
High-dimensional Joint Sparsity Random Effects Model for Multi-task
Learning

Krishnakumar Balasubramanian
Georgia Institute of Technology

krishnakumar3@gatech.edu

Kai Yu
Baidu Inc.

yukai@baidu.com

Tong Zhang
Rutgers University

tzhang@stat.rutgers.edu

Abstract

Joint sparsity regularization in multi-task learn-
ing has attracted much attention in recent years.
The traditional convex formulation employs the
group Lasso relaxation to achieve joint sparsity
across tasks. Although this approach leads to a
simple convex formulation, it suffers from sev-
eral issues due to the looseness of the relax-
ation. To remedy this problem, we view jointly
sparse multi-task learning as a specialized ran-
dom effects model, and derive a convex relax-
ation approach that involves two steps. The first
step learns the covariance matrix of the coef-
ficients using a convex formulation which we
refer to as sparse covariance coding; the sec-
ond step solves a ridge regression problem with
a sparse quadratic regularizer based on the co-
variance matrix obtained in the first step. It is
shown that this approach produces an asymptot-
ically optimal quadratic regularizer in the mul-
titask learning setting when the number of tasks
approaches infinity. Experimental results demon-
strate that the convex formulation obtained via
the proposed model significantly outperforms
group Lasso (and related multi-stage formula-
tions).

1 Introduction

Modern high-dimensional data sets, typically with more
parameters to estimate than the number of samples avail-
able, have triggered a flurry of research based on structured
sparse models, both on the statistical and computational as-
pects. The initial problem considered in this setting was
to estimate a sparse vector under a linear model (or the
Lasso problem). Recently, several approaches have been
proposed for estimating a sparse vector under additional
constraints, for e.g., group sparsity- where certain groups
of coefficients are jointly zero or non-zero. Another closely

related problem is that of multi-task learning or simultane-
ous sparse approximation, which are special cases of the
group sparse formulation. A de-facto procedure for dealing
with joint sparsity regularization is the group-Lasso estima-
tor [16], which is based on a (2, 1)-mixed norm convex re-
laxation to the non-convex (2, 0)-mixed norm formulation.

However, as we shall argue in this paper, group-Lasso suf-
fers from several drawbacks due to the looseness of the re-
laxation; cf., [12, 9]. We propose a general method for
multi-task learning in high-dimensions based on a joint
sparsity random effects model. The standard approach for
dealing with random effects requires estimating covariance
information. Similarly, our estimation procedure involves
two-steps: a convex covariance estimation step followed by
the standard ridge-regression. The first step corresponds
to estimating the covariance of the coefficients under ad-
ditional constraints that promote sparsity. The intuition is
that to deal with group sparsity (even if we are interested
in estimating the coefficients) it is better to first estimate
covariance information, and then plug in the covariance
estimate for estimating the coefficients. With a particu-
lar sparse diagonal structure for the covariance matrix the
model becomes similar to group-lasso, and the advantage
of the proposed estimation approach over group-lasso for-
mulation will be clarified in this setting.

Related work: Traditional estimation approaches for ran-
dom effects model involve two-steps: first estimate the un-
derlying covariance matrix, and then estimate the coeffi-
cients based on the covariance matrix. However, the tra-
ditional covariance estimation procedures are non-convex
such as the popular method of restricted maximum likeli-
hood (REML) and such models are typically studied in the
low-dimensional setting [10].

From a Bayesian perspective, a hierarchical model for si-
multaneous sparse approximation is proposed in [15] based
on a straightforward extension of automatic relevance de-
termination. Under that setting, the tasks share a common
hyper-prior that is estimated from the data by integrating
out the actual parameter. The resulting marginal likelihood
is maximized for the hyper-prior parameters; this proce-



dure is called as type-II maximum likelihood in the liter-
ature. The non-Bayesian counterpart is called random ef-
fects model in classical statistics, and the resulting estima-
tor is referred to as REML. The disadvantage of this ap-
proach is that it makes the resulting optimization problem
non-convex and difficult to solve efficiently, as mentioned
before. In addition, the problem becomes harder to analyze
and provide convincing statistical and computational guar-
antees, while Lasso-related formulations are well studied
and favorable statistical and computational properties could
be established.

More recently, the problem of joint sparsity regularization
has been studied under various settings (multi-task learn-
ing [2, 1], group lasso [16], and simultaneous sparse ap-
proximation [14, 15]) in the past years. In [1], the authors
develop a convex framework for multi-task learning based
on the (2, 1)-mixed norm formulation. Conditions for spar-
sity oracle inequalities and variable selection properties for
a similar formulation are derived in [13], showing the ad-
vantage of joint estimation of tasks that share common sup-
port is statistically efficient. But the formulation has sev-
eral drawbacks due to the looseness of its convex relaxation
[12, 9]. The issue of bias that is inherent in the group lasso
formulation was discussed in [12]. By defining a measure
of sparsity level of the target signal under the group setting,
the authors mention that the standard formulation of group
lasso exhibits a bias that cannot be removed by simple re-
formulation of group lasso. In order to deal with this is-
sue, recently [9] proposed the use of a non-convex regular-
izer and provided a numerical algorithm based on solving
a sequence of convex relaxation problems. The method is
based on a straightforward extension of a similar approach
developed for the Lasso setting (cf., [17]), to the joint spar-
sity situation. Note that adaptive group-Lasso is a special
case of [9]. In this paper, we propose a simple two-step pro-
cedure, to overcome the drawbacks of the standard group-
Lasso relaxation. Compared to [9], the proposed approach
is entirely convex and hence attains the global solution.

