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Abstract

Marginal MAP problems are known to be very
difficult tasks for graphical models and are so far
solved exactly by systematic search guided by a
join-tree upper bound. In this paper, we develop
new AND/OR branch and bound algorithms for
marginal MAP that use heuristics extracted from
weighted mini-buckets enhanced with message-
passing updates. We demonstrate the effective-
ness of the resulting search algorithms against
previous join-tree based approaches, which we
also extend to accommodate high induced width
models, through extensive empirical evaluations.
Our results show not only orders-of-magnitude
improvements over the state-of-the-art, but also
the ability to solve problem instances well be-
yond the reach of previous approaches.
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typically based on depth-first branch and bound search. A
key component of branch and bound search is the heuristic
function; while partitioning based heuristics suchnaigi-
bucket eliminatiodMBE) [3] or mini-cluster-tree elimina-
tion (MCTE) [4, 5] can be applied to the constrained elimi-
nation order, the current state-of-the-art is to use a kgairi
based on amxactsolution to anunconstrainedordering,
introduced by Park and Darwiché][and then refined by
Yuan and Hansen7]. These techniques appear to work
well when the unconstrained ordering results in a simall
duced width However, in many situations this is a serious
limitation. As one contribution, we extend both algorithms
to use mini-bucket partitionings schemes, enabling them to
be applied to a wider variety of problem instances.

Importantly however, exact algorithms for pure max- or
sum-inference problems have greatly improved in recent
years. AND/OR branch and bound (AOBB) algorithms ex-
plore a significantly smaller search space, exploiting prob
lem structure far more effectivel\8]. The partition-based

heuristics used by AOBB have also seen significant im-
provements — for MAP, cost-shifting®] can be used to

tighten the heuristic, while for summation, an extension

Graphical models provide a powerful framework for rea-of MBE called weighted mini-bucke{WMB) [10] uses
soning with probabilistic and deterministic information. Holder's inequality and cost-shifting to significantly en-
These models use graphs to capture conditional indepeitance the likelihood bounds. WMB is closely related to
dencies between variables, allowing a concise representaariational bounds such as tree-reweighted belief propaga
tion of knowledge as well as efficient graph-based quenytion [11] and conditional entropy decompositiori&], and

processing algorithms.

Combinatorial maximization orsimilar principles have also been used recently to develop

maximuma posteriori(MAP) tasks arise in many applica- message-passing approximations for marginal MAR. [

tions and often can be efficiently solved by search scheme%ur contributions.

In this paper, we develop AND/OR

The marginal MAP problem distinguishes between maxi-branch and bound search for marginal MAP, using a heuris-
mization variables (called MAP variables) and summationtic created by extending weighted mini-bucket to the con-

variables (the others). Marginal MAP is RfPcomplete

strained elimination order of marginal MAP. We evaluate

[1]; it is difficult not only because the search space is expoboth a single-pass heuristic, which uses cost-shifting by
nential in the number of MAP variables, but also becausenoment matching (WMB-MM) during construction, and
evaluating the probability of any full instantiation of the an iterative version that passes messages on the correspond
MAP variables is PP-complet@][ Algorithmically, this
means that the variable elimination operations (max andhew heuristic functions almost always improve over stan-
sum) are applied in a constrained, often more costly orderdard mini-bucket, and in many cases give tighter bounds

State-of-the-art exact algorithms for marginal MAP are

ing join-graph (WMB-JG). We show empirically that the

and faster searches than the unconstrained join-tree meth-



ods, yielding far more empowered search algorithms. argument that appears latest in the ordering. BE processes

We demonstrate the effectiveness of the proposed searéanaCh bucket, from last to f”?t’ 'by multlplylng all functlpns
in the current bucket and eliminating the bucket’s variable

algorithms against the two previous methods at solving 6zby summation for sum variables and by maximization for

variety of problem instances derived from the recent PAS- . R . S
MAP variables), resulting in a new function which is placed

CAL2 Inference Challenge benchmarks. Our results show . . o
: . in an earlier bucket. The complexity of BE is time and

not only orders of magnitude improvements over the cur-

rent state-of-the-art approaches but also the ability ieso fﬁ:cﬁni);f)ornaengla:\;gntggr?;?;relg dlr;ﬁumciﬁgtyc\;/fgag[
many instances that could not be solved before. P graphg '

BE can be viewed as message passing in a join-tree whose
Following background and brief overview of earlier work nodes correspond to buckets and which connects nodes
(Sections2 and 3), Section4 presents the AND/OR if the function generated bys bucket is placed in's [16].
search approach for marginal MAP. Sectibdescribes the
weighted mini-bucket schemes, Sectidrs dedicated to
our empirical evaluation and Secti@rconcludes.

