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Abstract

Finding the most likely (MAP) configuration
of a Markov random field (MRF) is NP-hard
in general. A promising, recent technique
is to reduce the problem to finding a max-
imum weight stable set (MWSS) on a de-
rived weighted graph, which if perfect, al-
lows inference in polynomial time. We de-
rive new results for this approach, including a
general decomposition theorem for MRFs of
any order and number of labels, extensions
of results for binary pairwise models with
submodular cost functions to higher order,
and an exact characterization of which bi-
nary pairwise MRFs can be efficiently solved
with this method. This defines the power
of the approach on this class of models, im-
proves our toolbox and expands the range of
tractable models.

1 INTRODUCTION

Markov random fields (MRFs), also termed undirected
probabilistic graphical models, are a central tool in
machine learning with wide use in many areas includ-
ing speech recognition, vision and computational biol-
ogy. A model (V,Ψ) is specified by a set of n variables
V = {X1, . . . , Xn} together with (log) potential func-
tions over subsets c of V , Ψ = {ψc : c ∈ C ⊆ P(V )},
where P(V ) is the powerset of V . In this paper, each
variable Xi may take finite ki possible values which we
label {0, . . . , ki − 1}. Write x = (x1, . . . , xn) for one
particular complete configuration and xc for a config-
uration just of the variables in c. A potential function
ψc maps each possible setting xc of its variables c to a
real number ψc(xc).

Identifying a configuration of variables that is most
likely, termed maximum a posteriori or MAP infer-
ence, is very useful in many contexts, yet in general is

NP-hard (Shimony, 1994). In our notation this is the
combinatorial problem of identifying1

x∗ = argmax
x=(x1,...,xn)

∑

c∈C

ψc(xc). (1)

In general, an MRF may be considered a hypergraph
together with associated ψc functions (see section 2.1
for definitions). A popular alternative representation
is a factor graph, which is a bipartite graph where the
variables V form one stable partition and each c ∈ C
is a node in the other partition, with an edge from c to
each variable it contains. In the special case that all
variables Xi take values only in B = {0, 1}, the model
is said to be binary. If |c| ≤ 2 ∀c ∈ C then the model
is pairwise. Binary pairwise models play a key role in
computer vision both directly and as critical subrou-
tines in solving more complex problems (Pletscher &
Kohli, 2012). Note that it is possible to convert a gen-
eral MRF into an equivalent binary pairwise model
(Yedidia et al., 2001; Ravikumar & Lafferty, 2006),
though this may lead to a much larger state space.

1.1 RELATED WORK

It is well-known that the MAP estimate can be recov-
ered for junction trees and acyclic graphical models
using dynamic programming, junction tree algorithms,
as well as max-product message passing (Bertelé &
Brioschi, 1972; Pearl, 1988; Wainwright & Jordan,
2008). Such approaches hinge on the graph having
bounded dimension or low tree-width, which is indeed
the case for many useful Bayesian networks. Subse-
quently, graphical models with more general (and often
dense) topologies yet whose potentials are constrained
to be binary pairwise associative (ferromagnetic) func-
tions were shown to be solvable efficiently using graph-

1This formulation assumes each configuration has prob-
ability > 0. When this is not the case, typically 0 may be
replaced by a sufficiently small ǫ. Also cost functions are
the negative of our ψs, thus submodular cost functions are
equivalent to supermodular ψs.



cuts or network flow (Greig et al., 1989; Boykov &
Kolmogorov, 2004). Many computer vision and im-
age processing problems can be handled by this class
of models. More recently, MAP estimation for cyclic
graphical models involving matching and b-matching
problems2 was shown to be solvable efficiently using
the max-product algorithm (Bayati et al., 2005; Huang
& Jebara, 2007; Sanghavi et al., 2008; Bayati et al.,
2008). In previous work, these three known cases were
all shown to compile to a maximum weight stable set
problem on a perfect graph, which is known to be solv-
able in polynomial time (Jebara, 2009; Jebara, 2012).
This paper derives new results for this approach, first
described in (Jebara, 2009; Sanghavi et al., 2009), and
examines which other models may be handled in this
manner.

An earlier method examining triangulated3 micro-
structure graphs was presented (Jégou, 1993) in the
context of constraint satisfaction problems (CSPs).
Valued CSPs (VCSPs) use soft constraints with ex-
plicit costs, and are closely related to MAP inference
problems. Many other techniques have been devel-
oped, including optimal soft arc consistency (Cooper
et al., 2010), belief propagation (Weiss et al., 2007)
and linear program relaxations (Sontag et al., 2008),
which may be considered to proceed through identify-
ing helpful reparameterizations (see section 2.5).

1.2 CONTRIBUTION AND SUMMARY

In section 2, we present important preliminary terms
and results from graph theory, and on the approach of
MAP inference via MWSS on a derived graph called
an NMRF (a nand Markov random field, see section
2.4). This reviews previous work and introduces some
novel concepts needed later.

