
Active Learning of Linear Embeddings for Gaussian Processes

Roman Garnett
University of Bonn
Römerstraße 164

53117 Bonn, Germany
rgarnett@uni-bonn.de

Michael A. Osborne
University of Oxford

Parks Road
Oxford OX1 3PJ, UK

mosb@robots.ox.ac.uk

Philipp Hennig
MPI for Intelligent Systems

Spemannstraße
72076 Tübingen, Germany
phennig@tue.mpg.de

Abstract

We propose an active learning method for
discovering low-dimensional structure in high-
dimensional Gaussian process (GP) tasks. Such
problems are increasingly frequent and impor-
tant, but have hitherto presented severe practical
difficulties. We further introduce a novel tech-
nique for approximately marginalizing GP hyper-
parameters, yielding marginal predictions robust
to hyperparameter misspecification. Our method
offers an efficient means of performing GP re-
gression, quadrature, or Bayesian optimization in
high-dimensional spaces.

1 INTRODUCTION

We propose a method to actively learn, simultaneously,
about a function and a low-dimensional embedding of its
input domain. High dimensionality has stymied the progress
of model-based approaches to many common machine learn-
ing tasks. In particular, although Bayesian nonparametric
modeling with Gaussian processes (GPs) (Rasmussen &
Williams, 2006) has become popular for regression, clas-
sification, quadrature (O’Hagan, 1991), and global opti-
mization (Brochu et al., 2010), such approaches remain
intractable for large numbers of input variables (with the
exception of local optimization (Hennig & Kiefel, 2012)).
An old idea for the solution to this problem is the exploita-
tion of low-dimensional structure; the most tractable such
case is that of a linear embedding. Throughout this text, we
consider a function f(x)∶RD → R of a high-dimensional
variable x ∈ RD (for notational simplicity, x will be as-
sumed to be a row vector). The assumption is that f , in
reality, only depends on the variable u ∶= xR⊺, of much
lower dimensionality d≪ D, through a linear embedding
R ∈ Rd×D. We are interested in an algorithm that simul-
taneously learns R and f , and does so in an active way.
That is, it iteratively selects informative locations x∗ in a
box-bounded region X ⊂ RD, and collects associated obser-

vations y∗ of f∗ ∶= f(x∗) corrupted by i.i.d. Gaussian noise:
p(y∗ ∣ f∗) = N (y∗; f∗, σ2).

The proposed method comprises three distinct steps (Algo-
rithm 1): constructing a probability distribution over pos-
sible embeddings (learning the embedding R); using this
belief to determine a probability distribution over the func-
tion itself (learning the function f ), and then choosing eval-
uation points to best inform these beliefs (active selection).
To learn the embedding, we use a Laplace approximation
on the posterior over R to quantify the uncertainty in the
embedding (Section 2). To learn the function, we develop a
novel approximate means of marginalizing over Gaussian
process hyperparameters (including those parameterizing
embeddings), to provide predictions robust to hyperparam-
eter misspecification (Section 3). This sub-algorithm is
more generally applicable to many Gaussian process tasks,
and to the marginalization of hyperparameters other than
embeddings, and so represents a core contribution of this
paper. Finally, for active selection, we extend previous work
(Houlsby et al., 2011) to select evaluations that maximize
the expected reduction in uncertainty about R (Section 4).

Estimators for R in wide use include LASSO (Tibshirani,
1996) and the Dantzig selector (Candes & Tao, 2007), both
of which assume d = 1. These are passive methods estimat-
ing the linear embedding from a fixed dataset. This paper
develops an algorithm that actively learns R for the domain
of a Gaussian process. The goal is to use few function eval-
uations to intelligently explore and identify R. Notice that
although the embedding is assumed to be linear, the function
f itself will be allowed to be nonlinear via the GP prior.

This problem is related to, but distinct from, dimensional-
ity reduction (Lawrence, 2012), for which active learning
has recently been proposed (Iwata et al., 2013). Dimen-
sionality reduction is also known as visualization or blind
source separation, and is solved using, e.g., principal com-
ponent analysis (PCA), factor analysis, or latent variable
models. As in dimensionality reduction, we consider the
problem of finding a low-dimensional representation of an
input or feature matrix X ∈ RN×D; unlike dimensionality
reduction, we do so given an associated vector of training



Algorithm 1 Simultaneous active learning of functions and
their linear embeddings (pseudocode)
Require: d,D; kernel κ, mean function µ; prior p(R)
X ← ∅; y ← ∅
repeat
q(R)← LAPLACEAPPROX(p(R ∣X,y, κ, µ))

// approximate posterior on embedding R

q(f) ← APPROXMARGINAL(p(f ∣ R), q(R))
// approximate marginal on function f

x∗ ← OPTIMIZEUTILITY(q(f), q(R))
// find approximate optimal evaluation point x∗

y∗ ← OBSERVE(f(x∗)) // act
X ← [X;x∗]; y ← [y; y∗] // store data

until budget depleted
return q(R), q(f).

outputs or labels y ∈ RN , containing information about
which inputs are most relevant to a function. The problem
of discovering linear embeddings of GPs was discussed by
Snelson & Ghahramani (2006) for the passive case. Active
supervised learning has been widely investigated (MacKay,
1992b; Guestrin et al., 2005; Houlsby et al., 2011); our work
hierarchically extends this idea to additionally identify the
embedding. A special case of our method (the case of a
diagonal R) is the hitherto unconsidered problem of active
automatic relevance determination (MacKay, 1992a; Neal,
1995; Williams & Rasmussen, 1996).

