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Abstract

Learning the association between observed
variables and future trajectories of continuous-
time stochastic processes is a fundamental task
in dynamic modeling. Often the dynamics are
non-homogeneous and involve a large number
of interacting components. We introduce a
conditional probabilistic model that captures
such dynamics, while maintaining scalability
and providing an explicit way to express the
interrelation between the system components.
The principal idea is a factorization of the
model into two distinct elements: one depends
only on time and the other depends on the
system configuration. We developed a learning
procedure, given either full or point observations,
and tested it on simulated data. We applied the
proposed modeling scheme to study large
cohorts of diabetes and HIV patients, and
demonstrate that the factorization helps shed
light on the dynamics of these diseases.

1 INTRODUCTION

Studies of dynamic systems often attempt to investigate the
dependency of these dynamics on a set of static explanatory
variables. In many cases, the studied process is composed
of interrelated components that evolve continuously in
time; hence, inter-component interactions are of interest
as well. Examples appear in diverse fields, ranging from
medicine to computational biology and economics.

Inferring such conditional dynamics of a real life system
involves several challenges. We illustrate these challenges
by our motivating example of studying disease progression
in patients infected with Human Immunodeficiency Virus
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Figure 1: A graphical representation of a SCUP model for
HIV. Directed arcs indicate directions of influence.

(HIV). The two common measures of the severity of
HIV infection, viral load and the immune system CD4
protein count, are interrelated. A higher viral load weakens
the immune system, while a weakened immune system
potentially affects viral dynamics. A weakened immune
system also increases the risk of death, either directly or
by increasing the risk of contracting other diseases. These
dynamics are depicted in Figure 1.

The typical properties of dynamic processes are a non-
constant states transition rate (non-homogeneity), and
the ability to observe the process states at only a finite
set of time-points (point observations). Additionally,
the processes may include highly diverse explanatory
variables whose distribution is often difficult to learn.
For example, this might include the type of drugs taken
by each individual and their viral genome at that time.
Due to these properties, a modeling framework for such
processes should account for non-homogeneity, deal
with point observations, be scalable in the number of
components, and provide a robust way to account for
observed explanatory variables without modeling their
distribution.

The seminal work of (Cox, 1972) laid the foundations for
rigorous analysis of the dynamics of non-homogeneous
irreversible processes by introducing the proportional
hazard model. A key point of this model is its focus on
modeling the dynamics of a single binary-valued variable
conditioned on some set of background variables. The
proportional hazard framework proposed by Cox turned
out to be extremely useful in modeling processes such



as survival after medical procedures, how specific drugs
affect a disease, the failure of manufactured components,
and many more.

In recent years, several extensions of this model have been
proposed (e.g., (Du et al., 2013)). One notable extension
of the Cox model is Multi-State models (MSTMs), which
model single component processes that can occupy one
of a finite number of states at each time point (Putter
et al., 2007). MSTMs support non-homogeneity and
learning from point observations, and allow us to condition
the dynamics on explanatory variables, resolving the
difficulties in explicitly modeling covariates.

MSTMs are increasingly being used in medical and
epidemiological studies (e.g., (Looker et al., 2013; Walker
et al., 2013; Taghipour et al., 2013)). Nevertheless,
MSTMs are not naturally suited for analyzing multi-
component processes, because they require defining a
state space corresponding to the Cartesian product of the
individual components, resulting in a representation that is
exponential in the number of components.

In this paper we consider modeling the conditional
distribution of a non-homogeneous multi-dimensional
continuous-time Markov process Y(t) = Y1(t), . . . , Yn(t)
given a set of covariates x ∈ Rp, which we refer to
as background covariates. Our goal is to construct a
modeling language that is compact, interpretable, and
scalable, meaning that it allows learning dependencies of
specific components on specific covariates as well as on
other components, while allowing efficient inference and
learning.

A Continuous-Time Bayesian Network (CTBN) (Nodelman
et al., 2002), the continuous-time extension of a dynamic
Bayesian network, is a framework that enables the
modeling of high-dimensional processes with complex
dependencies; these dependencies are expressed via an
interpretable network topology. CTBNs naturally deal with
missing data, using exact inference for small topologies,
and a variety of approximate methods for large topologies.
Therefore, the principles that underlie CTBNs can serve
as a basis to scale up MSTMs, by introducing structured
representation and accompanying mathematical machinery
from CTBNs.