In section 3 we derive a general decomposition theo-
rem for mapping MRFs to NMRFs, which can be used
to break apart a complex problem into smaller parts
that overlap only on single variables. In situations
where there are only a few of these overlapping vari-
ables, one could solve each subproblem and use a brute
force enumeration approach over all combinations of
the overlapping variables to find the global optimum,
but this is clearly exponential in the number of over-
lapping variables. Our approach, in contrast, runs in
polynomial time even for Ω(n) overlapping variables.
This general result applies for potential functions ψc

of any order, and variables with any number of labels.
Note that each subproblem could have high treewidth.

2These graphical models involve topological constraints
as well as various constraints on the potential functions
(not simply associativity or submodularity).

3Triangulated, or chordless, graphs are a subclass of
perfect graphs.

In section 4 we apply this general result specifically
to pairwise models, focusing on the binary case to de-
rive features of corresponding NMRFs. Applying these
results, we proceed in section 5 to build towards The-
orem 19, which provides a precise characterization of
which binary pairwise MRFs map to perfect NMRFs
for all valid ψc, and hence are amenable to this ap-
proach for efficient MAP inference.

In section 6 we explore a different direction, gener-
alizing the previous result (Jebara, 2012) that binary
pairwise MRFs with submodular cost functions can al-
ways be mapped to bipartite NMRFs (a special case of
perfect graphs, admitting faster inference). We show
that a bipartite pruned NMRF is obtained, for any
topology, for third order cost functions iff they are
submodular, and demonstrate that for interactions of
order ≥ 4, submodularity is a necessary but strictly
insufficient condition. Section 7 provides a conclusion
and outlines future work.

2 BACKGROUND

2.1 TERMS FROM GRAPH THEORY

We follow standard definitions and omit some familiar
terms, see (Diestel, 2010). A graph G(V,E) is a set of
vertices V , and edges E ⊆ V × V . Let n = |V | and
m = |E|. Throughout this paper, unless otherwise
specified, all graphs are finite and simple, that is a
vertex may not be adjacent to itself (no loops) and
each pair of vertices may have at most one edge (no
multiple edges).

The complete graph on n vertices, written Kn, has
all

(

n
2

)

edges. A path of length n is a graph Pn with
n edges connecting n + 1 vertices as v1 − v2 − · · · −
vn − vn+1. An induced subgraph H(U,F ) of a graph
G(V,E) is a graph on some subset of the vertices U ⊆
V , inheriting all edges with both ends in U , so F =
{(v, w) ∈ E : v, w ∈ U}. The union of two subgraphs,
H1(V1, E1) andH2(V2, E2) of a graph G(V,E), written
H1 +H2, is the induced subgraph of G on V1 ∪ V2.
A hypergraph (V,E) is a generalization of a graph
where the elements of E are any non-empty subsets
of V , not necessarily of size two. A general MRF may
be regarded as a hypergraph (V,C) together with func-
tions {ψc} ∀c ∈ C. For the special case of a pairwise
model, the structural relationships are naturally inter-
preted as a graph.

A graph is connected if there is a path connecting any
two vertices. A cut vertex of a connected graph G is
a vertex v ∈ V such that deleting v disconnects G.
A graph is 2-connected, equivalently biconnected, if it
is connected and contains no cut vertex. A block is



a maximal connected subgraph with no cut vertex of
the subgraph. Every block is either K2 (two vertices
joined by an edge) or a maximal 2-connected subgraph
containing a cycle. Different blocks of G overlap on at
most one vertex, which must be a cut vertex. Hence
G can be written as the union of its blocks with every
edge in exactly one block. These blocks are connected
without cycles in the block tree for G.

A stable set in a graph is a set of vertices, no two of
which are adjacent. A weighted graph (V,E,w) is a
graph with a nonnegative real value for each vertex,
called its weight w(v). A maximum weight stable set
(MWSS) is a stable set with maximum possible weight.
A maximal maximum weight stable set (MMWSS) is
a MWSS of maximal cardinality (this is useful in our
context since, after reparameterization, we may have
many nodes with 0 weight, see sections 2.4 and 2.5).

A clique in a graph is a set of vertices, of which every
pair is adjacent. The clique number of a graph G,
written ω(G), is the maximum size of a clique in G.

The complement of a graph G(V,E) is the graph
Ḡ(V, F ) on the same vertices with an edge in F iff
it is not in E. Hence a clique is the complement of a
stable set and vice versa.

A coloring of a graph is a map from its vertices to the
integers (considered the colors of the vertices) such
that no two adjacent vertices share the same color.
The chromatic number of a graph G, written χ(G),
is the minimum number of colors required to color it.
Observe that clearly χ(G) ≥ ω(G) for any graph G.

A graph G is perfect iff χ(H) = ω(H) for all induced
subgraphs H of G. As examples, any bipartite or
chordal graph is perfect. Related concepts (see Theo-
rem 5) are: a hole in a graph G is an induced subgraph
which is a cycle of length ≥ 4 (note this means the cy-
cle must be chordless); an antihole is an induced sub-
graph whose complement is a hole. A hole or antihole
is odd if it has an odd number of vertices. Note that,
as a special case, a hole with 5 vertices is equivalent
to an antihole of the same size. It is easily shown that
odd holes and antiholes are not perfect.

2.2 FURTHER TERMS

This section may be skipped on a first reading, and
referred to later for definitions.

