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Abstract

Even swaps is a method for solving de-
terministic multi-attribute decision problems
where the decision maker iteratively simpli-
fies the problem until the optimal alterna-
tive is revealed (Hammond et al. 1998, 1999).
We present a new practical decision support
system that takes a Bayesian approach to
guiding the even swaps process, where the
system makes queries based on its beliefs
about the decision maker’s preferences and
updates them as the interactive process un-
folds. Through experiments, we show that it
is possible to learn enough about the decision
maker’s preferences to measurably reduce the
cognitive burden, i.e. the number and com-
plexity of queries posed by the system.

1 INTRODUCTION

In deterministic multi-attribute problems, the decision
maker (or DM, for short) chooses among N alterna-
tives, each of which has M attributes. An alternative
x is a vector of consequences for each attribute:

x = {xi : i = 1, . . . ,M}, (1)

where xi is the consequence for attribute i. This is
often represented as a consequence table such as the
one illustrated in Fig 1(a), which displays alternatives
and attributes for a hiring problem along its columns
and rows respectively.

The DM’s preferences for the various attributes can
be modeled using a value function v(x). Additive
value functions are a popular choice, mainly due to the
ease with which they can be elicited:

v(x) =

M∑
i=1

wivi(xi), (2)

where attribute weights w = {wi : i = 1, . . . ,M} are
non-negative and sum to 1 and the vi(xi) represent
one-dimensional marginal value functions. Note that
we make a distinction between value and utility func-
tions, following Keeney and Raiffa (1976), who reserve
the term ‘utility function’ to characterize preferences
under uncertainty.

There are several well-known approaches to eliciting
additive value functions. The most popular ones tackle
direct elicitation, where the DM reveals their trade-
offs by answering questions pertaining to the weights
and marginal value functions. von Winterfeldt and
Edwards (1986) and Belton and Stewart (2002) re-
view some well known weighting techniques. An al-
ternate approach is that of even swaps, which is an
indirect preference elicitation method that simultane-
ously solves a specific decision problem (Hammond et
al. 1998, 1999). Here the DM answers a few simple
and pointed queries to iteratively reduce the num-
ber of columns and rows in the consequence table
until the optimal alternative is revealed. Mustajoki
and Hämäläinen (2005, 2007) coined the term smart
swaps to refer to guided even swaps, i.e. using a de-
cision support system to provide process suggestions.

In this paper, we propose a Bayesian approach to guid-
ing the even swaps process, whereby the system makes
queries based on its beliefs about the DM’s preferences
and updates them as the interactive process unfolds.
The literature on Bayesian techniques for learning a
DM’s preferences is vast and varied, spanning domains
such as management science, artificial intelligence, ex-
pert systems and machine learning (e.g. Eliashberg
and Hauser 1985, Jimison et al. 1992, Poh and Horvitz
1993, Chajewska et al. 2000, Anderson and Hobbs
2002, Boutilier 2002, Scott and Shachter 2005).

We review the even swaps method in Section 2. The
subsequent three sections summarize our main contri-
butions. In Section 3, we present some properties of
even swaps, providing conditions under which they are
feasible. In Section 4, we describe our swaps algorithm
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Figure 1: The even swaps method applied to a hiring problem.

in detail. In Section 5, we discuss the results of some
experiments that study the effect of problem size and
Bayesian learning on the number and type of queries
made to the DM. We are not aware of any previous
work with computer experiments that explores the ef-
fect of smart swaps on a set of consequence tables and
DMs. Finally, we conclude in Section 6.

2 EVEN AND SMART SWAPS

We will explain the even swaps method with the help
of the following illustrative example:

A Hiring Example. Figure 1(a) presents the conse-
quence table for a manager Zoe who faces a hiring deci-
sion and must choose among four candidates — Alice,
Bob, Chris and Diane — across four attributes: Ex-
perience (in # of years) and qualitative measures such
as Technical Skills, Communication Skills and Refer-
ences, all scored on a scale of 1 (worst) to 5 (best).

