors. The re-
sults of average running time are reported in Figure 4. We
can see the baselineLR is the most efficient method in
terms of both training and testing time, since it only needs
to train a set of binary classifiers and perform classification
independently for each label. Among the remaining three
methods, our proposed approach is significantly more ef-



Table 2: The average results and standard deviations of all the comparison methods on the five datasets in terms of different
evaluation criteria. On each dataset, the best result in each criterion across different methods is shown in bold font. ’-’
denotes the fact that the method fails to run on the corresponding dataset due to the large label size.

Measure Methods
Datasets

Pascal07 Corel5k(s50) Corel5k(s100) SUN12(s50) SUN12(s100)

Macro-F1

Proposed 0.268±0.005 0.276±0.003 0.167±0.004 0.377±0.004 0.315±0.002
EPCC 0.252±0.005 0.245±0.006 0.158±0.002 0.355±0.002 0.210±0.003
MMOC 0.220±0.003 0.218±0.002 - 0.318±0.002 -
LR 0.247±0.006 0.201±0.003 0.135±0.002 0.323±0.002 0.215±0.002

Micro-F1

Proposed 0.579±0.004 0.362±0.005 0.333±0.003 0.581±0.003 0.514±0.002
EPCC 0.567±0.003 0.351±0.002 0.327±0.002 0.563±0.001 0.507±0.002
MMOC 0.543±0.006 0.238±0.003 - 0.514±0.002 -
LR 0.481±0.007 0.222±0.003 0.197±0.003 0.486±0.003 0.386±0.003

Hamming Loss

Proposed 0.057±0.003 0.062±0.002 0.023±0.002 0.146±0.003 0.089±0.004
EPCC 0.094±0.001 0.077±0.001 0.047±0.000 0.166±0.001 0.110±0.000
MMOC 0.089±0.002 0.057±0.001 - 0.154±0.001 -
LR 0.121±0.002 0.079±0.001 0.049±0.000 0.170±0.001 0.138±0.001

Precision

Proposed 0.697±0.013 0.343±0.003 0.310±0.005 0.656±0.003 0.541±0.003
EPCC 0.649±0.004 0.311±0.002 0.300±0.003 0.544±0.001 0.517±0.002
MMOC 0.689±0.011 0.225±0.004 - 0.614±0.003 -
LR 0.518±0.010 0.198±0.003 0.185±0.004 0.548±0.004 0.403±0.003

Recall

Proposed 0.570±0.010 0.458±0.014 0.418±0.008 0.641±0.002 0.565±0.005
EPCC 0.557±0.003 0.453±0.005 0.404±0.004 0.610±0.003 0.523±0.003
MMOC 0.482±0.004 0.184±0.005 - 0.464±0.003 -
LR 0.507±0.006 0.235±0.004 0.206±0.003 0.456±0.002 0.396±0.002
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Figure 4: Training and testing time (seconds) for all methods. Note on Corel5k(s100) and SUN12(s100), the yellow bar
(for MMOC) is missing due to that MMOC fails to handle these datasets.

ficient than the other two methods in terms of the testing
time. For training time, the proposed approach is similar to
EPCCon the datasetPascal07which has small label set,
and is more efficient thanEPCCon the other larger scale
datasets.MMOC is the most inefficient one among all the
four methods. It even fails to produce any results on the
two datasets with 100 labels.

Illustration of the Results To have an illustrative under-
standing about the image annotation problem and the pre-
diction results, in Table 3 we presented the predicted labels
on four testing images from theSUN12(s50)dataset by the
four methods. The true positive labels are shown in bold
font. We can see that our proposed approach is in general
more accurate than the other methods, thoughEPCChas



Table 3: The predicted labels on four test images of SUN12(s50) by the comparison methods. The true positive labels are
shown in bold font.

Methods
Proposed wall, floor, ceiling,

chair, door, cabinet,
table, vase, bottle,
window

floor, wall, ceiling,
door, table, person,
box, books, chair

wall, door, road, car,
sky, trees, person,
mountain

door, sky, trees, grass

EPCC wall, floor, ceiling,
chair, ceiling lamp,
table, vase, flowers,
window, plant

wall, floor, ceiling,
chair, door, person,
ceiling lamp, window,
cabinet

sky, window, door,
plant, building, tree,
grass

sky, tree, wall, floor,
window, ceiling, chair,
door, table, plant

MMOC wall, floor, window,
ceiling, chair, table,
curtain, sofa, window

wall, floor, ceiling, per-
son, window, ceiling
lamp

sky, car, ceiling, grass,
plant, building, tree,
streetlight

sky, tree, wall, win-
dow, plants

LR wall, floor, ceiling,
chair, table, bottle,
window, curtain, rug,
sofa

wall, floor, ceiling, per-
son

wall, sky, road, car,
plant, building, tree,
grass, streetlight

sky, tree, grass, plant,
wall

good precision result on the first image as well.

