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Abstract

Lifted inference approaches can considerably
speed up probabilistic inference in Markov ran-
dom fields (MRFs) with symmetries. Given ev-
idence, they essentially form a lifted, i.e., re-
duced factor graph by grouping together indistin-
guishable variables and factors. Typically, how-
ever, lifted factor graphs are not amenable to off-
the-shelf message passing (MP) approaches, and
hence requires one to use either generic opti-
mization tools, which would be slow for these
problems, or design modified MP algorithms.
Here, we demonstrate that the reliance on mod-
ified MP can be eliminated for the class of MP
algorithms arising from MAP-LP relaxations of
pairwise MRFs. Specifically, we show that a
given MRF induces a whole family of MRFs of
different sizes sharing essentially the same MAP-
LP solution. In turn, we give an efficient algo-
rithm to compute from them the smallest one that
can be solved using off-the-shelf MP. This incurs
no major overhead: the selected MRF is at most
twice as large as the fully lifted factor graph. This
has several implications for lifted inference. For
instance, running MPLP results in the first con-
vergent lifted MP approach for MAP-LP relax-
ations. Doing so can be faster than solving the
MAP-LP using lifted linear programming. Most
importantly, it suggests a novel view on lifted in-
ference: it can be viewed as standard inference in
a reparametrized model.

1 INTRODUCTION

Probabilistic logical languages [5] provide powerful for-
malisms for knowledge representation and inference. They
allow one to compactly represent complex relational and
uncertain knowledge. For instance, in the friends-and-
smokers Markov logic network (MLN) [17], the weighted

formula 1.1 : fr(X, Y)⇒ (sm(X)⇔ sm(Y)) encodes that
friends in a social network tend to have similar smoking
habits. Yet, performing inference in these languages is ex-
tremely costly, especially if it is done at the propositional
level. Instantiating all atoms from the formulae in such
a model induces a standard graphical model (potentially)
with symmetries, i.e., with repeated factor structures for all
grounding combinations. Recent advances in lifted proba-
bilistic inference [16] such as [3, 15, 1, 14, 18] (see [9] for
an overview that also covers exact inference approaches),
have rendered many of these large, previously intractable
models quickly solvable by exploiting the induced symme-
tries. For instance, lifted message-passing (MP) approaches
such as [19, 10, 22, 8, 1] have been proven successful in
several important AI applications such as link prediction,
social network analysis, satisfiability and boolean model
counting problems. Lifted MP approaches such as lifted
Belief Propagation (BP) first automatically group together
variables and factors of the graphical model into supervari-
ables and superfactors if they have identical computation
trees (i.e., the tree-structured “unrolling” of the graphical
model computations rooted at the nodes). Then, they run
modified MP algorithms on this lifted network. These mod-
ified MP algorithms, however, can also be considered a
downside of today’s lifted MP approaches. They require
more information than is actually captured by a standard
factor graph. More precisely, lifted MP will typically expo-
nentiate a message from a supervariable to a superfactor by
the count of ground instances of this superfactor, which are
neighbors to a ground instance of the supervariable. Since
these multi-dimensional counts have to be stored in the net-
work, the lifted factor graph becomes a multigraph (i.e., a
factor graph with edge counts and self-loops), in contrast
to a standard factor graph where no multiedges or loops are
allowed. Hence, lifted factor graphs are not amenable to
off-the-shelf MP approaches. Instead, lifted MP has its own
ecosystem of lifted data structures and lifted algorithms. In
this ecosystem, considerable effort is required to keep up
with the state of the art in propositional inference.

In this paper we demonstrate that the reliance on modified
MP can be eliminated for the class of MP algorithms aris-



ing from linear programming (LP) relaxations of MAP in-
ference (MAP-LPs) of pairwise MRFs. MAP-LPs approx-
imate the MAP problem as an LP with polynomially many
constraints [25], which is therefore tractable, and have sev-
eral nice properties. First, they yield an upper bound on the
MAP value, and can thus be used within branch and bound
methods. Second, they provide certificates of optimality,
so that one knows if the problem has been solved exactly.
Third, the LP can be solved using simple algorithms such
as coordinate descent, many of which have a nice message
passing structure. [12] Fourth, the LP relaxations can be
progressively tightened by adding gradually constraints of
a higher order. This has been shown to solve challenging
MAP problems [20].

Indeed, it is already known that MAP-LP relaxations of
MRFs can be lifted efficiently [13, 3, 14], and the resulting
lifted LPs can be solved using any off-the-shelf LP solver1.
Unfortunately, however, the liftings employed there may
not preserve the MRF structure of the underlying LP. That
is, if we lift a MAP-LP, we end up with constraints that do
not conform to the MAP-LP template as already observed
by Bui et al. (see Section 7 in [3]). In turn, existing MP
solvers for MAP-LPs such as MPLP and TRW-BP — that
have been reported to often solve the MAP-LP significantly
faster than generic LP solvers — will not work without
modifying them. Doing so, however, takes a lot effort (if
it is at all possible): it has do be done for each existing MP
approach separately; there is no general methodology for
doing this, and the extra coding itself is error prone. Hence
this “upgrading methodology” may significantly delay the
development of lifted MP approaches. Fortunately, as we
demonstrate here, the theory of lifted LPs provides us with
a way around these issues. The main insight is that a given
MRF induces actually a whole family of MRFs of different
sizes sharing essentially the same MAP-LP solution. From
these, one can select the smallest one where MAP beliefs
can be computed using off-the-shelf MP approaches. These
beliefs then are also valid (after a simple transformation)
for the original problem. Moreover, this incurs no major
overhead: the selected MRF is at most twice as large than
the fully lifted factor graph. In this way we eliminate the
need for modified MP algorithms.