A clique group for a set of variables c is a clique in
an NMRF corresponding to all possible settings xc of
those variables of its MRF, see section 2.4.

An snode is a node in an NMRF relating to a setting
of a single variable from its MRF. Equivalently, it is a
node from a clique group deriving from c = {Xi} for

some i. An enode is a node from a clique group deriv-
ing from some c ∈ C with |c| ≥ 2. For example, when
considering binary pairwise models, an enode derives
from an edge of the MRF.

For a graph (V,E), if X ⊆ V and v ∈ V \X then v is
complete to X if v is adjacent to every member of X.
If X,Y ⊆ V are disjoint, then X is complete to Y if
every vertex in X is complete to Y .

A cutset S of a graph G is a set of vertices S ⊆ V (G)
s.t. G \ S is disconnected. A star-cutset S of G is a
cutset s.t. ∃ some x ∈ S s.t. x is complete to S \ {x}.
A signed graph (Harary, 1953) is a graph (V,E) to-
gether with one of two possible signs for each edge.
This is a natural structure when considering binary
pairwise models, where we characterize edges as either
associative or repulsive, see section 2.6. When dis-
cussing signed graphs, we use the notation ⊕ to show
an associative edge, and ⊖ for a repulsive edge. For
example, x⊕y⊖z is a graph with 3 vertices x, y and z,
and two edges, where x and y are adjacent via an asso-
ciative edge, and y and z are adjacent via a repulsive
edge.

A frustrated cycle in a signed graph is a cycle with an
odd number of repulsive edges.

A BR structure (see Figure 1 for an example) is a
signed graph over variables V with associative edges
EA and repulsive edges ER s.t. (V,ER) is bipartite and
∃ a disjoint bipartition V = V1∪V2 with all ER crossing
between the partitions V1 − V2, and no EA crossing
between them. Either EA or ER may be empty, so
for example, this includes any signed graph with only
associative edges.

x1

x2

x3

x4

x5

x6

Figure 1: A BR structure. Solid (dashed) edges are
associative (repulsive). Deleting any edges maintains
the BR property.

A Tm,n structure (see Figure 2 for an example) is a
2-connected signed graph containing m+ n ≥ 1 trian-
gles on a common base given by: 2 base vertices s, t
connected via a repulsive edge, so s⊖ t; together with
m ≥ 0 vertices ri, each adjacent only to s and t via
repulsive edges, so s ⊖ ri ⊖ t; and n ≥ 0 vertices ai,
each adjacent only to s and t via associative edges, so
s⊕ai⊕ t. Note Tm,n would be bipartite, with {s, t} as
one partition and all other vertices in the other, except
that we have the repulsive edge s⊖ t.
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r1r2 a1 a2 a3

Figure 2: A Tm,n structure with m = 2 and n = 3.
Solid (dashed) edges are associative (repulsive).

s

t

v1 v2 v3 v4 v5

Figure 3: A Un structure with n = 5. Solid (dashed)
edges are associative (repulsive).

A Un structure (see Figure 3 for an example) is a 2-
connected signed graph containing n ≥ 1 triangles on
a common base given by: 2 base vertices s, t connected
via an associative edge, so s ⊕ t; together with n ≥ 1
vertices vi, each adjacent only to s and t via one asso-
ciative and one repulsive edge (either way), so either
s⊕ vi ⊖ t or s⊖ vi ⊕ t.
Note that U1 is the same as T0,1 but this is the only
overlap. In Lemma 18, we show that Tm,n and Un

structures are the only 2-connected signed graphs con-
taining a frustrated cycle that map to a perfect NMRF.

2.3 PROPERTIES OF PERFECT GRAPHS

2.3.1 Complexity of MWSS

Our approach to MAP inference is to reduce the prob-
lem to finding a maximum weight stable set on a de-
rived weighted graph, as described in section 2.4. This
is helpful only if we can find a MWSS efficiently, yet
in general this is still an NP-hard problem for a graph
with N vertices. However, if the derived graph is per-
fect4, then a MWSS may be found in polynomial time
via the ellipsoid method (Grötschel et al., 1984).

Faster exact methods (Yildirim & Fan-Orzechowski,
2006) based on semidefinite programming are possible
in O(N6) and are improved using primal-dual methods
(Chan et al., 2009). Alternatively, linear programming
can solve MWSS problems but requires O(N3√nK)
time where nK is the number of maximal cliques in
the graph (Jebara, 2009; Jebara, 2012). Clearly, when-
ever nK is small, linear programming can be more ef-

4There are a few other classes of graphs that also admit
efficient MWSS, such as claw-free graphs, where significant
recent advances have been made (Faenza et al., 2011), but
so far these have not been useful in analyzing MRFs.

ficient than semidefinite programming. However, in
the worst case, nK may be exponentially large in N

which makes linear programming useful only in some
cases. Message-passing methods can also be applied
for finding the maximum weight stable set in a perfect
graph though they too become inefficient for graphs
with many cliques (Foulds et al., 2011; Jebara, 2012).

