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Abstract

Finding the MAP assignment in graphical mod-
els is a challenging task that generally requires
approximations. One popular approximation ap-
proach is to use linear programming relaxations
that enforce local consistency. While these are
commonly used for discrete variable models,
they are much less understood for models with
continuous variables.
Here we define local consistency relaxations of
MAP for continuous pairwise Markov Random
Fields (MRFs), and analyze their properties. We
begin by providing a characterization of models
for which this relaxation is tight. These turn out
to be models that can be reparameterized as a
sum of local convex functions. We also provide
a simple formulation of this relaxation for Gaus-
sian MRFs.
Next, we show how the above insights can be
used to obtain optimality certificates for loopy
belief propagation (LBP) in such models. Specif-
ically, we show that the messages of LBP can
be used to calculate upper and lower bounds on
the MAP value, and that these bounds coincide
at convergence, yielding a natural stopping crite-
rion which was not previously available.
Finally, our results illustrate a close connection
between local consistency relaxations of MAP
and LBP. They demonstrate that in the continu-
ous case, whenever LBP is provably optimal so
is the local consistency relaxation.

1 INTRODUCTION

Graphical models [13] have become a key tool for describ-
ing multivariate distributions. For many models of interest,
the basic inference task of finding the most likely assign-
ment (also known as the MAP assignment) is computation-
ally hard [26], and one must resort to approximations.

When the model variables are discrete, a popular approx-
imation scheme is linear programming relaxations (LPR).
These approximate the MAP problem via minimization of
a linear function over locally consistent pseudo-marginals.
LPRs have several advantages: they provide optimality cer-
tificates, they can be optimized via message passing al-
gorithms, they work well in practice, and they are prov-
ably exact in some cases (e.g., binary attractive models and
trees) [8, 27, 28, 36, 11].

For models with continuous variables, it is less clear how
to apply the local consistency perspective of LPRs. For ex-
ample, the psuedo-marginals now become functions rather
than a discrete set of variables. Moreover, the standard
consistency constraints translate into a continuum of con-
straints. The goal of the current paper is to study such re-
laxations and understand when they are tight.

Another commonly used approximate inference algorithm
is loopy belief propagation (LBP)[37]. It works by passing
messages along the graph, in a manner motivated by vari-
able elimination on tree structured models. Although LBP
and LPR are generally distinct algorithms, there are cases
where both are exact. For example, both yield the exact
MAP for tree models, maximum weight matching [3, 24]
and a few other problems (see Section 8). However, there is
still no general result linking LPR and LBP. Since LBP in
the continuous case is fairly well understood [16, 17], we
will want to link our results to known results on LBP.

We begin by defining local consistency MAP relaxations
for continuous models. Technically, these will be con-
structed in an analogous way to the LP relaxations for dis-
crete variables. However, they will typically not corre-
spond to standard linear programs and thus we refer to them
as local consistency relaxations (LCRs).

We obtain several surprising results on LCRs. For simplic-
ity of presentation we focus on pairwise MRFs, but exten-
sions to larger cliques are possible (see Section 7). Our first
key result is to show that the LCR of a model is tight if the
model is “convex decomposable” (CD). A model is CD if
it can be expressed as a sum of pairwise convex functions



(see [17] for a similar definition).

For continuous MRFs there are several cases where LBP
is known to converge to the exact MAP. It is thus of inter-
est to relate these to our LCR results in order to further
our understanding of the relation between these two ap-
proximation schemes. The relation turns out to be simple
and interesting. For Gaussian MRFs LBP is provably opti-
mal when the model is walk-summable [16, 18], a property
which turns out to be equivalent to convex decomposability
of the model. In other words LCR and LBP are both exact
on these models. For general MRFs, LBP is provably opti-
mal for models that are scaled diagonally dominant [17].
These turn out to be a strict subset of CD models, sug-
gesting that either LCR is a stronger approximation or that
stronger properties of LBP can be shown.

The above results on LCR and the relation to LBP lead to
an important practical implication. It turns out we can use
these insights to obtain runtime optimality certificates for
loopy belief propagation (LBP) in a wide range of models.
Specifically, we show that the messages of LBP can be used
to calculate upper and lower bounds on the MAP value, and
that these bounds coincide at convergence, yielding a nat-
ural stopping criterion for LBP, which was not previously
available.

2 MAP IN CONTINUOUS MRFS

We begin by recalling MAP inference in graphical mod-
els and how LP relaxations are used to obtain approximate
solutions of the problem.

Consider n variables X1, . . . ,Xn, and a set of singleton
and pairwise functions fi(xi), fij(xi, xj) where the pairs
ij are a set of edges of a graph G = (V,E). Use these to
define a function over x = x1, . . . , xn:

F (x) =∑
i

fi(xi) +∑
ij

fij(xi, xj). (1)

For now we do not assume anything about the state spaces
of the variables. We refer to F (x) as an MRF over
X1, . . . ,Xn and consider the MAP problem of minimizing
F (x).1

It will be convenient in what follows to express F (x) as a
linear function of certain functions of x (our notation fol-
lows that of [33]). Assume there exists a vector of functions
φi(xi) of xi, and a vector θi such that:

fi(xi) = ⟨θi,φi(xi)⟩.