In this work, we define StruCtured proportional jUmp
Processes (SCUP), a new model combining ideas from
the fields of proportional hazard models, MSTMs, and
CTBNs. Our key modeling assumption decomposes
the dynamics of the process into two elements. The
first element is the effect of time on the dynamics
of each individual component, independently of the
others. The second element represent the dependence
of the evolution of each component on the background
covariates, as well as on the state of the other components.
This decomposition allows a compact representation of

the combined effect of non-homogeneity, background
variables, and interactions among components. We show
how this model can be learned from point observations and
demonstrate the properties of our approach on synthetic
data, as well as on large cohorts of data from diabetes
and HIV patients. Our analysis helps identify reliable
markers that may predispose diabetes and HIV patients
to medical complications. Namely, we find that routine
blood tests can serve as a biomarker for an increase in
glycated hemoglobin, which is a highly reliable marker for
complications among diabetes patients.

2 BACKGROUND

A multi-component continuous-time stochastic process
over a discrete state space is a collection of vector-valued
random variables {Y(t) = Y1(t), . . . , Yn(t)|t ≥ 0} where
for each component i, Yi(t) takes on values from a finite
set Si. We say that such a process is Markovian if, for all
sequences t1 ≤ t2 ≤ . . . ≤ tk, it satisfies

Pr(Y(tk) = yk|Y(tk−1) = yk−1, . . . ,Y(t1) = y1)

= Pr(Y(tk) = yk|Y(tk−1) = yk−1)

Continuous time Markov processes are completely
characterized by the rate function q(t;y,y′), which
determines the instantaneous transition probability
between states:

Pr(Y(t+∆t) = y′|Y(t) = y)) = 1y=y′+q(t;y,y
′)∆t+o(∆t)

(1)
where 1 is the indicator function and o(∆t) is a function
that converges to zero faster than its argument, i.e.,
lim∆t↓0

o(∆t)
∆t = 0. The rate functions are non-negative

for every y 6= y′. The diagonal elements q(t;y,y)
are the exit rates from state y at time t that satisfy
q(t;y,y) = −

∑
y′ 6=y q(t;y,y

′). A Markov jump process
is homogeneous if the rates do not depend on time, i.e.,
q(t;y,y′) = qy,y′ , otherwise it is non-homogeneous

Continuous time Bayesian networks (CTBNs) provide
a compact representation for homogeneous Markov
processes where only one component can change at a time,
and where the instantaneous dynamics of each component
i are influenced by a small set of parent components
denoted by pa(i). We refer to pa(i) as the context of the
component i. These assumptions are encoded by setting
q(t;y,y′) = 0 when y and y′ differ by more than one
component, and q(t;y,y′) = qyi,y′i|ypa(i)

when they differ
in component i, where yi and ypa(i) are the states of
component i and of the subset pa(i), respectively. This
dependency structure is represented by a directed graph G
over the nodes labeled 1 . . . n, where the parents of node i
are pa(i). We note that the graph G need not be a DAG. In
recent years, several approximate methods that exploit this
structured representation have been developed (Saria et al.,



2007; Cohn et al., 2010; El-Hay et al., 2010; Celikkaya
et al., 2011; Rao and Teh, 2011b; Opper and Sanguinetti,
2007).

3 STRUCTURED PROPORTIONAL
JUMP PROCESSES

Consider a system of interacting components with
two additional characteristics: (1) The dynamics of
each component depends on a set of background
variables x ∈ RP ; and (2) Transition rates are non-
homogeneous. This work deals with modeling and
learning the interactions between the components as well
as the relation between the background variable x and
the dynamics of the system represented by Y(t). As in
regression and conditional models, the distribution of the
background covariates x will not be modeled .

Assuming Markovian dynamics, such systems are
characterized by a conditional rate function q(t;y,y′|x).
To model this rate in a compact manner we first assume
that, as in CTBNs, Y has local dynamics, namely is
governed by conditional rate functions for all y 6= y′:

q(t;y,y′|x) ≡ qi(t; yi, y′i|ypa(i),x) · 1{j:yj 6=y′j}={i}.

Next, we need to capture the dependency of these dynamics
on both time and covariates. To do this, we decompose the
rate into two elements: the dependence on time and the
joint dependence on context and background variables.