Where other methods exist for solving exact MAP
inference, the reduction to MWSS is typically not
the fastest method, yet there is hope for improve-
ment since the field is advancing rapidly, with signifi-
cant breakthroughs in recent years (Chudnovsky et al.,
2006; Faenza et al., 2011).

2.3.2 Other properties

There is a rich literature on perfect graphs. We high-
light key results used later in this paper.

Theorem 1 ((Gallai, 1962)). The graph obtained by
pasting two perfect graphs on a clique is perfect.

Theorem 2 ((Chvátal, 1985)). The graph obtained by
pasting two perfect graphs on a star-cutset is perfect.

Theorem 3 (Substitution Lemma, (Lovász, 1972)).
The graph obtained by substituting one perfect graph
for a vertex of another perfect graph is also perfect.

Here, substituting H for x in G means deleting x and
joining every vertex of H to those vertices of G which
were adjacent to x.

Theorem 4 (Weak Perfect Graph Theorem, (Lovász,
1972)). A graph is perfect iff its complement is perfect.

Theorem 5 (Strong Perfect Graph Theorem ‘SPGT’
(Chudnovsky et al., 2006)). A graph is perfect iff it
contains no odd hole or antihole.

2.4 MAP REDUCTION TO MWSS

Given an MRF model (V,Ψ), construct a nand Markov
random field (NMRF), see (Jebara, 2009):

• A weighted graphN(VN , EN , w) with vertices VN ,
edges EN and a weight function w : VN → R≥0.

• Each c ∈ C of the original model maps to a clique
group of N which contains one node for each pos-
sible configuration xc, all pairwise adjacent.

• Generally, nodes are adjacent iff they have incon-
sistent settings for any variable Xi.

• Nonnegative weights of each node in N are set
as ψc(xc) − minxc

ψc(xc), see section 2.5 for an
explanation of the subtraction.

See Figure 4 for an example. (Jebara, 2012) proved
that a maximal cardinality set of consistent config-
uration nodes in N with greatest total weight, i.e. a
MMWSS of N (see section 2.1), will identify a globally
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(a) Input MRF (b) Derived NMRF

Figure 4: An example of mapping an MRF with binary
variables (shown as a factor graph) to an NMRF (sub-
scripts denote the factor variables c and superscripts
denote the configuration xc).

consistent configuration of all variables of the original
MRF that solves the MAP inference problem (1).

Sketch proof: (Slightly different to (Jebara, 2012), this
will allow us to extend the result after discussing prun-
ing in section 2.5.) A MMWSS S is consistent by con-
struction and clearly contains at most one node from
each clique group. It remains to show it has at least
one from each clique group. Suppose a clique group
has no representative. Identify a member of this group
which could be added to S, establishing a contradic-
tion since S is maximal, as follows: the group overlaps
with some variables of S, copy the settings of these;
for all other variables in the group, pick any setting.
Note that if we do not insist on a maximal MWSS,
it is possible that we do not get a representative for
some clique groups and hence do not obtain a complete
MAP configuration for the initial MRF.

2.5 REPARAMETERIZATIONS AND

PRUNING

A reparameterization is a transformation

{ψc} → {ψ′
c} s.t. ∀x,

∑

c∈C

ψc(xc)=
∑

c∈C

ψ′
c(xc)+constant.

This clearly does not modify (1) but can be helpful to
simplify the problem.

One particular reparameterization is to add a constant
just to any ψc function, since any consistent configura-
tion has exactly one setting for each group of variables
c. Hence we may subtract the minimum ψc(xc) and
assume that in each clique group of N , the minimum
weight of a node is exactly zero. The earlier reduction
result in section 2.4 holds provided we insist on a max-
imal MWSS. To find a MMWSS, it is sufficient first to
remove or prune the zero weight nodes, find a MWSS

on the remaining graph, then reintroduce a maximal
number of the zero weight nodes while maintaining
stability of the set. Different reparameterizations will
yield different pruned NMRFs. By the earlier argu-
ment: MWSS will find one member from each of some
of the clique groups, then we can always find one of
the zero weight nodes to add from each of the remain-
ing groups using any greedy method. Hence we have
shown the following result.

Lemma 6. MAP inference on an MRF is tractable
provided ∃ an efficient reparameterization s.t. the
MRF maps to a perfect pruned NMRF.

2.6 SINGLETON TRANSFORMATIONS,

BINARY PAIRWISE MRFS AND

ASSOCIATIVITY

Another useful reparameterization is what we term
a singleton transformation, which is a change in one
or more ψ functions for a single variable, with corre-
sponding changes to a higher order term which brings
it to a convenient form.

Considering binary pairwise models only, it is easily
shown that a reparameterization of an edge via single-

ton transformations,

(

ψ00 ψ01

ψ10 ψ11

)

→
(

ψ′
00 ψ′

01

ψ′
10 ψ′

11

)

is

valid iff ψ00+ψ11−ψ01−ψ10 = ψ′
00+ψ

′
11−ψ′

01−ψ′
10.

Hence this quantity, which we call the associativity of
the edge, is invariant with respect to any singleton
transformation, and thus is well defined.