For example if φi(xi) = [xi, x
2
i ] then fi(xi) is the

quadratic function fi(xi) = θi,1xi + θi,2x
2
i . Similarly

1We refer to this as the MAP problem since it corresponds to
finding the maximum a posteriori assignment to x in the model
p(x)∝ exp (−F (x)).

assume there exist functions φi,j(xi, xj) and vectors θij
such that:

fij(xi, xj) = ⟨θij ,φij(xi, xj)⟩. (2)

Denote the concatenation of all θi,θij by θ and the con-
catenation of all φi,φij functions by φ. Furthermore, de-
note the dimension of θ and φ by m. We can thus write:

F (x) = ⟨θ,φ(x)⟩, (3)

The MAP problem has an equivalent formulation in terms
of mean parameters, as shown in [33] and as reviewed next.
We define the set of realizable mean parameters:

M = {µ ∈ Rm ∶ ∃p̂ ∈ ∆ s.t Ep̂ [φ(x)] = µ} ,

where ∆ is the set of densities over x. It can be then shown
that the MAP problem corresponds to optimization of a lin-
ear function over the setM.
Theorem 2.1. [33] For the MRF as defined above and the
correspondingM it holds that 2:

min
x
F (x) = min

µ∈M
⟨θ,µ⟩. (4)

The problem in Eq. (4) has a linear objective over m vari-
ables. m is usually not much larger than n, yet the defini-
tion ofM involves variables corresponding to densities and
thus is generally hard to characterize explicitly. However,
there are continuous variable cases whereM does have a
compact form. For example, in Gaussian MRFs M can
be expressed via positive semi definiteness constraints (see
[33, sec. 3.4.1]).

Finally, we recall the definition of a reparameterization of
an MRF.
Definition 1. We call any set of functions
f̄i(xi), f̄ij(xi, xj) a reparameterization of F (x) if it
holds that for every x:

F (x) =∑
i

f̄i(xi) +∑
ij

f̄ij(xi, xj). (5)

3 LOCAL CONSISTENCY
RELAXATIONS

Optimizing over the setM is generally hard. When X are
discrete variablesMwill involve an exponential number of
inequalities. When X are continuous, even in cases where
M is tractable to optimize over, this optimization may be
costly (e.g., a semidefinite program). This has prompted
considerable research on relaxations ofM and the result-
ing optimization problem. Most of the work in this context
has focused on discrete variables as reviewed next. Our
goal is then to extend this framework to the continuous
case.

2We note that the right hand side of Eq. (4) should have M̄ in-
stead ofM. The closure is omitted for simplicity of presentation.



3.1 LCR FOR DISCRETE VARIABLES

Consider the case where Xi are discrete variables, each
with D values, and the functions φ are defined as follows.
φi(xi) is D dimensional with φi,k(xi) = I (xi = k), and
φij(xi, xj) is D × D dimensional with φij,kl(xi, xj) =

I (xi = k, xj = l). The expected values Ep̂ [φi(xi)] and
Ep̂ [φij(xi, xj)] are simply the singleton marginals p̂(xi)
and p̂(xi, xj) respectively. Thus,M corresponds to the set
of all singleton and pairwise marginals that are achieved by
some distribution p̂(x). This is also known as the marginal
polytope [33].

As mentioned earlier, the marginal polytope generally re-
quires an exponential number of inequalities to describe.
One natural alternative is to consider a local consistency
relaxation (LCR) where instead of requiring the marginals
to come from a “global” distribution p̂(x) we just require
the singleton and pairwise marginals to be consistent. In
other words, we define the set ML as the set of locally
consistent pairwise marginals:

ML = {µ ≥ 0 ∶
∑xi µi(xi) = 1

∑xj µij(xi, xj) = µi(xi) ∀ij, xi.
}

The local relaxation of the MAP problem is then to min-
imize µ ⋅ θ over µ ∈ ML instead of µ ∈ M. We next
consider the extension of this relaxation to the continuous
variable case.

3.2 LCR FOR CONTINUOUS VARIABLES

For continuous variables, a natural extension of the above
is to replace the sum in the local consistency constraints
with an integral:

ML =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

µ ∶

∃ densities p̂i, p̂ij s.t.
∫ p̂ij(xi, xj)dxj = p̂i(xi) ∀ij, xi
Ep̂i [φi(xi)] = µi ∀i

Ep̂ij [φij(xi, xj)] = µij ∀ij.