Identifying embeddings is relevant for numerous Gaus-
sian process applications, notably regression, classification,
and optimization. Within Bayesian optimization, much re-
cent work has focused on high-dimensional problems (Hut-
ter et al., 2011; Chen et al., 2012; Carpentier & Munos,
2012; Bergstra & Bengio, 2012; Hutter, 2009). Recently,
Wang et al. (2013) proposed using randomly generated lin-
ear embeddings. In contrast, our active learning strategy
can provide an initialization phase that selects objective
function evaluations so as to best learn low-dimensional
structure. This permits the subsequent optimization of
high-dimensional objectives over only the learned low-
dimensional embedding.

Alongside this paper, we are releasing open-source software
implementing our contributions. A simple MATLAB imple-
mentation of Algorithm 1, built on the Gaussian Process for
Machine Learning (GPML) Toolbox,1 is freely available.2

An independent, GPML-compatible implementation of the
MGP (Section 3) is also available.3

1http://www.gaussianprocess.org/gpml/code
2https://github.com/rmgarnett/active_gp_

hyperlearning
3https://github.com/rmgarnett/mgp

 

 

f
x2

x1

Figure 1: A function f with a one-dimensional linear em-
bedding and its box-bounded domain X Searching over the
thick black lines captures all variation of the function. Our
aim is to learn this embedding, represented by embedding
matrix R ∈ R1×2, by selecting evaluations of f in some
search space.

2 LINEAR EMBEDDINGS OF GAUSSIAN
PROCESSES

In many applications, like image analysis, D can be in the
order of thousands or millions. But even D = 10 is a high
dimensionality for common Gaussian process models, not
only from a computational, but also from an informational,
perspective. Because standard GP covariance functions stip-
ulate that function values separated by more than a few input
length scales are negligibly correlated, for high D, almost
all of X is uncorrelated with observed data. Hence data is
effectively ignored during most predictions, and learning
is impossible. Practical experience shows, however, that
many functions are insensitive to some of their inputs (Wang
et al., 2013), thus have low effective dimensionality (Fig-
ure 1). Our goal is to discover an R ∈ Rd×D such that, for
low-dimensional U ⊂ Rd, u = xR⊺, ∀u ∈ U , x ∈ X and
f(x) = f̃(u) for a new function, f̃ ∶U → R. The discussion
here will be restricted to predefined d; in reality, this is
likely to be defined as the maximum number of dimensions
that can be feasibly considered in light of computational
constraints. If the actual d is lower than this limit, R can be
padded with rows of zeros.

We adopt a GP prior on f̃ with mean and covariance func-
tions µ̃ and κ̃, respectively. The linear embedding in-
duces another GP prior p(f) = GP(f ;µ,κ), where µ(x) =
µ̃(xR⊺) and κ(x,x′) = κ̃(xR⊺, x′R⊺). For example,
if κ̃ is the well-known isotropic exponentiated-quadratic
(squared-exponential, radial basis function, Gaussian) co-
variance, κ̃(u,u′) ∶= γ2 exp [− 1

2
(u − u′)(u − u′)⊺] with

output scale γ, κ on f is the Mahalanobis exponentiated-
quadratic covariance

κ(x,x′) = γ2 exp [−1

2
(x − x′)R⊺R(x − x′)⊺] . (1)

If d = D = 1, then R ∈ R is an inverse length scale. We
will return to this one-dimensional example later to build
intuition. A further special case is a diagonal R (assuming



d = D), in which case κ is the automatic relevance deter-
mination (ARD) covariance (Neal, 1995), widely used to
identify the most-important inputs.

Given an appropriate R with acceptably small d, learning
about f is possible even for large D, because the regres-
sion problem is reduced to the manageable space Rd. This
can remain true even in the case of an uncertain R: in
particular, assume a prior p(R) = N (R; R̂,Σ). Thus, re-
calling that u = xR⊺, and using standard Gaussian identi-
ties, if d = 1, p(u ∣ x) = N (u;xR̂⊺, xΣx⊺). If d > 1, Σ
is Cov[vectR], resulting in another Gaussian for p(u ∣ x)
that is only slightly more involved than in the d = 1 case.
As such, regression on f reduces to GP regression on f̃ ,
whose domain is the much smaller U ⊂ Rd, but with un-
certain, Gaussian-distributed, inputs. Unlike the work of
McHutchon & Rasmussen (2011), giving an existing ap-
proach to GP regression with uncertain inputs, the Gaussian
over the inputs here is correlated; the location of a point is
correlated with all others via mutual dependence on R. And
unlike the setting considered by Girard & Murray-Smith
(2005), there is no natural ordering of this domain enabling
an iterative procedure. The following section describes a
novel means of regression with uncertain embedding R.

