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Abstract

This paper continues study, both theoretical and
empirical, of the method of Venn prediction, con-
centrating on binary prediction problems. Venn
predictors produce probability-type predictions
for the labels of test objects which are guaran-
teed to be well calibrated under the standard as-
sumption that the observations are generated in-
dependently from the same distribution. We give
a simple formalization and proof of this prop-
erty. We also introduce Venn–Abers predictors, a
new class of Venn predictors based on the idea of
isotonic regression, and report promising empir-
ical results both for Venn–Abers predictors and
for their more computationally efficient simpli-
fied version.

1 INTRODUCTION

Venn predictors were introduced in [16] and are discussed
in detail in [15], Chapter 6, but to make the paper self-
contained we define them in Section 2. This section also
states the important property of validity of Venn predic-
tors: they are automatically well calibrated. In some form
this property of validity has been known: see, e.g., [15],
Theorem 6.6. However, this known version is complicated,
whereas our version (Theorem 1 below) is much simpler
and the intuition behind it is more transparent. In the same
section we show (Theorem 2) that Venn prediction is essen-
tially the only way to achieve our new property of validity.

Section 3 defines a natural class of Venn predictors, which
we call Venn–Abers predictors (with the “Abers” part
formed by the initial letters of the authors’ surnames of
the paper [1] introducing the underlying technique). The
latter are defined on top of a wide class of classification
algorithms, which we call “scoring classifiers” in this
paper; each scoring classifier can be automatically trans-
formed into a Venn–Abers predictor, and we refer to this

transformation as the “Venn–Abers method”. Because
of its theoretical guarantees, this method can be used for
improving the calibration of probabilistic predictions.

The definition of Venn–Abers predictors was prompted by
[8], which demonstrated that the method of calibrating
probabilistic predictions introduced by Zadrozny and Elkan
in [17] (an adaptation of the isotonic regression proce-
dure of [1]) does not always achieve its goal and some-
times leads to poorly calibrated predictions. Another paper
reporting the possibility for the Zadrozny–Elkan method
to produce grossly miscalibrated predictions is [7]. The
Venn–Abers method is a simple modification of Zadrozny
and Elkan’s method; being a special case of Venn predic-
tion, it overcomes the problem of potentially poor calibra-
tion.

Theorem 1 in Section 2 says that Venn predictors are per-
fectly calibrated. The price to pay, however, is that Venn
predictors are multiprobabilistic predictors, in the sense of
issuing a set of probabilistic predictions instead of a sin-
gle probabilistic prediction; intuitively, the diameter of this
set reflects the uncertainty of our prediction. In Section 5
we explore the efficiency of Venn–Abers predictors empir-
ically using the fundamental log loss function and another
popular loss function, square loss. To apply these loss func-
tions, we need, however, probabilistic predictions rather
than multiprobabilistic predictions, and in Section 4 we de-
fine natural minimax ways of replacing the latter with the
former.

In Section 5 we explore the empirical predictive per-
formance of the most natural version of the original
Zadrozny–Elkan method, the Venn–Abers method, and
the latter’s simplified version, which is not only simpler
but also more efficient computationally. We use nine
benchmark data sets from the UCI repository [5] and six
standard scoring classifiers, and for each combination of a
data set and classifier evaluate the predictive performance
of each method. Our results show that the Venn–Abers
and simplified Venn–Abers methods usually improve the
performance of the underlying classifiers, and in our exper-
iments they work better than the original Zadrozny–Elkan



method.

Interestingly, the predictive performance of the simplified
Venn–Abers method is slightly better than that of the Venn–
Abers method on the chosen data sets and scoring clas-
sifiers; for example, in the case of the log loss function,
the best performance is achieved by the simplified Venn–
Abers methods for seven data sets out of the nine. If these
results are confirmed in wider empirical studies, the simpli-
fied Venn–Abers method is preferred since it achieves both
computational and predictive efficiency.

Our empirical study in Section 5 does not mean that we
recommend that the multiprobabilistic predictions output
by Venn–Abers (and more generally Venn) predictors be re-
placed by probabilistic predictions (e.g., using the formulas
of Section 4). On the contrary, we believe that the size of
a multiprobabilistic prediction carries valuable information
about the uncertainty of the prediction. The only purpose
of replacing multiprobabilistic by probabilistic predictions
is to facilitate comparison of various prediction algorithms
using well-established loss functions.

2 VENN PREDICTORS

We consider observations z = (x, y) consisting of two
components: an object x ∈ X and its label y ∈ Y. In
this paper we are only interested in the binary case and for
concreteness set Y := {0, 1}. We assume that X is a mea-
surable space, so that observations are elements of the mea-
surable space that is the Cartesian product Z := X×Y =
X× {0, 1}.