Mini-Bucket Elimination(MBE) [3] is an approximation
algorithm designed to avoid the space and time complex-
ity of full bucket elimination by partitioning large buclet
into smaller subsets, calledini-bucketseach containing at
2 BACKGROUND most; (calledi-bound) distinct variables. The mini-buckets
are processed separateB].[ MBE processes sum buck-
A graphical modelis a tuple M = (X,D,F), where ets and the max buckets differently. Max mini-buckets (in
X = {X; : i € V} is a set of variables indexed by set X,) are eliminated by maximization, while for variables
VandD = {D; : i € V} is the set of their finite domains In X, one (arbitrarily selected) mini-bucket is eliminated
of values.F = {1, : a € F} is a set of discrete positive by summation, while the rest of the mini-bucket are elim-
real-valued local functions defined on subsets of variablegnated by maximization. MBE outputs an upper bound on
where we usex C V andX, C X to indicate thescope the optimal marginal MAP value. The complexity of the al-
of function,, ie, X, = var(y,) = {X; : i € a}. The  gorithm, which is parametrized by tliebound, is time and
function scopes imply @rimal graphwhose vertices are space exponential inonly. Wheni is large enough (i.e.,
the variables and which includes an edge connecting any > w;), MBE coincides with full BE. MBE is often used
two variables that appear in the scope of the same functiorio generate heuristics for branch and bound search.

T.h e.gra.phlcal model\ deﬁTes a factorized propgb|l|ty Another related approximation with bounded complexity,
dlstrlpuuon onX, ].D(X) — Z1llaer Va. The partition more similar in structure to join-tree inference, N&ni-
function Z, normalizes the probability to sum to one. Cluster-Tree EliminatiofMCTE) [5]. In MCTE, we pass
Let X s be asubsetdX andX,; = X\ X be the comple- messages along the structure of the join-tree, except that
ment of X g. TheMarginal MAP problem is to find the as- When computing a message, rather than combining all the
signmentz}, to variablesX ,; that maximizes the value of functions in the cluster, we first partition it into mini-

the marginal distribution after summing out variabkes: clusters, such that each mini-cluster has a bounded num-
ber of variables (thé-bound). Each mini-cluster is then
Th = argmaxz H o (1) processed separately to compute a set of outgoing mes-
XM X5 acF sages. Like MBE, this procedure produces an upper bound
on the results of exact inference, and increasitygically
We callX; “MAP variables”, andX s “sum variables”. provides tighter bounds, but at higher computational cost.

Thus, both MBE and MCTE allow the user to trade upper

If X5 = 0 then the problem is also known as maximam . )
bound accuracy for time and space complexity.

posteriori (MAP) inference. The marginal MAP problem
is however significantly more difficult. The decision prob-
lem for marginal MAP was shown to be RRPcompletel], 3 CURRENT SEARCH METHODS
while the decision problem for MAP is only NP-complete

[14]. The main difficulty arises because the max and su
operators in Eqg.1) do not commute, which restricts effi-
cient elimination orders to those in which all sum variables
X are eliminated before any max variabl€sg, .

mrhe current state-of-the-art methods for marginal MAP are
based on branch and bound search using specialized heuris-
tics. In particular, Park and Darwiché][construct an up-

per bound on each subproblem using a modified join-tree
Bucket Elimination(BE) [15 solves the marginal MAP algorithm along amnconstraineceklimination order that in-
problem exactly by eliminating the variables in sequenceterleaves the MAP and sum variables. During search, the
Given aconstrained elimination ordeensuring the sum join-tree is fully re-evaluated at each node in order to com-
variables are processed before the max variables, BE papute upper bounds for all uninstantiated MAP variables si-
titions the functions into buckets, each associated with anultaneously, which allows the use of dynamic variable or-
single variable. A function is placed in the bucket of its dering. Although this approach provides effective bounds,
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Algorithm 1. BBBT for marginal MAP

Input: Graphical modeM = (X, D, F), i-boundi, unassigned
MAP variablesX s, lower boundL, partial assignment
to MAP variablest

Output: Optimal marginal MAP value

if Xar = 0 then
| return Solve(M|z);
else

Xy < SelectVar(Xa);
Update MCTEY) ;
foreach valuex;, € Dy, do
Assign X, tozy: T+ TU{ Xy =21 };
U(z) + extract(MCTE(7))
if U(z) > L then
L L= ma;r:(L, BBBT(i,X}\4 \ {Xk}, L, i);

return L;

variable ordering (line 4) and recursively solves a set of
subproblems, one for each un-pruned domain value. No-
tice that whenz is a complete assignment, BBBT calcu-
lates its marginal MAP value by solving a summation task
over M|, the subproblem defined by the sum variables
conditioned or (line 2). Given sufficient resources (high
enoughi-bound), this can be done by variable elimination,
but for consistency with our other algorithms, our imple-
mentation uses AND/OR search with cachitg][(see also
Section4). If a better new assignment is found then the
lower boundL is updated (line 10).

If MCTE(:) is fully re-evaluated at each iteration, it pro-
duces upper bounds for all uninstantiated MAP variables
simultaneously. In this case, BBBT can accommodate
dynamic variable orderings and can thus be viewed as a
generalization of Park and Darwiché][ Alternatively,
MCTE() can be done in an incremental manner as/in [

the computation can be quite expensive. More recentlyln this case BBBT requires a static variable ordering and

Yuan and Hansen7] proposed an incremental evaluation
of the join-tree bounds which reduces significantly their

can be viewed as a generalization of Yuan and Hansen.

computational overhead during search. However, this rez AND/OR SEARCH

quires the search algorithm to follow a static variable orde

ing. In practice, Yuan and Hansen’s method proved to besignificant improvements in search for pure MAP infer-

cost effective, considerably outperforming].[] However,
both methods require that the induced width of the uncon

strained join tree is small enough to be feasible, which Of'dard OR search methodsg].

ten may not be the case.

