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Abstract

One of the goals of probabilistic inference is
to decide whether an empirically observed
distribution is compatible with a candidate
Bayesian network. However, Bayesian net-
works with hidden variables give rise to
highly non-trivial constraints on the ob-
served distribution. Here, we propose an
information-theoretic approach, based on
the insight that conditions on entropies of
Bayesian networks take the form of simple
linear inequalities. We describe an algorithm
for deriving entropic tests for latent struc-
tures. The well-known conditional indepen-
dence tests appear as a special case. While
the approach applies for generic Bayesian
networks, we presently adopt the causal view,
and show the versatility of the framework by
treating several relevant problems from that
domain: detecting common ancestors, quan-
tifying the strength of causal influence, and
inferring the direction of causation from two-
variable marginals.

1 Introduction

Inferring causal relationships from empirical data is
one of the prime goals of science. A common sce-
nario reads as follows: Given n random variables
X1, . . . , Xn, infer their causal relations from a list of n-
tuples i.i.d. drawn from P (X1, . . . , Xn). To formalize
causal relations, it has become popular to use directed
acyclic graphs (DAGs) with random variables as nodes
(c.f. Fig. 1) and arrows meaning direct causal influ-
ence [23, 28]. Such causal models have been called
causal Bayesian networks [23], as opposed to tradi-
tional Bayesian networks that formalize conditional
independence relations without having necessarily a
causal interpretation. One of the tasks of causal infer-

ence is to decide which causal Bayesian networks are
compatible with empirically observed data.

The most common way to infer the set of possible
DAGs from observations is based on the Markov con-
dition (c.f. Sect. 2) stating which conditional statisti-
cal independencies are implied by the graph structure,
and the faithfulness assumption stating that the joint
distribution is generic for the DAG in the sense that no
additional independencies hold [28, 23]. Causal infer-
ence via Markov condition and faithfulness has been
well-studied for the case where all variables are ob-
servable, but some work also refers to latent structures
where only a subset is observable [23, 27, 1]. In that
case, we are faced with the problem of characterizing
the set of marginal distributions a given Bayesian net-
work can give rise to. If an observed distribution lies
outside the set of marginals of a candidate network,
then that model can be rejected as an explanation
of the data. Unfortunately, it is widely appreciated
that Bayesian networks involving latent variables im-
pose highly non-trivial constraints on the distributions
compatible with it [31, 33, 20, 21].

These technical difficulties stem from the fact that the
conditional independencies amount to non-trivial alge-
braic conditions on probabilities. More precisely, the
marginal regions are semi-algebraic sets that can, in
principle, be characterized by a finite number of poly-
nomial equalities and inequalities [14]. However, it
seems that in practice, algebraic statistics is still lim-
ited to very simple models.

In order to circumvent this problem, we propose an
information-theoretic approach for causal inference.
It is based on an entropic framework for treating
marginal problems that, perhaps surprisingly, has re-
cently been introduced in the context of Bell’s The-
orem and the foundations of quantum mechanics
[12, 7]. The basic insight is that the algebraic con-
dition p(x, y) = p1(x)p2(y) for independence becomes
a linear relation H(X,Y ) = H(X) + H(Y ) on the
level of entropies. This opens up the possibility of us-



ing computational tools such as linear programming to
find marginal constraints – which contrasts pleasantly
with the complexity of algebraic methods that would
otherwise be necessary.

1.1 Results

Our main message is that a significant amount of infor-
mation about causation is contained in the entropies of
observable variables and that there are relatively sim-
ple and systematic ways of unlocking that information.
We will make that case by discussing a great variety
of applications, which we briefly summarize here.

After introducing the geometric and algorithmic
framework in Sections 2 & 3, we start with the applica-
tions in Section 4.1 which treats instrumentality tests.
There, we argue that the non-linear nature of entropy,
together with the fact that it is agnostic about the
number of outcomes of a random variable, can greatly
reduce the complexity of causal tests.

Two points are made in Sec. 4.2, treating an exam-
ple where the direction of causation between a set
of variables is to be inferred. Firstly, that marginal
entropies of few variables can carry non-trivial infor-
mation about conditional independencies encoded in
a larger number of variables. This may have practi-
cal and statistical advantages. Secondly, we point out
applications to tests for quantum non-locality.

In Sec. 4.3 we consider the problem of distinguish-
ing between different hidden common ancestors causal
structures. While most of the entropic tests in this
paper have been derived using automated linear pro-
gramming algorithms, this section presents analytic
proofs valid for any number of variables.

