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Abstract

In many developing countries, half the popula-
tion lives in rural locations, where access to es-
sentials such as school materials, mosquito nets,
and medical supplies is restricted. We propose
an alternative method of distribution (to stan-
dard road delivery) in which the existing mo-
bility habits of a local population are leveraged
to deliver aid, which raises two technical chal-
lenges in the areas optimisation and learning. For
optimisation, a standard Markov decision pro-
cess applied to this problem is intractable, so we
provide an exact formulation that takes advan-
tage of the periodicities in human location be-
haviour. To learn such behaviour models from
sparse data (i.e., cell tower observations), we de-
velop a Bayesian model of human mobility. Us-
ing real cell tower data of the mobility behaviour
of 50,000 individuals in Ivory Coast, we find that
our model outperforms the state of the art ap-
proaches in mobility prediction by at least 25%
(in held-out data likelihood). Furthermore, when
incorporating mobility prediction with our MDP
approach, we find a 81.3% reduction in total
delivery time versus routine planning that min-
imises just the number of participants in the so-
lution path.

1 INTRODUCTION

In many developing countries (e.g., Ivory Coast, Ghana,
Liberia, Nigeria), half the population lives in rural locations
[5], where accessibility to school materials, medical sup-
plies, mosquito nets, and clothing is restricted. Distribution
to these locations typically requires direct road transport,
which is time consuming and requires bulk volume to be
cost effective. In response to these limitations, distributed
methods of aid distribution have emerged in recent years.
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Figure 1: Minimum spanning tree between cell towers in
Ivory Coast, where connections are defined by common
visitors, and the size of node represents its betweenness
centrality (i.e., the number of times the location appears
in the shortest path for all possible delivery paths).

For example, Pack For a Purpose1 is a non-profit organisa-
tion that asks tourists who already have a trip planned for
one of 47 developing countries to bring small items (e.g.,
pencils, deflated soccer balls, stethoscopes) in their spare
luggage capacity. Another scheme is Pelican Post2, which
asks donors to send books by post to developing countries.
These are promising schemes. However, they fail during
periods of conflict, (e.g., post-electoral violence in Ivory
Coast in 2011) and are reliant on direct outsider support,
when it is arguably preferable to empower local popula-
tions wherever possible.

In this work, we propose a new distribution method that
uses the natural mobility of a local population to distribute
physical packages from one location to another. In more
detail, we wish to take advantage of the pre-existing mo-
bility routines of a set of local participants by asking them
to pick up a package from one exchange point (at a loca-
tion that they normally visit, at a time that they normally

1http://www.packforapurpose.org
2http://www.pelican-post.org



visit it) and then drop it off at another exchange point (e.g.,
a lockbox or affiliate store) that is also part of their regu-
lar mobility. By chaining together the mobility of several
participants, we may cover a large area, possibly a whole
country, without having to deploy more expensive and time
consuming infrastructure.

While potentially appealing, this vision of crowdsourcing
physical package delivery faces two signiÞcant technical
barriers in optimisation and learning3.

In optimisation, the possible delay between stages in the
package’s journey is unbounded, since the delay introduced
by each participant is unknown and has no upper limit. This
makes it infeasible to optimise the selection of participants
and the package route (given a specific delivery problem
specifying the start time, source location, and destination
location), as delays propagate through the system [11]. In
general, routing under delay uncertainty is a #P-hard prob-
lem to solve optimally [17]. Therefore, we formulate the
decision problem in a way that takes advantage of the pe-
riodicities in human location behaviour to derive an exact
solution.

In learning, the historical movements of individuals may be
obtained from cell tower connections registered by mobile
devices, which have widespread adoption across the devel-
oping world. However, such mobility data is sparse: it is
limited in duration (i.e., we may only have a few week’s
worth of data from each participant) and, crucially, cell
tower readings are taken only when a call or text message is
exchanged from the phone, so there are large periods when
no location of an individual is registered at all. Yet, exist-
ing methods for mobility prediction rely on large quanti-
ties (covering several weeks) of fairly continuous stream of
location readings (either from GPS or constant cell tower
monitoring) [23, 6, 14]. To overcome this, we develop a
robust Bayesian model of individual mobility that can be
learnt from cell tower records spanning only short periods
of time with sporadic observability.

In more detail, we make the following three contributions:

• We advance the state of the art in route planning in
delay networks by developing an approach that works
well with the uncertainties caused by routine human
behaviour. Specifically, we show that an exact and
tractable solution is possible when using a mobility
model belonging to the broad class of temporal peri-
odic prediction models. Under this assumption, we
show that we can formulate the problem as a Markov
decision process (MDP) in which the number of states
grows linearly in the number of locations, making the
overall algorithm polynomial when using a standard
MDP solving method (e.g., linear programming, pol-

3In addition to social issues such as trust (e.g., theft or loss)
that we only consider briefly, in Section 4.4.

icy iteration) [20]. Using our approach, simulations
indicate that source-to-destination delivery time is re-
duced by an average of 81.3% compared to choosing
the shortest path (which naïvely minimises the num-
ber of intermediate stages in the package’s journey).