To summarize, our contributions are two-fold. (1) By mak-
ing use of lifted linear programming, we show that LP-
based lifted inference in MRFs can be formulated as ground
inference on a reparametrized MRF. (2) We give an effi-
cient algorithm that given a ground MRF finds the smallest
reparametrized MRF and show that its size is not more than
twice the size of the fully lifted model.

1A similar approach has been proposed for exact MAP by
Noesner et al. [15]. Moreover, Sarkhel et al. [18] have recently
shown that MAP over MLNs can be reduced to MAP over Markov
networks if the MLN has very restrictive properties. In contrast
our approach is generic for MAP-LP relaxations.

This has several implications for lifted inference. For in-
stance, using MPLP [6] results in the first convergent MP
approach for MAP-LP relaxations, and using other MP ap-
proaches such as TRW-BP [24] actually spans a whole fam-
ily of lifted MP approaches. This suggests a novel view on
lifted probabilistic inference: it can be viewed as standard
inference in a reparametrized model.

We proceed as follows. We start off with reviewing MAP-
LP basics. Then, we touch upon equitable partitions and
lifted LPs, and use them to develop the reparametrization
approach. Before concluding we provide empirical illus-
trations, which support our theoretical results.

2 BACKGROUND

We start off by introducing MAP inference and its LP re-
laxation. Then we will touch upon equitable partitions and
recall how they can be used in lifted linear programming.

MAP Inference in MRFs. Let X = (X1, X2, . . . , Xn)
be a set of n discrete-valued random variables and let
xi represent the possible realizations of random variable
Xi. Markov random fields (MRFs) compactly represent a
joint distribution over X by assuming that it is obtained
as a product of functions defined on small subsets of vari-
ables [11]. For simplicity, we will restrict our discus-
sion to a specific subset of MRFs, namely Ising models
with arbitrary topology2. In an Ising model I = (G,θ)
on a graph G = (V,E), all variables are binary, i.e.,
Xi ∈ {0, 1}. Moreover, in an Ising model G must be
a simple graph, i.e. G must have no self-loops or multi-
ple edges between vertices. The model is then given by:
p(x) ∝ exp

[∑
ij∈E θijxixj +

∑
i θixi

]
. In the follow-

ing we will find it convenient to represent Ising models as
factor graphs. The factor graph of an Ising model combines
the structure and parameters of the model into a single bi-
partite graph. In this graph we have a variable vertex vi
for each probabilistic variable Xi and a factor vertex φi
for each θi and φij for θij . Moreover, φi is connected to
vi and φij to vi and vj . While for ground Ising models,
the factor graph does not capture any additional informa-
tion, it makes the presentation of lifted structures simpler
and reveals the essence of the conflict between lifting and
message-passing. Hence, from now on when we refer to
an Ising model I = (G,θ), by G we will mean the corre-
sponding factor graph.

The Maximum a-posteriori (MAP) inference problem is
defined as finding an assignment maximizing p(x). This
can equivalently be formulated as the following LP

µ∗ = argmax
µ∈M(G)

∑
ij∈E

µijθij +
∑

i
µiθi = θ · µ (1)

2The shorter description of MAP-LP for Ising models makes
the presentation easier. Our approach, however, can be applied to
any pairwise MRF with only minor modifications.
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Figure 1: Lifted Structures: Example of a factor graph and
its partitions and quotients. (a) A factor graph G (variables
in circles, factors in squares) and its coarsest EP P repre-
sented by the colors. (b) The degree DM matrix of G ac-
cording to P . (c) The corresponding quotient graph G/P .
(d) The factor quotient G o P .

where the set M(G) is known as the marginal poly-
tope [25]. Even though Eq. 1 is an LP, the polytopeM(G)
generally requires an exponential number of inequalities
to describe [25], and is NP-complete to maximize over.
Hence one typically considers tractable relaxations (outer
bounds) of M(G). The outer bounds we consider are
equivalent to the standard local consistency bounds typi-
cally considered in the literature (e.g., see [25] Eq. 8.32).
However, we present them in a slightly different manner,
which simplifies our presentation. Define the following set
in [0, 1]|V |+|E|:

L(G) =

 µ ≥ 0 ,∀φij ∈ G :
α(ij) ≡ µij ≤ µj , β(ij) ≡ µij ≤ µi;
γ(ij) ≡ µi + µj − µij ≤ 1

 .(2)

The polytope L(G) is sometimes referred to as the local
marginal polytope [21]. The vectors with {0, 1} coordi-
nates in L(G) are the vertices of theM(G). In other words
M(G) is the convex hull of L(G) ∩ {0, 1}|V |+|E|. We call
the relaxed inference problem over L(G) MAP-LP. Note
that whenever M(G) and L(G) do not coincide, L(G)
(which is an outer bound onM(G)) has fractional vertices
and the resulting LP may have optima which are not valid
assignments. However, all integral points in L(G) corre-
spond to valid assignments, thus if the solution µ∗ happens
to be integral, then this µ∗ solves the MAP problem.

Equitable Partitions (EPs) of Graphs and Matrices.
Lifted inference approaches essentially work with reduced
models by grouping together indistinguishable variables
and factors. In other words, they exploit symmetries. For
linear programs, Mladenov et al. [13, 14] have shown that
such symmetries can be formally captured by equitable par-
titions of weighted graphs and matrices. Since these parti-
tions also play an important part in our argument we will
next review the most relevant concepts and results.3 For an
illustration, we refer to Fig. 1.

3Note, however, that the definitions we present here are tai-
lored towards bipartite structures (e.g. factor graphs with variables
and factors, matrices with rows and columns) for the sake of clar-
ity. They are not the most general ones found in literature.