The current paper has two theoretical contributions. First,
under a multi-task random effects model, we obtain an
expected prediction error bound that relates the predic-
tive performance to the accuracy of covariance estimation;
by adapting high dimensional sparse covariance estimation
procedures such as [8, 4], we can obtain consistent estimate
of covariance matrix which leads to asymptotically optimal
performance. Second, it is shown that under our random
effects model, group Lasso in general does not accurately
estimate the covariance matrix and thus is not optimal un-
der the model considered. Experiments show that this ap-
proach provides improved performance compared to group
Lasso (and the multi-stage versions) on simulated and real
datasets.

2 Joint Sparsity Random Effects Model and
Group Lasso

We consider joint sparsity regularization problems under
multi-task learning. In multi-task learning, we consider m
linear regression problems tasks ` = 1, . . . ,m

y(`) = X(`)β̄(`) + ε(`). (1)

We assume that each y(`) is an n(`) dimensional vector,
each X(`) is an n(`) × d dimensional matrix, each β̄(`)

is the target coefficient vector for task ` in d dimension.
For simplicity, we also assume that ε(`) is an n(`) dimen-
sional iid zero-mean Gaussian noise vector with variance
σ2: ε(`) ∼ N(0, σ2In(`)×n(`)).

The joint sparsity model in multi-task learning assumes that
all β̄(`) share similar supports: supp(β̄(`)) ⊂ F̄ for some
common sparsity pattern F̄ , where supp(β) = {j : βj 6=
0}. The convex relaxation formulation for this model is
given by group Lasso

min
β

 m∑
`=1

1
2

∥∥∥y(`) −X(`)β(`)
∥∥∥2

2
+ λ

d∑
j=1

√√√√ m∑
`=1

(β(`)
j )2

 ,
(2)

where β = {β(`)}`=1,...,m.

We observe that the multi-task group Lasso formulation (2)
is equivalent to minβ,ω F (β, ω), where F (β, ω) =

m∑
`=1

1
2σ2

∥∥∥y(`) −X(`)β(`)
∥∥∥2

2
+

d∑
j=1

1
2ωj

m∑
`=1

(β(`)
j )2

+
m

2σ2

d∑
j=1

ωj (3)

with λ = σ
√
m, where β = {β(`)}`=1,...,m and ω =

{ωj}j=1,...,d. With fixed hyper parameter ω, we note that
(2) is a special case of

min
β

m∑
`=1

1
2σ2

∥∥∥y(`) −X(`)β(`)
∥∥∥2

2
+

1
2

m∑
`=1

(β(`))>Ω−1β(`),

(4)
where Ω is a hyper parameter covariance matrix shared
among the tasks. This general method employs a common
quadratic regularizer that is shared by all the tasks. The
group Lasso formulation (2) assumes a specific form of di-
agonal covariance matrix Ω = diag({ωj}).

Equation (4) suggests the following random effects model
for joint sparsity regularization, where the coefficient vec-
tors β̄(`) are random vectors generated independently for
each task `; however they share the same covariance matrix
Ω̄: E β̄(`)β̄(`)> = Ω̄. Given the coefficient vector β̄, we
then generate y(`) based on (4). Note that we assume that
Ω may contain zero-diagonal elements. If Ωjj = 0, then
the corresponding β̄(`)

j = 0 for all `. Therefore we call this



model joint sparsity random effects model for multi-task
learning.

3 Joint Sparsity via Covariance Estimation
Under the proposed joint sparsity random effects model,
it can be shown (see Section 4) that the optimal quadratic
optimizer (β(`))>Ω−1β(`) in (2) is obtained at the true co-
variance Ω = Ω̄. This observation suggests the following
estimation procedure involving two steps:

• Step 1: Estimate the joint covariance matrix Ω as hy-
per parameter. In particular, this paper suggests the
following method as discussed in Section 3.1: Ω̂ =

arg min
Ω∈S

[
1
2

m∑
`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)>
∥∥∥2

F
+R(Ω)

]
,

(5)
where ‖ · ‖F denotes the matrix Frobenius norm, S
is the set of symmetric positive semi-definite matri-
ces, and R(Ω) is an appropriately defined regularizer
function (specified in Section 3.1).

• Step 2: Compute each β(`) separately given the esti-
mated Ω̂ using:

β̂(`) =
(
X(`)>X(`) + λΩ̂−1

)−1

X(`)>y(`), (6)

where ` = 1, . . . ,m.

Note that the estimation method proposed in step 1 holds
for a general class of covariance matrices. Meaningful es-
timates of the covariance matrix could be obtained even
when the generative model assumption is violated. If the
dimension d and sample size n per task are fixed, it can be
shown relatively easily using classical asymptotic statistics
that when m → ∞, we can reliably estimate the true co-
variance Ω̄ using (5), i.e., Ω̂ → Ω̄. Therefore the method
is asymptotically optimal as m → ∞. On the other hand,
the group Lasso formulation (3) produces sub-optimal es-
timate of ωj , as we shall see in Section 4.2. We would like
to point out that in cases when the matrix Ω̂ is not invert-
ible (for example, as in the sparse diagonal case as we see
next) we replace the inverse with pseudo-inverse. For ease
of presentation, we use the inverse throughout the presen-
tation, though it should be clear from the context.