A Venn taxonomyA is a measurable function that assigns to
each n ∈ {2, 3, . . .} and each sequence (z1, . . . , zn) ∈ Zn

an equivalence relation ∼ on {1, . . . , n} which is equivari-
ant in the sense that, for each n and each permutation π of
{1, . . . , n},

(i ∼ j | z1, . . . , zn) =⇒ (π(i) ∼ π(j) | zπ(1), . . . , zπ(n)),

where the notation (i ∼ j | z1, . . . , zn) means that i
is equivalent to j under the relation assigned by A to
(z1, . . . , zn). The measurability of A means that for all
n, i, and j the set {(z1, . . . , zn) | (i ∼ j | z1, . . . , zn)} is
measurable. Define

A(j | z1, . . . , zn)

:= {i ∈ {1, . . . , n} | (i ∼ j | z1, . . . , zn)}

to be the equivalence class of j. Let (z1, . . . , zl) be a train-
ing sequence of observations zi = (xi, yi), i = 1, . . . , l,
and x be a test object. The Venn predictor associated with
a given Venn taxonomy A outputs the pair (p0, p1) as its
prediction for x’s label, where

py :=
|{i ∈ A(l + 1 | z1, . . . , zl, (x, y)) | yi = 1}|

|A(l + 1 | z1, . . . , zl, (x, y))|

for both y ∈ {0, 1} (notice that the denominator is always
positive). Intuitively, p0 and p1 are the predicted proba-
bilities that the label of x is 1; of course, the prediction is
useful only when p0 ≈ p1. The probability interval out-
put by a Venn predictor is defined to be the convex hull
conv(p0, p1) of the set {p0, p1}; we will sometimes refer
to the pair (p0, p1) or the set {p0, p1} as the multiproba-
bilistic prediction.

Validity of Venn predictors

Let us say that a random variable P taking values in [0, 1] is
perfectly calibrated for a random variable Y taking values
in {0, 1} if

E(Y | P ) = P a.s. (1)

Intuitively, P is the prediction made by a probabilistic pre-
dictor for Y , and perfect calibration means that the prob-
abilistic predictor gets the probabilities right, at least on
average, for each value of the prediction. A probabilistic
predictor for Y whose prediction P satisfies (1) with an
approximate equality is said to be well calibrated [4], or
unbiased in the small [11, 4]; this terminology will be used
only in informal discussions, of course.

A selector is a random variable taking values 0 or 1.

Theorem 1. Let (X1, Y1), . . . , (Xl, Yl), (X,Y ) be IID
(independent identically distributed) random observations.
Fix a Venn predictor V and an l ∈ {1, 2, . . .}. Let (P0, P1)
be the output of V given (X1, Y1, . . . , Xl, Yl) as the train-
ing set and X as the test object. There exists a selector S
such that PS is perfectly calibrated for Y .

Intuitively, at least one of the two probabilities output by
the Venn predictor is perfectly calibrated. Therefore, if the
two probabilities tend to be close to each other, we expect
them (or, say, their average) to be well calibrated.

In the proof of Theorem 1 and later in the paper we will use
the notation *a1, . . . , an+ for bags (in other words, mul-
tisets); the cardinality of the set {a1, . . . , an} might well
be smaller than n (because of the removal of all dupli-
cates in the bag). Intuitively, *a1, . . . , an+ is the sequence
(a1, . . . , an) with its ordering forgotten. We will some-
times refer to the bag *z1, . . . , zl+, where (z1, . . . , zl) is the
training sequence, as the training set (although technically
it is a multiset rather than a set).

Proof of Theorem 1. Take S := Y as the selector. Let us
check that (1) is true even if we further condition on the
observed bag *(X1, Y1), . . . , (Xl, Yl), (X,Y )+ (so that the
remaining randomness consists in generating a random per-
mutation of this bag). We only need to check the equality
E(Y | P = p) = p, where P is the average of 1s in the
equivalence class containing (X,Y ), for the ps which are
the percentages of 1s in various equivalence classes (further



conditioning on the observed bag is not reflected in our no-
tation). For each such p, E(Y | P = p) is the average of 1s
in the equivalence classes for which the average of 1s is p;
therefore, we indeed have E(Y | P = p) = p.

The following simple corollary of Theorem 1 gives a
weaker property of validity, which is sometimes called
“unbiasedness in the large” [11, 4].

Corollary 1. For any Venn predictor V and any l =
1, 2, . . .,

P(Y = 1) ∈
[
E (V (X;X1, Y1, . . . , Xl, Yl)) ,

E
(
V (X;X1, Y1, . . . , Xl, Yl)

)]
, (2)

where (X1, Y1), . . . , (Xl, Yl), (X,Y ) are IID observations
and [V (. . .), V (. . .)] is the probability interval produced
by V for the test object X based on the training sequence
(X1, Y1, . . . , Xl, Yl).

Proof. It suffices to notice that, for a selector S such that
P = PS ((P0, P1) being the output of V ) satisfies the con-
dition of perfect calibration (1),

P(Y = 1) = E(Y ) = E(E(Y | PS))

= E(PS) ∈
[
EV ,EV

]
,

where the arguments of V and V are omitted.

Unbiasedness in the large (2) is easy to achieve even for
probabilistic predictors if we do not care about other mea-
sures of quality of our predictions: for example, the prob-
abilistic predictor ignoring the xs and outputting k/l as its
prediction, where k is the number of 1s in the training se-
quence of size l, is unbiased in the large. Unbiasedness in
the small (1) is also easy to achieve if we allow multiproba-
bilistic predictors: consider the multiprobabilistic predictor
ignoring the xs and outputting {k/(l+1), (k+1)/(l+1)} as
its prediction. The problem is how to achieve predictive ef-
ficiency (making our prediction as relevant to the test object
as possible without overfitting) while maintaining validity.

Our following result, Theorem 2, will say that under mild
regularity conditions unbiasedness in the small (1) holds
only for Venn predictors (perhaps weakened by adding ir-
relevant probabilistic predictions) and, therefore, implies
all other properties of validity, such as the more compli-
cated one given in [15, Chapter 6].