Finally, Sec. 4.4 details three conceptually important
realizations: (1) The framework can be employed to
derive quantitative lower bounds on the strength of
causation between variables. (2) The degree of vio-
lation of entropic inequalities carries an operational
meaning. (3) Under some assumptions, we can ex-
hibit novel conditions for distinguishing dependencies
created through common ancestors from direct causa-
tion.

2 The information-theoretic
description of Bayesian networks

In this section we introduce the basic technical con-
cepts that are required to make the present paper self-
contained. More details can be found in [23, 12, 7].

2.1 Bayesian networks

Here and in the following, we will consider n jointly
distributed discrete random variables (X1, . . . , Xn).
Uppercase letters label random variables while low-
ercase label the values taken by these variables, e.g.
p(Xi = xi, Xj = xj) ≡ p(xi, xj).

Choose a directed acyclic graph (DAG) which has the
Xi’s as its vertices. The Xi’s form a Bayesian network
with respect to the graph if every variable can be ex-
pressed as a function of its parents PAi and an un-
observed noise term Ni, such that the Ni’s are jointly
independent. That is the case if and only if the distri-
bution is of the form

p(x) =

n∏
i=1

p(xi|pai).

Importantly, this is equivalent to demanding that the
Xi fulfill the local Markov property : Every Xi is condi-
tionally independent of its non-descendants NDi given
its parents PAi: Xi ⊥⊥ NDi|PAi.

We allow some of the nodes in the DAG to stand
for hidden variables that are not directly observable.
Thus, the marginal distribution of the observed vari-
ables becomes

p(v) =
∑
u

∏
i=1,...,m

p(vi|pai)
∏

j=1,...,n−m
p(uj |paj), (1)

where V = (V1, . . . , Vm) are the observable variables
and U = (U1, . . . , Un−m) the hidden ones.

2.2 Shannon Entropy cones

Again, we consider a collection of n discrete random
variables X1, . . . , Xn. We denote the set of indices
of the random variables by [n] = {1, . . . , n} and its
power set (i.e., the set of subsets) by 2[n]. For ev-
ery subset S ∈ 2[n] of indices, let XS be the ran-
dom vector (Xi)i∈S and denote by H(S) := H(XS)
the associated Shannon entropy given by H(XS) =
−
∑

xs
p(xs) log2 p(xs). With this convention, entropy

becomes a function

H : 2[n] → R, S 7→ H(S)

on the power set. The linear space of all set functions
will be denoted by Rn. For every function h ∈ Rn

and S ∈ 2[n], we use the notations h(S) and hS inter-
changeably.

The region

{h ∈ Rn |hS = H(S) for some entropy function H}

of vectors in Rn that correspond to entropies has been
studied extensively in information theory [35]. Its clo-
sure is known to be a convex cone, but a tight and



explicit description is unknown. However, there is a
standard outer approximation which is the basis of our
work: the Shannon cone Γn. The Shannon cone is the
polyhedral closed convex cone of set functions h that
respect the following set of linear inequalities:

h([n] \ {i}) ≤ h([n]) (2)

h(S) + h(S ∪ {i, j}) ≤ h(S ∪ {i}) + h(S ∪ {j})
h(∅) = 0

for all S ⊂ [n] \ {i, j}, i 6= j and i, j ∈ [n]. These in-
equalities hold for entropy: The first relation – known
as monotonicity – states that the uncertainty about a
set of variables should always be larger than or equal
to the uncertainty about any subset of it. The sec-
ond inequality is the sub-modularity condition which
is equivalent to the positivity of the conditional mutual
information I(Xi : Xj |XS) = H(XS∪i) + H(XS∪j) −
H(XS∪{i,j})−H(XS) ≥ 0. The inequalities above are
known as the elementary inequalities in information
theory or the polymatroidal axioms in combinatorial
optimization. An inequality that follows from the ele-
mentary ones is said to be of Shannon-type.

The elementary inequalities encode the constraints
that the entropies of any set of random variables are
subject to. If one further demands that the ran-
dom variables are a Bayesian network with respect to
some given DAG, additional relations between their
entropies will ensue. Indeed, it is a straight-forward
but central realization for the program pursued here,
that CI relations faithfully translate to homogeneous
linear constraints on entropy:

X ⊥⊥ Y |Z ⇔ I(X : Y |Z) = 0. (3)

The conditional independencies (CI) given by the local
Markov condition are sufficient to characterize distri-
butions that form a Bayesian network w.r.t. some fixed
DAG. Any such distribution exhibits further CI rela-
tions, which can be algorithmically enumerated using
the so-called d-separation criterion [23]. Let Γc be
the subspace of Rn defined by the equality (3) for all
such conditional independencies. In that language, the
joint distribution of a set of random variables obeys
the Markov property w.r.t. to Bayesian network if and
only if its entropy vector lies in the polyhedral convex
cone Γc

n := Γn ∩ Γc, that is, the distribution defines
a valid entropy vector (obeying (2)) that is contained
in Γc. The rest of this paper is concerned with the
information that can be extracted from this convex
polyhedron.