We describe an edge as either associative5, in which
case it tends to pull its two end vertices toward the
same value, or repulsive, in which case it tends to push
its two end vertices apart to different values, accord-
ing to whether its associativity is > 0 or < 0. An
edge with 0 associativity may be removed since we
may transform its edge potential to the zero matrix.
A binary pairwise model is associative iff every one of
its edges is associative.

An associative edge may be reparameterized s.t. three
of its entries are 0, and therefore may be pruned, leav-
ing only either ψ′

00 or ψ′
11 (or both, though for our

purposes of mapping to a perfect NMRF, it is always
easier to prune more nodes) with a positive value. Sim-
ilarly, we may reparameterize a repulsive edge x⊖y to
leave only a (x = 0, y = 1) or (x = 1, y = 0) node.6

5Other equivalent terms used are attractive, ferro-
magnetic or regular. This is equivalent to ψ for the edge
being supermodular, or having submodular cost function.

6For repulsive edges, selecting one or other form is ex-
actly analogous to choosing an orientation of the edge,
x → y or x ← y. Further, such enodes from repulsive
edges are adjacent iff their directed edges connect ‘head
to tail’, hence the induced subgraph of an NMRF on these



2.7 SINGLETON CLIQUE GROUPS

Since typically we would like to allow any finite values
for singleton potential functions, and singleton trans-
formations as described in section 2.6 without restric-
tion, in this paper we assume that any NMRF includes
the complete clique group for each of the single vari-
ables of its MRF. In particular contexts, however, one
may drop this requirement, and since this would re-
move nodes from the NMRF, it can only help to show
perfection (any induced subgraph of a perfect graph is
perfect), though then sometimes care must be taken
to confirm the decomposition result of Theorem 7.

3 NEW RESULTS FOR ALL MRFS

Theorem 7 (MRF Decomposition). If
MRFA(VA,ΨA) and MRFB(VB ,ΨB) both map
to perfect NMRFs NA and NB, and have exactly one
variable s in common, i.e. VA∩VB = {s}, with consis-
tent ψs, then the combined MRF ′(VA ∪ VB ,ΨA ∪ΨB)
maps to an NMRF N ′ which is also perfect. The
converse is true by the definition of perfect graphs.

Proof. 7 See section 2.2 for notation. We may assume
both ΨA and ΨB contain the same ψs forming the
complete s clique group Ks in NA and NB (see section
2.7, though in fact this Theorem holds more generally,
provided only that both NA and NB have the same
nodes from the clique group for s).

Let the possible values of s be {0, . . . , k−1}, and si be
the snode corresponding to (s = i). Let Ai be all those
vertices of NA\{si} which have setting s = i, similarly
define Bi for NB . Observe that Ai is complete to Aj

for all i 6= j, and similarly for Bi. N ′ is the result
of pasting NA and NB on Ks, together with all edges
from Ai to Bj if i 6= j.

Hence N ′ admits a star-cutset given by X = Ks+A1+
· · ·+Ak +B1+ · · ·+Bk with s0 complete to X \ {s0}.
Thus by Theorem 2, it is sufficient to show thatNA+X
and NB + X are each perfect. But this is true by
Theorem 3, since NA +X = NA +B1 + · · ·+Bk may
be obtained from NA by substituting (via Theorem 3)
Bi + si for si, i = 1, . . . , k; and similarly for NB .

3.1 BLOCK DECOMPOSITION

Theorem 7 is a powerful tool for analyzing MRFs of
any order and number of labels. As a special case, we
have an immediate corollary.

repulsive enodes is exactly a directed line graph of (V,ER).
7This proof, due to Maria Chudnovsky, is shorter and

neater than the authors’ original.

Theorem 8. A pairwise MRF maps to a perfect
NMRF for all valid ψ iff each of its blocks maps to
a perfect NMRF.

This provides an elegant way to derive a previous re-
sult (Jebara, 2009):

Theorem 9. A pairwise MRF whose graph structure
is a tree (i.e. no cycles) maps to a perfect NMRF.

Proof. By Theorem 8, we need only consider one edge
together with its two end vertices (then use induction).
The edge clique group together with each one of the
singleton clique groups is the complement of a bipar-
tite graph, hence is perfect (by Theorem 4). Now paste
the two together on the edge clique group to show the
whole is perfect (by Theorem 1).

We show the following further general result.

Lemma 10. Neither an odd hole H nor an odd anti-
hole A in a NMRF can contain ≥ 2 members, say s1
and s2, of any singleton clique group.

Proof. In H, s1 and s2 must be next to each other,
then moving out round H one node in each direction,
we cannot avoid a chord, contradiction. In A, there
must be at least 2 nodes between s1 and s2 in at least
one direction. Taking this way round A, the node next
to s1 must be adjacent to s2 but not s1, so has setting
s = 1. Continuing round A, the next node must be
adjacent to s1, so must have an s value 6= 1 but then
it is adjacent to its predecessor, contradiction.

4 NEW RESULTS FOR BINARY

PAIRWISE MRFS

Lemma 11. Let M be a binary pairwise MRF. ∃
a reparameterization s.t. M maps to perfect pruned
NMRF ⇔ ∃ a reparameterization with just one enode
per edge in the pruned NMRF which is perfect.