The effect of the time on the transition is captured by the
notion of the baseline rate. For each component i and pair
of states yi to y′i, we denote by riyi,y′i(t) the non-negative
time dependent functions. The effect of the joint state of
the covariates x and the context ypa(i) is mediated through
a set of weight vectors wi

yi,y′i
∈ RN . Combining these

elements, we define the conditional transition of the SCUP
model:

qi(t; yi, y
′
i|ypa(i),x) ≡ riyi,y′i(t)·exp{wi

yi,y′i
·φi(x,ypa(i))},

(2)
where φi(x,ypa(i)) is a mapping of the covariates and
parent states into an N -dimensional feature vector (where
in general N could depend on i). This representation
does not explicitly specify the dependency structure of the
components on x because it does not have a significant
effect on the inference computational complexity, as
shown in Section 4. Note that the time-dependent effect is
common to the entire population, meaning that it does not
depend on the covariates x and ypa(i). On the other hand,
the covariates, as well as the parent components, modulate
the transition rate between states yi and y′i through the
second element, independently of time.

To gain some insight into the assumptions encoded in this
model, we consider three examples. First, we note that

by setting the baseline rates to a constant value, removing
the background variables, and setting φi to be a vector of
indicators of the parents’ joint state, we obtain a CTBN.

The second example is the Cox proportional hazard model
(Cox, 1972). This model has a single binary outcome Y
where Y = 1 represents a base state and Y = 0 represents
a terminal failure state such as death. The rates in such a
system are:

q(t; 1, 0|x) ≡ r0(t)ew·x and q(t; 0, 1|x) ≡ 0 , (3)

where r0(t) is the baseline rate. In this model q(t; 1, 0|x) is
called the hazard function and the probability of surviving
for a time greater than t is

Pr(Y (t) = 1|x, Y (0) = 1) = e−
∫ t
0
q(s;1,0|x)ds .

In case the baseline is constant, the survival time
distribution is exponential. A monomial baseline,
r0(t) = λk(λt)k−1, gives a Weibull distribution. A
common approach is to model the baseline in a non-
parametric manner (see the seminal work of (Kaplan and
Meier, 1958)).

The Cox model encapsulates an assumption that the failure
rate proportion for two individuals with attributes x1

and x2 is time invariant as q(t; 1, 0|x1)/q(t; 1, 0|x2) =
ew·(x1−x2). This approach is generalized in multi-state-
models (Putter et al., 2007), which involve a single
component and define q(y, y′|x; t) = ry,y′(t)e

wy,y′ ·x,
resulting in a proportion of ewy,y′ ·(x1−x2).

The proportionality assumption in SCUP is conditional,
that is, if we fix Ypa(i)(t) = ypa(i) the proportion between
conditional rates is
exp{wi

yi,y′i
· (φi(x1,ypa(i))− φi(x2,ypa(i)))} for all

t. However, the proportion of the actual marginal
rate of moving from yi to y′i is time dependent
because it is marginalized with time dependent weights,
Pr(Ypa(i)(t)|x). A time invariance property also holds for
proportions between transition rates that are conditioned
on two different parent assignments for a fixed x .

The third example deals with an HIV patient model,
as shown in Figure 1. The proposed model contains
components corresponding to the viral load (VL), CD4
concentration, the status of a certain disease of interest,
and an absorbing survival component. The model topology
encodes the assumption that the VL and CD4 components
affect each other directly, whereas the effect of VL on
survival is mediated through CD4 and the disease.

As a concrete example, the disease state space can be
{“none’, “mild”, “severe”}, with the possible transitions
“none”↔“mild”, and “mild”↔“severe”, and the CD4 state
space can be {“high”, “low”}. The CD4→disease arc
encodes a parameter for each combination of the CD4
level and one of the four disease transitions. Notably, the
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Figure 2: A Piecewise linear approximation for a non-homogeneous process.

ratio between the transition rates given CD4=“high” and
given CD4=“low” is time independent, and determined
solely according to the mapping φdisease (CD4) and the
parameters wdisease for each transition.

3.1 REPRESENTATION OF BASELINE RATES

Time dependent baseline rates can either be represented
non-parametrically as in the classical Cox model, or
assume a parametric representation. Examples include
Weibull hazard function r(t) = λk(λt)k−1, log-logistic
hazard, r(t) = λktk−1

1+λtk
and more. In this work we will

adopt a piecewise constant representation, which can
approximate well behaved processes with a high degree of
accuracy.