• To provide accurate transition probabilities to the
MDP4, we present a Bayesian nonparametric mixture
model approach to learning the mobility behaviour
of individuals from very sparse observations. We
show how this model can be formulated as a series
of Bernoulli trials and directly incorporated into the
MDP. Using real cell tower data from 50,000 people
in Ivory Coast (provided by Orange), we find at least
a 25% improvement in held-out data likelihood when
compared to two state-of-the-art approaches for hu-
man location behaviour prediction (a variable-order
Markov model with prediction by partial matching
[25] and a daily periodic finite mixture model [4])

• We use the Orange dataset to show that peer-to-peer
package delivery is feasible under three key criteria.
In particular, we show that the size of participant pool
only needs to be of the order of several thousand to get
at least an 80% coverage of the country (out of a total
area 320,000 km2). Furthermore, each solution path
(i.e., chain of participants to deliver a package) is be-
tween 2-4 people. Finally, these requirements are only
mildly worsened when considering only rural destina-
tions for delivery.

The rest of the paper is structured as follows. First, in Sec-
tion 2, we consider previous work related to the problem
of learning human mobility patterns and optimising under
uncertainty of human behaviour. In Section 3, we present
our approach, starting with how we make optimal decisions
with respect to the choice of participants and locations for
any given delivery problem in Section 3.1. Then, in Sec-
tion 3.2, we present a learning model that deals with sparse
observations. In Section 4, we evaluate the feasibility of the
scenario before evaluating our approach to learning and op-
timisation against several state of the art benchmarks. We
draw conclusions and outline future work in Section 5.

2 RELATED WORK

The idea of distribution using the natural mobility of a
group of people is a reoccurring theme in content distribu-
tion using mobile ad-hoc networks. For example, Keller et
al. (2012) used physical bluetooth proximity data from the
mobile phones of a group of people, to initiate exchanges

4N.B., the transition probabilities in the MDP are not the same
as the transition probabilities of the mobility of any individual
participant.



of songs between individuals, but without considering pre-
diction or multi-hop routes (i.e., going via one or more in-
termediaries) [10]. Cherubini et al. (2010) explored phys-
ical package peer-to-peer delivery, but only tested simple
heuristics such as “transfer the package to someone who
is, on average, closer to the target location than you” [3].
Vukadinovic et al. (2009) proposed a queuing model of the
flow of pedestrian crowds to distribute content among mo-
bile phones [27]. Now, all these works attempt to capture
short term movements of individuals in crowds, which is
a distinct and different problem to extracting routine mo-
bility patterns. Specifically, in our work, there is a direct
line of assumptions going from the raw historical data to
decision-making about distribution (via learning and the
formulation of transition probabilities in the MDP) that is
not present in such work. A notable exception is by Liu
and Wu (2011), who used class attendance data to model
pairwise encounters between individuals for data transfer
across an ad hoc network [13]. Like our work, they also
take advantage of cyclic behaviour to find tractable rout-
ing solutions, however, their pairwise approach means that
their algorithm scales O(p2) in the number (p) of partici-
pants in the network, while our approach scales polynomi-
ally only in the number of locations. In general, content
distribution approaches often rely on the fact that content
may be copied and can exist concurrently on multiple de-
vices, making them less applicable for our routing problem.

Another type of diffusion that attracts intense research in-
terest is the study of the spread of infectious diseases. Epi-
demiologists look at the mobility dynamics of a population
to identify source regions (from which disease is spread),
and likely importation regions (to which disease is spread).
For example, Wesolowski et al. (2012) used one year of
cell phone data of millions of people to model the human
movement between different regions in Nairobi [28]. They
considered a graph in which the weight of the edges rep-
resents the quantity of people travelling between different
locations. Hufnagel et al. (2004) considered a global model
of human movement using passenger numbers for flights
between the 500 largest airports in the world [9]. Such
work is concerned with aggregate mobility, in contrast, we
are interested in individual mobility, because, eventually,
we need to ask specific people to contribute. Furthermore,
we consider a full decision-making model, in addition to a
purely descriptive model of human location behaviour.