To state Theorem 2 we need a few further definitions. Let
us fix the length l of the training sequence for now. A mul-
tiprobabilistic predictor is a function that maps each se-
quence (z1, . . . , zl) ∈ Zl to a subset of [0, 1] (not required
to be measurable in any sense). Venn predictors are an im-
portant example for this paper. Let us say that a multiprob-
abilistic predictor is invariant if it is independent of the or-
dering of the training set (z1, . . . , zl). An invariant selector

for an invariant multiprobabilistic predictor F is a measur-
able function f : Zl+1 → [0, 1] such that f(z1, . . . , zl+1)
does not change when z1, . . . , zl are permuted and such
that f(z1, . . . , zl+1) ∈ F (z1, . . . , zl) for all (z1, . . . , zl+1).
(It is natural to consider only invariant predictors and se-
lectors under the IID assumption because of the principle
of sufficiency [3, Chap. 2].) We say that an invariant multi-
probabilistic predictor F is invariantly perfectly calibrated
if it has an invariant selector f such that

E
(
Y | f(Z1, . . . , Zl, (X,Y ))

)
= f(Z1, . . . , Zl, (X,Y )) a.s. (3)

whenever Z1, . . . , Zl, (X,Y ) are IID observations.

Theorem 2. If an invariant multiprobabilistic predic-
tor F is invariantly perfectly calibrated, then it contains
a Venn predictor V in the sense that both elements of
V (Z1, . . . , Zl) belong to F (Z1, . . . , Zl) almost surely
provided Z1, . . . , Zl are IID.

Proof. Let f be an invariant selector of F satisfying the
condition (3) of being invariantly perfectly calibrated. By
definition,

E
(
Y − f(Z1, . . . , Zl, (X,Y )) |

f(Z1, . . . , Zl, (X,Y ))
)

= 0 a.s.,

which implies

E
(
(Y − f(Z1, . . . , Zl, (X,Y )))

1{f(Z1,...,Zl,(X,Y ))∈[a,b]}
)

= 0 a.s. (4)

for all intervals [a, b] with rational end-points. The ex-
pected value in (4) can be obtained in two steps: first we
average

(y′l+1 − f(z′1, . . . , z
′
l+1))1{f(z′1,...,z′l+1)∈[a,b]}

over the orderings (z′1, . . . , z
′
l+1) of each bag *z1, . . . , zl+1+,

where zi = (xi, yi) and z′i = (x′i, y
′
i), and then we aver-

age over the bags *z1, . . . , zl+1+ generated according
to zi := Zi, i = 1, . . . , l, and zl+1 := (X,Y ). The
first operation is discrete: the average over the orderings of
*z1, . . . , zl+1+ is the arithmetic mean of (yi−pi)1{pi∈[a,b]}
over i = 1, . . . , l + 1, where pi := f(. . . , zi) and the dots
stand for z1, . . . , zi−1 and zi+1, . . . , zl+1 arranged in any
order (since f is invariant, the order does not matter). By
the completeness of the statistic that maps a data sequence
of size l+1 to the corresponding bag [10, Section 4.3], this
average is zero for all [a, b] and almost all bags. Without
loss of generality we assume that this holds for all bags.

Define a Venn taxonomy A as follows: given a sequence
(z1, . . . , zl+1), set i ∼ j if pi = pj where p is defined
as above. It is easy to check that the corresponding Venn
predictor satisfies the requirement in Theorem 2.



Remark. The invariance assumption in Theorem 2 is es-
sential. Indeed, suppose l > 1 and consider the multiprob-
abilistic predictor whose prediction for the label of the test
observation does not depend on the objects and is{

{k/l, (k + 1)/l} if y1 = 0

{(k − 1)/l, k/l} if y1 = 1,

where k is the number of 1s among the labels of the l train-
ing observations. This non-invariant predictor is perfectly
calibrated (see below) but does not contain a Venn predic-
tor (if it did, such a Venn predictor, being invariant, would
always output the one-element multiprobabilistic predic-
tion {k/l}, which is impossible). Let us check that this
non-invariant predictor is indeed perfectly calibrated, even
given the union of the training set and the test observation
(i.e., given the bag of size l + 1 obtained from the training
sequence by joining the test observation and then forget-
ting the ordering). Take the selector such that the selected
probabilistic predictor is

k/l for sequences of the form 0 . . . 0

(k + 1)/l for sequences of the form 0 . . . 1

(k − 1)/l for sequences of the form 1 . . . 0

k/l for sequences of the form 1 . . . 1.

For a binary sequence of labels of length l + 1 with m 1s
the probabilistic prediction P for its last element will be,
therefore,

m/l for sequences of the form 0 . . . 0

m/l for sequences of the form 0 . . . 1

(m− 1)/l for sequences of the form 1 . . . 0

(m− 1)/l for sequences of the form 1 . . . 1.

The conditional probability that Y = 1 (Y being the label
of the last element) given P = p (and given m) is(

l−1
m−1

)(
l
m

) =
m

l

when p = m/l and is(
l−1
m−2

)(
l

m−1
) =

m− 1

l

when p = (m − 1)/l; in both cases we have perfect cali-
bration.

3 VENN–ABERS PREDICTORS

We say that a function f is increasing if its domain is an
ordered set and t1 ≤ t2 ⇒ f(t1) ≤ f(t2).