To characterize such processes, we consider single-
component models with a time-dependent state Y (t)
(every model can be represented as a single-component
model whose state space is the Cartesian product of
the components state spaces). Denote by PQ(s, t)
the transition matrix whose y, y′ entry is Pr(Y (t) =
y |Y (s) = y′), and by µQ

y (t) ≡ PrQ(Y (t) = y) the
time-dependent marginal probability. We say that a matrix
P is embeddable if there exists a matrix A such that
P = eA. Let τ0 < τ1 < . . . < τK be an ordered set of
time points, and suppose that PQ(τk−1, τk) is embeddable
for every k = 1, . . . ,K. From the Markov property, it
follows that there exists a piecewise constant rate matrix
function Q̂(t) = Qk,∀τk−1 ≤ t < τk that satisfies
µQ
y (τk) = µQ̂

y (τk). Moreover, the following lemma
bounds the error for rate matrices with bounded transition
rates:

Lemma 3.1 :Let Y (t) be a non-homogeneous process
with bounded transition rates Q(t) and an embeddable
rate matrix. Denote ρk = maxy,τk−1≤t<τk |qy,y(t)|,
ρ̂k = maxy |q̂y,y|. Then, for all y and τk−1 ≤ t ≤ τk,
|µQ
y (t)− µQ̂

y (t)| < (ρ+ ρ̂) · (τk − τk−1).

This lemma, proven in the appendix, suggests that the

number of intervals required to bound the bias by ε
scales inversely linear with 1/ε. We note that tight
approximations exist in the case of non-embeddable
processes (Davies, 2010).

As an example, consider a two state model with time
dependent baseline rates depicted in Figure 2a. This
process induces a non-monotone marginal probability
µQ

1 (t) given an initial condition Y (0) = 2, as shown by
the smooth black line in Figure 2b. The initial rise follows
from the relation r2,1(t) > r1,2(t), and the subsequent
decline from the opposite relation. The colored lines
show estimated probabilities given by piecewise constant
models with 1, 5 and 20 intervals of constant rates that
were trained on 1000 simulated trajectories.

4 LEARNING

Generally, training data may include a mixture of point
observations on some components and full (complete)
trajectories of others. For example CD4 and viral load are
point observations measured periodically, whereas time of
death is usually exactly recorded resulting in a continuous
observation on survival. To learn from such data, we
will adapt the approach taken for CTBNs, which handles
unseen state trajectories between observations as missing
data and employs Expectation Maximization (EM). The
first step is to derive the likelihood of the model given
complete trajectories.

4.1 LIKELIHOOD FUNCTION

A fully observed trajectory is represented using the
sequence t0, . . . , tM and states y0, . . . , yM−1 such that
Y (t) = yk for t ∈ [tk, tk+1). We denote such a trajectory
by y[0,tM ]. The likelihood of a non-homogeneous process



with a set of ratesM = {q(t; y, y′)}y,y′ is

l(M|y[0,tM ]) = exp

{∫ tM

tM−1

q(t; yM−1, yM−1)dt

}
(4)

·
M−2∏
k=0

[
exp

{∫ tk+1

tk

q(t; yk, yk)dt

}
q(tk+1; yk, yk+1)

]

where q(t;y,y) = −
∑
y′ 6=y q(t; y, y

′).

Let D be a data set that includes pairs of trajectories y[c]

and covariates xc, where c = 1, . . . , Nsequences and denote
by ll(M|D) be the log-likelihood.

The log-likelihood is unbounded if there are no constraints
on the baseline rate functions. Consider for example the
survival model described in Equation 3, and suppose that
no background variable is involved. In this case,

ll(r0(t)|D) =
∑
c

[
−
∫ tc

0

r0(t)dt+ log r0(tc)

]
.

One can construct a series of baseline rates such that
this term approaches infinity as r0(t)

∑
c acδ(t − tc),

implying that a naive maximum likelihood procedure
tends to overfit r0(t) to a function that imposes transitions
at the observed times if no constraints are put in place.
An alternative approach for non-parametric estimation of
a possibly arbitrary baseline is to use partial-likelihood
(Cox, 1972, 1975). However, this direction does not
generalize naturally to partially observed data. Two
possible approaches for placing constraints use either a
restricted parametric form or regularized baseline.

4.2 PARTIALLY OBSERVED DATA

To deal with partially observed data, we perform an EM
procedure. On each iteration we compute the expected
log-likelihood of a new model with respect to the posterior
distribution of the current model M0. The posterior
distribution of a Markov process M0 given a sequence
σc is characterized by a set of time-dependent functions
(Cohn et al., 2010)

µy(t|c) = Pr(Y (t) = y|c,M0)

γy,y′(t|c) = lim
∆t→0

Pr(Y (t) = y, Y (t+ ∆t) = y′|c,M0)

∆t
.