We remark that this framework can easily be gener-
alized in various directions. E.g., it is simple to in-
corporate certain quantitative bounds on causal influ-
ence. Indeed, small deviations of conditional indepen-
dence can be expressed as I(X : Y |Z) ≤ ε for some

ε > 0. This is a (non-homogeneous) linear inequality
on Rn. One can add any number of such inequalities
to the definition of Γc

n while still retaining a convex
polyhedron (if no longer a cone). The linear program-
ming algorithm presented below will be equally appli-
cable to these objects. (In contrast to entropies, the
set of probability distributions subject to quantitative
bounds on various mutual informations seems to be
computationally and analytically intractable).

Another generalization would be to replace Shannon
entropies by other, non-statistical, information mea-
sures. To measure similarities of strings, for instance,
one can replace H with Kolmogorov complexity, which
(essentially) also satisfies the polymatroidal axioms
(2). Then, the conditional mutual information mea-
sures conditional algorithmic dependence. Due to
the algorithmic Markov condition, postulated in [19],
causal structures in nature also imply algorithmic in-
dependencies in analogy to the statistical case. We
refer the reader to Ref. [30] for further information
measures satisfying the polymatroidal axioms.

2.3 Marginal Scenarios

We are mainly interested in situations where not all
joint distributions are accessible. Most commonly, this
is because the variables X1, . . . , Xn can be divided into
observable ones V1, . . . , Vm (e.g. medical symptoms)
and hidden ones U1, . . . , Un−m (e.g. putative genetic
factors). In that case, it is natural to assume that
any subset of observable variables can be jointly ob-
served. There are, however, more subtle situations
(c.f. Sec. 4.2). In quantum mechanics, e.g., position
and momentum of a particle are individually measur-
able, as is any combination of position and momentum
of two distinct particles – however, there is no way to
consistently assign a joint distribution to both position
and momentum of the same particle [4].

This motivates the following definition: Given a set
of variables X1, . . . , Xn, a marginal scenario M is the
collection of those subsets of X1, . . . , Xn that are as-
sumed to be jointly measurable.

Below, we analyze the Shannon-type inequalities that
result from a given Bayesian network and constrain
the entropies accessible in a marginal scenario M.

3 Algorithm for the entropic
characterization of any DAG

Given a DAG consisting of n random variables and a
marginal scenarioM, the following steps will produce
all Shannon-type inequalities for the marginals:

Step 1: Construct a description of the unconstrained



Shannon cone. This means enumerating all n +(
n
2

)
2n−2 elementary inequalities given in (2).

Step 2: Add causal constraints presented as in (3).
This corresponds to employing the d-separation
criterion to construct all conditional independence
relations implied by the DAG.

Step 3: Marginalization. Lastly, one has to eliminate
all joint entropies not contained in M.

The first two steps have been described in Sec. 2. We
thus briefly discuss the marginalization, first from a
geometric, then from an algorithmic perspective.

Given a set function h : 2[n] → R, its restriction
h|M :M→ R is trivial to compute: If h is expressed
as a vector in Rn, we just drop all coordinates of h
which are indexed by sets outside of M. Geometri-
cally, this amounts to a projection PM : R2n → R|M|.
The image of the constrained cone Γc

n under the pro-
jection PM is again a convex cone, which we will refer
to as ΓM. Recall that there are two dual ways of repre-
senting a polyhedral convex cone: in terms of either its
extremal rays, or in terms of the inequalities describing
its facets [2]. To determine the projection ΓM, a natu-
ral possibility would be to calculate the extremal rays
of Γc

n and remove the irrelevant coordinates of each
of them. This would result in a set of rays generating
ΓM. However, Steps 1 & 2 above give a representation
of Γc

n in terms of inequalities. Also, in order to obtain
readily applicable tests, we would prefer an inequality
presentation of ΓM. Thus, we have chosen an algo-
rithmically more direct (if geometrically more opaque)
procedure by employing Fourier-Motzkin elimination –
a standard linear programming algorithm for eliminat-
ing variables from systems of inequalities [34].