Zoe chooses to pursue the even swaps method to deter-
mine the optimal hire. First, she recognizes that Chris
scores at least as well as Diane on all attributes, and
therefore removes Diane from consideration in 1(b).
This is an example of absolute dominance. Next,
she observes that Alice fares better on most attributes
as compared to Bob, except for Technical Skills where
Bob scores 1 point higher. Feeling that Alice com-
pensates for this deficit along the other attributes, i.e.
that Alice exhibits practical dominance over Bob,
Zoe removes Bob from consideration in 1(c).1

1The original even swaps literature introduced practical

Zoe then notices that the remaining candidates, Alice
and Chris, have the same score (3) on Communication
Skills. Reasoning that she need not be concerned with
this attribute in subsequent iterations, as she can make
subsequent value judgments conditional on this com-
mon score, she greys this attribute out in 1(d). In the
even swaps literature, this task is referred to as identi-
fying an irrelevant attribute; for reasons explained in
the next section, we prefer the term equal attribute,
and say that this attribute has become inactive.

Now Zoe makes the move that gives the even swap
method its name. She observes that Alice fares worse
on Technical Skills, but better on the remaining active
attributes. She answers the following question, indi-
cated by the three boxes in 1(e): how many years of
Experience would she be willing to give up for Alice
to improve her Technical Skills score from 3 to 4? An
even swap produces a hypothetical equivalent alterna-
tive in which a change in the consequences of one at-
tribute balances the change in the consequences of an-
other, and is a specific kind of matching query (Delquié
1993). The DM’s response is determined by her value
judgments; in this case, she determines that Alice’s
Experience should change from 6 to 5 years. She then
replaces Alice with her hypothetical clone in the con-
sequence table in 1(f). In the final step, she recognizes
that Alice absolutely dominates Chris, thereby reveal-
ing Alice to be the optimal candidate.

dominance as an intuitive but vague notion. Subsequent
work on smart swaps proposed a definition with some prac-
tical drawbacks. A major contribution of our work is a
precise definition and demonstration of its practicality.



The key idea that differentiates indirect methods like
even swaps from direct elicitation techniques is that
the analyst/system need not have a complete picture of
the DM’s preferences to find the optimal alternative for
a particular decision. It is therefore often beneficial to
use such techniques for reducing elicitation burden and
potential inaccuracies, as people are highly susceptible
to cognitive biases (Lichtenstein and Slovic 2006).

The even swaps method appears to be suitable for
small problems where the interactive nature of the
method, the access to the alternatives and the (almost)
instant gratification from solving the problem appeal
to the DM. It is particularly useful for DMs who ei-
ther find it difficult to answer questions about their
trade-offs in terms of weight ratios, or who need to
view/consider the alternatives to construct their pref-
erences. Kajanus et al. (2001) provide an application
to strategy selection in rural enterprises.

Even swaps was originally intended to be self-guided;
Mustajoki and Hämäläinen (2005, 2007) propose a de-
cision support system for smart swaps using preference
programming, i.e. by recognizing the feasible region
of weights for fixed bounds on marginal value func-
tions. Their model makes the practical dominance
notion precise by recommending it through pairwise
dominance, which occurs when there is no way an al-
ternative can be most preferred, based on the feasible
weight region and bounds. Their method however has
several limitations. For instance, there is little the sys-
tem can do if it proposes a practical dominance query
and the DM rejects it, aside from changing bounds
midway through the process. Crucially, they are un-
able to recognize swaps that are not feasible.

Here we propose a Bayesian approach that exploits
prior information about the feasible weight region as
represented by a prior probability distribution. We in-
troduce the notion of probable dominance as well as a
heuristic that recommends even swaps through proba-
bilistic computations. The system easily handles rejec-
tion of practical dominance queries. We also present
new results about feasibility conditions for even swaps,
using them to recognize and adapt to declarations of
infeasible swaps. Our approach is particularly adept
at providing inexperienced users with specific recom-
mendations. However, as discussed in the conclusions,
our method possesses its own set of limitations.

3 PROPERTIES OF EVEN SWAPS

The overarching even swaps method gets its name from
the even swap query, which is crucial towards reducing
the size (and therefore complexity) of the consequence
table. In this section, we specify our assumptions for
the class of multi-attribute problems under considera-

tion, and then present some results pertaining to the
properties of even swaps.

3.1 ASSUMPTIONS

We address multi-attribute problems where the DM
has an additive value function, i.e. of the form in equa-
tion (2). This is applicable only when attributes are
mutually preferentially independent. As noted by pre-
vious authors, this is a common assumption and is
widely applied in practice (Keeney and Raiffa 1976,
Stewart 1996, Belton and Stewart 2002).

In theory, the even swaps method is applicable for all
value functions and is not restricted to the additive
form. However, the method can be challenging to ap-
ply when there is value dependence, in which case the
DM would have to consider consequence levels of all at-
tributes while making a judgment about an even swap.
In that sense, no attribute would be ‘irrelevant’ when
the DM makes the even swap based on their trade-offs.
It is difficult to imagine the method being implemented
successfully in such a situation without an analyst in
the room to guide the DM. The additive assumption
therefore makes an automated decision support system
more likely to be used (and perhaps misused).