µy(t|c) is the singleton probability that the process is in
state y at time t. γy,y′(t|c) is the intensity of the pairwise
probability of being in state y and then moving to y′ at time
t.

Using this characterization, taking the expectation on the
log of the likelihood function in Equation 4 and plugging
in the decomposition of the conditional intensities depicted

in Equation 2, gives the expected log-likelihood of a multi-
component model:

EM0 [ll(M,D)] =
∑
c

∑
yi,ypa(i)

∑
y′

(5)

[
− exp{wi

yi,y′i
· φi(xc,ypa(i))}

∫
t

µyi,ypa(i)
riyi,y′idt

+

∫
t

γyi,y′i|ypa(i)

(
log riyi,y′i + wi

yi,y′i
· φi(xc,ypa(i))

)
dt

]
where we omit t and c from µ, γ and r, µyi,ypa(i)

is the marginalization of the posterior distribution
to the subset of components i, pa(i), and similarly
γyi,y′i|ypa(i)

=
∑
{ŷ|ŷi=yiŷpa(i)=ypa(i)} γŷ,[ŷ\i,y′i] is

a marginalization of pairwise probability intensities.
Additional details are given in the Appendix. An exact
computation of these functions and their integrals is
feasible for systems with a small number of components.
Otherwise, a variety of approximate methods are available
(Saria et al., 2007; Cohn et al., 2010; El-Hay et al., 2010;
Celikkaya et al., 2011; Rao and Teh, 2011b; Opper and
Sanguinetti, 2007).

4.3 OPTIMIZATION

The gradient of the log-likelihood with respect to w is:

∂EM0 [ll(M,D)]

∂wi
yi,y′i

=∑
c

∑
ypa(i)

φi(xc,ypa(i))(M
c
ypa(i)

−MP cypa(i)
)

where the first term M c
ypa(i)

=
∫
t
γyi,y′i|ypa(i)

dt is the
expected number of transitions from yi to y′i given the state
of the parents ypa(i), M0 and the evidence in sequence c
(see (Cohn et al., 2010)). The second term

MP cypa(i)
= exp{wi

yi,y′i
·φi(xc,ypa(i))}

∫
t

µiyi,ypa(i)
riyi,y′idt

is the integral of the probability of being in state [yi,ypa(i)],
multiplied by the transition rate. Hence, this term can be
interpreted as the expected number of potential transitions.
The gradient weighs the feature vectors φi(xc,ypa(i))
using the difference between the expected number of
actual and potential transitions.

Optimization of the baseline that assumes a parametric
form riyi,y′i

(t) = riyi,y′i
(t; θ) involves computation of its

gradient with respect to the parameters θ

∂EM0 [ll(M,D)]

∂θ
=∑

c

∑
ypa(i)

∫
t

[
− exp{wi

yi,y′i
· φi(x,ypa(i))}µyi,ypa(i)

+
γyi,y′i|ypa(i)

riyi,y′i

]
∂riyi,y′i
∂θ

dt .



In the simplest case, if the baseline is constant or piecewise
constant, the stationary point solution has a closed from.

A maximum likelihood estimator can be found using
an EM procedure iterating between expectation and
maximization steps. Expectation steps compute the
functions that represent the posterior distribution, µ and γ.
Maximization steps involve optimizing the covariate and
cross component influence weights wi

yi,y′i
using standard

optimization methods and the gradient derived in Equation
6, as well as optimizing the baseline rates using the
gradient in Equation 6. While the overall target function is
not convex, the optimization of wi

yi,y′i
is a convex problem

given fixed baselines and posterior distributions, and so is
the case for many choices of the baseline rates .

5 EXPERIMENTAL RESULTS

5.1 LEARNING EVALUATION

Our initial experiments test the validity of SCUP. To this
end, we created synthetic SCUP data sets. We then trained
SCUP using these data sets, and compared the similarity of
the learned models with the actual ones.

The topology for all data generating models was similar to
the HIV disease topology (Figure 1) with the exclusion of
the survival state. All models included a single randomly
drawn binary covariate. The baseline rates followed a
Weibull rate, with a shape parameter κ = 2 and a scale
parameter drawn from an inverse Gamma distribution
(the Weibull distribution conjugate prior), with shape and
scale parameters both equal to 2. For each component
with parents y1, y2, and a covariate x, we used the feature
mapping φ(x, y1, y2) = (x, 1y1=2,1y2=2) , with feature
coefficients drawn from N (0, 1).