In the remainder of the paper, we will discuss appli-
cations of inequalities resulting from this procedure to
causal inference.

4 Applications

4.1 Conditions for Instrumentality

An instrument Z is a random variable that under cer-
tain assumptions helps identifying the causal effect
of a variable X on another variable Y [16, 22, 5].
The simplest example is given by the instrumentality
DAG in Fig. 1 (a), where Z is an instrumental vari-
able and the following independencies are implied: (i)
I(Z : Y |X,U) = 0 and (ii) I(Z : U) = 0. The variable
U represents all possible factors (observed and unob-
served) that may effect X and Y . Because conditions
(i) and (ii) involve an unobservable variable U , the use
of an instrument Z can only be justified if the observed

Z X Y

U

Z X Y

U1

U2

(a) (b)

Figure 1: DAG (a) represents the instrumental sce-
nario. DAG (b) allows for a common ancestor between
Z and Y : unless some extra constraint is imposed (e.g.
I(Y, U2) ≤ ε) this DAG is compatible with any proba-
bility distribution for the variables X, Y and Z.

distribution falls inside the compatibility region im-
plied by the instrumentality DAG. The distributions
compatible with this scenario can be written as

p(x, y|z) =
∑
u

p(u)p(y|x, u)p(x|z, u) (4)

Note that (4) can be seen as a convex combination of
deterministic functions assigning the values of X and
Y [22, 5, 25]. Thus, the region of compatibility asso-
ciated with p(x, y|z) is a polytope and all the proba-
bility inequalities characterizing it can in principle be
determined using linear programming. However, as
the number of values taken by the variables increases,
this approach becomes intractable [5] (see below for
further comments). Moreover, if we allow for vari-
ations in the causal relations, e.g. the one shown in
DAG (b) of Fig. 1, the compatibility region is not
a polytope anymore and computationally challenging
algebraic methods would have to be used [15]. For
instance, the quantifier elimination method in [15] is
unable to deal with the instrumentality DAG even in
the simplest case of binary variables. We will show
next how our framework can easily circumvent such
problems.

Proceeding with the algorithm described in Sec. 3, one
can see that after marginalizing over the latent variable
U , the only non-trivial entropic inequality constraining
the instrumental scenario is given by

I(Y : Z|X) + I(X : Z) ≤ H(X). (5)

By “non-trivial”, we mean that (5) is not implied by
monotonicity and sub-modularity for the observable
variables. The causal interpretation of (5) can be
stated as follows: Since Z influence Y only through
X, if the dependency between X and Z is large, then
necessarily the dependency between Y and Z condi-
tioned on knowing X should be small.

We highlight the fact that, irrespective of how many
values the variables X, Y and Z may take (as long as
they are discrete), (5) is the only non-trivial entropic



Compatible 
with 

Instrumental Scenario

Entropic Violations

Figure 2: A comparison between the entropic and
the probabilistic approach. The squares represent the
polytope of distributions compatible with the instru-
mental DAG. Each facet in the square corresponds to
one of the 4 non-trivial inequalities valid for binary
variables [22, 5]. The triangles over the squares repre-
sent probability distributions that fail to be compat-
ible with the instrumental constraints. Distributions
outside the dashed curve are detected by the entropic
inequality (5). Due to its non-linearity in terms of
probabilities, (5) detects the non-compatibility associ-
ated with different probability inequalities. See [8] for
more details.

constraint bounding the distributions compatible with
the instrumentality test. This is in stark contrast
with the probabilistic approach, for which the num-
ber of linear inequalities increases exponentially with
the number of outcomes of the variables [5]. There is,
of course, a price to pay for this concise description:
There are distributions that are not compatible with
the instrumental constraints, but fail to violate (5). In
this sense, an entropic inequality is a necessary but
not sufficient criterion for compatibility. However, it
is still surprising that a single entropic inequality can
carry information about causation that is in princi-
ple contained only in exponentially many probabilistic
ones. This effect stems from the non-linear nature of
entropy1 and is illustrated in Fig. 2.