Let U = V ∪ F be a set consisting of two kinds of ob-
jects, e.g. the variables and factors of a factor graph as
in Fig. 1(a), or the row and column indices of a matrix.
A partition P = {P1, . . . , Pp} ∪ {Q1, . . . Qq} is a fam-
ily of disjoint subsets of U , such that

⋃p
i=1 Pi = V and⋃q

i=1Qi = F . In Fig. 1 the partition is indicated by the col-
ors of the nodes. A convenient data structure for performing
algebraic operations using partitions is the incidence matrix
B ∈ {0, 1}|U |×|P|. The incidence matrix shows the assign-
ment of the elements of U to the classes of P – it has one
row for every object and one column for every class. The
entry in the row of object u and the column of class Pp is

Bup = 1 if u ∈ Pp and 0 if u /∈ Pp .

We shall also make use of the normalized transpose of B,
which we denote by B̂ ∈ Q|P|×|U | and define as

B̂pu = 1/|Pp| if u ∈ Pp and 0 if u /∈ Pp .

Algebraically, B and B̂ are related as B̂ = (BTB)−1BT ,
i.e., B̂ is the left pseudoinverse of B: B̂B = I|P|.

The partitions we consider will never group elements of V
with elements in F . Thus, the matrix B will always be of
the form B =

(BP 0
0 BQ

)
, where BP and BQ correspond to

the partitions of V and F respectively. We shall also use
the notation B = (BP , BQ) to refer to this block diagonal
matrix, and similarly B̂ = (B̂P , B̂Q).

Let u ∈ R|U | be a real vector composed as u = [c,b]T , c ∈
R|V |,b ∈ R|F |. The values of u can be thought of as la-
bels for the elements of U . We say that a partition P re-
spects u if for every x, y ∈ U that are in the same class
of P , we have ux = uy . Note that if P respects u, then
(cTBP )i = |Pi|cx where x is any member of Pi (and sim-
ilarly for BQ,b). Moreover, (B̂P c)i = cx where x is any
member of Pi (and similarly for B̂Q,b).

We next define a special class of partitions of graphs and
matrices, which play a central role in our argument. Let us
first consider a bipartite graph G = (V ∪ F,E). Here V
and F are the two sides of the graph, and E are the edges
connecting them. The neighbors of a node v in this graph
are denoted by nb(v).

Definition 1 (Equitable partition of a bipartite graph).
An equitable partition of a bipartite graph G = (V ∪
F,E) given a vector u ∈ R|V |+|F | is a partition P =
{P1, . . . , Pp, Q1, . . . Qq} of the vertex set V and F such
that (a) for every pair v, v′ ∈ V in some Pm, and for ev-
ery class Qn, |nb(v) ∩ Qn| = |nb(v′) ∩ Qn|; (b) for ev-
ery pair f, f ′ ∈ F in some Qm, and for every class Pn,
|nb(f) ∩ Pn| = |nb(f ′) ∩ Pn|. Furthermore, P must re-
spect the vector u.

If we are dealing with matrices, the above definition can
be extended. Essentially, we view a matrix A ∈ Rm×n

as a weighted graph over the set {row[1], . . . , row[m]} ∪



{col[1], . . . , col[n]}, where Aij is the weight of edge be-
tween row[i] and col[j]. More precisely:
Definition 2 (Equitable partition of a matrix). An eq-
uitable partition of a matrix A ∈ Rm×n given a vector
u is a partition P = {P1, . . . , Pp, Q1, . . . Qq} of the sets
V = {row[1], . . . , row[m]} and F = {col[1], . . . , col[n]}
s.t. (a) for every pair v, v′ ∈ V in some Pm, and for ev-
ery class Qn,

∑
f∈Qn

Avf =
∑

f∈Qn
Av′f and (b) for

every pair f, f ′ ∈ F in some Qm, and for every class Pn,∑
v∈Pn

Avf =
∑

v∈Pn
Avf ′. In addition, P must respect

u.

Note that Def. 1 is an instance of Def. 2 when we take as A
the (biparite) adjacency matrix of a graphG. An illustration
of an equitable partition of a graph is given Fig. 1(a).

One notable kind of equitable partitions (EPs) are orbit par-
titions (OPs) – the partitions that arise under the action of
the automorphism group of a graph or matrix. Their role
in MAP inference has been studied in [3]. Although OP-
based lifting is indeed practical in a number of cases or
even the only applicable one, in particular for exact infer-
ence approaches, computing them is a GI-complete prob-
lem. Because of this we will stick to EPs which are more
efficiently computable and yield more reduction (to be dis-
cussed shortly). Still, we would like to stress that our result
applies to any EP, in particular to OPs.

Using an EP of a graph or a matrix, we can derive con-
densed representations of that graph or matrix using the
partition. This is the essence of lifting: the reduced repre-
sentation is as good as the original representation for some
computational task at hand, while (potentially) having a
significantly smaller size. A key insight that we exploit
here is that there is a one-to-one relationship between EPs
of the factor graph of an Ising model (as in Def. 1) and the
EPs of its MAP-LP matrix (as in Def. 2).

One useful representation of a graph and its equitable par-
tition is via a degree matrix, as illustrated in Fig. 1(b). The
degree matrix, DM(G,P), has |P| × |P| entries, where
each entry represents how members of different classes in-
teract. More precisely, DM(G,P)ij = |nb(u)∩Pj |, where
u is any element of Pi. Due to the bipartiteness of G, this
matrix will have the block form DM(G,P) =

(
0 DV

DF 0

)
,

where DV represents the relationship of the P -classes to
the Q-classes and DF vice-versa. As a shorthand, we use
the notation DM = (DF,DV). Graphically (see Fig. 1(c)),
a degree matrix can be visualized as a quotient graph
G/P , which is a directed multi-graph. In G/P there is a
node for every class of P . Given two nodes u, v we have
|nb(u) ∩ Pj |, u ∈ Pi many edges going from u to v.
DM(G,P) is essentially the weighted adjacency matrix of
G/P .