We evaluated learning performance as a function of dataset
size and sampling rate. During the training, we divided
the time interval [0,1] into 5 equally sized intervals,
and learned piecewise-constant baseline rates for each
one. We considered both fully observed data and point
observations, with observation times for each trajectory
drawn uniformly from [0,1]. All trajectories were observed
at times t = 0 and t = 1. Our evaluation compared the
similarity of the learned models to the true generating
models through the root mean square error (RMSE) of the
learned coefficients. We also compared the integral of each
baseline rate across the time interval [0,1], to its true value.
The baseline integral was used because it does not depend
on parametric form, and because it is used in inference
and learning tasks, rather than the baseline itself. Figure
3 shows that learning accuracy increases with sample size
and sampling rate, as expected. As a further measure of
validity, we verified that log (RMSE) decreases linearly
with log dataset size, with slopes close to -0.5, indicating
consistency (data not shown).

5.2 THE EFFECT OF NON-HOMOGENEITY

To test the effect of non-homogeneity, we generated
data from homogeneous and non-homogeneous SCUP
models. We then trained the models with different levels of
non-homogeneity on the generated datasets, and evaluated
learning performance. The datasets were generated from
two SCUP architectures similar to those described in
the previous section, with the exception that the first
architecture used a homogeneous constant baseline rate
for all transitions, whereas the second one used baseline
rates as previously described. The baseline rates for
the first architecture were generated from a Gamma
distribution, with scale and shape parameters equal to
1.0. We generated five models from each architecture,
and generated a dataset of 500 trajectories using each
model. Every trajectory was observed at times t = 0 and
t = 1, and at three other uniformly drawn time-points.
We trained SCUP models with increasing numbers of
piecewise-constant baseline rate. Notably, models with
one baseline rate are equivalent to CTBNs. We evaluated
the learning performance via a five-fold cross validation of
out of sample (OOS) likelihood.

The results, shown in Figure 4, demonstrate that
homogeneous models cannot capture complex dynamics
that change over time. Increasing the number of baseline
rates leads to greater flexibility on the one hand, but to the
risk of overfitting on the other.

5.3 COMPARISON WITH OTHER METHODS

To assess the relative performance of SCUP, we compared
it to two competing methods, which can both be derived
as special instances of SCUP: A factored model and a
multi-state model. The factored model (FM) is a SCUP
model with several independent components. There are no
arcs between components, and thus transition probabilities
are affected only by covariates and baseline rates. The
multi-state model (MSTM) follows the implementation
of a package called MSM (Jackson, 2011). It can be
viewed as a SCUP model with a single component,
whose state space is the Cartesian product of the SCUP
components state spaces. We verified empirically that our
implementation yields the same results as MSM on a wide
variety of scenarios. SCUP can be seen as an intermediate
method between these two extremes, balancing between
compactness and expressiveness. Notably, all three
methods fully support non-homogeneous dynamics.

We generated five models for each of the three architectures,
each having a single binary covariate, with Weibull
baseline rates and randomly drawn coefficients, as
described in the previous section. The SCUP models were
generated and used as described in the previous sections.
The FM models contained three binary components, and
the MSM models contained a single eight-state component,
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Figure 3: Root mean square error of estimated parameters for various sampling rates, and the 75% confidence intervals
(confidence intervals for S=200 are omitted for clarity).
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Figure 4: Out of sample likelihood for models trained with
increasing number of piecewise-constant baseline rates.

Table 1: The number of parameters learned by FM, SCUP,
and MSM. The number of piecewise-constant baseline
rates is denoted by t.

FM SCUP MSM

Cov. coefficients 6 6 56
Parents coefficients 0 12 0

Baseline rates 6t 6t 56t
Total number 6+6t 18+6t 56+56t

with one state corresponding to each assignment of the
components’ states in the SCUP model. Both the MSM
and FM models used the feature mapping φ(x) = x.

We generated datasets of 1,000 trajectories using each of
the 15 models. We then examined how well a model from
each architecture can be trained on each dataset, via a three-
fold cross validation of OOS likelihood. The trajectories
were observed as described in the previous section. All
trained models used five piecewise constant baseline rates.
The number of parameters for the three models is shown in
Table 1, demonstrating that SCUP bridges between the two
extremes.