Many machine-learning algorithms for classification are
in fact scoring classifiers: when trained on a training se-
quence of observations and fed with a test object x, they

output a prediction score s(x); we will call s : X→ R the
scoring function for that training sequence. The actual clas-
sification algorithm is obtained by fixing a threshold c and
predicting the label of x to be 1 if and only if s(x) ≥ c (or if
and only if s(x) > c). Alternatively, one could apply an in-
creasing function g to s(x) in an attempt to “calibrate” the
scores, so that g(s(x)) can be used as the predicted proba-
bility that the label of x is 1.

Fix a scoring classifier and let (z1, . . . , zl) be a training
sequence of observations zi = (xi, yi), i = 1, . . . , l.
The most direct application [17] of the method of iso-
tonic regression [1] to the problem of score calibration
is as follows. Train the scoring classifier on the training
sequence and compute the score s(xi) for each training
observation (xi, yi), where s is the scoring function for
(z1, . . . , zl). Let g be the increasing function on the set
{s(x1), . . . , s(xl)} that maximizes the likelihood

l∏
i=1

pi, where pi :=

{
g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0.
(5)

Such a function g is indeed unique [1, Corollary 2.1] and
can be easily found using the “pair-adjacent violators algo-
rithm” (PAVA, described in detail in the summary of [1]
and in [2, Section 1.2]; see also the proof of Lemma 1
below). We will say that g is the isotonic calibrator for
((s(x1), y1), . . . , (s(xl), yl)). To predict the label of a test
object x, the direct method finds the closest s(xi) to s(x)
and outputs g(s(xi)) as its prediction (in the case of ties our
implementation of this method used in Section 5 chooses
the smaller s(xi); however, ties almost never happen in our
experiments). We will refer to this as the direct isotonic-
regression (DIR) method.

The direct method is prone to overfitting as the same ob-
servations z1, . . . , zl are used both for training the scor-
ing classifier and for calibration without taking any pre-
cautions. The Venn–Abers predictor corresponding to the
given scoring classifier is the multiprobabilistic predictor
that is defined as follows. Try the two different labels, 0
and 1, for the test object x. Let s0 be the scoring func-
tion for (z1, . . . , zl, (x, 0)), s1 be the scoring function for
(z1, . . . , zl, (x, 1)), g0 be the isotonic calibrator for(

(s0(x1), y1), . . . , (s0(xl), yl), (s0(x), 0)
)
, (6)

and g1 be the isotonic calibrator for(
(s1(x1), y1), . . . , (s1(xl), yl), (s1(x), 1)

)
. (7)

The multiprobabilistic prediction output by the Venn–
Abers predictor is (p0, p1), where p0 := g0(s0(x)) and
p1 := g1(s1(x)). (And we can expect p0 and p1 to be close
to each other unless DIR overfits grossly.) The Venn–Abers
predictor is described as Algorithm 1.

The intuition behind Algorithm 1 is that it tries to evaluate
the robustness of the DIR prediction. To see how sensi-
tive the scoring function is to the training set we extend



Algorithm 1 Venn–Abers predictor
Input: training sequence (z1, . . . , zl)
Input: test object x
Output: multiprobabilistic prediction (p0, p1)

for y ∈ {0, 1} do
set sy to the scoring function for (z1, . . . , zl, (x, y))
set gy to the isotonic calibrator for

(sy(x1), y1), . . . , (sy(xl), yl), (sy(x), y)
set py := gy(sy(x))

end for

the latter by adding the test object labelled in two different
ways. And to see how sensitive the probabilistic prediction
is, we again consider the training set extended in two dif-
ferent ways (if it is sensitive, the prediction will be fragile
even if the scoring function is robust). For large data sets
and inflexible scoring functions, we will have p0 ≈ p1, and
both numbers will be close to the DIR prediction. However,
even if the data set is very large but the scoring function is
very flexible, p0 can be far from p1 (the extreme case is
where the scoring function is so flexible that it ignores all
observations apart from a few that are most similar to the
test object, and in this case it does not matter how big the
data set is). We rarely know in advance how flexible our
scoring function is relative to the size of the data set, and
the difference between p0 and p1 gives us some indication
of this.

The following proposition says that Venn–Abers predictors
are Venn predictors and, therefore, inherit all properties of
validity of the latter, such as Theorem 1.

Proposition 1. Venn–Abers predictors are Venn predictors.

Proof. Fix a Venn–Abers predictor. The corresponding
Venn taxonomy is defined as follows: given a sequence

(z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)) ∈ (X× {0, 1})n

and i, j ∈ {1, . . . , n}, we set i ∼ j if and only if
g(s(xi)) = g(s(xj)), where s is the scoring function
for (z1, . . . , zn) and g is the isotonic calibrator for(

(s(x1), y1), . . . , (s(xn), yn)
)
.

Lemma 1 below shows that the Venn predictor correspond-
ing to this taxonomy gives predictions identical to those
given by the original Venn–Abers predictor. This proves
the proposition.

Lemma 1. Let g be the isotonic calibrator for(
(t1, y1), . . . , (tn, yn)

)
,

where ti ∈ R and yi ∈ {0, 1}, i = 1, . . . , n. Any p ∈
{g(t1), . . . , g(tn)} is equal to the arithmetic mean of the
labels yi of the ti, i = 1, . . . , n, satisfying g(ti) = p.