3.1 ALGORITHM BBBT

ence have been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
In this section, we give an
AND/OR search algorithm for marginal MAP. First, we de-
fine thepseudo treef the primal graph, which defines the

search space and captures problem decomposition.

Our first two algorithms, then, can be viewed as generalDEFINITION 1 (pseudo tree) A pseudo treeof an undi-

izations of p] and [7] schemes for models with high un-
constrained induced width. In particular, we use MCIJE(
to approximate the exact, unconstrained join-tree infegen
to accommodate a maximum clique size defined byithe
boundi. The resulting branch and bound with MCTJE(
heuristics, abbreviated hereafter by BBBTor marginal
MAP is given in Algorithm1.

The algorithm is called initially as BBBT( X, 0, ),
where X, are the MAP variables of the input graphical
model, and is thei-bound. The algorithm maintains the
best solution found so far, giving a lower bouhdon the

rected graphG = (V, E) is a directed rooted tre§ =

(V, E’) such that every arc off not included inE’ is a
back-arc in7, namely it connects a node i to one of its
ancestors. The arcs iR’ may not all be included .

The set of valid pseudo trees for marginal MAP is restricted
to those for which the MAP variables formstart pseudo
tree, a subgraph of pseudo trée that has the same root
asT. Given a graphical modeM = (X, D, F) with pri-

mal graphG and pseudo treg@ of G, the AND/OR search
tree S based oy has alternating levels of OR nodes cor-
responding to the variables and AND nodes correspond-

optimal marginal MAP value. The algorithm searches theing to the values of the OR parent’s variable, with edges

simple tree of all partial variable assignments (also dalle
the OR tree). At each step, BBBT uses MC17)Eb com-
pute an upper bountf (z) on the optimal marginal MAP
extension of the current partial MAP assignmenflines
5-8). If U(z) < L, then the current assignmentcannot

weighted according t@&'. Identical subproblems, identi-
fied by theircontext(the partial instantiation that separates
the subproblem from the rest of the problem graph), can
be merged, yielding aAND/OR search grapfl8]. Merg-

ing all context-mergeable nodes yields tmntext minimal

lead to a better solution and the algorithm can backtrack\ND/OR search graphdenotedC';. The size ofCy is

(line 9). Otherwise, BBBT expands the current assignmen
by selecting the next MAP variable in a static or dynamic

For consistency with prior work, we use the name used in

[17], (Branch and Bound with Bucket-Tree heuristic) to denote
the same algorithm applied to pure MAP queries.

exponential in the induced width @¥ along a depth-first
traversal ofT (i.e., the constrained induced widtt].

A solution treez of C+ is a subtree that: (1) contains the

root of Cr; (2) if an internal OR noder € C'+ is in £z,
thenn is labeled by a MAP variable and exactly one of its



(a) Primal graph

(b) Pseudo tree

Figure 1: A simple graphical model. ) )
Figure 2: AND/OR search spaces for marginal MAP.

children is inz; (3) if an internal AND node: € C'r is in &
then all its OR children labeled by MAP variables are:in

Algorithm 2: AOBB for marginal MAP

Input: Graphical modeM = (X, D, F), pseudo tre§, partial
solution treez, heuristic evaluation functiofi(z)

Output: Optimal marginal MAP value

g if X = 0 then return 1;

Each node: in C1 can be associated withvaluewv(n); for
MAP variables,u(n) captures the optimal marginal MAP
value of the conditioned subproblem rootechatvhile for
sum variables it is the conditional likelihood of the su
problem. Clearlyp(n) can be computed recursively basezgl
on the values of’s successors: OR nodes by maximization
or summation (for MAP or sum variables, respectivelyy, | if X, € X then v(Xy) + —oc;

and AND nodes by multiplication. 6 | esev(Xy)<0;
7 foreach valuex;, € Dy do

Example 1 Figure 1(a) shows a simple graphical mode# if X). € Xar then

Xy + SelectVar(X) according toT;
if v(X%) € Cachethen return v(Xy);

with X, = {4, B,C,D} andXg = {E, F,G, H}. Fig- 13
ure 2 displays the context minimal AND/OR search graph
based on the constrained pseudo tree from Fidig (the 12
contexts are shown next to the pseudo tree nodes). 1% ig
easy to see that the MAP variables form a start pselﬂgo
tree. A solution tree corresponding to the MAP assignmgnt

f(—fU{Xk:Ik};
if f(z) > L then
U(Xk,l’k) <~ 1;
foreach child X; of X in 7 do
L v(Xg, zk) < v(Xk, k) x AOBB(M,);

else v(Xg,v;) < —o0;
| CE(—i’\{Xk :l’k-};

(A=0,B=1,C=1,D =0)isindicated in red. 5 dse

Algorithm 2 describes the AND/OR Branch and Bourﬁi
(AOBB) for marginal MAP. We use the notation thats ;9
the current partial solution and the talfl&i.che, indexed
by node contexts, holds the partial search results. The o
. . . 2
rithm assumes that variables are selected statically decgr
ing to a valid pseudo treg. A heuristicf(z) calculates an
upper bound on the optimal marginal MAP extension of,,