We also assume that the one-dimensional marginal
value functions are continuous, bounded and mono-
tonic. Since they are bounded, these functions can
be normalized such that 0 ≤ vi(xi) ≤ 1, vi(xi

0) = 0
and vi(xi

∗) = 1 for all attributes, where xi
0 and xi

∗

represent the least and most preferred consequences
for attribute i. The domain of an attribute is de-
noted Di, therefore for an attribute where more is pre-
ferred to less, Di =

[
xi

0, xi
∗]. Monotonic attributes

are common in practice; non-monotonic attributes can
sometimes be redefined so as to render them mono-
tonic. Furthermore, a discrete attribute can often be
approximated as continuous. For instance, in the hir-
ing problem in Figure 1, three of the four attributes
are measured as integers on a scale of 1 to 5, but they
could easily be approximated as continuous attributes.
These assumptions are therefore not too restrictive.

3.2 NOTATION AND PROPERTIES

The even swaps method attempts to guide the DM by
simplifying the consequence table. During this inter-
active process, the DM must carefully consider pairs of
alternatives and their consequences along specific at-
tributes. A consequence xi is deemed to be preferred
over yi if it has higher marginal value:

xi � yi ⇔ vi(xi) > vi(yi). (3)

Any pair of alternatives x and y can therefore be as-
sociated with the following three sets of attributes:



dominating set D(x,y) = {i : xi � yi}, non-
dominating set N(x,y) = {i : xi ≺ yi}, and equal
set E(x,y) = {i : xi = yi}. Note that N(x,y) =
D(y,x).

The task with perhaps the lowest cognitive load for the
DM and the lowest computational load for a system is
identifying equal attributes. While somewhat more
complex for a DM, it is also trivial for a system to
discover absolute dominance, denoted x �A y, using
non-dominating attribute sets:

x �A y ⇔ N(x,y) = ∅. (4)

For a replicate pair of solutions, i.e. where both
N(x,y) = ∅ and D(x,y) = ∅, either x or y can be
removed from the table at random.

Practical dominance comes under consideration when
one of the sets N(x,y) and D(x,y) has many more
elements than the other. While practical dominance
claims help remove some solutions, the DM may even-
tually have to perform an even swap to manipulate
the consequence table and make further progress. We
denote an even swap as s(xi → x′i, xj → x′j), where
the alternative x is modified by the DM, such that the
change from xi to x′i along attribute i is compensated
by the change from xj to x′j along attribute j.

Consider the even swap in the hiring example, where
the DM provided a response to a change from the score
3 to 4 on Technical Skills, along Experience. Note that
the swap performed was specifically designed to make
consequences identical for Technical Skills. This type
of swap is relatively cognitively comfortable for the
DM, since they are able to observe the numbers along
a specific row. Moreover, ensuring equal consequences
simplifies the table and allows for potential ease of
elicitation in future tasks. We refer to such a swap as
an equalizing even swap, defined as an even swap
that makes the consequences of two alternatives equal
along an attribute. For any two alternatives x and
y, s(xi → yi, xj → x′j) is an equalizing even swap
because it makes attribute i’s consequences for both
alternatives equal, thereby increasing the set E(x,y).

Is an even swap always possible? No. The follow-
ing proposition provides the conditions under which
an even swap is feasible, assuming that the DM’s re-
sponse is consistent with their value function.

Proposition 1 (Even Swap Feasibility). The even
swap s(xi → x′i, xj → x′j), i 6= j, xi, x

′
i ∈ Di is feasible

only if:

(i) When x′i � xi: vj(xj) ≥ wi

wj
[vi(x

′
i)− vi(xi)]

(ii) When x′i ≺ xi: 1− vj(xj) ≥ wi

wj
[vi(xi)− vi(x′i)]

Proof. If x′i � xi, the swap is not feasible when
even a response of x′j = x0j cannot compensate for

the change, which occurs when wj
[
vj(xj)− vj(x0j )

]
<

wi [vi(x
′
i)− vi(xi)]. The result follows after recogniz-

ing vj(x
0
j ) = 0. The other case is similar.