2.1 APPROXIMATING THE POSTERIOR ON R

The log-likelihood of R, after N observations forming a
dataset D ∶= (X,y) ∈ RN×D ×RN , is

log p(y ∣X,R) = logN (y;µX ,KXX + σ2I) (2)

= −1/2[(y − µX)⊺(KXX + σ2I)−1(y − µX)
+ log∣KXX + σ2I∣ +N log 2π].

As µX ∶= µ(X) and KXX ∶= κ(X,X) have nonlinear de-
pendence upon R, so does p(y ∣ X,R). Even a simplistic
prior on the elements of R thus gives a complicated pos-
terior. We will use a Laplace approximation for p(R ∣ D)
to attain a tractable algorithm. To construct a Gaussian ap-
proximation, N (R; R̂,Σ) ≃ p(R ∣ D), we find a mode of
the posterior of p(R ∣ D) and set this mode as the mean
R̂ of our approximate distribution. The covariance of the
Gaussian approximation is taken as the inverse Hessian of
the negative logarithm of the posterior evaluated at R̂,

Σ−1 = −∇∇⊺ log p(R ∣ D)∣
R=R̂. (3)

2.1.1 Computational Cost

How costly is it to construct the Laplace approximation
of Equation (3)? Since D may be a large number, active
learning should have low cost in D. This section shows that
the required computations can be performed in time linear
in D, using standard approximate numerical methods. It is
a technical aspect that readers not interested in details may
want to skip over.

Up to normalization, the log posterior is the sum of log
prior and log likelihood (2). The former can be chosen very
simplistically; the latter has gradient and Hessian given by,
defining G ∶= κXX + σ2I and Γ ∶= G−1(y − µX),

−2
∂ log p(y ∣X,R)

∂θ
= −Γ⊺

∂κXX
∂θ

Γ +Tr [G−1 ∂κXX
∂θ

] ;

−2
∂2 log p(y ∣X,R)

∂θ∂η
= 2Γ⊺

∂κXX
∂η

G−1 ∂κXX
∂θ

Γ (4)

−Tr [G−1 ∂κXX
∂η

G−1 ∂κXX
∂θ

]

− Γ⊺
∂2κXX
∂θ∂η

Γ +Tr [G−1 ∂
2κXX
∂θ∂η

] .

Together with the analogous expressions for a prior p(R),
these expressions can be used to find a maximum of the pos-
terior distribution (e.g., via a quasi-Newton method), and
the Hessian matrix required for the Laplace approximation
to p(R ∣ D). The computational cost of evaluating these
expressions depends on the precise algebraic form of the
kernel κ. For the exponentiated quadratic kernel of Equa-
tion (1), careful analysis shows that the storage cost for the
Hessian of (2) isO(N2dD), and its structure allows its mul-
tiplication with a vector in O(N2dD). The corresponding
derivations are tedious and not particularly enlightening. To
give an intuition, consider the most-involved term in (4):
Using the short-hand ∆ij

` ∶= xi` − xj`, a straightforward
derivation gives the form

H1
k`,ab ∶ = −∑

ij

Γi
∂2κ(xi, xj)
∂Rk`∂Rab

Γj

= ∑
ijop

Rko∆
ij
o ∆ij

` Γiκ(xi, xj)ΓjRap∆ij
p ∆ij

b

−∑
ij

δka∆ij
b Γiκ(xi, xj)Γj∆ij

` .

Multiplication of this term with some vector gab (resulting
from stacking the elements of the D × d matrix g into a
vector) requires storage of the d ×N ×N array R∆ with
elements (R∆)ijk , the D ×N ×N array ∆ with elements
∆ij
` , and the N ×N matrix ΓΓ⊺ ⊗K. Multiplication then

takes the form

[H1g]k` =
N

∑
j=1

N

∑
i=1

(R∆)ijk ∆ij
` ΓiΓjκxixj (5)

× [
d

∑
a=1

(R∆)ija [
D

∑
b=1

∆ij
b gab]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
compute once inO(N2dD), store inO(N2).

Since the N ×N matrix in the square brackets is indepen-
dent of k`, it can be reused in the dD computations required
to evaluate the full matrix–vector product, so the overall
computation cost of this product is O(N2dD). The other
required terms are of similar form. This means that approxi-
mate inversion of the Hessian, using an iterative solver like



the Lanczos or conjugate gradient methods, is achievable in
time linear in D. The methods described here are computa-
tionally feasible even for high-dimensional problems. Our
implementation of the active method, released along with
this text, does not yet allow this kind of scalability, but the
derivations above show that it is feasible in principle.

3 APPROXIMATE MARGINALIZATION
OF GAUSSIAN PROCESS
HYPERPARAMETERS

To turn the approximate Gaussian belief on R into an ap-
proximate Gaussian process belief on f , the active learning
algorithm (constructed in Section 4) requires an (approxi-
mate) means of integrating over the belief on R. The ele-
ments of R form hyperparameters of the GP model. The
problem of dealing with uncertainty in Gaussian process
hyperparameters is a general one, also faced by other, non-
active, Gaussian process regression models. This section
presents a novel means of approximately integrating over the
hyperparameters of a GP. The most widely used approach
to learning GP hyperparameters is type-II maximum likeli-
hood estimation (evidence maximization), or maximum a
posteriori (MAP) estimation, which both approximate the
likelihood as a delta function. However, ignoring the un-
certainty in the hyperparameters in this way can lead to
pathologies (MacKay, 2003).