Assume now that some given distribution p(x, y|z) is
incompatible with the instrumental DAG. That could
be due to some dependencies between Y and Z me-
diated by a common hidden variable U2 as shown in
DAG (b) of Fig. 1. Clearly, this DAG can explain any

1We remark that the reduction of descriptional com-
plexity resulting from the use of non-linear inequalities oc-
curs for other convex bodies as well. The simplest example
along these lines is the Euclidean unit ball B. It requires
infinitely many linear inequalities to be defined (namely
B = {x | (x, y) ≤ 1∀y, ‖y‖2 ≤ 1}). These can, of course, all
be subsumed by the single non-linear condition ‖x‖2 ≤ 1.

distribution p(x, y|z) and therefore is not very infor-
mative. Notwithstanding, with our approach we can
for instance put a quantitative lower bound on how de-
pendent Y and U2 need to be. Following the algorithm
in Sec. 3, one can see that the only non-trivial con-
straint on the dependency between Y and U2 is given
by I(Y : U2) ≤ H(Y |X). This inequality imposes a
kind of monogamy of correlations: if the uncertainty
about Y is small given X, their dependency is large,
implying that Y is only slightly correlated with U2,
since the latter is statistically independent of X.

4.2 Inferring direction of causation

As mentioned before, if all variables in the DAG are
observed, the conditional independencies implied by
the graphical model completely characterize the pos-
sible probability distributions [24]. For example, the
DAGs displayed in Fig. 3 display a different set of CIs.
For both DAGs we have I(X : Z|Y,W ) = 0, however
for DAG (a), it holds that I(Y : W |X) = 0 while for
DAG (b) I(Y : W |Z) = 0. Hence, if the joint distribu-
tions of (Y,W,X) and (Y,W,Z) are accessible, then CI
information can distinguish between the two networks
and thus reveal the “direction of causation”.

In this section, we will show that the same is possible
even if only two variables are jointly accessible at any
time. We feel this is relevant for three reasons.

First – and somewhat subjectively – we believe the
insight to be interesting from a fundamental point of
view. Inferring the direction of causation between two
variables is a notoriously thorny issue, hence it is far
from trivial that it can be done from information about
several pairwise distributions.

The second reason is that there are situations where
joint distributions of many variables are unavailable
due to practical or fundamental reasons. We have al-
ready mentioned quantum mechanics as one such ex-
ample – and indeed, the present DAGs can be related
to tests for quantum non-locality. We will briefly dis-
cuss the details below. But also purely classical situ-
ations are conceivable. For instance, Mendelian ran-
domization is a good example where the joint distri-
bution on all variables is often unavailable [10].

Thirdly, the “smoothing effect” of marginalizing may
simplify the statistical analysis when only few sam-
ples are available. Conditioning on many variables
or on variables that attain many different values of-
ten amounts to conditioning on events that happened
only once. Common χ2-tests for CI [32] involve di-
visions by empirical estimates of variance, which lead
to nonsensical results if no variance is observed. Test-
ing for CI in those situations requires strong assump-
tions (like smoothness of dependencies) and remains
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Figure 3: DAGs with no hidden variables and opposite
causation directions. The DAGs can be distinguished
based on the CIs induced by them. However, if only
pairwise information is available one must resort to the
marginalization procedure described in Sec. 3.

a challenging research topic [13, 36]. Two-variable
marginals, while containing strictly less information
than three-variable ones, show less fluctuations and
might thus be practically easier to handle. This ben-
efit may not sound spectacular as long as it refers to
2- versus 3-variable marginals. However, in general,
our formalism can provide inequality constraints for
k-variable marginals from equality constraints that in-
volve `-variable marginals for `� k.

We note that causal inference schemes using only pair-
wise mutual information is already known for trees,
i.e., DAGs containing no undirected cycles. The data
processing inequality implies that for every node, the
mutual information to a direct neighbor cannot be
smaller than the one with the neighbor of this neigh-
bor. Hence one can find adjacencies based on pairwise
mutual information only. This has been used e.g. for
phylogenetic trees [17, 9]. In that sense, our results
generalize these ideas to DAGS with cycles.

The non-trivial constraints on two-variable entropies
given by our algorithm for the DAG (a) of Fig. 3 are:

HY −HX −HYW +HXW ≤ 0 (6)

HW −HX −HYW +HXY ≤ 0

HWZ −HYW −HXZ +HXY ≤ 0

HY Z −HYW −HXZ +HXW ≤ 0

HY −HX +HW −HWZ −HY Z +HXZ ≤ 0

HZ −HX −HYW −HXZ +HXW +HXY ≤ 0

HZ +HX

+HYW +HXZ −HXW −HXY −HWZ −HY Z ≤ 0.

The ones for DAG (b) are obtained by the substitu-
tion X ↔ Z. Invariant under this, the final inequality
is valid for both scenarios. In contrast, the first six
inequalities can be used to distinguish the DAGs.

As an example, one can consider the following struc-
tural equations compatible only with the DAG (b): Z
is a uniformly distributed m-valued random variable,

Y = W = Z, and X = Y ⊕W (addition modulo m).
A direct calculation shows that the first inequality in
(6) is violated, thus allowing one to infer the correct
direction of the arrows in the DAG.