The fact that not all swaps are feasible is potentially
problematic for a system attempting to guide the pro-
cess by recommending equalizing even swaps. Since
the system is not exactly aware of the DM’s prefer-
ences during the process, it is possible for the system
to propose a swap that is infeasible for the DM. For-
tunately, as determined in the following proposition, if
the swap s(xi → yi, xj → x′j) is not feasible, its con-
jugate swap s(xj → yj , xi → x′i) must be feasible.

Proposition 2 (Equalizing Even Swap Feasibility).
For any two alternatives x and y that do not dominate
each other over attributes i and j, at least one of the
equalizing even swaps s(xi → yi, xj → x′j) or s(xj →
yj , xi → x′i) is feasible.

Proof. Suppose that yi � xi. If the swap s(xi →
yi, xj → x′j) is not feasible, then from Proposition 1(i),
vj(xj) <

wi

wj
[vi(yi)− vi(xi)]. Rearranging, wivi(xi) +

wjvj(xj) < wivi(yi). For the conjugate swap, by defi-
nition, wivi(xi) +wjvj(xj) = wivi(x

′
i) +wjvj(yj). Us-

ing the condition from the infeasibility of the original
swap, wivi(x

′
i) + wjvj(yj) < wivi(yi) =⇒ wivi(x

′
i) <

wivi(yi) =⇒ x′i ≺ yi. The conjugate swap is therefore
indeed feasible. The other case is similar.

The implication of these results is that a feasible swap
can always be found: if the DM declares that a given
even swap is infeasible, then the conjugate swap will
be feasible, and the system can recommend it.

Note that both propositions assume that a DM’s re-
sponse is consistent with their value function. How-
ever, behavioral research on bi-matching suggests peo-
ple may provide inconsistent responses between queries
pertaining to a swap vs. its conjugate (Delquié 1997,
Willemsen and Keren 2003). In the algorithm de-
scribed in the next section, we assume the DM is will-
ing to make either a swap or its conjugate, but we
allow for noise in the response to an even swap query.

4 BAYESIAN SMART SWAPS

In our formulation of guiding an interactive even swap,
we assume the system has prior beliefs p(w) about
the DM’s weights in their additive value function. If
there is no a priori information available, the system
may choose a uniform prior over the weight simplex:
p(w) ∼ Dirichlet(α) where α is a vector of 1s.
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Figure 2: Regions of absolute and practical dominance for
the two-attribute example when w1 ∼ Uniform(0, 1).

We also assume for now that the system knows the
DM’s marginal value functions, perhaps through prior
assessments. Since these are one-dimensional func-
tions, they are usually easier to elicit than weights that
reflect trade-offs. In sub-section 4.4 we briefly outline
how our algorithm may be extended to the case of un-
known marginal functions.

We explore how a system can cope with uncertainty
about the DM’s weights, incorporating responses to
recommended practical dominance and even swap
queries from the DM. In our algorithm, the system
gradually learns the user’s preferences and exploits it
for the sole purpose of reaching the optimal alternative
as soon as possible. In the following sub-sections, we
describe various aspects of our overall approach.

4.1 ABSOLUTE VS. PROBABLE
DOMINANCE

One of the central notions of the original even swaps
method is that of practical dominance, according to
which an alternative can be discarded if it appears
to be nearly absolutely dominated by another. In
this section, we view practical dominance through a
Bayesian lens, with the intent of reducing the cogni-
tive burden of DMs. To motivate our approach, let us
first study absolute dominance.

Consider an alternative x whose consequences have
been normalized; therefore it lies somewhere in the
unit cube. x dominates a proportion of other alterna-
tives given by the volume

∏M
i=1 xi, and is dominated

by a proportion
∏M
i=1(1−xi). Note that if a family of

problems is built by generating alternatives uniformly
over the consequence domains, then the probability
that any particular alternative dominates another de-
creases exponentially with the number of attributes
M . Therefore absolute dominance does not occur with
sufficient frequency to be a basis for a practical deci-
sion support algorithm. Moreover, in real-world set-
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Figure 3: Regions of absolute and practical dominance for
the two-attribute example when w1 ∼ Uniform(0.4, 0.6).

tings, absolutely dominated alternatives would likely
be shelved before reaching the conference room.

A relationship that might be more useful is that of
probable dominance, which measures the system’s
beliefs about whether the DM prefers an alternative to
another. The probability that alternative x dominates
y is denoted pxy, where:

pxy =

∫
w

(
M∑
i=1

wi [vi(xi)− vi(yi)] ≥ 0

)
p(w)dw.