Later on, we will be interested in the interaction of the
factors with variables rather than the other way around.
Therefore, we introduce the factor quotient graph G o P of

G, which corresponds only to the DF-block of DM(G,P)
as shown in Fig. 1(d). That is, we draw only edges going
from factor classes to variable classes, but not the other way
around. Moreover, as our MRFs are pairwise, a factor class
can have a degree of at most two to any variable class. We
will thus not write numbers on top of the arcs, but draw
double or single edges. To stay consistent with existing ter-
minology, we call the nodes ofG oP corresponding to vari-
able classes of G “supervariables”, and factor-class nodes
“superfactors”. Note that if P is the OP of G, the resulting
factor quotient is the “lifted graph” considered in [3].

Finally, to compute EPs one can use color-passing (also
known as “color refinement” or “1-dimensional Weisfeiler-
Lehman”). It is a basic algorithmic routine for graph iso-
morphism testing. It iteratively partitions, or colors, ver-
tices of a graph according to an iterated degree sequence
in the following fashion: initially, all vertices get their la-
bel in G as color, and then at each step two vertices that
so far have the same color get different colors if for some
color c they have a different number of neighbors of color c.
The iteration stops if the partition remains unchanged. For
matrices, a suitable extension was introduced in [7]. The
resulting partition is called the coarsest equitable partition
(CEP) of the graph, and can be computed asynchronously
in quasi-linear time O((n+m) log n) (e.g., see [2]).

Lifted Linear Programming and Lifted MAP-LPs. By
computing an EP of the matrix of a linear program (LP)
one can derive a smaller but equivalent LP – the “lifted”
LP – whose optimal solutions can easily be translated back
to a solution of the original LP [13, 7]. This will be key in
what follows, and is reviewed below.

Let L = (A,b, c) be a linear program, corresponding to
the optimization problem x∗ = argmaxAx≤b cTx.

Theorem 3 (Lifted Linear Programs [7]4). Let P =
{P1, . . . , Pp} ∪ {Q1, . . . , Qq} be an equitable partition
with incidence matrix B = (BP , BQ) of the rows and
columns ofA, which respects the vector u = [c,b]T . Then,
L′ = (B̂QABP , B̂Qb, B

T
P c) is an LP with fewer variables

and constraints. The following relates L and L′:

(a) If x′ is a feasible point in L′, then BPx
′ is feasible in

L. If in addition x′ is optimal in L′, BPx
′ is optimal in L

with the same objective value.
(b) if x is a feasible point in L, then B̂Px is feasible in L′.
If in addition x is optimal in L, B̂Px is optimal in L′ with
the same objective value.

In previous works, only part (a) has been exploited. That
is, as illustrated in Fig. 2, given any LP we construct L′

using equitable partitions, solve it (often faster than the
original one), and finally transfer the solution to the larger
problem by virtue of (a) above. This “standard” way ap-
plies to MAP-LPs as follows (see [13, 7] for more details).

4We restrict the theorem to what is relevant for the discussion.
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Figure 2: Illustration of lifting MAP-LPs. (a) A factor
graph and the corresponding MAP-LP; (b) A factor quo-
tient and the corresponding lifted MAP-LP. This exam-
ple also illustrates that the lifted MAP-LP in (b) is not
amenable to standard MP anymore, since the constraint
2µP − µQ ≤ 1 does not appear in standard MAP-LPs.
However, note that the lifted structure is identical to the
one in Fig. 1(d), yet the original factor graph in (a) above is
smaller. That is, factor graphs of different sizes may share
the (structurally) same lifted MAP-LP.

Given an MRF with graph G and parameter θ, which we
denote by I = (G,θ), denote its standard MAP-LP relax-
ation by the LP defined via (A,b, c). To obtain a poten-
tially smaller LP, we calculate the equitable partition of the
LP, and its corresponding B, B̂ matrices. The LP defined
via (B̂QABP , B̂Qb, B

T
P c) is then equivalent to the origi-

nal MAP-LP in the sense of Thm. 3. We refer to this LP as
LMAP-LP(I).

Unfortunately, as we will show in the next section, LMAP-
LP(I) is not a standard MAP-LP. In turn, it is not amenable
to standard message passing based MAP-LP solvers. Fortu-
nately, by making heavily use of part (b) of Thm. 3 as well,
we will show how to produce LPs that have this special
structure. This results “lifting by reparametrization”.

3 LIFTING BY REPARAMETRIZATION

To introduce the “lifting by reparametrization” approach
we proceed in two steps. First, we introduce the class of
all MRFs whose MAP-LPs are equivalent, in the sense that
solving one such LP results in a solution to all LPs in the
class. Then, we will show how to construct the smallest
such equivalent MRFs for a given MRF in the class.

LP-equivalence of MRFs. We start off by discussing the
structure of the lifted MAP-LP (LMAP-LP). The main pur-
pose is to illustrate why lifting generally does not preserve
the message-passing structure of the LP (see also Fig. 2).
Then, as an alternative, we introduce an equivalence the-
orem in the spirit of Thm. 3. As illustrated in Fig. 3, in-
stead of relating ground (original) and lifted LPs, it re-
lates ground LPs of different sizes that have the same lift-
ing. This is the main insight underlying our “lifting by
reparametrization” approach: instead of lifting the ground
MAP-LP of an MRF at hand, we replace it by the ground

MAP-LP(J) MAP-LP(I)

LMAP-LP(J) LMAP-LP(I)

liftτ ′ = B̂J
P τ

τ ′ = µ′
identical

µ = BI
Pµ

′unlift

Figure 3: Commutative diagram established by Thm. 6 un-
derlying our reparametrization approach to lifted inference.

LP of another equivalent MRF, hopefully of much smaller
size. In the following we will now formally define what
“equivalence” means here.