U(Xk,:]:k-) — 1;
foreach child X; of X in 7 do
L U(Xk,l’k) < U(Xk,$k) X AOBB(ML);

val W( Xk, xr) X 0( Xk, zk);
if Xj € Xy then v(Xy) « max(v(Xy), val);
| else v(Xy) + v(Xk) + val;

Cache < Cache Uv(Xy);
| return v(Xx)

If the setX is empty, the result is trivially computed (line

1). Else, AOBB selects the next variabtg, in 7 and if . . .

the corresponding OR node is not found in cache, it ex—pOSSIble values of variabldy, the marginal MAP value
. . . ) ' of the subproblem rooted h¥;, is v(X}) if X is a MAP

pands it and iterates over its domain values to compute

the OR vallex(X,) (ines 7-22). Notce that o is & o0 S0 B 8L e T e ot
MAP variable, then AOBB attempts to prune unpromis- ,

ing domain values by comparing the upper boyid) of subproblem (line 22). The optimal marginal MAP value to

the current partial solution treeto the current best lower the original problem is returned by the root node.

boundLZ which is maintained by the root node of the searchAOBB typically computes its heuristi¢(-) using a mini-
space (line 10). For each domain valug the problem bucket bounding scheme (see Sec&prwhich can be pre-
rooted at AND node( X}, ;) is decomposed intg in- compiled along the reverse order of a depth-first traversal
dependent subproblerist; = (X;,D,, F,), one for each of the pseudo tree (which is a valid constrained elimina-
child X; of X} in 7. These problems are then solved inde-tion order). Unfortunately, our AOBB cannot use the join-
pendently and their results accumulated by the AND noddéree/MCTE() based heuristics of Secti@since these are
valuev(Xy, zi) (lines 12-13 and 18-19). After trying all compiled along an unconstrained variable ordering which



is not compatible, in general, with the constrained pseud@|gorithm 3; WMB-MM(4)
tree that drl\{es the.AOBB se.ar.ch order. For this reason, WS put: Graphical modelM — (X, D, F), MAP variablesX 7,
next turn to ImprOVIng our m|n|'bucket bOUhdS. constrained Ordering — ){17 . 7Xn, i-bounds:

Output: Upper bound on optimal marginal MAP value
1 foreach k < n downtol do

S5 MINI-BUCKET FOR MARGINAL MAP /1 Create bucket By and nini-buckets Q.
2 B + {Va|tva € F, X € var(¢a)}; F < F \ By;

In this section, we develop improved, constrained order| LetQ={Qxi, ..., Qkr} be ani-partition of By;

mini-bucket bounds compatible with AOBB search. mMBE fore?;h ZT_II ok ?;. Y. — Qi) \ X

has been effective for pure MAP, but less so for marginal L Ve =Ilicay, A

MAP; previously, its bounds appeared to be far less accu- {f/XNtén;ntchnat chi ng

rate than the unconstrained join-tree bour@js/]. There- ;- Zssignsmini-bucketr weightwe, > 0, StS, wir = 1;

fore, we revisit the mini-bucket approach and enhance it e = Sy ()0 =TT (1)

with recent iterative cost-shifting schemd$€]9, 13). Yr ' " ’

o | | Updatevi, =i ()7
51 WEIGHTED MINI-BUCKETS 10 else R
1 pr = maxy, Yrr; p= ([T, pr) "
Weighted mini-bucket eliminatigfWMB) [10Q] is a recent , Updateyy,, = vy - (L :
algorithm developed for likelihood (summation) tasks that - "

~

/ Downward Messages (elimnate Xj)

replaces the rige mini-bucket bound with Blder’s in- foreach r — 1 to R do

equality. For a given variabl&,, the mini-buckets).,. 1 if X5, € Xs then Ay (3o (thior)/00r Y0rrs
associated withX;, are assigned a non-negativeeight . else Mgy < maxx, G Xk

wg, > 0, such thaty", wy, = 1. Then, each mini-ig FFUDWY

bucketr is eliminated using a weighted or power sum, -
(X, f(X)Vwerywrr It is useful to note thatvy, can 7 TN Myerv

be interpreted as a “temperature”;ify,, = 1, it corre-

sponds to a standard summation, whilevjf, — 0, itin-  tween downward passes, which look like standard mini-
stead corresponds to a maximization oxgr. Thus, stan-  bucket with cost-shifting, and upward passes, which com-
dard mini-bucket corresponds to choosing one mini-buckepute messages used to “focus” the cost shifting in the next
7 with wy,. = 1, and the rest with weight zero. downward pass. The algorithm can be viewed as message
Weighted mini-bucket is closely related to variational pass_ing on a_join g“"?ph defined by the mini-bucket cliques,
bounds on the likelihood, such as conditional entropy de-and Is listed in Algorithmd.