As alluded to before, we close this section by mention-
ing a connection to quantum non-locality [4]. Using
the linear programming algorithm, one finds that the
final inequality in (6) is actually valid for any distribu-
tion of four random variables, not only those that con-
stitute Bayesian networks w.r.t. the DAGs in Fig. 3.
In that sense it seems redundant, or, at best, a san-
ity check for consistency of data. It turns out, how-
ever, that it can be put to non-trivial use. While the
purpose of causal inference is to check compatibility
of data with a presumed causal structure, the task of
quantum non-locality is to devise tests of compatibil-
ity with classical probability theory as a whole. Thus,
if said inequality is violated in a quantum experiment,
it follows that there is no way to construct a joint dis-
tribution of all four variables that is consistent with
the observed two-variable marginals – and therefore
that classical concepts are insufficient to explain the
experiment.

While not every inequality which is valid for all clas-
sical distributions can be violated in quantum experi-
ments, the constraints in (6) do give rise to tests with
that property. To see this, we further marginalize over
H(X,Z) and H(Y,W ) to obtain

HXY +HXW +HY Z −HWZ −HY −HX ≤ 0 (7)

(and permutations thereof). These relations have been
studied as the “entropic version of the CHSH Bell in-
equality” in the physics literature [6, 12, 7], where it
is shown that (7) can be employed to witness that cer-
tain measurements on quantum systems do not allow
for a classical model.

4.3 Inference of common ancestors in
semi-Markovian models

In this section, we re-visit in greater generality the
problem considered in [29]: using entropic conditions
to distinguish between hidden common ancestors.

Any distribution of a set of n random variables can
be achieved if there is one latent parent (or ancestor)
common to all of them [23]. However, if the dependen-
cies can also be obtained from a less expressive DAG
– e.g. one where at most two of the observed vari-
ables share an ancestor – then Occam’s Razor would
suggest that this model is preferable. The question
is then: what is the simplest common ancestor causal
structure explaining a given set of observations?

One should note that unless we are able to intervene
in the system under investigation, in general it may



be not possible to distinguish direct causation from a
common cause. For instance, consider the DAGs (a)
and (c) displayed in Fig. 4. Both DAGs are compat-
ible with any distribution and thus it is not possible
to distinguish between them from passive observations
alone. For this reason and also for simplicity, we re-
strict our attention to semi-Markovian models where
all the observable variables are assumed to have no di-
rect causation on each other or on the hidden variables.
Also, the hidden variables are assumed to be mutually
independent. It is clear then that all dependencies be-
tween the observed quantities can only be mediated by
their hidden common ancestors. We refer to such mod-
els as common ancestors (CM) DAGs. We reinforce,
however, that our framework can also be applied in the
most general case. As will be explained in more de-
tails in Sec. 4.4, in some cases, common causes can be
distinguished from direct causation. Our framework
can also be readily applied in these situations.

We begin by considering the simplest non-trivial case,
consisting of three observed variables [29, 11, 7]. If no
conditional independencies between the variables oc-
cur, then the graphs in Fig. 4 (a) and (b) represent
the only compatible CM DAGs. Applying the algo-
rithm described in Sec. 3 to the model (b), we find
that one non-trivial class of constraints is given by

I(V1 : V2) + I(V1 : V3) ≤ H(V1) (8)

and permutations thereof [11, 7].

It is instructive to pause and interpret (8). It states,
for example, that if the dependency between V1 and V2
is maximal (I(V1 : V2) = H(V1)) then there should be
no dependency at all between V1 and V3 (I(V1 : V2) =
0). Note that I(V1 : V2) = H(V1) is only possible if
V1 is a deterministic function of the common ancestor
U12 alone. But if V1 is independent of U13, it cannot
depend on V3 and thus I(V1 : V3) = 0.

Consider for instance a distribution given by

p (v1, v2, v3) =

{
1/2 , if v1 = v2 = v3
0 , otherwise

, (9)

This stands for a perfect correlation between all the
three variables and clearly cannot be obtained by pair-
wise common ancestors. This incompatibility is de-
tected by the violation of (8).