(5)
If the system believes that the DM is likely to pre-
fer an alternative over another, perhaps it can rec-
ommend them as a candidate pair for practical dom-
inance. Although the DM makes the eventual judg-
ment, the system recommends the pair in the hope
that it will simplify the problem. We therefore pro-
pose probable dominance above a certain threshold pT
to recognize potential practical dominance, pxy ≥ pT .

Let us study the following simple example to compare
the occurrence of absolute and probable dominance:

A Two-attribute Example. Suppose M = 2 and
that the DM’s marginal value functions are linear and
normalized to between 0 and 1. As a reference, sup-
pose that the DM’s trade-offs are accurately captured
by weights w1 = 0.5 and w2 = 0.5.

Figure 2 illustrates the regions of absolute and prac-
tical dominance with respect to a chosen alternative
x = (0.2, 0.6) (represented as a purple dot) when the
system believes that w1 ∼ Uniform(0, 1). Alternatives
that absolutely dominate x are shown in dark red,
while those that are absolutely dominated by x are
shown in dark blue. The regions of potential practical
dominance (as determined by probable dominance) for
various values of the probability p appear as bands of
lighter red and blue, in increments of 0.1, ranging from
p = 0.9 to 1.0 (almost deep red) down to p = 0 to 0.1
(almost deep blue).



Figure 3 illustrates almost the same situation except
now the system believes that w1 ∼ Uniform(0.4, 0.6),
possibly by learning from responses to previous
queries. It is immediately apparent that the reduced
uncertainty yields enlarged regions in which there is
a high certainty that x dominates or is dominated.
These regions now appear as large triangles flanking
the rectangular regions of absolute dominance. From
a practical perspective, such regions are effectively
equivalent to those of absolute dominance.

Relative to Fig. 2, the region of uncertainty is much
more tightly clustered around the diagonal line x1 +
x2 = 0.8 that represents the boundary between x � y
and y � x. This is due to the reduced uncertainty
about the true value of w, and illustrates the bene-
fits of reducing the uncertainty: it allows the system
to be more confident in suggesting potential practical
dominance to the DM.

The simple example illustrates that a pair of alterna-
tives chosen at random is more likely to exhibit prob-
able rather than absolute dominance, making it more
useful in practice. Further numerical simulations were
performed, demonstrating that the probability for a
given vector x to practically dominate a given vec-
tor y above a given threshold pT is insensitive to the
number of attributes M . This suggests that probable
dominance may be a useful concept in practice.

Algorithm 1 summarizes the system’s approach to rec-
ommending practical dominance and updating beliefs.
We assume that the DM responds accurately to this
query based on their preferences, since this is a com-
parison question that is typically associated with low
cognitive load. This implies that the polytope of the
weight region can be updated to incorporate the fol-
lowing condition:

M∑
i=1

wi [vi(xi)− vi(yi)] ≥ (≤) 0, (6)

depending on whether the user responds ‘yes’ or ‘no’
to the question: do you prefer x over y? The implica-
tions and potential limitations of assuming an accurate
response to this query are discussed in the conclusions.

4.2 EVEN SWAPS

Recommending an effective even swap is more chal-
lenging than computing practical dominance. In Sec-
tion 3, we explored some properties, discovering that
not all swaps are feasible. The notion of an equal-
izing even swap was introduced as a practical means
of forming a simpler consequence table. To make an
equalizing even swap s(xi → yi, xj → x′j), the system
needs an alternative pair x, y and an attribute pair i,

Algorithm 1 Practical Dominance Query

Input: N alternatives, threshold pT , prior p(w)
Initialize pmaxD = 0
for each pair of vectors x and y do

Compute pxy from equation (5)
if pxy ≥ max(pT , p

max
D ) then

Store pair x,y; pmaxD = pxy
end if

end for
if pmaxD 6= 0 then

Recommend potential practical dominance for
x,y, inquiring whether x � y
Update p(w) in accordance with DM’s response,
using equation (6)

else
There is no candidate pair

end if

j. Moreover, the system should be able to handle an
infeasible swap.

We present a heuristic for recommending an even swap
that identifies the most suitable alternative and at-
tribute pairs. There are two main steps involved. In
the first step, the system identifies alternatives x, y
where it believes x might be preferred over y. It is
natural to use probable dominance to quantify this
belief. In the second step, the system identifies at-
tributes i ∈ N(x,y) and j ∈ D(x,y) such that swap
s(xi → yi, xj → x′j) is likely to decrease |N(x,y)|.