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(6)

In other words we consider all pairwise consistent densi-
ties, and ML are all the expected values obtained from
such densities. As in the discrete case the local relaxation
of MAP is then the problem:

min
µ∈ML

⟨θ,µ⟩. (7)

Note that becauseM ⊆ML, the above minimum is a lower
bound on the true MAP value (as in the case of discrete
models [29]).

The key question we ask here is: for which cases is the re-
laxation in Eq. (7) tight? Before presenting our main result
(Thm. 4.1), we will define an even looser relaxation in the
next section which will be important for our analysis.

3.3 WEAK LCR AND ITS DUAL

In the constraints of Eq. (6) we require the single-
ton and pairwise marginals to be completely consistent.
Namely, that p̂ij(xi), the marginal density calculated from
p̂ij(xi, xj) will equal p̂i(xi) for all xi values. A weaker
consistency constraint is to enforce that p̂ij(xj) and p̂i(xi)
agree only on certain expected values. We next define the
set corresponding to this constraint.

Given a vector of functions ψi(xi) for each i ∈ V ,3 we
define the set:

M
ψ
L =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

µ ∶

∃ densities p̂i, p̂ij s.t.
Ep̂ij [ψi(xi)] = Ep̂i [ψi(xi)] ∀ij
Ep̂i [φi(xi)] = µi ∀i

Ep̂ij [φij(xi, xj)] = µij ∀ij.

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

Thus Mψ
L enforces consistency only in the sense that

p̂ij(xj) and p̂i(xi) agree on the expected values of ψi.
Thus, for any choice of ψ we haveML ⊆M

ψ
L.

The corresponding relaxation is then defined as:

min
µ∈Mψ

L

⟨θ,µ⟩. (8)

Basic relations between the relaxations we consider are
thus summarized by the inequalities:

min
µ∈Mψ

L

⟨θ,µ⟩ ≤ min
µ∈ML

⟨θ,µ⟩ ≤ min
µ∈M

⟨θ,µ⟩ = min
x
F (x).

The dual of Eq. (8) will play an important role in subse-
quent sections:

Lemma 3.1. Given a pairwise MRF with functions
fi(xi), fij(xi, xj), the following is a dual problem of
Eq. (8):

max
δ
∑
i

min
xi

{fi(xi) + ∑
j∈N(i)

⟨δji,ψi(xi)⟩}+ (9)

∑
ij

min
xi,xj

{fij(xi, xj) − ⟨δji,ψi(xi)⟩ − ⟨δij ,ψj(xj)⟩}.

We note that the bound achieved by this dual, and hence
by weak LCR, is dependent on the reparameterization
fi(xi), fij(xi, xj) being used. The full LCR Eq. (7)
may also yield different optimization problems for differ-
ent reparameterizations, yet it turns out that the bound it
achieves is invariant to the reparameterization. The proof
of the following lemma can be found in the supplementary
material.

Lemma 3.2. LCR has the same value under any reparam-
eterization {fi(xi), fij(xi, xj)} of F (x).

3For example, ψi(xi) could be [xi, x
3
i ].



4 TIGHTNESS OF LCR ON CONVEX
DECOMPOSABLE MODELS

We are now ready to provide our main result on the tight-
ness of LCRs. We first recall the definition of Convex De-
composable (CD) models, as introduced by [17]4 in the
context of LBP analysis. Next, we show that in these mod-
els the local consistency relaxation in Eq. (7) is exact.
Definition 2. A pairwise MRF is convex decomposable
if there exists a reparameterization f̄i(xi), f̄ij(xi, xj) of
F (x) such that all the functions in the reparameterization
are convex.

Our result regarding tightness of LCR on CD MRFs is
stated in the following theorem:
Theorem 4.1. For any CD pairwise MRF it holds that

min
µ∈ML

⟨θ,φ(x)⟩ = min
x
F (x).

The proof is provided in the appendix. It relies on the fol-
lowing insights:

• From Lem. 3.2, the dual of weak LCR Eq. (9) taken
with respect to any reparameterization of F (x) is a
lower bound on LCR’s value.

• Specifically, we can consider Eq. (9) with ψi = [xi]
when the reparameterization fi(xi), fij(xi, xj) con-
tains convex functions.

• Assuming x∗ is a MAP assignment, the dual assign-
ment δ∗ obtained by setting multipliers according to
a subgradient of the pairwise functions fij(xi, xj)
taken at x∗, achieves a dual objective of F (x∗) in
Eq. (9).

• LCR’s value cannot be lower than weak LCR’s value,
which in turn cannot be lower than F (x∗) because we
constructed a dual assignment that achieves this objec-
tive. LCR is a lower bound on MAP, so that equality
must hold.

4.1 RELATION TO LOOPY BP

In [17] it is shown that loopy BP is exact (i.e., guaran-
teed to converge to the true MAP assignment) on a class
of models that satisfy scaled diagonal dominance. These
are a strict subset of CD models. In particular, they require
that a model is CD as well as its Hessian being scaled diag-
onally dominant. That is, there must exist a strictly positive
vector w ∈ Rn and a 0 < λ < 1 such that for any x it holds:

∑
j∈N(i)

wj ∣
∂2

∂xi∂xj
F (x)∣ ≤ λwi

∂2

∂x2i
F (x).