The problem of robust route planning under uncertainty re-
sembles the Canadian traveller problem (also known as the
bridge problem) [18], in which the costs of the edges in a
graph are random variables that are observed only as the
nodes are visited. The name originates from the concept
of a traveller who has to plan a journey between two loca-
tions, where the costs of outgoing edges are random vari-
ables that are only observed as a graph is traversed. This
differs from our problem because the Canadian traveller as-

sumes that path costs are independent of one another, while
we have dependencies between costs as well, i.e., the delay
outcome of an earlier stage in the chain affects the delay of
later stages. An additional difference is that we observe the
random variables, indicating delay between locations, only
after the package has completed each intermediate step.

Learning routine mobility models has typically been a sep-
arate problem from optimisation. Approaches range from
purely temporal ([15, 23, 24]), spatial ([7, 25]), to a com-
bination of both ([6]). Existing datasets that are widely
available have tended to contain approximately continu-
ously recorded cell towers or GPS (e.g., the Reality Mining
dataset recorded the cell tower every few minutes [6]; the
Nokia dataset recorded GPS every few minutes also [12]).
This has inspired many methods that work well on contin-
uous location updates, but which do not perform as well
as their headline accuracy (when predicting future loca-
tion behaviour) on sparse data. We address this issue in
our work. Given their ability to refine the model as more
data arrives, nonparametric Bayesian methods are surpris-
ingly rare in the literature on predicting human location
behaviour. Chen et al. (2012) used a Gaussian process to
model congestion on road networks, while Gao et al. (2012)
used a hierarchical Pitman Yor process to model check-in
behaviour on location-based social networks [2, 7].

Finally, crowdsourcing teams of participants who function
as a chain to achieve a single goal resembles the idea be-
hind the winning entries to the DARPA Red Balloon Chal-
lenge [19] and the Tag Challenge [21]. This work is primar-
ily concerned with the problem of recruiting individuals
and verifying their reports, which requires designing eco-
nomic mechanisms. In this work, we assume recruitment
can be done beforehand by an appropriate method (i.e., we
do not address it here) but we do investigate how many par-
ticipants are required for satisfactory delivery results.

3 DECISION-MAKING WITH
UNCERTAIN HUMAN LOCATIONS

In this section, we present our approaches towards optimi-
sation and learning with uncertain human behaviour in the
package delivery scenario. Specifically, in Section 3.1, we
show how it is possible to tractably find an exact optimal
solution to routing under delay uncertainty, given a wide
class of mobility model (which we define as temporal pe-
riodic models). In Section 3.2, we give more detail on our
probabilistic mobility model that is designed to function
well with sparse mobile phone datasets, and provides the
predictions used in the optimisation.

3.1 THE OPTIMISATION PROBLEM

We formulate the optimisation problem sketched in Sec-
tion 1 as an MDP, as this provides a principled way of



making decisions under uncertainty. Decisions in this sce-
nario must specify which participants to ask to pick up the
package, from where they should pick it up, as well as the
drop-off location. We assume the delay between pick-up
and drop-off is outside the planner’s control (so we treat it
as a random variable here), and completely up to the par-
ticipant who, when asked, does this according to his/her
routine schedule.

In general, an MDP is defined as a tuple (S,A,R, T ) where
S is a set of states, A is a set of available actions for each
state,R(s, a, s′) is the function that specifies the cost of do-
ing action a ∈ A to get from state s to s′, and T (a, s, s′) is
the probability of getting from state s to s′ when perform-
ing action a5. The solution to an MDP consists of an op-
timal policy, q(s), that specifies the best action to perform
for any given state s. Ancillary to this function is the value
function, G, which gives the expected value for any state
(given that the optimal action is performed). We consider
each of A, S, R, and T in turn.

3.1.1 Set of Actions A

We assume that the planner has no direct control over the
delay (it is up to the participant’s schedule) but we assume
that we are guaranteed to eventually reach locationw, when
performing action a (going to location w), and that the ar-
rival time is revealed only after performing each action, re-
sulting in a transition to state (v, tv), with unknown arrival
time tv . Given the one-to-one mapping of actions and lo-
cations (specifying the destination location) we treat loca-
tions as synonymous with actions.

3.1.2 Set of States S

We define the set of states S in the MDP as the set of
tuples describing the possible locations and times (v, tv)
(respectively) of the package. This results in the set S =
{(v, tv)|v ∈ V, tv = 1, 2, 3, ...}. We assume discrete time
t to capture the required detail in the scenario without the
need for more complex continuous time reasoning. How-
ever, even in the discrete time case, we see that there is
an unbounded number of states in S because the delay in
moving between locations is unbounded. This makes the
standard MDP formulation intractable.

To overcome large state spaces, there are a few general ap-
proaches such as sampling methods or value approximation
(in which values are computed from features of the states)
[29]. One time-specific approach is to truncate the range of
values for t to find an approximation for the optimal pol-
icy [26]. However, the number of states grows as a factor
of this truncation limit, so more exact approximations must

5It is typical to include a time discount factor for future re-
wards in an MDP, however, this assumption makes less sense
when utility is a function of delay. Therefore, we omit it in our
model.

be traded off with computation time.