3.1 Sparse Covariance Coding Models
In our two step procedure, the covariance estimation of
step 1 is more complex compared to step 2, which involves
only the solutions of ridge regression problems. As men-
tioned above, if we employ a full covariance estimation
model, then the estimation procedure proposed in this work
is asymptotically optimal when m → ∞. However, since
modern asymptotics are often concerned with the scenario

when d � n, computing a d × d full matrix Ω becomes
impossible without further structure on Ω. In this section,
we assume that Ω is diagonal, which is consistent with the
group Lasso model.

This section explains how to estimate Ω using our gen-
erative model, which implies that β̄(`) ∼ N(0,Ω), and
y(`) = X(`)β̄(`) + ε(`) with ε(`) ∼ N(0, σ2In(`)×n(`)).
Taking expectation of y(`)y(`)> with respect to ε and β̄(`),
we obtain Eβ(`),εy

(`)y(`)> = X(`)ΩX(`)> + σ2In(`)×n(`) .
This suggests the following estimator of Ω: Ω̂ =

arg min
Ω∈S

m∑
`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)> − σ2In(`)×n(`)

∥∥∥2

F
,

where ‖ · ‖F is the matrix Frobenius norm. This is equiva-
lent to

Ω̂ = arg min
Ω∈S

1
2

m∑
`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)>
∥∥∥2

F

+ λtr

(
Ω

m∑
`=1

X(`)>X(`)

)
(7)

with λ = σ2. Similar ideas for estimating covariance by
this approach appeared in [8, 5]. We may treat the last term
as regularizer of Ω, and in such sense a more general form
is to consider Ω̂ =

arg min
Ω∈S

[
1
2

m∑
`=1

∥∥∥y(`)y(`)> −X(`)ΩX(`)>
∥∥∥2

F
+R(Ω)

]
,

where R(Ω) is a general regularizer function of Ω. Note
that the dimension d can be large, and thus special struc-
ture is needed to regularize Ω. In particular, to be consis-
tent with group Lasso, we impose the diagonal covariance
constraint Ω = diag({ωj}), and then encourage sparsity as
follows: Ω̂ =

arg min
{ωj≥0}

m∑
`=1

1
2
‖y(`)y(`)> −X(`)diag({ωj})X(`)>‖2F

+λ
∑
j

ωj .

(8)

This formulation leads to sparse estimation of ωj , which
we call sparse covariance coding (scc). Note that the
above optimization problem is convex and hence the solu-
tion could be computed efficiently. This formulation is con-
sistent with the group Lasso regularization which also as-
sumes diagonal covariance implicitly as in (2). It should be
noted that if the diagonals of

∑m
`=1X

(`)>X(`) have iden-
tical values, then up to a rescaling of λ, (8) is equivalent
to (7) with Ω restricted to be a diagonal matrix. In the ex-
periments conducted on real world data sets, there was no
significant difference between the two regularization terms
(see Table 4 ), when both formulations are restricted to di-
agonal Ω.



3.2 Other Covariance Coding Models

We now demonstrate the generality of the proposed ap-
proach for multi-task learning. Note that in addition to the
sparse covariance coding method (8) that assumes a diago-
nal form of Ω plus sparsity constraint, some other structures
may be explored. One method that has been suggested for
covariance estimation in [4] is the following formulation:

Ω̂ = arg min
Ω∈S

m∑
`=1

‖y(`)y(`)> −X(`)ΩX(`)‖2F

+2λ
∑
k

γk

√∑
m

Ω2
k,m, (9)

where S denotes the set of symmetric positive semi-definite
matrices S. This approach selects a set of features, and then
models a full covariance matrix within the selected set of
features. Although the feature selection is achieved with a
group Lasso penalty, unlike this work, [4] didn’t study the
possibility of using covariance estimation to do joint fea-
ture selection (which is the main purpose of this work), but
rather studied covariance estimation as a separate problem.

The partial full covariance model in (9) has complexity in
between that of the full covariance model and the sparse di-
agonal covariance model (sparse covariance coding) which
we promote in this paper, at least for the purpose of joint
feature selection. The latter has the smallest complexity,
and thus more effective for high dimensional problems that
tend to cause over-fitting.

Another model with complexity in between of sparse diag-
onal covariance and full covariance model is to model the
covariance matrix Ω as the sum of a sparse diagonal com-
ponent plus a low-rank component. This is similar in spirit
to the more general sparse+low-rank matrix decomposition
formulation recently appeared in the literature [7, 6, 11].
However since the sparse matrix is diagonal, identifiability
holds trivially (as described in the appendix) and hence one
could in principal, recover both the diagonal and the low-
rank objects individually which preserves the advantages of
the diagonal formulation and the richness of low-rank for-
mulation. The model assumption is Ω = ΩS + ΩL, where
ΩS is the diagonal matrix and ΩL is the low-rank matrix.
The estimation procedure now becomes the following opti-
mization problem (and the rest follows) [Ω̂S , Ω̂L] =

arg min
ΩS ,ΩL

m∑
`=1

1
2
‖y(`)y(`)> −X(`)(ΩS + ΩL)X(`)>‖2F

+ λ1‖ΩS‖vec(1) + λ2‖ΩL‖∗,

subject to the condition that ΩS is a non-negative diagonal
matrix, and ΩL ∈ S , where ‖ · ‖vec(1) is the element-wise
L1 norm and ‖ · ‖∗ corresponds to trace-norm.