Our starting point is to note that LMAP-LP(I) only depends
on I via the structure ofG oP . To provide the formal result,
we need a few more notations. First, the graph G o P has
nodes corresponding to groups of variables in the original
factor graph, and nodes corresponding to groups of factors
in the original factor graph. We denote those by V (G o P)
and F (G o P) respectively. Second, G o P is a multigraph
and may have multiple edges between its nodes. We define
nb(Q) to be the neighbors of Q ∈ F (G o P) in G o P , with
repetitions. In other words, if there are two edges between
P,Q ∈ G o P , then nb(Q) will contain P twice.

Proposition 4. Let P = {P1, . . . , Pp} ∪ {Q1, . . . , Qq} be
an equitable partition of the variables and factors of the
MRF specified by I = (G,θ). Let G o P be the factor quo-
tient of I . Then, LMAP-LP(I) can be written as:

µ′∗ = argmax
µ′∈L′(G)

∑
P∈V (GoP)

θP |P |µP +
∑

Q∈F (GoP)

θQ|Q|µQ .

Where θP , θQ are the parameters of I for the correspond-
ing partition elements. The constraints L′(G) are defined
as the set of µ ≥ 0 such that:

∀P, P ′ ∈ V (G o P), Q ∈ F (G o P)
s.t. P, P ′ ∈ nb(Q) :

α′(Q) ≡ µQ ≤ µP ; β′(Q) ≡ µQ ≤ µP ′ ;
γ′(Q) ≡ µP + µP ′ − µQ ≤ 1

 (3)

Proof. We omit a detailed proof of this proposition due to
space restrictions. Essentially, the argument is that the re-
formulation of Sec. 7 in [3] holds for any equitable parti-
tion, not just the orbit partition of an MRF. In this case, the
Q-classes generalize edge orbits while the P -classes gen-
eralize variable orbits. �

This proposition tells us that we can construct L′(G) by the
following procedure: (1) we instantiate an LP variable µP

for every variable class P ∈ V (GoP) (i.e., every supervari-
able) (2) we instantiate an LP variable µQ for every factor
class Q ∈ F (G o P) (i.e. superfactor); (3) for every pair



Algorithm 1: Solving MRF I using an equivalent MRF J
Input: Ground MRF I and LP-equivalent MRF J
Output: MAP-LP(I) solution µ

Solve MRF J , i.e., compute1

τ = argmaxµ MAP-LP(J);
Lift the solution τ to LMAP-LP(J). That is, compute2

τ ′ = B̂J
P τ (Thm. 3(b));

Recover solution of I , i.e., compute µ = BI
P τ
′3

(Thm. 3(a));

of classes P,Q, if some ground variable xi ∈ P is adja-
cent to some ground factor φij ∈ Q, we add the constraint
µQ ≤ µP . For every triplet P, P ′, Q such that there exist
xi ∈ P, xj ∈ P ′ adjacent to φij ∈ Q, we add the constraint
µP + µP ′ − µQ ≤ 1.

Observe that the factor quotient graph G o P actually con-
tains exactly the necessary and sufficient information to
construct L′(G): it gives us the number of classes and the
relations between them. Hence, it would seem that L′(G)
is just L(G o P), and we are done. Unfortunately this is not
exactly the case, and we have to be a little bit more careful.

Recall our running example from Fig. 2. There can be a fac-
tor φij in some Q, whose adjacent variables xi, xj fall into
the same class, P = P ′. In terms of constraints, the cor-
responding triplet P, P ′, Q, with P = P ′ yields the con-
straint 2µP − µQ ≤ 1. Graphically, this situation occurs
wheneverGoP contains a double edge. This also happens in
our running examples (see Fig. 2(b)). Unfortunately, such
constraints have no analogue in MAP-LP(I)!

How can we deal with this? Assume for the moment that for
any ground factor φij , P(i) 6= P(j), in other words G o P
happens to be a simple graph (no edge connects at both
ends to the same vertex, and there is no more than one edge
between any two different vertices). Then we can compute
a new weight vector θ′ ∈ Rq as θ′Q = |Q|θQ, θ′P = |P |θP
(cf. Eq. 3).In this case, the MRF I ′ = (G o P,θ′) would
indeed be a smaller MRF, whose MAP-LP is identical to
the LMAP-LP of I . This enables us to view lifting as
reparametrization: (1) we compute G o P from G; (2) in-
stead of solving LMAP-LP(I), we solve MAP-LP(I ′) using
any solver we want, including message-passing algorithms
such as MPLP, TRWBP, among others; (3) because of the
equivalence, we treat the solution of MAP-LP(I ′) as a so-
lution of LMAP-LP(I ′) and unlift it using Thm. 3(a).

While our assumption does not hold in general (see e.g.
Fig. 1) — and we will indeed account for it below —
the procedure just outlined above is the main idea un-
derlying “lifting by reparametrization” method. Since the
LMAP-LP of I will potentially contain constraints such
as 2µP − µQ ≤ 1, it will not be the MAP-LP of any
simple graph. So instead, we will look for something

else, namely a proper (potentially much smaller) MRF J ,
where instead of LMAP-LP(I) =MAP-LP(J) we ask that
LMAP-LP(I) = LMAP-LP(J) . We call any pair of MRF
where this holds LP-equivalent.

Definition 5 (LP equivalent MRFs). Two MRFs I =
(G,θI) and J = (H,θJ) having simple graphs are LP-
equivalent if we can find an equitable partition P of G
with incidence matrix B = (BP , BQ) and an equitable
partition P ′ of H with incidence matrix B′ = (B′P , B

′
Q)

such that LMAP-LP(I) := (B̂T
QABP , B̂

T
Qb, B

T
P c) =

( (B̂′Q)
TA′B′P , (B̂

′
Q)

Tb′, (B′P )
T c′) =: LMAP-LP(J).