4We note that the definition in [17] poses the additional de-
mands of differentiability and that fi(xi) are strictly convex, so
the class we define here is a larger one.

Thus, we conclude that given currently known exactness
results on LBP, the LCR approximation is stronger in the
sense that it is exact whenever LBP is known to be exact.
It remains an open question whether it can be shown that
LBP is exact on CD models.

5 GAUSSIAN MRFS AND THEIR
RELAXATION

Gaussian MRFs (GMRFs) have been studied widely, and
are also of practical interest [5, 6, 16, 18, 34]. Here we give
a simple characterization ofML for GMRFs, and then dis-
cuss when the corresponding relaxations are tight. We give
a stronger result than Theorem 4.1 by showing that LCR
is tight if and only if the Gaussian model is CD. Specifi-
cally, we show that for non CD models the LCR optimiza-
tion problem has a value of −∞, and is thus a meaningless
relaxation.

Recall that a GMRF F (x) is a quadratic form:

F (x) =
1

2
x⊺Γx − h⊺x,

where Γ ⪰ 0. The function vectors φi(xi),φij(xi, xj) for
this type of MRF are given by

φi(xi) = {xi, x
2
i },φij(xi, xj) = {xixj}. (10)

As stated in [33], the set of realizable mean parametersM
in this case is the set of all first and second moments that
can be realized by a density p̂. Namely:

M = {(Σ,η) ∶ Σ − ηη⊺ ⪰ 0} . (11)

Here the elements Σij correspond to the expected values of
xixj , the diagonal elements Σii are the expected values of
x2i and η are the expected values of xi.

5.1 A CHARACTERIZATION OFML FOR
GMRFS

Given this simple form ofM, it is interesting to see what
ML translates into for this case. To characterizeML we
define:

Definition 3. Given an n×nmatrixA, and an edge (i, j) ∈
E, define the following sub matrix of A

A[ij] = [
Aii Aij
Aji Ajj

] .

Similarly, for an n dimensional vector v, define

v[ij] = [
vi
vj

] .

Claim 5.1. For GMRFs it holds that

ML = {(Σ,η) ∶ Σ[ij] − η[ij]η
⊺

[ij] ⪰ 0 ∀ij ∈ E}. (12)



The proof can be found in the appendix. The characteriza-
tion is very intuitive: it says that Σ should be such that its
pairwise submatrices are valid covariance matrices of two
variables with mean given by η.

5.1.1 LCR is Unbounded for non-CD GMRFs

We now turn to give a full characterization of the GMRFs
on which LCR is tight. From Thm. 4.1 we know that when-
ever a GMRF is convex decomposable then LCR is tight,
yet we do not know if tightness holds for any other GM-
RFs. It turns out that it does not, and in fact the objective
of LCR is unbounded for non CD models. The proof relies
on the following two claims. First we claim that for GM-
RFs, under a certain choice ofψi(xi),Mψ

L as given for the
weak LCR in Eq. (8) is equal toML:

Claim 5.2. LetML be the set defined in Eq. (6) with the
functions in Eq. (10). For ψi(xi) = [xi, x

2
i ] it holds that:

ML =M
ψ
L . (13)

From Claim 5.2 we gather that weak LCR achieves the
same bound as LCR, and that Eq. (9) is also a dual of LCR.
The second claim then states that Eq. (9) is unbounded
when the GMRF is not CD.

Claim 5.3. For any non-CD GMRF, the value of Eq. (9)
taken with ψi(xi) = [xi, x

2
i ] is −∞ for any choice of δ.

The proof of both claims is provided in the appendix. It
is easy to check that Slater’s conditions hold for LCR as
defined by Eq. (12) (see e.g. [4, p. 523] for the conditions).
Thus when the optimum of LCR is bounded (i.e. larger
than −∞), strong duality holds and Eq. (9) obtains the same
optimal value. Claim 5.3 states that this does not happen
for non-CD GMRFs. We have thus shown the following
corollary:

Corollary 5.4. LCR is unbounded on any non-CD GMRF.

5.2 RELATION TO LOOPY BP

Several works have analyzed the properties of LBP when
applied to GMRFs [16, 34, 18]. These show that when a
model is CD then LBP is exact.5 Note that the definition
of convex decomposability used in [18] is somewhat more
restrictive than what we consider here. It requires the pair-
wise functions fij(xi, xj) in the convex decomposition to
be strictly convex.

Given our results above, we conclude that LCR is exact
precisely on the models where LBP is known to be exact.
That is with the subtle exception of cases where the pair-
wise functions in the convex decomposition are not strictly
convex, and then LBP is not known to be exact.