We now establish the following generalization of (8) to
an arbitrary number of observables:

Theorem 1 For any distribution that can be ex-
plained by a CM DAG where each of the latent an-
cestors influences at most m of the observed variables,

U
U12

(b)(a) (c)
V1

V2 V3

V1

V2 V3

U13

U23

U12

V1

V2 V3

U13

U23

Figure 4: Models (a) and (b) are CM DAGs for three
observable variables V1, V2, V3. Unlike (b), DAG (a) is
compatible with any observable distribution. DAG (c)
involves a direct causal influence between the observ-
able variable V1 and V2.

we have ∑
i=1,··· ,n

i 6=j

I(Vi : Vj) ≤ (m− 1)H(Vj). (10)

We present the proof for the case m = 2 while the gen-
eral proof can be found in the supplemental material.

Lemma 1 In the setting of Thm. 1 for m = 2:

n∑
i=2

H(VjUji) ≥ (N − 2)H(Vj) +H(Vj

N⋃
i=2

Uji). (11)

Proof. (By induction) We treat the case j = 1 w.l.o.g.
For n = 2 equality holds trivially. Now assuming the
validity of the inequality for any n:∑n+1

i=2 H(V1U1i) ≥ (n− 2)H(V1) (12)

+H(V1
⋃n

i=2 U1i) +H(V1U1(n+1))

≥ [(n+ 1)− 2]H(V1) +H(V1
⋃n+1

i=2 U1i). (13)

From (12) to (13) we have used sub-modularity. �

Proof of Theorem 1. Apply the data processing
inequality to the left-hand side of (10) to obtain∑n

i=2 I(A1 : Ai) ≤
∑n

i=2 I(A1 : U1i)

= (n− 1)H(A1) +
∑n

i=2H(λ1i)−
∑n

i=2H(A1λ1i).

With Lemma 1, we get∑n
i=2 I(V1 : Vi) ≤ (n− 1)H(V1) +

∑n
i=2H(U1i)

−[(n− 2)H(V1) +H(V1
⋃n

i=2 U1i)] .

The mutual independence of hidden variables yields∑n
i=2H(U1i) = H(

⋃n
i=2 U1i) implying that

n∑
i=2

I(V1 : Vi) ≤ H(V1)−H(V1|
n⋃

i=2

U1i) ≤ H(V1).

�



We highlight the fact that Ineq. (10) involves only
pairwise distributions – the discussion in Sec. 4.2 ap-
plies. Following our approach, one can derive further
entropic inequalities, in particular involving the joint
entropy of all observed variables. A more complete
theory will be presented elsewhere.

4.4 Quantifying causal influences

Unlike conditional independence, mutual information
captures dependencies in a quantitative way. In this
section, we show that our framework allows one to de-
rive non-trivial bounds on the strength of causal links.
We then go on to present two corollaries of this result:
First, it follows that the degree of violation of an en-
tropic inequality often carries an operational meaning.
Second, under some assumptions, the finding will allow
us to introduce a novel way of distinguishing depen-
dence created through common ancestors from direct
causal influence.

Various measures of causal influence have been stud-
ied in the literature. Of particular interest to us is
the one recently introduced in [18]. The main idea is
that the causal strength CX→Y between a variable X
on another variable Y should measure the impact of
an intervention that removes the arrow between them.
Ref. [18] draws up a list of reasonable postulates that
a measure of causal strength should fulfill. Of spe-
cial relevance to our information-theoretic framework
is the axiom stating that

CX→Y ≥ I(X : Y |PAX
Y ), (14)

where PAX
Y stands for the parents of variable Y other

than X. We focus on this property, as the quantity
I(X : Y |PAX

Y ) appears naturally in our description
and thus allows us to bound any measure of causal
strength CX→Y for which (14) is valid.

To see how this works in practice, we start by aug-
menting the common ancestor scenario considered in
the previous section. Assume that now we do allow
for direct causal influence between two variables, in
addition to pairwise common ancestors – c.f. Fig. 4
(c). Then (14) becomes CV1→V2 ≥ I(V1 : V2|U12, U13).
We thus re-run our algorithm, this time with the un-
observable quantity I(V1 : V2|U12, U13) included in the
marginal scenario. The result is

I(V1 : V2|U12, U13) ≥ I(V1 : V2) + I(V1 : V3)−H(V1),
(15)

which lower-bounds the causal strength in terms of
observable entropies.