Proof. (⇐) is clear. (⇒) see section 2.6. With a stan-
dard reparameterization, we may always achieve just
one pruned enode (either 00 or 11 for associative, 01 or
10 for repulsive) from those already present. The re-
sult follows from the definition of a perfect graph.

Therefore henceforth, when referring to a pruned
NMRF of a binary pairwise MRF, we may assume just
one enode per edge.

Lemma 12. An antihole A of size ≥ 7 can never occur
in a pruned NMRF N from a binary pairwise MRF M.

Proof. Suppose A exists containing an snode, WLOG
say s0. This must be adjacent to ≥ 4 nodes in A, all



of which must have s = 1 settings. The 2 closest to
s0 around A one way must both be adjacent to the
closest to s0 around A the other way, which cannot
be achieved, hence A must contain only enodes. By
Lemma 11, we have only one enode per edge of M .
Two enodes are adjacent in N if they have one end in
common with different settings - since only 2 settings
are possible, a triangle in N must derive from edges in
M that formed a triangle. Given 2 enodes which are
adjacent, there is exactly one possible third enode with
which they can form a triangle (e.g. for s0t1 and t0u0,
s1u1 is the unique third possible enode). Yet A must
contain ≥ 2 triangles which have the same 2 members
but a different third member, contradiction.

Since an antihole of size 5 is equivalent to a hole of the
same size, SPGT (Theorem 5) gives the following.

Lemma 13. For a binary pairwise MRF, a pruned
NMRF is perfect ⇔ it contains no odd hole.

5 WHICH BINARY PAIRWISE

MRFS YIELD PERFECT NMRFS

By Theorem 8, we need only consider 2-connected
graphs G (considering both associative and repulsive
edges), and by Lemma 13 we need only check for odd
holes. G either contains a frustrated cycle or does not.
If it does, we shall see that G must have the form Tm,n

or Un. If not, we show G must have the form BR. See
section 2.2 for definitions.

Lemma 14 ((Harary, 1953)). The following are equiv-
alent properties for a signed graph G on vertices V :

1. G contains no frustrated cycle
2. G is of the form BR

3. G is flippable to fully associative

(1)⇔(2) by a variant of the standard proof that a
graph is bipartite iff it has no odd cycle, considering
repulsive edges. (3) means ∃ some subset S ⊆ V s.t.
if we replace each Xi ∈ S by Yi = 1−Xi, and modify
potential functions accordingly, thereby flipping the
nature of each edge incident to Xi between associa-
tive and repulsive, then all edges of G can be made
associative. (2)⇔(3) by setting S as either partition.

Theorem 15. A binary pairwise MRF with the form
BR maps efficiently to a bipartite NMRF N .

Proof. Let the partitions of the variables be S and
T with snodes {s0i , s1i } from S, and {t0j , t1j} from T .
Choose a reparameterization s.t. any associative edge
x ⊕ y maps to an enode (x = 0, y = 0), and for any
repulsive edge pick either form. Hence in N we have:

{ei} associative enodes from S, form (si = 0, sj = 0),

{fi} associative enodes from T , form (ti = 0, tj = 0),
{ai} repulsive enodes S → T , form (si = 0, tj = 1),
{bi} repulsive enodes S ← T , form (si = 1, tj = 0).

Observe N is bipartite with partitions {ai, s0i , t1j , ei}
and {bi, s1i , t0j , fi}.

We now explore the case that G has a frustrated cycle.

Lemma 16. Any cycle C in a binary pairwise MRF
generates an induced (chordless) cycle H in its NMRF
N with size at least as great, and with the same parity
(odd/even number of vertices) as the number of repul-
sive edges (odd/even) in the MRF’s cycle.
In particular, if M contains any frustrated cycle with
≥ 4 edges, or with 3 edges requiring any snode to link
the enodes in N , then this maps to an odd hole in N .

Proof. By Lemma 11, we may assume just one enode
in N per edge in G. Form a cycle H in N using the
enodes corresponding to the edges of C, together with
connecting snodes as required (if two enodes meet at
a variable and have the same setting, add an snode
with the opposite setting). Clearly H is chordless and
|H| ≥ |C|.
Pick some enode e1 and orientation around H. Con-
sider the end parity of e1, that is the setting for the
next variable around H. For subsequent enodes, to
maintain end parity requires an even (odd) total num-
ber of nodes , including possible snodes, for associative
(repulsive) edges, and the reverse to flip end parity.
Let am and af be the number of times end parity is
maintained and flipped respectively using all associa-
tive edges around H, and similarly define rm and rf
for all repulsive edges. In order to connect to the other
end of e1 after traversing H requires in total (including
e1) an odd number of flips, hence af +rf ≡ 1 (mod 2).
The total number of nodes in H is comprised of the
first enode together with all subsequent nodes, hence

|H| ≡ 1 + 0.am + 1.af + 1.rm + 0.rf (mod 2)

≡ af + rm + 1 (mod 2) ≡ rf + rm (mod 2).

Using Lemmas 13 and 16 we show the following result.