compositions 12] and tree-reweighted belief propagation Standard MBE computes “downward” messages =
(TRBP) [11]. The single-pass algorithm of Liu and Ih- m, .. from each cliquea = (kr) (the rth mini-bucket

ler [10] mirrors standard mini-bucket, except that within for variable X}) to a single child clique: = ch(a). For
each bucket a cost-shifting (or reparameterization) eperahe iterative version, we also compute “upward” messages
tor is performed, which matches the marginal beliefs (orm,_,, from cliquec to its parent cliques € palc). For
“moments”) across mini-buckets to improve the bound.  w, > 0,w, > 0, these upward messages are givenify:[

The temperature viewpoint of the weights enables us to ap- we  —1/w,]Wa
ply a similar procedure for marginal MAP. In particular, for Meora o | Z (e mee)'/e my ]
X € Xg, we enforced . wy, = 1, while for X, € X,
we take) " wy, = 0 (S0 thatwy, = 0 for all r). The  wherey, = [1,c0, ¥ are the model factors assigned to
resulting algorithm, listed in Algorithr8, treats MAP and cliquec, andm... is the product of all messages into

sum variables differently: for sum variables it mirrot€], , .
while taking the zero-temperature limit for MAP variables Tnese upward messages are used during the cost-shifting
we obtain the max-marginal matching operations describeifPdates ofXy in later downward passes:

for pure MAP problems in9]. This mirrors the result of w w1/ wp
Weiss et al. 19], that the linear programming relaxation "' Hkr > Wk mege) s = (T rr)) /

for MAP corresponds to a zero-temperature limit of TRBP. Yier "

Vr, Y — Vir (u‘; )7 e

Yo\Ya

5.2 ITERATIVE UPDATES
in which we include the upward messaggy i)« in the

While the single-pass algorithm is often very effective, wemarginalsy.;,, being matched, and defing, = " wy,.
can further improve it using iterative updates. The iter-These fixed-point updates are not guaranteed to be mono-
ative weighted mini-bucket algorithni(), alternates be- tonic; to assist convergence, we also include a “step size”



7 < 1. By initializing the upward messagescn)». =1  Algorithm 4. WMB-JG()
and takingy = 1/t, the first iteration of Alg4 corresponds Input: Graphical modelM — (X, D, F), constrained ordering

exactly to WMB-MM (Alg. 3). 0= Xi,...,X,,i-boundi, number of iterationg’

For marginal MAP, we can take the limit as some weighfsfoolrjttpit:llfgr}eégound on optimal marginal MAP value

w, = € — 0; then, when botlx andc = ch(a) correspond /1 Downward pass with noment mat ching

to MAP variables we have 2 foreach k < n downtol do
3 Let Q@ = {Q.|a = kr} be the mini-buckets dBy;
Mesq X | Max (wcmNC) m(;l c 4 foreach Qa € Q do
[Yc\Ya, - ] 5 1/}a - H’LZ)EQ(L ¢x
6 Y. =vars(Qa) \ Xk;
1 _ .
Ha :H%/aX(wa WL~a)§ H= (H:U'a) 191 g <= g (ﬁ)W ! L M~a = Meh(a)—a Hpépa(a) Mp—a;
o a Ha 8 if X € Xs then
, , 9 foreach Q, € Q do y, = Vamma) /e
When cliquea corresponds to a sum variable and cllqﬂ)e w =TI @ (ua)w“'u 2w )
¢ = ch(a) to a MAP variable, we take. = ¢ to give: 1 foreacth)iQe Q do Updatey, = ta - (11/ 1)
—1/w, ] Wa 12 else
Mea O | Z oe(Pemnc) my Y, ] 13 foreach Q, € Q do po = maxy, (YaMmna);
Ye\Ya 1 14 1=Tlo,colta)/12;
oc(f(X)) = (f(X)/max f(z)) /e 15 | foreach Q. € Q do Updateys = ta - (11/pta);
r 16 foreach Q. € Q, ¢ = ch(a), do
Whene — 0, o. becomes an indicator function of the ma¥- if X3 € X then o
imizing arguments off, “focusing” the matching step at® L Ma—se = (Lx, (Ya M) )
parenta on configurations relevant to the max values 16f else
child c. The resulting algorithm is also closely related 4 | [ Mae = maxx, (Ya ma);

a (tree-reweighted) mixed-product belief propagation al-

gorithm for marginal MAP 13]. Unfortunately, directly ,, /' Backward pass

oreach k£ + 1ton do

— ~

taking e = 0 can cause the objective function to be highly Let O = {Q.|c = kr} be the mini-buckets dBy;
non-smooth, and lead to undesirable, non-monotonic fixed- foreach Q. € Q anda epa(c), withc=kr, a=js do
point updates. To alleviate this, in practice we use a scléd- Y =vars(Qc) \ vars(Qa);

if X, € Xs ande € X then

ulee=1/t to decrease the temperature over iterations. ;2 k€ Xy
c—a —
L (ZY(owNC)l/wC : (ma—m)_l/wa)wa;