For compact notation, all hyperparameters to be marginal-
ized will be subsumed into a vector θ. We will denote as
mf ∣D,θ(x) the GP posterior mean prediction for f(x) con-
ditioned on data D and θ, and similarly as Vf ∣D,θ(x) the
posterior variance V of f(x) conditioned on D and θ.

We seek an approximation to the intractable posterior for
f∗ = f(x∗), which requires marginalization over θ:

p(f∗ ∣ D) = ∫ p(f∗ ∣ D, θ)p(θ ∣ D)dθ. (6)

Assume a Gaussian conditional, p(θ∣D) = N (θ; θ̂,Σ), on
the hyperparameters, such as the approximate distribution
over R constructed in the preceding section. To make the
integral in (6) tractable, we seek a linear approximation

p(f∗∣D, θ) = N (f∗;mf ∣D,θ(x∗), Vf ∣D,θ(x∗)) (7)

≃ q(f∗; θ) ∶= N (f∗;a⊺θ + b, ν2), (8)

using free parameters a, b, ν2 to optimize the fit. The mo-
tivation for this approximation is that it yields a tractable
marginal, p(f∗∣D) ≃ N (f∗;a⊺θ̂ + b, ν2 + a⊺Σa). Further,
the posterior for θ typically has quite narrow width, over
which p(f∗∣D, θ)’s dependence on θ can be reasonably ap-
proximated. We choose the variables a, b, ν2 by matching a
local expansion of q(f∗ ∣ θ) to p(f∗∣D, θ). The expansion
will be performed at θ = θ̂, and at a f⋆ = f̂⋆ to be determined.

Specifically, we match as

∂

∂f∗
q(f∗; θ)∣

θ̂,f̂⋆

= ∂

∂f∗
p(f∗∣D, θ)∣

θ̂,f̂⋆

; (9)

∂

∂θi
q(f∗; θ)∣

θ̂,f̂⋆

= ∂

∂θi
p(f∗∣D, θ)∣

θ̂,f̂⋆

; (10)

∂2

∂f2∗
q(f∗; θ)∣

θ̂,f̂⋆

= ∂2

∂f2∗
p(f∗∣D, θ)∣

θ̂,f̂⋆

; (11)

∂2

∂f∗∂θi
q(f∗; θ)∣

θ̂,f̂⋆

= ∂2

∂f∗∂θi
p(f∗∣D, θ)∣

θ̂,f̂⋆

. (12)

An alternative set of constraints could be constructed by in-
cluding second derivatives with respect to θ. But this would
require computation scaling as O((#θ)2), prohibitive for
large numbers of hyperparameters, such as the D × d re-
quired to parameterize R for large D. We define

m̂ ∶=mf ∣D,θ̂ and
∂m̂

∂θi
∶=
∂mf ∣D,θ
∂θi

∣
θ=θ̂, (13)

along with analogous expressions for V̂ and ∂V̂
∂θi

. Turning to
solving for a, b, ν2 and f⋆, note that, firstly, (9) implies that
a⊺θ̂+ b = m̂, and that (11) implies that ν2 = V̂ . Rearranging
(10) and (12), respectively, we have

2ai =
∂V̂

∂θi

⎛
⎝

1

f̂⋆ − m̂
− f̂⋆ − m̂

V̂

⎞
⎠
+ 2

∂m̂

∂θi
; (14)

2ai = 2
∂V̂

∂θi

f̂⋆ − m̂
V̂

+ 2
∂m̂

∂θi
. (15)

(14) and (15) can be solved only for

ai = ai± ∶= ±
1√
3V̂

∂V̂

∂θi
+ ∂m̂
∂θi

; (16)

f∗ = f̂∗± ∶= m̂(x∗) ±
√

V̂ (x∗)
3

. (17)

In particular, note that the intuitive choice f∗ = m̂(x∗), for
which ∂

∂f∗
p(f∗∣D, θ) = 0, gives q inconsistent constraints

related to its variation with θ. Introducing the separation
of (V̂ (x∗)/3)1/2 provides optimal information about the cur-
vature of p(f∗∣D, θ) with θ. Hence there are two possible
values, f̂∗±, to expand around, giving a separate Gaussian
approximation for each. We average over the two solu-
tions, giving an approximation that is a mixture of two
Gaussians. We then further approximate this as a single
moment-matched Gaussian.

The consequence of this approximation is that

p(f∗ ∣ D) ≃ N (f∗; m̃f ∣D(x∗), Ṽf ∣D(x∗)), (18)

where the marginal mean for f∗ is m̃f ∣D(x∗) ∶= m̂(x∗),



and the marginal variance is

Ṽf ∣D(x∗) ∶=
4

3
V̂ (x∗) +

∂m̂(x∗)
∂θ

⊺
Σ
∂m̂(x∗)
∂θ

+ 1

3V̂ (x∗)
∂V̂ (x∗)
∂θ

⊺
Σ
∂V̂ (x∗)
∂θ

. (19)

Figure 2 provides an illustration of our approximate
marginal GP (henceforth abbreviated as MGP).

Our approach is similar to that of Osborne et al. (2012)
(BBQ), for which Ṽf ∣D = Vf ∣D,θ̂ +

∂m̂
∂θ

⊺
Σ∂m̂
∂θ

. However, BBQ
ignores the variation of the predictive variance with changes
in hyperparameters.