Instead, we find an exact solution under an additional as-
sumption about the mobility model used to produce the
probabilistic delays. Specifically, we show that for a large
class of mobility models, namely periodic temporal mod-
els, the probability of delay, pr(tw − tv|v, tv, w) in going
from state (v, tv) to (w, tw) is periodic in tv . This results
in an MDP with a linear number of states in the number
of locations. This assumption is suitable for optimisation
in delay networks, since it is precisely the periodic tempo-
ral class of mobility model that is most useful in predicting
and planning several days in advance, since short term spa-
tial correlations (e.g., a participant tends to go home after
visiting the market, or always goes to the city centre after
travelling along a particular road) do not have much effect
beyond several hours. However, this assumption of tempo-
ral periodicity means that we cannot incorporate the most
recent observations into the model, which may provide a
benefit in optimising decisions to be made in the very near
future. Under this assumption, we now establish linearity
in the number of locations.

Theorem 1. Let S be the set of states {(v, tv)|v ∈
V, tv = 1, 2, 3, ...} in an MDP. If pr(v|tv) is a periodic
function (defining H as the number of possible val-
ues it can take) in discrete tv (∀v), then the number of
states is linear in the number of locations, i.e., |S| = H |V |.

Proof : Let pr(v|tv) be the probability that a given par-
ticipant is at location v at time tv , obtained from a mo-
bility model (which, we emphasise, describes individual
behaviour and is distinct from the transition function T
of the MDP defined in Section 3.1.3). Since tv is dis-
crete, we can repeat Bernoulli trials from the distribution
rdv
∼ Bern(pr(v|tv + dv)) for increasing dv = 1, 2, 3, ...

until we get r = 1. This is a standard formulation (equiv-
alent to repeated tosses of biased coins), with pr(dv|tv) =
pr(v|tv + dv)

∏dv−1
d′
v=1 (1− pr(v|tv + d′v)). Since pr(v|tv)

is periodic in tv , with a maximum of H distinct values, the
probability of delay, pr(w|tv + dv), from any next location
w (reachable from v) is also periodic for arbitrary delay
dv . Therefore, pr((tv+dv) mod H) is a sufficient statistic
for pr(dw|tv + dv) (the probability of delay dw from w),
clearly taking at most H values. Using the Markov prop-
erty of MDPs, only H states are required for each location
v (for arbitrary v), resulting in H |V | states overall. �

Unlike a truncation parameter, we can easily set H for
the specific application of the delay network that needs
to be modelled, without bias (i.e., without underestimat-
ing the delay). For package delivery, we found it sufficient
to set H = 14 per week, by considering the probability
of a participant dropping off or picking up the package
in slots of half a day. Therefore, the state space is now
S = {(v, t)|v ∈ V, t ∈ [1, 14]}.



3.1.3 Cost Function R and Transition Function T

The delay in going from location v to location w is the
cost function R(s, a, s′), where s = (v, tv), s′ = (w, tw),
and a is the action of routing the package to w. The
MDP requires a single cost for each state s and action
a pair (marginalising over the destination action), yet we
have many participants who can potentially perform that
action (i.e., who routinely visit both v and w locations).
We define the best person as the one who minimises p∗ =
argmini{E(dv,w|tv, i) +

∑
w cwpr(tw|tv, i)|pi ∈ P}, the

cost of going from location v to w plus the expected cost
of cw (the total cost at state (w, tw)). The cost function R
is then the sum of delays for the best person to pick the
package up at location v, and drop the package off at w:

R((v, tv), w, (w, tw))

= E(dv|tv mod H) + E(dw|tv + dv mod H)

=

∞∑
i=0

W i(Hi+ dv)pr(dv)

dv−1∏
d′
v=1

(1− pr(d′v))

+

∞∑
i=0

W i
w(Hi+ dw)pr(dw)

dw−1∏
d′
w=1

(1− pr(d′w))

(1)

where Wv =
∏H

d′
v=1 (1− pr(d′v)) and Ww =∏H

d′
w=1 (1− pr(d′w)), with the respective interpretations

being the probability of the participant not visiting the start
and end locations (respectively) for an entire period. We
now find the geometric sum:

R((v, tv),w, (w, tw)) =(
dv

1−Wv
+

WvH

(1−Wv)
2

)
pr(dv|tv)

dv−1∏
d′
v=1

(1− pr(d′v|tv))

+

(
dw

1−Ww
+

WwH

(1−Ww)
2

)
pr(dw|tv + dv)·

·
dw−1∏
d′
w=1

(1− pr(d′w|tv + dv)) (2)

The transition function T (a, s, s′) may be found in a sim-
ilar way, but by considering only whole multiples of the
given delay:

T (w, (v, tv), (w, tw)) =
H∑

dv=1

pr(dv|tv)pr(dw|tv, dv) (3)

where d = (tw−tv) mod H , and we have marginalised out
the uncertainty about dv (the uncertainty in pick-up delay).