Figure 5 demonstrates that SCUP is more flexible than the
other two methods, allowing it to represent data generated

by different architectures, while retaining compactness.
MSM exhibits poor learning capabilities for smaller
datasets; this holds true even for data created by a model
with the same architecture, demonstrating overfitting due
to model complexity. The factored model does not suffer
from overfitting, but has limited expressiveness, and thus
cannot capture mutual influences between components.

5.4 ANALYSIS HIV DATA

We evaluated the performance of SCUP by analyzing
real data from a data set containing lab measurements
of HIV patients who took medication on a regular basis,
previously described in (Rosen-Zvi et al., 2008). We
defined models with two components corresponding
to the two main measures of HIV severity, viral load
(VL) and CD4 lymphocytes concentration, as well as
a continuously observed binary absorbing component,
representing survival. The resulting model is similar to the
one described in Figure 1, with the omission of the disease
component, and the addition of a VL→survival arc, which
was added to obtain a fully connected topology. Following
previous works, the CD4 level was dichotomized to have
2 states, using a threshold of 200 (D’Amico et al., 2011).
The VL level was also dichotomized to have 2 states, using
a threshold of 500, as previously done in analyses of this
data (Rosen-Zvi et al., 2008).

For the analysis, we randomly selected 2000 patients whose
VL and CD4 levels were both observed at each observation
point. The resulting dataset contained 5.14 observations
per patient on average (standard deviation 3.37). For every
patient, we included covariates corresponding to age, sex,
and whether the patient had undertaken a different therapy
in the past. Feature mappings consisted of a concatenation
of the covariates, with a binary 0/1 feature for each parent
component. The initial time t=0 was set as the therapy
start time. For patients who underwent several successive
therapies, only observations taken during the period of the
first one were included in the analysis. All patients had
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(a) FM generated data
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(b) SCUP generated data
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(c) MSM generated data

Figure 5: Test likelihoods of data learned by different models.

an observation at time t=0, using the closest measurement
within a month from the therapy start date.

We computed the average OOS log likelihood obtained
via a five-fold cross validation, with increasing numbers
of piecewise constant baseline rates. The results, shown
in Figure 6, clearly demonstrate the powerful effect of
non-homogeneity, and the importance of modeling it
correctly. MSM has an advantage when using a small
number of baseline rates, owing to its richer model, which
can capture richer interaction patterns between the system
components. However, SCUP steadily improves as the
number of baseline rates increases, until it eventually
surpasses MSM. This increase indicates the presence
of strong non-homogeneous dynamics. MSM can also
capture non-homogeneous dynamics, but is hindered by
its large number of parameters. The FM model exhibits
weaker performance than the other methods for every
number of baseline rates tested. This is due to the fact
that it cannot capture the dynamics stemming from mutual
influences between the system components. The decrease
in OOS likelihood for FM when using 16 baseline rates
may stem from overfitting, which occurs because it is
trying to incorrectly capture mutual influences between the
system components via baseline rates.

5.5 ANALYSIS OF DATA FROM DIABETES
PATIENTS

We evaluated SCUP on a large cohort of diabetes patients,
previously described by (Neuvirth et al., 2011). Following
(Neuvirth et al., 2011), we define the main outcome of
interest as the glycated hemoglobin (HbA1c) blood test,
which is a reliable indicator of diabetes severity status.
A higher HbA1c indicates increased risk of developing
complications.

Our goal was to learn the interaction patterns between
the HbA1c level and other potential diabetes biomarkers
commonly measured in routine blood tests. The ability to
predict HbA1c levels from routine blood tests can improve
early detection of the disease progression. To this end,
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Figure 6: Performance of SCUP, FM, and MSM on the HIV
dataset.
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Figure 7: Performance of SCUP, FM, and MSM on the
diabetes dataset.

we defined a SCUP model with binary components for
HbA1c, low-density lipoprotein (LDL), and triglycerides
levels. The two states of each component correspond to
normal and abnormal clinical status, with the thresholds
for HbA1c, LDL, and triglycerides set to 7, 130 and 200,
respectively. We used a fully connected topology, and
included the age and sex of each patient as covariates.

For the analysis, we randomly chose 1,000 patients with
non-missing values for the components of interest at every
observation point. Every patient had 3.25 observations
on average (standard deviation 1.52). Feature mappings
consisted of a concatenation of the covariates, with a



binary 0/1 feature for each parent component. The time
t = 0 for each patient was determined according to the
first observation time.