6 EXPERIMENTS 27 if X € X ande € X then

28 | Mesa = (maxy (Yemec) - (Mase)™');
We empirically evaluate the proposed branch and bowyd if X € XsandX; € Xy then
algorithms on problem instances derived from benchmarks Mesa =
used in the PASCAL2 Inference Challeng@®][as well as (X Te(temne) - (Mqse) ™/ Pa)we;

the original instances fron¥T. L =

Algorithms.  We consider three AND/OR branch arid "€turn upper bound fronB3,;

bound search algorithms (Sectiéh AOBB guided by ba-

sic MBE() heuristics (denoted AOBB), AOBB guided by use a dynamic variable ordering and select the next MAP
heuristics from WMB-MM¢) (denoted AOBB-MM), and  variable whose domain values have the most asymmetric
AOBB guided by heuristics from WMB-J@)((denoted by  bounds. Algorithms BBBTi and YUAN are restricted to
AOBB-JG), respectively. All of the mini-bucket heuristics a static variable ordering that corresponds to a post-order
were generated in a pre-processing phase, prior to searctnaversal of the underlying join-tree. The pseudo treed-gui
The weighted schemes used uniform weights. In additioning the AND/OR algorithms were obtained by a modified
we also tested two OR branch and bound schemes guidedin-fill heuristic [18] that constrained the MAP variables
by MCTE() heuristics, denoted BBBTi and BBBTd, re- to form a start pseudo tree. All algorithms were imple-
spectively. BBBTi performs MCTE] incrementally, while  mented in C++ (64-bit) and the experiments were run on a
BBBTd fully re-evaluates MCTEJ at each iteration. 2.6GHz 8-core processor with 80 GB of RAM.

We compare all five algorithms against each other andBenchmarks. Our problem instances were derived
against the current state-of-the-art branch and bound witfrom three PASCAL2 benchmarksegbi n (image seg-
incremental join-tree upper bound§,[denoted by YUAN,  mentation)pr ot ei n (protein side-chain interaction) and
along with the original approach by Park and Darwichepr onedas (medical diagnosis expert system). For each
[6], denoted by PARK. Algorithms BBBTd and PARK



Table 1: Upper bounds (log scale) and CPU time (sec) for @&kt of instances.= 10 andi = 20.
MCTE

instance @ MBE WMB-MM WMB-JG JT
5iterations | 10 iterations | 100 iterations

(n,m, k, wl, wy) UB/time UB/time UB/time UB/time UB/time UB/time UB/time

cpcs360 10 5.9607/0.03| -0.0228/0.04| 4.3008/0.16| -0.0353/0.34| -0.0360/0.75| -0.0363/6.71| -0.0468/4.73

(360,25,2,24,20) 20 2.4871/11.4| -0.0402/1.36| -0.0468/3.45| -0.0465/47.2| -0.0467/145| -0.0468/1339

2-17-ss 10 | -44.2658/0.02| -49.5830/0.01| -40.3520/0.06| -55.4555/0.12| -55.5996/0.24| -55.6633/2.44| -55.5170/0.31

(228,69,2,20,15) 20 | -55.5083/3.54| -55.5082/0.30| -55.5170/0.36| -55.7433/5.38| -55.7436/12.7| -55.7437/197

or-chain-10.fg-s 10 | -10.5621/0.01| -13.2118/0.01 -6.4940/0.1| -17.2899/0.10| -18.7859/0.18| -21.3428/1.71| -21.0314/4.29

(453,135,2,22,18) 20 | -18.2977/3.56| -19.3815/0.33 -9.8054/0.5| -21.3600/5.46 | -21.3600/11.8 | -21.3600/137

cpcsA22 10 10.026/0.61| -1.3206/0.88| 7.0553/1.62| -1.3764/4.06| -1.3878/8.67| -1.4275/75.1| -1.4982/41.6

(422,74,2,74,23) 20 7.9245/18.5| -1.4427/9.29| -0.1331/9.78| -1.4545/191| -1.4554/371| -1.4718/2353

2-2-s| 10 | -57.0433/0.04 -75.1643/0.03| -39.1568/0.07| -80.9224/0.17| -81.5811/0.33| -81.9044/3.56| -81.5883/0.14

(227,68,2,73,14) 20 | -67.2268/5.52| -80.4492/1.68| -81.5883/0.17| -82.0108/25.0| -82.1039/58.6| -82.1960/400

or-chain-18.fg-l 10 -2.7317/0.01| -2.5168/0.02| -2.3325/0.42| -6.4279/0.36| -7.1655/0.51| -11.1244/3.78| -11.4487/0.43

(890,267,2,25,8) 20 | -10.2463/0.88| -11.4534/0.07 | -11.4487/0.46| -11.4534/1.48 | -11.4534/2.97 | -11.4534/31.7

segbin-easy: (wc = 19, wu = 15) promedas-hard: (wc = 231, wu = 48) protein-easy: (wc = 11, wu = 8)
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Figure 3: Average relative error (w.r.t. tightest uppermduas a function of-bound. WMB-JG{) ran for 10 iterations.

network, we generated two marginal MAP problem in-tained (lower values are better) and CPU time in seconds.
stances withn MAP variables, as follows: arasy in-  The iterative scheme WMB-J@(ran for 5, 10 or 100 it-
stance such that the MAP variables were selected as therations, respectively. We see clearly that for all insésnc
first m variables from a breadth-first traversal of a pseudoWMB-MM(4) provides significantly tighter upper bounds
tree obtained from a hypergraph decomposition of the prithan the corresponding pure MBIE{n a comparable CPU
mal graph (ties were broken randomhg],[ and ahar d time (see also Figurg). On the other hand, WMB-J@&(is
instance where the MAP variables were selected uniformlyable to converge to the most accurate bounds in 4 out of 6
at random. Theeasy instances were designed such thatcases, but at a much higher computational cost. JT bounds
problem decomposition is maximized and the constrainedre typically tighter than those produced by MC7)E{nd

and unconstrained elimination orders are relatively closeViBE(:) which is consistent with previous studies; 7].