We next address the problem of learning mobility models
for individuals, which provides the probability of presence
that defined the Bernoulli trial used in Equations 2 and 3.
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Figure 1: CAPTION.

Figure 2: Graphical structure of the Dirichlet process loca-
tion model, showing conditional independence between the
random variables. Shaded nodes are observable and square
nodes are fixed values.

3.2 MODEL FOR LEARNING HUMAN
MOBILITY FROM CELL PHONE DATA

We now focus on the problem of getting an accurate predic-
tive probability density of presence for any location given
the participant and the time pr(v|i, tv), from which the
probability of delay can be derived and used in optimisa-
tion (as described in Section 3.1). The Orange dataset con-
sists of a set of tuples for each participant pi ∈ P of the
form (i, xi, ti) indicating that participant i was observed
near cell tower xi (discrete) at date and time ti (continu-
ous). There are three main factors that influence the design
of the model:

1. Cell allocation noise
The cell tower observations provide discrete measure-
ments on the individual’s likely location. However,
there may be a choice of several towers that the phone
can connect to (especially in urban environments) at any
single location. This allocation is decided by outside
factors that we treat as noise (i.e., the network opera-
tor’s optimal allocation of phones to towers). Our ap-
proach needs to isolate the human presence information
in the cell tower allocation to phones and ignore other
factors. This implies the need to infer the locations, each
of which may be statistically associated with several cell
towers.

2. Sporadic observations
Since the cell tower is only recorded in this dataset when
a phone call or text is made (about 7 times a day, on
average) approaches that were designed to be used on
continuously collected location data (e.g. eigenvectors
[22, 6], variable-order Markov models [25], linear em-
bedding [23]) are not likely to be effective (which we
confirm in Section 4.2). We therefore need a method
that can fill in (extrapolate from other observations)
large periods of no observability.

3. Short duration
The data on each individual covers a period of only 2



weeks. This, combined with the fact that each day may
have only a few (or zero) observations, makes learning
challenging. Overfitting is a danger when the training
data (i.e., the 2 weeks of observations) contains charac-
teristics that do not generalise to the rest of the individ-
ual’s behaviour (i.e., beyond 2 weeks).

These considerations suggest the use of the Bayesian
framework, which allows us to assume the existence of
latent variables that abstract away from the variability of
cell allocation (Factor 1), and make custom assumptions
about the smoothness of location (Factor 2). Further-
more, Bayesian non-parametric methods can provide us
with powerful guards against overfitting (Factor 3).

In more detail, we assume the existence of latent discrete
locations, ln, that are associated with each observation
(xn, tn), and correspond to places in the individual’s rou-
tine life (e.g., home, work). Mixture modelling is a well es-
tablished method for inferring latent discrete variables, but
the standard approach requires the specification of the num-
ber of locations [1]. Therefore, we use a Dirichlet process
mixture model (a non-parametric approach) that allows us
to also infer the number of locations, K [16]. This is im-
portant because setting K too high (manually) will cause
the model to overfit the data.

To address the problem of filling in large periods of missing
data, we assume that behaviour is periodic, as is common
in other routine mobility models [22, 23]. Specifically, we
assume both weekly and daily periodicities in behaviour. In
the model, we achieve this by decomposing the date/time
observation tn to the discrete day of the week, dn, and con-
tinuous hour of the day hn. The practical implications of
this choice are explored briefly in Section 4.4.

A full generative model for location observations of each
individual is therefore the following:

π ∼ DP (α) (4)
for each latent location k :

φk ∼ Dir(a), γk ∼ N (b) (5)
ωk ∼ IG(c), θk ∼ Dir(d) (6)

for each observation n :

ln ∼M(π), xn ∼M(φln) (7)
hn ∼ N (γln , ωln), dn ∼M(θln) (8)

where, first, distribution π over latent locations is drawn
from a Dirichlet process (Equation 4) that defines the prior
probability of each location in the dataset. Second, the
four parameters to the model φ, γ, ω, θ are drawn from their
prior distributions (Dirichlet, normal, inverse-gamma, and
Dirichlet, respectively) in Equations 5-6 [1]. These priors
were chosen for their conjugacy to the parameter distribu-
tions, making the model simpler to infer. Thirdly, for each
observation, latent location ln is drawn (Equation 7), and

this location defines all the observable information in the
dataset (xn, the cell tower, hn the continuous hour obser-
vation, and dn, the day of the week). Since xn and dn
are discrete observations, they can be drawn from multino-
mials, while hn (the continuous hour of the day) is drawn
from a normal distribution with mean θln and variance ωln

(Equations 7-8). Defining hn in this way makes the tempo-
ral distribution smooth, allowing us to fill in periods with
only a few observations. However, we sacrifice some flex-
ibility with this assumption, i.e., it does not capture multi-
modalities in presence for a single location ln.