Lemma 17. Let M be a binary pairwise MRF that
maps to an NMRF N . If N is not perfect then ∃ a
frustrated cycle in M that maps to an odd hole in N .
Hence, N is perfect ⇔ ∄ such a cycle in M .

Proof. By Lemma 13, N contains an odd hole H. By
Lemma 10, any snode in H is adjacent to two enodes,
and hence H must have derived from a cycle in M .
Lemma 16 completes the proof.

Lemma 18. The only 2-connected binary pairwise
MRFs containing a frustrated cycle, that map to a per-
fect NMRF, are of the form Tm,n or Un.



Proof. See section 2.2 for definitions. By Lemmas 16
and 17, we need only consider a frustrated triangle in
M whose enodes in N require no connecting snodes.
This triangle may have either (1) one repulsive and
two associative edges, which we shall show must be of
the form Un or Tm,n with n ≥ 1, or (2) three repulsive
edges, which we shall show must be of the form Tm,n.

It is simple to check that, in either case, a fourth vertex
adjacent to all 3 vertices of the triangle, resulting in
a K4 clique, does not admit a reparameterization that
avoids a frustrated cycle requiring connecting snodes.

Case 1: Triangle with one repulsive edge. We have
a U1 structure. Let the configuration in the MRF be
s⊕t⊖v1⊕s. In order to avoid connecting snodes in N ,
we must have one of the following two reparameteriza-
tions: {(s = 0, t = 0), (t = 1, v1 = 0), (v1 = 1, s = 1)}
or {(s = 1, t = 1), (t = 0, v1 = 1), (v1 = 0, s = 0)}.
Once one edge has been selected, the others can fol-
low in only one way. Consider what may be added to
this graph while remaining 2-connected and avoiding
a frustrated cycle with ≥ 4 edges. Any additional ver-
tex v2 must be attached by disjoint paths to at least
2 vertices x and y of the triangle. If either path has
length ≥ 2 then, by choosing one or other path in the
original U1 from x to y, we always find a frustrated cy-
cle with ≥ 4 edges, leading to an odd hole. Using the
argument from the preceding paragraph, v2 must be
adjacent to exactly 2 vertices of U1. If these vertices
are connected by an associative edge, we now have U2;
otherwise we have T0,2. Checking cases now shows
that the only way to add further vertices results in Un

or Tm,n structures, with any m ≥ 0, n ≥ 1 allowed.

Case 2: Triangle with three repulsive edges. We have
T1,0. Similar reasoning to case 1 shows that the only
possibilities are Tm,n for any m ≥ 1, n ≥ 0.

Taking the results of this section together, we have the
following characterization.

Theorem 19. A binary pairwise MRF maps to a per-
fect NMRF for all valid ψc iff each of its blocks (using
all edges) has the form BR, Tm,n or Un.

5.1 REMARKS

Theorem 19 certainly has theoretical value in estab-
lishing the boundaries of the MWSS approach for this
class of MRFs. Further, it broadens the landscape of
tractable models. Each of the three block categories is
itself tractable by other methods in isolation: QPBO
(Rother et al., 2007) is guaranteed to be able to han-
dle a BR structure (though not Tm,n or Un), or indeed
a BR structure may be flipped to yield a fully asso-
ciative model which can be solved with any appropri-
ate technique such as graph cuts; and each Tm,n or

Un has low tree width so admits traditional inference
methods. To our knowledge, however, our approach
is the first to be able to handle an MRF containing
Ω(n) of these structures, including high tree width BR

sections, automatically in polynomial time.

5.1.1 Efficient Detection

Detecting if a binary pairwise MRF with topology
(V,E) satisfies our conditions may be performed in
time O(|E|): identifying block structure is an applica-
tion of DFS, then each block type may be efficiently
checked. The Tm,n and Un structures are straightfor-
ward. For BR, first test if it is bipartite using just ER

(an application of BFS). Next check each component
by ER to see that no EA cross partitions. Then stitch
together partitions from different components (if more
than one) using EA. If any EA cross partitions then
it is easy to see ∃ a frustrated cycle with ≥ 4 edges
which would lead to an odd hole in the NMRF.

6 HIGHER ORDER SUBMODULAR

As noted in the introduction, (Jebara, 2012) has shown
that a fully associative binary pairwise model, which
is equivalent to a model with supermodular pairwise
ψ functions (submodular cost functions), can always
be reparameterized so as to yield a bipartite pruned
NMRF. Indeed, we have seen in section 2.6 that, for
each associative edge x ⊕ y, one may reparameterize
and prune the edge clique group so as to leave only
either form (x = 0, y = 0) or (x = 1, y = 1). Here
we extend the analysis to consider higher order mod-
els, still focusing on submodular cost functions over
binary variables. We shall show that for potentials
over 3 variables, a bipartite pruned NMRF is obtained
for any topology iff all cost functions are submodular.
Further, we show that submodularity is a necessary
but strictly insufficient condition to obtain a bipartite
pruned NMRF for all orders higher than 3.