to each other, thus having comparable induced widths, IrI]n Figure3 we plot the average relative error with respect

contrast, thénar d instances tend to have very large con- . : :
strained induced widths. We selected 30% of the variableg0 the tightest upper bound obtained, as a function of the

as MAP variables. In total we evaluated 120 problem in—Z_bound' Since, the JT bounds were available only on a

. relatively small fraction of the instances tested, they are
stances (2@asy and 20har d instances per benchmark). omitted for clarity. We observe that if given enough time

In all experiments we report total CPU time in seconds andVMB-JG(;) is superior to all its competitors, especially
number of nodes visited during search. We also record théor largeri-bounds. However, if time is bounded, then
problem parameters: number of variable}, fnax domain ~ WMB-MM(:) provides a cost-effective alternative. No-
size &), number of MAP variables®), and the constrained tice also that when the gap between the constrained and
(w}) and unconstrainedu(;) induced widths. The best unconstrained induced width is very large, then MCGJE(
performance points are highlighted. In each table, 'oom’provides more accurate bounds than MBE(nd WMB-
stands for out-of-memory, while -’ denotes out-of-time.  MM(¢) (eg, promedakar d), because MCTEJ does less
partitioning in this case. When the gap is relatively small,
hen the mini-bucket based bounds are often superior to the
CTE(:) ones for the samebound (eg, segbinasy).

Results: quality of the upper bounds. We compare the
accuracy of the upper bounds obtained by the mini-bucke
schemes MBE], WMB-MM(i) and WMB-JG¢{) against
those produced by the unconstrained join-tree scheme, d®esults: comparison with state-of-the-art search. Ta-
noted JT, and its generalization MCTE( bles2 and 3 report CPU time in seconds and number of

Tablel shows results on a typical set of problem instancesnodes expanded by each search algorithm on a subset of

from botheasy (top 3) andhar d (bottom 3) categories, Instances from the proteln' and promedas penchmgrks. The
. L columns are indexed by thiebound and the time limit was
for two values ofi-bound:i = 10, 20. For every problem

instance, for each algorithm we report the upper bound ob§et to 1 hour. WMB-JG] ran for 10 iterations. We can



Table 2: CPU time (sec) and nodes for the protein instandate limit 1 hour. WMB-JG() ran for 10 iterations.

instance algorithm =2 i =3 =4 i=5 i =6 YUAN
PARK
(n, m, kw}, w}) time nodes| time nodes| time nodes| time nodes| time  nodes|| time nodes
proteineasy instances
AOBB - - - - -
pdblalx AOBB-JG 539 1746192 85 314801 | 164 3415| 3067 746 - oom
(95,28,81,14,14) AOBB-MM - 601 7625110 709 9004715 2087 316563 oom
BBBTd - - -
BBBTI - - - -
AOBB 1533 12650401 379 1505951 228 169618| 753 274565
pdbla62 AOBB-JG - 13 35 62 35| 523 35| 2228 35 oom
(105,31,81,13,10) AOBB-MM 697 2437932| 169 359560 114 135525 138 181286| 112 1107 oom
BBBTd - - - - -
BBBTI - -
AOBB - - - -
pdblad2 AOBB-JG 76 1355 | 227 431| 3368 424 oom
(177,53,81,12,9) AOBB-MM - | 983 838218| 211 13902 - oom
BBBTd - - -
BBBTI - - - - -
AOBB 61 119726 9 5483 4 735 21 283| 154 48
pdblaho AOBB-JG 6 6581 4 365 19 271 65 17 | 1251 17| 299 55
(54,16,81,7,6) AOBB-MM 49 19890 10 3274 8 2057 7 593 44 17 963 16
BBBTd 7 1224 6 128 28 26| 165 29| 426 17
BBBTI 77 291321| 949 1151691 345 35506 - 356 4679

Table 3: CPU time (sec) and nodes for the promedas instafices.limit 1 hour. WMB-JG() ran for 10 iterations.

instance algorithm 1=4 i =6 i =10 =14 i=18 i =20 PARK
YUAN
(n,m, k,w’, w}) time nodes| time nodes| time nodes| time nodes| time nodes| time nodes|| time nodes
promedagasy instances

AOBB - 65 6242529 14 1871710 4 471708 7 235860
or-chain-4.fg-e AOBB-JG 1046 75598793 9 1045873 55 5457626 6 208 19 1144 oom
(691,207,2,33,26) AOBB-MM - | 116 7354956 8 991915 1 156030 1 73526 oom