The conditional independence assumptions between the
random variables are visually represented in Figure 2. Di-
rect inference of all the parameters from the data is not pos-
sible in this model, requiring us to either optimise them
(i.e., variational approximation) or to perform Markov
chain Monte Carlo sampling [1]. Several effective and con-
ceptually simple Gibbs sampling schemes are available for
inference with a Dirichlet process, so we used the latter
approach adapted from [16]. After obtaining samples (fol-
lowing convergence of the Markov chain), we can find the
predictive distribution for location v given the entire train-
ing setX for each individual [1]:

pr(v|tv,X) =
1

R

R∑
r=1

pr(v|tv,M (r))pr(M (r)|X) (9)

where r is the index of each sample (taken after conver-
gence), tv is the query time,M (r) is the entire set of model
parameters found in sample r, and R is the total number of
samples.

To test our approaches to optimisation and learning, we
next apply them to the real cell tower observations.

4 EXPERIMENTAL RESULTS

In this section we use the real world cell tower mobility
data of 50,000 people living in Ivory Coast, measured over
2 weeks, to assess the feasibility of crowdsourcing pack-
age delivery in Section 4.1. Then, using the same data, we
evaluate our approach to prediction in Section 4.2, and op-
timisation under uncertainty in Section 4.3.

4.1 FEASIBILITY STUDY

To assess the feasibility of the idea of crowdsourcing pack-
age delivery, we consider three key criteria: (1) the number
of participants required for acceptable geographical cover-
age; (2) the number of participants required in any specific
delivery (since longer chains imply greater risk of loss and
theft); and (3) the feasibility of delivering to rural locations,
which is expected to be much harder than urban delivery.
To assess these criteria, it was sufficient to consider a sim-
pler instantiation (in this section only) of the problem we
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Figure 3: A plot of the percentage of randomly sampled
(source,destination) delivery problems that had a solution
path of any size, against the log10 size of the number of
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defined in Section 3.1 that takes into account the locations
that each person in the participant set, P , visited, but does
not include the temporal structure in the mobility. We con-
sider the temporal aspect of feasibility in Section 4.3.

4.1.1 Criterion 1: Number of Participants Required

To assess the number of participants required for wide ge-
ographical coverage (Criterion 1), we uniformly randomly
subsampled participant sets, P ′, from the global participant
set P (containing 50,000 people), for a wide range of dif-
ferent sizes |P ′| = {100.5i|i = 1, 2, ..., 9}. For each par-
ticipant set, we then uniformly sampled 1,000 pairs of lo-
cations (source and destination) from V representing 1,000
possible delivery problems. We consider a different (urban
to rural) distribution of test locations in Section 4.1.3.

For each test location pair, we used Dijkstra’s algorithm to
find the shortest path (the standard algorithm can be applied
to graph G because these is no uncertainty about the edge
costs). Figure 3 shows the percentage of location pairs that
were feasible (i.e., that had any path between the source
and destination locations). The line with circular points
shows the feasibility for uniform random source and des-
tination locations. We see that the geographical coverage
is very poor when there are fewer than 102.5 participants.
The critical range is around 103, when feasibility surges
with each new participant. The heavy tail in human loca-
tion behaviour is one explanation for this effect, where in-
dividuals visit many locations a few times (and a few loca-
tions many times) in their daily life mobility [8]. Therefore,
an acceptable geographic coverage, trading off against re-
cruitment/administration costs, appears to be around 103.5

participants.
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Figure 4: A plot of the average number of contributors
required to each specific delivery problem (drawn from
the much larger pool of potential contributors) against the
log10 size of the potential contributors pool. N.B., a major-
ity of rural destinations are infeasible for pool sizes of less
than 102.5, therefore we are unable to plot the line below
this range.