Then, we apply the lifted equivalence of Thm. 3(b) and are
done. As summarized in Alg. 1, we solve the smaller MAP-
LP(J) using any MRF-structure-aware LP solver. We ob-
tain an optimal solution of LMAP-LP(J) using BT

P ′ as pre-
scribed by Thm. 3(b). Due to the lifted equivalence, this
solution is also a solution of LMAP-LP(I), hence we re-
cover (or “unlift”) the solution with respect to I using BP .
In doing so, we end up with an optimal solution of MAP-
LP(I). This procedure is outlined in Fig. 3. We will shortly
prove its soundness.

Theorem 6. Let I and J be two LP-equivalent MRFs of
possibly different sizes. Then, (A) if τ is feasible in MAP-
LP(J), µ = BP B̂

′
P τ is feasible in MAP-LP(I). Moreover,

if τ is optimal, µ is optimal as well. (B) if µ is feasible
in MAP-LP(I), τ = B′P B̂Pµ is feasible in MAP-LP(J).
Moreover, if µ is optimal, τ is optimal as well.

Proof. We prove only (A) due to the symmetry of the state-
ment. Let τ be feasible in MAP-LP(J). By Thm. 3(b), τ ′ =
B′P τ is feasible in LMAP-LP(J). Due to LP-equivalence,
LMAP-LP(J) = LMAP-LP(I), τ ′ is also a solution to
LMAP-LP(I). Now, we unlift τ ′ with respect to LMAP-
LP(I). Due to Thm. 3(b), µ = BP (B̂

′
P )τ is feasible in

MAP-LP(I). Moreover, if τ is optimal in MAP-LP(J),
Thm. 3 tells us that optimallity will hold throughout the
entire chain of LPs. �

To summarize our argument so far, Thm. 6 provides us
with a way to exploit the MAP-LP equivalence between
MRFs of different sizes. What is still missing is a way to
efficiently construct such smaller LP-equivalent MRFs as
input to Alg. 1. We will now address this issue.

Finding equivalent MRFs. So far we discussed the equiv-
alence of MRFs of different sizes in terms of their (lifted)
MAP-LPs. Making use of our result, however, requires ef-
ficient algorithm to find LP-equivalent MRFs of consider-
ably smaller size. Given an MRF I and its EP, Alg. 2 finds
the smallest LP-equivalent MRF I ′ in linear time. Next to
illustrating Alg. 2 and proving that it is sound, we will also
show that the size of I ′ is at most 2|G o P|.

Let I = (G,θ) be an MRF and P be an EP of its vari-
ables and factors. We will introduce the algorithm in two
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Figure 4: Illustration of “lifted inference by reparametrization” as summarized in Alg. 2 and used as input to Alg. 1. (a)
input: a graph G and its coarsest equitable partition P; (b) the factor quotient G o P and the corresponding degree matrix;
(c) Step (A): representing all degree 2 factors and the corresponding degree 2 variables. (d) Step (B): instantiating degree
1 factors adjacent to degree 2 variables; (e) Step (C): instantiating the remaining classes. After this step we terminate and
output the resultH; (f) soundness:H oR is identical toG oP . Observe that the upper-right corner of DM(G,P) is different
from that of DM(H,R). (Best viewed in color.)

steps: first, we discuss how to obtain a simple graph G′

which gives the structure of an LP-equivalent MRF, i.e.
L′(G) = L′(G′). Then we show how to find weights θ′

for this graph, such that the MRF I ′ = (G′,θ′) is LP-
equivalent to I . Finally, we will show correctness and min-
imality of our approach.

Recall that in Eq. 3 the lifted Ising polytope of LMAP-
LP(I) is fully defined by the factor quotientG oP . Hence, a
necessary and sufficient condition for LP-equivalence (re-
garding the constraints of the LP, we will deal with the ob-
jective shortly) in MRFs is that the corresponding graphs
exhibit the same factor quotients for some equitable parti-
tions. Thus, the problem of finding an LP-equivalent struc-
ture boils down to finding G′ such that G o P = G′ o P ′
for some partition P ′. Moreover, to maximize the compres-
sion, we want P to be the coarsest EP ofG (resulting in the
smallest possible G oP) and that G′ is the smallest possible
LP-equivalent MRF. Let us now see how to find G′. As a
running example, we will use the factor graph in Fig 4(a).

Suppose G o P is given, e.g. computed using color-
refinement. For our running example, G o P is shown in
Fig. 4(b). Let us divide the superfactors and supervariables
of G o P into classes based on their connectivity. A super-
factor connected to a supervariable via a double edge is
called a (2)-superfactor. In Fig. 4(b), these are the cyan
and orange superfactors. Correspondingly, we call a vari-
able connected to a superfactor via a double edge a (2)-
supervariable (red and yellow in Fig. 4(b)). Next, a super-
factor connected to at least one (2)-supervariable via a sin-
gle edge is called a (1,2)-superfactor (violet and pink in
Fig. 4(b)). Finally, all other superfactors and supervariables
are (1)-superfactors and (1)-supervariables respectively
(e.g. the green supervariable).

We then computeG′ in the following way as also illustrated
in Fig. 4(c)-(e). We start with an empty graph. Then, Step

(A) as illustrated in Fig. 4(c) consists of adding for every
(2)-superfactor inG oP exactly one representative factor to
G′. Furthermore, for every (2)-supervariable, we add two
representatives in G′ and connect them to the correspond-
ing (2)-superfactor representatives whenever the supern-
odes they represent are connected in G o P . In Step (B),
see Fig. 4(d), for every (1, 2)-superfactor, we instantiate
two representatives. Moreover, for every (2)-supervariable
(all of them are already represented in G′), we match
the two (1, 2)-superfactor representatives to the two (2)-
supervariable representatives whenever the represented su-
pernodes are connected inGoP . Finally, Step (C) as shown
in Fig. 4(e) introduces one representative for every other
supernode and connects it to other representatives based on
G o P . If it happens that the represented supernode is con-
nected to a (2)-supervariable or (1, 2)-superfactor in G o P ,
we connect the representative to both representatives of the
corresponding neighbor.