Considering other approaches, this is similar to the re-
sult of (Zivny et al., 2009) that all order 3 submodular
functions over Boolean variables can be represented
by order 2 submodular functions using auxiliary vari-
ables, but this is not always true when the order > 3.
Also, (Kolmogorov & Zabih, 2004) showed that sub-
modularity was necessary for a function to be graph-
representable. However, (Arora et al., 2012) recently
demonstrated a novel graph cuts method for submod-
ular cost functions of any order8 over binary variables.
Still, our result usefully clarifies the boundaries of our
approach if we restrict to bipartite NMRFs only, and
there is hope yet that a broader class of models may

8The time is exponential in the order of the potentials.



map to the wider class of perfect NMRFs.

6.1 NOTATION

Let ψ be an order k potential function over k binary
variables X = {X1, . . . , Xk}. Let one setting be x =
(x1, . . . , xk). Let x − ij be a setting for all variables
other thanXi andXj . Let ψx = ψ(X = x). Define the
supermodularity s of ψ wrt Xi, Xj on the projection

given by x−ij, as sijx−ij = ψ(Xi = 0, Xj = 0)+ψ(Xi =
1, Xj = 1) − ψ(Xi = 1, Xj = 0) − ψ(Xi = 0, Xj = 1)
where all other variables in X \{Xi, Xj} are held fixed
at x− ij.
Define αk =

∑

all 2k settings of x(−1)#0s in xψx. Ob-
serve that for k = 2, this is the supermodularity s

term. For k = 3, this is the difference between s with
(any) one variable set to 0 and that with the same
variable set to 1. For k = 4, we have the sum of two s
terms minus two others, etc.

∀Y ⊆ P(X), let OY and IY be weighted indicator
functions. The O functions are 0 unless all of Y are 0.
The I functions are 0 unless all of Y are 1. Otherwise,
OY and IY take values ZY and AY , respectively. Y = b

means fix variables Y at value b where b ∈ B = {0, 1}.
In order to map to a bipartite pruned NMRF for any
topology at order k, we must be able to represent every
ψx as the sum of a constant term and nonnegative9 O
and I indicator functions over all subsets of X, which
correspond exactly to the nodes in the pruned NMRF
(which is then clearly bipartite with stable sets corre-
sponding to the {OY } and {IY }).

6.2 RESULTS

Theorem 20. For k ≥ 2, mapping to a bipartite
pruned NMRF for any topology ⇒ ψ is supermodular,
equivalently every projection of ψ onto two variables is
supermodular.

Proof. Given the ψx representation from the previous
paragraph, consider which AY , ZY terms survive when
a general supermodularity term s

ij
x−ij is computed.

For some Y , analyze AY terms (a similar result holds
for ZY terms): Y will include either none, one or two
of the variables {Xi, Xj}. Consider the cases: If none,
then AY does not feature in the sijx−ij computation.
If one, then we get plus AY (from the Xi = Xj = 1
term) minus AY (from the appropriate other term), so
they cancel. Finally, if two, then we simply get plus
the AY term. Hence for every sijx−ij , it must be equal
to the sum of some AYi

and ZYj
terms, all of which

9It is critical that the functions be nonnegative in order
that the corresponding nodes in the NMRF are the only
ones not pruned.

are constrained to be ≥ 0. Hence all supermodularity
terms are ≥ 0.

Further, for k = 4, it is easily checked that αk = AX +
ZX , where we require AX , ZX ≥ 0, yet it also equals
s
ij
x−ij=00 + s

ij
x−ij=11 − s

ij
x−ij=01 − s

ij
x−ij=10 (for any 2

variables Xi, Xj), which may be positive but equally
may be negative.10 Similarly for all k > 4, we are not
able to represent all supermodular ψ functions.

Theorem 21. For general interactions over k = 3
variables, ψ is supermodular ⇔ we obtain a bipartite
pruned NMRF for any topology.

Proof. (⇐) follows from Theorem 20. (⇒) we provide
a constructive proof:11

If αk ≥ 0, use only OY for |Y | ≥ 2. Set ZX = αk.
For |Y | = 2, set ZY = sY1 . For |Y | = 1, set ZY =
ψ(Y = 0, (X \ Y ) = 1)−ψ111. Set constant to ψ111 to
observe we match ψx values ∀x. Now reparameterize
all singleton terms and prune as usual, see section 2.5.

If αk ≤ 0, use only IY for |Y | ≥ 2. Set AX = −αk. For
|Y | = 2, set AY = sY0 . For |Y | = 1, set AY = ψ(Y =
1, (X \ Y ) = 0) − ψ000. As before, set constant to
ψ000 to check values, then reparameterize all singleton
terms and prune, see section 2.5.

7 CONCLUSIONS

The MWSS approach to MAP inference is an exciting,
recent approach, leveraging the rapid progress in com-
binatorics. Here we have derived new general tools
(section 3), defined the scope of the approach in an
important, broad setting (sections 4 and 5), where we
were able to extend the range of known tractable mod-
els, and clarified the power of mapping to bipartite
NMRFs (section 6).

Future areas to explore include non-bipartite perfect
NMRFs for higher order potentials, and variables with
a greater number of labels.
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10An example of supermodular ψ for k = 4 where αk < 0:
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11In fact, as shown, we need use only either exclusively
OY or IY nodes for |Y | ≥ 2, which may further improve
efficiency.
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