The intuition behind the heuristic is that an even swap
query potentially pushes a pair of alternatives towards
dominance of some sort, making it eventually evident
to both the system and the DM. Focusing on a pair
where one is likely to dominate the other and reducing
the non-dominated attribute set ensures that this oc-
curs. As shown in Section 3, an infeasible swap always
possesses a feasible conjugate swap, so the heuristic is
guaranteed to make progress (from a normative per-
spective). Note that the cognitive effort expended by
the user in trying to respond to the original (failed)
swap will be helpful in responding to its conjugate.
Note also that the heuristic is myopic in that it at-
tempts to find the ‘best’ swap at the current moment,
without regard to long-term savings. It can be viewed
as a dominance-focused heuristic, as it tries to drive
alternative pairs towards dominance.

Suppose that the system is considering the equalizing
even swap s(xi → yi, xj → x′j) based on the afore-
mentioned heuristic. By definition:

vj(x
′
j) =

wi (vi(xi)− vi(yi)) + wjvj(xj)

wj
, (7)

if it is feasible, i.e. satisfies Proposition 1.



Algorithm 2 Even Swap Query

Input: N alternatives, swap response noise δ, prior
p(w)
Set threshold pT = 0 and find alternative pair x,y
from Algorithm 1
Initialize pmaxS = 0
for each pair of attributes i in N(x,y) and j in
D(x,y) do

Compute pS from equation (8)
if pS ≥ pmaxS then

Store pair i, j; pmaxS = pS
end if

end for
Recommend the swap s(xi → yi, xj → x′j)
if Response is x′j then

Update p(w) with conditions from equation (9)
else if DM declares swap is infeasible then

Recommend conjugate swap s(xj → yj , xi → x′i)
Update p(w) using equation (9), after swapping i
and j

end if

Suppose that i and j are both attributes where more
is preferred to less. Then xi is increased to yi for the
swap (because i ∈ N(x,y)), therefore xj is decreased
to x′j if the swap is feasible. The probability that this
swap will decrease the non-dominated set pS is:

pS = P (x′j ≥ yj) = P (vj(x
′
j) ≥ vj(yj))

=

∫
w

∑
k=i,j

wk [vk(xk)− vk(yk)] ≥ 0

 p(w)dw,

(8)

where the final step is a result of integration after re-
arranging (7). For the sake of brevity, we have nota-
tionally omitted specifying that pS is a function of the
swap; it should be inferred that it is associated with
swap s(xi → yi, xj → x′j). Also, note that although
equation (8) applies only when i and j have monoton-
ically increasing marginal value functions, it is easy to
generalize it to include all other cases.

Algorithm 2 summarizes the system’s approach to rec-
ommending even swaps and updating beliefs. Since
an even swap is associated with a significant cognitive
load, the system treats the response to lie within a
noise band measured using the swap response noise
δ. For instance, if a user responds to an even swap
query with normalized consequence 0.6 and δ = 0.2,
then the system forms a lower bound Lδ = 0.5 and
upper bound Uδ = 0.7. This noise band is subject to
the other constraints posed on a response, i.e. it must
lie within the domain. Therefore a response of 0.05
with δ = 0.2 results in Lδ = 0 and Uδ = 0.15. If
more of attribute j is preferred to less, the polytope

Algorithm 3 Bayesian Smart Swaps

Input: N alternatives, threshold pT , swap response
noise δ, prior p(w)
while more than 1 solution and 1 active attribute
remain in table do

Remove absolutely dominated solutions, if any
Mark any attributes with equal consequences
across alternatives as inactive, if any
Identify potential practical dominance using Al-
gorithm 1
if practical dominance detected then

Recommend it and update p(w) from response
else

Recommend an even swap using Algorithm 2
and update p(w) from response

end if
end while
if single attribute remains then

Find the optimal alternative x
end if
Return x

of the weight region can be updated with conditions
from two inequalities involving wi and wj :

Lδ ≤
x′j − x0j
x∗j − x0j

≤ Uδ, (9)

where Lδ and Uδ are bounds on normalized conse-
quences (Lδ, Uδ ∈ [0, 1]) that depend on the DM’s re-
sponse and δ as described above, and x′j is a function
of the weights and marginal values as in equation (7).
This equation could be easily modified for the case
where less of attribute j is preferred.

4.3 HIGH-LEVEL ALGORITHM

Now that we have outlined the two main sub-routines
– practical dominance and even swaps – Algorithm 3
provides the high-level routine for our proposed in-
teractive even swaps method. The algorithm identifies
absolute dominance and equal attributes, recommends
practical dominance when it is confident enough, and
recommends an equalizing even swap based on a dom-
inance focused heuristic. The algorithm terminates
when the optimal alternative is revealed.