4 Theoretical Analysis

In this section we do a theoretical analysis of the pro-
posed method. Specifically, we first derive upper and lower
bounds for prediction error for the joint sparsity random
effects model and show the optimality of the proposed ap-
proach. Informally, the notion of optimality considered is
as follows: what is the ‘optimal shared quadratic regular-
izer’, when m and d goes to infinity and when solutions for
each task can be written as individual ridge regression solu-
tions with a shared quadratic regularizer (note that this in-
cludes group-Lasso method). Next, we demonstrate with a
simple example (i.e., considering the low-dimensional set-
ting) the drawback of the standard group-Lasso relaxation.
In a way, this example also serves as a motivation for the
approach proposed in this work and provides concrete in-
tuition.

We consider a simplified analysis with Ω̂ replaced by Ω̂(`)

in Step 2 so that Ω̂(`) does not depend on y(`):

β̂(`) =
(
X(`)>X(`) + λΩ̂(`)−1

)−1

X(`)>y(`). (10)

For example, this can be achieved by replacing Step 1 with
Ω̂(`) =

arg min
Ω∈S

1
2

∑
k 6=`

∥∥∥y(k)y(k)> −X(k)ΩX(k)>
∥∥∥2

F
+R(Ω)

 .
(11)

Obviously when m is large, we have Ω̂(`) ≈ Ω̂. Therefore
the analysis can be slightly modified to the original formu-
lation, with an extra error term of O(1/m) that vanishes
when m → ∞. Nevertheless, the independence of Ω̂(`)

and y(`) simplifies the argument and makes the essence of
our analysis much easier to understand.

4.1 Prediction Error

This section derives an expected prediction error bound for
the coefficient vector β̂(`) in (10) in terms of the accuracy
of the covariance matrix estimation Ω̂(`). We consider the
fixed design scenario, where the design matrices X(`) are
fixed and ε(`) and β̄(`) are random.

Theorem 4.1. Assume that λ ≥ σ2. For each task `, given
Ω̂(`) that is independent of y(`), the expected prediction er-
ror with β̂(`) in (10) is bounded as

σ2λω(`) ≤ A ≤ λ2ω(`),

where A = E ‖X(`)β̂(`) − X(`)β̄(`)‖22 −∥∥∥X(`)Ω̄1/2
(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)−1/2
∥∥∥2

F
and the ex-

pectation is with respect to the random effects β̄(`) and



noise ε(`), and Σ(`) = X(`)>X(`), and

ω(`) = ‖X(`)
(

Ω̂(`)Σ(`) + λI
)−1

(Ω̂(`) − Ω̄)(Σ(`))1/2(
(Σ(`))1/2Ω̄(Σ(`))1/2 + λI

)−1/2

‖2F .

The bound shows that the prediction performance of (10)
depends on the accuracy of estimating Ω̄. In partic-
ular, if Ω̂(`) = Ω̄, then the optimal prediction error

of
∥∥∥X(`)Ω̄1/2

(
Ω̄1/2X(`)>X(`)Ω̄1/2 + λI

)−1/2
∥∥∥2

F
can be

achieved. A simplified upper bound is E ‖X(`)β̂(`) −

X(`)β̄(`)‖22 ≤
∥∥∥X(`)Ω̄1/2

(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)− 1
2
∥∥∥2

F
+

λ−1‖Σ(`)(Ω̂(`) − Ω̄)‖2F .

This means that if the covariance estimation is
consistent; that is, if Ω̂(`) converges to Ω̄, then
our method achieves the optimal prediction error∥∥∥X(`)Ω̄1/2

(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)−1/2
∥∥∥2

F
for all tasks.

The consistency of Ω̂(`) has been studied in the literature,
for example by [4] under high dimensional sparsity as-
sumptions. Such results can be immediately applied with
Theorem 4.1 to obtain optimality of the proposed approach.
Specifically, we consider the case of diagonal covariance
matrix, where the sparsity in Ω̄ is defined as the number of
non-zero diagonal entries, i.e., s = |{i : Ωii 6= 0}|. Fol-
lowing [4], we consider the case X(`) = X ∈ Rn×d, ` =
1, . . . ,m. Let XJ denote the sub matrix of X obtained by
removing the columns ofX whose indices are not in the set
J . We also assume that the diagonals of X>X have iden-
tical values so that (8) is equivalent to (7) up to a scaling of
λ.

Let ρmin(A) and ρmax(A) for a matrix A denote the small-
est and largest eigenvalue of A respectively. We introduce
two quantities [4] that impose certain assumptions on the
matrix X .

Definition 1. For 0 < t ≤ d, define ρmin(t) :=
infJ⊂{1,...,d}

|J|≤t
ρmin(X>J XJ).

Definition 2. The mutual coherence of the columnsXt, t =
1, . . . , d of X is defined as θ(X) := max{|X>t′Xt|, t 6=
s′, 1 ≤ t, t′ ≤ d} and let X2

max := max{‖Xt‖22, 1 ≤ t ≤
d}.

We now state the following theorem establishing the con-
sistency of covariance estimation (given by Eq 11) in the
high-dimensional setting. The proof essentially follows the
same argument for Theorem 8 in [4], by noticing the equiv-
alence between (8) and (7), which implies consistency.