5As stated in Section 1, there are other characterizations of
these models, e.g. walk summability, which turn out to be equiv-
alent to convex decomposability.

6 A STOPPING CRITERION FOR LBP

In this section we highlight a practical application resulting
from the close LCR and LBP connection. Since LBP does
not optimize a clearly defined objective, it is hard to mon-
itor its convergence. Below we show how in many cases,
simple upper and lower bounds can be calculated for LBP.

Consider an MRF where fij , fi are convex and LBP is
known to be exact. We will provide upper and lower
bounds on the MAP objective in this case and show that
they are tight at convergence. These bounds can thus be
used as a reliable, easy to apply stopping criterion for LBP
in these cases.6

Given our assumption on the MRF, it follows that it is CD.
Thus, the LCR is tight, and the maximum of the dual objec-
tive Eq. (9) will equal the MAP value. This leads us to the
following bounding scheme. At each iteration of BP, cal-
culate an estimate of the MAP and denote it by xt. Clearly
F (xt) is an upper bound on the MAP value.

The procedure for obtaining the lower bound is more in-
volved, although technically simple. It is described (along
with the upper bound) in Algorithm 1. First, it is easy to
see that d in Algorithm 1 is a lower bound since it is a value
of the dual in Eq. (9). Second, this bound is tight when xt

is the MAP assignment, as the following result states:

Lemma 6.1. Assume xt ∈ arg minx F (x), then the bound
returned by the procedure satisfies p = d.

Algorithm 1 Bounding Scheme for Sum of Convex Func-
tions
Input: MAP estimate xt at time t, accuracy parameter ε,

convex reparameterization {fi(xi), fij(xi, xj)}.
For each ij ∈ E, find g ∈ ∂fij(xti, x

t
j) and set

δ̂ji = gi, δ̂ij = gj .

Set for each i ∈ V and ij ∈ E

f̄i(xi) = fi(xi) + ∑
j∈N(i)

δ̂jixi

f̄ij(xi, xj) = fij(xi, xj) − δ̂jixi − δ̂ijxj

Calculate primal and dual objectives 7

p =∑
i

fi(x
t
i) +∑

ij

fij(x
t
i, x

t
j)

d =∑
i

min
xi

f̄i(xi) +∑
ij

min
xi,xj

f̄ij(xi, xj)

If p − d < ε then determine convergence.

6It is possible to apply these bounds to any iterative algorithm
that provides a sequence of approximate MAP assignments. We
focus on LBP since the bounds are tight in the case we address.



The proof of this lemma follows exactly the same argument
given in the third step for the proof of Thm. 4.1. When the
singleton functions fi are strongly convex and the objective
is smooth, then it is also possible to give a guarantee on the
size of the bound for xt that is not a MAP assignment (see
Lem. B.1 in the supplementary material).

Thus, we have obtained a scheme that provides tight lower
and upper bounds on the iterates of BP in a subclass of the
cases when it converges. Figure 1 illustrates these bounds
for a Gaussian MRF.
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Figure 1: Illustration of the bounds for a 10×10 grid Gaus-
sian MRF. We generate random convex quadratic functions
for each node and edge in the model, and use the described
bounding scheme to determine LBP’s convergence.

7 HIGHER ORDER MODELS

Thus far we only considered pairwise models. In this sec-
tion we briefly mention the generalization of our results to
higher order models. We propose two possible LCR ap-
proaches in this context and provide the related tightness
results.

A non pairwise MRF may be written as follows:

F (x) = ∑
α∈C

fα(xα),

where C ⊆ 2V . One option to defineML for this case is:

ML =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ ∶

∃ densities p̂i, p̂α s.t.
∫ p̂α(xα)dxα∖i = p̂i(xi) ∀α, i ∈ α,xi
Ep̂α [φα(xα)] = µα ∀α ∈ C.

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(14)

In other words,ML constrains marginals over the α sets to
agree on singleton marginals. Another reasonable choice
is to define a set MC that enforces stronger consistency

7Notice that in order to calculate d it is not required to per-
form optimization over f̄ij(xi, xj). The manner in which we set
δ̂ guarantees that the minimum is attained at (xti, x

t
j). The calcu-

lation of d will only demand optimizing f̄i(xi) for each i.

constraints thanML:

∫ p̂α(xα)dxα∖β = ∫ p̂β(xβ)dxβ∖α ∀α,β ∈ C. (15)

Instead of consistency over single variables,MC enforces
consistency on the overlap of pairs α,β ∈ C.

Similar derivations to those of the pairwise case lead to
tightness characterization for the constraints above. For our
tightness results to carry, F (x) should be given as a sum of
convex functions. The first result states that if the functions
fα(xα) are all convex, then theML relaxation is tight.

Claim 7.1. If F (x) is given as a sum of convex functions
then minµ∈ML

⟨θ,µ⟩ = minx F (x).