Proof. The statement of the lemma immediately follows
from the definition of the PAVA [1, summary], which
we will reproduce here. Arrange the numbers ti in
the strictly increasing order t(1) < · · · < t(k), where
k ≤ n is the number of distinct elements among ti. We
would like to find the increasing function g on the set
{t(1), . . . , t(k)} = {t1, . . . , tn} maximizing the likelihood
(defined by (5) with ti in place of s(xi) and n in place
of l). The procedure is recursive. At each step the set
{t(1), . . . , t(k)} is partitioned into a number of disjoint
cells consisting of adjacent elements of the set; to each
cell is assigned a ratio a/N (formally, a pair of integers,
with a ≥ 0 and N > 0); the function g defined at this step
(perhaps to be redefined at the following steps) is constant
on each cell. For j = 1, . . . , k, let a(j) be the number
of i such that yi = 1 and ti = t(j), and let N(j) be the
number of i such that ti = t(j). Start from the partition
of {t(1), . . . , t(k)} into one-element cells, assign the ratio
a(j)/N(j) to {t(j)}, and set

g(t(j)) :=
a(j)

N(j)
(8)

(in the notation used in this proof, a/N is a pair of integers
whereas a

N is a rational number, the result of the division).
If the function g is increasing, we are done. If not, there is
a pair C1, C2 of adjacent cells (“violators”) such that C1 is
to the left of C2 and g(C1) > g(C2) (where g(C) stands
for the common value of g(t(j)) for t(j) ∈ C); in this case
redefine the partition by merging C1 and C2 into one cell
C, assigning the ratio (a1 + a2)/(N1 + N2) to C, where
a1/N1 and a2/N2 are the ratios assigned to C1 and C2,
respectively, and setting

g(t(j)) :=
N1

N1 +N2
g(C1) +

N2

N1 +N2
g(C2)

=
a1 + a2
N1 +N2

(9)

for all t(j) ∈ C. Repeat the process until g becomes in-
creasing (the number of cells decreases by 1 at each itera-
tion, so the process will terminate in at most k steps). The
final function g is the one that maximizes the likelihood.
The statement of the lemma follows from this recursive def-
inition: it is true by definition for the initial function (8) and
remains true when g is redefined by (9).

4 PROBABILISTIC PREDICTORS
DERIVED FROM VENN PREDICTORS

In the next section we will compare Venn–Abers predic-
tors with known probabilistic predictors using standard loss
functions. Since Venn–Abers predictors output pairs of
probabilities rather than point probabilities, we will need to
fit them (somewhat artificially) in the standard framework
extracting one probability p from p0 and p1.



In this paper we will use two loss functions, log loss and
square loss. The log loss suffered when predicting p ∈
[0, 1] whereas the true label is y is

λln(p, y) :=

{
− ln(1− p) if y = 0

− ln p if y = 1.

This is the most fundamental loss function, since the cumu-
lative loss

∑n
i=1 λln(pi, yi) over a test sequence of size n is

equal to the minus log of the probability that the predictor
assigns to the sequence (this assumes either the batch mode
of prediction with independent test observations or the on-
line mode of prediction); therefore, a smaller cumulative
log loss corresponds to a larger probability. The square
loss suffered when predicting p ∈ [0, 1] for the true label y
is

λsq(p, y) := (y − p)2.

The main advantage of this loss function is that it is proper
(see, e.g., [4]): the function Ey∼Bp

λsq(q, y) of q ∈ [0, 1],
where Bp is the Bernoulli distribution with parameter p,
attains its minimum at q = p. (Of course, the log loss
function is also proper.)

First suppose that our loss function is λln and we are given
a multiprobabilistic prediction (p0, p1); let us find the cor-
responding minimax probabilistic prediction p. If the true
outcome is y = 0, our regret for using p instead of the ap-
propriate p0 is− ln(1−p)+ln(1−p0). If y = 1, our regret
for using p instead of the appropriate p1 is − ln p + ln p1.
The first regret as a function of p ∈ [0, 1] strictly increases
from a nonpositive value to ∞ as p changes from 0 to 1.
The second regret as a function of p strictly decreases from
∞ to a nonpositive value as p changes from 0 to 1. There-
fore, the minimax regret is the solution to

− ln(1− p) + ln(1− p0) = − ln p+ ln p1,

which is
p =

p1
1− p0 + p1

. (10)

The intuition behind this minimax value of p is that we can
interpret the multiprobabilistic prediction (p0, p1) as the
unnormalized probability distribution P on {0, 1} such that
P ({0}) = 1−p0 andP ({1}) = p1; we then normalizeP to
get a genuine probability distribution P ′ := P/P ({0, 1}),
and the p in (10) is equal to P ′({1}). Of course, it is always
true that p ∈ conv(p0, p1).

In the case of the square loss function, the regret is{
p2 − p20 if y = 0

(1− p)2 − (1− p1)2 if y = 1

and the two regrets are equal when

p := p1 + p20/2− p21/2. (11)

To see how natural this expression is notice that (11) is
equivalent to

p = p̄+ (p1 − p0)

(
1

2
− p̄
)
,

where p̄ := (p0 + p1)/2. Therefore, p is a regularized
version of p̄: we move p̄ towards the neutral value 1/2 in
the typical (for the Venn–Abers method) case where p0 <
p1. In any case, we always have p ∈ conv(p0, p1).

The following lemma shows that log loss is never infinite
for probabilistic predictors derived from Venn predictors.

Lemma 2. Neither of the methods discussed in this section
(see (10) and (11)) ever produces p ∈ {0, 1} when applied
to Venn–Abers predictors.