This is summarized in Alg. 2 and provably computes a
minimal structure of an LP-equivalent MRF. Finally, we
must compute a parameter vector for I ′ to facilitate LP-
equivalence. Suppose P ′ is the EP of G′ induced by Alg. 2
(the partition which groups nodes inG′ together if they rep-
resent the same supernode of G o P). Let Q be any factor
class in P andQ′ be the corresponding class in P ′. We then
compute the weight θQ′ of the factors φ′ ∈ Q′ of I ′ as

θ′Q′ = (|Q|/|Q′|)θQ , (4)

where θQ is the weight associated with the classQ inP (re-
call Prop. 4). We now argue that the resulting Ising model
I ′ = (G′,θ′) is LP-equivalent to I = (G,θ).

Theorem 7 (Soundness). I ′ = (G′,θ′) as computed
above is LP-equivalent to I = (G,θ).

Proof. Following Def. 5 we must show that given I and
its EP P , there is a partition P ′ of I ′ such that the lifted



Algorithm 2: Computing the smallest LP-equivalent MRF.
Input: Fully lifted factor graph G o P of G
Output: G′ such that ∃P ′ : G′ o P ′ = G o P .

Initialize G′ ← ∅, i.e., the empty graph;1

/* Step (A) Treat double edges */

for every (2)-superfactor Q in G o P with neighboring2

(2)-supervariable P do
Add a factor q representing Q to G′;3

Add two variables p, p′ representing P in G′ and4

connect them to the factor q;
end5

/* Step (B) To preserve degrees, treat now single

edges in G′ incident to double edges */

for every (1,2)-superfactor Q in G o P do6

Add two factors q, q′ representing Q to G′;7

Connect q to p and q′ to p′ where p, p′ are the8

representatives of a (2)-supervariable P in G o P
that is neighboring Q;

end9

/* Step (C) Add remaining nodes and edges to G′
*/

for all supervariables variables P and superfactor Q in10

G o P not represented in G′ so far do
Add a single variable p resp. factor q to G′;11

Connect p to all representatives of superfactor Q12

neighboring to P in G o P;
end13

LPs are equal. We take the partition P ′ to be the one in-
duced by Alg. 2. P ′ is equitable on G′ by construction: we
can go through Alg. 2 to verify that every two nodes in G′

representing the same supernode of G o P are connected
to the same number of representatives of every other su-
pernode of G o P (we omit this due to space restrictions).
Now, to show that LMAP-LP(I) has the same constraints
as LMAP-LP(I ′), we need G o P = G′ o P ′. To see that
this holds, observe that Alg. 2 connects p to q in G′ if only
if P is connected to Q in G o P: if Q is a (2)-superfactor,
P is a (2)-supervariable – q will be connected to p in Step
(A). If P is a (2)-supervariable and Q is (1, 2)-superfactor,
p and q will be connected in Step (B). If Q is (1, 2)- of a
(1)-superfactor and P is a (1)-supervariable, p and q will
be connected in Step (C). There are no other possible com-
binations. Hence, as P ′ consists of all representatives of P
and Q′ consists of all representatives of Q, P ′ and Q′ are
connected in G′ o P ′ iff P is connected to Q. Moreover,
representatives of (2)-superfactors are the only ones con-
nected to two representatives of the same supervariable in
G′, henceQ′ is connected to P ′ via a double edge inG′ oP ′
if and only ifQ is connected to P via a double edge inGoP .

Next, we argue that the objectives of the lifted LPs are
the same. Using the parameters calculated with Eq. 4,
the objective of LMAP-LP(I ′) is

∑
Q′∈P′ |Q′|θQ′µQ′ =∑

Q′∈P′ |Q′|(|Q|/|Q′|)θQµQ′ =
∑

Q′∈P′ |Q|θQµQ′ =

∑
Q∈P |Q|θQµQ. Observe that the final term is exactly the

objective of LMAP-LP(I) as given by Prop. 4. We conclude
LMAP-LP(I) = LMAP-LP(I ′). �

We have thus shown that Alg. 2 and Eq. 4 together produce
an LP-equivalent MRF. We will now show that this MRF is
the smallest LP-equivalent MRF to the original.

Theorem 8 (Minimality). Let I = (G,θ) be an Ising
model and an I ′ = (G′,θ′) be computed as above. Then
there is no other LP-Equivalent MRF with less factors or
less vertices than G′. Moreover, |V (G′)| ≤ 2|V (G o P)|
and G′ and |E(G′)| ≤ 2|E(G o P)|, i.e., the size of I ′ is at
most twice the size of the fully lifted model.

Proof. Let H be any graph with the same factor quotient
as G. Then, let Q be a (2)-superfactor in G o P adjacent to
some (2)-supervariable P . Due to equivalence, Q′ is a (2)-
superfactor in H o P ′ as well and P ′ is a (2)-supervariable.
Hence, the class P ′ ∈ P ′ must have at least two ground
variables from H . Next, let Q be a (1, 2)-factor in G o P
adjacent to a (2)-supervariable. Analogously,Q′ is a (1, 2)-
factor in H o P ′ and P ′ is a (2)-supervariable. As we have
established P ′ must have at least two ground elements in
H . Since P ′ is connected to Q′ via a single edge, the same
holds on the ground level: any p ∈ P ′ is connected to q ∈
Q′ via a single edge. This means that there are at least as
many q ∈ Q′ as there are p ∈ P ′, that is, at least two.
All other supernodes must have at least one representative.
These conditions are necessary for any LP-equivalent H .