The same method yields a particularly concise and rel-
evant result when applied to the instrumental test of
Sec. 4.1. The instrumental DAG may stand, for ex-
ample, for a clinical study about the efficacy of some

drug where Z would label the treatment assigned, X
the treatment received, Y the observed response and
U for any observed or unobserved factors affecting
X and Y . In this case we would be interested not
only in checking the compatibility with the presumed
causal relations but also the direct causal influence of
the drug on the expected observed response, that is,
CX→Y . After the proper marginalization we conclude
that CX→Y ≥ I(Y : Z), a strikingly simple, but non-
trivial bound that can be computed from the observed
quantities alone. Likewise, if one allows the instru-
mental DAG to have an arrow connecting Z and Y ,
one finds

CZ→Y ≥ I(Y : Z|X) + I(X : Z)−H(X). (16)

The findings presented here can be re-interpreted in
two ways:

First, note that the right hand side of the lower bound
(15) is nothing but Ineq. (8), a constraint on distribu-
tions compatible with DAG 3 (b). Similarly, the r.h.s.
of (16) is just the degree of violation of the entropic
instrumental inequality (5).

We thus arrive at the conceptually important realiza-
tion that the entropic conditions proposed here offer
more than just binary tests. To the contrary, their de-
gree of violation is seen to carry a quantitative mean-
ing in terms of strengths of causal influence.

Second, one can interpret the results of this sections as
providing a novel way to distinguish between DAGs (a)
and (c) in Fig. 4 without experimental data. Assume
that we have some information about the physical pro-
cess that could facilitate direct causal influence from
V1 to V2 in (c), and that we can use that prior infor-
mation to put a quantitative upper bound on CV1→V2

.
Then we must reject the direct causation model (c) in
favor of a common ancestor explanation (a), as soon
as the observed dependencies violate the bound (15).
As an illustration, the perfect correlations exhibited
by the distribution (9) is incompatible with DAG (c),
as long as CV1→V2

is known to be smaller than 1.

5 Statistical Tests

In this section, we briefly make the point that
inequality-based criteria immediately suggest test
statistics which can be used for testing hypotheses
about causal structures. While a thorough treatment
of statistical issues is the subject of ongoing research
[3, 26], it should become plain that the framework al-
lows to derive non-trivial tests in a simple way.

Consider an inequality I :=
∑

S⊂2[n] cSH(S) ≤ 0 for
suitable coefficients cS . Natural candidates for test



statistics derived from it would be TI :=
∑

S cSĤ(S)

or T ′I := TI√
v̂ar(TI)

, where Ĥ(S) is the entropy of the

empirical distribution of XS , and v̂ar is some consis-
tent estimator of variance (e.g. a bootstrap estimator).
If the inequality I is fulfilled for some DAG G, then a
test with null hypothesis “data is compatible with G”
can be designed by testing TI ≤ t or T ′I ≤ t, for some
critical value t > 0. In an asymptotic regime, there
could be reasonable hope to analytically characterize
the distribution of T ′I . However, in the more relevant
small sample regime, one will probably have to resort
to Monte Carlo simulations in order to determine t for
a desired confidence level. In that case, we prefer to
use TI , by virtue of being “less non-linear” in the data.

We have performed a preliminary numerical study us-
ing the DAG given in Fig. 4 (b) together with Ineq. (8).
We have simulated experiments that draw 50 samples
from various distributions of three binary random vari-
ables V1, V2, V3 and compute the test statistic TI . To
test at the 5%-level, we must choose t large enough
such that for all distributions p compatible with 4(b),
we have a type-I error rate Prp[TI > t] below 5%. We
have employed the following heuristics for finding t:
(1) It is plausible that the highest type-I error rate oc-
curs for distributions p that reach equality Ep[Î] = 0;
(2) This occurs only if V1 is a deterministic function
of V2 and V3. From there, it follows that V1 must be a
function of one of V2 or V3 and we have used a Monte
Carlo simulation with (V2, V3) uniformly random and
V1 = V2 to find t = .0578. Numerical checks failed to
identify distributions with higher type-I rate (though
we have no proof). Fig. 5 illustrates the resulting test.
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Figure 5: Power (1 minus type-II error) of the test
TI ≥ t for the DAG Fig. 4(b) derived from Ineq. (8)
using 50 samples. The test was run on a distribution
obtained by starting with three perfectly correlated
binary random variables as in (9) and then inverting
each of the variables independently with a given “flip
probability” (x axis). Every data point is the result of
10000 Monte Carlo simulations.

6 Conclusions

Hidden variables imply nontrivial constraints on ob-
servable distributions. While we cannot give a com-
plete characterization of these constraints, we show
that a number of nontrivial constraints can be ele-
gantly formulated in terms of entropies of subsets of
variables. These constraints are linear (in)equalities,
which lend themselves well to algorithmic implemen-
tation.

Remarkably, our approach only requires the polyma-
troidal axioms, and thus also applies to various infor-
mation measures other than Shannon entropy. Some
of these may well be relevant to causal inference and
structure learning and may constitute an interesting
topic for future research.
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