We computed the average OOS likelihood obtained via
a five-fold cross validation, with increasing numbers of
intervals. The results, shown in Figure 7, demonstrate
that SCUP can scale to rich models without overfitting.
The factored model, although scalable, does not capture
the interactions between components, leading to weaker
prediction power. The MSM model tends to suffer from
overfitting due to its complexity. The lack of increase
in OOS likelihood for increased numbers of intervals
indicates that the components tend to follow homogeneous
dynamics in this dataset. Nevertheless, SCUP does
not overfit when trained with a large number of intervals,
indicating its robustness to the type of underlying dynamics
in the data.

To further investigate the different methods, we examined
the coefficients describing mutual influence between
the system components; these were learned across the
different folds. We examined the models that assumed
one piecewise-constant interval, as they had the best fit for
this data. For every pair of components, we computed the
coefficient describing the influence of one on a transition of
the other. For MSM, we averaged the two corresponding
coefficients over the two possible states of the third
component. The results, shown in Table 2, demonstrate
that SCUP models learned across the different folds are
more consistent with each other, leading to substantially
smaller variance.

The results demonstrate rich interaction patterns across
the components. For example, increased triglycerides
levels are associated with an increase in HbA1C, whereas
increased HbA1C is associated with stabilization of the
triglycerides levels via a reduction of their transition rate.
Such observations cannot be performed directly in FM nor
MSM, due to their lack of modular structure.

6 DISCUSSION

We proposed a proportional modeling scheme for non-
homogeneous multi-component processes, by combing
factorizations of CTBNs with a decomposition dating
back to proportional hazard models. The key modeling
assumption is a decomposition of the process into a
time-dependent non-homogeneous component that does
not depend on the model topology, and a time-independent
component that depends on the model topology and
additional features. This is a natural extension of classic
hazard models, which can be considered as special
SCUP instances with no underlying topology. This
decomposition leads to compact models that can capture
complex dynamics, as well as an efficient learning scheme,
and easily interpretable results.

Table 2: The average coefficients of parent influence on
increase (↑) and decrease (↓) learned in the diabetes dataset,
and the minimum and maximum values obtained across the
five folds.

SCUP MSM

LDL→A1C↑ .17 (.08, .25) -.24 (-.73, .27)
Trig.→A1C↑ .31 (.09, .45) .12 (-.65, .62)
LDL→A1C↓ .09 (.04, .16) -.20 (-.50, .06)
Trig.→A1C↓ -.17 (-.23, .02) -.22 (-.42, .22)
A1C→LDL↑ .34 (.20, .45) 1.15 (.86, 1.31)
Trig.→LDL↑ .57 (.33, .79) .68 (.31, 1.14)
A1C→LDL↓ -.04 (-.23, .14) -.18 (-.98, .33)
Trig.→LDL↓ -.38 (-.49, -.25) .67 (.16, 1.46)
A1C→Trig.↑ -.28 (-.49, -.09) -.51 (-.90, -.37)
LDL→Trig.↑ .82 (.67, .92) -.54 (-1.13, .25)
A1C→Trig.↓ -.59 (-.71, -.50) -1.24 (-1.82, -.89)
LDL→Trig.↓ .63 (.40, .82) -.72 (-1.79, .09)

Our theoretical and empirical results demonstrate that non-
homogeneous dynamics can be captured accurately using
a piecewise homogeneous approximation. It would be
interesting to compare this baseline rates representation to
parametric forms. Learning such models is straightforward
and can be performed by plugging in the partial derivative
of a specific parametric form to the gradient in Equation 6.

Baseline rates can be regularized via spline approximations
(Commenges, 2002; Joly et al., 2009; Farewell and Tom,
2012) or Gaussian process priors (Rao and Teh, 2011a).
Splines can also be naturally adapted to regularize
piecewise constant rates. This can be done by bounding
the difference between rates in adjacent time intervals, or
the rate of change of this difference, which is analogous
to bounding the first and second derivative, respectively.
Regularization of other model parameters, such as the
covariate or parents coefficients, can potentially be handled
using standard regularization methods such as elastic nets,
as recently proposed for Cox regression (Simon et al.,
2011).

In this work we studied moderately sized systems.
Adapting approximate inference methods developed for
CTBNs that support non-homogeneity, such as (Rao and
Teh, 2011b) or (El-Hay et al., 2010), could scale up this
framework to arbitrarily large systems.
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