To compare the two methods, we generated (from a GP)
10 ×D random function values, D, where D is the prob-
lem dimension. We then trained a GP with zero prior mean
and ARD covariance on that data, and performed prediction
for 10 × D test data. Test points, (x∗, y∗), were gener-
ated a small number (drawn from U(1,3)) of input scales
away from a training point in a uniformly random direction.
The MGP and BBQ were used to approximately marginal-
ize over all GP hyperparameters (the output scale and D
input scales), computing posteriors for the test points. We
considered D ∈ {5,10,20} and calculated the mean sym-
metrized Kullback–Leibler divergence (SKLD) over fifty
random repetitions of each experiment. We additionally
tested on two real datasets:4 yacht hydrodynamics (Ger-
ritsma et al., 1981) and (centered) concrete compressive
strength (Yeh, 1998). In these two, a random selection of
50 and 100 points, respectively, was used for training and
the remainder for testing. All else was as above, with the
exception that ten random partitions of each dataset were
considered.

We evaluate performance using the SKLD between approxi-
mate posteriors and the “true” posterior (obtained using a
run of slice sampling (Neal, 2003) with 105 samples and
104 burn-in); the better the approximate marginalization,
the smaller this divergence. We additionally measured the
average negative predictive log-likelihood, −E[log p(y∗ ∣
x∗,D)], on the test points (x∗, y∗). Results are displayed in
Table 1; it can be seen that the MGP provides both superior
predictive likelihoods and posteriors closer to the “true” dis-
tributions. The only exception is found on the yacht dataset,
where the MGP’s SKLD score was penalized for having pre-
dictive variances that were consistently slightly larger than
the “true” variances. However, these conservative variances,
in better accommodating test points that were unexpectedly
large or small, led to better likelihoods than the consistently
over-confident MAP and BBQ predictions.

4http://archive.ics.uci.edu/ml/datasets.

4 ACTIVE LEARNING OF GAUSSIAN
PROCESS HYPERPARAMETERS

Now we turn to the question of actively selecting observa-
tion locations to hasten our learning of R. We employ an
active learning strategy due to Houlsby et al. (2011), known
as Bayesian active learning by disagreement (BALD). The
idea is that, in selecting the location x of a function evalu-
ation f to learn parameters θ, a sensible utility function is
the expected reduction in the entropy of θ,

υ(x) ∶=H(Θ) −H(Θ ∣ F ) =H(F ) −H(F ∣ Θ), (20)

also equal to the mutual information I(Θ;F ) between f
and θ. Mutual information, unlike differential entropies, is
well-defined: the BALD objective is insensitive to changes
in the representation of f and θ. The right-hand side of (20),
the expected reduction in the entropy of f given the provi-
sion of θ, is particularly interesting. For our purposes, θ will
parameterize R ∈ Rd×D; that is, θ is very high-dimensional,
making the computation of H(Θ) computationally demand-
ing. In contrast, the calculation of the entropy of f ∈ R is
usually easy or even trivial. The right-hand side of (20) is
particularly straightforward to evaluate under the approxi-
mation of Section 3, for which p(f ∣ D, θ) and the marginal
p(f ∣ D) are both Gaussian. Further, under this approxima-
tion, p(f ∣ D, θ) has variance ν2 = V̂ that is independent
of θ, hence, H(F ∣ Θ) = H(F ∣ Θ = θ̂). We henceforth
consider the equivalent but transformed utility function

υ′(x) = Ṽf ∣D(x) (Vf ∣D,θ̂(x))
−1
. (21)

The MGP approximation has only a slight influence on this
objective – Figure 2 compares it to a full MCMC-derived
marginal. With reference to (19), (21) encourages evalua-
tions where the posterior mean and covariance functions are
most sensitive to changes in θ (Figure 3), normalized by the
variance in f : such points are most informative about the
hyperparameters. An alternative to BALD is found in uncer-
tainty sampling. Uncertainty sampling selects the location
with highest variance, that is, its objective is simply H(F ),
the first term in the BALD objective. This considers only
the variance of a single point, whereas the BALD objective
rewards points that assist in the learning of embeddings,
thereby reducing the variance associated with all points. An
empirical comparison of our method against uncertainty
sampling follows below.

4.1 ACTIVE LEARNING OF LINEAR
EMBEDDINGS FOR GAUSSIAN PROCESSES

To apply BALD to learning the linear embedding of a Gaus-
sian process, we consider the case R ⊂ θ; the GP hyper-
parameters define the embedding described in Section 2.
Figure 4 demonstrates an example of active learning for the
embedding of a two-dimensional function.



 

 

utility and maximum (true)
utility and maximum (MGP)
utility and maximum (BBQ)
±2 SD (MGP)
±2 SD (MAP)
±2 SD (true)
mean (true)
mean (MAP/MGP)
data

y

x

Figure 2: Approximate marginalization (MGP) of covariance hyperparameters θ increases the predictive variance to closely
match the “true” posterior (obtained using slice sampling with 105 samples). BBQ (Osborne et al., 2012) provides a standard
deviation differing from the MAP standard deviation by less than 3.1% everywhere, and would hence be largely invisible on
this plot. The bottom of the figure displays the (normalized) mutual information I(Θ;F (x)) (equal to the BALD utility
function υ(x)) for the various methods, and their maxima, giving the optimal positions for the next function evaluations.
The MGP position is very close to the true position.