BBBTd 579 39989| 132 4624 233 1900| 425 1285

BBBTI - - - 394 2001912 - -

AOBB 447 67968093 64 12082065 3 518292 1 162224 1 1920 2 0
or-chain-17.fg-e AOBB-JG 38 3943341 57 8830508 0 72575 0 6940 3 160 6 160 87 159
(531,159,2,20,18) AOBB-MM 238 26609470 65 9743803 2 306313 0 45462 0 757 0 521 3 162

BBBTd - - | 103 5520 85 2921| 125 1363| 148 633

BBBTI - 5 61467 10 29232 12 25588

AOBB - - -
or-chain-22.fg-e AOBB-JG 2118 183274481 oom
(1044,313,2,72,59) AOBB-MM - oom

BBBTd -

BBBTI -

promedasar d instances

AOBB - - - - | 2254 124886725
or-chain-4.fg-h AOBB-JG 192 5529085 11 555059 21 377992 66 215655 oom
(691,207,2,140,28) AOBB-MM 752 17706171 304 13152476 188 5662611 78 2134464 oom

BBBTd - - | 1810 12397 -

BBBTI -

AOBB - -
or-chain-8.fg-h AOBB-JG - 1786 31316917 oom
(1195,358,2,255,39) | AOBB-MM - - oom

BBBTd -

BBBTI - - - -

AOBB 67 7544343 12 1282228 13 1556793 11 606211
or-chain-17.fg-h AOBB-JG 42 3992210 3 212839 8 230955 29 169192|| 259 159
(531,159,2,72,18) AOBB-MM - - 7 793696| 287 9274776 4 439

BBBTd - 412 12954| 861 6003| 1931 4649

BBBTI 477 5618175 61 494659 54 136679| 106 126093

see clearly that AOBB-J@) is the overall best performing CPU time of the algorithms across all benchmarks). The
algorithm, especially for relatively smaHlbounds. For ex- performance of algorithms YUAN and PARK is quite poor
ample, on thepdbla62, AOBB-JG(3) proves optimality in this domain due to the relatively large unconstrained in-
in 13 seconds while AOBB(3) and AOBB-MM(3) finish in duced widths, which prevent computation of their heuristic
1533 and 169 seconds, respectively. The search space dr-contrast, BBBTi/BBBTd with relatively higherbounds
plored by AOBB-JG(3) is also dramatically smaller than are sometimes competitive and are able to solve more prob-
those explored by AOBB(3) or AOBB-MM(3). There- lem instances than YUAN/PARK.
fore, the much stronger heuristics generated by WMB- .

: oo C . For completeness, we also tested on the Bayesian net-
JG() translate into impressive time savings. When #he :

) works from [7] (results omitted for space). We ob-

bound increases, the accuracy ceases to offset the com

. L PSErved that all of our proposed algorithms were competitive
tational overhead and the running time of AOBB-JGi-
creases (e.gpdblaho). In this case, AOBB-MM) is

with YUAN/PARK, but due to the relatively small uncon-
a cost-effective alternative, with reduced overhead fer pr

strained induced widths on these problems, very accurate
compiling the heuristic (see also Figutéor a profile of the join-tree heuristics could be computed. Thus, there was

very little room for improvement by the new methods.
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Number of instances solved by benchmark
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all, we see that the proposed search algorithms consigtentl
solve more problems and in many cases are significantly
faster than the current approaches.

o 4ot I AOBB-JG
2

In summary, based on our empirical evaluation, we can
conclude that:

e Cost-shifting (especially the iterative version) tight-
ened significantly the MBE bounds for marginal MAP.
This yielded considerably faster AOBB search.

e The AOBB algorithms with improved mini-bucket
heuristics outperformed in many cases the previous
search methods guided by join-tree based heuristics.

promedas. rotein segbin

Number of wins (ie, fastest CPU time) by benchmark
EEE PARK

BN AOBB-JG

7 CONCLUSION

In this paper, we develop AND/OR branch and bound
search algorithms for marginal MAP that use heuristics ex-
tracted from weighted mini-buckets with cost-shifting. We
evaluate both a single-pass version of the heuristic with
cost-shifting by moment matching as well as an iterative

) ) version that passes messages on the corresponding join-
Figure 5: Number of instances solved (top) and number ofyraph. We demonstrate the effectiveness of our proposed
wins (bottom) by benchmark. search algorithms against previous unconstrained jeia-tr
Summary of the experiments.  Figure4 plots the num-  based methods, which we also extend to apply to high
ber of problem instances solved from each benchmark (tophduced-width models, through extensive empirical eval-
and the median CPU time (bottom) as a function of#he uations on a variety of benchmarks. Our results show not
bound. Clearly, AOBB-JG solves the largest number of in-only orders of magnitude improvements over the current
stances acrosisbounds. Moreover, the running time pro- state-of-the-art, but also the ability to solve many ins&mn

file shows that AOBB-JG is faster at lowétbounds due that could not be solved before.

to more accurate heuristics, while AOBB-MM is faster at

higheri-bounds due to reduced overhead. Figbrgum-  Acknowledgments This work was sponsored in part by
marizes the total number of instances solved as well as thRSF grants 11S-1065618 and 11S-1254071, and by the
total number of wins (defining a ‘win’ as the fastest time) United States Air Force under Contract No. FA8750-14-
across the benchmarks, for all competing algorithms. Over€-0011 under the DARPA PPAML program.
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