Theorem 4.2. Assume that Ω̄ is diagonal, and θ(X) <
ρmin(s)2/4ρmax(X>X)s. Assume n is fixed and the num-
ber of tasks and dimensionality m, d → ∞ such that

√
s ln d/m → 0. Then the covariance estimator of (11),

with appropriately chosen λ and R(Ω) defined by (8), con-
verges to Ω̄:

‖X(Ω̂(`) − Ω̄)X>‖2F →P 0. (12)

The following corollary, which is an immediate conse-
quence of Theorem 4.1 and 4.2, establishes the asymptotic
optimality (for prediction) of the proposed approach under
the sparse diagonal matrix setting and R(Ω) defined as in
(8). Similar result could be derived for other regularizers
for R(Ω).

Corollary 1. Under the assumption of Theorem 4.1 and
4.2, the two-step approach defined by (11) and (10), with
R(Ω) defined by (8) is asymptotically optimal for predic-
tion, for each task `:

E ‖Xβ̂(`) −Xβ̄(`)‖22

−
∥∥∥∥XΩ̄1/2

(
Ω̄1/2X>XΩ̄1/2 + λI

)−1/2
∥∥∥∥2

F

→P 0.

Note that the asymptotics considered above, reveals the ad-
vantage of multi-task learning under the joint sparsity as-
sumption: with a fixed number of samples per each task,
as the dimensions of the samples and number of tasks tend
to infinity (obeying the condition given in theorem 4.2) the
proposed two-step procedure is asymptotically optimal for
prediction. Although for simplicity, we state the optimality
result for (11) and (10), the same result holds for the two-
step procedure given by (5) and (6), because Ω̂(`) of (11)
and Ω̂ of (5) differ only by a factor of O(1/m) which con-
verges to zero under the asymptotics considered. Finally,
we would like to remark that the mutual coherence assump-
tion made in Theorem 4.2 could be relaxed to milder con-
ditions (based on restricted eigenvalue type assumptions) -
we leave it as future work.

4.2 Drawback of Group Lasso

In general, group Lasso does not lead to optimal perfor-
mance due to looseness of the single step convex relax-
ation. [12, 9]. This section presents a simple but concrete
example to illustrate the phenomenon and shows how Ω̄
is under-estimated in the group-Lasso formulation. Com-
bined with the previous section, we have a complete theo-
retical justification of the superiority of our approach over
group Lasso, which we will also demonstrate in the empir-
ical study.

For this purpose, we only need to consider the following
relatively simple illustration (in the low-dimensional set-
ting). We consider the case when all design matrices equal
identity: X(`) = I for ` = 1, . . . ,m. This formulation is
similar to Normal means models, a popular model in the
statistics literature. It is instructive to consider this model
because of its closed form solution. It helps in deriving
useful insights that further help for a better understanding



of more general cases. We are interested in the asymptotic
behavior when m → ∞ (with n(`) and d fixed), which
simplifies the analysis, but nevertheless reveals the prob-
lems associated with the standard group Lasso formulation.
Moreover, it should be mentioned that although the two-
step procedure is motivated from a generative model, the
analysis presented in this section does not need to assume
that each β(`) is truly generated from such a model.

Proposition 1. Suppose that n(`) = d and X(`) = I for
` = 1, . . . ,m, and m → ∞. The sparse covariance es-
timate corresponding to the formulation defined by (8) is
consistent.

Proof. The sparse covariance coding formulation (8) is
equivalent to (with the intention of setting λ = σ2): Ω̂scc =
arg min{ωj≥0}

∑m
`=1

1
2

∥∥y(`)y(`)> − diag({ωj})
∥∥2

F
+

λm
∑
j ωj . The closed form solution is given by

ω̂sccj = max
(

0,m−1
∑m
`=1(y(`)

j )2 − λ
)

for j = 1, . . . , d.

Since m−1
∑m
`=1(y(`)

j )2 → Eβ(`)(β(`)
j )2 +σ2 as m→∞,

the variance ω̂sccj → Eβ(`)(β(`)
j )2 with λ = σ2. Therefore

ω̂j is consistent.

Note that by plugging-in the estimate of variance into (6)
with the same λ (with λ = σ2), we obtain

β̂
(`)
j = y

(`)
j max

(
0, 1− λ

m−1
∑m
`=1(y(`)

j )2

)
. (13)

An immediate consequence of Proposition 1 is that the
estimate define in (13) is asymptotically optimal for any
method using a quadratic regularizer shared by all the tasks.

A similar analysis of group Lasso formulation would re-
veal its drawback. Consider the group Lasso formulation
defined in (3). Under similar settings, the formulation can
be written as [β̂, ω̂gl] =

arg min
β,ω

m∑
`=1

∥∥∥y(`) − β(`)
∥∥∥2

2
+ λ

d∑
j=1

1
ωj

m∑
`=1

(β(`)
j )2

+m
d∑
j=1

ωj .

The closed form solution for the above formulation is

given by ω̂glj = max
(

0,
√
λm−1

∑m
`=1(y(`)

j )2 − λ
)

, for

j = 1, . . . , d, and the corresponding coefficient estimate

is β̂(`)
j = y

(`)
j max

(
0, 1−

√
λ√

m−1
∑m

`=1(y
(`)
j )2

)
, for ` =

1, . . . ,m and j = 1, . . . , d.

The solution for ω̂glj implies that it is not possible to pick
a fixed λ such that the group Lasso formulation gives con-
sistent estimate of ωj . Since from (3), it is evident that
group Lasso can also be regarded as a method that uses a

quadratic regularizer shared by all the tasks, we know that
the solution obtained for the corresponding co-efficient es-
timate is asymptotically sub-optimal. In fact, the covari-
ance estimate ω̂glj is significantly smaller than the correct
estimate ω̂sccj . This under-estimate of ωj in group Lasso
implies a corresponding under-estimate of β(`) obtained
via group Lasso, when compared to (13). This under-
estimation is the underlying theoretical reason why the pro-
posed two-step procedure is superior to group Lasso for
learning with joint sparsity. This claim is also confirmed
by our empirical studies.