Proof. Lemma 1 implies that p0 < 1 and that p1 > 0. It
remains to notice that both (10) and (11) produce p in the
interior of conv(p0, p1) if p0 6= p1 and produce p = p0 =
p1 if p0 = p1 (and this is true for any sensible averaging
method).

5 EXPERIMENTAL RESULTS

In this section we compare various calibration methods dis-
cussed so far by applying them to six standard scoring clas-
sifiers (we will usually omit “scoring” in this section) avail-
able within Weka [6], a machine learning tool developed at
the University of Waikato, NZ. The standard classifiers are
J48 decision trees (abbreviated to J48, or even to J), J48
decision trees with bagging (J48 Bagging, or JB), logistic
regression (LR), naı̈ve Bayes (NB), neural networks (NN),
and support vector machines calibrated using a sigmoid
function as defined by Platt [13] (SVM Platt, or simply
SVM). Each of these standard classifiers produces scores in
the interval [0, 1], which can then be used as probabilistic
predictions; however, in most previous studies these have
been found to be inaccurate (see [17] and [9]). We use
the scores generated by classifiers as inputs, and by apply-
ing the DIR (defined in Section 3), Venn–Abers (VA), and
simplified Venn–Abers (SVA, see below) methods we in-
vestigate how well we can calibrate the scores and improve
them in their role as probabilistic predictions.

In the set of experiments described in this section we do
not perform a direct comparison to the method developed
by Langford and Zadrozny [9] primarily because, as far as
we are aware, the algorithms described in their work are
not publicly available.

For the purpose of comparison we use a total of nine
datasets with binary labels (encoded as 0 or 1) obtained
from the UCI machine learning repository [5]: Australian
Credit (which we abbreviate to Australian), Breast Can-
cer (Breast), Diabetes, Echocardiogram (Echo), Hepatitis,
Ionosphere, Labor Relations (Labor), Liver Disorders



Table 1: Log loss (MLE) results obtained using standard Weka classifiers (W) and the three calibration methods (VA, SVA,
DIR) applied to the standard classifiers’ outputs for the following Weka classifiers: J48, J48 Bagging, logistic regression
(upper part) and naı̈ve Bayes, neural networks, and SVM Platt (lower part). The best results for each pair (classifier, dataset)
are in bold.

J48 (J) J48 Bagging (JB) logistic regression (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian ∞ 0.380 0.469 ∞ 0.328 0.369 0.344 ∞ 0.342 0.340 0.340 ∞
Breast ∞ 0.607 0.642 ∞ 0.581 0.592 0.636 ∞ 0.584 0.567 0.586 ∞
Diabetes ∞ 0.552 0.635 ∞ 0.504 0.515 0.561 ∞ 0.492 0.490 0.491 ∞
Echo ∞ 0.606 0.670 ∞ 0.556 0.517 0.563 ∞ ∞ 0.589 0.606 ∞
Hepatitis ∞ 0.491 0.528 ∞ 0.420 0.456 0.434 ∞ ∞ 0.393 0.504 ∞
Ionosphere ∞ 0.383 0.410 ∞ ∞ 0.387 0.251 ∞ ∞ 0.387 0.524 ∞
Labor ∞ 0.503 0.537 ∞ 0.427 0.427 0.385 ∞ 1.927 0.687 0.297 ∞
Liver ∞ 0.662 0.866 ∞ 0.609 0.635 0.707 ∞ 0.619 0.622 0.611 ∞
Vote ∞ 0.134 0.145 ∞ 0.135 0.159 0.131 ∞ 1.059 0.188 0.148 ∞

naı̈ve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.839 0.355 0.367 ∞ 0.557 0.427 0.450 ∞ 0.391 0.356 0.351 ∞
Breast 0.663 0.563 0.551 ∞ 0.774 0.615 0.738 ∞ 0.583 0.568 0.582 ∞
Diabetes 0.753 0.495 0.508 ∞ 0.536 0.500 0.519 ∞ 0.491 0.497 0.490 ∞
Echo 0.658 0.505 0.522 ∞ 0.770 0.578 0.605 ∞ 0.558 0.495 0.538 ∞
Hepatitis 0.936 0.365 0.372 ∞ 0.753 0.471 0.484 ∞ 0.435 0.349 0.404 ∞
Ionosphere 0.704 0.262 0.227 ∞ 0.625 0.427 0.379 ∞ 0.359 0.250 0.333 ∞
Labor 1.854 0.410 0.296 ∞ 0.325 0.560 0.298 ∞ 3.643 0.364 0.287 ∞
Liver 0.727 0.649 0.661 ∞ 0.642 0.603 0.615 ∞ 0.645 0.663 0.639 ∞
Vote 0.594 0.218 0.211 ∞ 0.235 0.229 0.158 ∞ 0.125 0.211 0.121 ∞

(Liver), and Congressional Voting (Vote). The datasets
vary in size as well as the number and type of attributes in
order to give a reasonable range of conditions encountered
in practice.

In our comparison we use the two standard loss functions
discussed in the previous section. Namely, on a given test
sequence of length n we will calculate the mean log error
(MLE)

1

n

n∑
i=1

λln(pi, yi) (12)

and the root mean square error (RMSE)√√√√ 1

n

n∑
i=1

λsq(pi, yi), (13)

where pi is the probabilistic prediction for the label yi of
the ith observation in the test sequence. MLE (12) can be
infinite, namely when predicting pi ∈ {0, 1} while being
incorrect. It therefore penalises the overly confident prob-
abilistic predictions much more significantly than RMSE.
We compare the performance of the standard classifiers
with their versions calibrated using the three methods (VA,
SVA, and DIR) under both loss functions for each dataset.
In each experiment we randomly permute the dataset and
use the first 2/3 observations for training and the remain-
ing 1/3 for testing.