In this case we can also use the bounds described in Sec-
tion 6. An interesting example of such a model is the one
underlying the AMP algorithm of Donoho et al. [19].

The relaxation defined by Eq. (15) may be more compli-
cated to solve due to the additional constraints. At the cost
of this complication, the obtained relaxation is invariant to
reparameterizations and an analogue of Thm. 4.1 holds.8

Definition 4. An MRF is CD w.r.t C ⊆ 2V if there exists
a reparameterization {f̄α(xα)} for F (x) such that all the
functions in the reparameterization are convex.

Claim 7.2. For any MRF that is CD w.r.t C it holds that
minµ∈MC

⟨θ,µ⟩ = minx F (x).

See supplementary material for proofs of the above results.

8 RELATED WORK

The current paper studies local consistency relaxations as
applied to continuous MRFs, and their relation to loopy
belief propagation. Below we briefly survey related results
on this relation, focusing on discrete variable models where
local consistency relaxations are typically considered.

For discrete tree structured MRFs, it can be shown that LBP
and LCR are equivalent in the sense that they are both tight,
and in fact there is a mapping between dual LCR variables
and BP optima (see [33, p. 200]) .

In [35] Weiss et al. consider the relation between LCR
and convex belief propagation (and not standard LBP).
They show that if a convex variant of max-product LBP
converges, and the sharpened version of its beliefs (where
sharpening means to distribute all probability mass evenly
between maximizing arguments of the beliefs) are locally
consistent, then they are a solution to the LCR.

For maximum weight bipartite matching it is known that
LBP is exact [3] and so is the standard LP relaxation of the
problem [31] (see also [1, sec. 6] on the relation between

8This result holds under a non-restrictive assumption that α ∩
β ∈ C for all α,β ∈ C and also {i} ∈ C for all i ∈ V .



this relaxation and local consistency relaxations). For non
bipartite matching a more subtle result is available [24]
showing that if the LCR does not have fractional optima
then LBP is exact. Otherwise LBP will not be exact. Re-
lated results are available for maximum weight indepen-
dent set [25] and packing and covering problems [7].

For the problem of decoding LDPC codes, both LCR ap-
proaches [9] and LBP [21] have been successful. Although
some relations between these have been shown [32, 2], a
clear link establishing cases where they are both exact has
not been provided.

Tarlow et al. [30] show that for the min-cut problem, where
LCR is known to be tight (e.g., see [31]), a modified version
of LBP is exact as well.

Another connection between the LPR and message passing
algorithms relies on the notion of graph covers [23, 12].
It is shown that for discrete models, LPR solves the MAP
problem on a model that has the lowest objective amongst a
family of graphical models who are in some sense isomor-
phic to the model it tries to approximate. Message passing
algorithms are unable to distinguish between these isomor-
phic models, and thus an intuitive link between LPR and
message passing is made.

On GMRFs, both LBP [16, 34, 18] and graph covers [22]
were studied. One of the conclusions reached by studying
graph covers [22] is that for non-CD GMRFs, dual coordi-
nate ascent algorithms [10, 14, 15] are bound to fail at pro-
ducing the MAP estimate. Our result for GMRFs provides
an arguably simpler explanation of this failure: These al-
gorithms perform dual coordinate ascent on the LCR, and
whenever the LCR is inapplicable (as in the case of non-
CD GMRFs) they yield a useless bound. See Section 5.2
for further discussion of GMRFs and LBP.

Relaxations for continuous MRFs have been less studied.
The most relevant work is [20], who arrived at the dual of
Eq. (7) (notice we did not use this dual, rather we used
Eq. (9) which is a dual of Eq. (8)) but did not analyze when
these are exact. Another recent work [38] suggested a dif-
ferent relaxation for continuous variables, but one that is
more involved than standard LPRs and also has no clear
connection to BP.

Another work on MAP estimation in continuous MRFs
suggested an algorithm called Linear Coordinate Descent
[40]. This algorithm was later generalized by the authors
[39]. For both versions, the authors do not give an objec-
tive over which the updates yield an improvement at each
step. In fact, our analysis provides a very simple interpre-
tation of the algorithm in [40]. It essentially performs dual
coordinate ascent on the dual of weak LCR (see Eq. (9)).
This also leads to a much simpler convergence proof than
that given in [40], since coordinate ascent in this case has a
unique maximum and therefore converges globally [4].

9 DISCUSSION

We considered the MAP problem for MRFs on continu-
ous variables, and derived a local relaxation for these. For
convex decomposable MRFs we showed that these relax-
ations are in fact exact. For Gaussian MRFs we provided
a stronger result showing that convex decomposability is
necessary and sufficient for exactness of local relaxations.

Comparing our results to those on exactness of loopy be-
lief propagation we find that local relaxations are exact in
a strictly larger class of models. This further strengthens
the known relation between LBP and LCR, adding to nu-
merous other models where exactness of local relaxations
coincides with exactness of LBP. It also leaves interesting
open questions. For example, does BP in fact converge
on general CD models or is the scaled diagonal dominance
condition of [17] necessary.