All these results suggest that by capturing the object combi-
nation patterns in newly created labels, the proposed proba-
bilistic label enhancement model provides an effective and
efficient framework for multi-label image classification.

4.3 Experiments with Dense Graphs

Our proposed approach constructs a tree-graph to iden-
tify the informative label combination patterns. In order
to produce the tree structure, the maximum spanning tree
algorithm needs to ignore the edges with larger (normal-
ized co-occurrence) weights to avoid cycles. To investigate
whether this is problematic, we tried an alternative ver-
sion of the proposed approach by constructing a densely
connected graph for label combinations, instead of restrict-
ing to singly connected trees. Specifically, we produce the
dense graph by simply keeping a proportion of the existing
edges (there is no edge between label pairs that never co-
occur) with largest weights. In the experiments, we kept
the top30% of the edges.

We compared the two variants of the proposed model
across the five datasets. In particular, Figure 5 shows the
examples of the dense graph and the tree graph constructed
on the Pascal07 dataset. The tree graph only has 19 edges,
while the dense graph has 37 edges. We can see that the
two graphs have many common edges but also capture
some very different label combination patterns. There are

some interesting pairs missing in the tree graph. For ex-
ample,sofaandtv monitorcan be observed in most sitting
rooms, but their combination pair is not kept in the tree
graph. On the other hand, the tree graph captured many
important co-occurrence patterns withmuch lessnumber
of edges. For example, the tree graph captures the frequent
co-occurrences betweenpersonand many other objects. By
looking at the images in Pascal07, we can find many images
containingpersonin different classes, which explains why
the tree graph isperson-centric. Moreover, even with much
more edges, there are two isolated nodes in the dense graph,
while none of nodes can be isolated in the tree graph.

The classification results of these two variants are reported
in Table 4, in terms of macro-F1, micro-F1 and hamming
loss. We can see that though the tree graph sacrificed edges
with larger weights to maintain a singly connected tree
structure, its performance is similar or even slightly better
than the performance of the dense graph in most cases. In
terms of the three measures, the dense graph only outper-
forms the tree graph onCorel5k(s50)andSUN12(s50)in
terms of macro-F1, and onPascal07in terms of hamming
loss. With cyclic dense graphs, the max-product algorithm
in the test phase can only produce approximate inference
results. This can contribute to the inferior performance of
the dense graph in many cases. Moreover, with more edges
kept in the graph, there will be more auxiliary classifiers
to train in the training phase, this makes the dense graph
variant to have larger training time. All these information
suggests that the tree graph is a desirable structure.
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Figure 5: The densely connected graph and tree graph constructed on Pascal07.

Table 4: The average comparison results between the proposed approach (with tree graph) and its alternative version with
a dense graph.

Measure Methods
Datasets

Pascal07 Corel5k(s50) Corel5k(s100) SUN12(s50) SUN12(s100)

Macro-F1
Tree 0.268±0.005 0.276±0.003 0.167±0.004 0.377±0.004 0.315±0.002
Dense 0.250±0.005 0.278±0.005 0.162±0.003 0.420±0.005 0.298±0.002

Micro-F1
Tree 0.579±0.004 0.362±0.005 0.333±0.003 0.581±0.003 0.514±0.002
Dense 0.568±0.002 0.360±0.004 0.330±0.003 0.579±0.003 0.504±0.003

Hamming Loss
Tree 0.057±0.003 0.062±0.002 0.023±0.002 0.146±0.003 0.089±0.004
Dense 0.052±0.001 0.078±0.001 0.032±0.001 0.172±0.001 0.120±0.001

5 CONCLUSION

In this paper, we presented a novel probabilistic label en-
hancement model for multi-label image classification. The
idea is to use informative label combination pairs (i.e., the
object composite concepts in images) to augment the orig-
inal labels which can be difficult to predict individually
due to label sparsity, intra-class variations and occlusions,
aiming to enhance the overall multi-label prediction per-
formance. We formulated our model under the conditional
random field framework by first constructing a tree graph
in the label space based on the label co-occurrence patterns
in the training data, and then performing efficient piece-
wise training. The learning process of the proposed model
only requires training a set of independent binary classi-
fiers, while its tree structure permits efficient and exact
max-product inference in the test phase. Our experiments
on several image classification datasets showed the pro-
posed approach has superior performance in terms of both
prediction quality and empirical computational complexity,
comparing to the state-of-the-art comparison methods.
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