Table 1: Mean negative log-likelihood for test points and mean SKLD (nats) between approximate and true posteriors. Both
metrics were averaged over test points, as well as over fifty and ten random repeats for synthetic and real experiments,
respectively.

−E[log p(y∗ ∣ x∗,D)] SKLD

problem dim MAP BBQ MGP MAP BBQ MGP

synthetic 5 3.58 2.67 1.73 0.216 0.144 0.0835
synthetic 10 3.57 3.10 1.86 0.872 0.758 0.465
synthetic 20 1.46 1.41 0.782 1.01 0.947 0.500
yacht 6 123.0 97.8 56.8 0.0322 0.0133 0.0323
concrete 8 2.96 ⋅ 109 2.96 ⋅ 109 1.67 ⋅ 109 0.413 0.347 0.337

The latent model of lower dimension renders optimizing an
objective with domain X (e.g., f(x), or the BALD objective)
feasible even for high-dimensional X . Instead of direct
search over X , one can choose a u ∈ U , requiring search
over only the low-dimensional U , and then evaluate the
objective at an x ∈ X for which u = xR⊺. A natural choice
is the x which is most likely to actually map to u under
R, that is, the x for which p(u ∣ x) is as tight as possible.
For example, we could minimize log det cov[u ∣ x], subject
to E[u ∣ x] = x R̂⊺, by solving the appropriate program.
For d = 1, this is a quadratic program that minimizes the
variance xΣx⊺ under the equality constraint. Finally, we
evaluate the objective at the solution.

For simplicity, we will henceforth assume X = [−1,1]D.
For any box-bounded problem, there is an invertible affine
transformation mapping the box to this X ; this then re-
quires only that R is composed with this transformation.
Further, define the signature of the ith row of R to be
[sign(Ri1), sign(Ri2), . . .]. Then, for the ith coordinate,
the maximum and minimum value obtained by mapping the
corners of X throughR are achieved by the corner matching
this signature and its negative. This procedure defines the
extreme corners of the search volume U .

Consider the typical case in which we take µ̃ as constant and
κ̃ as isotropic (e.g., the exponentiated quadratic (1)). Since
p(f ∣X,R) is then invariant to orthogonal transformations
of R in Rd, there is no unique embedding. In the special
case d = 1, R and −R are equivalent. For most means and
covariances there will be similar symmetries, and likely ever
more of them as d increases.5 We therefore evaluate the
performance of our algorithms not by comparing estimated
to true Rs, which is difficult due to these symmetries, but
rather in the direct predictive performance for f .

4.2 ACTIVE LEARNING OF LINEAR
EMBEDDINGS EXPERIMENTS

We now present the results of applying our proposed method
for learning linear embeddings on both real and synthetic
data with dimension up to D = 318. Given a function
f ∶X → R with a known or suspected low-dimensional em-
bedding, we compare the following methods for sequentially

5An alternative would be to place a prior on the Stiefel manifold
rather than directly on R; the Stiefel manifold accounts for most
of these symmetries Minka (2000). This would require the rows of
R to be orthogonal.



y

x

y

x

y

x

y

x

y

x

y

x

Figure 3: Active learning of the length scale of a one-dimensional GP (beginning at the top left and continuing across and
then down): the next sample is taken where the MAP and approximate variances maximally disagree, normalized by the MAP
variance. Samples are taken at a variety of separations to refine belief about the length scale. The inset plots (all of which
share axes) display the approximate posteriors over log-length scales, which tighten with increasing numbers of samples.
The legend is identical to that of Figure 2.

selecting N = 100 observations from the domain [−1,1]D:
random sampling (RAND), a Latin hypercube design (LH),
uncertainty sampling (UNC), and BALD. UNC and BALD use
identical models (Laplace approximation on R followed by
MGP) and hyperparameter priors. We also compare with
LASSO, choosing the regularization parameter by minimiz-
ing squared loss on the training data. The functions that
these methods are compared on are:

• Synthetic in-model data drawn from a GP matching our
model with an embedding drawn from our prior, for
d ∈ {2,3} and D ∈ {10,20}.

• The Branin function, a popular test function for global
optimization (d = 2), embedded in D ∈ {10,20} via an
embedding drawn from our prior.

• The temperature data6 described in Snelson & Ghahra-
mani (2006) (D = 106), with d = 2. The associated
prediction problem concerns future temperature at a
weather station, given the output of a circulation model.
The training and validation points were combined to
form the dataset, comprising 10 675 points.

• The normalized “communities and crime” (C&C)

6http://theoval.cmp.uea.ac.uk/˜gcc/
competition.

dataset from the UCI Machine Learning Repository7

(D = 96), with d = 2. The task here is to predict the
number of violent crimes per capita in a set of US com-
munities given historical data from the US Census and
FBI. The LEMAS survey features were discarded due
to missing values, as was a single record missing the
“AsianPerCap” attribute, leaving 1 993 points.