4.4 EXTENSION: UNKNOWN
MARGINAL VALUE FUNCTIONS

In the algorithm described here, we assumed that the
system already knew the marginal value functions,
perhaps through initial assessments. There is a nat-
ural extension to the case of unknown marginal value
functions along the lines of Mustajoki and Hämäläinen
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Figure 4: The effect of learning upon the number and
type of queries and events. Average number of absolute
dominance and equal attribute events, as well as probable
dominance and even swap queries per scenario, for M =
{3, 5} ×N = {2, 8}, with learning turned on (L) and off.

(2005, 2007), using previously determined lower and
upper bounds on the marginal value functions. Subse-
quently, for all probabilistic computations — in this
case those pertaining to computing probable domi-
nance and the probability that the swap will decrease
the non-dominated set — the system could use proba-
bility bounds for making recommendations and update
its beliefs based on inequalities from these bounds.
The current algorithm could be updated to incorpo-
rate these changes.

5 EXPERIMENTAL RESULTS

A first set of experiments were conducted to assess the
degree to which learning reduces the number and com-
plexity of queries directed to the DM. The high-level
algorithm described in Section 4 was applied to a set
of 100 randomly generated scenarios, each involving a
randomly generated set of N alternatives with M at-
tributes. Each of the NM values in the consequence
table was generated from a Uniform distribution (0, 1).
The user’s true weights were drawn uniformly from the
(M − 1)-dimensional unit simplex, and the prior was
the same uniform distribution over the simplex. For
simplicity, the marginal value functions were assumed
to be linear and ranging from 0 to 1.

For each scenario, the probability threshold for a prob-
able dominance query was set relatively high (0.9) to
ensure that the queries might not be too onerous for
real humans to answer. The probability that x � y
for the DM was computed by randomly generating at
least 10000 weight vectors uniformly in the (M − 1)-
dimensional unit simplex. First, rejection sampling
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Figure 5: Same data as in Figure 4, except that the scales
are normalized to 1 to illustrate the relative contributions
of the different types queries and events.

was employed, i.e. the randomly generated weight vec-
tors were reduced to a set that satisfied any constraints
introduced during the interactive process. Then the
probable dominance probability was computed as the
fraction of weight vectors for which x � y. Partic-
ularly in cases where several even swaps had been
applied, the weights were pinned down so precisely
that the number of samples satisfying the constraints
dropped below 100, in which case more points were
generated to ensure that the probable dominance prob-
ability was computed from reasonable statistics. To
simulate the DM answering a probable dominance or
even swaps query, the true weight vector was used to
generate the response that the DM would have gener-
ated. The DM’s noise about the swap value was mod-
eled using a modest swap response noise of δ = 0.2.

For each scenario, the number of absolute domi-
nance and equal-attribute events (accomplished purely
through system computations) were recorded. The
number of probable dominance and even swap queries
(including both regular and conjugate swaps) were
recorded as well; these are queries that must be an-
swered by the DM and therefore entail some cognitive
burden. Eight sets of 100 scenarios were run, with the
number of attributes set to M = {3, 5}, the number of
solutions set to N = {2, 8}, and the method’s learning
element both turned on and turned off. The results
are summarized in Figure 4.

For the smallest scenarios ((M,N) = (3, 2)), an aver-
age of just two queries and/or events is required, and
typically there is one absolute dominance event and
one even swap, with probable dominance and elimina-
tion by virtue of equal attributes playing a relatively
minor role. Due to the small number of queries and/or



events, learning has little impact. The average num-
ber of queries and/or events decreases from 2.33±0.11
to 1.96 ± 0.11 — a drop that is of marginal statisti-
cal significance. On the other hand, when the num-
ber of solutions is increased from 2 to 8, the average
number of queries and/or events rises to 8.22 ± 0.34
without learning and 6.7±0.23 with learning — a sta-
tistically significant decrease of 18%. When the num-
ber of attributes is increased from 3 to 5, a similar
trend is observed. For N = 2 solutions, the number of
queries and/or events is 3.63 ± 0.27 without learning
and 3.35 ± 0.24 with learning — an insignificant dif-
ference — whereas for N = 8 solutions the number of
queries and/or events is 14.37± 0.57 and 11.51± 0.41
— a statistically significant drop of 20%.