One of the potential drawbacks of the Venn–Abers method
is its computational inefficiency: for each test object the

scores have to be recalculated for the training sequence ex-
tended by including the test object first labelled as 0 and
then labelled as 1. This implies that the total calculation
time is at least 2n times that of the underlying classifier,
where n is the number of test observations. Therefore, we
define a simplified version of Venn–Abers predictors, for
which the scores are calculated only once without recal-
culating them for each test object with postulated labels 0
and 1.

In detail, the simplified Venn–Abers predictor for a given
scoring classifier is defined as follows. Let (z1, . . . , zl) be
a training sequence and x be a test object. Define s to be
the scoring function for (z1, . . . , zl), g0 to be the isotonic
calibrator for(

(s(x1), y1), . . . , (s(xl), yl), (s(x), 0)
)
,

and g1 to be the isotonic calibrator for(
(s(x1), y1), . . . , (s(xl), yl), (s(x), 1)

)
(cf. (6) and (7)). The multiprobabilistic prediction output
for the label of x by the simplified Venn–Abers (SVA)
predictor is (p0, p1), where p0 := g0(s(x)) and p1 :=
g1(s(x)). This method, summarized as Algorithm 2, is in-
termediate between DIR and the Venn–Abers method.

Notice that Lemma 2 continues to hold for SVA predictors;
therefore, they never suffer infinite loss even under the log
loss function. On the other hand, the following proposition
shows that SVA predictors can violate the property (2) of



Table 2: The analogue of Table 1 for square loss (RMSE).

J48 (J) J48 Bagging (JB) logistic regresion (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.366 0.346 0.359 0.366 0.313 0.338 0.318 0.323 0.317 0.319 0.319 0.321
Breast 0.472 0.453 0.463 0.473 0.443 0.451 0.460 0.474 0.442 0.437 0.444 0.450
Diabetes 0.449 0.431 0.443 0.449 0.407 0.415 0.420 0.427 0.399 0.401 0.401 0.402
Echo 0.478 0.456 0.460 0.482 0.427 0.417 0.423 0.444 0.457 0.443 0.446 0.475
Hepatitis 0.407 0.393 0.401 0.419 0.362 0.390 0.368 0.391 0.400 0.357 0.384 0.411
Ionosphere 0.318 0.355 0.312 0.318 0.267 0.356 0.261 0.267 0.357 0.363 0.349 0.361
Labor 0.407 0.403 0.402 0.413 0.361 0.371 0.339 0.341 0.294 0.498 0.287 0.303
Liver 0.528 0.482 0.518 0.528 0.457 0.478 0.478 0.493 0.460 0.463 0.458 0.461
Vote 0.187 0.186 0.186 0.187 0.187 0.206 0.186 0.188 0.198 0.233 0.195 0.203

naı̈ve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.392 0.328 0.333 0.335 0.360 0.363 0.361 0.371 0.343 0.324 0.325 0.327
Breast 0.449 0.436 0.427 0.433 0.485 0.465 0.491 0.508 0.443 0.431 0.442 0.447
Diabetes 0.420 0.406 0.410 0.413 0.413 0.408 0.413 0.417 0.399 0.393 0.400 0.402
Echo 0.428 0.408 0.412 0.426 0.457 0.436 0.443 0.468 0.416 0.427 0.418 0.431
Hepatitis 0.357 0.339 0.335 0.342 0.396 0.402 0.379 0.427 0.350 0.350 0.353 0.364
Ionosphere 0.281 0.273 0.250 0.251 0.321 0.378 0.316 0.333 0.312 0.309 0.312 0.316
Labor 0.256 0.363 0.284 0.281 0.279 0.442 0.293 0.307 0.274 0.358 0.280 0.283
Liver 0.480 0.476 0.478 0.487 0.459 0.456 0.456 0.463 0.473 0.477 0.472 0.477
Vote 0.292 0.257 0.251 0.250 0.216 0.271 0.206 0.227 0.183 0.191 0.185 0.188

Algorithm 2 Simplified Venn–Abers predictor
Input: training sequence (z1, . . . , zl)
Input: test object x
Output: multiprobabilistic prediction (p0, p1)

for y ∈ {0, 1} do
set s to the scoring function for (z1, . . . , zl)
set gy to the isotonic calibrator for

(s(x1), y1), . . . , (s(xl), yl), (s(x), y)
set py := gy(s(x))

end for

unbiasedness in the large; in particular, they are not Venn
predictors (cf. Corollary 1).

Proposition 2. There exists a simplified Venn–Abers pre-
dictor violating (2) for some l.

Proof. Let the object space be the real line, X := R, and
the probability distribution generating independent obser-
vations (X,Y ) be such that: the marginal distribution of
X is continuous; the probability that X > 0 (and, there-
fore, the probability that X < 0) is 1/2; the probability
that Y = 1 given X < 0 is 1/3; the probability that Y = 1
given X > 0 is 2/3. Therefore, P(Y = 1) = 1/2. Let l
be a large number (we are using a somewhat informal lan-
guage, but formalization will be obvious). Given a training
set (z1, . . . , zl), where zi = (xi, yi) for all i, the scoring
function s is:

s(x) :=


0 if x ∈ {x1, . . . , xl} and x < 0

1 if x ∈ {x1, . . . , xl} and x > 0

2 if x /∈ {x1, . . . , xl}.