5 Experiments

We demonstrate the advantage of the proposed two-step
procedure through (i) multi-task learning experiments on
synthetic and real-world data sets and (ii) sparse covariance
coding based image classification.

5.1 Multi-task learning

We first report illustrative experiments conducted on syn-
thetic data sets with the proposed models. They are com-
pared with the standard group-lasso formulation. The ex-
perimental set up is as follows: the number of tasks m =
30, d = 256, and n` = 150. The data matrix consists of
entries from standard Gaussian N(0, 1). To generate the
sparse co-efficients, we first generate a random Gaussian
vector in d dimensions and set to zero d − k of the co-
efficients to account for sparsity. The cardinality of the set
of non-zero coefficients is varied as k = 50, 70, 90 and
the noise variance was 0.1. The results reported are aver-
ages over 100 random runs. We compare against standard
group lasso, MSMTFL [9] (note that this is a non-convex
approach, solved by sequence of convex relaxations) and
another natural procedure (GLS-LS) where one uses group
lasso for feature selection and with the selected features,
one does least squares regression to estimate the coeffi-
cients. A precise theoretical comparison to MSMTFL pro-
cedure is left as future work.

Tables 2 shows the coefficient estimation error when the
samples are such that they share 80% as common basis (and
the rest 20% is selected randomly from the remaining basis)
and when the samples share the same indices of non-zero
coefficients (and the actual values vary for each signals).
We note that in both cases, the model with diagonal covari-
ance assumption and partial full covariance (Equation 9)
outperforms the standard group lasso formulation, with the
diagonal assumption performing better because of good es-
timates. The diagonal+low-rank formulation slightly out-
performs the other models as it preserves the advantages
of the diagonal model, while at the same time allows for
additional modeling capability through the low-rank part,
through proper selection of regularization parameters by



cross-validation.

Support selection: While the above experiment sheds light
on co-efficient estimation error, we performed another ex-
periment to examine the selection properties of the pro-
posed approach. Table 1 shows the hamming distance be-
tween selected basis and the actual basis using the different
models. Note that Hamming distance is a desired metric
for practical applications where exact recovery of the sup-
port set is not possible due to low signal-to-noise ratio. The
indices with non-zero entry along the diagonal in the model
with diagonal covariance assumption correspond to the se-
lected basis. Similarly, indices with non-zero columns (or
rows by symmetry) correspond to the selected basis in the
partial full covariance model. The advantage of the diag-
onal assumption for joint feature selection is clearly seen
from the table. This superiority in the feature selection
process also explains the better performance achieved for
coefficient estimation. A rigorous theoretical study of the
feature selection properties is left as future work.

Correlated data: We next study the effect of correlated
data set on the proposed approach. We generated correlated
Gaussian random variables (corresponding to the size of
the data matrix) in order to fill the matrix X for each task.
The correlation co-efficient was fixed at 0.5. We worked
with fully overlapped support set. Other problem parame-
ters were retained. We compared the estimation accuracy
of the proposed approach with different settings with group
lasso and its variants. The results are summarized in Ta-
ble 3. Note that the proposed approach performs much
better than the group-Lasso based counterparts. Precisely
characterizing this improvement theoretically would be in-
teresting.

Next, the proposed approach was tested on three standard
multi-task regression datasets (computer, school and sar-
cos datasets) and compared with the standard approach for
multi-task learning: mixed (2, 1)-norms or group lasso (2).
A description of the datasets is given below:

Computer data set: This dataset consists of a survey
among 180 people (corresponding to tasks). Each rated
the likelihood of purchasing one of 20 different comput-
ers. The input consists 13 different computer characteris-
tics, while the output corresponds to ratings. Following [1],
we used the first 8 examples per task for training and the
last 4 examples per task for testing.

School data set: This dataset is from the London Educa-
tion Authority and consists of the exam scores of 15362
students from 139 schools (corresponding to tasks). The in-
put consists 4 school-based and 3 student-based attributes,
along with the year. The categorical features are replaced
with binary features. We use 75% of the data set for train-
ing and the rest for testing.

Sarcos data set: The dataset1 has 44,484 train samples and
4449 test samples. The task is to map a 21-dimensional in-
put space (corresponding to characteristics of robotic arm)
to the the output corresponding to seven torque measure-
ment (tasks) to predict the inverse dynamics.

We report the average (accross tasks) root mean square er-
ror on the test data set in Table 4. Note that the proposed
two-step approach performs better than the group lasso ap-
proach on all the data sets. The data sets correspond to
cases with varied data size and number of tasks. Observe
that even with a small training data (computer data set),
performance of both our approach is better than the group-
lasso approach.

5.2 SCC based Image Classification

In this section, we present a novel application of the
proposed approach for obtaining sparse codes for gender
recognition in CMU Multi-pie data set. The database con-
tains 337 subjects (235 male and 102 female) across si-
multaneous variations in pose, expression, and illumina-
tion. The advantages of jointly coding the extracted lo-
cal descriptors of an image with respect to a given dictio-
nary for the purpose of classification has been highlighted
in [3]. They propose a method based on mixed (2, 1)-norm
to jointly find a sparse representation of an image based
on local descriptors of that image. Following a similar ex-
perimental setup, we use the proposed sparse covariance
coding approach for attaining the same goal.