• The “relative location of CT slices on axial axis” dataset
from the UCI Machine Learning Repository8 (D =
318), with d = 2. The task is to use features extracted
from slices of a CT scan to predict its vertical location
in the human body. Missing features were replaced
with zeros. Only axial locations in the range [50,60]
were used. Features that did not vary over these points
were discarded, leaving 3 071 points.

The CT slices and communities and crime datasets are, re-
spectively, the highest- and third-highest-dimensional re-
gression datasets available in the UCI Machine Learning
Repository with real attributes; in second place is an unnor-
malized version of the C&C dataset.

7http://archive.ics.uci.edu/ml/datasets/
Communities+and+Crime.

8http://archive.ics.uci.edu/ml/datasets/
Relative+location+of+CT+slices+on+axial+
axis.



 

 

BALD

sampling

uncertainty
sampling

f(x)
x2

x1

−5 0 5

−5

0

5

 

 

true R
p(R ∣ D)R2

R1

−1 0 1

−1

0

1

Figure 4: Left: Twenty samples selected by uncertainty sampling and BALD for a function f with a one-dimensional linear
embedding. Note that uncertainty sampling prefers corner locations, to maximize the variance in u, xΣx⊺, and hence the
variance in f ; these points are less useful for learning f and its embedding than those selected by BALD. Right: the posterior
over embeddings returned by the BALD samples, concentrated near the true embedding (equivalent under negation).

Table 2: The combination of MGP and BALD actively learns embeddings whose predictive performance improves on
alternatives. Average negative log predictive probability and average RMSE on test functions for various D and d.

−E[log p(y∗ ∣ x∗, R̂)] RMSE

dataset D/d RAND LH UNC BALD RAND LH UNC BALD LASSO

synthetic 10/2 0.272 0.224 −0.564 −0.649 0.412 0.371 0.146 0.138 0.842
synthetic 10/3 0.711 0.999 0.662 0.465 0.553 0.687 0.557 0.523 0.864
synthetic 20/2 0.804 0.745 0.749 0.470 0.578 0.549 0.551 0.464 0.853
synthetic 20/3 1.07 1.10 1.04 0.888 0.714 0.740 0.700 0.617 0.883
Branin 10/2 3.87 3.90 1.58 0.0165 18.2 17.8 3.63 2.29 40.0
Branin 20/2 4.00 3.70 3.55 3.63 18.3 14.8 13.4 15.0 39.1
communities & crime 96/2 1.09 — 1.17 1.01 0.720 — 0.782 0.661 1.16
temperature 106/2 0.566 — 0.583 0.318 0.423 — 0.427 0.328 0.430
CT slices 318/2 1.30 — 1.26 1.16 0.878 — 0.845 0.767 0.900

For the synthetic and Branin problems, where the true em-
bedding R was chosen explicitly, we report averages over
five separate experiments differing only in the choice of
R. On these datasets, the UNC and BALD methods selected
points by successively maximizing their respective objec-
tives on a set of 20 000 fixed points in the input domain,
10 000 selected uniformly in [−1,1]D and 10 000 selected
uniformly in the unit D-sphere. For a given D, these points
were fixed across methods and experimental runs. This
choice allows us to compare methods based only on their
objectives and not the means of optimizing them.

For the real datasets (temperature, communities and crimes,
and CT slices), each method selected from the available
points; LH is incapable of doing so and so is not considered
on these datasets. The real datasets were further processed
by transforming all features to the box [−1,1]D via the
“subtract min, divide by max” map and normalizing the
outputs to have zero mean and unit variance. For the syn-
thetic problems, we added i.i.d. Gaussian observation noise
with variance σ2 = (0.1)2. For the remaining problems,
the datapoints were used directly (assuming that these real
measurements already reflect noise).

After each method selected 100 observations, we compare
the quality of the learned embeddings by fixing the hyper-

parameters of a GP to the MAP embedding at termination
and measuring predictive performance. This is intended to
emulate a fixed-budget embedding learning phase followed
by an experiment using only the most likely R. We chose
N = 100 training points and 1 000 test points uniformly at
random from those available; these points are common to
all methods. We report root-mean-square error (RMSE) and
the average negative predictive log-likelihood on the test
points. The RMSE measures predictive accuracy, whereas
the log-likelihood additionally captures the accuracy of vari-
ance estimates. This procedure was repeated 10 times for
each experiment; the reported numbers are averages.

The embedding prior p(R) was set to be i.i.d. zero-mean
Gaussian with standard deviation 5/4D−1. This choice
roughly implies that we expect [−1,1]D to map approx-
imately within [−2.5,2.5]d, a box five length scales on each
side, under the unknown embedding. This prior is extremely
diffuse and does not encode any structure of R beyond pre-
ferring low-magnitude values. At each step, the mode of the
log posterior overR was found using using L-BFGS, starting
from both the previous best point and one random restart
drawn from p(R).

The results are displayed in Table 2. The active algorithm
achieves the most accurate predictions on all but one prob-



lem, including each of the real datasets, according to both
metrics. These results strongly suggest an advantage for
actively learning linear embeddings.