Figure 5 provides another view of the same data, in
which the relative contribution of the various types
of queries and events is obtained by normalization.
As anticipated, the impact of absolute dominance de-
creases as the number of solutions N increases from 2
to 8. This is a consequence of the exponential decrease
in the probability for any given vector to absolutely
dominate another with the number of attributes. An-
other trend evident here is that as N increases, the
relative impact of probable dominance queries grows
stronger. Moreover, for larger problems, the effect of
learning is to further increase the relative importance
of probable dominance over even swap queries.

Having established that learning can substantially re-
duce the number of queries and/or events required to
identify the optimal alternative, and moreover that it
shifts the balance more from even swaps to probable
dominance queries as the problem size grows, a sec-
ond series of experiments were conducted with learn-
ing turned on. The objective of these experiments was
to chart in greater detail how the number and type
of queries and/or events change as the number of at-
tributes and alternatives are varied. The results de-
picted in Figure 6 demonstrate the same basic trends,
including the waning importance of absolute domi-
nance as the number of attributes M grows and the
ascendancy of probable dominance as N grows.

6 CONCLUSIONS

In this paper, we have presented a method for guid-
ing the DM through the even swaps process using an
overall Bayesian approach with a dominance focused
heuristic. We have demonstrated through experiments
that one can effectively learn about the DM’s prefer-
ences in the course of a single session to guide them
quickly to a final choice. A potential next step is to
implement a tool and test its efficacy through experi-
ments with real human subjects. Belton et al. (2005)
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Figure 6: The effect of M and N on the number and type
of queries and events. Average number of queries/events
of each type, from left to right, for M = {2, 3, 4, 5} and
N = {2, 3, 4, 5, 6, 7, 8}.

conduct some user experiments involving even swap
queries but such studies remain few and far between.

Our approach appears to be practical for modest-sized
decision problems (N < 10). One could argue that
direct elicitation techniques might be appropriate for
large N (∼ 100); however, if the DM prefers to use
even swaps (for reasons highlighted in Section 2), it
may be prudent to focus on learning the DM’s prefer-
ences rather than myopically trying to find the most
likely pair of alternatives such that one might domi-
nate the other.

Here we used a simple model for incorporating poten-
tial noise in a DM’s response to an even swap query;
it was chosen to enable conditions represented as in-
equalities. In future research, we envision more nu-
anced noise models accounting for cognitive effects
such as attribute conflict (e.g. Fischer et al. 2000,
Delquié 2003). Also, although we have used proba-
ble dominance to measure practical dominance, it re-
mains unclear how the metric would work for large
problems because it may be difficult for a DM to com-
pare any two arbitrary alternatives; note that compar-
ison queries are also subject to various cognitive biases
in general (e.g. Tversky et al. 1988, Tversky and Kah-
neman 1991). Finally, regarding the computations for
simulation, rejection sampling is sufficient when only
a few queries are asked in a single setting. If several
queries are asked back-to-back, efficient methods such
as hit and run sampling may be more effective.
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P. Delquié (2003) Optimal conflict in preference as-
sessment. Management Science, 49(1):102–115.

J. Eliashberg and J. Hauser (1985) A measurement
error approach for modeling consumer risk preference.
Management Science, 15(1):1–25.

G. W. Fischer, J. Jia and M. F. Luce (2000) Attribute
conflict and preference uncertainty: The RandMAU
model. Management Science, 46(5):669–684.

J. S. Hammond, R. L. Keeney and H. Raiffa (1998)
Even swaps: A rational method for making trade-offs.
Harvard Business Review, 76(2):137–149.

J. S. Hammond, R. L. Keeney and H. Raiffa (1999)
Smart Choices: A Practical Guide to Making Better
Decisions. Harvard Business School Press.

H. B. Jimison, L. M. Fagan, R. D. Shachter and
E. H. Shortliffe (1992) Patient-specific explanation in
models of chronic disease. Artificial Intelligence in
Medicine, 4(3):191-205.

M. Kajanus, J. Ahola, M. Kurttila and M. Pesonen
(2001) Application of even swaps for strategy selec-
tion in a rural enterprise. Management Decision,

39(5):394–402.

R. L. Keeney and H. Raiffa (1976) Decisions with
Multiple Objectives: Preferences and Value Tradeoffs.
New York, NY: John Wiley and Sons, Inc.

S. Lichtenstein and P. Slovic (2006) The Construction
of Preference. Cambridge, UK: Cambridge University
Press.

J. Mustajoki and R. P. Hämäläinen (2005) A prefer-
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