Each image is of size 30 × 40, size of patches is 8 × 8,
and number of overlapping patches per image is 64. Lo-
cal descriptors for each images are extracted in the form of
overlapping patches and a dictionary is learned based on
the obtained patches by sparse coding. With the learnt dic-
tionary, the local descriptors of each image is jointly sparse
coded via the diagonal covariance matrix assumption and
the codes thus obtained are used or classification. This ap-
proach is compared with the group sparse coding based ap-
proach. Linear SVM is used in the final step for classifica-
tion. Note that the purpose of the experiment is not learning
a dictionary. Table 5 shows the test set and train set error for
the classifier thus obtained. Note that the proposed sparse
covariance coding based approach outperforms the group
sparse coding based approach for gender classification due
to its better quality estimates.

Group sparse coding Sparse cov. coding
Train error 6.67± 1.34% 5.56± 1.62%
Test error 7.48± 1.54% 6.32± 1.12%

Table 5: Face image classification based on gender: Test
and Train set error rates for sparse covariance coding and
group sparse coding (both with a fixed dictionary).

1http://www.gaussianprocess.org/gpml/
data/



Method 80% shared basis Completely shared basis
k=50 k=70 k=90 k=50 k=70 k=90

Standard group lasso 0.18 0.22 0.27 0.11 0.16 0.22
MSMTFL 0.15 0.18 0.20 0.07 0.08 0.17

Partial full covariance 0.17 0.20 0.23 0.07 0.11 0.16
Sparse diagonal covariance 0.13 0.16 0.20 0.05 0.09 0.14

Table 1: Support selection: Hamming distance between true non-zero indices and estimated non-zero indices by the
indicated method for all signals.

Method k=50 k=70 k=90
standard group Lasso 0.1541± 0.0045 0.1919± 0.0092 0.2404± 0.0124

GLS-LS 0.1498± 0.0032 0.1901± 0.0034 0.2383± 0.0342
Partial full covariance 0.1239± 0.0063 0.1542± 0.0131 0.1992± 0.0143

Sparse Diagonal covariance 0.1022± 0.0054 0.1393± 0.0088 0.1701± 0.0104
MSMTFL 0.1276± 0.0075 0.1564± 0.0153 0.1987± 0.0201

Diag+Low-rank covariance 0.1031± 0.0042 0.1212± 0.0122 0.1532± 0.0173

Standard group Lasso 0.1032± 0.0086 0.1574± 0.0151 0.1733± 0.0190
GLS-LS 0.1010± 0.0045 0.1532± 0.0134 0.1698± 0.0430

Partial full covariance 0.0735± 0.0078 0.1131± 0.0148 0.1576± 0.0201
Sparse Diagonal covariance 0.0447± 0.0071 0.0828± 0.0165 0.1184± 0.0198

MSMTFL 0.0643± 0.0093 0.0832± 0.0200 0.1457± 0.0223
Diag+low-rank Covariance 0.0452± 0.0084 0.0786± 0.0136 0.1012± 0.0161

Table 2: Coefficient estimation: Normalized L2 distance between true coefficients and estimated coefficients by the indi-
cated method. First 5 rows correspond to 80% shared basis and the last 5 rows correspond to fully shared basis.

6 Discussion and Future work

We proposed a two-step estimation procedure based on a
specialized random effects model for dealing with joint
sparsity regularization and demonstrated its advantage over
the group-Lasso formulation. The proposed approach high-
lights the fact that enforcing interesting structure on covari-
ance of the coefficients is better for obtaining joint sparsity
in the coefficients. We leave a theoretical comparison to
the MSMTFL procedure, precisely quantifying the statisti-
cal improvement provided by the proposed approach (note
that MSMTFL being a non-convex procedure does not at-
tain the global optimal solution [9]) as future work. Future
work also includes (i) relaxing the assumptions made in
the theoretical analysis, (ii) exploring more complex mod-
els like imposing group-mean structure on the parameters
for additional flexibility, (iii) other additive decomposition
of the covariance matrix with complementary regularizers
and (iv) using locally-smoothed covariance estimates for
time-varying joint sparsity.

A Identifiability of additive structure
The issue of identifiability (which is necessary subse-
quently for consistency and recovery guarantees) arises
when we deal with additive decomposition of the covari-
ance matrix. Here, we discuss about the conditions under

which the model is identifiable, i.e., there exist an unique
decomposition of the covariance matrix as the summation
of the sparse diagonal matrix and low-rank matrix. We fol-
low the discussion used in [11]. Let Ω = Ωs + ΩL denote
the decomposition where Ωs denotes the sparse diagonal
matrix and ΩL a low-rank matrix. Intuitively, identifiability
holds if the sparse matrix is not low-rank (i.e., the support
is sufficiently spread out) and the low-rank matrix is not too
sparse (i.e., the singular vectors are away from co-ordinate
axis). A formal argument is made based on the above intu-
ition. We defined the following quantities (following [11])
below that measures the non-zero entries in any row or col-
umn of Ωs and sparseness of the singular vectors of ΩL:

α = max{‖sign(Ωs)‖1→1, ‖sign(Ωs)‖∞→∞}

and

β = ‖UUT ‖∞ + ‖V V T ‖∞ + ‖U‖2→∞‖V ‖2→∞,

where U, V ∈ Rd×r are the left and right orthonormal sin-
gular vectors corresponding to non-zero singular values of
ΩL and ‖M‖p→q

def= {‖Mv‖q : v ∈ Rm, ‖v‖p ≤ 1}.