5 CONCLUSIONS

Active learning in regression tasks should include hyperpa-
rameters, in addition to the function model itself. Here we
studied simultaneous active learning of the function and a
low-dimensional linear embedding of its input domain. We
also developed a novel means of approximately integrating
over the hyperparameters of a GP model. The resulting al-
gorithm addresses needs in a number of domains, including
Bayesian optimization, Bayesian quadrature, and also the
underlying idea of nonparametric Gaussian regression it-
self. Empirical evaluation demonstrates the efficacy of the
resulting algorithm on both synthetic and real problems in
up to 318 dimensions, and an analysis of computational cost
shows that the algorithm can, at least in principle, be scaled
to problems of much larger dimensionality as well.

ACKNOWLEDGMENTS

Part of this work was supported by the German Science
Foundation (DFG) under reference number ‘GA 1615/1–1.’

References
Bergstra, J. and Bengio, Y. Random search for hyper-parameter

optimization. Journal of Machine Learning Research, 13:281–
305, 2012.

Brochu, E., Cora, V. M., and de Freitas, N. A tutorial on Bayesian
optimization of expensive cost functions, with application to
active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

Candes, E. and Tao, T. The Dantzig selector: Statistical estimation
when p is much larger than n. Annals of Statistics, 35(6):2313–
2351, 2007.

Carpentier, A. and Munos, R. Bandit theory meets compressed
sensing for high dimensional stochastic linear bandit. arXiv
preprint arXiv:1205.4094, 2012.

Chen, B., Castro, R., and Krause, A. Joint optimization and
variable selection of high-dimensional Gaussian processes. In
Proceedings of the 29th Annual International Conference on
Machine Learning, 2012.

Gerritsma, J., Onnink, R., and Versluis, A. Geometry, resistance
and stability of the delft systematic yacht hull series. Interna-
tional Shipbuilding Progress, 28(328):276–297, 1981.

Girard, A. and Murray-Smith, R. Gaussian processes: Predic-
tion at a noisy input and application to iterative multiple-step
ahead forecasting of time-series. In Switching and Learning in
Feedback Systems, number 3355 in Lecture Notes in Computer
Science. Springer, 2005.

Guestrin, C., Krause, A., and Singh, A. P. Near-optimal sensor
placements in Gaussian processes. In Proceedings of the 22nd
Annual International Conference on Machine Learning, pp.
265–272. ACM, 2005.

Hennig, P. and Kiefel, M. Quasi-Newton methods – A new direc-
tion. In Proceedings of the 29th Annual International Confer-
ence on Machine Learning, 2012.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M.
Bayesian active learning for classification and preference learn-
ing. arXiv preprint arXiv:1112.5745, 2011.

Hutter, F. Automated configuration of algorithms for solving hard
computational problems. PhD thesis, University of British
Columbia, 2009.

Hutter, F., Hoos, H., and Leyton-Brown, K. Sequential model-
based optimization for general algorithm configuration. In
Learning and Intelligent Optimization, pp. 507–523. Springer,
2011.

Iwata, T., Houlsby, N., and Ghahramani, Z. Active learning for
interactive visualization. Proceedings of the 16th International
Conference on Artificial Intelligence and Statistics (AISTATS
2013), (31), 2013.

Lawrence, N. D. A unifying probabilistic perspective for spectral
dimensionality reduction: Insights and new models. Journal of
Machine Learning Research, 13:1609–1638, 2012.

MacKay, D. J. C. Bayesian interpolation. Neural Computation, 4
(3):415–447, 1992a.

MacKay, D. J. C. Information-based objective functions for active
data selection. Neural Computation, 4(4):590–604, 1992b.

MacKay, David J. C. Information theory, inference and learning
algorithms. Cambridge University Press, 2003.

McHutchon, A. and Rasmussen, C. E. Gaussian process training
with input noise. In Advances in Neural Information Processing
Systems 24, 2011.

Minka, T. Automatic choice of dimensionality for PCA. Technical
Report 514, MIT Media Laboratory, 2000.

Neal, R. M. Bayesian Learning for Neural Networks. PhD thesis,
University of Toronto, 1995.

Neal, R. M. Slice sampling. Annals of Statistics, 31(3):705–767,
2003.

O’Hagan, A. Bayes-Hermite quadrature. Journal of Statistical
Planning and Inference, 29:245–260, 1991.

Osborne, M. A., Duvenaud, D., Garnett, R., Rasmussen, C. E.,
Roberts, S. J., and Ghahramani, Z. Active learning of model
evidence using Bayesian quadrature. In Advances in Neural
Information Processing Systems 25, pp. 46–54, 2012.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes for
Machine Learning. MIT Press, 2006.

Snelson, E. and Ghahramani, Z. Variable noise and dimensionality
reduction for sparse Gaussian processes. In Proceedings of the
22nd Conference on Uncertainty in Artificial Intelligence (UAI
2006), pp. 461–468, 2006.



Tibshirani, R. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 58(1):267–288, 1996.

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and de Freitas,
N. Bayesian optimization in a billion dimensions via random
embeddings. arXiv preprint arXiv:1301.1942, 2013.

Williams, C. K. I. and Rasmussen, C. E. Gaussian processes
for regression. In Advances in Neural Information Processing
Systems 8, 1996.

Yeh, I-C. Modeling of strength of high-performance concrete using
artificial neural networks. Cement and Concrete Research, 28
(12):1797–1808, 1998.