4.1.2 Criterion 2: Number of Participants Required
for Any Given Delivery Problem

To assess the number of participants required in any given
solution path (Criterion 2), we used the same subsampled
participant sets as in Section 4.1.1 and plotted the length of
the shortest path against the size of each subsampled par-
ticipant set in Figure 4. The length of the shortest path
indicates how many people are required for any specific
delivery problem. The circular points are the focus for Cri-
terion 2, where we see that the number of participants re-
quired for any solution path stays within the small range of
2 to 4. Since infeasible paths cannot be included when plot-
ting Figure 4 (because they have unspecified numbers of
contributors), the number of contributors required for spe-
cific paths initially increases with the size of the participant
subset, as more paths are made feasible. However, once
path feasibility (indicated in Figure 3) goes beyond 20%,
the trend is as expected; having a wider pool of participants
allows more efficient (i.e., shorter length) paths to be dis-
covered. Note that, since we are not considering duration
in Figure 4, the lowest cost paths in the full model may re-
quire more people. In any case, since the cost for losing the
package can be fully specified by the planner, the optimal
tradeoff between path length and duration can be found.

4.1.3 Criterion 3: Rural Distribution

So far, we have only considered uniformly sampled source
and destination test points, which favours urban locations
(since there are greater numbers of cell towers in urban
areas). We now consider Criterion 3 for rural feasibility,
by sampling a set of delivery problems where the desti-
nations are only rural (keeping source locations uniformly
sampled, as before).



Table 1: Average loge data likelihood (higher is better) of
held out test data of 50,000 individuals. 95% confidence
intervals are given.

MODEL LOG LIKELIHOOD

Our approach −5.890± 0.057
First-order MM −6.110± 0.043
VMM order 2 (Song et al. 2006) −6.276± 0.030
VMM order 3 −6.347± 0.033
Random −6.696± 0.056
Finite mixture, (Cho et al. 2011) −9.452± 0.066

We ran the same analyses for Criteria 1 and 2 with rural
destinations, yielding the lines with crosses in Figures 3
and 4. We conclude that restricting the destinations to
be rural certainly makes the delivery problem more chal-
lenging, but it is still feasible. Now that we know that all
three feasibility criteria are met, we consider the problem
of learning the temporal structure in mobility to enable the
minimisation of delay in delivery from source to destina-
tion nodes.

4.2 EVALUATION OF HUMAN MOBILITY
PREDICTIONS

In this section, we evaluate our approach to predicting hu-
man mobility under considerable data sparsity, as would be
typical from cell tower datasets. We split the cell tower data
of 50,000 people into training and testing sets. The test set
contains a single cell tower location reading from each per-
son’s data, therefore giving a test set of 50,000 data points.
The rest of the data for the same individuals was used in
training. To test for model quality, we looked at the log-
arithm of the data likelihood of each test point. We used
non-informative hyperparameters a = 1, d = 1, α = 1 for
the discrete priors (see Figure 2). We used b = (0.01, 12)
and c = (0.01, 3) for the continuous temporal priors, re-
ferring to the relative mean of precision w.r.t. the data, the
mean of the prior, the degree of freedom in the precision,
and the inverse mean of precision, respectively.

For comparison on the same data, we also tested two ex-
isting approaches that are considered state-of-the-art for
human routine location prediction. The first is a spatio-
temporal approach by Cho et al. (2011) [4], and the second
method is a sequential approach by Song et al. (2006) [25]
based on variable-order Markov models (VMM). In addi-
tion, we also tested a purely random model, with data like-
lihood pr(x, d, h) = 1

L
1
V N (h|µ = 12, σ = 6), where L is

the total number of locations and V = 7 is the number of
days of the week (and (x, d, h) is the location, day of week,
and hour of day observation as before).

The held-out data likelihood of all the approaches on the

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log10 number of data points for each individual

0

2

4

6

8

10

12

14

16

N
um

be
ro

fl
at

en
tl

oc
at

io
ns

id
en

tifi
ed

Figure 5: The number of individual latent locations iden-
tified by the Dirichlet process for 1,000 randomly selected
individuals in the dataset.

50,000 data points can be seen in Table 1. We first note
that VMM is worse than even a first-order Markov model,
which is contrary to the findings of Song et al. (2006).
This difference is due to the fact that the training data is
very sparse, so learning higher-order dependencies causes
a degradation in likelihood, even though the motivation
behind fall-back (in the VMM) is to dynamically use or-
ders appropriate to the context. Consequently, we see a
further degradation as we increase the maximum order of
the VMM to 3. We can also see that the model of Cho et
al. (2011) performs the worst out of all the approaches. In
contrast, our model outperforms all the others by at least
25% (since we are using a loge likelihood). We believe
most of this benefit comes from selecting the right num-
ber of components using the Dirichlet process (to let the
data “speak for itself”). In Figure 5, we show the number
of components (i.e., latent locations) found for a random
subsample of 1,000 individuals, plotted against the dataset
size for each individual. The number of latent locations has
mean 4.1, mode 2, and standard deviation 2.4, with a heavy
tail. Therefore, the bimodal assumption of Cho et al. (2011)
is true for a large number of individuals in our dataset, yet,
there are still many other individuals for whom their model
is too complex, or not complex enough. Performance for
these individuals that makes their model worse overall.