We note that it is possible to use the LCR and its dual
to derive coordinate ascent algorithms for the dual LCR.
We have indeed derived MPLP-like algorithms [27] for this
case. However, our experiments (not shown here) indicate
that they are typically slower than LBP. Thus, LBP remains
an attractive option for optimizing such models, and the
tight bounds we develop in Section 6 are very useful when
using it in practice. An interesting open problem is to de-
vise such bounds for LBP in other models, and to provide
general transformations between LCR and LBP solutions.

A Proofs

A.1 Proof of Lem. 3.1

Proof. Let us writeMψ
L with auxiliary variables η:

M
ψ
L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ,η ∶

∃p̂i, p̂ij s.t.
Ep̂i [φi(xi)] = µi ∀i

Ep̂ij [φij(xi, xj)] = µij ∀ij
Ep̂i [ψi(xi)] = ηi ∀i
Ep̂ij [ψi(xi)] = ηji ∀i, j ∈ N(i)
ηji = ηi ∀i, j ∈ N(i).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Define for each i ∈ V, ij ∈ E the sets of realizable mean
parameters:

Mi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µi,ηi ∶
∃p̂i s.t.
Ep̂i [φi(xi)] = µi
Ep̂i [ψi(xi)] = ηi

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

Mij =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

µij ,ηij ,ηji ∶

∃p̂ij s.t.
Ep̂ij [φij(xi, xj)] = µij
Ep̂ij [ψi(xi)] = ηji
Ep̂ij [ψj(xj)] = ηij .

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭



ThenMψ
L can now be written compactly as:

M
ψ
L =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ,η ∶
(µi,ηi) ∈Mi ∀i
(µij ,ηij ,ηji) ∈Mij ∀ij
ηji = ηi ∀i, j ∈ N(i).

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

Using the expressions for fi(xi), fij(xi, xj) from Eq. (2),
our problem is:

min
(µ,η)∈Mψ

L

∑
i

⟨θi,µi⟩ +∑
ij

⟨θij ,µij⟩

We now assign a Lagrange multiplier to each consistency
constraint

δji ↔ ηji = ηi

δij ↔ ηij = ηj ,

and write the resulting Lagrangian:

L(δ,η,µ) =∑
i

⎧⎪⎪
⎨
⎪⎪⎩

⟨θi,µi⟩ + ∑
j∈N(i)

⟨δji,ηi⟩

⎫⎪⎪
⎬
⎪⎪⎭

+∑
ij

⎧⎪⎪
⎨
⎪⎪⎩

⟨θij ,µij⟩ − ⟨δij ,ηij⟩ − ⟨δji,ηji⟩

⎫⎪⎪
⎬
⎪⎪⎭

.

To obtain a dual, we first minimize L(δ,µ,η) w.r.t
µ,η under the remaining constraints: (µi,ηi) ∈

Mi, (µij ,ηij ,ηji) ∈Mij . Since the relevant variables for
each constraint all lie in a single summand, we can push
the minimization inside the sums:

L(δ) =∑
i

min
µi,ηi∈Mi

⎧⎪⎪
⎨
⎪⎪⎩

⟨θi,µi⟩ + ∑
j∈N(i)

⟨δji,ηi⟩

⎫⎪⎪
⎬
⎪⎪⎭

+

∑
ij

min
µij ,ηij ,ηji∈Mij

⎧⎪⎪
⎨
⎪⎪⎩

⟨θij ,µij⟩ − ⟨δij ,ηij⟩ − ⟨δji,ηji⟩

⎫⎪⎪
⎬
⎪⎪⎭

.

Each summand includes optimization over the set of real-
izable mean parameters, thus according to Thm. 2.1 our
Lagrangian is given by:

L(δ) =∑
i

min
xi

⎧⎪⎪
⎨
⎪⎪⎩

⟨θi,φi(xi)⟩ + ∑
j∈N(i)

⟨δji,ψi(xi)⟩

⎫⎪⎪
⎬
⎪⎪⎭

+

∑
ij

min
xi,xj

⎧⎪⎪
⎨
⎪⎪⎩

⟨θij ,φij(xi, xj)⟩

− ⟨δij ,φij(xj)⟩ − ⟨δji,φji(xi)⟩

⎫⎪⎪
⎬
⎪⎪⎭

.

The desired dual is obtained by maximizing over δ.

A.2 Proof of Thm. 4.1

Proof. Assume {fi(xi), fij(xi, xj)} is a reparameteriza-
tion of F (x) for which all the functions are convex. Ac-
cording to Lem. 3.2 the minimum of LCR does not depend

on the reparameterization, thus it is enough to prove weak
LCR’s tightness with respect to this decomposition in order
to establish LCR’s tightness.