It is easy to see that, with high probability,

V ≈ 2/3, V = 1.

Therefore, (2) is violated.

Proposition 2 shows that SVA predictors are not always
valid; however, the construction in its proof is artificial, and
our hope is that they will be “nearly valid” in practice, since
they are a modification of provably valid predictors.

For each dataset/classifier combination, we repeat the same
experiment a total of 100 times for standard classifiers (de-
noted W in the tables), SVA, and DIR and 16 times for VA
(because of the computational inefficiency of the latter) and
average the results. The same 100 random splits into train-
ing and test sets are used for W, SVA, and DIR, but for VA
the 16 splits are different.

Tables 1–2 compare the overall losses computed according
to (12) (MLE, used in Table 1) and (13) (RMSE, used in
Table 2) for probabilities generated by the standard clas-
sifiers as implemented in Weka (W) and the correspond-
ing Venn–Abers (VA), simplified Venn–Abers (SVA), and
direct isotonic-regression (DIR) predictors. The values
in bold indicate the lowest of the four losses for each
dataset/classifier combination. The column titles mention
both fuller and shorter names for the six standard classi-
fiers; the short name “SVM” is especially appropriate when
using VA, SVA, and DIR, in which case the application of
the sigmoid function in Platt’s method is redundant. The
three entries of∞ in the column W for logistic regression
of Table 1 come out as infinities in our experiments only
because of the limited machine accuracy: logistic regres-



sion sometimes outputs probabilistic predictions that are so
close to 0 or 1 that they are rounded to 0 or 1, respectively,
by hardware.

In the case of MLE, the VA and SVA methods improve the
predictive performance of the majority of the standard clas-
sifiers on most datasets. A major exception is J48 Bagging.
The application of bagging to J48 decision trees improves
the calibration significantly as bagging involves averaging
over different training sets in order to reduce the underly-
ing classifier’s instability. The application of VA and SVA
to J48 Bagging is not found to improve the log or square
loss significantly. What makes VA and SVA useful is that
for many data sets other classifiers, less well calibrated than
J48 Bagging, provide more useful scores.

In the case of RMSE, the application of VA and SVA also
often improves probabilistic predictions.

Whereas in the case of square loss the DIR method often
produces values comparable to VA and SVA, under log loss
this method fares less well (which is not obvious from [17],
which only uses square loss). In all our experiments DIR
suffers infinite log loss for at least one test observation,
which makes the overall MLE infinite. There are modi-
fications of the DIR method preventing probabilistic pre-
dictions in {0, 1} (such as those mentioned in [12], Sec-
tion 3.3), but they are somewhat arbitrary.

Table 3 ranks, for each loss function and dataset, the four
calibration methods: W (none), VA (Venn–Abers), SVA
(simplified Venn–Abers), and DIR (direct isotonic regres-
sion). Only the first three methods are given (the best, the
second best, and the second worst), where the quality of a
method is measured by the performance of the best under-
lying classifier (indicated in parentheses using the abbre-
viations given in the column titles of Tables 1–2) for the
given method, data set, and loss function. Notice that we
are ranking the four calibration methods rather than the 24
combinations of Weka classifiers with calibration methods
(e.g., were we ranking the 24 combinations, the entry for
log loss and Australian would remain the same but the next
entry, for log loss and Breast, would become “SVA (NB),
VA (NB), VA (LR)”).

For MLE, the best algorithm is VA or SVA for 8 data sets
out of 9; for RMSE this is true for 6 data sets out of 9. In all
other cases the best algorithm is W rather than DIR. (And
as discussed earlier, in the case of log loss the performance
of DIR is especially poor.) Therefore, it appears that the
most interesting comparisons are between W and VA and
between W and SVA.

What is interesting is that VA and SVA perform best on
equal numbers of datasets, 4 each in the case of MLE and
3 each in the case of RMSE, despite the theoretical guar-
antees of validity for the former method (such as Theo-
rem 1). The similar performance of the two methods needs

to be confirmed in more extensive empirical studies, but if
it is, SVA will be a preferable method because of its greater
computational efficiency.

Comparing W and SVA, we can see that SVA performs bet-
ter than W on 7 data sets out of 9 for MLE, and on 5 data
sets out of 9 for RMSE. And comparing W and VA, we can
see that VA performs better than W on 6 data sets out of 9
for MLE, and on 5 data sets out of 9 for RMSE. This sug-
gests that SVA might be an improvement of VA not only
in computational but also in predictive efficiency (but the
evidence for this is very slim).

6 CONCLUSION

This paper has introduced a new class of Venn predic-
tors thereby extending the domain of applicability of the
method. Our experimental results suggest that the Venn–
Abers method can potentially lead to better calibrated prob-
abilistic predictions for a variety of datasets and standard
classifiers. The method seems particularly suitable in cases
where alternative probabilistic predictors produce overcon-
fident but erroneous predictions under an unbounded loss
function such as log loss. In addition, the results suggest
that an alternative simplified Venn–Abers method can yield
similar results while retaining computational efficiency.

Unlike the previous methods for improving the calibration
of probabilistic predictors, Venn–Abers predictors enjoy
theoretical guarantees of validity (shared with other Venn
predictors).
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