4.3 EVALUATION OF OPTIMISATION
APPROACH

We now evaluate the optimisation element of our work (i.e.,
which participants to ask and which intermediate locations
to use). To do this, we make a few additional assumptions
in light of the results we have presented so far. Firstly,
since a participant pool of approximately 3,500 people is
enough to get satisfactory coverage of Ivory Coast (see Sec-
tion 4.1), we used participant sets of this size in our optimi-
sation evaluation. Secondly, in order to get statistically sig-
nificant results, we ran 10,000 simulations using our mobil-
ity model (given in Section 3.2) as the ground truth, since it
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Figure 6: Probability distribution of delay cost in 10,000
simulated journeys to rural destinations using our MDP for-
mulation (and heuristic) versus just taking the shortest path.

performs best under extreme data sparsity. To evaluate the
robustness of the optimisation to uncertainties in human be-
haviour, we considered the total delay cost of 10,000 simu-
lations, using the approach presented in Section 3.1 (using
modified policy iteration to find the optimal policy [20]).
To put this result in context, we also evaluated two alter-
native approaches to package routing as benchmarks. The
first benchmark is the naïve approach that finds the short-
est path (i.e., the minimum number of contributors), but
does not consider the temporal mobility habits of the partic-
ipants. The second benchmark uses the findings presented
in Section 3.1, but finds the path of lowest expected cost
during the planning stage instead of during runtime (and is
therefore a heuristic based on our MDP formulation). This
results in a policy for participant selection (i.e., who to ask
to deliver the package given the time slot) but a fixed route.
We therefore expect this approach to perform worse com-
pared to the full optimal policy, since it is not able to react
to optimally to incoming delay information.

The results are presented in Figure 6, showing the end-to-
end duration performance of our optimal policy and heuris-
tic approaches against the shortest path benchmark. For
this, we used the rural test set, defined in Section 4.1.3, with
an average of 373 km between the source and destination
locations. The average total duration for the optimal pol-
icy is 30.0 days, versus 161 days for the benchmark. The
heuristic we based our MDP formulation on performed al-
most identically to the optimal policy, with an average of
30.7 days duration. Interestingly, all three distributions are
heavy-tailed, which conforms to expectations from other
findings about delays from human behaviour [8]. There is,
therefore, an 81.3% time advantage to learning and opti-
mising over human behaviour, and it seems that without
a consideration of the mobility habits of the participants,
there would be an infeasible delay. Furthermore, since our
heuristic performs almost as well as the optimal policy,

there appears to be little benefit to being able to dynami-
cally (at runtime) change the next location in response to
the delays observed so far.

4.4 DISCUSSION

To perform routing under uncertainty, we assumed that
the participants would follow their normal mobility pat-
terns when delivering packages (see Section 3.1). Clearly,
additional factors could introduce further delay, including
disruptions to transport and short term disruptions arising
from participants’ circumstances (e.g., being too busy, tak-
ing sick leave). In practical terms, most of the impact of
these disruptions could be absorbed by an appropriate task
assignment procedure. Specifically, after obtaining a policy
from our learning and optimisation approach, the system
could ask the selected participants, via automated phone
text, whether they are actually willing and able to do the
task. In this way, participants facing disruptions can be fil-
tered out, limiting the introduction of unexpected delay into
the route. On the other hand, some disruptions may not be
known at the time of task acceptance, or some participants
may simply not be honest about them. We leave this as a
problem for future work (see Section 5).

Finally, in the worst case (from a routing perspective), par-
ticipants may lose or steal packages. A certain amount of
loss and theft is assumed even with standard delivery, and
is borne as the risk of doing business, or addressed with in-
surance. In the crowdsourced setting, this can be taken into
account by assigning a cost to each participant (either with
a fixed value, or derived from a participant-specific trust
evaluation framework). In whatever way the cost of trust
is calculated, once obtained, it can be incorporated into the
MDP as an added cost in the standard way.

5 CONCLUSIONS AND FUTURE WORK

In this work we studied a novel method for distribution that
uses the existing mobility of local people to send packages
large distances. Using data describing the real world move-
ment patterns of 50,000 people, we addressed the technical
problems associated with this method, formulating an MDP
for optimisation and presenting a Bayesian non-parametric
model that performs well under data sparsity. Future work
could incorporate the most recent observations of partici-
pants’ locations in order to respond to unexpected delays
(in addition to the random variability in delay attributable
to daily life mobility that we already did consider). Intro-
ducing this sequential dependence breaks the periodic fea-
ture of the predictions, making the MDP intractable again.
To address this, a hybrid approach could be developed that
assumes periodicity during initial planning, but which al-
lows local refinements to the policy as up-to-the-hour in-
formation about participant mobility arrives.
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