Consider weak LCR taken with ψi(xi) = [xi]. In this case
the dual problem Eq. (9) is:

max
δ
∑
i

min
xi

{fi(xi) + ∑
j∈N(i)

δjixi}+

∑
ij

min
xi,xj

{fij(xi, xj) − δjixi − δijxj}.

Let x∗ ∈ arg minx F (x), and for each ij ∈ E take some g ∈
∂fij(x

∗

i , x
∗

j ). Set the multipliers δji, δij as the components
of g:

δ∗ji = gi, δ
∗

ij = gj ,

and define the reparameterizaition obtained under δ∗:

f̄i(xi) = fi(xi) + ∑
j∈N(i)

δ∗jixi

f̄ij(xi, xj) = fij(xi, xj) − δ
∗

jixi − δ
∗

ijxj .

Each of the functions f̄i, f̄ij is a sum convex functions,
hence is convex. From how we set g, each f̄ij is minimized
at (x∗i , x

∗

j ). We also have:

∑
i

f̄i(x
∗

i ) = F (x∗) −∑
ij

f̄ij(x
∗

i , x
∗

j ).

It holds that 0 ∈ ∂f̄ij(x
∗

i , x
∗

j ) and that 0 ∈ ∂F (x∗) (be-
cause x∗ is a minimizer). From additivity of the subgradi-
ent, we now get 0 ∈ ∂∑i f̄i(x

∗

i ), and since each function
in the sum depends on a different variable it also holds that
0 ∈ ∂f̄i(x

∗

i ) for each i. We conclude that x∗ minimizes
each function in the reparameterization f̄i, f̄ij , and the dual
objective our assignment δ∗ achieves is:

∑
i

f̄i(x
∗

i ) +∑
ij

f̄ij(x
∗

i , x
∗

j ) = F (x∗).

Any objective reached by a feasible dual assignment yields
a lower bound on LCR’s optimal objective, thus LCR’s op-
timum is bounded below the MAP objective and we may
conclude that the relaxation is tight.

A.3 Proof of Claims on LCR for GMRFs

A.3.1 Proof of Claims 5.1 and 5.2

Recall that for a GMRF we have:

φi = {xi, x
2
i },φij = {xixj}.

For any feasible element inML, let p̂i, p̂ij be the densities
that generated these feasible mean parameters. For any ij ∈



E, i ∈ V denote:

Σij = Ep̂ij [xixj] , (16)

Σii = Ep̂ij [x
2
i ] = Ep̂i [x

2
i ] ,

ηi = Ep̂ij [xi] = Ep̂i [xi] .

The equalities of expectations with respect to p̂i and p̂ij
hold due to local consistency constraints. Since for any
ij ∈ E, the parameters (Σ[ij],η[ij]) are first and second
moments of the density p̂ij then it must hold that:

Σ[ij] − η[ij]η
⊺

[ij] ⪰ 0. (17)

On the other hand, assume we are given (Σ,η) such that
Eq. (17) holds for all ij ∈ E. Take p̃ij as the bivariate
Gaussian density with moments (Σ[ij],η[ij]) for all ij ∈

E, and p̃i as the univariate Gaussian density with moments
(Σii, ηi) for all i ∈ V . These densities satisfy the local
consistency constraints:

∫ p̃ij(xi, xj)dxj = p̃i(xi),

which means (Σ,η) ∈ML and that Claim 5.1 holds.

To see Claim 5.2 holds, we use the same type of argument
and proveMψ

L ⊆ML. Given any feasible element inMψ
L ,

consider the densities p̂i, p̂ij who generated it. The weak
local consistency constraints imposed by Mψ

L assure that
the equalities in Eq. (16) hold. Thus Eq. (17) also holds
and this element must also be feasible inML.

A.3.2 Proof of Claim 5.3

Proof. Let δ be any assignment to the dual Eq. (9), we will
prove it achieves an objective of −∞. It will then follow
that this is the maximal value achieved by the dual, and in
turn the minimal value achieved by LCR. Let us define the
functions:

f̄i(xi) = fi(xi) + ∑
j∈N(i)

⟨δji,ψi(xi)⟩

f̄ij(xi, xj) = fij(xi, xj) − ⟨δji,ψi(xi)⟩ − ⟨δij ,ψj(xj)⟩.

The dual objective may then be written as:

∑
i

min
xi

f̄i(xi) +∑
ij

min
xi,xj

f̄ij(xi, xj).

Under the choice of ψi(xi) made in Claim 5.2,
each function in {f̄i(xi), f̄ij(xi, xj)} is quadratic.
{f̄i(xi), f̄ij(xi, xj)} is also a reparameterization of F (x),
so for non-CD GMRFs, at least one of these functions must
be non-convex. The minimum of a non-convex quadratic
function is unbounded, so one of the minimizations in the
sum of the dual objective must be unbounded, and the ob-
jective achieved by δ is −∞.
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