Note that, for a diagonal matrix, ‖sign(Ωs)‖1→1 =
‖sign(Ωs)‖∞→∞ = 1. It is proved in [11] that if αβ < 1,
then the matrices are identifiable, i.e, the sparse plus low-
rank decomposition is unique. Therefore we only need to



Method k=50 k=70 k=90
Group Lasso 0.2012± 0.0033 0.2655± 0.0132 0.3252± 0.0323

GLS-LS 0.2090± 0.0098 0.2702± 0.0042 0.3304± 0.0333
Partial full covariance 0.1706± 0.0064 0.2376± 0.0224 0.2701± 0.0323

Sparse diagonal covariance 0.1634± 0.0022 0.2112± 0.0073 0.2601± 0.0231
MSMTFL 0.1786± 0.0023 0.2323± 0.0434 0.2776± 0.0223

Diag+Low-rank covariance 0.1531± 0.0042 0.2002± 0.0236 0.2544± 0.0145

Table 3: Coefficient estimation: Normalized L2 distance between true coefficients and estimated coefficients by the indi-
cated method with correlated input data.

Data set Group lasso MSMTFL Sparse diagonal Covariances Corr. Sparse diag (Eq.7)
Computer 1.542± 0.043 1.334± 0.031 1.223± 0.033 1.209± 0.054

School 2.202± 0.038 2.033± 0.241 1.987± 0.040 2.012± 0.073
Sarcos 9.221± 0.051 9.113± 0.145 8.983± 0.043 9.002± 0.032

Table 4: Multi-task learning: Average (across task) MSE error on the test data set.

require β < 1 for identifiability, which is a rather weak
assumption, satisfied by most low-rank matrices with suffi-
cient spread of the support.

B Proof of Theorem 4.1

For notational simplicity, we remove the superscripts (`) in
the following derivation (e.g., denote X(`) by X , β̂(`) by β̂
and so on). We have the following decomposition

E‖Xβ̂ −Xβ̄‖22
=E
∥∥X((X>X + λΩ̂−1

)−1
X>(Xβ̄ + ε)− β̄

)∥∥2

2

=E
∥∥X(X>X + λΩ̂−1

)−1
λΩ̂−1β̄

∥∥2

2

+ E
∥∥X(X>X + λΩ̂−1

)−1
X>ε

∥∥2

2

=λ2tr
[
X
(
X>X + λΩ̂−1

)−1Ω̂−1Ω̄Ω̂−1
(
X>X + λΩ̂−1

)−1

X>
]

+ σ2tr
[
X
(
X>X + λΩ̂−1

)−1

X>X
(
X>X + λΩ̂−1

)−1
X>
]

≤trλ
[
X
(
Ω̂X>X + λI

)−1(λΩ̄ + Ω̂X>XΩ̂)(
X>XΩ̂ + λI

)−1
X>
]

=λ(A+B + C)

where with ∆Ω̂ = Ω̂ − Ω̄, we have A = tr
[
X
(
Ω̂X>X +

λI
)−1∆Ω̂X>X∆Ω̂

(
X>XΩ̂ + λI

)−1
X>
]

and
B = 2tr

[
X
(
Ω̂X>X + λI

)−1Ω̄X>X∆Ω̂
(
X>XΩ̂ +

λI
)−1

X>
]

and C = tr
[
X
(
Ω̂X>X + λI

)−1(Ω̄X>XΩ̄ +
λΩ̄)

(
X>XΩ̂ + λI

)−1
X>
]
. We can further expand C as

C =tr
[
X
(
Ω̄X>X + λI

)−1(Ω̄X>XΩ̄ + λΩ̄)(
X>XΩ̂ + λI

)−1
X>
]

−tr
[
X
(
Ω̂X>X + λI

)−1∆Ω̂X>X
(
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)−1

(Ω̄X>XΩ̄ + λΩ̄)
(
X>XΩ̂ + λI

)−1
X>
]

=tr
[
XΩ̄

(
X>XΩ̂ + λI

)−1
X>
]
− tr
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X
(
Ω̂X>X + λI

)−1

∆Ω̂X>XΩ̄
(
X>XΩ̂ + λI

)−1
X>
]

=tr
[
XΩ̄

(
X>XΩ̂ + λI

)−1
X>
]
−B/2.

Therefore we have

B + C − tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>
]

=B/2− tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>X∆Ω̂(

X>XΩ̂ + λI
)−1

X>
]

=B/2− tr
[
X
(
Ω̄X>X + λI

)−1Ω̄X>X∆Ω̂(
X>XΩ̂ + λI

)−1
X>
]

=− tr
[
X
(
Ω̂X>X + λI
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Ω̄X>X + λI
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(
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.

Putting all together, we have

A+B + C − tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>
]

=tr
[
X
(
Ω̂X>X + λI

)−1∆Ω̂
(
I −X>X

(
Ω̄X>X + λI

)−1

Ω̄
)
X>X∆Ω̂

(
X>XΩ̂ + λI

)−1
X>
]

=λtr
[
X
(
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)−1∆Ω̂
(
X>XΩ̄ + λI

)−1

X>X∆Ω̂
(
X>XΩ̂ + λI

)−1
X>
]
.

This proves the upper bound. Similarly, the lower bound
follows from the fact that E ‖Xβ̂ −Xβ̄‖22 ≥ σ2(A+B +
C).
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