Now, let G′ be computed from Alg. 2 and P ′ be the corre-
sponding partition. To see why G′ is minimal, observe that
G′ has exactly two representatives of any (2)-supervariable
in G o P (step 1) and exactly two representatives of any
(1, 2)-superfactor (step 2). All other supernodes have ex-
actly one representative (steps 1 and 3). Therefore, G′

meets the conditions with equality and is thus minimal. Fi-
nally, since we represent any supernode of G oP by at most
2 nodes in G′, G′ can have at most twice as many factors
and variables as G o P . �

Since Alg. 2 makes only one pass over the lifted factor
graph, the overall time to compute the LP-equivalent MRF
(which is then input to Alg. 1) is dominated by color-
refinement, which is quasi-linear in the size of G.

4 EMPIRICAL ILLUSTRATION

The empirical illustration of our theoretical results investi-
gates two questions. (Q1) Is reparametrization comparable
to lifted MAP-LPs in terms of time and quality when us-
ing LP solvers? (Q2) If so, can lifted MPLP and TRW by
reparametrization pay-off when solving MAP-LPs? And fi-
nally, (Q3) how does reparametrization behave in the pres-
ence of approximate evidence?
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Figure 5: Experimental illustration (for ease of compari-
son the first three plots have the same scales). From top
to bottom, from left to right: (a) Comparison (domain
size vs. end-to-end running time) of solving LPs using
GLPK (ground, fully lifted, and reparametrization). The
first block of domain sizes (5, 15, 25, 50) are from the
friends-smoker MLN; the second block (5, 10, . . . , 50) is
on the CORA MLN. (b) Performance of MPLP (ground vs.
reparametrization) on the same MLNs (same block struc-
ture). (c) Comparison (domain size vs. end-to-end running
time) of TRW and MPLP by reparametrization on CORA.
(d,e) Model sizes for exact evidence (“f”) and approxima-
tions of ranks 100 to 20 and running times.

To this aim we implemented the reparametrization ap-
proach on a single Linux machine (4 × 3.4 GHz cores, 32
GB main memory) using Python and C/C++. For evalu-
ation we considered three sets of MRFs. One was gener-
ated from grounding a modified version of a Markov Logic
Network (MLN) used for entity resolution on the CORA
dataset. Five different MRFs were generated by ground-
ing the model for 5, 10, 20, 30, 40 and 50 entities, hav-
ing 960, 4081, 13933, 27850, 4699 and 76274 factors re-
spectively. The second set was generated from a pairwise
version of the friends-smokers MLN [4] for 5, 15, 25 and
50 people, having 190, 1620, 4450 and 17650 factors. The
third set considers a simple fr(X, Y)⇒ (sm(X)⇔ sm(Y))
rule (converted to a pairwise MLN) where we used the
link common observations from the “Cornell” dataset as
evidence for fr. Then we computed different low-rank ap-
proximations of the evidence using [23] .

In all cases, there were only few additional factors due
to treating double edges. What is more interesting are the
running times and overall performances. Fig. 5(a) shows
the end-to-end running time for solving the corresponding
ground, (fully) lifted, and reparametrized LPs using GLPK.
As one can see, reparametrization is competitive to lifted
linear programming (LLP) in time. Actually, it can even
save time since it runs directly on the factor graph and

not on the LP matrix — which is larger than the factor
graph — for discovering symmetries. Moreover, in all cases
the same objective was achieved, that is, reparametriza-
tion does not sacrifice quality. In turn, question (Q1) can
clearly be answered affirmatively. Fig. 5(b) summarizes the
performance of MPLP on the reparametrized models. As
one can see, MPLP can be significantly faster than LLP
for solving MAP-LPs without sacrificing the objective; it
was always identical to the LP solutions. To illustrate than
one may also run other LP-based message-passing solvers,
Figs. 5(c) summarizes the performance of TRW on CORA.
As one can see, lifting TRW by reparametrization is pos-
sible and differences in time are likely due to initializa-
tion, stopping criterion, etc. In any case, question (Q2) can
clearly be answered affirmatively. All results so far show
that lifted LP-based MP solvers can be significantly faster
than generic LP solvers. Figs. 5(d,e) summarize the results
for low-rank evidence approximation. As one can see in
(d), significant reduction in model size can be achieved
even at rank 100, which in turn can lead to faster MPLP
running times (e). For each low-rank model, the ground
and the reparametrized MPLP achieved the same objective.
Plot (e), however, omits the time for performing BMF. It
can be too costly to first run BMF canceling the benefits
of lifted LP-based inference (in contrast to exact inference
as in [23]). Nevertheless, w.r.t. (Q3) these results illustrate
that evidence approximation can result in major speed-ups.

5 CONCLUSIONS

In this paper, we proved that lifted MAP-LP inference in
MRFs with symmetries can be reduced to MAP-LP infer-
ence in standard models of reduced size. In turn, we can use
any off-the-shelf MAP-LP inference algorithm — in partic-
ular approaches based on message-passing — for lifted in-
ference. This incurs no major overhead: for given evidence,
the reduced MRF is at most twice as large than the corre-
sponding fully lifted MRF. By plugging in different exist-
ing MAP-LP inference algorithms, our approach yields a
family of lifted MAP-LP inference algorithms. We illus-
trated this empirically for MPLP and tree-reweighted BP.
In fact, running MPLP yields the first provably convergent
lifted MP approach for MAP-LP relaxations. More impor-
tantly, our result suggests a novel view on lifted inference:
lifted inference can be viewed as standard inference in a
reparametrized model. Exploring this view for marginal in-
ference as well as for branch-and-bound MAP inference
approaches are the most attractive avenue for future work.
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